Characterization of process and radiation induced defects in Si and Ge using conventional deep level transient spectroscopy (DLTS) and Laplace-DLTS

By

Cloud Nyamhere

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY (PH.D) {PHILOSOPHIE DOCTOR} in Physics

in the Faculty of Natural and Agriculture Sciences at the University Of Pretoria

September 2009

Supervisor/Promoter: Prof. F.D. Auret

Co-supervisor: Dr W.E. Meyer

© University of Pretoria

Characterization of process and radiation induced defects in Si and Ge using conventional deep level transient spectroscopy (DLTS) and Laplace-DLTS

by

Cloud Nyamhere

Submitted in partial fulfillment of the requirements for the degree of (PH.D) in Physics in the Faculty of Natural and Agricultural Science, University of Pretoria

Supervisor/Promoter: Prof. F.D. Auret Co-Supervisor: Dr. W.E. Meyer

Defects in semiconductors are crucial to device operation, as they can either be beneficial or detrimental to the device operation depending on the application. For efficient devices it is important to characterize the defects in semiconductors so that those defects that are bad are eliminated and those that are useful can be controllably introduced.

In this thesis, deep level transient spectroscopy (DLTS) and high-resolution Laplace-DLTS (LDLTS) have been used to characterize deep level defects introduced by energetic particles (electrons or Ar ions) and during metallization using electron beam deposition on silicon and germanium. Schottky diodes were used to form the space-charge region required in DLTS and LDLTS measurements. From the DLTS and LDLTS measurements the activation enthalpy required to ionize a trap, $E_{\rm T}$, and defect carrier capture cross-section σ were deduced. LDLTS proved particularly useful since it could separate deep levels with closely spaced energy levels (the limit being defects with emission rates separated by a factor greater than 2), which was not possible by conventional DLTS.

The majority carrier traps in gallium-, boron- and phosphorus-doped silicon introduced after MeV electron irradiation and during electron beam deposition have been characterized, and several defects such as the divacancy, *A*-center and *E*-center and other complex defects were observed after the two processes. Annealing studies

have shown that all deep levels are removed in silicon after annealing between 500° C - 600° C.

Both electron and hole traps introduced in n-type germanium by electron irradiation, Ar sputtering and after electron beam deposition have been characterized using DLTS and LDLTS. The *E*-center is the most common defect introduced in germanium after MeV electron irradiation and during electron beam deposition. Annealing shows that defects in germanium were removed by low thermal budget of between 350° C - 400° C and it has been deduced that the *E*-center (V-Sb) in germanium anneals by diffusion.

The identification of some of the defects was achieved by using defect properties such as defect signature, introduction rates, annealing behavior and annealing mechanisms, and then comparing these properties to theoretical defect models and results from other techniques.

Acknowledgements

I would like to acknowledge the following people for their valuable contribution towards the completion of my Ph.D work.

- My academic promoter, Prof. F.D. Auret and co-promoter Dr. W.E. Meyer for their tireless guidance, discussions and support.
- The head of department, Prof. J.B. Malherbe, for arranging some part-time work in the department, which supported my studies financially.
- The South African National Research Foundation and Oppenheimer Memorial Trust for the Bursaries that enabled my study to progress smoothly.
- Fellow senior students in the physics department, M. Diale, A. Chawanda, W. Mtangi, P.J. Janse van Rensberg, S. Coehlo and G. Webb amongst others for the encouragement and moral support.
- My parents and family for their never ending love and encouragement throughout my studies and beyond.

Contents

Chapter 1: Introduction

Introduction	1
References	4

Chapter 2: Semiconductor Theory

2.1 Introduction	.5
2.2 The Crystal and Band Structure of Si and Ge	.5
2.3 Metal – Semiconductor Junctions	.9
2.3.1 Schottky Barrier Junctions	.9
2.3.2 Depletion Layer	. 15
2.3.3 Ohmic Contacts	17
2.4 Current Transport Mechanism in Metal – Semiconductor Junctions	. 20
References	.23

Chapter 3: Defects in Semiconductors

3.1 Introduction	24
3.2 Primary Defects	25
3.2.1 Vacancy Defect	25
3.2.2 Interstitial Defect	27
3.3 Secondary Defects	27
3.3.1 The Divacancy	28
3.3.2 The <i>E</i> -Center	29
3.3.3 The A-Center	29
3.3.4 Other complex defects	29
3.4 Theory of Displacement of Atoms in Solids	31
3.4.1 Energy-Loss Mechanisms	31
3.4.2 Defect Production by Irradiation.	35
3.4.3 Defect Annealing Mechanisms	39
References	42

Chapter 4: DLTS and Laplace-DLTS Aspects

4.1 Introduction	44
4.2 Emission and Capture of Carriers from Deep Levels	44
4.3 Deep Level Transient Spectroscopy (DLTS)	49
4.3.1 Capacitance Transient Processing	49
4.3.2 DLTS Principles	54
4.3.3 Defect Depth Profiling	58
4.4 Laplace-DLTS	59
4.4.1 Laplace-DLTS Principles	60
4.5 Electric Field Effect	64
References	67

Chapter 5: Experimental Techniques

5.1 Introduction
5.2 Sample Preparations
5.2.1 Silicon Cleaning Process
5.2.2 Germanium Cleaning Process
5.2.3 Ohmic and Schottky Contact Fabrication 70
5.3 Sample Irradiation73
5.3.1 Electron Irradiation
5.3.2 Low Energy Noble Gas Irradiation74
5.4 Electrical Characterization Techniques
5.4.1 Current-Voltage & Capacitance-Voltage Measurement System
5.4.2 Deep Level Transient Spectroscopy and Laplace-DLTS Systems75
5.5 Annealing Apparatus77
References

Chapter 6: Results

Radiation-induced defects in Ga- or B-doped silicon by 1 MeV electron irradiation

6.1 Introduction	.79
6.2 Experimental Procedure	80
6.3 Results	80
6.3.1 Conventional DLTS versus Laplace-DLTS	81

6.3.2 Electron irradiation-induced defects in Ga-doped Czochralski	
grown Si	. 82
6.3.3 Electron irradiation-induced defects in B-doped epitaxial	
grown Si	. 86
6.3.4 Electron irradiation-induced defects in B-doped Czochralski	
grown Si	88
6.4 Summary and Conclusion	91
References	92
List of Publications	. 93

Chapter 7: Results

Defects introduced in n- and p-type Si during contacts fabrication by electron beam deposition (EBD)

7.1 Introduction	94
7.2 Experimental Procedure	95
7.3 Results	96
7.3.1 Electron beam deposition induced defects in p-type	
silicon	96
7.3.2 Electron beam deposition induced defects in n-type	
silicon	101
7.4 Summary and Conclusion	106
References	107
List of Publications	108

Chapter 8: Results

Radiation-induced defects in antimony-doped Ge after electron irradiation	
8.1 Introduction	. 109
8.2 Experimental Procedure	. 109
8.3 Results	
8.3.1 Defects introduced in Ge after electron irradiation with different	
doses	.110
8.3.2 Dependence of electron irradiation induced defects in Ge on doping	
impurity density	.116
8.3.3 Thermal stability of defects in Ge at room temperature	. 120

8.4 Summary and Conclusion	
References	124
List of Publications	

Chapter 9: Results

Defects introduced in antimony-doped germanium during metallization by electron beam deposition

9.1 Introduction	126
9.2 Experimental Procedure	127
9.3 Published and other Results	
9.3.1 Defects introduced by electron beam deposition in n-type Ge	
9.3.2 Annealing mechanism of <i>E</i> (0.38), the <i>E</i> -center	130
9.4 Summary and Conclusion	
References	143
List of Publications	

Chapter 10: Results

Defects introduced in antimony-doped germanium after sputtering by 3 keV Ar ions 10.1 Introduction. 10.2 Experimental Procedure. 10.3 Results. 10.3 Results. 10.3.1 Defects introduced in Ge after electron irradiation with different doses 146 10.3.2 Annealing behavior of the electron and hole traps. 10.4 Summary and Conclusion. 153 References. 154 List of Publications. 155 Chapter 11: Conclusions.