

MIMO CHANNEL MODELLING FOR INDOOR WIRELESS COMMUNICATIONS

BTJ MAHARAJ

2007

MIMO CHANNEL MODELLING FOR INDOOR WIRELESS COMMUNICATIONS

By

Bodhaswar Tikanath Jugpershad MAHARAJ

Promotor: Professor Dr L.P. Linde (University of Pretoria, South Africa)

Submitted in partial fulfillment of the requirements for the degree

Philosophiae Doctor (Electronic)

in the

Department of Electrical, Electronic & Computer Engineering

in the

School of Engineering

in the

Faculty of Engineering, Built Environment & Information Technology

UNIVERSITY OF PRETORIA

September 2007

SUMMARY

MIMO CHANNEL MODELLING FOR INDOOR WIRELESS COMMUNICATIONS

by

Bodhaswar Tikanath Jugpershad MAHARAJ Promotor: Professor Dr L.P. Linde (University of Pretoria, South Africa) Department of Electrical, Electronic & Computer Engineering Philosophiae Doctor (Electronic)

This thesis investigates multiple-input-multiple-output (MIMO) channel modelling for a wideband indoor environment. Initially the theoretical basis of geometric modelling for a typical indoor environment is looked at, and a space-time model is formulated. The transmit and receive antenna correlation is then separated and is expressed in terms of antenna element spacing, the scattering parameter, mean angle of arrival and number of antenna elements employed. These parameters are used to analyze their effect on the capacity for this environment. Then the wideband indoor channel operating at center frequencies of 2.4 GHz and 5.2 GHz is investigated. The concept of MIMO frequency scaling is introduced and applied to the data obtained in the measurement campaign undertaken at the University of Pretoria. Issues of frequency scaling of capacity, spatial correlation and the joint RX/TX double direction channel response for this indoor environment are investigated. The maximum entropy (ME) approach to MIMO channel modelling is investigated and a new basis is developed for the determination of the covariance matrix when only the RX/TX covariance is known. Finally, results comparing this model with the established Kronecker model and its application for the joint RX/TX spatial power spectra, using a beamformer, are evaluated. Conclusions are then drawn and future research opportunities are highlighted.

Keywords:

MIMO channel modelling, frequency scaling, capacity, correlation and maximum entropy.

OPSOMMING

MIMO CHANNEL MODELLING FOR INDOOR WIRELESS COMMUNICATIONS deur Bodhaswar Tikanath Jugpershad MAHARAJ Promotor: Professor Dr L.P. Linde (University of Pretoria, South Africa) Departement Elektriese, Elektroniese & Rekenaar Ingenieurswese Philosophiae Doctor (Elektronies)

Veelvuldige-inset-veelvuldige-uitset (VIVU) kanaalmodellering vir 'n wyeband binnemuurse omgewing word in hierdie proefskrif ondersoek. Die teoretiese basis van meetkundige modellering vir 'n tipiese binnemuurse omgewing is aanvanklik ondersoek en 'n ruimte-tyd model is geformuleer. Die stuur- en ontvangsantenna korrelasie is toe geskei en in terme van die antenna elementspasiëring, die verstrooiingsparameter, die gemiddelde aankomshoek en die aantal antennas wat gebruik is, uitgedruk. Hierdie parameters word gebruik om hulle effek op die kapasiteit van die kanaal te bepaal. Die gebruik van 2.4 GHz en 5.2 GHz in die wyeband binnemuurse omgewing is ondersoek. Die konsep van VIVU frekwensieskalering is met behulp van metings by die Universiteit van Pretoria getoets en Frekwensieskalering van kapasiteit, ruimtelike korrelasie en die gesamentlike toegepas. ontvang/stuur dubbelrigtingkanaalrespons is in hierdie omgewing ondersoek. Die maksimum entropie benadering vir VIVU kanaalmodellering is ondersoek en 'n nuwe basis vir die bepaling van die kovariansie matriks wanneer slegs die stuur/ontvang kovariansie bekend is, is ontwikkel. Laastens word resultate van hierdie model met die gevestigde Kronecker model vergelyk. Die toepassing van die gesamentlike stuur/ontvang ruimtelike drywingspektra word met behulp van 'n bundelvormer evalueer. Die studie maak gevolgtrekkings en lig moontlike toekomstige navorsingsgeleenthede uit.

Sleutelwoorde:

VIVU kanaalmodellering, frekwensieskalering, kapasiteit, korrelasie en maksimum entropie.

I dedicate this work to

- The glory of our creator for giving me the intellect, energy and opportunity
- The Jugpershad Jewnath Family they ventured, struggled and succeed in humility

ACKNOWLEDGEMENTS

I would like to thank

- Professor Louis P. Linde for his support and encouragement
- Professor Jon W. Wallace for his technical guidance, insight and collaborative support
- The National Research Foundation (NRF), Thuthuka Program
- Professor Michael A. Jensen, Brigham Young University, USA
- My wife Pravina, and children Avikar and Akshay TJ

CONTENTS

Снарте	r one	- INTRODUCTION	1
1.1	Backgr	ound and Motivation	1
1.2	Author	's Contributions and Outputs	3
	1.2.1	Research Contribution	3
	1.2.2	Journal Publications	4
	1.2.3	Conference Proceedings	4
	1.2.4	Invited Paper	5
	1.2.5	Additional Contributions	5
1.3	Outline	e of Thesis	б
СНАРТЕ	r TWO	- CHANNEL MODELLING: AN OVERVIEW	8
2.1	MIMO	Communication System Model	8
2.2	MIMO	System Capacity	10
	2.2.1	Water-Filling Capacity	13
	2.2.2	Uninformed Transmitter Capacity	14
	2.2.3	Diversity and Spatial Multiplexing	14
2.3	Multip	ath Characterization	15
	2.3.1	Beamforming	15
	2.3.2	Bartlett Beamformer	16
	2.3.3	Capon Beamformer	17
	2.3.4	Double-Directional Channel Model	18
	2.3.5	Ray Tracing	19
	2.3.6	Geometric Models	20
2.4	Conclu	sion	24
СНАРТЕ	R THR	EE - GEOMETRIC MODELLING	25
3.1	Introdu	ction	25

Contents

3.2	Model	Description	26
3.3	Model	Analysis	28
3.4	Results	3	33
3.5	Conclu	sion	38
СНАРТЕ	ER FOU	R - WIDEBAND MIMO MEASUREMENT SYSTEM	39
4.1	Introdu	iction	39
4.2	System	Overview	40
4.3	System	Components	42
	4.3.1	Transmitter Subsystem	42
	4.3.2	Receiver Subsystem	43
	4.3.3	Synchronization Module	45
	4.3.4	Monopole Antennas	48
4.4	System	Deployment	50
	4.4.1	Wideband Probing	50
	4.4.2	Calibration Procedure	55
	4.4.3	Measurement Environment	57
	4.4.4	Data Collection	59
4.5	Conclu	sion	61
СНАРТЕ	er FIVE	E - DATA ANALYSIS AND MODEL ASSESSMENT	62
5.1	Capaci	ty Modelling	65
	5.1.1	Introduction	65
	5.1.2	Model Description	65
	5.1.3	Results	67
5.2	Modell	ing Spatial Correlation	74
	5.2.1	Introduction	74
	5.2.2	Model Description	74
	5.2.3	Results	76
5.3	Double	Directional Channel Modelling	81
	5.3.1	Introduction	81
	5.3.2	Model Description	82
	5.3.3	Results	83
			00
5.4	Conclu	8101	89

CONTENTS

	5.4.1 5.4.2 5.4.3	Capacity Modelling	89 89 89
СНАРТЕ	R SIX	- MAXIMUM ENTROPY MODELLING	91
6.1	Introdu	ction	91
6.2	Model	Description	92
6.3	Data Pı	ocessing	95
6.4	Results		96
6.5	Conclu	sion	104
CHAPTER SEVEN - CONCLUSION 105			
7.1	Summa	ıry	105
7.2	Future	Recommendations	107
Refere	References 10		

LIST OF ABBREVIATIONS

2D	2-Dimensional
A/D	Analogue-to-Digital
AOA	Angle of Arrival
AOD	Angle of Departure
b/s/Hz	Bits per second per Hertz
ccdf	Complementary Cumulative Distribution Function
CIR	Channel Impulse Response
CIRC	Circular Array
COTS	Conventional Off-the-Shelf Components
CSI	Channel State Information
DDCIR	Double Directional Channel Impulse Response
DOA	Direction of Arrival
DOD	Direction of Departure
EVD	Eigenvalue Value Decomposition
EVT1/2	Event 1 or 2
FC	Full Covariance
I/O	Input-Output
IF	Intermediate Frequency
ISM	Industrial Scientific and Medical Bands
KM	Kronecker Model
LIN	Linear Array
LNA	Low Noise Amplifier
LO	Local Oscillator

LOS	Line-Of-Sight
ME	Maximum Entropy
MIMO	Multiple-Input-Multiple-Output
MIO	Multifunction Input-Output
MSE	Mean Square Error
NLOS	Non Line of Sight
PC	Personal Computer
PDF	Probability Distribution Function
RF	Radio Frequency
RX	Receiver
SIMO	Single-Input-Multiple-Output
SISO	Single-Input-Single-Output
SNR	Signal-to-Noise-Ratio
SP8T	Single-Pole-8-Throw
SVD	Singular Value Decomposition
SW	Switch
SYNC	Synchronization Unit
TOA	Time of Arrival
TTL	Transistor-Transistor Logic
TX	Transistor
UCA	Uniform Circular Array
ULA	Uniform Linear Array
UP	University of Pretoria
UPS	Uninterruptible Power Supply
UWB	Ultra-wideband
VIVU	Veelvuldige-Inset-Veelvuldige-Uitset
WB	Wideband

LIST OF FIGURES

2.1	Block diagram of a generic MIMO wireless system	9
2.2	Ergodic capacity for a SISO channel vs SNR	11
2.3	Comparison of Shannon capacity for SISO and ergodic capacity for Rayleigh	
	fading MIMO Channels.	13
2.4	Uniform circular 8 element antenna array layout	17
3.1	Geometric Model for a 2x2 MIMO channel	27
3.2	ccdf versus capacity for varying antenna elements, $n_T = n_R$	34
3.3	ccdf versus capacity for varying antenna spacing, $d=d_{mn}$	35
3.4	ccdf versus capacity for varying scattering parameter, k	35
3.5	ccdf versus capacity for varying RX antenna orientation, β	37
3.6	ccdf versus capacity for varying $SNR(\rho)$ in dB	37
4.1	High level diagram of the wideband MIMO channel sounder	41
4.2	High level block diagram of the TX subsystem	42
4.3	Transmit RF module	43
4.4	High level block diagram of the RX subsystem	44
4.5	Block Diagram of the RX subsystem connections	44
4.6	Simplified schematic of the SYNC unit	46
4.7	Top view of SYNC Unit	47
4.8	Reset/Trigger switch allowing simultaneous reset of two SYNC units	49
4.9	Front view of SYNC Unit	50
4.10	Rubidium frequency standard	50
4.11	A 2.4 GHz Monopole antenna	51
4.12	2.4 GHz Linear eight element array	51
4.13	2.4 GHz Circular eight element array	52
4.14	A 5.2 GHz Monopole antenna	52
4.15	5.2 GHz Linear eight element array	53

4.16	5.2 GHz Circular eight element array	53
4.17	Grid plate layout for fixing monopole antenna array	54
4.18	Example of multitone signal plotted versus time and frequency	56
4.19	Procedures for system calibration: (a) original measurement setup, (b)	
	single-channel calibration, and (c) direct matrix calibration	57
4.20	System constructed and deployed at the University of Pretoria (UP)	58
4.21	Measurement scenario in CEFIM at UP	59
4.22	Switching sequence for measurements at each location	60
4.23	Channel matrix representation	60
5.1	Capacity PDF for the MIMO system at 2.4 GHz with different array	
	configurations	62
5.2	Capacity PDF for the MIMO system at 5.2 GHz with different array	
	configurations	63
5.3	Eigenvalue CDFs for linear arrays at 2.4 GHz and 5.2 GHz	64
5.4	Eigenvalue CDFs for circular arrays at 2.4 GHz and 5.2 GHz	64
5.5	Capacity versus excitation bandwidth at location 7 for ULA	69
5.6	Capacity versus excitation bandwidth at location 9 for ULA	69
5.7	Average capacity at each of the measurement locations using ULA	70
5.8	Capacity versus excitation bandwidth at location 8 for circular array	71
5.9	Capacity versus excitation bandwidth at location 9 for circular array	71
5.10	Average capacity at each of the measurement locations in CEFIM	73
5.11	Frequency scaling relationship of capacities in WB indoor environment	73
5.12	Calculated relative correlation coefficients with curve fit for RX location 4	77
5.13	Calculated relative correlation coefficients with curve fit for RX location 7	77
5.14	Calculated relative correlation coefficients with curve fit for TX location 4	78
5.15	Calculated relative correlation coefficients with curve fit for TX location 8	78
5.16	Relationship of RX decorrelation with respect to frequency scaling	80
5.17	Relationship of TX decorrelation with respect to frequency scaling	80
5.18	Spatial spectra for Location 4 employing the Bartlett Beamformer	84
5.19	Spatial spectra for Location 4 employing the Capon Beamformer	84
5.20	Spectral contour for Location 4 employing the Bartlett Beamformer	86
5.21	Spectral contour for Location 4 employing the Capon Beamformer	86

5.22	Spatial spectra for Location 7 employing the Bartlett Beamformer	87
5.23	Spatial spectra for Location 7 employing the Capon Beamformer	87
5.24	Spatial spectra for Location 11 employing the Bartlett Beamformer	88
5.25	Spatial spectra for Location 11 employing the Capon Beamformer	88
6.1	Dominant singular eigenvalues for Location 3 at 2.4 GHz carrier frequency	98
6.2	Dominant singular eigenvalues for Location 7 at 2.4 GHz carrier frequency	98
6.3	Dominant singular eigenvalues for Location 3 at 5.2 GHz carrier frequency	99
6.4	Dominant singular eigenvalues for Location 7 at 5.2 GHz carrier frequency	99
6.5	Spatial power spectra for FC and ME at 2.4 GHz at Location 3	100
6.6	Spatial power spectra for FC and ME at 2.4 GHz at Location 7	101
6.7	Spatial power spectra for FC and ME at 5.2 GHz at Location 3	102
6.8	Spatial power spectra for FC and ME at 5.2 GHz at location 7	103

LIST OF TABLES

4.1	Parameters of the example multitone signal	55
5.1	TX/RX Pairwise Average Correlation of Capacity for ULA	68
5.2	TX Pairwise Average Correlation of Capacity for UCA	72
5.3	RX Pairwise Average Correlation of Capacity for UCA	72
5.4	Decorrelation Parameter (b) and Error wrt Wavelength (λ) at RX	79
5.5	Decorrelation Parameter (b) and Error wrt Wavelength (λ) at TX	79
5.6	Correlation coefficient of 2.4 GHz and 5.2 GHz spectra	85
6.1	Correlation coefficient of spatial power spectra at 2.4 GHz	97
6.2	Correlation coefficient of spatial power spectra at 5.2 GHz	97