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SUMMARY 

SUBCELLULAR EFFECTS OF PAVETAMINE ON RAT CARDIOMYOCYTES 

 

By 

 

CHARLOTTE ELIZABETH ELLIS 

 

 

Promoter:  Professor C.J. Botha 

Department: Department of Paraclinical Sciences, Faculty of Veterinary Science, University 

of Pretoria 

 

Co-promoter: Professor R.A. Meintjes 

Department: Department of Anatomy and Physiology, Faculty of Veterinary Science, 

University of Pretoria 

Degree: PhD 

 

 

The aim of this study was to investigate the mode of action of pavetamine on rat 

cardiomyocytes. Pavetamine is the causative agent of gousiekte (“quick-disease”), a disease 

of ruminants characterized by acute heart failure following ingestion of certain rubiaceous 

plants. Two in vitro rat cardiomyocyte models were utilized in this study, namely the rat 

embryonic cardiac cell line, H9c2, and primary neonatal rat cardiomyocytes.  

 

Cytotoxicity of pavetamine was evaluated in H9c2 cells using the MTT and LDH release 

assays. The eventual cell death of H9c2 cells was due to necrosis, with LDH release into the 

culture medium after exposure to pavetamine for 72 h. Pavetamine did not induce apoptosis, 

as the typical features of apoptosis were not observed. Electron microscopy was employed to 

study ultrastructural alterations caused by pavetamine in H9c2 cells. The mitochondria and 

sarcoplasmic reticula showed abnormalities after 48 h exposure of the cells to pavetamine. 

Abundant secondary lysosomes with electron dense material were present in treated cells. 
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Numerous vacuoles were also present in treated cells, indicative of autophagy. During this 

exposure time, the nuclei appeared normal, with no chromatin condensation as would be 

expected for apoptosis. Abnormalities in the morphology of the nuclei were only evident after 

72 h exposure. The nuclei became fragmented and plasma membrane blebbing occurred. The 

mitochondrial membrane potential was investigated with a fluorescent probe, which 

demonstrated that pavetamine caused significant hyperpolarization of the mitochondrial 

membrane, in contrast to the depolarization caused by apoptotic inducers. Pavetamine did not 

cause opening of the mitochondrial permeability transition pore, because cyclosporine A, 

which is an inhibitor of the mitochondrial permeability transition pore, did not reduce the 

cytotoxicity of pavetamine significantly. 

 

Fluorescent probes were used to investigate subcellular changes induced by pavetamine in 

H9c2 cells. The mitochondria and sarcoplasmic reticula showed abnormal features compared 

to the control cells, which is consistent with the electron microscopy studies. The lysosomes 

of treated cells were more abundant and enlarged. The activity of cytosolic hexosaminidase 

was nearly three times higher in the treated cells than in the control cells, which suggested 

increased lysosomal membrane permeability. The activity of acid phosphatase was also 

increased in comparison to the control cells. In addition, the organization of the cytoskeletal 

F-actin of treated cells was severely affected by pavetamine.  

 

Rat neonatal cardiomyocytes were labelled with antibodies to detect the three major 

contractile proteins (titin, actin and myosin) and cytoskeletal proteins (F-actin, desmin and β-

tubulin). Cells treated with pavetamine had degraded myosin and titin, with altered 

morphology of sarcomeric actin. Vacuoles appeared in the β-tubulin network, but the 

appearance of desmin was normal. F-actin was severely disrupted in cardiomyocytes treated 

with pavetamine and was degraded or even absent in treated cells. Ultrastructurally, the 

sarcomeres of rat neonatal cardiomyocytes exposed to pavetamine were disorganized and 

disengaged from the Z-lines, which can also be observed in the hearts of ruminants that have 

died of gousiekte 
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It is concluded that the pathological alteration to the major contractile and cytoskeleton 

proteins caused by pavetamine could explain the cardiac dysfunction that characterizes 

gousiekte. F-actin is involved in protein synthesis and therefore can play a role in the 

inhibition of protein synthesis in the myocardium of ruminants suffering from gousiekte. 

Apart from inhibition of protein synthesis in the heart, there is also increased degradation of 

cardiac proteins in an animal with gousiekte. The mitochondrial damage will lead to an 

energy deficiency and possibly to generation of reactive oxygen species. The sarcoplasmic 

reticula are involved in protein synthesis and any damage to them will affect protein 

synthesis, folding and post-translational modifications. This will activate the unfolded protein 

response (UPR) and sarcoplasmic reticula-associated protein degradation (ERAD). If the 

oxidizing environment of the sarcoplasmic reticula is disturbed, it will activate the ubiquitin-

proteasome pathway (UPP) to clear aggregated and misfolded proteins. Lastly, the 

mitochondria, sarcoplasmic reticula and F-actin are involved in calcium homeostasis. Any 

damage to these organelles will have a profound influence on calcium flux in the heart and 

will further contribute to the contractile dysfunction that characterizes gousiekte.   
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