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Spectrum, environment and location awareness are key characteristics of cognitive radio

(CR). Knowledge of a user’s location as well as the surrounding environment type may

enhance various CR tasks, such as spectrum sensing, dynamic channel allocation and inter-

ference management. This dissertation deals with the optimisation of adaptive localisation

techniques for CR. The first part entails the development and evaluation of an efficient

bandwidth determination (BD) model, which is a key component of the cognitive positio-

ning system. This bandwidth efficiency is achieved using the Cramer-Rao lower bound

derivations for a single-input-multiple-output (SIMO) antenna scheme. The performances

of the single-input-single-output (SISO) and SIMO BD models are compared using three

different generalised environmental models, viz. rural, urban and suburban areas. In the case

of all three scenarios, the results reveal a marked improvement in the bandwidth efficiency

for a SIMO antenna positioning scheme, especially for the 1×3 urban case, where a 62%

root mean square error (RMSE) improvement over the SISO system is observed.

 
 
 



The second part of the dissertation involves the presentation of a multiband time-of-

arrival (TOA) positioning technique for CR. The RMSE positional accuracy is evaluated

using a fixed and dynamic bandwidth availability model. In the case of the fixed bandwidth

availability model, the multiband TOA positioning model is initially evaluated using the

two-step maximum-likelihood (TSML) location estimation algorithm for a scenario where

line-of-sight represents the dominant signal path. Thereafter, a more realistic dynamic

bandwidth availability model has been proposed, which is based on data obtained from an

ultra-high frequency spectrum occupancy measurement campaign. The RMSE performance

is then verified using the non-linear least squares, linear least squares and TSML location

estimation techniques, using five different bandwidths. The proposed multiband positioning

model performs well in poor signal-to-noise ratio conditions (-10 dB to 0 dB) when compa-

red to a single band TOA system. These results indicate the advantage of opportunistic TOA

location estimation in a CR environment.
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Spektrum, omgewing en plekbewustheid is die sleuteleienskappe van kognitiewe radio

(KR). Kennis van ’n KR-gebruiker se posisie asook omliggende omgewingtipe kan verskeie

KR-take soos spektrumwaarneming, dinamiese kanaaltoekenning en inmenging verbeter.

Die onderwerp van hierdie verhandeling is die optimering van aanpasbare lokalisering-

tegnieke vir KR. Die eerste deel is die ontwikkeling en evaluering van ’n effektiewe

bandwydtebepalingmodel (BB-model) wat ’n belangrike komponent van die kognitiewe

posisioneringsisteem (KPS) is. Hierdie bandwydtedoeltreffendheid word bereik deur

gebruik te maak van die ondergrensafleidings vir ’n enkel-inset-verskeie-uitsette- (EIVU)

antennaskema. Die vertonings van die enkel-inset-enkel-uitset- (EIEO) en EIVU-BB-

modelle word vergelyk in drie verskillende omgewingsmodelle, die plattelandse, stedelike

en voorstedelike modelle. In al drie gevalle, toon die resultate ’n merkbare verbetering in die

bandwydtedoeltreffendheid vir ’n EIVU-antennaplasingskema, veral in die stedelike geval,

waar ’n 62% wortel-gemiddelde-kwadraat foutverbetering (RMSE) oor die EIEO-stelsel vir

die 1×3 geval waargeneem word.

 
 
 



Die tweede deel van die verhandeling behels die aanbieding van ’n multiband-tyd-

van-aankomsposisioneringstegniek (TVA-posisioneringstegniek) vir KR. Die RMSE se

posisionele akkuraatheid word geëvalueer met behulp van ’n vaste en dinamiese bandwyd-

tebeskikbaarheidsmodel. In die geval van die vaste bandwydtebeskikbaarheidsmodel,

is die multiband-TVA-posisioneringsmodel aanvanklik geëvalueer met behulp van die

tweestap-maksimumwaarskynlikheid-(TSMW) plekskattingalgoritme vir ’n situasie waar

lyn van sig die dominante seinpad verteenwoordig. Vervolgens is ’n meer realistiese

dinamiese bandwydtebeskikbaarheidsmodel voorgestel wat gebaseer is op uitslae wat verkry

is van ’n ultra-hoë-frekwensie spektrumbesettingmetingveldtog. Die werkverrigting van die

RMSE word dan geverifieer deur gebruik te maak van die nie-lineêre kleinste-kwadrate-,

lineêre minste-kwadrate- en TSMW-plekskattingtegnieke deur gebruik te maak van vyf

verskillende bande. Die voorgestelde multiband-posisioneringmodel presteer goed in swak

geraasverhoudingtoestande (-10 dB tot 0 dB) wanneer dit vergelyk word met ’n enkelband-

TVA-stelsel. Hierdie uitslae dui op die voordeel van opportunistiese TVA-plekskatting in ’n

KR-omgewing.
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CHAPTER 1

INTRODUCTION

The demand for voice and high data rate applications has drastically increased over the

past few years, partly in response to the introduction of smartphone and tablet devices,

which are capable of performing various functions, such as multitasking, document editing

and high-definition video streaming, all of which were traditionally performed by personal

computers. The addition of social networking and cloud storage have provided people with

different ways of exchanging and storing various multimedia, including videos, photos

and music with the aid of these mobile devices. Next generation wireless communication

systems therefore have to cater for this increasing demand by optimising radio and network

resources, as well as different transmission parameters such as throughput and QoS.

The management of the radio frequency (RF) spectrum, which is an integral part of

wireless communications, has garnered interest among the research community. Stu-

dies [1–6] have shown that there is a definite lack of efficient spectrum utilisation based

on the current fixed spectrum allocation policy, which is determined by telecommunication

regulators. In addition, the usable RF spectrum for wireless communications is a limited

resource. The results of these investigations have revealed that large percentages of the RF

band are underutilised and in certain cases, extremely congested. As a result, this brought

about the need for increased spectrum efficiency and awareness for mobile communication

devices. Cognitive radio (CR) and cognitive wireless networks (CWNs) have been regarded

as proposed solutions to enhance spectrum utilisation using concepts derived from a

Software Defined Radio (SDR) and machine learning perspective. Cognitive radio’s primary
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capabilities involve the dynamic utilisation of specific spectrum gaps (also termed white

spaces) in an opportunistic manner that is non-interfering with existing licensed users,

such as mobile telecommunication operators. Research in the CR field has expanded into

different areas ranging from adaptive wireless systems, spectrum sensing and resource

allocation to cross-layer optimisation, as well as various other issues.

1.1 BACKGROUND

1.1.1 Software Defined Radio

The basic structure of a digital communication system has remained unchanged since its

original development. The first component of such a system may include an analogue or

digital source containing the information to be transmitted. This particular signal can be effi-

ciently represented as a series of binary symbols through a source encoder. The output of the

source encoder is passed through a channel encoder, which then compensates for the degra-

ding channel effects such as interference and noise through the introduction of redundancy

into the transmitted message. The digital modulator then translates the binary symbol out-

put of the channel encoder into signal waveforms for transmission over the channel. At the

receiver end, the demodulator converts the noise-corrupted signal into a series of symbols,

which is then passed through the channel decoder and source decoder in order to construct

the original transmitted information [7]. The introduction of microelectronics has allowed

the aforementioned communication subsystems, such as the antenna, the modem and codecs,

to be encased in a single integrated chip (IC). The concept of SDR aims to replace currently

implemented radio hardware with configurable software for all communication layers, in-

cluding the physical (PHY) layer right up to the application layer. For example, PHY layer

modules that can be reconfigured include the antenna system, RF conversion and amplifiers.

Conventional wireless radios consisted of ICs optimised for small or fixed RF ranges and

bandwidths such as frequency modulation (FM) broadcast (88-108 MHz), GSM communi-

cations (850-950 MHz) and wireless fidelity (WiFi) at 2.4 GHz. One of the key capabilities

of SDR is to reconfigure the analogue RF components in a digital manner to operate across

a single frequency range while catering for different technologies that operate over different

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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frequency bands. The SPEAKeasy Phase-2 system was one of the earlier implementations

of SDR, which was designed specifically for the military program to operate between the 2

MHz and 2 GHz frequency range [8]. Hence, the idea of reconfigurability aims to provide

a generalised framework for multiple air interfaces, different protocols and various applica-

tions which enhance the network and terminal efficiency and capabilities. There are a spe-

cific set of goals for reconfigurability with regard to mobile communication systems, such

as [9]:

• Reconfiguration control and adaptation of the radio interface based on various envi-

ronments and standards.

• Service design and provision to reconfigurable terminals across all network types and

various radio access modes.

• Environment user management with regard to location, user profiles, access networks

and terminals.

SDR therefore serves as an underlying technology for future implementations of CR.

1.1.2 Cognitive Radio

SDR became the foundation of ’cognitive radio’ which was a concept initially devised by

Mitola [10,11]. This article described the radio knowledge representation language (RKRL)

as a viable method to increase the efficiency and flexibility of wireless services. Through

the RKRL, it was possible to distinguish several key characteristics of CR which, included

awareness, intelligence, learning, adaptation, reliability and efficiency. The multifaceted

concept of CR makes this next generation communication technology a real possibility

owing to the advances and progress made over the years in digital signal processing

hardware, software, networking and machine learning [12].

Spectrum awareness is a prominent feature of CR and has become vital in order to

fulfil the requirements of efficient spectrum usage. Interference avoidance is a classical

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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challenge affecting existing mobile networks. Communication regulators are tasked with

assigning a fixed frequency spectrum to telecommunication operators and various organi-

sations in such a manner that these bodies can co-exist without interfering with one other.

In a congested spectrum environment, the task of conducting effective and efficient mobile

communications, coupled with the process of interference avoidance, becomes a challenging

issue. In a typical CR scenario, interference can be broadly categorised into two types, viz.

interference in the presence of a primary user (PU) (user licensed to utilise a specific portion

of the spectrum) causing disruption to real-time communications and interference in the

absence of the PU. Both of these cases can have a negative impact on the channel capacity

and QoS. It is envisioned that a secondary user (SU) (CR user who has unlicensed access to

the spectrum) has the inherent ability to compensate for PU interference by implementing

a coordinated strategy to locate and utilise unused portions of the spectrum in seamless

and non-interfering fashion [13]. Various spectrum sharing models have been developed

in relation to the fundamentals of game theory. A basic dynamic spectrum sharing model

can be considered as multiple games between numerous PUs and SUs, where the optimal

behaviour and actions of these players can be studied from a game theoretic perspective [14].

Figure 1.1 illustrates the exploitation of white spaces using dynamic spectrum access. The

challenge for the SU, is to maintain reliable communications without interfering with any

of the PUs, as shown in Figure 1.1. Therefore it is imperative to sense channel occupancy

in order to take advantage of the available white spaces. Adaptation and awareness are

therefore key enabling factors, which will aid CR in correct decision-making. In addition to

spectrum awareness, CR should be able to characterise signal propagation conditions and

dynamically adapt accordingly [15].

Figure 1.2 is an example of a typical CR scenario. Primary network access refers to the exis-

ting radio network infrastructure, which has the required access to utilise the spectrum band,

such as TV broadcasters and telecommunication operators. Similarly, the PUs have the re-

quired licenses to operate in the spectrum band. The CR (secondary) network, together with

CR unlicensed users, can only opportunistically access the spectrum. There are a number of

enabling technologies that can drive CR. One such technology is the ability of CR to gather

and maintain immediate location data using a variety of existing techniques such as the Glo-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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PU 1

PU 2

PU 3

White Spaces/
Spectrum Holes

Dynamic Spectrum Access by SU

Figure 1.1: Basic illustration of dynamic spectrum access [13]

bal Positioning System (GPS), cellular-aided positioning or even cooperative localisation.

The knowledge and understanding of a radio’s node location forms an important part of the

overall CR architecture. CWN applications that are capable of utilising location-assisted data

to the maximum benefit include dynamic spectrum management, dynamic channel allocation

algorithms, automatic network expansion procedures, handover algorithms and adaptive co-

verage systems. Location awareness for CR also enables optimised scheduling of tasks and

routing both in space and time, which enable more efficient communications [16]. Therefore

the motivation and focus of this dissertation pertains to certain aspects of location awareness

for CR and more specifically the optimisation of dynamic spectrum access assisted positio-

ning techniques.

1.2 RESEARCH OBJECTIVES

The objectives of this research study aims to optimise the existing time-based localisation

techniques in order to enable CR location awareness and therefore this research work can be
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Figure 1.2: Overview of a typical CR environment [13]

broadly divided into two aspects:

• The first objective is the development of an efficient bandwidth determination (BD)

model for the cognitive positioning system (CPS) using a multiple receive antenna

system, which is based on the Cramer-Rao lower bound (CRLB) principle. The perfor-

mance advantages of the single-input-multiple-output (SIMO) BD positioning scheme

are compared with the conventional single-input-single-output (SISO) scheme, using

the linear least squares (LLS) technique and two-step maximum-likelihood (TSML)

location estimation algorithms. The proposed efficient BD model is also compared

under different environmental models with various propagation characteristics. These

include a generalised rural scenario where line-of-sight (LOS) is the dominant sig-

nal component, as well as urban and suburban environments where non-line-of-sight
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Chapter 1 Introduction

(NLOS) components can affect the positional accuracy of a CR user.

• The second objective involves the proposed formulation of a single-path multiband

time-of-arrival (TOA) positioning technique for CR, which follows indirectly from

the first research objective. The positional accuracy of a conventional single band

TOA system is compared with the proposed multiband TOA estimation technique.

An overall time delay estimate is developed, which is based on the CRLB derivation

of a combining estimation technique. The performance of the localisation technique

is analysed using a set of linear and non-linear location estimation algorithms. In the

context of a CR scenario, the multiband positioning technique is validated using a fixed

bandwidth availability model and a practical ultra-high frequency (UHF) bandwidth

availability model, which is based on spectrum occupancy measurement data.

1.3 CONTRIBUTIONS

The analysis and evaluation of a bandwidth efficient CPS and the development of a multiband

TOA estimation technique would be a significant next step in the optimised development of

location awareness engines for CR transceivers. The following research contributions are

pertinent to this study:

• One of the main contributions of this research study would be the development of a

more spectrally efficient CPS for CR, i.e. the CPS would require less bandwidth to

achieve the desired positional accuracy when compared to the current system. This

technique highlights the advantages of multi-antenna schemes for positioning in addi-

tion to its benefits in wireless communications.

• An evaluation of the proposed bandwidth efficient model is presented under two main

types of scenarios, LOS and NLOS environments. The extent to which either system

outperforms the other will be quantified, using two linear estimation algorithms, viz.

two-step maximum likelihood (TSML) and linear least squares (LLS) estimation.

• Knowledge regarding the state (LOS/NLOS) of the transmitted signals and required
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Chapter 1 Introduction

compensation thereof to improve positional accuracy, can also be utilised to signi-

ficantly increase the performance of the autonomous and adaptive capabilities of CR.

The resulting outcome of this research may significantly aid in decision-directed selec-

tion of optimal modulation schemes, as well as appropriate frequency band selection.

This is provided that a CR receiver can accurately determine its position, irrespective

of the state of the signals, while at the same time achieving the desired requirements

of dynamic spectrum access.

• TOA ranging has traditionally been implemented in many positioning applications and

determines the position of a mobile user by estimating the signal time delay between

the transmitter and the receiver. The multiband TOA method also aims to exploit a

typical CR scenario where varying discrete bandwidths are utilised in an opportunis-

tic fashion to enable improved TOA location awareness. The novelty of this work is

the estimation combining technique, which involves the selection of an overall opti-

mum delay estimate to enhance the two-dimensional location estimation accuracy of a

mobile user.

The development of these environment and location awareness applications could pave the

way for advanced autonomous location-based services, which will inevitably form part of

the overall CR architecture [15]. The concept of CR has been considered the recommended

solution for problems associated with spectrum scarcity and autonomous functionality and

awareness of local surroundings has become an integral part of wireless adaptive communi-

cation systems.

1.4 RESEARCH OUTPUTS

The following conference proceeding and journal letter was published during the course of

this research study:

1. R.R. Thomas, B. Zayen, R. Knopp and B.T. Maharaj, "A multiband TOA positioning

technique for CR systems", in 22nd Personal Indoor Mobile Radio Communications

(PIMRC) Workshop on Cognitive Radio and Networking: Solutions and Challenges
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Ahead, Toronto, Canada, September 2011, pp. 2315-2319.

2. R.R. Thomas and B.T. Maharaj, "Towards a bandwidth efficient cognitive positioning

system", IET Electronic Letters,vol. 48, no. 12, pp. 736-737, June 2012.

The following journal paper was submitted and is in review:

• An article titled "Multiband TOA positioning technique using an UHF Bandwidth

Availability model for Cognitive Radio" authored by R.R. Thomas, B.T. Maharaj, B.

Zayen and R. Knopp was submitted for review to the IET Journal of Radar, Sonar and

Navigation.

1.5 DISSERTATION OUTLINE

Chapter 2 provides a conceptual overview of existing ranging techniques utilised for mobile

positioning systems. Thereafter a scholarly review of the different positioning applications

which may be suitable for CR is given, with emphasis on Global Navigation Satellite

Systems (GNSSs), multiple-input-multiple-output (MIMO) and wireless local area network

(WLAN) positioning systems. Thereafter a discussion on the role of location awareness in

CR and its relation to various other CR functions is provided.

Chapter 3 takes a closer look into the existing location estimation algorithms from a

mathematical standpoint. Two general types of location estimation algorithms are covered,

viz. linear and non-linear techniques. Issues relating to the performance of these algorithms

such as the convergence of the final solution, are discussed. The chapter concludes with an

overview of the effect of NLOS signal components on positioning accuracy.

Chapter 4 provides a brief discussion of the cognitive positioning system (CPS) and

thereafter the CRLB derivation of the proposed efficient BD model using multiple receive

antennas is analysed. Thereafter the enhanced dynamic spectrum management (EDSM)

component of the CPS is discussed.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

9

 
 
 



Chapter 1 Introduction

The concept of the multiband TOA technique in the context of CR systems is then

introduced in Chapter 5. An analytical derivation of the combining estimation technique for

the estimated parameters of the received baseband signal is given. The UHF spectrum occu-

pancy measurement campaign which led to the development of the bandwidth availability

model is then discussed. This dynamic model is then used to validate the performance of

the multiband TOA positioning technique.

Chapter 6 provides a detailed analysis of the results related to the proposed optimised

positioning technique presented in Chapters 4 and 5.

In Chapter 7, conclusions are drawn about the overall study and any possibilities for

future research related to this study are suggested.
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CHAPTER 2

REVIEW OF LOCALISATION TECHNIQUES

AND APPLICATIONS

This chapter presents a detailed and conceptual review of the key signal processing tech-

niques currently employed to aid in the determination of the two-dimensional (2D) location

estimate of a mobile user. Section 2.2 examines the different positioning systems applicable

to CR. Thereafter in Section 2.3, the importance of location awareness in the overall CR

architecture is elaborated upon.

2.1 EXISTING RANGING TECHNIQUES

According to current literature, there are several distance estimation methods that rely on

signal processing of the received signal, viz. received signal strength (RSS), time-of-arrival

(TOA), time-difference-of-arrival (TDOA) and angle-of-arrival (AOA). Table 2.1 outlines

each of these ranging techniques and its associated applications.

2.1.1 Received Signal Strength

The key metric for estimating the distance between a transmitting (anchor) and receiving

(target) node is the RSS. Multiple nodes are required to triangulate a user’s position ac-

cording to this particular ranging technique. The path-loss model plays an important role

in location estimation, as it describes the attenuation of a signal as a function of distance.

 
 
 



Chapter 2 Review of Localisation Techniques and Applications

Table 2.1: Application of the different ranging techniques

Ranging Technique Usage Application

RSS Utilised where approximate positional

accuracy is required with emphasis on

robustness.

TOA Usually utilised in cellular networks.

TDOA Mainly applied in wireless sensor networks.

AOA Hardware complexity is high to accommodate

antenna arrays and hence suitable for

implementation at base station (BS).

Fingerprinting Commonly applied in WLAN or cellular

networks in conjunction with RSS or TOA as a

metric for the database.

Different path loss models have been developed according to the type of environment (e.g.

urban, suburban or rural environment), due to the variation in signal attenuation in various

terrains. As a result the position estimate becomes dependent on a parameter known as

the path loss coefficient, which varies according to the type of environment setting. These

path-loss models are usually based on assuming an ideal free-space channel or by conduc-

ting extensive channel measurements and modelling. Received signal strength positioning

schemes are known to provide low positional accuracy, since variations in channel beha-

viour induce large estimation errors. However, the key advantages of this technique include

the low cost of implementation as well as low complexity of the algorithm [17]. Figure 2.1

illustrates the basic concept of RSS positioning with the aid of the log-distance path loss

model, which has been validated through various empirical measurements. The following

equation describes the log-distance path loss (PL) equation and underscores the relationship

between the received signal energy and distance [18]:

PL = PT x|dB −PRx|dB = PL(do)|dB +10n log
d
do

, (2.1)
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Chapter 2 Review of Localisation Techniques and Applications

where PT x|dB and PRx|dB represent the transmit and receive power in dB units respectively,

do is the reference path loss at a fixed distance of 1 km, d is the true distance between the

transmitter and receiver. The path-loss coefficient is given by n and has a direct influence

on the received strength of a signal. As a result this technique is heavily dependent on the

channel and can therefore lead to inaccuracies due to the variable nature of the propagation

channel.
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Figure 2.1: RSS positioning technique

The 2D coordinates of i base stations (BS) are given by the vector xi = [ xi yi ]
T , and

for the mobile terminal (MT), given by the vector x = [ x y ]T . Let it be defined that the

Euclidean distance between the base station and MT be represented by di, which can be

represented as:

di = ||x−xi||=
√

(x− xi)
2 +(y− yi)

2. i = 1,2, ...,N (2.2)
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Chapter 2 Review of Localisation Techniques and Applications

The RSS measurement model, which is a manipulation of eq. (2.1), can be alternatively

shown as [19]:

PRx,i = KiPT xd−n
i = KiPT x||x−xi||−n, (2.3)

where Ki represents a factor encompassing the antenna gains, antenna heights, etc. Accor-

dingly eq. (2.3) follows a lognormal distribution and can be expressed as:

ln(PRx,i) = ln(Ki)+ ln(PT x)−n ln(di)+ jRSS,i, (2.4)

where jRSS,i follows a zero mean uncorrelated Gaussian distribution with variance σ2
RSS,i. In

order to simplify eq. (2.4), let [19]:

rRSS,i =−n ln(di)+ jRSS,i. (2.5)

All the BSs represented in eq. (2.5) can be condensed into vector form:

rRSS = fRSS(x)+ jRSS, (2.6)

where the vectors rRSS, jRSS and fRSS(x) are represented as follows:

rRSS =
[
rRSS,1,rRSS,2, ...,rRSS,N

]T
, (2.7)

jRSS =
[

jRSS,1, jRSS,2, ..., jRSS,N
]T

, (2.8)

fRSS(x) =−n



ln
(√

(x− x1)
2 +(y− y1)

2
)

ln
(√

(x− x2)
2 +(y− y2)

2
)

...

ln
(√

(x− xN)
2 +(y− yN)

2
)


. (2.9)
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Chapter 2 Review of Localisation Techniques and Applications

2.1.2 Time-of-arrival

The TOA positioning technique is one of two time-based schemes to estimate the location of

a node. In a similar manner to RSS, multiple anchor nodes (e.g. BSs) are also required to tri-

angulate the position estimate of the target node (MT). The distance estimate can be obtained

from the propagation signal delay between an anchor and target node. For a coplanar case, a

minimum of three anchors are required to determine the position of a target node. However,

in a non-coplanar case a minimum of four anchors are required to triangulate a user’s posi-

tion [19]. This particular technique has always been applied to cellular networks where MTs

are inherently synchronised to base stations. The signal-to-noise ratio (SNR) of a signal, as

well as the signal bandwidth, has a direct impact on the accuracy of TOA positioning sys-

tems. The TOA ranging technique is well suited for CR systems, since the bandwidth of the

signal can be adaptively adjusted according to dynamic spectrum availability. The position

of a target’s node can be localised with a sphere of radius ri, where i represents the identifier

of each BS. Figure 2.2 is a conceptual diagram of the TOA technique.

The time delay (τ) of the signal from each BS is characterised by a circle with a radius (r).

In an ideal scenario the intersection of all the circles represents the 2D location of the MT. A

few issues relating to the TOA ranging method need to be considered [20]:

• Lack of synchronisation between the BS (anchor node) and the MT (target node) may

lead to large location estimation errors.

• Additional complexity is introduced to the transmitted signal by adding a time stamp.

This time stamp enables the anchor node to determine the time at which the signal was

transmitted by the target node.

• The BS’s location coordinates are a prerequisite in order to perform TOA ranging.

Let the propagation delay between each of the N base stations and the MT be represented by

ti. The TOAs of each signal can then be expressed as:

ti =
di

c
, (2.10)
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Figure 2.2: TOA positioning technique

where di has been defined in eq. (2.2) and c is the speed of an electromagnetic wave. How-

ever, in reality the time delay estimation is susceptible to measurement errors, which could

arise from certain factors such as the effects of the propagation channel and random noise.

Taking these impairments into account, the following expression can be derived, based on

eq. (2.10):

rTOA,i = di + jTOA,i, (2.11)

where rTOA,i = cti and jTOA,i is the aforementioned TOA measurement error. Eq. (2.11) can

be further expanded into signal vector form as follows:

rTOA = fTOA(x)+ jTOA, (2.12)

where in a similar case to the RSS model the vector variables are defined as:
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rTOA =
[
rTOA,1,rTOA,2, ...,rTOA,N

]T
, (2.13)

jTOA =
[

jTOA,1, jTOA,2, ..., jTOA,N
]T

, (2.14)

fTOA(x) =



√
(x− x1)

2 +(y− y1)
2√

(x− x2)
2 +(y− y2)

2

...√
(x− xN)

2 +(y− yN)
2

 . (2.15)

In the case of TOA ranging, the expression given in (2.15) is assumed to be known and is

free from any noise corruption. Therefore, let each scalar value ( jTOA,i) be characterised

by a zero-mean Gaussian process with variance σ2
TOA,i. It is then possible to develop an

expression for the scalar probability density function (pdf) [19]:

p(rTOA,i) =
1√

2πσ2
TOA,i

exp

(
− 1

2σ2
TOA,i

(
rTOA,i −di

)2

)
, (2.16)

where the mean is given by di. The vector form of the pdf is given by:

p(rTOA) =
1

(2π)N/2 |CTOA|1/2
exp
(
−1

2
(rTOA −d)T C−1

TOA (rTOA −d)
)
, (2.17)

where CTOA is the covariance matrix, which can be alternatively written as:

CTOA = E
{

jTOAjT
TOA
}

= diag
{

σ2
TOA,1,σ

2
TOA,2, ...,σ

2
TOA,N

}
. (2.18)

Considering eq. (2.17) and (2.18), the final expression for the vectorised pdf can be given

as [19]:

p(rTOA) =
1

(2π)N/2 ∏N
i=1 σTOA,i

exp

(
−1

2

N

∑
i=1

(
rTOA,i −di

)2

σ2
TOA,i

)
. (2.19)
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Eq. (2.19) is an important relationship with regard to the TOA location estimation algo-

rithm.

2.1.3 Time-difference-of-arrival

TDOA is a variation of the TOA technique where two or more anchor nodes utilise each

individual TOA signal data to estimate a target node’s location. A hyperbola characterises the

TOA difference between anchor nodes where the differences between two distances from any

two points on the hyperbola curve are constant (also known as foci points). For a coplanar

case, three anchor nodes and two TDOA measurements are required. In a non-coplanar case,

similar to TOA estimation, four anchor nodes with three TDOA measurements are required.

A key advantage of the TDOA method, is that synchronisation between the anchor nodes and

the target node is not required, but among the different anchor nodes, the clocks have to be

perfectly synchronised. Some of the enabling applications include military and emergency

aid systems [19]. Two or more nodes are required to perform localisation and therefore it

is more suitable for wireless sensor networks, as indicated in Table 2.1 [21]. Figure 2.3

illustrates the basic concept of the TDOA positioning technique. According to Figure 2.3,

the point of intersection of the two TDOA hyperbola curves characterises the MT’s (target

node’s) location. The corresponding two TDOA measurements are obtained by choosing BS

1 as the reference node.

As a result the corresponding mathematical model can be defined by assuming that the MT

transmits a signal at time t0 and base station i receives the signal at time ti where i= 1,2, ...,N.

For TDOA, the minimum number of base stations required is given by N ≥ 3. Since the

time difference between the base stations are taken into account, there are N(N−1)
2 unique

combinations of TDOAs between all possible base station pairs, which is best described by

the following equation:

tm,i = (tm − t0)− (t1 − t0) = tm − ti, i = 1,2, ...,N and k > 1 (2.20)

where m represents the selected reference node. In order to avoid redundant TDOA pairs, a
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No synchronisation required 
between BSs and MT

Figure 2.3: TDOA positioning technique

reference base station has to be chosen. In this case, the first base station will be considered

as the reference. Similar to eq. (2.11), the TDOA measurement can be given as [19]:

rT DOA,i = di,1 + jT DOA,i, i = 1,2, ...,N (2.21)

where di,1 is the distance to the reference base station given as:

di,1 = di −d1. (2.22)

Eq. (2.21) can also be expressed in vector form as:

rT DOA = fT DOA(x)+ jT DOA, (2.23)

where these can be shown as:

rT DOA =
[
rT DOA,1,rT DOA,2, ...,rT DOA,N

]T
, (2.24)
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jT DOA =
[

jT DOA,1, jT DOA,2, ..., jT DOA,N
]T

, (2.25)

fT DOA(x) = d1 =



√
(x− x2)

2 +(y− y2)
2 −
√

(x− x1)
2 +(y− y1)

2√
(x− x3)

2 +(y− y3)
2 −
√

(x− x1)
2 +(y− y1)

2

...√
(x− xN)

2 +(y− yN)
2 −
√

(x− x1)
2 +(y− y1)

2

 . (2.26)

If jT DOA follows a zero mean Gaussian distribution, then in a similar fashion to eq. (2.17),

the pdf of rT DOA can be written as:

p(rT DOA) =
1

(2π)(N−1)/2 |CT DOA|1/2
exp
(
−1

2
(rT DOA −d1)

T C−1
T DOA (rT DOA −d1)

)
.

(2.27)

In this particular case the covariance matrix (CT DOA) is not a diagonal matrix, since all

TDOA calculations are with respect to the first base station and hence jT DOA,i = 1,2, ..,N is

correlated.

2.1.4 Angle-of-arrival

The distance estimate is obtained by computing the angles of arrival (AOA) of the MT (target

node) as seen from each of the BSs (anchor nodes). An important advantage of AOA systems

is that a lower number of anchor nodes are required to localise a target when compared to

TOA or TDOA systems. However, there are a few drawbacks with respect to this technique

[21]:

• Cost becomes an issue, since additional hardware has to be implemented in the form

of antenna arrays, which increases the overall complexity of the system.

• This technique is very susceptible to multipath and scattering, which results in complex

computation of angles, inducing large distance estimation errors. This method also

performs poorly in NLOS environments.
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The AOA technique best outperforms TOA and RSS in inhomogeneous mediums, e.g. water,

and as such is suitable for localisation sensors in body area networks (BANs) [19]. Figure

2.4 illustrates the concept of AOA.

θ1

θ2

Mobile Terminal (Target Node )

BS 1 (Anchor Node )

BS 2 (Anchor Node )

θ=Angle of Arrival for transmitted 
signal 

Line of Bearing

),( 11 yx

),( 22 yx

),( yx

2D Coordinates

Figure 2.4: AOA positioning technique

The position of the MT is determined through the juncture point of two lines of which the

direction is obtained through energy peaks of two different signals received at BS 1 and BS

2. Both anchor nodes as seen in Figure 2.4 are equipped with antenna arrays, which are used

to compute the AOA. It is further possible to derive a generalised mathematical model by

letting the AOA between the MT and BS i be given as θi. Using the 2D coordinates, it can

be shown that:

tanθi =
y− yi

x− xi
. i = 1,2, ...,N (2.28)

Since AOA requires fewer BSs to localise a target, it follows that N ≥ 2. The AOA measu-

rement can therefore be given as [19]:

rT DOA,i = θi + jAOA,i = arctan
(

y− yi

x− xi

)
+ jAOA,i. i = 1,2, ...,N (2.29)
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The above expression can then be translated into the following vector form:

rAOA = fAOA(x)+ jAOA, (2.30)

where

rAOA =
[
rAOA,1,rAOA,2, ...,rAOA,N

]T
, (2.31)

jAOA =
[

jAOA,1, jAOA,2, ..., jAOA,N
]T

, (2.32)

fT DOA(x) = θi =


arctan

(
y−y1
x−x1

)
arctan

(
y−y2
x−x2

)
...

arctan
(

y−yN
x−xN

)

 . (2.33)

Similarly, if jAOA assumes a zero mean Gaussian process with variance σ2
AOA,i, then the cor-

responding pdf of rAOA is given by:

p(rAOA) =
1

(2π)N/2 |CAOA|1/2
exp
(
−1

2
(rAOA −θ)T C−1

AOA (rAOA −θ)
)
, (2.34)

where CAOA is a covariance matrix expressed as a diagonal matrix of elements σ2
AOA,i, ranging

from i = 1,2, ...,N.

2.1.5 Fingerprinting

The positional accuracy of the aforementioned techniques, including RSS, TOA and AOA,

degrade significantly in heavy or dense multipath environments [22]. The fingerprinting po-

sitioning technique serves as a solution to this problem. This involves mapping the charac-

teristics of the multipath environment in dense urban areas using pattern recognition where

key signal parameters of a specific area are stored in a database on a server. These signal

parameters may include received signal characteristics and time delay parameters [23].
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2.2 POSITIONING SYSTEMS

The following positioning applications have an important role to play in future location awa-

reness of CR and will therefore be discussed in detail.

2.2.1 Satellite-based Positioning

Satellite-based positioning systems that utilise a constellation of satellites to determine a

user’s terrestrial coordinates are referred to as Global navigation satellite systems (GNSSs)

[24]. The Global Positioning System (GPS) and the future Galileo [25] are well-known

examples of positioning satellites. There are currently 24 operational GPS satellites in orbit,

of which four are always available at any given location on earth. These four satellites can

determine the 3D position of a user in terms of three key parameters: latitude, longitude and

altitude [26]. Although GPS is a popular positioning method, it has a few drawbacks. GPS

is unable to perform positioning in certain environments, such as underground mines and

within indoor structures (buildings), mainly owing to the degradation of the signal quality.

GPS also performs very poorly in dense urban environments, where multipath signals are

frequent. Prerequisite information about the distance between the GPS receiver and satellite

has to be known in order for GPS positioning to take place. Furthermore, the 3D co-ordinates

of the four satellites involved in determining the position of the user also have to be known

[19]. The core function of a standard GNSS is to utilise pseudorange measured data to

estimate the location of a GNSS receiver, which can be mathematically modelled as follows

[24]:

pk(t) = rk(t, t − τ)+ c[δ tu(t)−δ tk(t − τ)]+ Ik(t)+T k(t)+ εk(t). (2.35)

Table 2.2 describes each of the parameters from eq. (2.35).

GNSS distance measurement is carried out using TOA and hence the delay (τ) parameter

in eq. (2.35) is one of the main variables in the estimation process. The pseudorange mea-

surement can be determined for each satellite corresponding to k. The receiver clock offset
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Table 2.2: Parameter description of the pseudorange measurement model for GNSS

Symbol Description

pk(t) pseudorange measurement

k individual identifier for transmitting satellite

t signal receive time in seconds

τ signal delay of the transmitted signal between the

transmitter and receiver

rk(t, t − τ) geometric range between the received signal at time t and

the transmitting satellite k at time t − τ

c speed of light

δ tu(t) receiver clock offset relative to GPS time at time of

reception

δ tk(t − τ) transmitting satellite clock offset relative to GPS time at

time of transmission

Ik(t) Ionosphere-induced propagation delay for satellite k

T k(t) Troposphere-induced propagation delay for satellite k

εk(t) miscellaneous unmodelled range error for satellite k which

may include multipath effects and receiver noise

(δ tu(t)) is a parameter generalised to all satellites and as a result eq. (2.35) can be further

simplified by concatenating all errors into one term (ε̃k
Total). The error from each satellite can

therefore be expressed as [24]:

ρk
c = rk + cδ tu + ε̃k

Total. (2.36)

The actual range (rk) and the receiver clock offset (δ tu) represent the unknowns in eq. (2.36).

The accuracy of the position, velocity and time solution is affected by the statistics and

magnitude of ε̃k
Total . The actual range (rk) between the GNSS receiver and satellite k can be

expressed as Cartesian co-ordinates [24]:
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rk =
√(

xk − x
)
+
(
yk − y

)
+
(
zk − z

)
= ||xk −xu||, (2.37)

where the receiver’s and satellite’s 3D co-ordinates are respectively given as xu = (x,y,z)

and xk =
(
xk,yk,zk). Figure 2.5 is a simplified diagram showing the utilisation of four pseu-

dorange measurements to localise a GNSS user.

GNSS Receiver

ρ1

ρ2 ρ3

ρ4

Figure 2.5: User position tracking using pseudorange measurements from 4 GNSSs

2.2.2 MIMO Positioning Systems

The use of multi-input-multiple-output (MIMO) antenna systems have been extensively

employed in wireless communication systems to improve channel capacity performance

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

25

 
 
 



Chapter 2 Review of Localisation Techniques and Applications

and achieve both diversity and array gains. MIMO systems have also been implemented

to achieve higher positioning accuracy in radar and positioning applications. The main

advantage of this approach is the exploitation of the information contained within each of

the different received signal components. MIMO positioning systems may also take into

account the effects of multipath and NLOS conditions to improve system accuracy. A direct

location estimation method has been proposed which utilises MIMO techniques and ML

estimation and as a result the overall distance estimation error is reduced. This method also

considers the localisation of dynamic MTs as opposed to static MTSs and can ascertain

the mobile user’s position with the aid of only one base station [27]. Another technique

utilises a combination of RSS ranging and spatial diversity to provide an improved distance

estimation error between a single transmitter and receiver pair. The advantage of exploiting

the overall received power of signal is the low complexity and low cost. The implementation

of MIMO can eliminate deep fades that tend to hamper the estimation of the ranging error

and hence the location of the MT (user) [28].

The TOA of a signal has also been implemented in conjunction with multiple anten-

nas at the transmitter and receiver to improve positioning system performance by using the

minimal selection algorithm [29]. Particle filtering algorithms also exploit the characte-

ristics of MIMO to achieve higher positioning accuracy for mobile users. The choice of

propagation channel model is an important aspect that has to be taken into account when

considering the localisation of a user using MIMO techniques [30]. Hybrid signal processing

techniques usually outperform the individual algorithms. One such MIMO method employs

a combination of AOA, angle of departure and TDOA to estimate a user’s location by using

a single base station. The results reveal that by utilising multipath channel parameters, such

as path delay and angle of arrival or departure, the location estimation error can be reduced

and the measurement noise arising from this can be mitigated [31].

Three key points are evident from the implementation of MIMO positioning systems:

• Instead of mitigating the effects of multipath signals on location estimation, the MIMO

systems exploit these signals by taking advantage of spatial diversity. It can also be
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noted that MIMO systems can better exploit the a priori information contained in a

NLOS signal when compared to SISO systems.

• MIMO systems can also take advantage of multiple estimation parameters to improve

accuracy, such as the time delay of the signal, as well as the angle of arrival or depar-

ture of the signal, since closely spaced antennas act as phase array structures. There-

fore the implementation of hybrid algorithms are particularly apt for these particular

positioning systems.

• The selection of an appropriate channel model is another important factor that has to

be taken into account. As a result, MIMO positioning systems are able to perform well

under realistic propagation channel conditions.

The benefits of using multiple antennas at the transmitter and receiver can provide increased

location awareness capabilities and increased spectral efficiency with respect to CR net-

works. Not much work has been done, to the best of the author’s knowledge, in the area

of applying MIMO techniques to improve environment location awareness in CR wireless

networks.

2.2.3 WLAN Positioning

Wireless local area network (WLAN) positioning systems are limited in proximity and there-

fore suitable for indoor localisation. A variety of techniques are employed for WLAN po-

sitioning, such as RSS identification, which makes use of multiple distance measurements

from predefined locations (also known as trilateration). A WLAN-based positioning scenario

(refer to Figure 2.6) typically involves implementation of multiple access points to localise a

MT as demonstrated in [32], where the estimation error performance of different RSS posi-

tioning algorithms such as distance variance, probabilistic estimation and nearest neighbour

are investigated. One can consider dividing an indoor environment into a number of sub-

spaces and thereafter develop a database of RSS signal characteristics for each subspace. A

pattern-matching algorithm can then be utilised to localise a mobile host’s location. In order

to complement the system, a set of reference points are also included to compensate for any
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changes in RSS in order to improve positional accuracy [33]. Another notion involves the

use of WLAN in infrastructure mode where indoor localisation is performed using a set of

access points and RSS data collectors. This technique comprises of two stages: offline trai-

ning, where RSS measurements are collected and regarded as observed data, and then online

location processing, where real-time RSS data of a MT is collected and thereafter location

prediction is performed [34].

Ranging 
Algorithms :RSS/
TOA/TDOA/AOA

Reference Grid

Access Point 1

Access Point 2

Access Point 3

Access Point 4

Mobile Host/
Terminal

Figure 2.6: A typical WLAN-based positioning scenario

A number of TOA-based and AOA-based WLAN positioning schemes have also been consi-

dered. A key aspect of these particular ranging techniques in WLAN systems is the avoi-

dance of any intricate databases which depend on RSS signal measurements. Certain TOA

WLAN positioning schemes have been known to perform with better accuracy than tradi-

tional correlation methods [35]. TOA ranging can also be implemented using the existing

WLAN infrastructure mode (as previously mentioned with RSS) using round-trip measure-

ments (also commonly known as two-way ranging). The results show that three access points

are sufficient in order to achieve 90 % accuracy in the order of 2 m [36]. Certain comparative

studies have also shown that TOA ranging can offer superior performance in terms of posi-
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tional accuracy when compared to RSS ranging in WLAN systems [37, 38]. TOA ranging

can also be manipulated in software as proposed in [39], where timing measurements are

observed at operating system level using a CPU clock at the receiver side (MT). Existing

strategies involved minor hardware modifications to the WLAN network interface card to

achieve cost-effective and accurate TOA estimates, but the TOA software technique aims to

further reduce the reduce the complexity and implementation cost.

2.3 COGNITIVE RADIO: LOCATION AND ENVIRONMENT AWARENESS

An environment and location awareness conceptual model has been proposed to serve as a

subsystem within the overall CR architecture and is shown in Figure 2.7. This model has

been chosen to serve as a preliminary guideline in order to gain an overall picture of the pro-

blem and garner an understanding of how the proposed techniques in this research study can

be integrated into this model. Figure 2.7 illustrates the relation of location and environmental

awareness as a subsystem of the overall core architecture of CR. The real-time spectrum sen-

sing component gathers information on the channel availability using signal processing tech-

niques such as energy detection, match filtering, waveform-based sensing, etc. The location

awareness component is responsible for intelligently (using machine learning techniques)

managing the positioning data gathered from the various adaptive positioning schemes. A

positioning system can be adaptive in the following ways [40]:

• Different types of usage applications may require different levels of accuracy such as

accident and emergency services, where the required resolution accuracy is between

50 m and 300 m, as opposed to asset and vehicle tracking management services, where

the resolution accuracy requirement is between 0.05 m and 30 m.

• Environment type can greatly influence the accuracy of positioning systems, e.g. there

is a significant difference in accuracy between outdoor and indoor environments.

• Signalling technologies, such as wide-band code division multiple access (WCDMA)

or ultra-wideband (UWB), can also have an impact on the performance of a positioning

system.
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Environment: RF Spectrum

Real-time Spectrum 
Sensing

Location 
Awareness

Environment 
AwarenessDynamic Spectrum Management

Cognitive Radio System Core

Topographical and 
Meteorogical Data

Propagation 
Channel 

Characteristics

Adaptive Time-based 
Positioning

Other Adaptive Hybrid 
Positioning Schemes

Figure 2.7: CR Subsystem consisting of the environment and location awareness model

The environmental awareness component takes advantage of surrounding environmental in-

formation such as the topographical data of a CR user to enhance various cognition capabili-

ties. The dynamic spectrum management modules coordinate spectral, location and environ-

ment awareness information to optimise key tasks such as dynamic channel allocation and

other transmission-related parameters.

The aforementioned ranging techniques, such as RSS and AOA, lack the required adaptive

capabilities for CR. According to existing literature, conceptual architectures and models

have been proposed with regard to location and environmental awareness [40–43]. The im-

plications for location and environmental awareness for CR system design have been ana-

lysed. In order to optimise transmissions, CR must be able to display awareness of the

wireless channel and adapt to parameter changes. Path-loss, delay spread, Doppler spread,

angular spread, LOS/NLOS components and noise characteristics are examples of such wi-

reless transmission parameters [43].

The IEEE 802.22 Wireless Regional Area Network (WRAN) standard employs concepts

from CR that enable the sharing of unused spectrum with existing television broadcasters.

The objective is to provide wireless broadband services to areas lacking in network infra-
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structure, such as rural and sparsely populated environments. Figure 2.8 shows a segment of

the overall IEEE 802.22 architecture that involves the use of location data [44].

Upper Layers: ATM, 
1394, etc.

Convergence Sub-
layer

MAC Layer

PHY Layer

MAC SAP

Spectrum Sensing 
Function

Geo-location

PHY SAP

Spectrum Manager (BS)/
Spectrum Automation (CPE)

Figure 2.8: IEEE 802.22 architecture [44]

According to Figure 2.8 the Medium Access Control (MAC) layer is interfaced to the Physi-

cal (PHY) layer via the service access point (SAP). Utilisation of a geo-location database is

an important component of the PHY layer and together with the spectrum sensing function,

dynamic channel allocation can be performed [44].

Various candidate technologies exist for the CPS. For example, the following characteristics

make UWB highly suited to indoor CR positioning as well as certain radar applications

[21, 45]:

• The large transmission bandwidth can inherently increase the positional accuracy of a

system.

• The reliability of the link is improved, since the transmitted signal performs well in

LOS and especially in NLOS environments.

• Large transmission bandwidths also mitigate the effects of small-scale fading.
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• Interference is also reduced by spreading the signal over a large bandwidth and as a

result reducing the power spectral density.

However, the primary drawback in the context of CR is the inability to adapt positional

accuracy. Range accuracy adaptation is one of the key performance criteria of environmental

and location awareness systems. This particular idea stems from the bat echolocation

system, which is a well-known adaptive mechanism for bats. Bats adjust certain physical

parameters with regard to their echo, such as bandwidth, repetition rate and transmitted

signal duration, to track their prey. The same principle is being applied to CR in order to

develop the range accuracy adaptation capability so that these devices can effectively and

more efficiently recognise the immediate environment and location in a multi-user scenario.

Range accuracy adaptation is susceptible to errors arising from dynamic spectrum effects,

transceiver impairments, environmental and interference effects. Location and environ-

mental awareness aims to draw its inspiration from biological organisms which possess the

same capability and knowledge of this has been widely applied in the electronics field, e.g.

robotics. Until recently, cognisance of the surrounding location and type of environment has

been mainly limited to existing location-based services and mobile positioning systems [40].

The CPS has been proposed to tackle awareness of the location (position) in CRs by

accomplishing accuracy adaptation for indoor and outdoor environments. This particular

technique operates in two modes designed specifically for CR, viz. the bandwidth determi-

nation (BD) mode and enhanced dynamic spectrum management (EDSM) mode. The first

mode ascertains the bandwidth required for a specific positional accuracy. The second mode

uses a set of decision criteria to determine if the required bandwidth is physically available in

the spectrum at any given time. The study reveals that there is an inherent trade-off between

the complexity and accuracy of the CPS algorithms. Maximum-likelihood time-of-arrival

performance evaluations pertaining to range accuracy adaptation of CPS systems have also

been carried out and the results prove that it is possible to adapt the range accuracy of the

positioning system based on the environment (indoor and outdoor) [45, 46].
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LOCATION ESTIMATION ALGORITHMS

The TOA ranging technique is suitable for implementation in CR owing to its adaptive ca-

pabilities. These algorithms can be broadly divided into two categories, viz. non-linear and

linear techniques. The estimation of a mobile user’s position in a wireless environment is

susceptible to measurement errors including NLOS errors, and therefore the following dis-

tance estimation model for a single user can be derived [47]:

d̃i = di +bi + ji, (3.1)

where i represents the base station identifier, di is given in eq. (2.2), ji represents additive

white Gaussian noise (AWGN) with zero mean and variance σ2
i ( ji ∼ℵ(0,σ2

i )). The positive

bias error given by bi, is also introduced into the model depending on whether the signal has

a LOS or NLOS component. Alternatively, it can be shown that:

bi =

0 i f BSi LOS

ψi i f BSi NLOS.
(3.2)

The NLOS error can be modelled using a variety of techniques including the use of an

empirical model derived from measurements, a constant time window scheme or according

to a specific type of distribution, e.g. Gaussian, uniform, etc [47]. A more detailed discussion

on NLOS error modelling is provided later on in Section 3.5. Eq. (3.1) can be extended into

vector form as in eq. (2.12) and can be written as:
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r̃ = f(x)+b+ j, (3.3)

where f(x) is a distance vector between each of the base stations and the single MT while b

is a vector representing the positive bias errors from each base station.

3.1 TOA NON-LINEAR METHODS

The position estimation process in a non-linear case involves solving for x in eq. (3.3) by

minimising the cost function based on the following error function:

enl = r̃− f(x̃)−b, (3.4)

where the optimisation variable for x is given by x̃ = [ x̃ ỹ ]T which relates to the ML or

non-linear least squares (NLS) estimator [19].

3.1.1 Maximum-likelihood Estimation

Maximum-likelihood estimation involves the computation of the pdf of a data set, which

characterises the most probable observed data. This requires the determination of the scalar

parameter (θ ), which maximises the likelihood function (p(x;θ)) for a constant x over an

allowable range Λ. The corresponding scalar parameter is referred to as the ML estimate

(MLE), which is obtained by searching through multi-dimensional parameter space [48–50].

This can be expressed as:

θ̂(x;θ)ML = arg
{

max
θεΛ

p(x;θ)
}
. (3.5)

The maximum of the log-likelihood function (log p(x;θ)) corresponds to the maximum of

p(x;θ), provided this function has sufficient smoothness. A key prerequisite of an MLE

involves satisfaction of the following relationship:
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∂
∂θ

log p(x;θ) |θ=θ̂(x;θ)ML
= 0. (3.6)

The ML technique relies on the fact that information about the error distribution is known a

priori in order to maximise the pdf of the TOA measurement model. The initial step involves

the maximisation of eq. (2.17) which, as shown in eq. (3.6), is equivalent to taking the

natural logarithm of both sides of the equation as shown below:

ln p(rTOA,i) = ln
(
(2π)N/2 |CTOA|1/2

)−1
− 1

2
(rTOA −d)T C−1

TOA (rTOA −d) . (3.7)

Maximising eq. (3.7) is equivalent to minimising the second term, since the first term is

independent of x, which is contained in d (refer to eq. (2.2)). The resulting expression

becomes [19]:

x̂ = argmin
x̂

(rTOA − fTOA(x̃))T C−1
TOA (rTOA − fTOA(x̃)) , (3.8)

where the minimisation term is regarded as the ML cost function:

JML−TOA(x̂) = (rTOA − fTOA(x̃))T C−1
TOA (rTOA − fTOA(x̃)) . (3.9)

The cost function can be expanded further by substituting eqs. (2.13), (2.15) and

(2.18):

JML−TOA(x̂) =
N

∑
i=1

(
rTOA,i −

√
(x̃− xi)

2 +(ỹ− yi)
2
)

σ2
TOA,i

. (3.10)

Therefore eq. (3.8) can be simply expressed as:

x̂ = argmin
x̂

N

∑
i=1

(
rTOA,i −

√
(x̃− xi)

2 +(ỹ− yi)
2
)

σ2
TOA,i

. (3.11)
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The final step involves the computation of x̂ in eq. (3.11). Iterative numerical methods are

used to solve for the MLE. The first numerical method is the Newton-Raphson technique,

which can be expressed as follows:

x̂k+1 = x̂k −H−1(JML−TOA(x̂k))∇(JML−TOA(x̂k)), (3.12)

where H(JML−TOA(x)) represents a 2×2 Hessian matrix and ∇(JML−TOA(x)) is the gradient

vector, all of which are computed for k iterations. The Hessian matrix is expressed in the

following form [19]:

H(JML−TOA(x)) =

 ∂ 2(JML−TOA(x))
∂x2

∂ 2(JML−TOA(x))
∂x∂y

∂ 2(JML−TOA(x))
∂y∂x

∂ 2(JML−TOA(x))
∂y2

 . (3.13)

The computed Hessian matrix elements are shown as:

∂ 2 (JML−TOA(x))
∂x2 =

N

∑
i=1

2
σ2

TOA,i

 (x− xi)
2

(x− xi)
2 +(y− yi)

2 −
(
rTOA,i −di

)
(y− yi)

2[
(x− xi)

2 +(y− yi)
2
]3/2

 ,

(3.14)

∂ 2 (JML−TOA(x))
∂x∂y

=
∂ 2 (JML−TOA(x))

∂y∂x
=

N

∑
i=1

2rTOA,i (x− xi)(y− yi)

σ2
TOA,i

[
(x− xi)

2 +(y− yi)
2
]3/2 , (3.15)

∂ 2 (JML−TOA(x))
∂y2 =

N

∑
i=1

2
σ2

TOA,i

 (y− yi)
2

(x− xi)
2 +(y− yi)

2 −
(
rTOA,i −di

)
(x− xi)

2[
(x− xi)

2 +(y− yi)
2
]3/2

 ,

(3.16)

where di has been defined in eq. (2.2). The gradient vector is a 2×1 matrix and is represented

as:
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∇(JML−TOA(x)) =

 ∂JML−TOA(x)
∂ x

∂JML−TOA(x)
∂y


= −2

 ∑N
i=1

(rTOA,i−di)(x−xi)

σ2
TOA,idi

∑N
i=1

(rTOA,i−di)(y−yi)

σ2
TOA,idi

 . (3.17)

The second numerical technique employed to solve for x̂, is referred to as the Gauss-Newton

method:

x̂k+1 = x̂k+
(

GT
(

fTOA(x̂k)
)

C−1
TOAG

(
fTOA(x̂k)

))−1
GT
(

fTOA(x̂k)
)

C−1
TOA

(
rTOA − fTOA(x̂k)

)
,

(3.18)

where G
(
fTOA(x̂k)

)
is a Jacobian matrix of fTOA(x̂) which is updated at every kth iteration

and can be expressed as:

G
(

fTOA(x̂k)
)

=


∂d1
∂x

∂d1
∂y

∂d2
∂x

∂d2
∂y

...
...

∂dN
∂x

∂dN
∂y



=


x−x1

d1

y−y1
d1

x−x2
d2

y−y2
d2

...
...

x−xN
dN

y−yN
dN

 . (3.19)

The third iterative numerical method is the steepest descent method:

x̂k+1 = x̂k −µ∇
(

JML−TOA(x̂k)
)
, (3.20)

where µ is a factor controlling the stability and convergence rate of the algorithm.

In order to indicate sufficient convergence after k iterations, the required stopping criterion

must satisfy the following condition:
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||x̂k+1 − x̂k||< κ, (3.21)

where κ is a positive small constant.

3.1.2 Least Squares Estimation

According to parametric estimation theory, a suitable estimator satisfies two key conditions,

viz. it has to be unbiased and have a minimum variance. An unbiased estimator refers to

a type of estimator where the mean value approaches the true value of the parameter to be

estimated. The motivation behind parameter estimation is to inherently minimise the error

between the estimator and actual/true parameter value. The least squares (LS) principle in-

volves minimising the squared difference between the estimated or given data and the true

data set.

This concept can be further elaborated through a basic example relating to signal theory,

which is illustrated in Figure 3.1. Let θ characterise an unidentified parameter to be estima-

ted, which forms part of a generated signal model y[n]. Consider that y[n] is a deterministic

signal and the corrupted version of y[n], denoted by w[n], is observed as a result of factors

such as model discrepancies and system noise. Unlike MLE, there is no a priori informa-

tion on the probability distribution characteristics of w[n]. A parameter value is computed

using LS estimation, which ascertains the degree of similarity between the signal y[n] and

the observed data w[n].

This degree of similarity (closeness) of the data sets is defined by the following least square

error criterion:

L(θ) =
N−1

∑
n=0

(w[n]− y[n])2 , (3.22)

where the observation interval ranges from n = 0,1,2, ...,N − 1. The value of θ that mini-

mises L(θ) is defined as the least squares estimate [50].

The NLS cost function to be minimised is represented as:
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Signal Model
y[n]

w[n]

System noise/
inaccuracies

y[n]

+

-θ

Unknown parameter to be 
estimated

Least Squares Error
ϵ[n]

Figure 3.1: Least squares estimation

JNLS−TOA(x̃) =
N

∑
i=1

(
rTOA,i −

√
(x̃− xi)

2 +(ỹ− yi)
2
)2

, (3.23)

which alternatively can be represented in vector form as:

JNLS−TOA(x̃) = (rTOA − fTOA(x̃))T (rTOA − fTOA(x̃)) . (3.24)

The NLS estimate is equivalent to the smallest value of JNLS−TOA(x̃):

x̂ = argmin
x̃

JNLS−TOA(x̃). (3.25)

As with the MLE, numerical methods are also used to compute x̂. The Newton-Raphson

expression for solving eq. (3.25) is given as:

x̂k+1 = x̂k −H−1(JNLS−TOA(x̂k))∇(JNLS−TOA(x̂k)), (3.26)

where similar to eq. (3.12), H(JNLS−TOA(x)) and ∇(JNLS−TOA(x)) represent the Hessian

matrix and gradient vector respectively. The matrix is of the same form as shown in eq.

(3.13). Hence the Hessian matrix elements are shown as:
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∂ 2 (JNLS−TOA(x))
∂x2 =

N

∑
i=1

2

 (x− xi)
2

(x− xi)
2 +(y− yi)

2 −
(
rTOA,i −di

)
(y− yi)

2[
(x− xi)

2 +(y− yi)
2
]3/2

 (3.27)

∂ 2 (JNLS−TOA(x))
∂x∂y

=
∂ 2 (JNLS−TOA(x))

∂y∂x
=

N

∑
i=1

2rTOA,i (x− xi)(y− yi)[
(x− xi)

2 +(y− yi)
2
]3/2 (3.28)

∂ 2 (JNLS−TOA(x))
∂y2 =

N

∑
i=1

2

 (y− yi)
2

(x− xi)
2 +(y− yi)

2 −
(
rTOA,i −di

)
(x− xi)

2[
(x− xi)

2 +(y− yi)
2
]3/2

 (3.29)

where di is the distance between the MT (target node) and BS (anchor node) as expressed in

eq. (2.2). The gradient vector is shown as:

∇(JNLS−TOA(x)) =−2

 ∑N
i=1

(rTOA,i−di)(x−xi)

di

∑N
i=1

(rTOA,i−di)(y−yi)

di

 . (3.30)

The Gauss-Newton technique for the NLS estimation technique is similar to the MLE tech-

nique as shown in eq. (3.18). The expression for the steepest descent method is given

as:

x̂k+1 = x̂k −µ∇
(

JNLS−TOA(x̂k)
)
, (3.31)

where µ indicates the convergence rate.

3.2 LINEAR TECHNIQUES

These particular techniques aim to linearise eq. (3.3) into a defined set of linear equations

that can be represented as:

k = Ax+B+q, (3.32)
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where information about k and A are known a priori and B and q are the transformation of

the NLOS and noise vector respectively. The following linear error function can be derived

[19]:

elin = k−Ax̃. (3.33)

3.2.1 Linear Least Squares

The linear least squares (LLS) technique aims to initially transform the TOA model based

on eq. (2.11) into a linear equation in order to solve for x and thereafter the MT’s position

is estimated using the conventional LS approach as described in Section 3.1.2. The linear

algorithm involves the addition of an intermediate variable, which is a function of the target

node’s position. Expanding on eq. (2.11), the following expression is obtained [19, 47, 51,

52]:

rTOA,i =

√
(x− xi)

2 +(y− yi)
2 + jTOA,i. (3.34)

The first step involves the squaring of eq. (3.34) on both sides as follows:

r2
TOA,i = (x− xi)

2 +(y− yi)
2 +2 jTOA,i

√
(x− xi)

2 +(y− yi)
2 + j2

TOA,i. (3.35)

Let the range (intermediate) variable be given as: R =
√

x2 + y2. After some algebraic

manipulation of eq. (3.35):

xxi + yyi −
1
2

R2 − znoise =
1
2
(
x2

i + y2
i − r2

TOA,i
)
, i = 1,2, ...,N (3.36)

where znoise = 2 jTOA,i

√
(x− xi)

2 +(y− yi)
2 + j2

TOA,i which represents the noise component

of eq. (3.35). Eq. (3.36) can now be expressed in the following linear standard form:

Aθθθ +q = b, (3.37)
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where:

A =


x1 y1 −1

2

x2 x2 −1
2

...
...

...

xN yN −1
2

 , (3.38)

and:

b =
1
2


x2

1 + y2
1 − r2

TOA,1

x2
2 + y2

2 − r2
TOA,2

...

x2
N + y2

N − r2
TOA,N

 , (3.39)

while:

q =


−2 jTOA,1

√
(x− x1)

2 +(y− y1)
2 − j2

TOA,1

−2 jTOA,2

√
(x− x2)

2 +(y− y2)
2 − j2

TOA,2
...

−2 jTOA,N

√
(x− xN)

2 +(y− yN)
2 − j2

TOA,N

 , (3.40)

and:

θθθ =


x

y

R2

 . (3.41)

Assuming that q is a noise process with an approximated zero mean, eq. (3.37) can be simply

written as:
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Aθθθ ≈ b. (3.42)

Similar to eq. (3.25), the estimated position vector (θ̂θθ ) can be computed using the conven-

tional LS method, which utilises the cost function defined by JLLS−TOA(θ̃θθ):

θ̂θθ = argmin
θ̃

JLLS−TOA(θ̃θθ), (3.43)

where θ̃θθ represents an optimisation vector and the corresponding cost function is derived

using eq. (3.42):

JLLS−TOA(θ̃θθ) =
(

Aθ̃θθ −b
)T (

Aθ̃θθ −b
)
. (3.44)

As a result eq. (3.43) can be determined by differentiating eq. (3.44) with respect to θ̃θθ while

setting the expression to zero, as follows:

∂JLLS−TOA(θ̃θθ)
∂ θ̃θθ

|θ̃θθ=θθθ = 0, (3.45)

and leads to:

θ̂θθ =
(
AT A

)−1 AT b, (3.46)

which represents the LLS estimate.

3.2.2 Two-step Maximum-likelihood

The estimation performance of the LLS approach hinges on whether the noise in eq. (3.37)

is an independent identically distributed (iid) random process. A technique in literature [53]

shows that the addition of a symmetric weighted matrix can provide increased positioning
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accuracy. The TSML technique and the weighted LLS (WLLS) algorithm share a similar

approach with the inclusion of the weighted matrix. As a result the cost function found in

eq. (3.44) can be slightly modified as follows [47, 50]:

JT SML−TOA(θ̃θθ) =
(

Aθ̃θθ −b
)T

ΨΨΨ−1
(

Aθ̃θθ −b
)
, (3.47)

where ΨΨΨ represents the weighted matrix. It can be shown that the weighted matrix is equi-

valent to the covariance of the noise vector denoted by:

ΨΨΨ = E[jTOAjTOA]

= diag
{

4σ2
TOA,1d2

1 ,4σ2
TOA,2d2

2 , ...,4σ2
TOA,Nd2

N
}
. (3.48)

The distances (di) in eq. (3.48) are unknown and therefore a more viable approach to the

solution would be to use rTOA,i (eq. (2.11)), which is sufficient for an initial solution with a

small error requirement.

In a similar fashion to the LLS estimate, the TSML estimate is determined using the follo-

wing expression:

θ̂θθ = argmin
θ̃

JT SML−TOA(θ̃θθ), (3.49)

where differentiating with respect to θ̃θθ will yield the global minima. As a result the TSML

estimate can be determined using:

∂JT SML−TOA(θ̃θθ)
∂ θ̃θθ

|θ̃θθ=θθθ = 0, (3.50)

which leads to the resulting TSML estimate:

θ̂θθ =
(

AT AΨΨΨ−1
)−1

AT bΨΨΨ−1. (3.51)
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3.3 ALGORITHM EVALUATION

The performances of the non-linear and linear algorithmic techniques are investigated in

terms of complexity and accuracy.

3.3.1 Maximum-likelihood

Four base stations within a 100× 100 grid were chosen to estimate the position of the MT.

The MT’s 2D position co-ordinates were chosen to be fixed at x =
[

20 20
]T

while the

SNR was set constant at 15 dB. In the case of the steepest-descent technique, the stability

factor (µ) was set to 0.5. Figures 3.2 and 3.3 represent the convergence rate of the x and y

coordinates respectively, using the three iterative numerical techniques discussed in Section

3.1.1. According to both the aforementioned plots, the Gauss-Newton and Newton-Raphson

techniques display similar convergence at around two iterations, while the steepest descent

method takes 20 iterations to converge to the final position estimate.
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Figure 3.2: ML convergence rate of position estimate x
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Figure 3.3: ML convergence rate of position estimate y

3.3.2 Non-linear Least Squares

The same scenario in Section 3.3.1 was simulated for the Non-linear least squares (NLS)

technique. Figure 3.4 shows the number of iterations required for the estimated x-coordinate

of the MT to converge for the three investigated numerical methods using the NLS estimation

algorithm. Similarly, Figure 3.5 also illustrates the same principle for the y-coordinate of

the MT using NLS estimation. As in the case of the ML technique, the Gauss-Newton

and Newton-Raphson numerical methods converge comparatively faster than the steepest-

descent technique. However, the ML estimation technique tends to converge faster than the

NLS algorithm due to the inclusion of the noise covariance vector (CTOA).

3.3.3 Positioning Accuracy

The accuracy of the non-linear and linear estimation algorithms was analysed in terms of

the root mean square error (RMSE) of the position estimates over a defined signal-to-noise

(SNR) range. This particular RMSE is characterised by the following equation:
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Figure 3.4: NLS convergence rate of position estimate x
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Figure 3.5: NLS convergence rate of position estimate y
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Figure 3.6: SNR performance of the non-linear algorithms

RMSE =

√√√√∑N
n=1

[
(x̂n − x)2 +(ŷn − y)2

]
N

, (3.52)

where N represents the number of samples and
[

x̂n ŷn

]T
is the iterative position estimate

according to n samples. Figure 3.6 illustrates the performance of the Newton-Raphson (NR),

Gauss-Newton (GN) and steepest-descent (SD) numerical methods for the two non-linear

algorithms, NLS and ML. In this particular scenario 3 iterations were sufficient for the

NR and GN methods to achieve convergence, while 20 iterations were required to achieve

convergence with the SD method. The GN method, however, performs poorly at lower

SNRs which may be due to the rough initial estimates of the Jacobian matrix. The GN

estimates gradually improve with an increase in SNR. The NR and SD perform comparably

at lower SNRs, while at higher SNRs the accuracy improves. Figure 3.7 illustrates the

positional accuracy between the LLS and TSML. According to Figure 3.7, the TSML
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Figure 3.7: SNR performance of the linear estimation algorithms

location estimation technique slightly outperforms the LLS technique, by displaying a lower

RMSE.

It can be noted that the SD convergence rate for the ML and NLS techniques are

quite slow when compared to the NR and GN methods. The is due to the selection of a small

µ which ensures algorithm stability. A large µ increases the convergence rate but causes the

SD algorithm to be highly unstable. The linear estimation techniques exhibit less variation

in RMSE at lower SNRs when compared to the non-linear estimation algorithms.

3.4 CRAMER-RAO LOWER BOUND

Positioning algorithms such as TOA are based on fundamental principles in signal and para-

meter estimation theory. The basic problem involves estimating certain values (which in this

case, is the signal time delay) given a set of parameters. In most systems this involves the

extraction of parameter values from continuous-time waveforms such as in the case of TOA,

where the parameter values have to be extracted from the received waveform. Assessing an
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estimator’s performance is critical in achieving the best accuracy with respect to the actual

value that is being estimated, which in this particular application is the target’s location as

well as range accuracy. Using an unbiased estimator is the primary way of performing opti-

mal parameter estimation, since the mean value of the estimator will yield the actual value

of the unknown parameter. It can be represented mathematically as follows [50]:

E
[
θ̂
]
= θ , f or a < θ < b (3.53)

where θ̂ represents the estimator, θ represents the true value and (a,b) is the range of pos-

sible values of θ . An optimal unbiased estimator that exhibits the least variability is referred

to as the minimum variance unbiased (MVU) estimator. The following methods are used to

compute the MVU estimator under certain conditions [50]:

• Application of the CRLB principle and ascertaining whether the estimator satisfies

these bounds.

• Application of the Rao-Blackewell-Lehmann-Scheffe theorem and using sufficient sta-

tistics to determine the MVU estimator.

• Restricting the class of estimators to being unbiased as well linear and thereafter de-

termining the MVU estimator within this predefined set.

The basic principle behind the CRLB is that the variance of any unbiased estimator must be

greater or equal to a given quantity. This given quantity is usually referred to as the Fisher

information (Iθ ) for estimating θ from Y . The information inequality can be represented as

follows:

Varθ [θ̂(Y )]≥

[
∂

∂θ Eθ
{

θ̂(Y )
}]2

Iθ
. (3.54)

The information equality is directly dependent on the information measure of a specific mo-

del and as a result a higher information measure provides a lower bound on the estimation
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accuracy. Since the estimator is unbiased and following from eq. (3.53), the information

equality reduces to:

Varθ [θ̂(Y )]≥
1
Iθ
, (3.55)

which represents the CRLB [49].

3.5 NLOS EFFECT ON USER POSITIONING

Time-based and AOA localisation techniques are susceptible to errors, which include the

negative effects of NLOS signal components. LOS and NLOS identification has usually

been applied to mitigate the errors resulting from the ranging acquisition process between

the transmitter and receiver, as well as in various location-based tracking algorithms [40].

Figure 3.8 is a basic illustration of a NLOS scenario. It can be observed that the reflected

and obstructed signals can cause inaccuracies relating to the position estimate of a mobile

user.

During a typical ranging process, it is usually possible to identify and disregard the NLOS

measurements, thus only exploiting LOS measurements. A less complex and computatio-

nally inexpensive LOS and NLOS identification technique has been proposed which specifi-

cally caters to the requirements of CR systems with the objective of increasing performance

as quickly and as accurately as possible. This method is based on the premise that the LOS

component of the initial signal path has a much higher correlation in comparison to other

NLOS paths [54]. One of the first techniques that has been extensively employed to cha-

racterise LOS and NLOS components, is the binary hypothesis test. This method utilises

a decision theoretic framework, as well as certain input parameters, such as ranging mea-

surements and TOA data, to construct suitable pdfs of the amplitudes of various multipath

components [55, 56]. Let H0 and H1 represent a LOS output and NLOS output respectively.

The following conditional pdfs are then defined on observations that are completely arbi-

trary: f (.|H0) and f (.|H1). A threshold (δ ) is defined and compared with the likelihood ratio

given by:
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Figure 3.8: Simplified NLOS scenario

Lratio =
f (.|H0)

f (.|H1)
=

H0 when Lratio < δ

H1 when Lratio > δ
. (3.56)

However, the drawback of this method is its computational complexity. A NLOS iden-

tification technique using statistical decision theory has also been proposed for mobile

positioning using the Neyman-Pearson theorem, which implements a combination of the

AOA principle, a TOA-based method and RSS data [57].

It is also possible to exploit various NLOS measurements to improve localisation ac-

curacy. For example, one NLOS classification algorithm seeks to take advantage of the

NLOS propagation path characteristics rather than mitigate the errors resulting from them.

The technique is a geometrically-based solution ascertaining the location of the mobile

user and the performance is evaluated using the CRLB [58]. Received signal statistics and

scattering-based models have also been used to identify the NLOS condition of transmitted
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signals in UWB systems and wireless environments respectively [59, 60].

Three main NLOS identification techniques can be identified with respect to single

anchor node position estimation [19]:

• Use of TOA statistical information to identify a NLOS signal component. The general

TOA error is characterised by a Gaussian distribution, which is also the LOS com-

ponent. The NLOS signal component can be added to the model as a positive bias and

displays a pdf that is non-Gaussian.

• Parameter extraction of the power delay profile, e.g. delay spread, Rician K-factor.

• Hybrid ranging approaches that involve the utilisation of TOA statistics, path-loss in-

formation derived from the RSS as well as direction information from the AOA tech-

nique [57].

In the case of narrowband and wideband systems, NLOS identification is applied using

the first aforementioned technique. The received power envelope distribution is utilised to

identify the status of the signal component. The NLOS component is therefore Rayleigh-

distributed while the LOS component follows a Rician distribution, since the initial arriving

path has the strongest signal component [57, 61].

It can be noted that various LOS or NLOS identification techniques have been developed in

literature with the objective of computing the location of a mobile user. In order to realise

environmental and location awareness for CR, current positioning algorithms require an ad-

ditional cognitive capability and this includes the ability to accurately distinguish between

LOS and NLOS signals and thereafter adapt accordingly without degrading positioning ac-

curacy, depending on the type of environment. The effects of LOS and NLOS have yet to be

investigated with regard to bandwidth efficiency in CPSs. Therefore a bandwidth efficient

CPS is investigated and its performance studied under LOS and NLOS conditions.
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A BANDWIDTH EFFICIENT

COGNITIVE POSITIONING SYSTEM

The CPS concept draws its inspiration from nature, where location and environmental

awareness are embedded biological features in certain animal species. Dolphins and bats

are well known examples of species that rely on echo location to traverse their natural

environment and to hunt prey. Echolocation has evolved as the primary sensory mechanism

for these animals. Dolphins possess the capability to track long-range targets through a

series of emitted clicks, as well as perform object recognition and tracking. Adaptation of

echolocating signal parameters such as interclick intervals, frequency content and source

level modulation are key biological characteristics in dolphins. The required adaptation

feature is based on the type of echolocation scenario, distance to the target and any interfe-

rence that may occur, such as clutter in the environment and any background noise [62, 63].

Studies have also shown that echolocation and adaptation play a vital role in bats, especially

with regard to navigation and foraging [64, 65]. Bats share many of the aforementioned

adaptation features with dolphins. Bats also possess the ability to perform adaptive acoustic

interference management in the presence of other bats by offsetting the timing between

pulse transmissions [66].

It is envisioned that many of the adaptive capabilities of dolphins and bats can be ap-

plied to CR to enable location and environmental awareness. These may include aspects

such as adaptive waveform generation, software adaptable networks, location and environ-
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ment adaptation, adaptable transmit power, multiple access and cross-layer adaptation [15].

In the context of location awareness, there are numerous types of antenna-based ranging

techniques (RSS, AOA, hybrid schemes, etc.) which have been developed to improve

localisation accuracy for a variety of positioning systems. These techniques have tradeoffs

in terms of accuracy, complexity and environmental application. A key feature, which is

absent in existing positioning systems, is the ability to adapt according to the positional

accuracy or usage environment. A notable example is GPS, where the accuracy significantly

degrades in indoor environments. The CPS proposed in [45,67] serves to deal with the issue

of adaptivity in positioning systems.

This chapter provides an overview of the CPS and then focuses on the derivation of the CRLB

for a spectrally efficient bandwidth determination (BD) model for the CPS using multiple

receive antennas. The end goal is to improve the bandwidth utilisation in a LOS and NLOS

scenario by comparing the performance with the existing single-input-single-output (SISO)

model. A look into the role of the EDSM component of the CPS is also presented.

4.1 COGNITIVE POSITIONING SYSTEM

In order to achieve adaptivity with regard to positioning in CR, at least one of the ranging

signal parameters should be independent of channel effects. For example, the accuracy of the

RSS ranging technique is dependent on the log-distance model, which in turn is dependent

on the path-loss factor and as a result the CR device cannot adaptively control these para-

meters to improve positional accuracy. In the case of time-based localisation schemes such

as TOA and TDOA, adjusting the bandwidth of the ranging signal can have a significant

influence on the positional accuracy. The CPS exploits this characteristic to achieve adaptive

positioning.

According to Figure 4.1, the CPS consists of two key interdependent phases, viz. the band-

width determination (BD) mode and enhanced dynamic spectrum management (EDSM)

mode [45]. The BD mode, as the name suggests, ascertains the amount of bandwidth re-

quired to perform TOA estimation using CRLB derivations. This bandwidth is calculated
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Figure 4.1: Overall CPS model

according to the required positional accuracy. The existing BD mode makes use of a SISO

model, which is currently bandwidth-inefficient, and therefore the proposed SIMO model

aims to improve this bandwidth efficiency. Furthermore, the performance of this SIMO mo-

del is analysed under different LOS and NLOS scenarios. Once the required bandwidth has

been computed, the EDSM mode checks whether the actual bandwidth is physically available

from the spectrum. This is achieved using a combination of overlay and underlay spectrum

access techniques to select the best approximate bandwidth to perform TOA estimation of a

CR user.

4.2 BANDWIDTH DETERMINATION MODEL

Adaptive time-of-arrival (A-TOA) is a relatively new concept, which has been developed

specifically to address the needs of CR and therefore has been implemented in the CPS

model [45]. The BD mode essentially involves the derivation of a CRLB for a received

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

56

 
 
 



Chapter 4
A Bandwidth Efficient

Cognitive Positioning System

single-path AWGN signal and thereafter the development of a mathematical relationship

between the estimated amount of required bandwidth and the positional accuracy.

4.2.1 Bandwidth Determination: SISO Model

The existing CPS utilises UWB as the main signal for positioning in order to exploit its

high bandwidth resolution. However, the main drawback would be the range, as UWB is

only effective over short distances. The following UWB pulse signal was transmitted over a

single path AWGN channel in the model described in [45]:

s(t) =
√

ε ∑
k

p(t − kTs), (4.1)

where p(t) describes a single pulse, Ts is the symbol duration and ε is symbol energy. The

received baseband signal (r(t)), which is processed at the receiver end, is given by:

r(t) = αs(t − τ)+n(t), (4.2)

where the channel coefficient (α) is assumed to be unity, s(t) is a generalised transmitted

signal which can be given by eq. (4.1) and τ represents the signal path delay. After perfor-

ming some mathematical manipulations, the bandwidth determination equation was found

to be [45]:

β =

√
c2P(d̂)
Gγs|α|

(4.3)

where c = 3×108 m/s and represents the speed of the electromagnetic wave (speed of light),

G represents the number of transmitted symbols, while the positional accuracy (P(d̂)) can be

described in terms of the variance of the distance estimate (var(d̂)):
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P(d̂) =
1

var(d̂)
. (4.4)

The SNR is given by:

γs =
ε

No
. (4.5)

4.2.2 Bandwidth Determination: SIMO Model

The advantages of multiple antenna techniques have been realised in wireless communica-

tions and it will be shown that similar techniques can improve the spectrum efficiency of

A-TOA algorithms and consequently less bandwidth would be required for a specific posi-

tional accuracy. The novelty of the proposed technique involves the utilisation of a SIMO

model, which is then verified with two different location estimation algorithms to improve

the spectrum efficiency of the CPS. In a similar fashion to eq. (4.2), let the SIMO baseband

received signal be mathematically modelled as:

rl(t) = αls(t − τo)+nl(t), 0 ≤ t ≤ T (4.6)

where every lth antenna can range from l = 1, ...,N, αl is the complex channel coefficient,

s(t) represents the original transmitted signal, which for the purposes of this study is a gene-

ral narrowband signal, τo is the path delay and n(t) represents an AWGN process with a zero

mean and power spectral density (PSD) of σ2
l . It has been assumed that the signal delays

(τo) for the different antennas are identical, since the first arriving signal has the strongest

component for a single-path scenario. A 1×2 vector of signal parameters has to be esti-

mated, which can be represented as θ = [ τo (α1, ...,αl) ]. The channel coefficient forms

part and parcel of the estimation problem, since it directly affects each received signal at

each antenna. The assumption is also made that over the interval between 0 and Ts (symbol

time), the s(t) pulse is non-zero (and band-limited to fB Hz). It is also assumed that a fixed

number of symbols (G) are transmitted. As as result, the observation interval encompasses
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the symbol time, number of symbols and maximum time delay. Therefore, it can be shown

that:

T = GTs + τomax . (4.7)

The pdf of the AWGN noise variance of eq. (4.6) is given as follows:

p(r;θ) =
N−1

∏
n=0

1(
2πσ 2

l

) 1
2

exp

(
N

∑
l=1

[
− 1

2σ2 {rl(t)−αls(t − τo)}2
])

=
1(

2πσ2
l

)N
2

exp

(
N

∑
l=1

[
− 1

2σ2

t=T

∑
n=0

{rl(t)−αls(t − τo)}2

])
(4.8)

If the pdf given by eq. (4.8) is a function of one or more unknown parameters, it is referred to

as the likelihood function. The curvature of the likelihood function ascertains the degree of

estimation accuracy of the unknown parameter and is determined by the log-likelihood func-

tion, which is the negative of the second derivative of the natural logarithm of the likelihood

function [48, 50]. Therefore, the log-likelihood function is given as:

ln p(r;θ) = − ln
(
2πσ2

l
)N

2 −
N

∑
l=1

1
2σ2

l

∫ T

0
(rl(t)−αls(t − τo))

2 dt

= −N
2

ln
(
2πσ 2

l
)
−

N

∑
l=1

1
2σ2

l

∫ T

0
(rl(t)−αls(t − τo))

2 dt

= −N
2

ln(2π)− N
2

ln
(
σ2

l
)
−

N

∑
l=1

1
2σ2

l

∫ T

0
(rl(t)−αls(t − τo))

2 dt

= A−
N

∑
l=1

1
2σ2

l

∫ T

0
(rl(t)−αls(t − τo))

2 dt, (4.9)

where A is given by:

A =−N
2

ln(2π)− N
2

ln(σ2
l ). (4.10)

The CRLB of a vector of unknown parameters is given by the first row and first column of

an inverse matrix and is represented as follows:
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var(θ̂i)≥
[
I-1(θ)

]
ii
, (4.11)

where I(θ) is a p× p Fisher Information Matrix (FIM) and p is defined by the number of

unknown parameters to estimate. In this particular case, the elements of the 2× 2 FIM are

determined by taking the negative expectation of the second derivative of the log-likelihood

function [50]:

[I(θ)]i j =−E
[

∂ 2 ln p(r;θ)
∂θi∂θ j

]
. (4.12)

From observing eq. (4.9) and eq. (4.12), determining the Fisher information elements can be

quite involved. However, a less complicated mathematical model for the general Gaussian

case can be utilised to derive each of the Fisher information elements for the 2×2 case with

a complex channel coefficient:

[I(θ)]i j =
N

∑
l=1

1
σ2

l

K−1

∑
k=0

∂ s[k;θ ]
∂θi

∂ s[k;θ ]
∂θ j

, (4.13)

where k represents a set of discrete points of a signal. The general form 2× 2 FIM for this

particular estimation problem is given as:

I(θ) =

 Iττ Iτααα

Iααατ Iαααααα

 . (4.14)

The FIM elements are determined using eq. (4.13) (refer to Appendix A for full discrete

signal derivation):

Iττ = ε̂
N

∑
l=1

|αl|2

σ2
l Tsamp

, (4.15)
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Iτααα = Iααατ =−ε̃
[

|α1|
Tsampσ2

1
, ...,

|αl|
Tsampσ2

l

]
, (4.16)

Iαααααα =
ε

Tsamp
×diag

[
1

σ2
1
, ...,

1
σ2

N

]
, (4.17)

where Tsamp is the sampling period of the continuous waveform given in eq. (4.6) and the

corresponding energy transformations are given by:

ε̂ = G
∫ Ts

0

∣∣∣∣ds(t)
dt

∣∣∣∣2 dt =
∫ Ts

0

∣∣s′(t)∣∣2 dt, (4.18)

ε̃ = G
∫ Ts

0

∣∣∣∣ds(t)
dt

∣∣∣∣ |s(t)|2dt, (4.19)

ε = G
∫ Ts

0
|s(t)|2dt. (4.20)

It can be noted that the Fisher elements Iτααα and Iααατ are 1×N Hessian matrices, while Iαααααα is

an N ×N Hessian matrix where N is the number of receive antennas. The inverse elements

of the FIM are equivalent to the variance on the time delay estimate and channel coefficients,

which are respectively given as:

[Iττ ]
−1 =

(
Iττ − IταααI−1

ααααααIT
ααατ

)−1
, (4.21)

[Iαααααα ]
−1 =

(
Iαααααα − IααατI−1

ττ IT
τααα

)−1
, (4.22)

Since a single time delay is estimated, [Iττ ]
−1 is a scalar value. As a result, according to eq.

(4.21):
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[Iττ ]
−1 =

(
ε̂ − ε̃2

ε

) N

∑
l=1

|αl|2

Tsampσ2
l
, (4.23)

[Iαααααα ]
−1 = Di, j

∣∣∣ i=1..N

j=1..N

, (4.24)

where i = 1, ...,N and j = 1, ...,N and [I−1]αααααα is a N×N matrix containing elements Di, j. It

follows that eq. (4.24) can be expanded into:

Di, j =



ε
Tsampσ2

i
−

ε̃2 ∑N
l=1

|αl |
2

(σ2
l )

2

ε̂Tsamp ∑N
l=1

|αl |2

σ2
l

i = j

−
ε̃2 ∑N

l=1

(
|αl |

2

Tsampσ2
l

)2

ε̂Tsamp ∑N
l=1

|αl |2

Tsampσ2
l

i ̸= j.

(4.25)

Therefore, from eq. (3.55) and assuming that the a priori information about the channel

coefficients are known (i.e. ε̃ = 0), the time delay and channel coefficient estimate can be

respectively given as:

var(τ̂o) =
1

ε̂ ∑N
l=1

|αl |2
Tsampσ2

l

, (4.26)

var(α̂) = diag{ ε
Tsampσ2

1
, ...,

ε
Tsampσ2

N
}. (4.27)

According to eq. (4.27), the variance on the channel coefficient estimate is essentially a

diagonal matrix of received SNR values at each antenna branch. The variance on the time

delay estimate (var(τ̂o)) can be expressed in terms of the variance on the distance estimate

(var(d̂)) and the electromagnetic wave speed (c):
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var(τ̂o) =
var(d̂)

c2 , (4.28)

where d̂ is the distance estimate while c = 3×108m/s. Using eq. (4.26) and eq. (4.28), the

variance on the distance can be expressed as:

var(d̂) =
c2

ε̂ ∑N
l=1

|αl |2
Tsampσ2

l

, (4.29)

then assuming a constant noise spectral density across all N receive branches,

σ2
l = σ2, (4.30)

and according to the PSD of white Gaussian noise band-limited to fB Hz:

σ2 = No fB, (4.31)

and utilising the sampling period (Tsamp):

Tsamp =
1

2 fB
, (4.32)

Eq. (4.29) can be re-written as:

var(d̂) =
c2

ε̂ ∑N
l=1

|αl |2
N0
2

. (4.33)

The energy of a signal is given by eq. (4.20). The bandwidth of a signal in the time domain

can be represented as:

β 2 =
ε̂
ε
. (4.34)
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Transforming the time domain signal bandwidth representation in eq. (4.34) into the fre-

quency domain yields (using Fourier transforms) [7]:

β 2 =

∫ ∞
−∞ f 2|S( f )|2d f∫ ∞
−∞ |S( f )|2d f

, (4.35)

where S( f ) is the Fourier transform of s(t). Using eqs. (4.33), (4.34) and (4.35), the variance

of the distance estimate is now given as:

var(d̂) =
c2

εβ 2 ∑N
l=1

|αl |2
N0
2

. (4.36)

Since γs =
ε

No/2 represents the SNR, eq. (4.36) can be simplified to yield:

var(d̂) =
c2

γsβ 2 ∑N
l=1 |αl|2

. (4.37)

Following eq. (4.37), the resulting proposed SIMO bandwidth determination model is shown

to be:

β =

√
c2P(d̂)

Gγs ∑N
l=1 |αl|2

, (4.38)

where G represents the number of symbols according to the defined pulse-shape as shown

in eq. (4.1). For a generalised signal the G parameter is a constant factor. Theoretical

comparisons of the SISO BD model and SIMO BD model are shown in Figure 4.2. These

are based on eqs. (4.3) and (4.38) for Rician fading coefficients with a K-factor of 4 dB

(dominant LOS component). The 1×8 case was shown to level off at a utilised bandwidth

of approximately 5 MHz for the Rician case.

Figure 4.3 illustrates the results for a Rayleigh fading scenario (strong NLOS component).

Similarly, it was observed that for the 1× 8 case (Rayleigh), the curve tended to level off
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Figure 4.2: Comparison of a SISO and SIMO BD model for a Rician case (K = 4 dB)

at a required bandwidth of approximately 17 MHz. According to Figure 4.3, the different

SIMO cases can exploit NLOS components to achieve better theoretical performance over

the SISO case. In addition, for N ≥ 8, a minimal change in theoretically utilised bandwidth

was observed for both the Rician and Rayleigh cases.

4.2.3 Enhanced Dynamic Spectrum Management

Dynamic spectrum management is a vital component of CR and it involves the efficient

and optimal management of spectrum utilisation between primary and secondary users.

Centralised (with a primary controller) and decentralised (distributed approach) schemes

have been investigated as possible spectrum sharing techniques. A variety of spectrum

sharing models have been proposed, such as the competition-based model [68, 69] and

auction-based model [70, 71], which rely on game theoretic approaches. A biologically

inspired spectrum sharing model uses an insect colony to perform adaptive task allocation

and the corresponding results reveal efficient dynamic spectrum sharing [72].
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Figure 4.3: Comparison of a SISO and SIMO BD model for a Rayleigh case

As mentioned earlier in the chapter, the EDSM component of the CPS follows from

the BD model and extracts the required bandwidth using a set of decision criteria as

determined by the available bandwidth from the available spectrum. Important parameters,

such as carrier frequency, PSD or transmit power, number of available bands and associated

bandwidth, have to be taken into account when modelling dynamic spectrum utilisation.

Therefore in the context of CR there are two proposed approaches, viz. overlay (opportu-

nistic) spectrum access and hybrid (combination of overlay and underlay) spectrum access.

Overlay spectrum usage may entail the use of adaptive frequency transmitters that focus

on ’holes’ within the spectrum and transmit within these gaps without causing interference

to existing wireless technologies. There have been numerous studies on overlay access

techniques for CR, such as the optimisation of transmission times for the SU in an overlay

setting [73]. A cooperative decode-and-forward spectrum sharing scheme has also been

proposed where the PU and SU can transmit simultaneously [74]. The concept of underlay
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spectrum access involves the utilisation of the frequency band at well below the noise

floor of the PU. Hence optimal power control by the SU is an inherent requirement [75].

Therefore unlicensed users are able to transmit overlay waveforms required for A-TOA

estimation within the licensed bands in an opportunistic and non-interfering manner. The

proposed technology for underlay spectrum usage is UWB, since the signal is characterised

by a large bandwidth with a relatively low PSD. The premise behind implementing UWB

for underlay spectrum usage is the fact that primary users can tolerate an acceptable level

of interference. As a result, unlicensed users will be able to operate at the noise floor of

licensed users [76]. Hybrid schemes exploit the advantages of both types of spectrum access

techniques, as demonstrated in [77] where the throughput of the SU is maximised.
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The CPS proposed in [45] utilises a combination of adaptive bandwidth selection as well as

dynamic spectrum allocation techniques to address the location awareness requirements of

CR. Time-based ranging schemes such as TOA are particularly suited for such localization

systems employing UWB or orthogonal frequency division multiplexing (OFDM) in CR,

since the bandwidth and SNR of the signal, play an important role in the positional accuracy

of the receiver [21]. Previous works [78,79] have shown that conventional TOA ranging is a

suitable technique for single band positioning systems. It has also been shown that optimal

two-step time-delay estimation can be conducted simultaneously on dispersed bands for CR

systems using a variety of combining schemes, each with different degrees of performance

under various modulation schemes [80,81]. There has not been any work to date, to the best

of the author’s knowledge, which investigates the 2D positioning accuracy of multiband

TOA systems and the benefits over legacy single band TOA band systems.

In this chapter, an analytic approach for performing two dimensional (2D) location

estimation over multiple (unoccupied) bands in the context of opportunistic spectrum access

for CR networks is proposed. The best achievable positioning accuracy is achieved through

the generalised derivation of the CRLB time delay and channel coefficient estimates for

multiple bands. A combining technique using the computed estimates for each band is then

derived to obtain an optimal time delay estimate (and channel coefficient estimate), which
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results in improved user location estimation when compared to a single band system. In

order to validate the outcome in a practical scenario, the multiband positioning technique is

applied to a spectrum occupancy pdf model, which is based on measurements conducted at

the University of Pretoria, Hatfield campus, in the ultra-high frequency (UHF) band. The

performance was analysed using the NLS, LLS and TSML location estimation algorithms.

This proposed positioning technique has been developed in the context of future application

for various multicarrier communication standards, most of which are fundamentally based

on OFDM such as Long term evolution (LTE), DVB-T2, WiMax, etc [82].

In Section 5.1 of this chapter, an overview of the multiband signal model is proposed. Sec-

tion 5.2 provides the derived CRLB estimate of the time delay and channel coefficients for

multiple bands. The combining technique for the estimates is presented in Section 5.3. In

Section 5.4, the UHF spectrum occupancy measurement results are discussed where the pdf

for this particular band is determined.

5.1 SIGNAL MODEL

The mathematical signal model for deriving the CRLB and required estimates forms the

initial basis of this particular study. It has been assumed that the MT to be localised, is syn-

chronised with the different base stations, each of which is transmitting single-path signals

over multiple bands. The signal delay (τ) has also been assumed to be constant for all trans-

mitted signals, as the delay is based on the power of the first arriving path. In a typical CR

scenario, it is envisioned that discrete multiple bands can be opportunistically accessed and

utilised for TOA positioning. The baseband representation of each received signal (r(t)) can

be represented as:

ri(t) = αisi(t − τ)+ni(t), 0 ≤ t ≤ T, i ∈ [1..N], (5.1)

where αi is the channel-fading coefficient of each band identified by i, si(t−τ) is the delayed

transmitted signal occupying a specific bandwidth (βi), N is the total number of discrete

bands and ni(t) represents a zero mean AWGN process with variance, σ2
i .
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Figure 5.1: Overall multiband TOA model

Figure 5.1 displays the conceptual system model for the multiband TOA positioning system.

In the case of any TOA ranging system, there are a minimum of three base stations (which

can play the role of an SU) required to localise a mobile user. These SU base stations can

dynamically access the spectrum and transmit TOA ranging signals using different band-

widths of varying magnitude. The estimated amount of discrete bandwidths available from

each base station can range from β̂1, ..., β̂N , depending on the availability at any given point

in time.

The main advantage of the model shown in Figure 5.1 is that varying bandwidths of different
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magnitudes are exploited (depending on the availability) to obtain an improved location es-

timate by considering multiple time delays to obtain a final optimal time delay estimate. The

combining technique considers the CRLB estimate of each band and thereafter computes

the mean estimate for all N bands to obtain an overall optimal time delay estimate for TOA

ranging.

5.2 CRLB OF TIME DELAY AND CHANNEL COEFFICIENT ESTIMATES

Figure 5.2 displays the proposed receiver model for the multiband TOA positioning system

where β̂1, ..., β̂N represents the bandwidth magnitude of each band. The time delay and

channel coefficient are estimated for the overall multiband system. The measured signal

characteristics are obtained and thereafter the positional accuracy for the MT can be obtained

using a suitable location estimation algorithm.

Extract range 
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Figure 5.2: Multiband receiver model

The CRLB for the time delay and channel coefficients can be derived according to the mul-

tiband signal model represented in eq. (5.1). Accordingly (similar to Section 4.2.2), the

following vector of unbiased signal parameters are estimated:
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Θ = [τ ααα] , (5.2)

where τ is the signal time delay and ααα = [α1...αN ] represents the vector of complex channel

coefficients corresponding to N bands, which describe the fading of each received signal. The

assumption is made that over the interval between 0 and Ts (symbol time), the transmitted

pulse given by s(t) is non-zero and band-limited to B Hz. As a result the observation interval

encompasses the symbol time and maximum time delay, which can be also shown as follows:

T = Ts+τmax. The CRLB of eq. (5.2) is given by the first row and first column of an inverse

matrix and represented as follows [50]:

var(Θ̂i)≥
[
I-1(Θ)

]
ii
, (5.3)

where I(Θ) is a q×q FIM and q is defined by the number of unknown parameters to estimate.

In this case, Θ1 = τ and Θ2 = ααα . The elements of the 2×2 FIM have been determined for a

general Gaussian case for a discrete received signal using (refer to Appendix A):

I(Θ) =
N

∑
i=1

1
σ2

i

K−1

∑
k=0

∂ si[k;Θ]

∂Θi

∂ si[k;Θ]

∂Θ j
, (5.4)

where i= 1,2, ..,q and j = 1,2, ...,q and N is the total number of bands. The FIM is therefore

represented as:

I(Θ) =

 Iττ Iτααα

Iααατ Iαααααα

 . (5.5)

The following FIM elements can be derived using eq. (5.4) [83]:

Iττ =
N

∑
i=1

|αi|2ε̂i

σ2
i

, (5.6)
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Iτααα = IT
ααατ =−

[
|α1|ε̃1

σ2
1

, ...,
|αN |ε̃N

σ2
N

]
, (5.7)

Iαααααα = diag
[

ε1

σ2
1
, ...,

εN

σ2
N

]
, (5.8)

where ε̂i and ε̃i are respectively given as:

ε̂i =
∫ T

0

∣∣∣λ̃ ∣∣∣2 dt, (5.9)

ε̃i =
∫ T

0
|λ̃ ||λ |dt. (5.10)

The first derivative of the signal energy λ is given by λ̃ = s′i(t − τ), while the energy (εi) of

the signal λ = si(t − τ) is shown as:

εi =
∫ T

0
|si(t − τ)|2dt. (5.11)

The CRLB of the time delay estimate can be obtained using the matrix algebraic manipula-

tions given in eq. (4.21) and eq. (4.22).

The time delay estimate of the signal is therefore shown as:
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[Iττ ]
−1 =

N

∑
i=1

|αi|2ε̂i

σ2
i

−
[
|α1|ε̃1

σ2
1

, ...,
|αN |ε̃N

σ2
N

]

×diag
[

ε1

σ2
1
, ...,

εN

σ2
N

]−1

×


|α1|ε̃1

σ2
1...

|αN |ε̃N
σ2

N



=
N

∑
i=1

|αi|2ε̂i

σ2
i

−
[

ε̃1|α1|
ε1

, ...,
ε̃N |αN |

εN

]
×


ε̃1|α1|

σ2
1...

ε̃N |αN |
σ2

N


=

N

∑
i=1

|αi|2

σ2
i

(
ε̂i −

ε̃2
i

εi

)
(5.12)

=var (τ̂)−1 . (5.13)

It can be noted that the overall estimated time delay is dependent on the channel coefficient

for each band. Using eq. (5.12), it is possible to derive a relationship between the CRLB

time delay estimate and the positional accuracy of the MT:

var(τ̂) =
1

c2P(d̂)
, (5.14)

where c is the speed of light and P(d̂) is the positional accuracy of the MT. Using eq. (5.12),

eq. (5.14) and the bandwidth representation in the Fourier domain, which can be expressed

as:

ε̂i = εiβ̂ 2
i , (5.15)

the overall positional accuracy is shown to be:

P(d̂) =
1
c2

N

∑
i=1

|αi|2

σ2
i

(
εiβ̂ 2

i − ε̃2
i

εi

)
. (5.16)
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It can be also shown that the CRLB estimate of the channel coefficient for all dispersed bands

can be computed using eq. (4.22), resulting in:

[Iαααααα ]
−1 = diag

[
ε1

σ2
1
, ...,

εN

σ2
N

]
−
[
|α1|ε̃1

σ2
1

, ...,
|αN |ε̃N

σ2
N

]

×

 1

∑N
i=1 ε̂i

|αi|2
σ2

i

×


|α1|ε̃1

σ2
1...

|αN |ε̃N
σ2

N



= diag
[

ε1

σ2
1
, ...,

εN

σ2
N

]
−

N

∑
i=1

|αi|2ε̃2
i

(σ2
i )

2εi

N

∑
i=1

ε̂i
|αi|2

σ2
i

. (5.17)

The channel coefficient vector ([Iαααααα ]
−1) can be represented in condensed form (in a similar

manner to eq. (4.24)):

[Iαααααα ]
−1 = var(α̂) = Di, j

∣∣∣ i=1..N

j=1..N

, (5.18)

where N represents the total number of bands and each element Di, j is given by:

Di, j =



εi

σ2
i
−

N

∑
i=1

|αi|2ε̃2
i

(σ2
i )

2εi

N

∑
i=1

ε̂i
|αi|2

σ2
i

if i = j

−

N

∑
i=1

|αi|2ε̃2
i

(σ2
i )

2εi
N

∑
i=1

ε̂i
|αi|2

σ2
i

if i ̸= j.

(5.19)
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Location accuracy adaptation is dependent on the available bandwidth in the spectrum. Ac-

cording to eq. (5.16), it is inherently impossible to extract the required bandwidth for a

specific positional accuracy. Therefore an alternative combining estimation technique has to

be proposed, which allows the extraction of the estimated required bandwidth, which in turn

provides the location accuracy adaptation functionality for CR.

5.3 TIME DELAY AND CHANNEL COEFFICIENT COMBINATION

ESTIMATION TECHNIQUE

Section 5.2 provided the CRLB time delay estimates and channel coefficient estimates for

the overall multiband system. Using similar methods, it is possible to derive the estimates

for each band, and utilise each estimate individually to obtain an overall optimal solution

that enables bandwidth-accuracy adaptation. The vector representation of the estimation

parameters based on a single transmitted signal is given as [83]:

Θi = [τi αi] , (5.20)

where α is a scalar value. This results in a 2×2 FIM given by:

I(Θ) =

 Iτiτi Iτiαi

Iαiτi Iαiαi

 . (5.21)

Using eq. (5.4), each FIM element is given by:

Iτiτi =
|αi|2ε̂i

σ2
i

, (5.22)

Iτiαi = Iαiτi =−|αi|ε̃i

σ2
i

, (5.23)
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Iαiαi =
εi

σ2
i
. (5.24)

The CRLB of the time delay estimate can be computed in a similar way to eq. (4.21), bearing

in mind that the elements in this case are all scalar:

[Iτiτi]
−1 =

(
Iτiτi − IτiαiI

−1
αiαi

Iαiτi

)−1
. (5.25)

Therefore, the CRLB of the time delay estimate for an individual band is given as:

[Iτiτi]
−1 =

|αi|2ε̂i

σ2
i

− |αi|ε̃i

σ2
i

× σ2
i

εi
× |αi|ε̃i

σ2
i

=
|αi|2

σ2
i

(
ε̂i −

ε̃2
i

εi

)
= var (τ̂i)

−1 = c2P(d̂). (5.26)

According to eq. (5.15), one can obtain a bandwidth determination equation based on the

required positional accuracy of the MT, which can be adapted based on the availability of the

required number of bands:

|αi|2

σ2
i

(
ε̂i −

ε̃2
i

εi

)
= c2P(d̂)

|αi|2

σ2
i

(
εiβ̂ 2

i − ε̃2
i

εi

)2

= c2P(d̂)

εiβ̂ 2
i =

c2P(d̂)σ2
i

|αi|2
+

ε̃2
i

εi

β̂i =

√
c2P(d̂)σ2

i
|αi|2εi

+
ε̃2

i

ε2
i
. (5.27)

It can be noted that the derivative of the signal energy (constant) is zero, which results in
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ε̃ = 0. The estimated required bandwidth for a specified positioning accuracy is therefore

shown as:

β̂i =

√
c2P(d̂)
|αi|2γi

, (5.28)

where γi is the SNR of the received signal. The CRLB of the channel coefficient estimate for

an individual band is calculated using:

[Iαiαi]
−1 =

(
Iαiαi − IαiτiI

−1
τiτi

Iτiαi

)−1
. (5.29)

This leads to the following CRLB for the channel coefficient estimate:

[Iαiαi]
−1 =

εi

σ2
i
− ε̃2

i

σ2
i ε̂i

=
1

σ2
i

(
εi −

ε̃2
i

ε̂i

)
= var (α̂i)

−1 . (5.30)

Two combining estimation techniques were investigated. The first method involved the ave-

raging of the delay estimates over the total number of bands and the second method involved

determining the minimum estimate over all the discrete bandwidths. For a fixed bandwidth

availability model, the average delay combining estimate scheme was shown to display op-

timal performance. However, for a dynamic bandwidth availability model the minimum

estimate combining scheme was shown to provide an improved performance in positioning

accuracy. According to eq. (5.16), the channel coefficient and SNR of the received signal,

together with the total number of bands, are therefore important parameters which affect the

TOA location estimate.
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5.4 UHF SPECTRUM OCCUPANCY MEASUREMENT CAMPAIGN

According to [83], predefined discrete multiple bandwidths were utilised to perform 2D lo-

cation estimation. Although an improved accuracy was observed, the study was limited in

relation to a fixed bandwidth availability model. A realistic case would involve a CR device

dynamically selecting multiple bandwidths based on availability to perform TOA positio-

ning. Due to the unpredictable nature of spectrum occupancy, the bandwidth availability of

the unoccupied spectrum would have to be modelled according to a specific type of pdf. This

pdf would be derived based on the results obtained from a UHF spectrum occupancy mea-

surement campaign conducted at the University of Pretoria campus. The objective was to

determine the likelihood of available (unoccupied spectrum holes) or unavailable (occupied

spectrum holes) bandwidths and thereafter apply the pdf model to the multiband TOA posi-

tioning system. The UHF bands consist primarily of TV bands, which according to the IEEE

802.22 WRAN standard aims to provide broadband access to rural areas through the use of

certain CR functionality. Although the empirical measurements are limited to one area, the

results provide a reasonable validation to the performance of the proposed multiband TOA

positioning model.

5.4.1 Design Overview of Measurement Campaign

A measurement campaign with the objective of assessing the spectrum occupancy of the

UHF band in a South African context was conducted over a six-week period. The overall

measurement system was based on the energy detection spectrum sensing scheme. This

method has been utilised in various spectral occupancy measurement campaigns [1–3, 84],

due its low complexity and simplistic hardware implementation. The measurement readings

were obtained over the whole UHF frequency band, i.e. 470-854 MHz. The spectrum occu-

pancy measurements were conducted on the rooftop of the 15-storey Engineering I building,

University of Pretoria, Hatfield campus, in a typical suburban area of Pretoria. Table 5.1

represents a summary of all the hardware components for the measurement system.

The key spectrum occupancy measurement system components consisted of an Ultra-
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Table 5.1: Overview of hardware components utilised in the measurement system [85]

Hardware component Specifications

Wideband Antenna Super-M Ultra base antenna ranging from 25 MHz to 6

GHz with a maximum gain of 3 dBi

LNA Low noise amplifier with bandwidth range from 50 MHz-3

GHz; low noise figure specified at 1.1 dB ; maximum gain

of 13 dB

Power Supply Regulated 5V DC power supply with a current capacity of

800 mA

Spectrum Analyser N9010A Agilent EXA signal analyser with a 1.86 GHz

Intel Celeron M processor, 3.26 GB RAM and a 20 GB of

storage capacity

Air Conditioner Custom built air conditioner for the cooling of the

spectrum analyser

Scheduler PC Windows XP PC with an Intel Core 2 Quad CPU at 2.33

GHz and 2GB of RAM

Remote Data Storage Server PC with an Ubuntu operating system, Intel i3 Core CPU at

3.2 GHz, 4GB RAM and 5 TB of storage capacity

wideband antenna (ranging from 25 MHz and 6 GHz), Agilent spectrum analyser which

was then connected to a PC, where sample data was remotely stored in a server accessible

over the university’s local area network.

In order to quantify the occupancy of the band in question, a measurement scheduler was

designed to analyse the data over a 24-hour period for six weeks. Each measurement reading

consisted of 1500 samples, where a sample consisted of an entire sweep of the band (384

points). The measurements were conducted at regular two-hour intervals with a resolution

of 1 MHz for the UHF band. Approximately 170 million samples were collected over the

whole course of the measurement campaign [85].
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5.4.2 Spectrum Occupancy PDF of the UHF band

The raw measurements taken from the UHF measurement campaign were preprocessed and

equalised in order to remove any outliers that might cause statistical inaccuracies. Figure 5.3

displays the mean received power profile of the UHF band over the whole duration of the

measurement campaign.
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Figure 5.3: Mean received power profile of the UHF band over six weeks

The basis of this method is to infer the spectral occupancy based on the noise statistics of

the measurement readings. The one problem that may arise is if the received signal strength

is less than that of the noise floor, which may imply the detection of an unoccupied channel

when in fact a signal is present. A histogram of all the sampled data over the whole measure-

ment period for the UHF band was obtained and the probability as a function of the received

signal strength was plotted, as illustrated in Figure 5.4.

According to the measurement results from Figure 5.4, the occupied and unoccupied (noisy)

portions of the UHF band are clearly distinguishable. Analysis of the unoccupied spectrum
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Figure 5.4: Probability density function of the received signal strength for the UHF band

for the UHF band reveals that the probability distribution is Gaussian with a mean (µuh f ) of

−90.2 dBm and a standard deviation given by σuh f = 1.0139.

The mean falls within the measured minimum system sensitivity, which was determined to

be −104.5 dBm for the UHF band. The resulting probability distribution is used to model

the dynamic bandwidth availability for the multiband TOA positioning model.
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CHAPTER 6

RESULTS AND DISCUSSION

The performance evaluations of the proposed optimised CR positioning techniques in Chap-

ters 4 and 5 are presented and analysed. Section 6.1 includes a comparative bandwidth

efficiency plot between the SISO BD and SIMO BD model under three different generic en-

vironments, viz. rural, urban and suburban areas, which are based on the root mean square

(RMS) delay spread. Section 6.2 compares the positional accuracy performance of the pro-

posed multiband TOA positioning system with the conventional single band system for a

fixed and dynamic bandwidth availability model. The dynamic bandwidth availability mo-

del is based on results taken from a UHF spectrum occupancy measurement campaign at the

University of Pretoria.

6.1 BANDWIDTH EFFICIENT CPS

The performance of the bandwidth efficient cognitive positioning model was analysed using

the LLS and TSML location estimation algorithms for three environmental scenarios. The

first scenario is one in which LOS is a dominant component, as typically exhibited by a

rural environment. The second and third scenarios are characterised by a NLOS dominant

signal component, which is based on generalised RMS delay spreads for the aforementioned

environments. The SNR (γs) was fixed at 10 dB while it was assumed that the number of

transmitted symbols (G) was 10. The channel coefficients are modelled as random variables,

depending on whether the scenario was LOS or NLOS.
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The error induced by the NLOS component can be modelled as either deterministic or based

on a specific probability distribution. In this investigation, the NLOS error was characterised

as a random variable having an exponential distribution [86]:

g(τ) =


1

τrms
exp− τ

τrms
, τ > 0

0 otherwise,
(6.1)

where the decay parameters are given by the inverse of the delay spread
(

1
τrms

)
. The delay

spread (τrms) is represented as:

τrms = L0rρψ, (6.2)

where L0 is the median value of τrms at 1 km, r is the distance between the base station and the

MT, ρ is a power-law exponent factor that lies between 0.5 and 1 and ψ is a log-normal ran-

dom variable characterised by a standard deviation of 4 dB for the two environments. This

particular NLOS statistical error model is suitable for characterising various types of pro-

pagation environments, since it has been validated through numerous measurement results

and its applicability can extend to scenarios involving mobile user positioning [86]. Table

6.1 is an overview of the key parameters utilised in the bandwidth efficient CPS simulation

model.

Table 6.1: Simulation Parameters

Scenario Delay spread (τrms) ρ Channel coefficients (α)

Rural 0.1 µs 0.5 Rician

Urban 0.4 µs 0.5 Rayleigh

Suburban 0.3 µs 0.5 Rayleigh

In order to evaluate the performance of the proposed SIMO BD model, a comparison of the

bandwidth efficiency with respect to the positional root RMSE was drawn against a conven-

tional SISO system over a predefined bandwidth interval ranging from 1 MHz to 20 MHz.
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Figure 6.1: RMSE of the positional accuracy of the SISO and SIMO systems in a typical

rural environment

The 1×2 and 1×3 SIMO BD positioning model was analysed using the LLS and TSML es-

timation technique at a fixed SNR of 10 dB. Figures 6.1, 6.2 and 6.3 represent the MT’s

2D positioning RMSE with respect to the utilized bandwidth in a generalised rural, urban

and suburban scenario, respectively. Accordingly all three aforementioned figures indicate

that diversity in multiple antenna positioning systems plays an important role in improving

bandwidth efficiency in relation to TOA positioning.

The following conclusions regarding the proposed SIMO BD model can be made [87]:

• In the case of all three environmental models a significant performance advantage in

terms of positional accuracy of the SIMO positioning scheme can be attained at lower

bandwidth intervals from 1 MHz to 8 MHz. An average RMSE reduction of 82%

between the SISO and 1×3 SIMO case can be noted for all three scenarios at 1 MHz.

This can enable improved dynamic spectrum access for positioning applications in

CR, more particularly in cases where there is a shortage of large discrete bandwidths,
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Figure 6.2: RMSE of the positional accuracy of the SISO and SIMO systems in a typical

urban environment

depending on the time interval or location.

• It was observed that for bandwidths beyond 20 MHz, the SIMO positional RMSE for

both the 1×2 and 1×3 scheme converged at an average RMSE of 0.1 m for the rural

case and 0.2 m for the urban and suburban case. This indicates that a minimal change

in positional accuracy is gained as the bandwidth is increased.

• Furthermore, it has been determined that the utilisation of more than three receive

antennas (1×5 and 1×8 case) produced a minimal differential change of approximately

10% in the positional RMSE for bandwidths greater than 20 MHz when compared to

the 1×3 case for all three scenarios. The performance evaluations therefore show that

the 1×3 case was deemed to be the optimal SIMO scheme in terms of achieving the

most significant improvement in bandwidth efficiency for the CPS.

• The TSML and LLS estimation techniques for all three scenarios display similar per-
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Figure 6.3: RMSE of the positional accuracy of the SISO and SIMO systems in a typical

suburban environment

formance with respect to the specific antenna scheme.

6.2 MULTIBAND TOA POSITIONING TECHNIQUE

6.2.1 Fixed Bandwidth Availability Model

The RMSE positional accuracy of the single band and multiband systems are compared in

order to quantify the improvement in terms of positional accuracy for a fixed (predefined)

bandwidth availability model using three different LTE dispersed bandwidths (3, 5 and 10

MHz). It is envisioned that CR positioning can exploit various bandwidths of different mag-

nitudes by switching between various technologies (e.g. WiMax, LTE, WCDMA and WiFi

have various operating channel bandwidths), depending on the availability at any given ins-

tant in time. Figure 6.4 represents the MT’s RMSE of the location estimate as a function of

the SNR using the TSML location estimation technique for a scenario where the dominant

signal component is LOS. A decrease in RMSE can be observed when estimating the MT’s
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location using two and three bands. This is due to the fact that each band is characterised by

a different time delay and channel fading coefficient and can be optimally combined to yield

an improved estimate. At lower SNRs the improvement in accuracy is much more signifi-

cant, while at higher SNRs the location estimates tend to converge according to the number

of bands utilised to perform TOA.
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Figure 6.4: RMSE of the location estimate for rural scenarios using 3 MHz, 5 MHz and 10

MHz bandwidths.

Figure 6.5 further illustrates the effect of the average combining estimation technique on the

RMSE error as the number of bands are increased. These results are compared for three

different fixed SNR values. For this particular scenario four different bands were chosen,

each with a bandwidth defined by:

β̂ = {B1,B2,B3,B4} (6.3)

where B1 = 3 MHz, B2 = 5 MHz, B3 = 10 MHz and B4 = 15 MHz. For the case of single

band utilisation, the RMSE error for each individual band was separately computed and then
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Figure 6.5: RMSE of the location estimate for rural scenarios using different SNRs (-15 dB,

-10 dB and 5 dB).

this error averaged over all four bands. The overall positioning accuracy for each of the four

bands was computed by taking the mean RMSE error over all possible k band permutations

for a set defined by T total bandwidths, which can be generally represented as:

 T

k

=
T !

(T − k)!k!
, (6.4)

where ! represents a factorial expression. Therefore, in the case of k = 2 bands, the RMSE

errors for all unique possible two band permutations, e.g.

β̂2 = [{B1,B2} ,{B1,B3} ,{B1,B4} ,{B2,B3} , ...] (6.5)

were obtained and then averaged over all T bands. The error computation also applies to

the case where k = 3 and k = 4 bands. An decrease in the RMSE error can be observed for

each band when comparing Figures 6.4 and 6.5. This is mainly to the fact that an additional

larger band of 15 MHz has been introduced which significantly lowers the overall average.
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A minimal change in accuracy can be observed, which tends to be the case as the SNR is

increased (e.g. 5 dB).

6.2.2 UHF Bandwidth Availability Model

In order to simulate dynamic bandwidth availability, five different bandwidths were ran-

domly generated from a predefined set (between 1 MHz and 20 MHz) according to a Gaus-

sian distribution as determined for an unoccupied UHF spectrum in Figure 5.4. A priori

information regarding the channel coefficients were assumed to be Rician-distributed with

K = 2 dB (K-factor). Figures 6.6, 6.7 and 6.8 display the performance of the proposed

technique in relation to the NLS, LLS and TSML algorithms respectively. Five discrete

bandwidths were considered in this scenario, as opposed to Section 6.2.1, where only three

bandwidths were considered at a given instant.
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Figure 6.6: RMSE performance for the NLS algorithm (Rician fading, K= 2 dB)

According to Figures 6.6, 6.7 and 6.8, an improvement in location accuracy can be obser-

ved when performing multiband TOA estimation for all three different types of estimation

algorithms. This is due to the fact that each band is characterised by a different time delay
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Figure 6.7: RMSE performance for the LLS algorithm (Rician fading, K= 2 dB)
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Figure 6.8: RMSE performance for the TSML algorithm (Rician fading, K= 2 dB)
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and channel fading coefficient and therefore each band can be exploited to yield an optimal

estimate. Tables 6.2, 6.3 and 6.4 show the different percentages in RMSE improvement for

the multiple discrete bandwidths at SNRs of -10, -5 and 0 dB, respectively. The RMSE im-

provements for the NLS technique in Table 6.2, are quite high because of the large distance

estimation error at -10 dB for the single band case. Furthermore, it can also be noted that the

NLS technique displays more variation at lower SNRs, as shown in Table 6.3, where the two

band case performs better than the three band case.

Table 6.2: Percentage RMSE improvement over single band systems at SNR =−10 dB

NLS (%) LLS (%) TSML (%)

Two bands 98 87 87

Three bands 99 91 88

Four bands 99 92 91

Five bands 99 93 93

Table 6.3: Percentage RMSE improvement over single band systems at SNR =−5 dB

NLS (%) LLS (%) TSML (%)

Two bands 81 84 83

Three bands 75 87 85

Four bands 91 89 88

Five bands 92 90 89

Figures 6.6, 6.7 and 6.8 show that there is a significant RMSE positional accuracy impro-

vement at lower SNRs. The proposed multiband TOA positioning technique can therefore

be exploited in low SNR conditions to achieve an improved localisation accuracy. Tables

6.3 and 6.4 also show that there is a 1% performance improvement between utilising four

and five discrete bandwidths for TOA positioning which is a minimal improvement. Table

6.5 shows the comparative performance between the three location estimation algorithms at

three different SNRs for the double band case.

The TSML algorithm displays the best performance at lower SNRs. It can be observed that
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Table 6.4: Percentage RMSE improvement over single band systems at SNR = 0 dB

NLS (%) LLS (%) TSML (%)

Two bands 72 76 74

Three bands 88 81 77

Four bands 89 83 81

Five bands 90 84 82

Table 6.5: Comparative algorithmic performance in terms of RMSE for two bands

NLS (m) LLS (m) TSML (m)

-10 dB 115.5 52.59 42.76

-5 dB 25.30 23.82 20.15

20 dB 0.97 1.14 1.1

the more complex NLS algorithm performs slightly better than the LLS and TSML algorithm

at higher SNRs. Table 6.6 shows the differential change in the RMSE of the positional

accuracy between the single and double band case in order to quantify the improvement in

accuracy.

Table 6.6: Differential change of the RMSE for the double band case

NLS (m) LLS (m) TSML (m)

-10 dB 7309.5 367.41 283.44

-5 dB 112.42 122.18 99.75

0 dB 49.63 37.75 41.15

10 dB 6.47 4.29 5.41

20 dB 1.52 1.76 1.59

According to Table 6.6, there is a significant decrease in RMSE for the double band case

at -10 dB and -5 dB, indicating a large improvement in positional accuracy. As a result the

proposed multiband positioning technique is suitable for performing CR-based localisation
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Figure 6.9: RMSE performance for the LLS algorithm (Rayleigh fading, K= 0 dB)
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Figure 6.10: RMSE performance for the TSML algorithm (Rayleigh fading, K= 0 dB)
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in scenarios where high SNRs of the signal are limited by the inherent constraint imposed

by the surrounding environmental conditions.

The channel fading coefficients also affect the localisation accuracy of the multiband TOA

positioning technique. Similar plots (refer to Figures 6.9 and 6.10) are presented for a K-

factor of 0 dB (Rayleigh fading) for the LLS and TSML algorithms, as these estimation

algorithms display good stability over the whole range of analysed SNR values. The ove-

rall RMSE error is much higher, which is as expected from a pdf that characterises NLOS

behaviour.
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CHAPTER 7

CONCLUSION

This study has investigated the optimisation of adaptive localisation techniques, specifically

related to TOA ranging, in the context of CR. It has been discussed that the development of

these techniques can lead to efficient and accurate location awareness in CR, thus offering

the opportunity to enhance various CR tasks using positional information.

7.1 SUMMARY OF RESEARCH FINDINGS

Chapter 2 included a review about the principles of existing ranging techniques employed in

mobile positioning. It has been shown that the time-based ranging schemes enable adaptivity

in positioning due to the signal bandwidth playing an important role in the accuracy of

a positioning system. Existing positioning systems such GPS, MIMO and WLAN can

play a significant role in catering for both indoor and outdoor CR localisation. The role

of environment and location awareness in the overall CR architecture has been outlined,

together with a brief discussion on the relevance of geo-location in the IEEE 802.22 standard

(providing broadband access over TV white spaces).

A detailed look at the different non-linear and linear location estimation algorithms

utilised to perform location estimation has been provided in Chapter 3. It has been shown

that Newton-Raphson and Gauss-Newton achieve the fastest convergence of the 2D position

estimate for both the ML and NLS estimation algorithms. The linear estimation algorithms

offer a more stable solution and are less complex to implement when compared to the
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non-linear estimation algorithms. As a result, the linear estimation algorithms have been

implemented in the proposed optimised positioning models.

A bandwidth efficient CPS model is proposed in Chapter 4. A detailed CRLB deriva-

tion of the bandwidth-accuracy relationship for the SIMO BD model has been developed.

The EDSM component, which is an important component of the CPS, makes use of

underlay and overlay spectrum access techniques to select the required bandwidth for

A-TOA positioning. Chapter 5 follows on from the CRLB derivations in Chapter 4 to

develop a multiband positioning technique based on the TOA ranging technique. The

multiband system model is outlined, followed by the proposal of the combination estimation

technique that exploits multiple time delays from each transmitted signal to improve the

positional accuracy of an MT. An overview of the UHF spectrum occupancy measurement

campaign utilised to model dynamic bandwidth availability is given. Based on the measu-

rement results, it was possible to develop a pdf of the unoccupied spectrum and thereafter

validate the performance of the multiband TOA positioning technique in a practical scenario.

Chapter 6 contains the performance evaluations of the proposed optimised positioning

models in Chapter 4 and 5 under different scenarios and using different location estimation

algorithms. The comparative bandwidth efficiency of both SISO and SIMO BD models

have been analysed for three generic environmental models: rural, urban and suburban.

Furthermore, in each scenario each of the antennas schemes (1×1, 1×2 and 1×3) was

implemented using the TSML and LLS location estimation algorithm. The 1×2 and 1×3

SIMO schemes showed an improvement in bandwidth efficiency in relation to the RMSE

positioning error of each environmental model, although the urban and suburban scenarios

showed greater improvement. The results highlight the advantage of using multiple antennas

and hence the role of spatial diversity, not only for communications but for CR positioning

as well.

The second part of the chapter provides the RMSE performance of the multiband TOA

positioning technique using a fixed (predefined) and dynamic bandwidth availability model

based on spectrum occupancy measurements taken in the UHF band. In both cases, the

results show the advantage of exploiting multiple discrete bandwidths in an opportunistic
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manner at the CR receiver to improve positioning accuracy, although the latter case reflected

an improved CR scenario. It was observed from the spectrum occupancy measurement

results that the unoccupied portion of the UHF band followed a Gaussian distribution. As a

result it was possible to model the dynamic bandwidth availability accordingly to perform

multiband TOA estimation.

7.2 SUGGESTIONS FOR FUTURE WORK

Although current work has focused on conceptual models regarding location awareness in

CR, little work has been done with regard to the analysis and actual implementation of these

models within a suitable framework. The following avenues of additional research have been

identified pertaining to this study:

• The performance of the multiband TOA positioning technique can be analysed using

a suitable channel occupancy prediction model to investigate the benefits of positional

accuracy in relation to an optimised bandwidth selection process.

• NLOS errors can vary, depending on the type of terrain and environment. Therefore it

is suggested that a few additional NLOS deterministic and random models be investi-

gated in relation to both the bandwidth efficient model as well as the multiband TOA

positioning technique.

• Both models investigated in Chapters 4 and 5 considered a single-path received signal

as the basis of the analysis. However, in practice TOA ranging signals are inevitably

affected by multipath signal components, which can cause an undesired significant

decrease in the positioning accuracy. The study was limited to the first arriving path

of a TOA signal (single-path case), due to the complexity of the CRLB derivations

in relation to the SIMO and multiband analysis. For a more realistic scenario, the

performance of the proposed CR positioning models can be studied with the effects of

multipath included.

• Since TOA is a time-based localisation scheme, it is susceptible to synchronisation
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errors. In this particular study perfect synchronisation between the transmitter and

receiver was assumed and hence no synchronisation errors were included. Future work

in this area can take into account the effects of synchronisation errors on the RMSE

positional accuracy.
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APPENDIX A

FISHER INFORMATION MATRIX OF A DIS-

CRETE RECEIVED SIGNAL

Let the continuous waveform given by eq. (4.6) be sampled (using the Nyquist Sampling

Theorem) at every Tsamp =
1

2 fB
seconds. The observed data is given by [50]:

rl(kTsamp) = αls(kTsamp − τo)+nl(kTsamp), k = 0,1, ...,K −1.

Let rl[k] and nl[k] be the sampled sequences, then the discrete model is given by:

rl[k] = αls(kTsamp − τo)+nl[k]. (A.1)

Since the signal is non-zero over the interval τo ≤ t ≤ τo + NsymTs, then eq. (A.1) be-

comes:

rl[k] =


nl[k] 0 ≤ k ≤ ko −1

αls(kTsamp − τo)+nl[k] ko ≤ k ≤ ko +M−1

nl[k] ko +M ≤ k ≤ ko +K −1.

(A.2)

The total number of samples of the signal are given by M and the sample delay is given

 
 
 



Appendix A Fisher Information Matrix of a Discrete Received Signal

as ko = τo
Tsamp

. Applying eq. (4.13), the Fisher information element (I11) is calculated as

follows:

Iττ =
N

∑
l=1

1
σ2

l

K−1

∑
k=0

∂ s[k;θ ]
∂τo

∂ s[k;θ ]
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,
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σ2
l

G
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∑
k=ko

∣∣∣∣ds(t)
dt

|t=kTsamp−τo

∣∣∣∣2 ,
=

N

∑
l=1

|αl|2

σ2
l

G
M−1

∑
k=0

∣∣∣∣ds(t)
dt

|t=kTsamp

∣∣∣∣2 , τo = koTsamp. (A.3)

Assuming Tsamp is sufficiently small, it can be approximated as a sum of an integral:

Iττ =
N

∑
l=1

|αl|2

σ2
l Tsamp

G
∫ Ts

0

∣∣∣∣ds(t)
dt

∣∣∣∣2 dt.

Let ε̂ = G
∫ Ts

0

∣∣∣ds(t)
dt

∣∣∣2 dt which is the signal energy of the derivative of s(t). Therefore:

Iττ = ε̂
N

∑
l=1

|αl|2

σ2
l Tsamp

. (A.4)

The column vectors, Iταand Iατare orthogonal and therefore:

Iτα =
1

[σ2
1 , ...,σ

2
l ]

G
K−1

∑
k=0

∂ s[k;θ ]
∂τo

∂ s[k;θ ]
∂αl

,

Iτα =
1

[σ2
1 , ...,σ

2
l ]

G
ko+M−1

∑
k=ko

∣∣∣∣∂ ([|α1|, .., |αl|]s(kTsamp − τo))

∂τo

∣∣∣∣ ∣∣∣∣∂ ([|α1|, .., |αl|]s(kTsamp − τo))

∂αl

∣∣∣∣ ,

=

[
|α1|
σ2

1
, ...,

|αl|
σ2

l

]M−1

∑
k=0

−
∣∣∣∣ds(t)

dt

∣∣∣∣ |s(t)|t=kTsamp
,
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=−
[
|α1|
σ2

1
, ...,

|αl|
σ2

l

]
1

Tsamp

∫ Ts

0

∣∣∣∣ds(t)
dt

∣∣∣∣ |s(t)|dt.

Let ε̃ = G
∫ Ts

0

(
ds(t)

dt

)
(s(t))dt represent the product between the derivative of the signal

energy and the actual energy of the signal. Therefore:

Iτα = Iατ =−ε̃
[

|α1|
Tsampσ2

1
, ...,

|αl|
Tsampσ2

l

]
. (A.5)

Lastly, since Iαα is also an orthogonal matrix:

Iαα = G
M−1

∑
k=0

|s(t)| |s(t)| |t=kTsamp ×diag
[

1
σ2

1
, ...,

1
σ2

N

]
,

=
1

Tsamp
G
∫ Ts

0
|s(t)| |s(t)|dt ×diag

[
1

σ2
1
, ...,

1
σ2

N

]
,

where diag{...} represents a diagonal matrix and since ε = G
∫ Ts

0 |s(t)|2 dt , the final Fisher

matrix element is given as:

Iαα =
ε

Tsamp
×diag

[
1

σ2
1
, ...,

1
σ2

l

]
. (A.6)
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