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Land cover classification using remotely sensed data is a critical first step in large-scale 

environmental monitoring, resource management and regional planning. The classification 

task is made difficult by severe atmospheric scattering and absorption, seasonal variation, 

spatial dependence, complex surface dynamics and geometries, and large intra-class 

variability. 

 

Most of the recent research effort in land cover classification has gone into the 

development of increasingly robust and accurate (and also increasingly complex) 

classifiers by constructing–often in an ad hoc manner–multispectral, multitemporal, 

multisource classifiers using modern machine learning techniques such as artificial neural 

networks, fuzzy-sets, and expert systems. However, the focus has always been (almost 

exclusively) on increasing the classification accuracy of newly developed classifiers. We 

would of course like to perform land cover classification (i) as accurately as possible, but 

also (ii) as quickly as possible. Unfortunately there exists a tradeoff between these two 

requirements, since the faster we must make a decision, the lower we expect our 

classification accuracy to be, and conversely, a higher classification accuracy typically 

requires that we observe more samples (i.e., we must wait longer for a decision). 

 

Sequential analysis provides an attractive (indeed an optimal) solution to handling this 

tradeoff between the classification accuracy and the detection delay–and it is the aim of 

this study to apply sequential analysis to the land cover classification task. Furthermore, 

this study deals exclusively with the binary classification of coarse resolution MODIS time 

series data in the Gauteng region in South Africa, and more specifically, the task of 

discriminating between residential areas and vegetation is considered.
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Klassifikasie van grondbedekking deur middel van afstandswaargeneemde data is 'n 

kritiese eerste stap in die grootskaalse monitering van die omgewing, hulpbronbestuur, en 

streeksbeplanning. Die klassifikasietaak word bemoeilik deur uiterste atmosferiese 

verspreiding en absorpsie, seisoenale veranderinge, ruimtelike afhanklikheid, komplekse 

oppervlak-dinamika en strukture, en groot intra-klas veranderlikheid. 

 

Meeste van die onlangse navorsingswerk in grondbedekkingsklassifikasie het gefokus op 

die ontwikkeling van al hoe kragtiger en akkurater (maar ook meer komplekse) 

klassifiseerders deur–dikwels op 'n lukrake wyse–multispektrale, multitemporale multibron 

klassifiseerders te ontwerp met moderne masjienleertegnieke soos kunsmatige neurale 

netwerke, newelversamelingsleer en deskundige stelsels. Desnieteenstaande was die fokus 

(byna uitsluitlik) op die toenemende akkuraatheid van nuut ontwikkelde klassifiseerders. 

Ons sou natuurlik grondbedekkingsklassifikasie (i) so akkuraat as moontlik, maar ook (ii) 

so gou as moontlik wou kon doen. Ongelukkig speel die twee vereistes teen mekaar af, 

siende dat 'n vinniger besluit 'n laer akkuraatheid tot gevolg het; en andersom, vereis 'n 

hoër klassifikasie-akkuraatheid tipies dat ons meer observasies moet waarneem. 

 

Sekwensiële analise voorsien 'n aanloklike (inderdaad 'n optimale) oplossing om die 

afspeeleffek tussen die akkuraatheid en die waarnemingsoponthoud te hanteer–dit is dan 

die doel van hierdie studie om sekwensiële analise op die grondbedekkingsklassifikasie-

taak toe te pas. Verder hanteer hierdie studie uitsluitlik net die binêre klassifikasie van lae 

resolusie MODIS tydsreeksdata in die Gautengstreek van Suid-Afrika, en meer spesifiek 

word die taak om tussen residensiële areas en plantegroei te onderskei, aangepak. 
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Chapter 1

Introduction

“The mere formulation of a problem is far more often
essential than its solution, which may be merely a
matter of mathematical or experimental skill.”

Albert Einstein (1879–1955)

L AND COVER CLASSIFICATION using remotely sensed data—also referred
to as thematic mapping—is a critical first step in large-scale environmental mon-

itoring, resource management and regional planning [80]. Land cover classification
establishes a baseline map which can then be compared against subsequent classifications
to detect changes in the land cover. Land use information can also be inferred from
land cover data, and it is used in many situations and for various purposes, including
the development of strategies to balance conservation and developmental issues.

The subtle difference between land cover and land use should probably be made
explicitly clear, even though the terms are often used interchangeably in much of the
literature. Land cover refers to the (physical) surface cover, such as vegetation, urban
infrastructure, water, bare soil etc., whereas land use refers to the (functional) purpose
which the land serves, such as agriculture, recreation, or wildlife habitat protection.

Approaches such as artificial neural networks and decision trees are widely used to
perform multisource land cover classification (that is, from multiple sensors and/or
supporting sources of information), and generally exhibit superior classification accuracy
compared to single-source classification [80]. Nevertheless, the independent analysis
of single-source classifiers can be extremely useful to better understand (and predict)
the performance of more sophisticated classifiers, and it can also serve as an empirical
lower bound for expected classification accuracy. In this present study we will restrict
our attention to single-source statistical land cover classification.
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Chapter 1 Introduction

Naturally, we would like to perform land cover classification (i) as accurately as possible,
but also (ii) as quickly as possible. Unfortunately there exists a tradeoff between
these two requirements, since the faster we must make a decision, the lower we expect
our classification accuracy to be, and conversely, if we require a higher classification
accuracy we must typically observe more samples. In fact, it is a well-known fact
that the accuracy of a detector can be improved by increasing the signal-to-noise ratio.
However, the noise power is usually fixed, so that the detector accuracy can only be
improved by increasing the signal energy. In the remote sensing context, where satellite
platforms typically have very limited resources on board, increasing the signal energy
is particularly impractical and sometimes just plain impossible. Therefore, we must
increase the number of observations.

Thus our main reason for only considering single-source land cover classification in this
study is that we are actually more interested in answering the question “how quickly
can we perform land cover classification?” than attempting to improve on the accuracy
of existing classifiers which make use of many different data sources. Of course, if we
can answer the question for single-source classification, we would expect that we will be
able to perform classification even faster using state-of-the-art, multisource classifiers.

What then do we need to answer our question? We could try to do it purely empirically,
but that would not be much fun. Instead, we will develop a simple statistical land
cover model, and we will attempt to use the results from sequential analysis (refer to
[89, 118]) to understand how quickly we can perform land cover classification.

1.1 BACKGROUND AND PROBLEM FORMULATION

Land cover classification (which can essentially be regarded as an m-class hypothesis
test where m is the number of distinct land cover types) is of critical importance in many
remote sensing applications including resource management, urban planning, as well as
disaster warning and damage assessment, to name but a few [92]. The classification task
is made difficult by (or characterised by) severe atmospheric scattering and absorption,
seasonal variation, spatial dependence, complex surface dynamics and geometries, and
large intra-class (within-class) variability.

1.1.1 Current approaches to land cover classification

Most of the recent research effort in land cover classification1 has gone into the develop-
ment of increasingly robust and accurate (and also increasingly complex) classifiers by
constructing—often in an ad hoc manner—multispectral, multitemporal, multisource
classifiers using modern machine learning techniques such as artificial neural networks,
fuzzy-sets, and expert systems [80].

However, the focus has always been (almost exclusively) on increasing the classification
1We specifically consider per-pixel classification, but other areas of research include subpixel and

per-field (and the related object-oriented) land cover classification (see [80] for a comprehensive review).

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 1 Introduction

accuracy of newly developed classifiers. In fact, [22] proposed six criteria for evaluating
the performance of land cover classification strategies, namely accuracy, reproducibility,
robustness, ability to fully use the information content of the data, uniform applicability,
and objectiveness. In [27], performance criteria including classification accuracy, compu-
tational resources, stability of the algorithm, and robustness to noise in the training data
were suggested. In all this, speed of classification has never been considered explicitly.

1.1.2 Simple illustration of sequential classification

Consider the following simple example, shown in Figure 1.1. We are given two boxes,
labelled “Class 0” and “Class 1”, respectively. The labels are then removed, and a box
is chosen at random (we don’t know which one). Finally, we are tasked to design a
classifier which must exhibit a Type II classification error of less than 0.5%. That is,
the probability of deciding on Class 0 (which we denote by δ = 0) when Class 1 is the
actual underlying class (which is indicated by P1) must be less than 0.005, or more
concisely, P1(δ = 0) < 0.005.

Class 0 Class 1 Class ?

? ?
?? ?

? ?
? ? ?

Figure 1.1: Simple example for demonstrating sequential detection or classification.

We may only draw one object from the box at a time, and each object must be replaced
before another object may be drawn (i.e., consecutive observations are independent).

If we adopt a Maximum Likelihood (ML) decision rule, we quickly notice that the
probability of Type I errors is exactly zero, since the ML rule will declare the box to be
of Class 0 whenever anything except a � is observed. Furthermore, the probability of
making a Type II error after observing a single observation (Z1) is given by P1(δ = 0) =
P1(Z1 = ×) = 0.1. Similarly, the probability of a Type II error after two observations
is given by P1(Z1 = ×, Z2 = ×) = 0.01. We notice then that in order to satisfy the
Type II error requirement, P1(δ = 0) < 0.005, we must draw at least three samples from
the box. Or rather, with a fixed-size classifier we must draw three samples from the
box to guarantee P1(δ = 0) < 0.005. Not so with sequential methods, described next.

Unlike with fixed-size classifiers, the number of required observations is not predefined
for sequential methods. Instead, sequential methods use only as many observations
as are needed to guarantee the desired error probabilities. For example, whenever we
observe a ◦, we can immediately declare the box to belong to Class 0 without taking
any additional observations, and similarly, whenever we observe a � we can immediately
declare the box to belong to Class 1. Even if our first observation happens to be a ×
(in which case we cannot decide with absolute certainty between the two classes yet),
the second observation may be a ◦ or a �, after which we will be able to decide perfectly

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 1 Introduction

between Class 0 and Class 1.

From this simple example we might reasonably expect that sequential methods require
significantly fewer observations than fixed sample size approaches with the same proba-
bility of error. In particular, sequential methods decide quickly in unambiguous cases
and take longer in ambiguous cases, but since the ambiguous cases are usually much
less likely to occur (such as in our simple example), it pays off on the average.

Sequential analysis is then simply a method of statistical inference whose characteristic
feature is that the number of observations required by the procedure is not predetermined,
and where the decision to terminate the experiment depends, at each stage, on the
results of the previous observations [118].

An obvious advantage of the sequential method (as applied to testing statistical hypothe-
ses) is that it helps the user reach a decision between two hypotheses after a minimal
average number of experiments [89]. For this reason, it is clear that sequential testing is
generally less costly than fixed sample size (i.e., non-sequential) testing whenever there
is a nonnegative cost associated with each observation.

Sequential testing of statistical hypotheses is usually referred to as sequential detection,
and commonly relies on the likelihood ratio, Λn, (defined below) to make a decision:

Λn
∆=

n∏
k=1

q1(Zk)
q0(Zk)

→

0, under H0

∞, under H1
, as n→∞,

where it is assumed that the sequence of independent and identically distributed (i.i.d.)
observations {Zk; k = 1, 2, . . .} is generated by some random process with corresponding
probability densities q0 and q1 under hypotheses H0 and H1, respectively.

The test that continues sampling as long as Λn ∈ (A,B) and then, at the first exit
of Λn from (A,B), decides on hypothesis H1 if the exit is to the right of this interval,
and decides H0 if the exit is to the left, is known as the Sequential Probability Ratio
Test (SPRT) with boundaries A and B [89]. SPRTs exhibit minimal expected stopping
time (i.e. minimal run length) among all sequential (and non-sequential) decision rules
having given error probabilities. In particular, we have the following well-known result
from Wald and Wolfowitz [119], stated here without proof:

Theorem 1 (Wald-Wolfowitz) Suppose (τ, δ) is the sequential probability ratio test,
SPRT(A,B) with 0 < A ≤ 1 ≤ B < ∞, and let (τ ′, δ′) denote any other sequential
decision rule with max{E0[τ ′],E1[τ ′]} <∞, and satisfying

P0(δ′τ ′ = 1) ≤ P0(δτ = 1) and P1(δ′τ ′ = 0) ≤ P1(δτ = 0),

with
P0(δτ = 1) + P1(δτ = 0) < 1.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

4

 
 
 



Chapter 1 Introduction

Then
E0[τ ′] ≥ E0[τ ] and E1[τ ′] ≥ E1[τ ].

Here τ and τ ′ are two (Markov) stopping times, δ and δ′ are terminal decision rules,
A and B are the optimal SPRT exit thresholds, Ei[·] denotes the expectation under
hypothesisHi, and Pi(δτ = j) denotes the probability of deciding on hypothesisHj when
the true hypothesis is Hi. That is, P0(δτ = 1) ≡ P (choose H1 at stopping time τ |H0).

1.1.3 Problem formulation

As mentioned previously, we would like to perform land cover classification as accurately
as possible, but also as quickly as possible. So with the understanding that current
approaches to land cover classification are primarily concerned with classification
accuracy; and being equipped with the tools of sequential analysis (including such
powerful results as the Wald-Wolfowitz theorem), we would like to be able to answer
the following question:

Key question 1
How quickly can we perform land cover classification?

(With a given probability of error.)

Of course, the use of the word quickly above refers to the number of samples that we
have to consider, and not to the (computational) speed of the algorithm, which we
expect to be near real-time.

For most simple2 statistical hypotheses (and those characterised by i.i.d. observations
in particular), we can answer Key question 1 fairly simply by using existing results
from sequential analysis. However, the complex nature of the remote sensing context
makes it difficult to apply the results of sequential analysis directly to the land cover
classification problem. This observation naturally leads us to ask the following question:

Key question 2
How should we adapt or extend the results from sequential analysis

in order to fit the land cover classification problem?

Luckily it turns out that we do not have to adapt or extend the existing theory of
sequential analysis (which is really quite general), but instead we only have to transform
(or reformulate) the land cover classification problem into an equivalent, homogenised
problem which lends itself to direct application of the existing sequential analysis results.

2The qualifier simple means that the hypotheses are completely specified, as opposed to partially-
specified composite hypotheses.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

5

 
 
 



Chapter 1 Introduction

The application of sequential analysis to the (homogenised) land cover classification
problem will allow us to construct sequential classifiers which will exhibit minimal run
lengths for any given probability of error, so that we will be able to answer Key question 1.
Finally then, we can summarise the problem statement as follows:

Problem statement
A sequential land cover classification algorithm is required which

must be adapted to the remote sensing context, such that the desired
speed and accuracy of classification can easily be modified to suit a

particular application.

1.2 OBJECTIVES OF THIS STUDY

There are two categories of objectives discussed in this section, namely primary objec-
tives, which concern the key questions and core objectives directly addressed in this
study, and secondary (or future) objectives, which include the development of an initial
basis and framework for related future work.

1.2.1 Primary objectives

With reference to the problem statement given in section 1.1.3, the primary objectives of
this study necessarily include the following: (i) to develop a statistical land cover model,
which is required for (ii) the design of a sequential land cover classification algorithm,
which in turn must be used (iii) to determine the minimum speed of classification for a
given probability of error.

1.2.1.1 Objective 1: Develop statistical land cover models

We are primarily interested in classifying (as quickly as possible) the land cover type
of surfaces observed by optical sensors on remote sensing platforms. These sensors
commonly measure the spectral radiance of electromagnetic energy originating from the
Sun, which is subsequently reflected off the surface of the Earth towards the sensors.
There are, of course, many factors which influence the spectral reflectance observed by
a remote sensing platform, including atmospheric scattering and absorption, seasonal
variation, geographic location, and complex surface dynamics and geometries to name a
few. A statistical model which takes all of these (and other) factors into account would
be extremely complex and difficult to construct—luckily our objective is much simpler.

A statistical land cover model is required which must be simple enough to lend itself to
easy interpretation, but which must be complex (rich) enough to allow for sufficiently
accurate land cover classification. Furthermore, the statistical model must be flexible
enough for use in the design and development of a land cover classification algorithm.

The development of a ‘sufficiently accurate’ model necessarily requires that we must
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design, implement and evaluate a sequential classification algorithm (Objective 2), and
if needed, that we must refine the statistical model in an iterative manner as illustrated
in Figure 1.2, each time re-evaluating the classifier using the refined land cover model.

classifierstatistical model

refine model

evaluation

Objective 1 Objective 2

Figure 1.2: Iterative refinement of the statistical land cover model to obtain ‘sufficiently
accurate’ classification performance.

1.2.1.2 Objective 2: Design a sequential land cover classification algorithm

The design of an accurate sequential land cover classification algorithm relies heavily on
the assumption that we have sufficient (and accurate) statistical information to describe
the classification process (see again Figure 1.2). Of course, if the land cover classes are
not separable from the statistical information that we provide to the classifier, even the
best sequential classifier can do no better than to guess.

1.2.1.2.1 Objective 2.a—To revisit the maximum likelihood classifier.
TThere is a common perception that statistical approaches to land cover classification
(such as the maximum likelihood classifier) are not particularly useful, or are too limited
for practical purposes. For example, the following excerpt is from the recent book by
Tso and Mather [112, p. 61], and several other authors share this view:

“As the performance of the statistical maximum likelihood classifier is
generally limited by frequency distribution assumptions, in recent years,
more elegant classifiers such as artificial neural networks, support vector
machines, fuzzy theory-based methods, and decision trees have also been
introduced into the field of remote sensing imagery classification. These
state-of-the-art classifiers should draw our attention, because they normally
are distribution-free, and are able to show a significant level of improvements
over traditional methods introduced previously. . . ”

In some sense this is true, since it is often difficult or impossible to construct reliable
statistical models, especially when multiple sources of information have to be taken into
consideration. Unfortunately, the framework of sequential analysis (which we will use
to answer Key question 1) assumes that we do have a good statistical model of the land
cover classification task (Objective 1); and so we must answer the following question:

Key question 3
Is reliable land cover classification possible using statistical methods?

(With specific reference to the maximum likelihood approach.)
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Fortunately, the answer to Key question 3 is ‘Yes!’ (see, for example, the results
presented in Chapter 5), so that our objective is then to show that maximum likelihood
classification can be equally (or perhaps even more) effective than competing strategies
in certain settings (such as single-source classification).

Also, the observation that maximum likelihood classifiers cannot compete with state-
of-the-art multisource classifiers is somewhat short-sighted, since a good maximum
likelihood classifier can simply become an additional source in an even-more-state-of-
the-art classifier (see [116] for a survey on combining classifiers).

Furthermore, statistical models are often more insightful than the black-box approaches
of many state-of-the art classifiers. Therefore research into maximum likelihood classifi-
cation remains important and easily justifiable.

1.2.1.2.2 Objective 2.b—To design a sequential classification algorithm.
WWith the assumption that we have a good statistical land cover model, our objective is
to design, develop and evaluate a sequential land cover classification algorithm using
the techniques and ideas from sequential analysis.

1.2.1.3 Objective 3: Determine the speed of classification

Naturally the task of answering Key question 1 (“How quickly can we perform land
cover classification with a given probability of error?”) is an important objective of this
study, which must be answered by using the results from sequential analysis. It must
be kept in mind, however, that its answer might be somewhat misleading. Firstly, we
will only answer the question for a particular model (better models are sure to exist),
and for a particular probability of error, which is often a rather subjective criterion.
Nevertheless, part of our objective is also to show that sequential classification can yield
comparable results to fixed sample size classification in a much shorter period of time.

1.2.2 Secondary (future) objectives

This study is further characterised by an important future objective, primarily concerned
with moving beyond the present task of land cover classification to the more interesting
(and challenging) task of quickest detection.

The reason for stating this objective here instead of in section 6.3 (Future research), is
that this objectives had been identified even before the commencement of this study,
and moreover, the task of developing quickest detection strategies for the land cover
context necessitates the development of a sequential detection framework, which then
became the focus of this study. In other words, this study serves as an important and
natural first step towards a quickest land cover change detection strategy, and this must
be kept in mind when evaluating the effectiveness or suitability of various approaches
to the land cover classification task presented in the remainder of this document.
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1.2.2.1 Objective 4: Apply quickest detection to the land cover change
detection task

The theory of quickest detection is an attractive theoretical framework for performing
optimal (in an appropriate sense) online change detection, and its application to the
remote sensing context (and land cover change detection in particular) is expected to
enhance our ability to effectively monitor and manage environmental resources.

In summary, the main objectives of this study are (i) to show that statistical methods
can be used to perform reliable land cover classification and sometimes lead to improved
understanding or insight, (ii) to apply sequential detection to the simple statistical land
cover models developed in this study, and (iii) to lay the foundations for moving on to
quickest land cover change detection.

1.3 PROPOSED SOLUTION AND CONTRIBUTIONS

According to Thomson Reuters’ ISI Web of Knowledge, 577 papers with “land cover
classification,” or “change detection” and “remote sensing” in the title, abstract or
keywords were published during the 5-year period from 2004 to 2008. However, only
19 of these papers fall within the subject fields of computer science, mathematics or
statistics [14]. In this study we aim to revisit statistical land cover classification, and to
consider the sequential detection task as well—both mathematically and practically.

In this present study we will not yet answer the more general question of “How quickly
can we perform (arbitrary) land cover classification?”, but we will lay the foundation for
answering such questions by considering the related (but considerably easier) question
of “How quickly can we differentiate between two land cover types?”. That is, we will
only consider the binary classification task, which can later be extended to a multi-class
classifier by considering, for example, a binary tree structure as shown in Figure 1.3.

barrenvegetational

bare soil buildingsgrassland forest

land cover

Figure 1.3: Multihypothesis (m = 4) land cover classification as a two-stage binary
classification tree.

1.3.1 Land cover classification using MODIS surface spectral reflectance
time series data

As a result of the rapid advancement of remote sensing technology, remotely sensed
data are increasingly being used for land cover classification [126]. Sensors such as
the Advanced Very High Resolution Radiometer (AVHRR) have commonly been used
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to derive the Normalized Difference Vegetation Index (NDVI), which is useful for
characterising and monitoring the phenological dynamics of terrestrial ecosystems, and
to perform land cover classification. However, AVHRR was not designed for land
applications, and the lack of radiometric calibration, atmospheric (cloud) screening,
and poor geometric registration all contribute to excessively noisy data.

The multispectral Moderate Resolution Imaging Spectroradiometer (MODIS) sensor
provides a significantly improved basis for a myriad of land applications, since it has an
on-board radiometric calibration system, strategically placed narrow spectral bands,
and is characterised by improved geometric registration and atmospheric screening.

The specific MODIS data that we will consider also has a relatively high temporal
resolution (with a multispectral observation every eight days), but it has a low (or coarse)
spatial resolution of 500× 500 m, which makes it suitable for large-scale applications.

1.3.2 Development of statistical land cover models

The proposed solution comprises the development of several statistical land cover models
derived from the MODIS surface reflectance time series data, followed by maximum
likelihood classification and sequential analysis. Statistical multispectral models based
on Probability Density Functions (pdfs) have previously been used in [31] and [32], where
normally distributed data and a mixture-of-Gaussians were assumed for each land cover
class. In this study we intend to refine the statistical land cover models by considering
time-varying pdfs, such that they will take the seasonal (or temporal) information into
account. In addition, we will not assume that the data must be normally distributed,
but instead we will allow arbitrary (or strictly speaking, semi-parametric) pdfs, such
that it will be easier to observe interesting features in the data.

Both single and multispectral models will be developed using the time-varying framework
mentioned above, as well as a simplified i.i.d. framework. The classification results
obtained under the i.i.d. assumption will serve as an important classification benchmark,
since the assumption that observations are i.i.d. is very common in the literature.

1.3.3 Maximum likelihood classification

The newly developed statistical land cover models will be used to perform maximum
likelihood classification, and the results will be compared to those obtained by linear
Support Vector Machines (SVMs) in an effort to determine whether statistical methods
can compete with modern machine learning alternatives.

Maximum likelihood classification is also a necessary first step in the development of a
sequential classification strategy, since we need to objectively compare the classification
accuracy of any sequential procedure to the classification accuracy that we could have
obtained by considering more samples.
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1.3.4 Sequential land cover classification

A sequential land cover classification strategy will be given, in which an i.i.d. land cover
model will be used. However, the assumption of independent observations is unrealistic,
and ideally we would also like to take the temporal information into account, so that we
actually want to perform sequential classification on the time-varying models instead.
Nevertheless, as a first attempt at sequential classification, the i.i.d. case presents many
challenges of its own. A computational strategy will be given to compute the minimal
cost function, s(π), which can then be used to find optimal exit thresholds, πL and πU,
such that the sequential test continues sampling until the posterior probability that
hypothesis H1 is true, ππn /∈ (πL, πU).

The structure of the optimal time-varying sequential land cover classification decision
rule will be given, but there are unfortunately some remaining issues which will prevent
us from implementing such a strategy in this study—the most important of which is
that it is not yet entirely clear how to physically compute the minimal cost functions,
or the optimal exit thresholds for the time-varying models.

1.3.5 Novel contributions of this study

There are several novel contributions of this study which are, in some sense, still in their
infancy of development. To the best of my knowledge, the extension of statistical land
cover models to be both semi-parametric and time-varying have not been considered
previously. Ideally, the models should be extended even further by taking advantage of
the information provided by the spatial and temporal dependences between observations.

A second novel contribution of this study is the application of sequential analysis to the
land cover classification task, and to explicitly consider the speed-vs-accuracy tradeoff
for land cover classification. However, it is expected that a larger number of land cover
classes, a larger study area, and more sophisticated statistical land cover models will all
contribute to more meaningful results from sequential analysis, so that the present study
should only be considered to be the rudiments of sequential land cover classification.

Finally, a computational strategy for computing the minimal cost function s(π) under
the assumption of i.i.d. observations is given (without proof) in [89], but unfortunately
the statement appears to be either incomplete or incorrect. A corrected computational
strategy is thus proposed and subsequently proved in this study. However, a computa-
tional method for computing the cost functions of the time-varying (non-i.i.d.) case has
not been completed yet, and work is ongoing to state and prove such a strategy.

1.4 PUBLICATIONS AND RELATED WORK

The following publications are not really related to this study, but have been prepared
and submitted in parallel to completing this study, that is, during the completion of

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

11

 
 
 



Chapter 1 Introduction

my Master’s degree. A paper on the topic of this study (i.e. sequential land cover
classification) is also planned for the near future.

[C1] E. R. Ackermann, T. L. Grobler, J. C. Olivier, A. J. van Zyl and K. C. Steenkamp,
“Minimum distance land cover separability analysis of MODIS time series data,”
IEEE Geoscience and Remote Sensing Symposium, Jul. 2011 (accepted).

[C2] T. L. Grobler, E. R. Ackermann, J. C. Olivier and A. J. van Zyl, “Systematic Luby
Transform Codes as Incremental Redundancy Scheme,” IEEE Africon, Zambia,
Sept. 2011 (accepted).

[C3] E. R. Ackermann, T. L. Grobler, A. J. van Zyl and J. C. Olivier, “Belief Propaga-
tion for Nonlinear Block Codes,” IEEE Africon, Zambia, Sept. 2011 (accepted).

[J1] E. R. Ackermann, J. P. de Villiers and P. J. Cilliers, “Nonlinear dynamic systems
modeling using Gaussian processes: predicting ionospheric total electron content
over South Africa,” Journal of Geophysical Research, (accepted, in press).

[J2] T. L. Grobler, E. R. Ackermann, A. J. van Zyl and J. C. Olivier, “Cavalieri
Integration,” Canadian Journal of Mathematics (submitted).

1.5 ORGANISATION OF THIS DISSERTATION

The rest of this dissertation is organised as follows: Chapter 2 introduces the most
important concepts related to land cover classification, including an introduction to
remote sensing in the optical region (section 2.2) and current approaches to land cover
classification (section 2.3). An initial example of single band land cover classification
using coarse resolution MODIS surface spectral reflectance data is then presented in
some detail in section 2.4.

The sequential detection of binary hypotheses is introduced next in Chapter 3 for
homogeneous Markov processes, followed by two illustrative examples, namely the
well-known finite-horizon secretary, selection, or marriage problem (section 3.5.2) and
an infinite-horizon sequential detection problem involving Bernoulli trials (section 3.5.3).

Chapter 4 then presents the sequential land cover classification task by first describing
several statistical land cover models in section 4.2, followed by the formulation of the
statistical classification task (either maximum likelihood or sequential classification)
for each type of model in section 4.3. Two important considerations concerning the
sequential classification task, namely the extension to the time-varying case, as well
as some remaining numerical issues encountered when computing the minimal cost
functions, are described in section 4.4.1 and section 4.4.2, respectively.

The maximum likelihood and sequential classification results are presented in Chapter 5,
along with the classification results for several linear Support Vector Machines (SVMs) in
section 5.2, followed by the conclusions and directions for future research in Chapter 6.
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Chapter 2

Land Cover Classification

“The scientist does not study nature because it is useful;
he studies it because he delights in it, and he delights in it,
because it is beautiful. If nature were not beautiful,
it would not be worth knowing, and if nature were not worth
knowing, life would not be worth living.”

Jules Henri Poincaré (1854–1912)

R EMOTE SENSING is the science—or rather art—of inferring information about
the Earth’s surface using data acquired from distant (remote) sensor platforms.

These sensors detect and measure the electromagnetic energy which are reflected from
(or emitted by) the Earth’s surface, producing a spectral signature of the surface.

Remote sensing is not only a vibrant research field, but also finds many practical
applications on a regular basis. For example, our daily weather forecasts rely heavily
on information gathered by remote sensing platforms. In addition, remotely sensed
data is widely used in a range of agricultural [7], atmospheric [90], oceanographic [99],
terrestrial [98], and geological [117] applications to name but a few. Nevertheless, in
this present study we will only be concerned with remote sensing as applied to land
cover classification or thematic mapping.

2.1 INTRODUCTION

Land cover classification using remotely sensed data is a critical first step in large-scale
environmental monitoring, resource management and regional planning [80]. Land cover
classification establishes a baseline map which can then be compared against subsequent
classifications to detect changes in the land cover, and it also serves as a basic inventory
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Chapter 2 Land Cover Classification

of environmental resources for all levels of government, environmental agencies, and
private industry [74]. Land use information can also be inferred from land cover data,
and it is used in many situations and for various purposes, including the development
of strategies to balance conservation and developmental issues.

2.1.1 Land cover and land use

As mentioned previously, land cover refers to the (physical) surface cover, such as
vegetation, urban infrastructure, water, bare soil etc., whereas land use refers to the
(functional) purpose which the land serves, such as agriculture, recreation, or wildlife
habitat protection. Land cover and land use are often very closely related, and both
may benefit from accurate and timely information provided by remote sensing systems.

Whether desired land cover information is local, regional, or global in scope, remote
sensing provides an efficient, cost-effective means of acquiring the necessary data in a
timely manner. However, the task of and cover classification is made difficult by severe
atmospheric scattering and absorption, seasonal variation, spatial dependence, complex
surface dynamics and geometries, and large intra-class (within-class) variability.

Land use is even more difficult to determine, and remote sensing alone often cannot
provide sufficient information to assess or classify various types of land use. For example,
even though a piece of land may be agricultural in nature (i.e., its classification), it is
virtually impossible to tell (remotely at least) whether the piece of land is being used
for commercial, or personal purposes.

Figure 2.1 lists some of the factors affecting land cover classification from remotely
sensed data, as well as some factors affecting the more difficult task of land cover change
detection (shown in grey).

Geometric/Spatial
properties

Radiometric
properties

Spectral
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Spatial
resolution

View
angle

Radiometric
calibration

Radiometric
resolution

Bandwidth
allocation

Bandwidth
stability

Inter-image
registration

Properties of sensing systems affecting
reliability of land cover classification

Temporal
properties

Frequency
of imaging

Maximum elapsed
time between images

(and change detection)

Figure 2.1: Factors affecting reliable land cover classification (and change detection)
using remotely sensed data (adapted from [111]).
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2.1.2 Why remote sensing?

Remote sensing is not simply the most convenient choice for land cover classification,
but it is often the only practical choice. It would be extremely difficult, for example,
to continuously send out field agents all around the world (including to inhospitable,
remote or dangerous destinations such as volcanoes, war-torn countries, or Antarctica).
It would not only be very time-consuming, but also incredibly expensive. Fortunately,
remote sensing is both practical and very cost effective [74].

With the relatively high frequency of acquisition of many of the remote sensing platforms,
it is possible to observe changes in plant phenology (growth) throughout the year,
whether relating to changes in chlorophyll content (detectable with visible and infrared
light) or structural changes (which is detectable with radar) [74]. Finally, remote sensing
also allows us to consider near-continuous spatial coverage over very large areas, making
it possible to detect regional trends and to monitor the state of our environment.

2.1.3 Data requirements

The most important characteristics of common types of remote sensing data are sum-
marized in [6] and [73] as being spectral, radiometric, spatial, and temporal resolutions;
polarization; and angularity. The scale of the study area (i.e., local, regional or global),
image resolution, as well as the user’s requirements are the most important factors
affecting the selection of remotely sensed data [80].

At a local level, or when objects of interest are relatively small, a high resolution
classification system is generally required. At a regional scale, medium spatial resolution
data may suffice, while at a continental or global scale, coarse spatial resolution data
such as MODIS are preferable.

The most important consideration is ultimately the purpose of the remote sensing
application. For example, if global trends in climate change must be monitored, data
with a relatively low temporal resolution may be sufficient. However, if a real-time
fire detection system is desired, a very high temporal resolution is clearly required.
Finally, even though optical remote sensing is the most common approach for land cover
classification, it is severely impeded by cloud cover and other atmospheric conditions, in
which case microwave remote sensing (such as radar) is expected to be more effective.

2.2 REMOTE SENSING IN THE OPTICAL REGION

There are two regions in the electromagnetic spectrum which is of particular importance
in remote sensing, namely the optical region (including visible as well as infrared light),
with wavelengths ranging from about 0.4 µm to 1 mm, and the microwave region, with
wavelengths between 1 mm and 10 cm. We will only be concerned with remote sensing
in the optical region, since this type of remote sensing is more commonly used for land
cover classification than microwave remote sensing.
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2.2.1 Historic overview

The French balloonist and photographer Gaspard-Félix Tournachon took the first aerial
photographs of a small village near Paris from his balloon in 1858, ushering in an exciting
era of Earth observation and remote sensing. Shortly thereafter, aerial photography
from balloons was used to reveal key defensive positions in the American Civil War [2].

The next period of rapid development took place during World War I, where aeroplanes
were used for large scale photoreconnaissance. After the war, airborne photos were used
for geology, forestry, agriculture and cartography applications. During World War II,
near-infrared, thermal and radar imaging were developed, again for military purposes.

The first civilian remote sensing satellite was launched in 1960, from which time satellites
have become the most important platforms for remote sensing. A list of important
developments in remote sensing is given in Table 2.1.

Table 2.1: A short history of remote sensing milestones (from [2]).

Year Milestone

1800 Discovery of infrared radiation by Sir W. Herschel
1839 Beginning of photography
1847 Infrared spectrum shown by J. B. L. Foucault
1858 Photography from balloons
1873 Theory of electromagnetic radiation by J. C. Maxwell
1909 Photography from airplanes
1916 World War I: aerial reconnaissance
1935 Development of radar in Germany
1940 World War II: applications of invisible part of electromagnetic spectrum
1950 Military research and development
1959 First space photograph of the Earth (Explorer-6)
1960 First TIROS meteorological satellite launched
1970 Skylab remote sensing observations from Space
1972 Launch Landsat-1 (ERTS-1): MSS sensor
1972 Rapid advances in digital image processing
1982 Launch of Landsat-4; new generation of Landsat sensors: TM
1986 French commercial Earth observation satellite SPOT
1986 Development of hyperspectral sensors
1990 Development of high resolution spaceborne systems

First commercial developments in remote sensing
1998 Towards cheap one-goal satellite missions
1999 Launch EOS: NASA Earth observing mission
1999 Launch of IKONOS, very high spatial resolution sensor system
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2.2.2 Introduction to remote sensing

The remote sensing process is a rather complex one, in which scattered or emitted
electromagnetic energy from the Earth’s surface passes through (and is distorted by)
the atmosphere, after which it is detected by instruments or sensors mounted on the
remote sensing platform, only to be transmitted back to the Earth’s surface for extensive
processing and analysis in an attempt to monitor and better understand our environment
here on Earth. This process is illustrated in Figure 2.2.

Platform

Sensor

Instrumentation
Signal transmission

detected
Solar spectrum
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and processing

Sun

Atmosphere

Solar spectrum

Useful data
representation

Figure 2.2: Signal and data flow in a typical remote sensing system (adapted from [93]).

2.2.3 Electromagnetic radiation

The (partial) electromagnetic spectrum is shown in Figure 2.3, where the region of
particular importance for optical remote sensing is also shown. Several regions of the
electromagnetic spectrum are particularly suited for specific applications. For example,
the far infrared region can be used to detect thermal signatures for fire detection [61].

Infrared

F
M

b
ro
ad

ca
st

ra
d
io

V
H
F
T
V

Microwaves

10−6 10−5 10−4 10−210−3 1 10 102 10310−710−810−910−10

3× 1018 3× 1017 3× 1016 3× 1015 3× 1014 3× 1013 3× 1012 3× 1011 3× 1010 3× 108 3× 107 3× 106 3× 1053× 109

10−1

1 µm 10 µm 100 µm 1 cm1 mm 1 m 10 m 100 m 1 km100 nm10 nm1 nm0.1 nm 10 cm

Far infrared

V
is
ib
le

li
gh

t

S
h
o
rt
w
av
e

ra
d
io

A
M

b
ro
ad

ca
st

ra
d
io

L
on

g
w
av
e

ra
d
io

Frequency (Hz)

Wavelength (m)

UltravioletX-rays

Optical remote sensing

Figure 2.3: The electromagnetic spectrum, showing the region of interest for optical
remote sensing.
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Chapter 2 Land Cover Classification

The optical region of the electromagnetic spectrum is usually divided further into a
number of smaller regions as listed in Table 2.2. These divisions are however not precise,
and can vary depending on the publication. For example, according to the ISO 20473
standard, the near infrared region corresponds to 0.78–3 µm, whereas astronomers
typically regard near infrared as the region 0.7–1.0 µm. Furthermore, the infrared
region is sometimes divided into reflective infrared, typically ranging from 0.7 to 3.0 µm,
and thermal infrared, ranging from 3 µm to about 1 mm.

Table 2.2: Some common optical regions of the electromagnetic spectrum.

Region Wavelength (µm)

Blue 0.4–0.5
Visible Green 0.5–0.6

Red 0.6–0.7

Near IR 0.7–1.4
Short-wave IR 1.4–3.0

Infrared Mid-wave IR 3.0–8.0
Long-wave IR 8.0–15.0
Far IR 15.0–1000

2.2.3.1 Radiance, irradiance and spectral reflectance

Optical remote sensing sensors typically measure the radiance emitted by a target
object (such as a piece of land), along with some stray sources of radiance, caused
for example, by atmospheric scattering. Reflectance refers to the ratio of the emitted
energy to the incident energy of a target object, and when the atmospheric effects and
solar illumination are compensated for in digital remote sensing data, the result is the
so-called apparent reflectance [13] (which differs from true reflectance in that shadows
and directional effects are not taken into consideration).

To be more precise, radiance is a radiometric measure that describes the amount of
electromagnetic energy that passes through (or is emitted from) a particular area and
which falls within a given solid angle in a specified direction [13]. The SI unit of radiance
is watts per steradian per square meter (W·sr−1·m−2). Radiance characterises the total
emission or reflection, while spectral radiance characterises the electromagnetic energy
at a single wavelength or frequency. The SI units for spectral radiance are W·sr−1·m−3

when measured per unit wavelength, and W·sr−1·m−2·Hz−1 when measured per unit
frequency interval.

Irradiance refers to the power of electromagnetic radiation incident on a surface per
unit area, and it considers all the wavelengths or frequencies (i.e., the entire spectrum).
The SI unit is W/m2. Spectral irradiance then considers a particular frequency, and
has SI unit W/m3, or, more commonly, W·m−2·nm−1.
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Chapter 2 Land Cover Classification

Remark 1 (A misuse of terminology: “spectral reflectance”) In the remainder
of this study we will consider “spectral reflectance” to mean the quantity obtained from
the remote sensing platform, even though this would indicate that (i) we consider only
a particular frequency (we will actually consider intervals or bands of frequencies), and
(ii) that the sensor measures reflectance, which as pointed out above, it does not.

2.2.3.2 Active vs. passive remote sensing

The electromagnetic energy that is measured by remote sensing systems (i.e., the
radiance) can either be reflected sunlight, thermal energy from the Earth itself, or
energy from a synthetic (man-made) energy source such as a laser or radar carried on
some remote sensing platform [93].

The energy from the Sun, or more specifically the solar spectral irradiance at the upper
and lower atmospheric regions, is shown in Figure 2.4, where it is clear that significant
losses are incurred as the radiation passes through the atmosphere. Remote sensing
sensors which rely on energy originating from the Earth or the Sun are referred to
as passive sensors, whereas sensors whose energy sources are provided by the remote
sensing platforms are said to be active sensors.
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Figure 2.4: The solar radiation spectrum within the atmosphere.

Generally speaking, optical remote sensing systems employ passive sensors and are
either air- or spaceborne, whereas microwave remote sensing systems make use of active
sensors found on airborne platforms. This is due to the fact that the Sun emits a
negligible amount of energy in the microwave region (see Figure 2.4), and even though
the Earth does emit some level of microwave radiation, it is usually too small to be
useful in any remote sensing applications.
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Chapter 2 Land Cover Classification

2.2.4 Atmospheric interactions

Whether a sensor measures reflected sunlight or thermal energy emitted by the Earth,
the electromagnetic energy must first travel through the atmosphere, which can have a
profound effect on the incident energy observed at the sensor. Absorption and scattering
are the two primary mechanisms by which the intensity and direction of electromagnetic
radiation are altered as it passes through the atmosphere [112], and they in turn depend
on the types (and concentrations) of particulates and gases present along the ray paths.

The atmosphere is a complex mixture of particulates and gases, where most particulates
are usually less than 20 µm in diameter [93]. Larger particulates tend to settle on the
ground fairly quickly, and are seldom in the atmosphere for significant periods of time.

2.2.4.1 Atmospheric absorption

Atmospheric absorption refers to the selective conversion of electromagnetic energy into
thermal energy. As photons collide with airborne molecules in the atmosphere, some of
the electromagnetic energy is absorbed by means of electron orbital transitions, induced
vibrations, or atomic rotations within the molecules [13]. Oxygen, carbon dioxide,
ozone and water molecules in particular attenuate the radiation significantly in certain
wavebands [93]. The atmosphere is therefore characterised by so-called atmospheric
transmission windows in which the absorption is relatively small (or equivalently, where
the transmission of radiation is relatively high).
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Chapter 2 Land Cover Classification

Some typical atmospheric transmission windows are shown in Figure 2.5 as a function
of wavelength, and Figure 2.4 also displays the effects of atmospheric absorption when
comparing the exoatmospheric solar spectral irradiance with the lower atmospheric
spectral irradiance.

Optical remote sensing sensors are therefore usually designed to operate away from the
wavebands which are characterised by severe atmospheric absorption. For such sensors,
the dominant mechanism that leads to radiometric distortion (apart from sensor effects
and calibration errors) is then atmospheric scattering, described next.

2.2.4.2 Atmospheric scattering

Scattering occurs when electromagnetic energy collides with particulates or large gas
molecules present in the atmosphere, causing the electromagnetic radiation to be
redirected from its original path. The dynamics of the scattering depend on a number
of factors, including the wavelength of the radiation, the concentration and surface
geometry of the particulates or gases, and the distance which the radiation travels
through the atmosphere. A comprehensive treatment of the complex nature of scattering
and its effect on radiation propagation can be found in [19, 114].

There are three basic types of scattering which affect electromagnetic radiation, namely
Rayleigh, Mie and nonselective scattering, as shown in Figure 2.6.

Mie scattering

Rayleigh scattering

Nonselective scattering
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Figure 2.6: Atmospheric scattering, adapted from [13, p. 34].

2.2.4.2.1 Rayleigh scattering. Rayleigh scattering generally occurs at high alti-
tudes, when the size of the particulates are very small relative to the wavelength of
the radiation [13]. The primary components for scattering at these altitudes are atmo-
spheric gases such as oxygen and nitrogen, or tiny specks of dust. Rayleigh scattering
causes shorter wavelengths to be scattered much more than longer wavelengths, and the
scattering is symmetric, with approximately equal amounts of forward and backscatter
(see Figure 2.6).

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

21

 
 
 



Chapter 2 Land Cover Classification

The wavelength dependence of Rayleigh scattering also explains why the sky appears
blue1: as sunlight passes through the atmosphere, the shorter visible wavelengths (blue)
are scattered more than the longer visible wavelengths. At sunrise and sunset the sky
often appears red, since the light has to travel much farther through the atmosphere,
so that the scattering of the shorter wavelengths is more complete, leaving a greater
proportion of the longer wavelengths to penetrate the atmosphere [74].

2.2.4.2.2 Mie scattering. Mie scattering occurs closer to the ground than Rayleigh
scattering (up to altitudes of about 5 km) when the diameter of the particulates are
about the same as the wavelength of the radiation [13]. Common particulates that are
affected by Mie scattering include aerosols, dust particles, pollen, smoke and water
vapour. Mie scattering primarily affects light in the visible portion of the spectrum,
and is not as wavelength dependent as Rayleigh scattering. As shown in Figure 2.6,
Mie scattering causes mostly forward scattering.

2.2.4.2.3 Nonselective scattering. The final scattering mechanism of importance
is nonselective scattering, which occurs at low altitudes where the particles are usually
much larger than the wavelength of the radiation [13]. Nonselective scattering is not
really wavelength dependent, and radiation is scattered uniformly in all directions (see
Figure 2.6). This type of scattering usually involves large dust particles, water droplets,
ice crystals and hail; and it causes fog and clouds to appear white (since blue, green
and red light are scattered in approximately equal quantities).

2.2.5 Surface material reflectance

The radiance measured by optical remote sensing systems is typically reflected solar
irradiance, so that the reflectance characteristics of different land cover surfaces become
important. Surface roughness also affects the radiation observed by remote sensing sys-
tems, and is a wavelength-dependent phenomenon, such that surfaces appear smoother
under longer wavelengths, and rougher under shorter wavelengths [112].

2.2.5.1 Surface roughness

Very smooth surfaces (such as water) act as specular (i.e. mirror-like) reflectors in
which the reflection angle, θr, equals the incidence angle, θi, as shown in Figure 2.7.a.
Consequently, such surfaces usually appear dark in optical remote sensing data, since
the solar irradiance is seldom reflected directly towards the sensor. Rough surfaces act
as diffuse reflectors (also called Lambertian reflectors); which scatter the incident energy
uniformly in all directions (see Figure 2.7.b). Such surfaces therefore appear lighter in
remote sensing data, since some (small but positive) percentage of the incident energy
is at least reflected directly towards the sensor.

1In fact, it was exactly for this reason—to explain the blue colour of the sky—that Lord Rayleigh
first described the phenomenon of scattering in 1871 [78].
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Many structures, buildings and other objects with sharp corners are characterised by
so-called corner reflection (see Figure 2.7.c), especially under microwave surveillance [93].
Such surfaces then give a very bright response, since the energy is often reflected back
directly towards the sensor (which in most microwave systems is on the same platform
as the radiation source). Finally, surfaces such as vegetation canopies and sea ice are
characterised by volume scattering [93], in which backscattered energy emerges from
many hard-to-define locations within the volume, as shown in Figure 2.7.d.

θi θr

a. Specular reflection. b. Diffuse reflection.

c. Corner reflection. d. Volume scattering.

Figure 2.7: Types of surface reflection, adapted from [93, p. 8].

Even though the four reflection mechanisms of Figure 2.7 can substantially modify
the radiance observed at a remote sensing sensor location, the effects are the most
pronounced in microwave remote sensing systems (ranging from about 30 to 300 mm).
In contrast, in the visible/infrared range (from about 0.4 to 12 µm), where the sun acts
as the primary energy source, the scattering is almost always diffuse, since the smaller
wavelengths result in rougher surface appearances, which in turn are characterised by
diffuse scattering. As a consequence, the specific type of surface reflection and surface
roughness are of little importance in optical remote sensing, and the interaction between
electromagnetic energy and different types of surfaces becomes more important instead.

2.2.5.2 Spectral signatures and interactions

The interaction of electromagnetic energy with different types of surfaces is wavelength
dependent, and the amount of energy incident on the surface is of course a major
(probably the biggest) factor affecting the observed energy at a sensor location. However,
apart from the amount of incident energy, material-specific factors such as pigmentation,
moisture content and cellular structure of vegetation, the mineral and moisture contents

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

23
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of soil and the level of sedimentation of water are the most important factors affecting
the observed electromagnetic energy reflected from a surface [93]. When these factors
are considered together with the wavelength of the incident energy, we can construct
spectral signatures of different types of surfaces, expressed in terms of spectral reflectance.

The spectral reflectance, ρ(λ), of a surface object is defined as

ρ(λ) = Er(λ)
Ei(λ) , (2.1)

where Er(λ) is the reflected spectral energy (at a wavelength λ) from the surface object,
and Ei(λ) is the spectral irradiance (at a wavelength λ) incident on the surface object.
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Figure 2.8: Spectral reflectance characteristics of common Earth surface materials in
the visible and near-to-mid infrared range [93, p. 5]. The positions of spectral bands
for common remote sensing instruments are also indicated.

2.2.5.2.1 Spectral characteristics: Vegetation. Different surface types display
different spectral reflectance characteristics. For example, lush vegetation appears green,
because it reflects light in the green wavelength. More specifically—with reference to
Figure 2.8, which presents the spectral characteristics of three of the most important
surfaces namely soil, vegetation, and water—vegetation can be seen to be characterised
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by water absorption bands at 1.4 µm, 1.9 µm and 2.7 µm in the short-wave infrared
range, high reflectance throughout the near-infrared range (and extending up to about
1.3 µm) which is caused by plant cell structures acting as diffuse reflectors at these
wavelengths, and strong absorption of blue and red wavelengths by chlorophyll—leaving
chlorophyll-pigmented plants to appear (reflect) green [93].

Vegetation index: NDVI. Spectral ratioing—or image division—is one of the most
common image transforms applied to remotely sensed data in an attempt to improve
its interpretability. By ratioing the data from two different spectral bands, subtle
variations in the spectral responses of various surface covers can be enhanced which
might otherwise have been masked by the pixel brightness variations in each of the
bands [74].

Variations in scene illumination due to topographic effects can be reduced significantly
by spectral ratioing, since the topographic effects are expected to affect both spectral
bands equally. For example, although we might expect the absolute reflectances for
forest-covered slopes to be dependent on their orientation relative to the sun, the ratio
of their reflectances (between the two bands) are expected to be very similar.

One of the most widely used image transforms (which makes use of spectral ratioing) is
the NDVI, which is defined as

NDVI = (Near-infrared Band)− (Red Band)
(Near-infrared Band) + (Red Band) . (2.2)

The NDVI index is based on the observation that vegetation typically has a high
reflectance in the near-infrared region, and a lower reflectance in the (visible) red
waveband [112], while other surfaces (such as soil and water) show near equal reflectances
in both the near-infrared and red regions (refer to Figure 2.8).

In this way NDVI can be derived for a multitude of multispectral sensors (assuming of
course that these instruments have wavebands in the near-infrared and red regions).
For example, it can be derived from bands 7 and 5 of the Landsat Thematic Mapper,
bands 2 and 3 of SPOT HRV, and bands 2 and 1 of the MODIS sensor (see Figure 2.8).
In this study we will only consider NDVI as derived from the MODIS bands:

NDVIMODIS = (Band 2)− (Band 1)
(Band 2) + (Band 1) . (2.3)

NDVI is considered to be relatively insensitive to changes in atmospheric conditions, and
has therefore been widely applied for vegetation monitoring [48, 112]. NDVI has also
been used for land cover classification and image segmentation (see for example, [75]).
Finally, an overview of the usefulness of different vegetation indices (including NDVI)
derived specifically from MODIS is given in [51].
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2.2.5.2.2 Spectral characteristics: Water. Most of the radiation incident upon
water is either absorbed or transmitted, while for soil the majority of the incident energy
is either absorbed or reflected. Water also absorbs energy with longer wavelengths
more than those with shorter wavelengths, such that it appears blue-green in the visible
spectrum, and dark in the red to infrared range. Suspended sediments or shallow water
bodies may cause increased reflection to occur, including small amounts of energy in
the near-infrared range [93].

2.2.5.2.3 Spectral characteristics: Soil. Different types of soil are also charac-
terised by the same water absorption bands as vegetation, centred at about 1.4 µm,
1.9 µm and 2.7 µm (see Figure 2.8), which are almost unnoticeable in extremely dry
soil. Furthermore, soils containing hydroxyl (such as clay soil) are characterised by
small absorption bands at 1.4 µm and 2.2 µm [93]. Other important factors affecting
the spectral characteristics of soils include organic matter content, texture, structure,
and iron oxide content [112]. Some materials such as rocks and minerals even fluoresce
or emit visible light when illuminated by UV radiation [74].

An excellent review and discussion—including physical and biological factors—of the
spectral reflectance characteristics of various common Earth surfaces (including vegeta-
tion, soils, water, snow and clouds) can be found in [46], as well as in the Manual of
Remote Sensing [92]. Finally, a short but useful discussion on the thermal signatures of
different surfaces (such as surface temperatures or forest fires) is given in [93].

2.2.6 Remote sensing platforms

Remote sensing can be carried out from a number of sensor locations using a variety of
platforms. In many ways the sensors often have similar characteristics, but their different
altitudes and stability characteristics can lead to very different observations [93].

2.2.6.1 Ground-based, airborne, and spaceborne platforms

There are three main types of remote sensing platforms, namely ground-based, airborne
and spaceborne platforms, of which airborne and spaceborne platforms are arguably the
most important.

Ground-based platforms may be used to record detailed information about a partic-
ular surface for comparison with information collected from airborne or spaceborne
sensors [74]. However, the relatively small surface areas which can be observed by
ground-based sensors make their widespread use both expensive and impractical.

Airborne platforms include balloons, aircraft, and more recently, Unmanned Aerial
Vehicles (UAVs), whereas spaceborne platforms are predominantly satellites, although
some sensors can also be found on spacecraft and the International Space Station (ISS).

Optical (passive) and microwave (active) remote sensing systems can be found on both
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airborne and spaceborne platforms. For example, the most common type of (active)
radar imaging is known as Side-Looking Airborne Radar (SLAR), and is found on
many airborne platforms. However, a modified version - which uses the movement
of its spaceborne platform to create an artificial antenna - is known as Synthetic
Aperture Radar (SAR). Optical remote sensing systems include, for example, the
MODIS sensor found on the (spaceborne) Aqua and Terra satellite platforms, or the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral sensor on
airborne platforms.

2.2.6.2 Remote sensing instruments (sensors)

There is a wide variety of sensors currently in use on many remote sensing platforms,
and each one is typically designed for a specific purpose or application.

For example, thermal sensors may be suitable to monitor the surface temperature on
the Earth, or they can perhaps be used to detect forest fires or other thermal events
provided that the temporal resolution is high enough. Optical sensors are commonly
used to perform land cover classification, or to determine the relative health of vegetation.
However, cloud cover and other aerosols in the atmosphere sometimes make it impossible
to use optical sensors. In such cases, radar imaging can be used very effectively, since
clouds, fog and smoke do not really affect radiation in the microwave range.

An important characteristic of a remote sensing system is its resolution. The resolution
of a remote sensing instrument can be expressed in terms of its spectral, spatial, temporal
and radiometric resolution, described next.

2.2.6.2.1 Spectral resolution. The spectral resolution of a sensor refers to the
width or range of each spectral band being recorded. As an example, a panchromatic
sensor (which records a broad range of visible wavelengths) will not be as sensitive to
vegetation stress as a narrow band in the red wavelengths, where chlorophyll strongly
absorbs electromagnetic energy.

Spectral bands

Pixels
Water

Soil

Veg

Water

Veg

Soil

HyperspectralMultispectral

Figure 2.9: Interaction of reflected light with surface materials, showing multispectral
and hyperspectral signatures (adapted from [13, p. 47]).
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Figure 2.9 illustrates the difference between hyperspectral sensors (which are charac-
terised by high spectral resolution across many contiguous bands, typically 1–15 nm
wide), and multispectral sensors, where the spectral resolution is typically lower than
for hyperspectral sensors (with typical bandwidths of 50–150 nm per band), and where
gaps between the different spectral bands are common.

Although a high spectral resolution may be necessary to distinguish between closely
related surface features, it comes at the cost of increased system complexity.

2.2.6.2.2 Spatial resolution. Higher spatial resolutions enable us to discern smaller
details in ground objects. The spatial resolution (of passive sensors at least) depends
primarily on the Instantaneous Field Of View (IFOV) of the sensor, which is the angular
cone of visibility that describes the surface area from which radiation is recorded by
the sensor at any instant in time.

One might reasonably expect that the higher the spatial resolution the better, but
this is not always the case [112]. Increasing the spatial resolution by narrowing the
instrument’s IFOV means that less energy is received by the sensor (since the area
from which energy is collected is smaller), and so the Signal-to-Noise Ratio (SNR) is
effectively decreased. Even though such a decrease in the SNR can be mitigated by
increasing the scanning bandwidth, this will cause a reduction in the spectral resolution.

2.2.6.2.3 Temporal resolution. The temporal resolution of a remote sensing sys-
tem refers to the time interval between images, although this is usually a characteristic
of the remote sensing platform, and not the sensor itself (the sampling frequency or
temporal resolution of the sensors themselves are usually much higher).

Several applications require a high temporal resolution, such as the detection of oil spills
and forest fires, or the monitoring of sea ice motion [112]. Other applications require very
low temporal resolutions, such as seasonal crop identification, the annual quantification
of forest insect infestations, or the once-off mapping of geological structures.

The effective temporal resolution of an optical sensor is affected by atmospheric conditions
such as cloud cover, which may obscure targets from view. In some areas of the world,
particularly the tropics, this is virtually a permanent condition, and microwave remote
sensing must be considered instead.

2.2.6.2.4 Radiometric resolution. The radiometric resolution of a remote sensing
system refers the sensitivity of the sensor to small differences in electromagnetic energy
within each spectral band, and is quantified by the number of bits. If a sensor has a
radiometric resolution of 12 bits, for example (as is the case for the MODIS sensor), it
can detect and store 212 = 4096 unique levels of radiation.

Remote sensing data is then also commonly expressed as a Digital Number (DN) ranging
from 0 to 2b − 1, where b is the radiometric resolution of the sensor, in bits.
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2.3 CLASSIFICATION OF REMOTELY SENSED DATA

There are essentially two classes of analytical techniques commonly used to create
thematic or land cover maps, namely photointerpretation and machine analysis (from
here onwards referred to simply as classification) [93, p. 361]. Photointerpretation
typically relies on the use of image enhancement procedures for improving the visual
interpretability of multispectral images which are then subsequently interpreted by a
human analyst, whereas classification is usually based on statistical or other forms of
numerical algorithms for labelling regions within multispectral datasets.

Photointerpretation and classification serve different purposes, but they are often
complementary. In fact, photointerpretation is greatly facilitated by computer-based
image enhancement, and many classification approaches are developed using spectral
information or knowledge first derived from photointerpretation.

Table 2.3: A comparison between photointerpretation (by a human analyst) and machine
analysis, from [93, p. 68].

Photointerpretation Classification or machine analysis
(by a human analyst) (by computer)

On a large scale relative to pixel size At individual pixel level (or larger)
Inaccurate area estimates Accurate area estimates possible
Only limited multispectral analysis Can perform true multispectral analysis
Can discern only a limited number of Can make use of all available brightness
distinct brightness levels levels (e.g. 4096 in MODIS)

Shape determination is easy Shape determination involves complex
software decisions

Spatial information is easy to use in a Limited techniques available for making
qualitative sense use of spatial information

A comparison between the tasks of photointerpretation and classification is given in
Table 2.3, from where it can be concluded that photointerpretation is best suited for
spatial assessment, but poor in quantitative accuracy, whereas classification has poor
spatial ability, but high quantitative accuracy [93]. The status and research priorities
of land cover classification for large geographic areas were discussed in [21], while
land cover classification approaches for remotely sensed data with medium spatial
resolution were considered in [38]. More recently, [80] performed a comprehensive
review of modern approaches to land cover classification which make use of machine
learning techniques such as artificial neural networks, fuzzy-sets, and expert systems.
In fact, most of the recent research effort in land cover classification has focused on
the development of increasingly robust and accurate (and also increasingly complex)
classifiers by constructing—often in an ad hoc manner—multispectral, multitemporal,
multisource classifiers using these modern machine learning techniques.
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Chapter 2 Land Cover Classification

In this present study, we will concern ourselves only with the classification (or ma-
chine analysis) task, and in particular, we will consider a supervised, per-pixel, semi-
parametric2, hard-decision, spectral classifier. These considerations are described next.

2.3.1 Classification approaches

In general, land cover classification approaches can be grouped as being supervised
or unsupervised, per-pixel, subpixel, per-field or object-oriented, parametric or non-
parametric, hard or soft (fuzzy), and spectral, contextual or spectral-contextual [80].
The grouping of land cover classification approaches is shown in Figure 2.10, and each
of these categories is briefly described below.

parametric non-parametric

data representation

hard soft (fuzzy)

classifier output

per-pixel

per-field object-oriented

subpixel

classification elements

supervised unsupervised

use of training samples

spectral contextual

use of spatial information

spectral-contextual

Figure 2.10: A taxonomy of fixed-sample-size land cover classification methods.

It should also be mentioned that there is no single best classification strategy, but
instead the choice of classification approach depends on a number of factors, such as
data availability, spatial and radiometric resolution, operating environment and purpose
of classification, to name a few.

2.3.1.1 Use of training samples

Probably the most fundamental difference between various land cover approaches stems
from the usage (or absence) of training data. Classification approaches in which training
data is used to construct classifiers are referred to as supervised classification approaches,
whereas those which do not make use of training data are referred to as unsupervised
classification approaches. There is also a third, hybrid approach, called reinforcement
learning, but it is not commonly used in the land cover classification context.

2.3.1.2 Classification elements

The most common approach to land cover classification is per-pixel classification, in
which every pixel is classified as belonging to a specific land cover class. This approach
assumes that every pixel is homogeneous, but obviously, as the spatial resolution is

2That is, we will consider a statistical model, but without the usual restriction that the data must
be normally distributed.
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decreased (i.e., in medium and coarse resolution images), this assumption is no longer
realistic. For this reason, subpixel approaches have been developed, which attempt to
take the mixed classes within each pixel into account, so that subpixelic regions are
classified, rather than the entire pixel.

Unfortunately, high resolution data also comes with its own set of problems. In
particular, when objects of interest are much larger than the pixel size, the set of
corresponding pixels are rarely homogeneous, but instead exhibits so-called “salt and
pepper” noise. By considering each object of interest instead of every individual pixel,
much better classification accuracies are typically obtained. When the objects are
described by vector data (such as in most GIS applications), the approach is called
per-field classification, whereas it is known as object-oriented classification if the objects
are described by raster data.

2.3.1.3 Data representation

Classifiers are considered to be either parametric or non-parametric. This distinction is
unfortunately somewhat misleading, since all classifiers are necessarily parametric in
some sense. For example, neural networks (which are fully characterised by a set of
weights and an architecture) are considered non-parametric, even though the weights
and architecture constitute the parameters describing the classifier. Historically though,
parametric classifiers assume that a normally distributed dataset exists, and that the
statistical parameters (i.e., mean and covariance) are representative of the dataset [80].
In this view, a classifier based on the assumption of an underlying Poisson distribution,
for example, would be considered non-parametric, which is absurd. The distinction
therefore really reduces to whether the data is “normally distributed” or not.

A better categorization might be to label classification approaches as being either sta-
tistical or empirical in nature. Statistical approaches would then include all approaches
in which any assumptions have to be made about the statistical distribution of the
underlying datasets, whereas empirical approaches would not need to make any such
assumptions. Nevertheless, to facilitate this literature review we will keep with the
historic interpretation of parametric and non-parametric approaches.

2.3.1.4 Classifier output

Classifiers can either provide hard-decision outputs, or soft (fuzzy) outputs. A hard
decision only provides the class membership, whereas a fuzzy output provides a degree
of confidence, along with class membership. The additional information provided by
fuzzy classification approaches are often very important for more advanced procedures,
such a when taking spatial (contextual) information into account.

Fuzzy approaches are also particularly well suited to subpixel classification, where the
percentages of subpixel constituents might not be known exactly, and where a single
pixel may need to be classified as a fuzzy mixture (linear combination) of several classes.
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2.3.1.5 Use of spatial information

Spatial information, although difficult to use, can be incredibly beneficial to classifica-
tion performance. Classification approaches that do not make explicit use of spatial
information, but instead only use spectral information, are referred to simply as spectral
classifiers. In the other extreme, classification approaches which make exclusive use of
spatial information are called contextual approaches, but these are not used very often.
Much more common though, are so-called spectral-contextual approaches, in which both
spectral and spatial information are exploited.

2.3.2 Literature review: Land cover classification

A truly comprehensive survey of the land cover classification literature would be
prohibitively large, especially since many of the published results present nothing new
in terms of algorithmic improvements, but instead only give results for different datasets
or study regions. Nevertheless, the 2007 review article by [80] (which does not consider
common classification approaches such as maximum likelihood classification, ISODATA,
or k-means clustering) already contains a staggering 376 references, most of which have
used divergent classification strategies, as well as different datasets and study regions.

In addition, since land cover classification is essentially a special case of image classifi-
cation, much of the literature concerning image processing and classification are also of
relevance here. Nevertheless, we will restrict our attention to studies directly related
to remote sensing (and land cover classification in particular), and from this reduced
subset we will only consider the most important, innovative, or seminal contributions.

Of general importance though, is a summary of spectral reflectance characteristics of
common Earth surfaces by [46], as well as early discussions on land cover classification [47,
68]. More recent treatments of land cover classification include [69] and as previously
mentioned, the excellent review by [80].

Following roughly the approach presented in [80], we will organise the most important
literature into the following categories: per-pixel, subpixel, per-field, contextual-based,
dimensionality reduction, and multisource classification. Each of these categories may
contain either supervised or unsupervised approaches (or both), with hard-decision or
fuzzy outputs.

2.3.2.1 Per-pixel algorithms

Per-pixel classification is probably the most common type of land cover classification, and
definitely the oldest. Most supervised per-pixel classifiers develop a spectral signature
of each land cover class by combining the spectra of all the corresponding training-set
pixels [80]. Of course, such a training strategy necessarily assumes that the every pixel
in the training set is homogeneous.
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Per-pixel classifiers can be either parametric or non-parametric, and one of the most
widely applied (parametric) classification approaches is the maximum likelihood classifier,
in which the data is assumed to be normally distributed. The maximum likelihood
classifier is discussed in almost every textbook on remote sensing, and the interested
reader is referred to [93, Chapter 8]. Obvious limitations to the maximum likelihood
classifier include the difficulty of incorporating ancillary data from other (often non-
statistical) sources, as well as the requirement that data must be normally distributed.

An interesting extension to the maximum likelihood classifier involves multispectral
classification using probability density functions, where the underlying data distributions
are considered to be mixtures of Gaussians [31, 32]. Both per-pixel and per-field
approaches are considered.

The assumption of normally distributed spectral classes is of course not always realistic,
and so many alternative (non-parametric) methods for per-pixel classification have since
been considered. Among the most important of these are artificial neural networks
(see for example [87]), decision trees (first described in [108]), support vector machines
[37, 49], and expert systems. Since no statistical parameters are used to describe the
data, parametric classifiers are especially suitable for the incorporation of non-spectral
data into a classification procedure [80].

A comprehensive review of the use of multilayer perceptron neural networks in remote
sensing (with specific reference to the back propagation learning rule) is given in [87],
where it is also shown that such non-parametric approaches typically provide better
classification accuracy than maximum likelihood classifiers. Bagging, boosting, or
a hybrid of both techniques may also be used to further improve the classification
performance of non-parametric classifiers [5], and it has been used successfully for this
purpose in both decision trees [70] as well as support vector machines [63].

Additional advanced algorithms which have found recent application in land cover
classification (that is, within the last decade) include the spectral angle classifier [105],
which has both supervised and unsupervised variants, unsupervised classification based
on independent component analysis (ICA) as presented in [72] and [102], a model-
based approach to unsupervised classification [65, 66], and several nearest-neighbour
approaches [24, 43], and [42].

2.3.2.2 Subpixel algorithms

Subpixel approaches are particularly suited to medium or coarse resolution remote
sensing data, where heterogeneous pixels are very common. In fact, the heterogeneity of
such pixels has been recognised as a major source of error in coarse-resolution per-pixel
classifications [25, 34]. Two of the most popular approaches to subpixel classification
include fuzzy-set techniques (see for example [35] or [125]), and spectral mixture analysis
[1, 79, 95], where it is usually assumed that the spectrum of each pixel can be described
as a linear combination (or mixture) of the spectra of its constituent land cover types [1].
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Other noteworthy approaches to subpixel classification include artificial neural networks
(a supervised neuro-fuzzy approach is compared to a hard (non-fuzzy) approach in [82]),
Dempster-Shafer theory, certainty factors [11], a maximum likelihood approach [101]
and IMAGINE’s subpixel classifier [53]. More recently, a priori-known structural
information from high resolution imagery was also taken into account in a spectral
mixture analysis context in [96] and [97], where both supervised and unsupervised
methods were presented.

Land cover area estimation is another important task which is negatively affected by
low spatial resolution, and subpixel methods typically provide a more appropriate
representation and accurate area estimate for different land covers than per-pixel
approaches [36, 94, 123].

The objective and consistent evaluation of subpixel classification approaches remains
a challenge however, since the confusion matrix approach is clearly not adequate to
describe fuzzy classification results. Various other performance measures have been
proposed, such as the Kappa coefficient, conditional entropy and mutual information [80].
Nevertheless, it is often very difficult to collect sufficient reference data to evaluate
fuzzy classification approaches [80].

2.3.2.3 Per-field algorithms

Environmental heterogeneity leads to large intra-class variability within land cover
classes, which at high spatial resolutions, may result in very noisy image data (at
the pixel level). At lower spatial resolutions the pixels are not as noisy, but may be
composed of several land cover types, as described in section 2.3.2.2.

One approach to deal with the environmental heterogeneity at higher spatial resolutions
is to consider so-called per-field classification (see for example, [3, 77]), in which the
goal is no longer to classify individual (noisy) pixels, but rather environmental “fields”,
which should preferably be large relative to the pixel size. In this way, the noise is
averaged out over larger areas, such that fields within the same land cover class are
much more homogeneous than their constituent pixels would suggest.

In per-field classification, images are first subdivided into fields using vector data from
Geographic Information Systems (GIS), after which classification is performed [54].
Therefore, factors such as the size and shape of the fields, the definition of field
boundaries, and the land cover classes chosen affect the performance of per-field
classifiers. It can also be difficult to integrate vector and raster (pixel-based) data, so
that the related technique of object-oriented classification may sometimes be preferred.

In object-oriented classification, “objects” consisting of groups of pixels are identified
during the image segmentation phase, similar to fields in per-field classification. The
primary difference between object-oriented and per-field classification is then that
object-oriented methods only use raster data, whereas per-field methods employ both
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raster and vector data. Object-oriented classification has been shown to exhibit superior
classification accuracy as compared to per pixel methods, especially for high spatial
resolution data (see [10], [41] and [120], and the referenced contained therein). One
of the most commonly used methods for object-oriented classification is known as
eCognition, as described in, for example [121].

2.3.2.4 Contextual-based approaches

Contextual-based approaches to land cover classification take the spatial distribution of
pixels into account in an attempt to minimise the effects of intra-class variations [81].
A selection of early (and ad hoc) contextual-based classification methods are compared
in [83], and a number of statistical methods for contextual-based classification has been
developed by [64, 109], and [62]. However, more recently, Markov and Gibbs random
fields (proposed in [39]) have been shown to be effective methods to take the spatial
information from images into account.

One of the earliest treatments of the Markov random field approach in the remote sensing
context is given by [56], while [106] have successfully used the approach to incorporate
both spatial and temporal information. The Markov random field approach was also
used in [58], where it has been shown that the incorporation of spatial information
resulted in improved classification accuracy.

There are also spectral-contextual classifiers, which exploit both spectral and contextual
information ([107]), contextual-based classifiers for high and low resolution data ([60]),
hierarchical maximum a posteriori classification approaches ([50]), and many more. For
a brief review of some of the many approaches to contextual-based classification, the
reader is again referred to [80].

2.3.2.5 Dimensionality reduction

The efficient estimation of statistical parameters requires a representative sample with
enough data points; consequently, as the number of parameters is increased (with the
number of data points fixed), the estimation efficiency is decreased. The effectiveness
of a classifier will therefore begin to decrease once a certain number of dimensions is
reached [52], since it quickly becomes impractical to collect and use correspondingly
larger datasets. The relationship between dimensionality and the training sample size
must therefore be kept in mind when designing classifiers with many parameters [112].

A powerful technique to reduce the requirement of an excessively large training dataset
is dimensionality reduction, in which unimportant dimensions are discarded, or new
coordinate axes are sought which can capture the important data more compactly (i.e.,
with fewer dimensions). Dimensionality reduction is very closely related to feature
selection or extraction (which itself might be a form of dimensionality reduction), but it
serves a slightly more general purpose, including for example dimensionality reduction
for data visualisation and connectivity analysis. Spectral connectivity analysis is a
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technique for transforming data into a coordinate system that efficiently reveals the
geometric structure (and the “connectivity”, in particular) of the data. Such an analysis
can be extremely beneficial to better understand the complex interrelationships between
various spectral bands and surface types.

Several approaches to dimensionality reduction exist, including principal component
analysis, minimum noise fraction transform, discriminant analysis [30, 84, 86], deci-
sion boundary feature extraction [9], Gaussian mixture model feature extraction [65],
wavelet transform [113], and spectral mixture analysis [80, 91]. A comparison between
multispectral and hyperspectral observations of vegetation, soil and dry carbon cover in
arid regions is given in [4], from which it is also evident that dimensionality reduction
is especially important when hyperspectral (e.g. AVIRIS) or multisource data is used.

Finally, after dimensionality reduction has been performed, classification proceeds as
per usual, in which one of the approaches presented earlier, or a combination of some
of those can be used in a multisource classifier context, described next.

2.3.2.6 Recent trends and state of the art: Multisource, multitemporal,
object-oriented classification

Based on a review of 15 years of peer-reviewed publications on land cover classifica-
tion, [122] claimed that no appreciable improvement in land cover classification accuracy
could be observed, even though many new classification methods were proposed and
implemented during this period. The reason for this apparent failure, according to [55],
is that most researchers still attempt to improve classification accuracy using only
spectral information, which on its own is insufficient for reliable land cover classification,
irrespective of which classifier is used.

State-of-the-art classifiers therefore incorporate ancillary data from multiple sources,
and exploit as much of the information contained in the data as possible. This would
include, for instance, the spatial, temporal, spectral and structural information in remote
sensing data, and whichever useful information can be extracted from the ancillary
sources of information.

The observed trend in the land cover classification literature is then clearly to move away
from traditional pixel-based techniques [76], and to focus instead on contextual, object-
oriented methods which take the spatial and structural information into consideration.

An unsupervised multisource classification approach using Dempster-Shafer evidence
theory is described in [71], and [15] provides a comparative study of statistical meth-
ods (modified to handle ancillary information through prior probabilities) and neural
networks for multisource classification [80].

Even though contemporary classifiers try to take as many factors into consideration as
possible, it seems as though the temporal resolution of many (in fact most) modern
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classifiers is still underutilised.

Some of the advantages of considering a time-varying approach to land cover classification
were recently pointed out in [44], where a so-called “multi-seasonal” discriminant analysis
strategy was followed for large-scale land cover classification. More specifically, four
Landsat7 ETM+ images corresponding to March, May, June and September were
used for classification: initially the classifier only used the image corresponding to
March, then March and May, and so on, and the improvement in classification accuracy
was noted each time an additional image was added to the classification task. Other
multitemporal approaches have also been considered, such as the neural-statistical,
multitemporal, multisource approach presented in [16]. However, remote sensing data
is often hypertemporal (i.e., characterised by a fine temporal resolution), such that true
time series analysis is expected to become very important in the near future.

2.4 COARSE RESOLUTION LAND COVER CLASSIFICATION: A FIRST
EXAMPLE

In this first example, three minimum distance land cover classifiers will be designed
and compared on coarse resolution MODIS surface reflectance data for a two-class
classification problem. It will be shown that good class separability can be achieved
using only the seasonal component of NDVI, or the mean component of several other
MODIS land bands. It will also be shown why particular classifiers might be expected
to fail in certain spectral bands. Finally we will give an initial analysis of the usefulness
of the various MODIS bands, in which we will show that after NDVI, band 2 is the
most separable, and band 5 the least separable of all the MODIS land bands.

2.4.1 Motivation

Our motivation for including this first set of land cover classification results here
and not together with the rest of the results (contained in Chapter 5), is that this
section serves as (i) an introduction to the study area and dataset, and (ii) the method
presented here does not rely on a statistical land cover model as assumed in the rest
of this dissertation. In fact, the preliminary data analysis and visualisation presented
here provided the necessary motivation for the development of the statistical models
presented in section 4.2.

2.4.2 Problem statement

Supervised learning is the most widely used technique for land cover classification of
remote sensing images. Approaches such as artificial neural networks and decision trees
are widely used to perform multispectral (and often multi-source) classification, and
generally exhibit superior performance to single spectrum, single-source classification.
Nevertheless, the analysis of single band, single-source classifiers can be very useful to
better understand (and predict) the performance of more complicated classifiers, and it
can also be used to infer an empirical lower bound for classification accuracy.
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Fourier—or spectral—analysis (on NDVI data in particular) has been used extensively
for land cover classification (see for example [57] and [75]), and it has been noted
that reliable class separation can be achieved even when considering only the mean
and seasonal spectral components [75]. When concerned with the classification of
either vegetation or residential areas (which are characterised by both buildings and
vegetation), we will show that reliable class separation can in fact be achieved using
only the seasonal component of NDVI, or the mean component of several other spectral
bands from multitemporal coarse resolution MODIS data.

Our task is therefore to design and compare three minimum distance classifiers using
single spectral bands from a coarse resolution MODIS surface reflectance time series.
Furthermore, it should be established whether reliable class separation is in fact possible
when using only the seasonal component of NDVI, and the relative usefulness of the
various MODIS land bands should be determined for our particular classification task.

2.4.3 Moderate resolution imaging spectroradiometer

Throughout this study we will use coarse resolution MODIS time series data to perform
land cover classification. However, to explain why we specifically decided to use MODIS,
a short overview of the sensor characteristics in comparison to other commonly used
sensors such as AVHRR is first described in this section.

Multispectral data from the AVHRR on board the National Oceanographic and Atmo-
spheric Administration (NOAA) satellite has been used for global land cover classification
using monthly composites describing seasonal variations in the photosynthetic activity
of vegetation [26]. However, AVHRR was not specifically designed for land applications,
and is characterised by a lack of radiometric calibration, poor geometric correction and
registration, and inadequate cloud screening. Consequently, it was found that data
obtained from AVHRR is insufficient to distinguish subtle differences in vegetation
types with similar annual phenologies [12]. Nevertheless, AVHRR was, until recently,
one of the only sources from which global NDVI data could be derived.

Other remote sensing systems which had been designed for land applications such as
the Landsat Thematic Mapper (TM), and which recorded data at a higher spectral
resolution than AVHRR, were not particularly useful for global (or even regional) land
cover classification either, since they were characterised by incomplete spatial coverage,
low temporal resolution, and inevitable cloud contamination [26].

The MODIS sensors on board the Aqua and Terra satellites of NASA’s Earth Observing
System (EOS) series of missions were designed to provide increased spectral and
radiometric resolution (including accurate on-board radiometric calibration), global
geographical coverage (at a spatial resolution of between 250 m and 1 km), and
improved geometric and atmospheric corrections, while preserving a temporal resolution
comparable to that of AVHRR [18, 111]. Therefore, data obtained from the MODIS
sensor provides a substantially improved basis for studying ecosystem processes [126].
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Table 2.4: MODIS sensor characteristics (see http://modis.gsfc.nasa.gov).

Band Wavelength IFOV (m) Primary use Spectral
(µm) [at nadir] region

Band 1 0.62–0.67 250× 250 Land/Cloud/Aerosols Boundaries Visible (Red)
Band 2 0.841–0.876 250× 250 Land/Cloud/Aerosols Boundaries Near IR

Band 3 0.459–0.479 500× 500 Land/Cloud/Aerosols Properties Visible (Blue)
Band 4 0.545–0.565 500× 500 Land/Cloud/Aerosols Properties Visible (Green)
Band 5 1.230–1.250 500× 500 Land/Cloud/Aerosols Properties Short Wave IR
Band 6 1.628–1.652 500× 500 Land/Cloud/Aerosols Properties Short Wave IR
Band 7 2.105–2.155 500× 500 Land/Cloud/Aerosols Properties Short Wave IR

Band 8 0.405–0.420 1000× 1000

Ocean Colour/Phytoplankton/

Visible (Blue)
Band 9 0.438–0.448 1000× 1000

Biogeochemistry

Visible (Blue)
Band 10 0.483–0.493 1000× 1000 Visible (Blue)
Band 11 0.526–0.536 1000× 1000 Visible (Green)
Band 12 0.546–0.556 1000× 1000 Visible (Green)
Band 13 0.662–0.672 1000× 1000 Visible (Red)
Band 14 0.673–0.683 1000× 1000 Visible (Red)
Band 15 0.743–0.753 1000× 1000 Near IR
Band 16 0.862–0.877 1000× 1000 Near IR

Band 17 0.890–0.920 1000× 1000 Atmospheric Water Vapour Near IR
Band 18 0.931–0.941 1000× 1000 Atmospheric Water Vapour Near IR
Band 19 0.915–0.965 1000× 1000 Atmospheric Water Vapour Near IR

Band 20 3.660–3.840 1000× 1000 Surface/Cloud Temperature Mid Wave IR
Band 21 3.929–3.989 1000× 1000 Surface/Cloud Temperature Mid Wave IR
Band 22 3.929–3.989 1000× 1000 Surface/Cloud Temperature Mid Wave IR
Band 23 4.020–4.080 1000× 1000 Surface/Cloud Temperature Mid Wave IR

Band 24 4.433–4.498 1000× 1000 Atmospheric Temperature Mid Wave IR
Band 25 4.482–4.549 1000× 1000 Atmospheric Temperature Mid Wave IR

Band 26 1.360–1.390 1000× 1000 Cirrus Clouds Water Vapour Near IR
Band 27 6.535–6.895 1000× 1000 Cirrus Clouds Water Vapour Mid Wave IR
Band 28 7.175–7.475 1000× 1000 Cirrus Clouds Water Vapour Long Wave IR

Band 29 8.400–8.700 1000× 1000 Cloud Properties Long Wave IR

Band 30 9.580–9.880 1000× 1000 Ozone Long Wave IR

Band 31 10.780–11.280 1000× 1000 Surface/Cloud Temperature Long Wave IR
Band 32 11.770–12.270 1000× 1000 Surface/Cloud Temperature Long Wave IR

Band 33 13.185–13.485 1000× 1000 Cloud Top Long Wave IR
Band 34 13.485–13.785 1000× 1000 Cloud Top Long Wave IR
Band 35 13.785–14.085 1000× 1000 Cloud Top Long Wave IR
Band 36 14.085–14.385 1000× 1000 Cloud Top Long Wave IR
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Terra MODIS and Aqua MODIS take between one and two days to cover the entire
Earth’s surface, with a complete 16-day repeat cycle. Each of the MODIS sensors spans
a broad range of the electromagnetic spectrum by 36 narrow spectral bands (ranging
from 0.459 to 14.385 µm). It has been shown that such narrow spectral bands can lead
to improved classification of vegetation characteristics [110]. Their spatial resolution is
250 m for bands 1 and 2, 500 m for bands 3 to 7, and 1 km for bands 8 to 36. Refer to
Table 2.4 for a summary of the 36 spectral bands, including their spatial and spectral
resolutions, and primary design purposes. Each of these spectral bands is also calibrated
by a Solar Diffuser (SD) and a Solar Diffuser Stability Monitor (SDSM) system [124].

A comparison between the AVHRR and MODIS sensor characteristics is given in
Table 2.5, in which MODIS-N refers to a nadir-mounted sensor, and MODIS-T to
a tilting sensor (i.e., one which can take off-nadir measurements). Notice that the
bandwidths of AVHRR range between 100 nm and roughly 400 nm, whereas for MODIS
the bandwidths range between 20 nm and 50 nm.

Table 2.5: Comparison of the principal sensor characteristics of MODIS and AVHRR
for land cover classification (from [111]).

AVHRR MODIS-N MODIS-T

Center Bandwidth

Spectral bands for 580–680 nm 470 nm 20 nm 32 bands
land cover applications 725–1100 nm 555 nm 20 nm (400–880 nm)

1580–1750 nm 659 nm 20 nm
865 nm 40 nm

1240 nm 20 nm
1640 nm 20 nm
2130 nm 50 nm

3 thermal bands 9 thermal bands

IFOV (nadir) 1.1 km 500 m 1.1 km
250 m (659 and 865 nm)

Swath width 2700 km 2330 km 1500 km
Calibration absent lunar lunar, solar
Radiometric quantization 10 bit 12 bit 12 bit
Global frequency 1–2 days 1–2 days 2 days
View angle 55.4◦ 55◦ 45◦

Tilt capability none none ±50◦

We can also see from Table 2.5 that AVHRR has a radiometric resolution of 10 bits or
1024 levels, whereas MODIS has a 12 bit radiometric resolution, corresponding to 4096
unique levels of radiation.

Notice further that NDVI derived from AVHRR contains a small amount of radiation in
the visible green wavelengths, in which the reflectance for vegetation is typically higher
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than in the visible red wavelengths. However, since 80 % of the “red” band corresponds
to the visible red range, the contribution of the green wavelengths is expected to be
relatively small. Nevertheless, with MODIS, we have narrow spectral bands centred in
the red and near-infrared regions, as required for the derivation of NDVI.

Table 2.6: MODIS land products.

Product code Platform Description

Radiation balance product suite
MOD09/MYD09 Aqua/Terra Surface reflectance
MOD11/MYD11 Aqua/Terra Surface temperature and emissivity
MOD43/MYD43/MCD43 Aqua/Terra/Combined BRDF/Albedo

Vegetation product suite
MOD13/MYD13 Aqua/Terra Vegetation indices
MOD15/MYD15/MCD15 Aqua/Terra/Combined Leaf Area Index – FPAR
MOD17/MYD17 Aqua/Terra Gross primary productivity

Land cover product suite
MOD12/MCD12 Aqua/Combined Land cover type
MOD14/MYD14 Aqua/Terra Thermal anomalies and fire
MOD44 Aqua Vegetation continuous fields

The data acquired by the MODIS sensor is used to generate multiple (land) products
at different preprocessing stages [18], as listed in Table 2.6, and we will specifically use
the MCD43A4 product (see [100] for details), which is a level 4, eight-daily composite
of 500 m, Bidirectional Reflectance Distribution Function (BRDF)-corrected surface
reflectance data, available from the MODIS data product website.

2.4.4 Study area & data description

Two classes of land cover type, namely residential and natural vegetation is considered
in this study. Every pixel within each class has eight associated time series, with
observations every eight days. The first seven time series correspond to the seven
MODIS land bands, while the 8th time series corresponds to the derived NDVI.

More specifically, the time series dataset was obtained from the MODIS MCD43A4
BRDF-corrected 500 m land surface reflectance product corresponding to a total area
of approximately 230 km2 (sampled from a region of roughly 17,000 km2) in Gauteng,
South Africa (26.12◦S, 28.08◦E). This area is shown in Figure 2.11.

The dataset consists of 925 MODIS pixels – identified by means of visual interpretation
of high resolution Landsat and SPOT images between 2000 and 2008 – each containing
eight time series (seven MODIS bands, and NDVI), with N = 368 observations, which
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Figure 2.11: Experimental study area: Gauteng, South Africa.

correspond to just more than 8 years of 8-daily observations. The dataset is divided
into two classes, namely residential (consisting of 333 pixels) and natural vegetation
(consisting of 592 pixels).

Generally speaking, the residential class contains pixels consisting of about 50% buildings,
and 50% vegetation, whereas the vegetation class contains pixels with more than 90%
vegetation. However, the two classes are characterized by very large intra-class variability,
since no distinction was made between different types of buildings or vegetation.

The DN corresponding to the surface spectral reflectance of the MODIS data has a
radiometric resolution of 12 bits, which gives 4096 unique levels ranging from 0 to 4095.
When presenting the data in this study, we will either give the DN directly, or we will
express the data in terms of % reflectance, computed as

% reflectance = DN
4095 . (2.4)

2.4.5 Minimum distance classification

We will now consider the task of deciding between two simple statistical hypotheses,
H0 and H1, using information from only one single spectral band at a time. Suppose
we have a sequence {x[n; θ];n = 1, 2, . . .} of real-valued observations generated by one
of two statistical hypotheses:

H0 : x
[
n; θ = (band, residential)

]
, n = 1, 2, . . .

versus
H1 : x

[
n; θ = (band, vegetation)

]
, n = 1, 2, . . .

where the two classes (residential and vegetation) are as described in section 2.4.4, and
θ = (spectral band, class) is a parameter vector describing the time series x[n; θ] = x[n].
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We will further assume that the observations x[n] consist of an underlying (noise-free)
signal y[n], corrupted with some zero mean noise process w[n] as follows:

x[n] =

y0[n] + w[n] under H0 (residential),
y1[n] + w[n] under H1 (vegetation).

, (2.5)

where the dependence on θ has been made implicit for notational simplicity. Here the
noise process is also expected to account for intra-class variability, so that consecutive
noise samples are assumed to be statistically dependent.

The ensemble average or signal model, s[n], is determined for each spectral band
(including NDVI) at every observation period during the year:

s[n; θ] = E
{
x[n; θ]

}
, n = 1, . . . , 45, (2.6)

where the dependence on θ has been made explicit. Of course, with k = 45 observation
periods in a year, we would have s[n + k] = s[n] ∀n, since it is assumed that the
underlying signal is periodic with a period equal to one year.

The model error, ε[n], is defined as the difference between the observed signal x[n], and
the signal model s[n] as shown in Figure 2.12. The minimum distance classifier then
simply chooses the class which minimizes this error, or more generally, a function of
this error. That is, θ is chosen such that f(ε[n; θ]) = f(x[n; θ]− s[n; θ]) is a minimum.

Signal model
(ensemble average) Σ

s[n]

x[n]

Error = ε[n]

+

−

θ = (band, class)

Figure 2.12: Error estimation within a single spectral band, for a particular class.

As an initial analysis of the separability of the time series data we consider three simple
distances related to the error, namely the sum of errors (SoE), the sum of absolute
errors (SAE), and the sum of squared errors (SSE):

SoE(θ) =
N∑
n=1

(
x[n]− s[n]

)
=

N∑
n=1

ε[n], (2.7)

SAE(θ) =
N∑
n=1

∣∣∣x[n]− s[n]
∣∣∣ =

N∑
n=1

∣∣∣ε[n]
∣∣∣, (2.8)

SSE(θ) =
N∑
n=1

(
x[n]− s[n]

)2
=

N∑
n=1

ε2[n]. (2.9)

Each corresponding classifier then simply selects the class which minimises the appro-
priate distance. Note that even though the SoE given in (2.7) might seem a rather
natural choice to characterize the error, it is not formally a metric (it can be negative,
for example). On the other hand, the SAE in (2.8) is simply the L1-norm, and the SSE
in (2.9) is the square of the L2-norm on the model error, ε.
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2.4.6 Experimental results

The observed time series, x[n], of two randomly selected sample pixels is shown in
Figure 2.13 for a duration of one year, from which we might already expect band 5 to
exhibit poor separability between the two classes under consideration.
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Figure 2.13: Two sample pixels: x[n; θ], n = 1, . . . , 45; across all seven spectral bands.

The ensemble averages, s[n], were approximated empirically, and are shown in Fig-
ure 2.14.a (for the seven land bands), and in Figure 2.14.b for NDVI.
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a. Annual ensemble averages for the land bands.
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Figure 2.14: Annual ensemble averages, s[n; θ], for all the MODIS spectral bands.

With reference to Figure 2.14.a, we can see that bands 1, 2, 3, 4 and 6 should be
easily separable by considering only the mean component of each particular band,
whereas it seems very difficult to distinguish between the two classes using band 5.
However, band 7, as well as NDVI shown in Figure 2.14.b, will not be separable when
considering only the mean component, but should be separable when using only the
seasonal (amplitude) component.

We can therefore already expect a classifier based on the SoE given in (2.7) to fail
in band 7 and NDVI, since it cannot differentiate well between different amplitudes
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Chapter 2 Land Cover Classification

(the positive and negative error contributions cancel each other out). This behavior is
confirmed in Figure 2.15.a, in which all the classifiers have similar performance, except
in band 7 and NDVI.
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b. Classification errors in bands 3 and 4.

Figure 2.15: Minimum distance classifier performance comparison and examples of
failure modes.

We also see that the SSE classifier performs the best overall, and especially when using
NDVI, where an error probability of only 7% was obtained.

Of course classification errors are unavoidable as shown in Figure 2.15.b, where no
classifier can be expected to correctly classify the vegetation sample in bands 3 and 4.
This is partly due to the large intra-class variability, and situations like these motivate
the development of more sophisticated classifiers.

The confusion matrices for all three classifiers, across all the bands (including NDVI) is
given in Table 2.7 (rounded to the nearest integer). We can see that the SSE classifier
consistently does better than the other classifiers, and after NDVI, band 2 has the
highest classification accuracy.

Table 2.7: Confusion matrices (in %) for minimum distance classifiers. Top left: true
positive (vegetation), top right: false positive, bottom left: false negative, bottom right:
true negative (residential). V = vegetation, R = residential.

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 NDVI
V R V R V R V R V R V R V R V R

SoE V 80 35 90 13 89 24 90 21 54 51 65 29 53 29 47 62
R 20 65 10 87 11 76 10 79 46 49 35 71 47 71 53 38

SAE V 87 35 91 10 91 29 91 24 56 43 70 25 85 23 99 09
R 13 65 09 90 09 71 09 76 44 57 30 75 15 77 01 91

SSE V 87 29 91 09 91 23 90 20 58 42 69 26 90 15 97 04
R 13 71 09 91 09 77 10 80 42 58 31 74 10 85 03 96
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Chapter 2 Land Cover Classification

Previous research has found that adequate classification accuracy could be achieved by
considering several Fast Fourier Transform (FFT) components – especially the mean
and seasonal components, since they tend to carry the majority of the signal energy
[57, 75]. In this section we have shown that when using NDVI, the seasonal component
alone allows for good class separability, whereas in most other MODIS land bands the
mean component alone provides useful information.

It was also shown that the SSE classifier exhibits the highest classification accuracy,
particularly when using NDVI, and that after NDVI, band 2 seems to be the best band
on which to perform classification. Band 5 on the other hand seems to be the most
difficult band on which to perform classification.

A key underlying assumption of this first assumption was of course that the MODIS
bands could be viewed in isolation, which is ultimately not entirely true. As a conse-
quence, it would be interesting to investigate the joint behavior of the various spectral
bands, which will enable the construction of much better classifiers than presented here.
Such an approach is considered in Chapter 4.

2.5 SUMMARY

In this chapter we have presented the most pertinent principles of remote sensing in
the optical region, with specific emphasis on the interaction between electromagnetic
radiation, particulates in the atmosphere, and surfaces on the ground. Although this
material is of general importance in many applications of remote sensing, we have
limited our attention to the important task of land cover classification—the different
approaches and common techniques for land cover classification were also discussed.

Our motivation for considering the MODIS MCD43A4 spectral reflectance product was
also discussed briefly, where the main advantages included the on-board radiometric
calibration system, the improved atmospheric, BRDF and geometric correction, as well
as the high radiometric and temporal resolution of the MODIS sensor.

Finally, an initial example of land cover classification using the MODIS spectral re-
flectance time series data was given. In particular it was shown that reliable discrimina-
tion between residential and vegetation pixels is possible by considering only the mean
or the annual components of the FFT, depending on which spectral band is used.
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Chapter 3

Sequential Detection

“Use theory to provide insight; use common sense and
intuition where it is suitable. A balance cannot be achieved
unless one has both common sense and a facility with theory.”

David Gries, Associate Dean for Undergraduate Programs,
College of Engineering, Cornell University

S EQUENTIAL DETECTION is an alternative to the classical, fixed-sample-size
methods of statistical hypothesis testing, whose characteristic feature is that the

number of observations required by the procedure is not predetermined. Instead, the
decision to terminate the experiment depends, at each stage, on the results of the
previous observations [118].

It is a well-known fact that the performance of a detector (in terms of accuracy) can be
improved by increasing the signal-to-noise ratio. However, the noise power is usually
fixed, so that the detector performance can only be improved by increasing the signal
energy. In a remote sensing context, where satellite platforms typically have very
limited resources on board, increasing the signal energy is particularly impractical and
sometimes just plain impossible. Therefore, we must increase the number of observations.
In most practical applications, it is desirable to minimise the number of observations
that are needed to make a reliable (or accurate) decision. The theory of sequential
analysis is used to formally treat—and solve—this challenging problem.

The so-called sequential tests (first introduced by Abraham Wald [118]) usually require
significantly fewer observations than fixed-sample-size approaches with the same proba-
bility of error. In particular, sequential tests help the user make a decision between
two hypotheses after a minimal average number of observations by deciding quickly in
unambiguous cases, and taking longer in ambiguous cases [89].
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Chapter 3 Sequential Detection

3.1 INTRODUCTION

Sequential analysis (which includes the study of sequential detection problems) is a rich
and vibrant area of research, which, according to [40], has its origins in the works of
Huyghens, Bernoulli, DeMoivre and Laplace on the gambler’s ruin problem [67]. Perhaps
most importantly, however (at least for our purpose), was Wald’s development of the
Sequential Probability Ratio Test (SPRT) during the 1940s, which was subsequently
proven to be optimal by Wald and Wolfowitz in 1948 [119].

Sequential detection problems between two simple statistical hypotheses (in which case
the observation time is not fixed), give rise to so-called optimal stopping problems, and
more specifically in the problems considered here, to Markov optimal stopping problems.
A tradeoff exists between the error probabilities (which can be made arbitrarily small by
taking sufficiently many observations), and the observation time or detection delay [59].

In contrast with the classical Neyman-Pearson fixed sample size test, in which the
optimisation criterion is to maximise the power P1(δ = 1) for a given sample size N
and Type I error bound α, the Wald-Wolfowitz criterion is to minimise the expected
detection delay under both hypotheses, subject to Type I and Type II error constraints.

3.1.1 Problem statement

In this chapter we consider the task of deciding between two simple statistical hypotheses.
That is, hypotheses that are completely specified. In particular, we would like to decide
as quickly as possible, subject to some constraint(s) on the quality of our final decision.
In other words, we seek to solve the sequential detection problem for simple statistical
hypotheses.

3.1.2 Chapter overview

We first present the Bayesian formulation of the sequential detection problem in
section 3.2, followed by a quick overview of the fixed probability of error formulation
(also referred to simply as Wald’s formulation) in section 3.3.

Additional considerations are discussed in section 3.4, where the relationship between
the Bayesian and Wald’s formulation is given, and where approximate expressions for
the Average Run Length (ARL) as well as the expected probability of error is given. A
short discussion on alternative solutions to the sequential detection problem such as
found in the literature of dynamic programming, generalised parking, and free-boundary
problems is also given.

Finally section 3.5 gives several illustrative examples of optimal stopping problems
including the well-known finite horizon secretary problem (section 3.5.2), and the
sequential detection of simple hypotheses (section 3.5.3) where a coin is determined to
be either fair or biased.
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Chapter 3 Sequential Detection

3.2 HYPOTHESIS TESTING: BAYESIAN FORMULATION

In the first part of this section, we will roughly follow the approach presented in [89].
Let Zn := {Zk; k = 1, 2, . . . , n} be a sequence of i.i.d. real observations that obey one
of two statistical hypotheses:

H0 : Zk ∼ Q0, k = 1, 2, . . .
versus

H1 : Zk ∼ Q1, k = 1, 2, . . .

where Q0 and Q1 are two probability distributions with associated probability densities
q0 and q1, respectively. Further assume that hypothesis H1 occurs with prior probability
π, and H0 with prior probability 1− π.

We would like to decide between these hypotheses in a way that minimises an appropriate
measure (to be introduced later) of the error probability and the sampling cost.

If we observe {Zk; k = 1, 2, . . . , n}, we can decide between the two hypotheses by
considering the limiting value of the likelihood ratio:

Λn(Zn) ∆=
n∏
k=1

q1(Zk)
q0(Zk)

→

0, under H0

∞, under H1
, as n→∞, (3.1)

which naturally leads to the following decision rule (known as the maximum a posteriori
or MAP rule) when taking the prior probabilities of the hypotheses into account:

δn =

0 (i.e. H0 is true), if ππn ≤ 0.5
1 (i.e. H1 is true), if ππn > 0.5

(3.2)

where ππn is simply the posterior probability that H1 is true:

ππn = π
∏n
k=1 q1(Zk)

π
∏n
k=1 q1(Zk) + (1− π)∏n

k=1 q0(Zk)
. (3.3)

Following [89], we rewrite (3.3) as the following recursion:

ππn = ππn−1q1(Zn)
ππn−1q1(Zn) + (1− ππn−1)q0(Zn) . (3.4)

Suppose, now, that we observe {Zk; k = 1, 2, . . .} sequentially, generating the filtration1

{Fk; k = 1, 2, . . .}, with

Fk = σ(Zk) = σ(Z1, Z2, . . . , Zk), k = 1, 2, . . . , F0 = (Ω, ∅), (3.5)
1A sequence of σ-fields {F1,F2, . . .} such that F1 ⊆ F2 ⊆ · · · is called a filtration.
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Chapter 3 Sequential Detection

and that there is a cost c ≥ 0 per sample taken. Then clearly the quality of a decision
between H0 and H1 will improve with an increasing number of samples, but the cost of
making (or rather, obtaining) the decision will increase too.

Suppose further that there are costs c0 > 0 and c1 > 0 to the events of falsely rejecting
hypotheses H0 and H1, respectively. Then, for any sequential decision rule (τ, δ) with
τ ∈ T a stopping time (with respect to the filtration {Fk}) and δk ∈ D an Fk-measurable
terminal decision rule, we define the average cost of errors:

ce(τ, δ) = (1− π)c0P0(δτ = 1) + πc1P1(δτ = 0), (3.6)

where P0 and P1 are probability measures on (R∞,B∞) such that, under Pj , Z1, Z2, . . .
are i.i.d. with marginal distribution Qj, for j = 0, 1 [89]. If we further consider the
probability space (Ω,F , P ) = (R∞,B∞, Pπ) where

Pπ = (1− π)P0 + πP1, (3.7)

we can define the expected cost of sampling as

cEπ{τ}, (3.8)

where Eπ{·} denotes expectation under the measure Pπ. Note that, as pointed out
in [89], the observations are no longer independent under the measure Pπ. This can be
understood by realising that past observations affect our belief of the true underlying
distribution, so that we expect future observations to support (follow) this belief.

The total cost incurred by (or Bayes risk of) any sequential decision rule (τ, δ) is then
defined as the sum of the average cost of errors and the expected cost of sampling:

ce(τ, δ) + cEπ{τ}. (3.9)

So, naturally, we would like to choose a sequential decision rule to solve the following
optimisation problem:

s(π) = inf
τ∈T ,δ∈D

[
ce(τ, δ) + cEπ{τ}

]
, π ∈ [0, 1], (3.10)

where s(π) is known as the minimal expected cost, or simply the minimal cost function.

Following the approach presented in [89, Chapter 4], we use the following proposition
to convert (3.10) into a Markov optimal stopping problem.

Proposition 1 For any τ ∈ T , we have

inf
δ∈D

ce(τ, δ) = Eπ
{

min
[
c1π

π
τ , c0(1− ππτ )

]}
, (3.11)

where the sequence {ππn} is defined as in (3.4). Moreover, the infimum in (3.11) is
achieved by the terminal decision rule

δn =

0, if ππn < c0/(c0 + c1)
1, if ππn ≥ c0/(c0 + c1)

(3.12)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

50

 
 
 



Chapter 3 Sequential Detection

Proof. The proof can be found in [89, Proposition 4.1, p. 67].

Proposition 1 reduces the problem (3.10) to the alternative problem

inf
τ∈T

Eπ
{

min
[
c1π

π
τ , c0(1− ππτ )

]
+ cτ

}
, (3.13)

in which we no longer have to search over all possible terminal decision rules, δ ∈ D.

Because of the recursivity of {ππn} this new problem can be embedded in a Markov
optimal stopping problem2. In particular, we have the following result.

Theorem 2 (Optimal i.i.d. sequential decision rule) Consider the optimisation
problem of (3.13), or equivalently, the problem of (3.10). The optimal solution is given
by the sequential decision rule (τ, δ) with

τopt = inf
{
n ≥ 0|ππn /∈ (πL, πU)

}
(3.14)

and

δn =

0, if ππn ≤ c0/(c0 + c1)
1, if ππn > c0/(c0 + c1)

(3.15)

where the exit thresholds πL and πU are given by

πL = sup{0 ≤ π ≤ 1|s(π) = c1π} (3.16)

and
πU = inf{0 ≤ π ≤ 1|s(π) = c0(1− π)} (3.17)

respectively. That is, the optimal sequential decision rule continues sampling until
ππn /∈ (πL, πU), at which time it chooses hypothesis H1 if ππn ≥ πU , and H0 otherwise.

Proof. The proof follows from [89, Proposition 4.3, pp. 69–70], combined with the
proof of Proposition 1.

We will now use the following theorem, adapted from [103], to obtain a computational
method for the optimal cost s(π) and for the thresholds πL and πU given in Theorem 2.

Theorem 3 Consider a homogeneous Markov process x = {Xk; k = 0, 1, . . .}, and let
the functions g(x) and c(x) satisfy

|g(x)| ≤ G <∞, 0 ≤ c(x) ≡ c <∞,∀x. (3.18)

If we have the following optimisation task:

v(x) = sup
τ∈T

Ex
{
g(Xτ )−

τ−1∑
v=0

c

}
, (3.19)

2Note that the sequence {ππn} is a homogeneous Markov process [59].
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then
v(x) = lim

N→∞
QNg(x) (3.20)

where QN is the N th power of the operator

Qf(x) = max
{
f(x),Rf(x)− c

}
(3.21)

and where the operator R is defined as

Rf(x) = Ex
{
f(X1)

}
. (3.22)

In addition, the stopping time

τ = inf
{
n ≥ 0|g(Xn) = v(Xn)

}
(3.23)

is optimal.

Proof. The proof can be found in [103, Theorem 23, p. 94] by setting α = 1,
c(x) ≡ c ≥ 0, and by assuming that Px(τ < ∞) = 1. In our case this is indeed a
reasonable assumption; see Remark 5 on page 59.

We now give two additional intermediate but important results, which we will use,
together with Theorem 3, to derive a computational method for the minimal cost, s(π),
and for the optimal exit thresholds, πL and πU .

Proposition 2 (R is a positive linear operator) Let {Xk; k = 0, 1, . . .} be a ho-
mogeneous Markov process with values in the state space (E,B), and let f and g be
B-measurable functions. The operator R defined as

Rf(x) := Ex
{
f(X1)

}
(3.24)

is a positive linear operator.

Proof. For R to be a positive linear operator, the following conditions must be satisfied:

1. f ≥ 0 =⇒ Rf ≥ 0 [for positivity], and

2. R
[
f − h

]
(x) = (Rf)(x)− (Rh)(x) [for linearity].

We first show that R is a positive operator, i.e. that R ≥ 0 (see Remark 2 on the next
page). Let f be a (positive) function such that

f(x) ≥ 0,∀x ∈ D(f), (3.25)

where D(f) denotes the domain of f . Then, clearly, we also have

f [X1(ω)] ≥ 0,∀ω ∈ Ω. (3.26)
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Finally we note that

(Rg)(x) = Ex[f(X1)]

=
∫

Ω
f(X1|X0 = x)dP ≥ 0, (3.27)

whence it follows that R is a positive operator.

To show that R is a linear operator, consider the following:

R[f − h](x) = Ex[f − h](X1)
= Ex[f(X1)]− Ex[h(X1)]
= (Rf)(x)− (Rh)(x), (3.28)

where the second equality simply follows from the linearity of expectation.

Remark 2 Note that R ≥ 0 means that Rf ≥ 0 for all functions f such that f ≥ 0.

Lemma 1 If T is a positive linear operator, then

T
[

max{g, Tg}
]
(x) ≥ Tg(x). (3.29)

Proof. Using the positivity and linearity of T we have:

max
{
g(x), T g(x)

}
≥ g(x) =⇒ max

{
g(x), T g(x)

}
− g(x) ≥ 0

=⇒ T
[

max{g(x), T g(x)} − g(x)
]
≥ 0

=⇒ T
[

max{g(x), T g(x)}
]
− Tg(x) ≥ 0

=⇒ T
[

max{g, Tg}
]
(x) ≥ Tg(x), (3.30)

as required.

Finally, by using Theorem 3, Proposition 2, and Lemma 1, we obtain the following
computational method for finding the minimal cost function, s(π), and the optimal exit
thresholds, πL and πU , as given in Theorem 2.

Proposition 3 (Computing the minimal cost function for an i.i.d. sequence)
The minimal cost s(π) = infτ∈T Eπ

{
h(ππτ ) + cτ

}
, where h(π) = min{c1π, c0(1− π)}, is

the monotone pointwise limit from above of the sequence of functions

sn(π) = min
{
h(π),Rsn−1(π) + c

}
, n = 1, 2, . . . (3.31)

with s0(π) = h(π), and where the operator R is defined by

Rf(π) = Eπ[f(ππ1 )]

=
∫ ∞
−∞

f

(
πq1(Z1)

πq1(Z1) + (1− π)q0(Z1)

)
·
[
πq1(Z1) + (1− π)q0(Z1)

]
dZ1,
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such that
Rsn−1(π) = Eπ

{
sn−1(ππ1 )

}
. (3.32)

Proof. We first write the minimal cost s(π) in such a way that we can apply Theorem 3:

s(π) = inf
τ∈T

Eπ
{
h(ππτ ) + cτ

}
= − sup

τ∈T
Eπ
{
− h(ππτ )− cτ

}
= − sup

τ∈T
Eπ
{
g(ππτ )− cτ

}
= −v(π), (3.33)

where g(x) := −h(x), and v(x) = supτ∈T Ex{g(Xτ )− cτ} as in Theorem 3.

We notice that s(π) in (3.33) is now such that we can easily apply Theorem 3 (to
approximate v(π) = −s(π)). In addition, {ππn} is a homogeneous Markov process (see
for example [59]), and g(x) and c(x) ≡ c clearly satisfy the conditions given in (3.18).
Therefore, by Theorem 3 it follows that

v(π) = sup
τ∈T

Eπ
{
g(ππτ )− cτ

}
= lim

N→∞
QNg(π), (3.34)

with

v1(π) = Qg(π) = max
{
g(π),Rg(π)− c

}
= −min

{
h(π),Rh(π) + c

}
= −min

{
h(π),Rs0(π) + c

}
= −s1(π), (3.35)

where Rs0(π) = Eπ
{
s0(ππ1 )

}
. Also, since by Lemma 1 we have that

T [max{g, Tg}] ≥ Tg (3.36)

for any linear operator T , and since R is a linear operator (Proposition 2), we have

v2(π) = Q2g(π) = max
{
Qg(π),RQg(π)− c

}
= max

{
max[g(π),Rg(π)− c],R

[
max

(
g(π),Rg(π)− c

)]
− c

}
= max

{
g(π),R

[
max

(
g(π),Rg(π)− c

)]
− c

}
= max

{
g(π),RQg(π)− c

}
= max

{
− h(π),−Rs1(π)− c

}
= −min

{
h(π),Rs1(π) + c

}
= −s2(π), (3.37)
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where Rs1(π) = Eπ
{
s1(ππ1 )

}
. Continuing in this manner we see that −Qng(π), n =

1, 2, . . . corresponds to the sequence of functions sn(π) given in (3.31), as required.

Proposition 3 constitutes a means of computing the minimal cost function, s(π), after
which it is relatively straightforward to determine πL and πU using (3.16) and (3.17).

3.2.1 On the structure of the minimal cost function

It can be shown (see for example [103] or the references contained therein) that the
minimal cost function s(π) is concave, and is bounded as 0 ≤ s(π) ≤ h(π), where
h(π) = min{c1π, c0(1 − π)} as defined in Proposition 3. In addition, it always holds
true that s(0) = s(1) = 0. Notice that the prior probability that H1 is true (i.e., π)
does not affect the computation of the minimal cost function. That is, s(π) holds for
any π ∈ [0, 1].

A typical minimal cost function is shown in Figure 3.1.a, where equal costs of error
(c0 = c1) causes s(π) to be symmetric about the line π = 1/2.

s(π)

πL πU

c0(1− π)c1π

10 π

c c

c+ Eπ{s(π)}

a. Structure of the cost function, s(π), c0 = c1.

s(π)

πL πU
π

c c

continue stopstop

cost incurred
when continuing

cost incurred
when stopping

b. Decision regions of the cost function, c0 = c1.

s(π)

πL πU

c0(1− π)c1π

10 π

c c

c+ Eπ{s(π)}

c. Structure of the cost function, s(π), c0 6= c1.

π

c c

continue stopstop

cost incurred
when continuing

cost incurred
when stopping

s(π)

πL πU

d. Decision regions of the cost function, c0 6= c1.

Figure 3.1: Typical structure and behaviour of the minimal cost function, s(π).

With reference to Figure 3.1.b, we notice that s(π) can be divided into regions of action
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(i.e., continue sampling, or stop sampling). More specifically, we can see that s(π)
simply corresponds, at each π ∈ [0, 1], to the minimum between the cost incurred when
continuing to sample (corresponding to c + Eπ{s(π)} in Figure 3.1.a) and the cost
incurred when stopping the experiment (which is simply h(π)). The same applies to
Figure 3.1.c and Figure 3.1.d, where the only difference is that the costs of errors (c0
and c1) are no longer equal.

3.3 HYPOTHESIS TESTING: WALD’S FORMULATION

Wald’s formulation of the sequential detection problem can be presented very intuitively.
Consider again a sequence Zn := {Zk; k = 1, 2, . . . , n} of i.i.d. real observations, defined
as in section 3.2. That is,

H0 : Zk ∼ Q0, k = 1, 2, . . .
versus

H1 : Zk ∼ Q1, k = 1, 2, . . .

where Q0 and Q1 are two probability distributions with associated probability densities
q0 and q1, respectively; and let hypothesis H1 occur with prior probability π, and H0
with prior probability 1− π.

We would, again, like to decide between these hypotheses in a way that minimises an
appropriate measure of the error probability and sampling cost. However, this time we
will go right ahead and state (informally) the exact problem that we would like to solve.

Wald’s formulation solves the following problem:
We would like to stop sampling as quickly as possible (this seems a very natural
choice, doesn’t it?), given some (usually small) permissible probability of error.

Remark 3 It may be somewhat surprising at first, but the above problem statement
is exactly the same as given (3.10) in the Bayesian framework, with the exception of
the explicit incorporation of the prior probabilities, of course, but these can be added to
Wald’s formulation very easily.

We will now derive Wald’s much simpler (or rather, more intuitive) solution to our
original problem (3.10). We again define the likelihood ratio as

Λn(Zn) ∆=
n∏
k=1

q1(Zk)
q0(Zk)

→

0, under H0

∞, under H1
, as n→∞, (3.38)

We now normalise the joint likelihoods (such that pn0 (Zn) + pn1 (Zn) = 1), after which
we’ll talk about probabilities, even though this is perhaps a serious misuse of terminology.
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In this way, we define

pn1 (Zn) =
∏n
k=1 q1(Zk)∏n

k=1 q0(Zk) +∏n
k=1 q1(Zk)

, (3.39)

as the probability of observing the sequence Zn = {Z1, Z2, . . . , Zn} under H1, and

pn0 (Zn) =
∏n
k=1 q0(Zk)∏n

k=1 q0(Zk) +∏n
k=1 q1(Zk)

, (3.40)

as the probability of observing the sequence Zn under hypothesis H0.

Remark 4 (Probability ratios and likelihood ratios) When we consider a prob-
ability ratio between (3.39) and (3.40), we note that their denominators are the same,
so that it is equivalent to considering the likelihood ratio given in (3.38). That is why we
will refer to a Wald-type sequential tests as a SPRT, even though the test only requires
us to consider likelihoods and likelihood ratios.

Wald’s test, similar to the Bayesian formulation, continues sampling until certain
thresholds (often called the exit thresholds) are crossed. In the Bayesian formulation we
monitored the posterior sequence {ππn}, and continued sampling as long as ππn ∈ (πL, πU).
In Wald’s test, we continue sampling as long as Λn ∈ (A,B), such that

τ = inf{n ≥ 0|Λn /∈ (A,B)}. (3.41)

We now introduce the exit thresholds (A and B) for the SPRT(A, B) as follows:

A ≤
n∏
k=1

q1(Zk)
q0(Zk)

≤ B, (3.42)

so that we continue sampling until Λn ≤ A (in which case we stop and choose H0), or
Λn ≥ B (in which case we stop and choose H1).

The question naturally arises, “how can we determine the thresholds A and B?”—the
answer is both complex and simple. To find the exact values of A and B turns out to
be rather tricky in general (a computational method is proposed in [118]), but luckily it
is extremely easy to find really good approximations to A and B, which typically work
very well in practice [118]. We will now consider these approximations in more detail.

When Λn ≥ B, we stop sampling and decide on hypothesis H1. We then clearly have
n∏
k=1

q1(Zk) ≥ B ·
n∏
k=1

q0(Zk) =⇒ pn1 (Zn) ≥ B · pn0 (Zn) (3.43)

=⇒ P1(δ = 1) ≥ B · P0(δ = 1) (3.44)

which we can interpret as saying that “the probability of having observed the sequence Zn
under hypothesis H1 is at least B times as great as under hypothesis H0.” Furthermore,
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since we have decided on hypothesis H1, the probability of having chosen the wrong
hypothesis is equal to P0(δ = 1) = α. That is, α is the probability of incorrectly
choosing hypothesis H1 instead of H0, which is called a Type I error. If we now define
the Type II error probability as P1(δ = 0) = β, we have from (3.44)

B ≤ 1− β
α

, (3.45)

so that (1− β)/α constitutes an upper limit for B. In a similar fashion we can derive a
lower limit for A as

A ≥ β

1− α. (3.46)

Note that a more rigorous proof of the above can be found in [89, Proposition 4.10].
Finally, when we replace the inequalities in (3.46) and (3.45) by equalities, we arrive at
the celebrated Wald’s approximations to A and B, respectively.

3.4 ADDITIONAL CONSIDERATIONS

In this section we will present a number of interesting additional considerations regarding
the theory of sequential detection, such as the relationship between the Bayesian formu-
lation and Wald’s formulation, as well as approximate expressions for the probability of
error and the ARL of a particular SPRT.

3.4.0.1 Bayesian vs Wald’s sequential detection

The Bayes optimal stopping time defined in (3.14) can alternatively be expressed as

τopt = inf
{
n ≥ 0|Λn /∈ (A,B)

}
, (3.47)

where the thresholds A and B are given by

A = 1− π
π

πL

1− πL
⇐⇒ πL = πA

1− π(1− A) , (3.48)

and
B = 1− π

π

πU

1− πU
⇐⇒ πU = πB

1− π(1−B) , (3.49)

so that we notice that the Bayes optimal sequential decision rule with thresholds πL
and πU corresponds to Wald’s SPRT with thresholds A and B as defined above.

It follows therefore, that the Wald-Wolfowitz theorem (Theorem 1 on page 4) also
applies to Bayes optimal sequential decision rules (since they are equivalent to SPRTs),
and that no other test (sequential or otherwise) will have smaller expected run lengths
with the same probability of error.
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Remark 5 A consequence of the Wald-Wolfowitz theorem is that the stopping times of
SPRTs (and hence also of Bayes optimal decision rules) have finite expectations under
both H0 and H1 (see for example [104, Proposition 8.21]). In other words, we have that
Pπ(τ <∞) = 1, which is a necessary condition for the ε-optimal stopping time described
in Theorem 23 of [103] to be an optimal stopping time as presented in Theorem 3.

3.4.0.1.1 On the difficulty of choosing realistic values for the cost of sam-
pling. It is considerably more difficult to formulate a realistic problem in the Bayesian
framework than in Wald’s formulation, since it remains somewhat unclear as to how we
should choose an appropriate cost of sampling, c.

In most practical applications we are usually concerned with the more intuitive concept
of the probability of error, and so it is much more convenient to specify such problems in
Wald’s framework. However, it is not clear how we can infer the cost of sampling from
the desired probability of error without having to search for the cost experimentally.

We will therefore proceed to give expressions for the probability of error and ARL only
in terms of A, B, πL, πU, α and β, and not in terms of the costs c0, c1 and c.

3.4.0.2 Estimating the probability of error

By using Wald’s approximations to (3.45) and (3.46) we can solve (approximately) for
α and β to obtain:

α ≈ 1− A
B − A

= πL − π
π − 1 ·

πU − 1
πL − πU

, (3.50)

and
β ≈ A

B − 1
B − A

= πL

π
· π − πU

πL − πU
. (3.51)

The probability of error is then finally given simply as

Pe = (1− π)P0(δτ = 1) + πP1(δτ = 0)
= (1− π)α + πβ, (3.52)

which can be determined approximately by substituting (3.50) and (3.51) into (3.52).

3.4.0.3 Estimating the average run length (ARL)

We have the following useful proposition for computing the approximate ARL of an
SPRT with Type I and Type II error probabilities α and β:

Proposition 4 Suppose the random variable log Λ1 has finite means d0 and d1 under
hypotheses H0 and H1, respectively. Then

E0[τ ] ≥ d−1
0

[
α log

(
1− β
α

)
+ (1− α) log

(
β

1− α

)]
, (3.53)

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

59

 
 
 



Chapter 3 Sequential Detection

and
E1[τ ] ≥ d−1

1

[
(1− β) log

(
1− β
α

)
+ β log

(
β

1− α

)]
. (3.54)

Proof. The proof can be found in [89, Proposition 4.11].

Note that when the desired probabilities of error (α and β) are sufficiently small, then
the bounds in Proposition 4 are relatively tight. Furthermore, when the random process
that we observe is continuous, Proposition 4 holds with equality (see [89] for details).

3.4.0.4 Alternative methods for sequential detection

It is worthwhile to note that there are several alternative ways to compute the op-
timal thresholds for the Bayes sequential decision rule. Among these, are the direct
computational approach presented in Proposition 3, a method by which the problem
is first transformed into a free-boundary problem (see for example, [88]), the method
of generalised parking in which the sequential detection problem is formulated as an
Itō stochastic differential equation [8], and the contemporary techniques of dynamic
programming, Bellman equations and Stefan problems.

3.5 ILLUSTRATIVE EXAMPLES

Several illustrative examples of optimal stopping problems (and their solutions) are given
in this section, including a problem whose solution can be obtained by backward induction
(section 3.5.1), the well-known finite horizon secretary (or marriage) problem discussed
in section 3.5.2, and finally the infinite-horizon sequential detection or classification
task presented in section 3.5.3, which is of course of primary concern in this study.

3.5.1 Backward induction

Amongst the easiest optimal stopping problems to solve (although only for relatively
small problems) are problems for which we have complete information about the
probabilities and the exact values of all potential future observations, in which case the
technique of backward induction is of particular importance.

3.5.1.1 Problem formulation

Consider the following simple backward induction problem, stated and solved in [45].
We are given the opportunity to win some money by rolling a standard, fair, six-sided
die at most five times. We may stop whenever we want, at which time we receive as a
reward the number of Krugerrands corresponding to the number of dots shown on the
die. Our objective is simply to find a stopping rule that will maximise the number of
Krugerrands that we can expect to win.
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3.5.1.2 Solution

We will use backward induction to solve this problem, but first, consider the following.
If we decide to stop with the first roll, the expected reward is simply the expected value
of a random variable that takes the values 1, 2, 3, 4, 5, and 6 with probability 1/6 each,
which is equal to 3.5 Krugerrands. It is also clearly not optimal to stop if the first roll
is a 1, and similarly, it is always optimal to stop with a 6.

The idea behind backward induction is simple: it is clearly optimal to stop whenever
the value of the current roll is greater than the expected value of the roll if we continue.
In this way, the optimal strategy for a five-roll game would be to stop whenever we
observe a value greater than the expected value of the four-roll game. The four-roll
problem in turn has an optimal strategy which involves stopping whenever the observed
value is greater than the expected value of the three-roll game, and so on. Finally, by
realising that we already know the optimal strategy for a one-roll game, we can work
backwards (from 1 to 5) to determine the optimal strategy for the five-roll game.

In the one-roll game there is only one strategy, namely to stop, for which the expected
reward is 3.5. This information now yields the optimal strategy for the two-roll problem—
stop on the first roll only if the observed value is more than you expect to win if you
continue, i.e. 3.5, so that the strategy for the two-roll game is “stop at the first roll
only if it is a 4,5, or a 6”. We can now calculate the expected reward for a two-roll
game as follows: 4(1/6) + 5(1/6) + 6(1/6) + (1/2)(3.5) = 4.25, which in turn can be
used to determine the optimal strategy for a three-roll game.

The optimal strategy for a three-roll game would be to “stop if the first roll is a 5 or
6 (that is, more than 4.25), otherwise continue and stop only if the second roll is a
4, 5, or a 6, as for the two-roll game.” Knowing the optimal strategy for a three-roll
game allows us to compute our expected reward (4.67), which in turn can be used to
determine the optimal strategy for a four-roll game. Continuing (backwards) in this
manner we can finally determine the optimal strategy for a five-roll game.

The optimal strategies, along with the expected winnings are shown in Table 3.1.

Table 3.1: Optimal stopping strategies obtained by backward induction.

Total number of rolls Stop if initial roll is: Average optimal expected reward

1 {1, 2, 3, 4, 5, 6} 3.5
2 {4, 5, 6} 4.25
3 {5, 6} 4.67
4 {5, 6} 4.94
5 {5, 6} 5.13

Although backward induction is very versatile (and it works equally well if the process
values are not independent as they were assumed to be in this example), we do not always
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have sufficient information about a particular problem to apply backward induction.
An example where we cannot apply backward induction for a lack of information, but
where an optimal strategy can still be found, is described next.

3.5.2 Finite horizon secretary problem

One of the most famous optimal stopping problems is the so-called secretary, marriage,
dowry, or best-choice problem. The problem and its many variants have a long and
rich history, which is superbly presented in the delightful article by Ferguson [33]. The
problem is easy to state, and has a striking—and remarkably simple—solution.

We will specifically consider the version of the problem as stated in [20], which is the
most common (and arguably the simplest) of the various secretary problems. However,
the objective in [20] is to maximise the expected rank of the chosen applicant, whereas
we will consider the task of maximising the probability of selecting the best applicant.

Furthermore, we will state—but not derive—the solution to this problem, since our
aim with this example is simply to show one of the many types of problems commonly
encountered in optimal stopping theory, and besides, the solution is somewhat technical
but can easily be found in several sources by the interested reader (see e.g. [89]).

3.5.2.1 Problem formulation

The following problem statement follows closely that of [20]. Suppose N > 2 people
apply for a certain (secretarial) position, and that the applicants are rank ordered
according to the ranks 1, 2, . . . , N with 1 denoting the highest ranking. The applicants
present themselves one by one, in random order, and when the ith applicant appears
we can only observe her rank, Xi, relative to her i − 1 predecessors. We may either
select the ith applicant, in which case the process ends, or we may reject her and go on
to the (i+ 1)th applicant; in which case the ith applicant cannot be recalled. We are
very particular, and will be satisfied with nothing but the very best, so that our reward
is 1 if we choose the best of the N applicants, and 0 otherwise. Our task is then to
maximise the probability of selecting the very best applicant.

3.5.2.2 Solution

The solution (optimal stopping time) of this problem is given as (see for example [89]):

τopt =

inf{k ≥ k∗|Xk = 1} if min{Xk∗ , . . . , XN} = 1
N otherwise

(3.55)

where
k∗ = min

{
k ∈ {2, 3, . . . , N}

∣∣∣∣∣
n∑

l=k+1

1
l − 1 ≤ 1

}
. (3.56)
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That is, we reject the first k∗− 1 applicants (but we do need to observe and rank them),
and then we select the next applicant who ranks first among her predecessors. It can be
shown that k∗ ≈ N/e, and that the probability of selecting the highest-ranking applicant
is asymptotically 1/e. A Matlab script for this problem is given in Listing 3.1 below.

Listing 3.1: Matlab code for a simulation of the secretary (or marriage) problem.
N = 1000 ; % maximum number o f a p p l i c a n t s to i n t e r v i e w
app_rank = randperm (N) ; % randomly a s s i g n unique ranks to a p p l i c a n t s

% determine number o f a p p l i c a n t s to r e j e c t , k_star :
v = ones (1 , N) . / ( 1 :N) ;
v = cumsum( v ( end−1:−1:1)) ;
v = v ( end : −1 : 1 ) ;
[ val , idx ] = f i n d (v<=1);
k_star = min ( idx ) ;
r e j e c t e d = app_rank ( 1 : 1 : k_star −1); % r e j e c t f i r s t k_star−1 a p p l i c a n t s
min_rejected = min ( r e j e c t e d ) ; % best ranking , r e j e c t e d a p p l i c a n t
c s e t = app_rank ( k_star : 1 : end ) ; % s e t o f a p p l i c a n t s to c o n s i d e r
[ val , idx ] = f i n d ( cset<=min_rejected , 1 ) ; % f i r s t remaining a p p l i c a n t whose rank i s

% higher than the best , r e j e c t e d a p p l i c a n t
i f isempty ( idx )

choose_idx = N; % choose the l a s t app l i cant , i r r e s p e c t i v e o f her rank
e l s e

choose_idx = idx+k_star−1; % choose a p p l i c a n t number ( idx+k_star−1)
end
f p r i n t f ( ’You chose applicant %g. with rank_T = %g\n’ , choose_idx , app_rank ( choose_idx ) ) ;

3.5.3 Infinite horizon simple hypothesis testing

We will now consider the Bayesian sequential detection task of deciding whether a
certain coin is fair, or biased in a particular way.3 This simple problem can be used
to investigate a number of properties of sequential tests more easily and transparently
than is possible with more complex data such as the land cover model, presented later.

3.5.3.1 Problem formulation

Consider again a sequence {Zk; k = 1, 2, . . . , n} of i.i.d. observations generated by either

H0 : Zk ∼ Q0, k = 1, 2, . . . (fair coin)
versus

H1 : Zk ∼ Q1, k = 1, 2, . . . (biased coin)

where Q0 and Q1 are two probability distributions with associated probability mass
functions q0 and q1, respectively; and where hypothesis H1 occurs with prior probability
π, and H0 with prior probability 1− π. We also define the random variable Zk as

Zk(ω) =

0 if ω = tails
1 if ω = heads

, k = 1, 2, . . . . (3.57)

3We say “biased in a particular way” because we only consider simple hypotheses here. If, instead,
we want to test the hypotheses that the coin is either fair (a simple hypothesis), or not (a composite
hypothesis), we must consider other methods that are beyond the scope of this study.
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Given some costs c0 and c1 corresponding to the cost of falsely rejecting H0 and H1,
respectively; and a cost of sampling, c, we want to minimise the Bayes risk:

inf
τ∈T ,δ∈D

[
ce(τ, δ) + cEπ{τ}

]
, (3.58)

where the average cost of errors and the expected cost of sampling are as defined in
(3.6) and (3.8), respectively.

Table 3.2: Experimental parameters and results of simple Bayesian sequential detection.

Case I.a Case I.b Case II Case III

Experimental parameters:
hypothesis H0 (fair):

[
p(0|H0), p(1|H0)

]
[0.5, 0.5] [0.5, 0.5] [0.5, 0.5] [0.5, 0.5]

hypothesis H1 (biased):
[
p(0|H1), p(1|H1)

]
[0.4, 0.6] [0.4, 0.6] [0.45, 0.55] [0.4, 0.6]

prior probability that H1 is true, π 0.5 0.7 0.5 0.5
cost of sampling, c 2× 10−3 2× 10−3 2× 10−3 2× 10−3

cost of Type I error, c0 1 1 1 1
cost of Type II error, c1 1 1 1 3

Optimal thresholds:
upper threshold, πU 0.860 0.860 0.640 0.830
lower threshold, πL 0.140 0.140 0.360 0.040

Performance results:
Experimental ARL 70 52 37 96
Experimental-theoretical ARL 69 52 36 95
Approximate-theoretical ARL 64 48 32 90

Experimental probability of error 0.130 0.131 0.352 0.109
Theoretical probability of error 0.140 0.140 0.360 0.116

Experimental Type I probability of error 0.131 0.337 0.355 0.188
Theoretical Type I probability of error, α 0.140 0.363 0.360 0.198

Experimental Type II probability of error 0.129 0.043 0.350 0.031
Theoretical Type II probability of error, β 0.140 0.044 0.360 0.033

3.5.3.2 Experimental parameters

We will consider the solution to three distinct cases, briefly defined below.

3.5.3.2.1 Case I The first case that we will consider (which is actually Case I.a) is
characterised by equal costs of error, c0 = c1 = 1, a cost of sampling of c = 2× 10−3,
equiprobable hypotheses (π = 1−π = 0.5), and the following probability mass functions:
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q0(x) =

0.5 if x = 0 (ω = tails)
0.5 if x = 1 (ω = heads)

and q1(x) =

0.4 if x = 0 (tails)
0.6 if x = 1 (heads)

. (3.59)

Note that Case I.b is similarly defined, except that the hypotheses are no longer
equiprobable: π = 0.7.

3.5.3.2.2 Case II The second case is also characterised by equal costs of error,
c0 = c1 = 1, a cost of sampling of c = 2 × 10−3, and equiprobable hypotheses
(π = 1− π = 0.5), but the probability mass functions are more difficult (that is, they
are more alike than Case I):

q0(x) =

0.5 if x = 0 (ω = tails)
0.5 if x = 1 (ω = heads)

and q1(x) =

0.45 if x = 0 (tails)
0.55 if x = 1 (heads)

. (3.60)

3.5.3.2.3 Case III The final case that we will consider is characterised by unequal
costs of error, c0 = 1, c1 = 3, which places a disproportionate cost on making Type II
errors, a cost of sampling of c = 2× 10−3, equiprobable hypotheses (π = 1− π = 0.5),
and the probability mass functions are again as defined in (3.59).

Table 3.2 on the previous page summarises the experimental parameters, as well as
the simulation results, of all three cases presented above.

3.5.3.3 Solution

The solution to (3.58) is given by Theorem 2, and Proposition 3 provides a computational
strategy to determine the cost function s(π), from which the optimal thresholds, πL
and πL, can be determined.

In addition, we can compute the approximate ARL by applying Proposition 4 as
follows. Assuming that log Λ1 has finite means d0 and d1 under hypotheses H0 and H1,
respectively, we can compute

d0 = E0
[

log Λ1
]

= E0

[
log

(
q1(Z1)
q0(Z1)

)]
= E0

[
log q1(Z1)− log q0(Z1)

]
= E0

[
log q1(Z1)

]
− E0

[
log q0(Z1)

]
. (3.61)

The expectations in (3.61) can further be expanded to yield

E0
[

log q0(Z1)
]

= log
(
q0(0)

)
× P (Z1 = 0|H0) + log

(
q0(1)

)
× P (Z1 = 1|H0)

= log
(
q0(0)

)
× q0(0) + log

(
q0(1)

)
× q0(1), (3.62)
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and

E0
[

log q1(Z1)
]

= log
(
q1(0)

)
× P (Z1 = 0|H0) + log

(
q1(1)

)
× P (Z1 = 1|H0)

= log
(
q1(0)

)
× q0(0) + log

(
q1(1)

)
× q0(1). (3.63)

So we finally have

d0 = q0(0)× log
(
q1(0)
q0(0)

)
+ q0(1)× log

(
q1(1)
q0(1)

)
. (3.64)

In a similar fashion we may obtain d1 as

d1 = q1(0)× log
(
q1(0)
q0(0)

)
+ q1(1)× log

(
q1(1)
q0(1)

)
. (3.65)

Substituting (3.64) and (3.65) into Proposition 4, and by using of Wald’s approximations
to α and β (by considering (3.50) and (3.51) as equalities), we can compute the ARL.

3.5.3.4 Simulation results

Table 3.2 summarizes the most important experimental results for all three cases.

3.5.3.4.1 Case I: Detailed simulation results The numerical approximations
to the minimal cost function corresponding to Case I are given in Figure 3.2, where
Figure 3.2.a shows the first N = 100 iterations, s1(π), s2(π), . . . , s100(π), obtained after
applying Proposition 3 to the sequential detection problem considered in Case I. The
converged minimal cost function, s(π), as well as the optimal thresholds, πL and πU,
are shown in Figure 3.2.b.
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a. Case I: The first N = 100 iterations after
applying Proposition 3 to the coin toss example.
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b. Case I: Minimal expected cost function, s(π),
with optimal thresholds πL = 0.14 and πU = 0.86.

Figure 3.2: Case I: Minimal expected cost, s(π), corresponding to both Case I.a and b.
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Even though the minimal cost functions of Case I.a and Case I.b are identical, their
ARLs are not. The distribution of the ARL as a function of the sampling cost is shown
in Figure 3.3.a and Figure 3.3.b for Case I.a and Case I.b, respectively. The reason why
we might expect Case I.b to have a lower ARL than Case I.a, is that we have additional
a priori information; and so the posterior sequence reaches the exit thresholds faster.
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a. Case I.a: Experimental ARL distribution.
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b. Case I.b: Experimental ARL distribution.

Figure 3.3: Case I: Experimental distributions of the ARLs.
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a. Case I.a: Successful sequential test, τ = 46.
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b. Case I.b: Successful sequential test, τ = 46.

Figure 3.4: Case I: Experimental realisations of the sequential detection test.

Two realisations of the sequential detection test with πU = 0.86 and πL = 0.14 are
given in Figure 3.4.a and Figure 3.4.b, both of which happened to terminate at τ = 46
(compare with the experimental ARL of 70 and 52 for Case I.a and Case I.b, respectively).
The correct decision was also made in both cases. It is interesting to note, however,
how close the sequence in Figure 3.4.a came to being incorrectly classified (at n = 13).

The experimental probability of error as a function of the sampling cost is shown in
Figure 3.5, along with the theoretical probability of error (using Wald’s approximations).
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Figure 3.5: Case I.a: Probability of error as a function of the cost of sampling, c.
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Figure 3.6: Case I.a: Experimental ARL as a function of the cost of sampling, c.

We notice that the experimental and theoretical results correspond fairly well over the
entire range of costs considered. We can now use Figure 3.5 to determine an appropriate
sampling cost for a desired probability of error. Recall that the results listed in Table 3.2
correspond to a cost of sampling c = 2× 10−3 = 0.2× 10−2.

The ARL as a function of the sampling cost for Case I.a is presented in Figure 3.6,
where it should be noted that the “theoretical” ARL has been computed using the
experimental probabilities of error, and not Wald’s approximations.

As we might have expected, the relationship between the ARL (of Figure 3.6) and the
probability of error (given in Figure 3.5) is nonlinear. In this way, a small relaxation of
the permissible probability of error can sometimes lead to a significant decrease in the
ARL. For example, the ARL is reduced from roughly 650 down to just 100 with a only
a 10 % increase in the probability of error. However, to further decrease the ARL from
100 down to 20 would require an additional 20 % increase to the probability of error.

Finally, the optimal thresholds, πU and πL, are given against the cost of sampling
in Figure 3.7 on the next page. Once again we note that the thresholds are symmetric
about the line π = 1/2, since equal costs of error were assumed in Case I.
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Figure 3.7: Case I.a: Optimal exit thresholds, πU and πL, as a function of the cost of
sampling, c.

Remark 6 With reference to Figure 3.7 we note that 0 ≤ πL ≤ 0.5 and 0.5 ≤ πU ≤ 1.
According to [89, (4.38) and (4.39), p. 71] this result holds in general. However, it
would appear as though the thresholds should instead be bounded according to

0 ≤ πL ≤
c0

c0 + c1
and c0

c0 + c1
≤ πU ≤ 1. (3.66)

Furthermore, whenever c0 = 0 we set πU = 0, and when c1 = 0 we set πL = 1. This
scenario is however of very little (if any) practical importance.

3.5.3.4.2 Case II: Detailed simulation results The minimal cost function for
Case II is presented in Figure 3.8.a, along with the distribution of the ARL in Fig-
ure 3.8.b.
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Figure 3.8: Case II: Minimal expected cost, s(π), and the distribution of the ARL.

We immediately notice that the optimal thresholds, πL = 0.36 and πU = 0.64, are
closer together than for Case I. Essentially this can be interpreted as meaning that, at
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Chapter 3 Sequential Detection

the time of stopping, we cannot be as sure about our decision as we were in Case I.
Therefore we can expect either (i) shorter ARLs, or (ii) higher probabilities of error, or
both. From Table 3.2 we see that Case II is indeed characterised by both shorter ARLs
and larger probabilities of error.

Two realisations of the sequential test for Case II with optimal thresholds πL = 0.36
and πU = 0.64 are given in Figure 3.9, with stopping times τ = 56 (slower than average)
and τ = 17 (faster than average). Both realisations resulted in the correct decision.
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b. Case II: Successful sequential test, τ = 17.

Figure 3.9: Case II: Experimental realisations of the sequential detection test.

Figure 3.10 presents the probability of error as a function of the sampling cost for
Case II. We once again notice a remarkable agreement between the theoretical and
experimental results.
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Figure 3.10: Case II: Probability of error as a function of the cost of sampling, c.

In comparison with the results presented for Case I (See Figure 3.5), we further notice
that the probability of error rises much faster as the cost of sampling is increased. This
might have been expected, since it is more difficult to distinguish between the two
hypotheses under the probability mass functions considered in Case II than under those
considered in Case I.
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The ARL as a function of the sampling cost for Case II is presented in Figure 3.11.
With reference to Figure 3.11, we may conclude that a “reasonable” range of sampling
costs to consider for Case II might be anything less than about 0.005, which may even
already exhibit too large a probability of error (> 0.4). Nevertheless, we have chosen to
keep the range of sampling costs fixed for all the simulations presented here in order to
facilitate an easy comparison between the different cases.
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Figure 3.11: Case II: Experimental ARL as a function of the cost of sampling, c.

The optimal thresholds, πL and πU, given in Figure 3.12, once again satisfies 0 ≤ πL ≤ 0.5
and 0.5 ≤ πU ≤ 1, since c0 = c1, which also causes the thresholds to be symmetric
about the line π = 0.5, as indicated previously.
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Figure 3.12: Case II: Optimal exit thresholds, πU and πL, as a function of the cost of
sampling, c.

Remark 7 It is very interesting to note that in both Figure 3.7 (of Case I) and
Figure 3.12 (of Case II), the lower exit threshold, πL, is exactly equal to the probability
of error, shown in Figure 3.5 and Figure 3.10, respectively. This result definitely does not
hold in general, but it might hold for equal costs of error—it remains to be established.
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3.5.3.4.3 Case III: Detailed simulation results Case III is characterised by
unequal costs of error, namely c0 = 1, and c1 = 3. We therefore expect to see a much
lower Type II probability of error than a Type I probability of error. Recall that a
Type II error is “falsely rejecting H1”, or equivalently, “falsely accepting H0”. From
this we may expect πL to be relatively small (so that we won’t accept H0 too hastily)
and similarly we may expect πU to be relatively small, so that we won’t easily reject
H1. This behaviour is reflected in the cost function for Case III, shown in Figure 3.13.a.
Since the overall cost of error in Case III is larger than for Case I (1 + 3 > 1 + 1),
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Figure 3.13: Case III: Minimal expected cost, s(π), and the distribution of the ARL.

the sequential detection problem of Case III effectively demands a lower probability of
error, and we may consequently expect a larger ARL than for Case I. With reference
to the results presented in Table 3.2 we see that Case III is indeed characterised by a
lower probability of error (and a correspondingly larger ARL) than Case I, and the
experimental ARL distribution for Case III is given in Figure 3.13.b.
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Figure 3.14: Case III: Experimental realisations of the sequential detection test.
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Chapter 3 Sequential Detection

Two realisations of the sequential test for Case III, with optimal thresholds πL = 0.04
and πU = 0.83, is given in Figure 3.14.a and Figure 3.14.b. The test in Figure 3.14.a
stopped at τ = 20, where it decided (incorrectly!) in favour of H1—a Type I error.
However, since the cost of making a Type I error is much lower than the cost of making
a Type II error, this may actually not be so undesirable. The test in Figure 3.14.b on
the other hand, stopped at τ = 121, at which time it (correctly) declared H1.
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Figure 3.15: Case III: Probability of error as a function of the cost of sampling, c.

It might at first seem somewhat surprising that the probability of error (shown in
Figure 3.15) grows more rapidly in Case III than in Case I (see Figure 3.5). However,
as previously mentioned, the cost of errors in Case III weighs twice as much as in
Case I. Therefore, a sampling cost of, say, c = 0.01 in Case III, would induce the same
probability of error as a cost, c = 0.02 in Case I.

The experimental ARL for Case III is given in Figure 3.16, which once again corresponds
very well with the theoretical results.

theoretical
experimental

A
ve
ra
ge

ru
n
le
n
g
th

(A
R
L
)

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Cost of sampling, c (×10−2)

0

100

200

300

400

Figure 3.16: Case III: Experimental ARL as a function of the cost of sampling, c.

Finally, the optimal thresholds πL and πU are given in Figure 3.17, from which it is clear
that the thresholds are indeed bounded as in (3.66). That is, 0 ≤ πL ≤ 0.25 ≤ πU ≤ 1.
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Figure 3.17: Case III: Optimal exit thresholds, πU and πL, as a function of the cost of
sampling, c.

3.6 SUMMARY

In this chapter we have presented the sequential detection task of deciding between
two simple statistical hypotheses. The optimal solution was given in Theorem 2; and
Proposition 3 presented a computational method to determine the minimal cost function,
s(π), from which the optimal thresholds, πL and πU, could be derived.

The relationship between the Bayesian formulation and Wald’s formulation was also
discussed briefly, followed by a number of illustrative examples of sequential detection
for a simple coin-tossing problem.
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Chapter 4

Sequential Land Cover
Classification

“Engineering is the art of modelling materials we do not wholly
understand, into shapes we cannot precisely analyse so as to
withstand forces we cannot properly assess, in such a way that
the public has no reason to expect the extent of our ignorance.”

A. R. Dykes
British Institution of Structural Engineers, 1976.

W E have seen that current research efforts in land cover classification are primarily
concerned with improving the classification accuracy, and that a need exists

to be able classify as quickly as possible. We have also seen that sequential detection
provides an attractive (indeed, an optimal) solution to the problem of minimising the
expected detection (or classification) delay for a given probability of error.

Our task in this chapter is then to combine these two observations, to arrive at
a sequential land cover classification strategy, in which the classification delay and
probability of error can easily be adjusted to suit a particular application.

4.1 INTRODUCTION

The first step towards the development of a sequential land cover classification strategy
necessarily requires some sort of statistical model for each of the land cover classes to
be considered. To keep the development simple, we will restrict our attention to the
two-class problem as presented in Chapter 3. More specifically, we will consider the
two classes described in section 2.4.4, namely residential areas and natural vegetation.
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Chapter 4 Sequential Land Cover Classification

4.1.1 Problem statement

A sequential land cover classification strategy is required. More specifically, we are
interested in the development of two-class sequential land cover classifiers in which the
relative importance between the classification delay and the probability of error must
be adjustable.

The development of such classifiers is made difficult by the heterogeneity of land cover
types, which are characterised by large intra-class variations, as well as the complex
remote sensing observation process. It is expected that the multispectral observations
considered in this study will be spectrally, temporally, as well as spatially dependent on
one another, making the development of a representative statistical model very difficult.

4.1.2 Chapter overview

The development of statistical land cover models will be considered in section 4.2,
where an i.i.d. model (section 4.2.1), as well as a time-varying model (section 4.2.2)
will be presented. Thereafter, the formulation of the land cover classification task will
be presented in section 4.3, where both maximum likelihood classification, as well as
sequential classification will be considered in section 4.3.1 and section 4.3.3, respectively.
Finally, the foundation for a multispectral, time-varying sequential classification strategy
will be developed in section 4.4.1.

4.2 STATISTICAL LAND COVER MODELS

Two types of statistical land cover models will be presented in this section, namely (i)
models for which it will be assumed that we obtain i.i.d. observations after applying
appropriate preprocessing, and (ii) time-varying models in which the probability density
functions will not be assumed identical for different times of the year.

Statistical land cover models will be developed for residential as well as vegetation
classes derived from MODIS spectral reflectance data, as presented in section 2.4.4,
where each MODIS pixel forms a multispectral time series as shown in Figure 4.1.
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Figure 4.1: Multispectral time series data representation for a single MODIS pixel.
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4.2.1 Semi-parametric stationary land cover model

Our primary aim for the first statistical land cover model is to describe (and model)
a sequence of i.i.d. real-valued observations {Zk; k = 1, 2, . . .} for each of the eight
spectral bands. To arrive at such a sequence of observations, we will have to preprocess
the observations from the MODIS sensor first.1 More specifically, for each spectral
band we will subtract the ensemble average (for a particular class) from the sequence of
observations to transform the time series into a pseudo-stationary, zero mean process.
Note that this preprocessing step was motivated by the preliminary data analysis of
the MODIS data, presented in section 2.4. Such a transformation obviously does not
cause arbitrary data to become independent or identically distributed, such that the
underlying assumption of independent observations remains important.

Note further that in order to develop a land cover classifier in which these preprocessing
steps are first applied, we will have to consider two sequences of observations for each
spectral band i; each preprocessed according to the assumed underlying land cover class.
That is, we must consider {Zθ

k ; k = 1, 2, . . .} where θ ∈ {0, 1} is the land cover class.

Recall that each MODIS pixel (which we will denote by X ) has eight associated
time series, such that Xj = {Xk; k = 1, 2, . . .}, where Xk ∈ R8 is the multispectral
observation at time k, for a particular pixel Xj . To be able to refer to single or collections
of spectral bands, we first need to define the projection operator pr on the sequence
x = (x1, x2, . . . , xN) as follows:

pr
i∈I

x := (xi)i∈I , (4.1)

such that pri x is simply the ith component of the sequence x. In this way we can
express a single band i or an ordered collection of bands I = (i1, i2, . . . , in) within a
particular pixel X as

X (I) :=
{

pr
i∈I

Xk; k = 1, 2, . . .
}
. (4.2)

Furthermore, the kth multispectral observation Xk corresponding to a particular pixel
X is then simply given by prk X , such that prk Xj(i) ≡ Xk(i) ⊆ Xj corresponds to the
kth observation in the ith spectral band of the jth pixel.

The expectation E(k,θ){X} is then used to denote the ensemble average of the multi-
spectral observation X for a particular class θ, and similarly, Eθ{X} is its mean. We
therefore preprocess a sequence of multispectral observations X = {Xk; k = 1, 2, . . .} in
the following manner

Zθ
k = Xk − E(k,θ){X}, θ ∈ {0, 1}, k = 1, 2, . . . , (4.3)

to obtain the multispectral i.i.d. sequences Zθ = {Zθ
k ; k = 1, 2, . . .}, for θ ∈ {0, 1}.

1Note that by the “observations from the MODIS sensor” we refer to the already-preprocessed-in-
some-manner eight-daily composite spectral reflectance data from the MCD43A4 product, and not the
raw data from the sensor itself.
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We can now (finally!) proceed to develop a statistical land cover model to describe the
sequences Zθ := {Zθ

k ; k = 1, 2, . . .} for each of the two land cover classes.

Let Dθ denote the set of pixels, that is, the set of all sequences of multispectral
observations {Xk; k = 1, 2, . . . , N} belonging to the land cover class θ. Furthermore,
we define the set of pixels Dθ(I) corresponding to a subset I of spectral bands as

Dθ(I) :=
{
X (I)

∣∣∣X ∈ Dθ}, θ ∈ {0, 1}. (4.4)

Next we introduce the sets (corresponding to θ = 0 and θ = 1) of all unordered,
preprocessed observations corresponding to a collection I of spectral bands as

Gθ(I) =
{
Z ∈ Zθ(I)

∣∣∣X (I) ∈ Dθ(I)
}
, θ ∈ {0, 1}, (4.5)

where Zθ and X are related by (4.3), and Zθ(I) is defined in the obvious manner:

Zθ(I) =
{

pr
i∈I

Zθ
k ; k = 1, 2, . . .

}
, θ ∈ {0, 1}. (4.6)

Note that the elements of Dθ are multispectral sequences, whereas the elements of Gθ are
multispectral observations, or vectors, and finally, that the elements of Gθ(i), 1 ≤ i ≤ 8
are real-valued scalars.

Finally then, we only have to determine the joint pdf of each set Gθ(I) to describe
(statistically) the data within each collection I of spectral bands, and for each land
cover class θ.

The preprocessing procedure (for the vegetation class, band 2) is shown in Figure 4.2.
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Figure 4.2: Preprocessing steps and i.i.d. model for vegetation class, band 2.

With the dataset described in section 2.4.4, D0 (corresponding to the residential class)
contains 333 pixels, each consisting of 368 multispectral observations, such that after
preprocessing, G0 consists of 333× 368 = 122, 544 multispectral observations (which is
equal to 122, 544× 8 = 980, 352 sample points). Similarly, G1, which corresponds to the
vegetation class, contains 592× 368 = 197, 136 multispectral observations (or 1, 577, 088
sample points).
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Chapter 4 Sequential Land Cover Classification

The single-band pdfs obtained in this manner are shown in Figure 4.3 for all eight
spectral bands, both land cover classes, and using all N = 368 observations. It should
be mentioned that the model is termed “semi-parametric”, since the data was not
assumed to be normally distributed. Instead, we employed kernel density estimation,
so that interesting features in the data could be captured more accurately.
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Figure 4.3: Marginal probability density functions for the i.i.d. land cover model.

With reference to Figure 4.3 we can already make a few observations: firstly, it seems
reasonable to expect that band 2 will perform better than other spectral bands during
classification, since the dichotomy between the two land cover classes seems to be the
greatest in this band. Similarly we might expect band 5 to be among the worst bands
to use for classification, since the classes appear to be the least separable in this band.

Secondly, it is interesting (albeit expected) to see that NDVI also provides poor
separability between the two land cover classes considered. Unfortunately this was
caused by the preprocessing of (4.3)—as shown in Figure 2.14.b on page 44, the mean
components of the two land cover classes are approximately equal under NDVI, so that
we lose almost all of the valuable information when we subtract the ensemble average.
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4.2.2 Semi-parametric time-varying land cover model

The second model that we will consider will be modified from section 4.2.1 to allow
for different pdfs at different times of the year. In other words, we will consider a
time-varying land cover model. More specifically we will assume that there is no inter-
annual variation within the two land cover classes considered, but that the sequence of
multispectral observations {Xk; k = 1, 2, . . .} are independently generated, at each time
step k, by a pdf qkθ , where θ is the true underlying land cover class. Furthermore, since
we assume no inter-annual variation, we have that qkθ = qk+j

θ ,∀k = 1, 2, . . . , and where
j is the (constant) number of observation periods during the year. In this study, we
have j = 45 observation periods during the year (see again Figure 4.1 on page 76).

As defined previously, let Dθ denote the set of all sequences of multispectral observations
X = {Xk; k = 1, 2, . . . , N} belonging to the land cover class θ.

Then, for each observation period k, 1 ≤ k ≤ j (with j the number of periods in a year),
and for each land cover class θ ∈ {0, 1}, we define the set Gk,θ as follows:

Gk,θ =
{
X ∈ pr

k+nj
X
∣∣∣X ∈ Dθ

}
, n = 0, 1, . . . , j ∈ N, 1 ≤ k ≤ j, (4.7)

such that Gk,θ corresponds to the set of all multispectral observations for a particular time
k during the year, and a particular land cover class, θ. Note that x ∈ Gk,θ =⇒ x ∈ R8.

Next, we consider the set of observations Gk,θ(I) corresponding to a particular time, k,
during the year, a particular class, θ, and a selection of p spectral bands, I:

Gk,θ(I) =
{

pr
i∈I

X = X(I)
∣∣∣X ∈ Gk,θ

}
, (4.8)

for which it clearly it holds that dim y = p, ∀y ∈ GIk,θ.

The multispectral time-varying land cover model is then obtained by finding the joint
pdf of Gk,θ(I) for each k, 1 ≤ k ≤ j = 45, and for each land cover class θ ∈ {0, 1}. In
particular, we have for any single spectral band i: Gk,θ(i) = {X(i)|X ∈ Gk,θ}, which is
used to derive a marginal pdf for the particular observation period and land cover class.

Time-varying land cover models of the type described in this section have been designed
for every possible combination of spectral bands in order to experimentally determine
the best single bands, as well as the best combinations of bands for classification.2 The
marginal pdfs for the vegetation class are presented in Figure 4.4 on the following page,
and for the residential class in Figure 4.5 on page 82.

4.3 STATISTICAL LAND COVER CLASSIFICATION

In this section we will formulate the land cover classification task using the statistical
models developed in section 4.2. In particular, we will perform maximum likelihood

2I.e, a total of 2× (8 + 28 + 56 + 70 + 56 + 28 + 8 + 1) = 510 time-varying models has been designed.
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Figure 4.4: Marginal probability density functions for vegetation class.
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Figure 4.5: Marginal probability density functions for residential class.
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classification on (i) all single band stationary i.i.d. models, (ii) various multispectral
stationary i.i.d. models, (iii) all single band time-varying models, (iv) all combinations
of time-varying multispectral models, and we will (v) perform sequential detection on
all the single band stationary i.i.d. models.

Due to several factors (the most important of which are the current time constraints,
as well as some remaining numerical difficulties discussed in section 4.4.2), we will
not perform multispectral sequential classification in this study, even though the
most important theoretical results and framework have already been given. The
implementation and evaluation of multispectral sequential methods are instead planned
for future work.

4.3.1 Single band maximum likelihood classification

Maximum likelihood classification (which coincides with MAP classification under the
assumption of equiprobable classes) has been performed on both the stationary and time-
varying models. In each case, it is assumed that we observe a (truncated) sequence of
real-valued observations {Xk(i); k = 1, 2, . . . , N}, where i is the particular spectral band,
which will be dropped from our notation in the rest of this section. That is, for some
spectral band i, we want to classify a sequence of observations {Xk; k = 1, 2, . . . , N} as
belonging either to class θ = 0 (residential), or to class θ = 1 (vegetation).

4.3.1.1 Stationary (i.i.d.) land cover model

Consider the sequence of real-valued observations {Xk; k = 1, 2, . . . , N} corresponding
to some spectral band i. After applying the preprocessing step given in (4.3), we
have two sequences {Zθ

k ; k = 1, 2, . . . , N}, θ = 0, 1 of preprocessed, i.i.d., real-valued
observations that obey one of two statistical hypotheses:

H0 : Z0
k ∼ Q0, k = 1, 2, . . .

versus
H1 : Z1

k ∼ Q1, k = 1, 2, . . .

where Q0 and Q1 are two probability distributions with associated probability densities
q0 and q1, respectively. Further assume that hypothesis H1 occurs with prior probability
π, and H0 with prior probability 1− π. To account for the preprocessing step of (4.3),
we must modify the hypothesis test as follows. We redefine the posterior sequence as

ππn = ππn−1q1(Z1
k)

ππn−1q1(Z1
k) + (1− ππn−1)q0(Z0

k) , n = 1, 2, . . . (4.9)

where ππ0 = π, and where both preprocessed sequences are now used to compute ππn.

The maximum likelihood solution to the classification task is then given by

δn =

0 (i.e. residential), if ππn ≤ 0.5
1 (i.e. vegetation), if ππn > 0.5.

(4.10)
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We might reasonably expect the classification accuracy of this model to be slightly
better than that of the minimum distance classifiers presented in section 2.4 (except
for bands such as NDVI, in which the preprocessing step removed most of the valuable
information), but the expected dependence between spectral bands, as well as the
dependence between consecutive observations have not been adequately dealt with.
Nevertheless, the classification results obtained when using this model are given in
section 5.1

4.3.1.2 Time-varying land cover model

With the time-varying model we once again obtain a sequence of real-valued observations
{Xk; k = 1, 2, . . . , N} corresponding to some spectral band i, that obeys one of two
statistical hypotheses:

H0 : Xk ∼ Qk
0, k = 1, 2, . . .

versus
H1 : Xk ∼ Qk

1, k = 1, 2, . . .

where for each observation period k, Qk
0 and Qk

1 are two probability distributions with
associated probability densities qk0 and qk1 , respectively. Further assume that hypothesis
H1 occurs with prior probability π, and H0 with prior probability 1− π.

Since we use the sequence of observations {Xk; k = 1, 2, . . .} directly, and since each
time period has a corresponding set of densities (depending on the underlying land
cover class), we need to once again redefine the posterior sequence in the following
manner:

ππn = ππn−1q
n
1 (Xn)

ππn−1q
n
1 (Xn) + (1− ππn−1)qn0 (Xn) , n = 1, 2, . . . , (4.11)

and where, as per usual, ππ0 = π.

The maximum likelihood solution of the time-varying classification task is then, similar
to (4.10), given by

δn =

0 (i.e. residential), if ππn ≤ 0.5
1 (i.e. vegetation), if ππn > 0.5,

(4.12)

with the only difference being the computation of the posterior sequence ππn.

One immediately apparent advantage of the time-varying models considered here (as
opposed to the stationary models of the previous section), is that the seasonal biases in
classification ability is preserved to some extent. For example, Figure 4.6 shows the
time-varying behaviour of the residential and vegetation classes for band 2, from which
it is clear that some periods of the year (such as spring and early summer) are more
separable than others.

In fact, different bands have different periods during which they are easily separable.
Figure 4.7 shows the Log Likelihood Ratios (LLRs) as a function of time for several
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Figure 4.6: Time-varying probability density function ambiguity for MODIS band 2.

vegetation pixels in four spectral bands, in which a sharp decline in the LLR indicates
that the classes are easily separable, and a plateau indicates that the classes are difficult
to separate.
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Figure 4.7: Improvement in the classification ability of the vegetation class during
different times of the year, for several spectral bands.

We can also evaluate the class separability based purely on the pdfs. The Bhattacharya
coefficient is commonly used as an indicator of class separability, and is given as:

Definition 1 (Bhattacharya coefficient) Let p and q denote two probability density
functions (not necessarily distinct). Then the Bhattacharya coefficient (BC) between p

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

85

 
 
 



Chapter 4 Sequential Land Cover Classification

and q is defined as:

BC(p, q) =
∞∫
−∞

√
p(x)q(x) dx. (4.13)

However, the Bhattacharya coefficient does not satisfy the triangle inequality, so we
choose to consider the related Hellinger distance instead (which does satisfy the triangle
inequality). The Hellinger distance (0 ≤ HD ≤ 1) between two (continuous or discrete)
probability density functions can be expressed in terms of the Bhattacharya coefficient:

Definition 2 (Hellinger distance) Let p and q denote two probability density func-
tions. Then the Hellinger distance between p and q is defined as:

HD(p, q) =
√

1−BC(p, q)

=
1−

∞∫
−∞

√
p(x)q(x) dx

1/2
. (4.14)

A Hellinger distance of HD ≈ 0 indicates that the classes are not separable, whereas
a distance HD ≈ 1 indicates that the classes are trivially separable. Figure 4.8 gives
the Hellinger distances between the residential and vegetation classes for the entire
year. Overall the results correspond well to those presented in Figure 4.7. However,
the plateaus of Figure 4.7 can be attributed to the temporal dependencies between
observations, which were not captured in the pdfs used to derive the Hellinger distances.
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Figure 4.8: Hellinger distances indicating class separability over time.

The classification results obtained when using this model are also given in section 5.1.

4.3.2 Multispectral maximum likelihood classification

The extension to the multispectral classification task is really quite simple (but the task of
estimating high dimensional probability density functions is definitely not). Nevertheless,
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assuming that we have representative multispectral models, the classification task is
exactly the same as in the single band case, except that the sequence of observations
{Xk; k = 1, 2, . . .} is now understood to contain multispectral observations: Xk ∈ Rp,
for some ordered collection I = (i1, i2, . . . , ip) of p spectral bands.

It is also perhaps worthwhile to give some empirical support or motivation for considering
multispectral models here. Figure 4.9 presents three randomly selected scatter diagrams
for dual-band multispectral observations at different times of the year.
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Figure 4.9: Scatter diagrams of several spectral bands, at different times of the year.

From Figure 4.9.a we can clearly see that there is a strong correlation between spectral
bands 1 and 2 at time k = 35, and that there is little correlation between bands 5 and 7
at time k = 22. Furthermore, bands 4 and 6 exhibit some correlation at time k = 32 (see
Figure 4.9.b), but not as much as shown in Figure 4.9.a. Of course, these are just some
of the many thousands of possibilities to consider—but it is almost impossible to give a
comprehensive account of the dependencies between the various spectral bands here.
Nevertheless, our aim was not to completely describe these inter-band dependencies,
but rather to point out that dependencies do indeed exist, so that we really should
consider multispectral models.

4.3.2.1 Stationary (i.i.d.) land cover model

The maximum likelihood classification using the stationary i.i.d. multispectral models
proceeds exactly as described in section 4.3.1.1, where it is now understood that Xk is
a multispectral observation (and hence Zθ

k , θ = 0, 1 are also multispectral observations),
and that q0 and q1 are the corresponding joint probability density functions.

The classification results (i.e., confusion matrices) of all the dual-band stationary i.i.d.
classifiers are given in Table 5.1 on page 94.
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4.3.2.2 Time-varying land cover model

The maximum likelihood classification using the time-varying multispectral models also
proceeds exactly as in section 4.3.1.2, where once again it is now understood that Xk is
a multispectral observation, and that q0 and q1 are corresponding joint pdfs.

All of the possible combinations of spectral bands have been considered for the time-
varying multispectral classification task, and the most important results are summarised
in Table 5.2 on page 95 and Figure 5.1 on page 95.

We would of course expect the time-varying multispectral models to perform better than
the single band models presented previously (as well as the stationary multispectral
models), since they model—at least partially—the dependence between various spectral
bands. As expected, Figure 5.1 on page 95 confirms that the time-varying multispectral
models perform better than the other models. However, the multispectral models still
fail to take the dependence (both temporal and spatial) between different multispectral
observations into account.

4.3.3 Sequential land cover classification

We will perform sequential land cover classification only for the stationary (i.i.d.) single
band models, since it is still not clear how to compute the minimal cost functions for the
time-varying formulation, or how to evaluate the multidimensional integrals accurately
enough—these issues are discussed in section 4.4.1 and section 4.4.2, respectively.

4.3.3.1 Stationary (i.i.d.) land cover model

The sequential land cover classification task requires us to first specify a set of costs: c0,
c1, and c. As discussed in 3.4.0.1.1, there are unfortunately no guidelines for choosing
the cost of sampling, c, in order to obtain a specific probability of error. Nevertheless,
assuming that we have a set of costs, the optimal threshold πL and πU can be obtained
for each spectral band by applying Proposition 3, and using the probability density
functions corresponding to the residential and vegetation classes, respectively. The
sequential classification task for a sequence of observations {Xk(i); k = 1, 2, . . .} for
some spectral band i then proceeds as follows.

At each time step k = 1, 2, . . ., an observation Xk(i) is obtained, after which the
preprocessing step given in (4.3) is applied. The posterior sequence, ππk is then computed
according to (4.9), and the following decision rule is applied:

δk =


0, if ππk ≤ πL

1, if ππk ≥ πU

continue sampling otherwise.
(4.15)

The results obtained are given in section 5.3, but refer to section 4.4.2 for a short
discussion on the current computational limitations of sequential land cover classification.
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4.4 ADDITIONAL CONSIDERATIONS

There are two important considerations concerning the sequential land cover classification
task that will be discussed in this section. The first concerns the difficulty of extending
the sequential classification algorithm to the time-varying land cover models, and the
second concerns numerical issues encountered when computing the optimal thresholds
πL and πU, even in the stationary (i.i.d.) case.

4.4.1 Modified time-varying sequential detection

The sequential classification task for the time-varying land cover models is considerably
more difficult than for the stationary i.i.d. land cover models. In fact, it has not quite
been solved yet. Nevertheless, we can obtain the structure of the optimal sequential
decision rule from Theorem 3. First, however, recall that the posterior sequence (ππn)
for a time-varying sequence of observations Zk = {Z1, Z2, . . .} was defined in (4.11) as

ππn = ππn−1q
n
1 (Zn)

ππn−1q
n
1 (Zn) + (1− ππn−1)qn0 (Zn) , n = 1, 2, . . . , (4.16)

which is clearly an inhomogeneous Markov process. To be able to apply Theorem 3,
we first need to homogenise the posterior sequence, for which we will roughly be
following the approach presented in [89]. Consider a homogeneous Markov process
{Xk; k = 0, 1, . . .}, with state space E = [0, 1]×Z. Let X0 =

(
π
m

)
, and consider a family

of measures {P(π,m);
(
π
m

)
∈ E} such that

P(π,m)

(
X0 =

(
π

m

))
= 1, (4.17)

and let E(π,m){·} denote expectation under P(π,m). Let A1 be a Borel subset of [0, 1].
For any A Borel subset of E, we have that A = A1 × Z1, where Z1 is a subset of the
integers. We have that

P(π,m)

(
Xk =

(
πxk

m+ k

)
∈ A

∣∣∣ X0 =
(
π

m

))
= P(π,m)

(
πxk ∈ A1

∣∣∣ X0 =
(
π

m

))
, (4.18)

where the posterior probability, given the previous state x = (π,m), is defined by

πx=(π,m)
n = πxn−1q

m+n
1 (Zm+n)

πxn−1q
m+n
1 (Zm+n) + (1− πxn−1)qm+n

0 (Zm+n) , n = 1, 2, . . . . (4.19)

Now let the optimal expected reward v(x) for the sequential time-varying land cover
classification task be defined as

v(x) = sup
τ∈T

Ex
{
g(Xτ )− cτ

}
(4.20)
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for some function g : R× Z→ R× Z, which is equivalent to writing

v(π,m) = sup
τ∈T

E(π,m)

{
g

(
πxτ

m+ τ

)
− cτ

}
. (4.21)

Then, by Theorem 3 we have the following optimal stopping time for any m ∈ Z:

τ ∗m = inf
{
k ≥ 0

∣∣∣g( πxk
m+ k

)
= v

(
πxk

m+ k

)}
. (4.22)

By setting m = 0 (which can be interpreted as requiring that we start observing from
time m+ 1 = 1), we obtain the time-varying optimal stopping time:

τopt = inf
{
k ≥ 0

∣∣∣g(ππk
k

)
= v

(
ππk
k

)}
= inf

{
k ≥ 0

∣∣∣gk(ππk ) = vk(ππk )
}
, (4.23)

which is reminiscent of the optimal stopping time (3.14) for the i.i.d. case. The only
difference here is that for the time-varying case gk(x) and vk(x) are functions of both
the state variable x and the time step k, while in the i.i.d. case g(x) and v(x) are
functions of only the state variable x. Consequently we must now find a sequence of
optimal thresholds to determine the optimal stopping time for the time-varying land
cover classification task:

τopt =
{
k ≥ 0

∣∣∣ππk /∈ (πL(k), πU(k)
)}
. (4.24)

The structure of the optimal stopping rule (4.24) can be confirmed in [23], in which a very
different approach was followed than what we have used here. However, a computational
method to determine the optimal thresholds in (4.24) has not yet been completed. In
fact, [23] used the time-varying (what he referred to as generally distributed) framework
to develop the optimal SPRT with dependent observations, but as pointed out in [85],
the problem of computing its corresponding time-varying thresholds remains unsolved.

It is also worth mentioning that the optimal stopping of an inhomogeneous Markov
process is considered in some detail in [88, pp. 15–19], but it seems as though the
problem of computing the optimal thresholds was again not given adequate attention.

4.4.2 Numerical sensitivity of sequential classification

The computational strategy (Proposition 3) to compute the minimal cost function s(π)
for a sequence of i.i.d. observations first requires that we find the limit of a sequence of
functions: limn→∞ sn(π)→ s(π), after which we can obtain the optimal thresholds πL
and πU by evaluating the infimum and supremum expressions as given in (3.16) and
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(3.17), respectively. However, both steps necessatrily involve numerical approximations;
first to approximate s(π), and then to approximate πL and πU.

The cost of sampling, c, together with the costs c0 and c1 further place a lower bound
on πL, and an upper bound on πU as follows:

πL ≥ {π|c1π = c}, and πU ≤ {π|c0(1− π) = c}, (4.25)

since s(π) ≥ min
{

min{c1π, c0(1 − π)}, c
}
. The smallest possible cost function is

therefore given by s(π) = min
{

min{c1π, c0(1− π)}, c
}
, which is shown in Figure 4.10.

s(π)

πL πU
π

c c

c0(1− π)c1π

{π|c1π = c} {π|c0(1− π) = c}

Figure 4.10: The structure of the smallest possible minimal cost function s(π), for
which πL = {π|c1π = c} and πU = {π|c0(1− π) = c} are uniquely defined.

The above observation can be used as a guideline to determine an appropriate cost of
sampling for a particular problem, but it also highlights some remaining difficulties
with the sequential land cover classification task, described next.

As mentioned previously, there are several ‘difficult’ numerical steps involved with
the computation of s(π), including the approximation of s(π) by evaluating only a
finite number of intermediate functions sn(π), n = 1, 2, . . . , N , the numerical evaluation
of integrals when computing the necessary expectations, the approximation of the
intermediate functions sn(π) by cubic spline interpolants (we must be able to evaluate
sn(π) for any π ∈ [0, 1]), as well as the approximation of infima and suprema by minima
and maxima, respectively. All of these approximations limit the numerical accuracy that
our current Matlab implementation can attain, which for the land cover classification
task at least, is apparently not yet sufficient (see the results presented in section 5.3).

We can easily show (experimentally) that in the sequential classification formulation
task presented in section 4.3.2.1, a log likelihood ratio of about +15 or −15 is required
for decent (but not great) classification accuracy. Such an accuracy requires that
log10

(
πL/(1 − πL)

)
≤ −15 =⇒ πL ≤ 1 × 10−15 ≈ 0. Similarly it can be shown that

πU ≥ 1 − 1 × 10−15 ≈ 1. By (4.25) this further implies that the cost of sampling
is bounded by c ≤ 1 × 10−15. However, the current Matlab implementation often
returns thresholds outside of the bounds specified by (4.25), which although leading to
consistent classification results, are ultimately not particularly useful or insightful.
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4.5 SUMMARY

In this chapter we have presented several statistical land cover models, including
stationary (i.i.d.), time-varying, single band and multispectral models. The pdfs of
several models were shown, from where we could form an initial idea of which bands
would perform well during classification, and which would not. The seasonal variation
of the datasets (and hence the motivation for developing time-varying models) were also
shown, along with the times during which the land cover classes are easily separable
and times in which they are not.

The maximum likelihood classification task for each type of model was then formulated,
followed by the formulation of the single band, stationary (i.i.d.) sequential land cover
classification task.

We further introduced the time-varying sequential classification task along with the
structure of the optimal sequential decision rule, and finally we pointed out a number of
remaining issues concerning the numerical approximation of the minimal cost functions,
and their corresponding optimal thresholds.
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Chapter 5

Experimental Results

“If we know that our individual errors and fluctuations
follow the magic bell-shaped curve exactly, then the
resulting estimates are known to have almost all the
nice properties that people have been able to think of.”

John W. Tukey, 1965

T HE EXPERIMENTAL RESULTS for several of the classifiers that were de-
scribed in Chapter 4, as well as the experimental results obtained when using

a linear Support Vector Machine (SVM), are presented and discussed in this chapter.
There are several interesting observations that can be made, the most important of
which are (i) that statistical methods can indeed be used to perform reliable land cover
classification, (ii) that the time-varying models perform better than the stationary
models, (iii) that there is little gain in using more than a year’s worth of data, and
lastly (iv) that multispectral models drastically increase the classification accuracy as
compared to single band models.

Throughout this chapter we will present the classification results for each classifier in
terms of its corresponding confusion matrix :

C =
TP FP
FN TN

 ,
where it will be understood that the True Positives (TPs) refer to the percentage of
vegetation pixels correctly classified, and that the True Negatives (TNs) refer to the
percentage residential pixels correctly classified. The False Positives (FPs) and False
Negatives (FNs) are then defined similarly. Clearly it must hold that TP + FN = 100,
and that FP + TN = 100. Furthermore, we will associate with each confusion matrix a
classification metric: (FP+FN)/2, which can be interpreted as the probability of error.
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Chapter 5 Experimental Results

5.1 MAXIMUM LIKELIHOOD CLASSIFICATION

5.1.1 Stationary (i.i.d.) classification

The results for the maximum likelihood classification of the stationary (i.i.d.) classifiers
as described in section 4.3.1.1 (for the single band classifiers) and section 4.3.2.1 (for the
multispectral classifiers) are summarised in Table 5.3 on page 96. The results are only
shown for single and dual band classifiers, since it would take an impractical amount of
space to report on all the multispectral classifiers. Nevertheless, the confusion matrix
(in %) for the i.i.d. multispectral classifier using all the spectral bands, including NDVI,
is given as 97.3 3.6

2.7 96.4

 , (5.1)

with an associated classification metric of (FP+FN)/2 = 3.15 %. This is a good
indication of the best possible performance of a multispectral maximum likelihood
classifier using the stationary (i.i.d.) models.

With reference to the classification results presented in Table 5.3, we can clearly see
that band 2 has the best classification accuracy, while band 7 and NDVI have the worst.
The poor performance of band 7 and NDVI is mainly as a result of the preprocessing
step of (4.3), since both classes are characterised by noisy sinusoidal signals with the
same mean, and differing amplitudes. Furthermore, we can see that in general, dual
band classifiers perform much better than the single band classifiers, and that dual band
classifiers using bands 2 & 5, and bands 2 & 7 exhibit the best classification accuracy.

The classification metrics for the single and dual band stationary (i.i.d.) classifiers are
given in Table 5.1, from which it is perhaps easier to quickly gauge classifier performance.

Table 5.1: Classification metrics for the stationary, i.i.d. land cover model, defined as
(FP + FN)/2, for maximum likelihood classification with N = 368 observations.

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 NDVI

Band 1 24.3 6.3 13.6 7.1 18.1 2.5 1.9 6.3
Band 2 6.3 8.2 6.6 7.8 5.3 7.7 5.0 6.2
Band 3 13.6 6.6 21.5 10.8 10.8 2.6 4.4 5.3
Band 4 7.1 7.8 10.8 13.7 8.7 1.6 4.4 5.6
Band 5 18.1 5.3 10.8 8.7 27.9 10.4 11.2 14.4
Band 6 2.5 7.7 2.6 1.6 10.4 28.1 16.9 19.0
Band 7 1.9 5.0 4.4 4.4 11.2 16.9 46.9 16.9
NDVI 6.3 6.2 5.3 5.6 14.4 19.0 16.9 51.3

Average 10.0 6.6 9.5 7.5 13.4 11.1 13.5 15.6
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Chapter 5 Experimental Results

5.1.2 Time-varying maximum likelihood classification

The classification results for the time-varying classifiers described in section 4.3.1.2 and
section 4.3.2.2 are summarised in Table 5.2 and Table 5.4 on page 97. Once again we
see that band 2 is a pretty good band to consider, but unlike the results presented
previously in section 5.1.1, band 7 and NDVI are now among the best bands to consider.
In fact, the single band classifier using NDVI has the best performance of all the single
band classifiers. The best dual band classifiers for the time-varying case are those
corresponding to bands 4 & 6, followed closely by bands 1 & 7.

Table 5.2: Classification metrics, defined as (FP + FN)/2, for time-varying maximum
likelihood classification with N = 368 observations.

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 NDVI

Band 1 16.0 2.6 9.6 5.5 8.1 2.3 1.8 2.5
Band 2 2.6 6.9 4.1 5.1 2.4 4.2 3.5 2.4
Band 3 9.6 4.1 15.0 9.3 7.9 2.3 3.0 3.2
Band 4 5.5 5.1 9.3 12.2 6.7 1.1 2.9 3.3
Band 5 8.1 2.4 7.9 6.7 18.8 8.2 6.9 4.3
Band 6 2.3 4.2 2.3 1.1 8.2 26.4 6.9 5.9
Band 7 1.8 3.5 3.0 2.9 6.9 6.9 14.0 6.9
NDVI 2.5 2.4 3.2 3.3 4.3 5.9 6.9 6.5

Average 6.1 3.9 6.8 5.8 8.0 7.2 5.7 4.4

worst
average
best
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Figure 5.1: Multispectral maximum likelihood classification performance with an
increasing number of spectral bands.

To see the effect of considering more spectral bands, all the possible combinations of
multispectral classifiers were designed and evaluated, and the results are summarised in
Figure 5.1, from which we can see that the worst combination of three bands performs
as well as the best single band classifier.
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Chapter 5 Experimental Results

5.2 SUPPORT VECTOR MACHINE CLASSIFICATION

In an attempt to verify—albeit somewhat crudely—the results obtained by the statistical
land cover classification methods presented previously, several linear Support Vector
Machines (SVMs) were trained, and their results are presented in this section.

5.2.1 Introduction to linear support vector machines

Statistical learning theory and SVMs in particular were largely developed by Vapnik
starting in the late nineteen seventies [115], and SVMs have since been applied success-
fully to a myriad of classification and regression problems. For classification, SVMs
typically map non-separable data into a higher dimensional feature space, in which
the data hopefully becomes linearly separable, and then proceed to classify based on
a ‘learned’ separating hyperplane directly in the feature space. To map the data into
some higher dimensional feature space, polynomial kernels and radial basis functions
are commonly used. However, we will only consider linear SVMs here.

Assume that we are given a linearly separable training dataset D consisting of N
input-output pairs (xi, θi), i = 1, 2, . . . , N :

D =
{

(xi, θi)|xi ∈ Rp, θi ∈ {−1, 1}
}
, (5.2)

where θi is a label denoting class membership, and xi is a p-dimensional real-valued
feature vector. Suppose now that we have some hyperplane which separates the positive
and negative examples perfectly. The points x which lie on the hyperplane satisfy
w ·x + b = 0, where w is normal to the hyperplane, b/‖w‖ is the perpendicular distance
from the hyperplane to the origin, and ‖w‖ is the Euclidean norm of w. If we denote by
d+ and d− the shortest distances from the separating hyperplane to the closest positive
and negative data points, respectively, then the classifier margin is defined as d+ + d−.

Margin

w

Origin

b

‖w‖

H2

H1

Figure 5.2: Linear separating hyperplanes for a separable dataset; the support vectors
are circled. Adapted from [17].

The linear SVM (also sometimes called the optimal margin classifier) then simply finds
the separating hyperplane with the largest margin. In other words, w and b are chosen
such that the distance between w ·x + b = 1 (which corresponds to hyperplane H2) and
w · x + b = −1 (which corresponds to hyperplane H1) is maximised. Note further that
the data points on H1 and H2 are called the support vectors (circled in Figure 5.2).
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Chapter 5 Experimental Results

The problem of maximising the distance between hyperplanes H1 and H2 (i.e. maximis-
ing the geometric margin) can be reduced to the following optimisation problem:

min
w,b

1
2‖w‖

2 (5.3)

such that θi(w · x + b) ≥ 1, i = 1, 2, . . . , N (5.4)

which is commonly referred to as the primal problem. The solution is actually obtained
by solving the so-called dual problem, which corresponds to the Lagrangian reformulation
of the primal problem. There are two reasons for rather considering the dual problem,
namely the constraints (5.4) are replaced by constraints on the Lagrange multipliers
themselves, which is much easier to handle, and in the dual problem the data only
appear in the form of inner products in both the training and testing algorithms, which
allow for the efficient generalisation to nonlinear SVMs. Nevertheless, the dual problem
will not be discussed here, and interested readers are instead referred to the excellent
and comprehensive tutorial by Burges [17].

We must however mention that the above formulation holds only for linearly separable
datasets, and we will have to consider linear SVMs for non-separable data as well. To
do this, we can reformulate the primal optimisation problem (5.3) by introducing slack
variables, ξi ≥ 0, which measure the degree of misclassification of the data point xi:

min
w,b

1
2‖w‖

2 + C
N∑
i=1

ξi (5.5)

such that θi(w · x + b) ≥ 1− ξi, i = 1, 2, . . . , N (5.6)

where C is a user-defined penalty of misclassification. Note that if xi is misclassified,
then ξi > 1, so that ∑i ξi is an upper bound on the number of training errors [17].

5.2.2 Feature selection

Motivated by the preliminary data analysis of the MODIS data presented in section 2.4,
the mean and amplitude of the noisy sinusoidal signals within each spectral band were
identified as possible features on which to perform classification. These features can
easily be estimated by the Fast Fourier Transform (FFT). In this way, a single band
linear SVM will have a 2-dimensional feature space, and a dual band SVM will have a
four dimensional feature space, consisting of the individual means and amplitudes of
the two spectral bands. A major advantage of the SVM is that it can effectively handle
very large dimensional feature spaces—which other classifiers typically can not.

The estimation accuracy of the FFT improves with an increasing number of observations,
so that we would expect that the classification accuracy of a linear SVM which uses these
features must also improve with an increasing number of observations. Consequently,
since our aim with the development of linear SVMs is primarily to validate the maximum
likelihood classification results of the previous sections, we will only consider the full-
length (i.e. N = 368) SVM results here.
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Chapter 5 Experimental Results

A total of 100 randomly sampled training sets were extracted from the dataset, and
each one consisted of roughly 50 % of the data. In each case the remaining data were
of course used for validation or testing purposes. The classification results presented
here (in Table 5.5 and Table 5.6) are then the average performance of the 100 trials.

5.2.3 Support vector machine classification results

With reference to Table 5.5, we can see that band 7 and NDVI are the best to consider
for single band classification using linear SVMs, which might be due to the fact that
the most intra-class variability occurs along the mean components, and not along the
amplitudes of the various signals (this is also clear, at least for NDVI, from Figure 5.3).

Table 5.5: Classification metrics, defined as (FP + FN)/2, for the single and dual band
linear support vector machine classifiers with N = 368 observations.

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 NDVI

Band 1 23.5 8.5 12.1 10.7 20.9 1.2 1.7 15.9
Band 2 8.5 14.3 9.3 9.8 2.5 4.8 2.7 9.5
Band 3 12.1 9.3 19.9 14.6 15.6 2.3 1.1 9.6
Band 4 10.7 9.8 14.6 16.3 13.5 2.7 0.9 10.3
Band 5 20.9 2.5 15.6 13.5 48.0 13.4 1.9 46.3
Band 6 1.2 4.8 2.3 2.7 13.4 34.0 1.5 32.3
Band 7 1.7 2.7 1.1 0.9 1.9 1.5 8.5 8.8
NDVI 15.9 9.5 9.6 10.3 46.3 32.3 8.8 5.6

Average 11.8 7.7 10.6 9.8 20.3 11.5 3.4 17.3

Figure 5.3 shows one instance of a training (Figure 5.3.a) and validation set (Figure 5.3.b),
where N = 368 observations were used to estimate the mean and amplitude of each of
the sequences of observations for NDVI.
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a. 2-Dimensional feature space: training set.
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b. 2-Dimensional feature space: validation set.

Figure 5.3: Single band linear support vector machine—training and validation sets in
the 2-dimensional feature space for NDVI.
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That is, each point in the feature space was derived from a total of 368 observations. We
can see that the two classes are indeed separable (although not perfectly) in this feature
space, but that a nonlinear kernel might have made the data even more separable in
some other space.

5.2.4 Support vector machines vs. sequential classification

SVMs and sequential methods have quite distinct strengths and weaknesses: SVMs can
easily support high dimensional data, such that it is almost effortless to extend the
current project to hyperspectral data (as opposed to the multispectral data considered
here). In addition, SVMs are relatively well suited to the multiclass classification task.
This is in direct contrast with the sequential methods, for which it is often extremely
difficult (and sometimes impossible) to reliably infer very high dimensional probability
distributions, and for which it is not clear how to find optimal exit thresholds for the
multiclass problem, and it is actually still unknown if such optimal thresholds even
exist for m ≥ 3 classes.

Nevertheless, the SVMs are not particularly well suited to answer the question of how
quickly we can perform reliable classification, since it is inherently a fixed window size
approach. As mentioned earlier, the sequential methods excel at this task (indeed, they
provide the optimal solution to the delay-accuracy tradeoff), and we further know that
sequential methods (and SPRTs in particular) exhibit the smallest expected runlength
of all methods (both sequential and otherwise, including SVMs) for a given probability
of error, assuming of course that we are concerned with the binary classification task
with accurate statistical information.

5.3 SEQUENTIAL CLASSIFICATION

The results for the sequential classification task presented in section 4.3.3 are given
and discussed in this section. However, before presenting these results, it is perhaps
worthwhile to consider the time-varying maximum likelihood classification task as a
function of the number of observations, which is shown in Figure 5.4. Note that this
classification task is different from the sequential classification task, since here we stop
after a fixed number of observations, whereas with sequential classification we only stop
once the likelihood ratio exceeds some predetermined threshold.

With reference to Figure 5.4 we can see that there is very little gain (in terms of
classification accuracy) after the first year has elapsed. This result seems plausible,
since the spectral responses of both residential and vegetation surfaces are expected to
be roughly the same from one year to the next. Even though this result was not strictly
obtained in the sequential classification framework, it supports the idea that sequential
classification is a good idea, and furthermore, it seems to suggest that we can expect a
good sequential classification strategy to classify within the first year of observation.
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Figure 5.4: Maximum likelihood classification metric, (FP + FN)/2, over all the single
band classifiers (including NDVI) as a function of the number of observations, N .

Four sets of sequential classification results (in increasing order of sampling cost) are
presented in Table 5.7 on page 106. With reference to the results for bands 2 and 4, we
see that in Cases I, II and III the sequential classification tests terminate after about
one year, and their classification accuracies are comparable to that of the maximum
likelihood classifiers, also presented in Table 5.7. However, the sampling cost of Case IV
is clearly too large for these particular bands, since the classification accuracy drops
significantly for both bands (which might have been expected with the tests only taking
about three observations on average).

Note also the interesting behaviour of the sequential tests, in that the average number of
observations for band 7 and NDVI are drastically lowered with an increase in sampling
cost, without really affecting the classification accuracy. For example, in Case III,
band 7 has an ARL of 11.9, and NDVI has an ARL of only 8.3, compared to roughly
100 observations each for bands 1 and 3, and about 50 each for bands 2 and 4.

Even though the results presented in Table 5.7 generally seem to be consistent with
what we might expect (such as that an increase in the cost of sampling must lead to
a reduction in the ARL as well as a decrease in the classification accuracy), they are
nevertheless not quite satisfactory.

Firstly, the optimal thresholds seem to be larger (or smaller) than suggested by the
bounds of (4.25). For example, with a cost of sampling c = 10−20 (as in Case I), and
assuming unit costs c0 = c1 = 1, we have that −19.7 ≤ log10

(
π/(1− π)

)
≤ 19.7, but

clearly most of the optimal thresholds returned by our current implementation (i.e. −36
and ∞) exceed these boundaries. In particular we also notice the apparent dependence
of the optimal boundaries on the tolerance, tol = 10−36, which is the smallest discernible
unit of measure that is used when approximating the infima and suprema. This would
suggest that with a smaller threshold, we would see correspondingly smaller thresholds,
i.e. the thresholds tend to 0 and 1, respectively, which cannot be correct.

Secondly, the observation that such extreme thresholds are required to obtain adequate
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classification accuracy is somewhat disconcerting. One possible explanation for the
apparent overconfidence of the sequential classification tests is that the temporal
dependence between consecutive observations are not taken into consideration. In other
words, the independence assumption might lead to overoptimistic likelihood ratios, and
hence might lead to such extreme thresholds as given in Table 5.7. Nevertheless, it is
extremely difficult to diagnose or determine the exact origin of the above mentioned
issues, but future work will focus on the systematic analysis of each part of the algorithm.

In spite of the remaining issues with the sequential classification implementation, we
nevertheless determined the optimal thresholds for a range of sampling costs, and the
results (for πU at least) are presented in Figure 5.5.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Cost of sampling, c

0 1.0
×10−3

0.995

1.005

1.0
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band 5
band 6
band 7
NDVI

impossible thresholds

Figure 5.5: Optimal upper exit thresholds, πU, for all the single band classifiers (including
NDVI) as a function of the cost of sampling, c.

From Figure 5.5 we can see that the thresholds decrease monotonically with an increase
in the cost of sampling—which is an expected result. However, what is not expected is
the apparent step-wise structure of the thresholds, along with the smooth behaviour for
π ∈ [0.998, 1.0]. Also note that some of the thresholds (marked as ‘impossible’) violate
the bounds given in (4.25). The lower thresholds are characterised by similar behaviour.

The classification metrics for the various bands are shown in Figure 5.6, where we once
again see the step-wise behaviour. Such step-wise behaviour can also be seen in several
of the bands presented in Table 5.7—for example, band 4 has the following cost-metric
pairs: (c,m) = (2× 10−20, 11.8), (2× 10−15, 11.8), (5× 10−4, 11.8), and (5× 10−3, 22.3).
It is also interesting to note that the large jumps in the classification metrics are closely
correlated with the first instance when the thresholds of Figure 5.5 drop below 1.0.

The ARLs as a function of the cost of sampling are shown in Figure 5.7. Notice that
in general it seems as though the higher the classification metric, the sooner the ARL
decreases to some steady state value. In other words, for most choices of the cost of
sampling, few observations are wasted on bands that are not promising—their tests
terminate early with large errors, but the expectation is that more observations would
not really have improved the accuracy of the tests anyway. This behaviour can also
clearly be seen from the results of band 7 and NDVI presented in Table 5.7, for which
their ARLs are all less than 12 observations for Cases III and IV.
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Figure 5.6: Sequential classification metric, (FP + FN)/2, over all the single band
classifiers (including NDVI) as a function of the cost of sampling, c.
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Figure 5.7: ARLs of all the single band classifiers as a function of the cost of sampling, c.

Without conducting more experiments on different datasets or perhaps verifying the
Matlab implementation in a systematic manner, it is difficult to assert which observa-
tions of this chapter hold true in general, and which are simply artifacts of the specific
dataset or current implementation. Nevertheless, many of the observations are at least
plausible, and sequential classification was used successfully to lower the number of
observations substantially, without decreasing the classification accuracy significantly.
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Chapter 6

Conclusions and Future Research

When a traveller reaches a fork in the road,
the `1-norm tells him to take either one way or the other,
but the `2-norm instructs him to head off into the bushes.

John F. Claerbout and Francis Muir, 1973

T HREE PRIMARY OBJECTIVES were identified at the outset of this study,
namely (i) to develop statistical land cover models, (ii) to design a sequential land

cover classification algorithm, and (iii) to determine how quickly we can perform reliable
land cover classification using coarse resolution MODIS surface spectral reflectance time
series data. This chapter details the extent to which these objectives have been satisfied,
highlights what has been achieved, and discusses what still remains to be done.

6.1 DISCUSSION OF WORK

This section details the extent to which our three primary objectives have been satisfied.

6.1.1 Development of statistical land cover models

Several statistical land cover models for residential as well as vegetation classes were
developed in section 4.2, including single band, multispectral, stationary (i.i.d.), as well
as time-varying models. These models adequately capture the inter-band dependence,
but do not take the spatial or temporal dependence between observations into account,
which lead to difficulties during the sequential classification task. For example, the naïve
assumption of i.i.d. observations makes it difficult to interpret the ‘optimal’ thresholds,
or to estimate a realistic probability of error.
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These models are further described by several (possibly joint) pdfs, so that they are
well suited to the maximum likelihood classification task. With reference to the results
presented in section 5.1, we can now confidently answer Key question 3 posed in
section 1.1.3. That is, reliable land cover classification is possible by using statistical
methods such as the maximum likelihood approach. However, it should be kept in
mind that statistical methods are not particularly well suited to take ancillary data
into consideration, nor are they able to handle very high-dimensional data such as
hyperspectral (or even just high-dimensional multispectral) data.

Nevertheless, statistical models can prove very useful to get an idea of the behaviour
of the data (and consequently of the behaviour of the underlying process), which is
sometimes more difficult to do with other types of models such as e.g. neural networks.

6.1.2 Design of a sequential classification algorithm

A sequential classification algorithm was developed for the stationary (i.i.d.) land cover
models, in which it is possible to adjust the tradeoff between the classification accuracy
and the detection delay by specifying a set of costs, c = {c0, c1, c}. In this way, the
problem statement posed in section 1.1.3 has been satisfied.

However, as discussed in section 4.4 and section 5.3, several issues still exist which
makes the reliable application of sequential classification difficult. among these issues
are the numerical sensitivity of the algorithm (which is made worse by the incorrect
assumption of i.i.d. observations), the difficulties of evaluating multidimensional integrals
for multispectral sequential classification, as well as the uncertainty of how to physically
compute the cost functions (and optimal thresholds) for the time-varying land cover
models.

6.1.3 The speed of land cover classification

To answer Key question 1 (“How quickly can we perform land cover classification?”),
we have considered an experimental, fixed size approach, whose results are presented in
Figure 5.4 from which we can see that—for our particular land cover models—one year
(or 45 observations) seems to be sufficient for good classification accuracy, and that the
classification accuracy improves very slowly after the first year.

We have also attempted to answer Key question 1 by using sequential classification,
for which some of the results are summarised in Table 5.7, which also seems to suggest
that an average of one year leads to comparable classification accuracy as that obtained
when using all eight years.

It should be kept in mind, however, that these results were obtained by using the single
band, stationary (i.i.d.) land cover models, and that Figure 5.1 would suggest that we
will be able to decide much quicker with multispectral models.
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6.2 CONCLUSIONS

In this study it was shown that coarse resolution MODIS surface spectral reflectance
time series data can be used to effectively distinguish between residential and vegetation
land cover classes, and that discrimination is even possible by considering only the mean
FFT component (for bands 1 through 6) and the seasonal component for band 7 and
NDVI. Furthermore, it was shown that land cover classification is easier (more reliable)
during some periods of the year than others, and that these periods are different for
each of the various spectral bands.

A computational strategy was also proposed and proved to compute the minimal cost
function (and the associated optimal thresholds) for the i.i.d. sequential classification
task, but a more robust approach is perhaps required for the multispectral land cover
classification task, since numerical difficulties were encountered even for the single band
classification task.

Finally, we conclude that reliable statistical land cover classification is indeed possible—
albeit rather tricky—and that sequential classification can significantly reduce the
required number of observations without affecting the classification accuracy too much.

6.3 FUTURE RESEARCH

There are several directions in which the current study can be extended, apart from
the ultimate goal of moving over to change detection.

• The temporal and spatial dependence of the data should ideally be incorporated
into the statistical models, and it is expected that such models would give more
realistic optimal thresholds, as well as lead to improved classification accuracy.

• It is worthwhile to implement and investigate the multispectral sequential clas-
sification task by using Monte Carlo methods or something similar, since it is
expected that the sequential classification of multispectral models will be able to
terminate much sooner than the results presented here.

• The extension of sequential classification to the time-varying case should also be
considered, since we have already shown the superiority of this model as compared
to the i.i.d. model in terms of classification accuracy.

• It might also be of great practical significance to extend and investigate the
sequential land cover classification task for more than two hypotheses, in which
case the work by Dragalin et al. [28] might be useful, in which a complete
generalisation of multiple-hypothesis SPRTs (MSPRTs) are given, which are
asymptotically optimal w.r.t. the sample size, as well as any positive moment of
the stopping time distribution. They also show how their approach can be utilised
with nuisance parameters (with composite hypotheses), and in their companion
paper [29] they give accurate asymptotic expansions for the expected sample size.
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