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ABSTRACT 
 

Stochastic differential equations (SDE’s) are used to describe systems which are 

influenced by randomness. Here, randomness is modelled as some external 

source interacting with the system, thus ensuring that the stochastic differential 

equation provides a more realistic mathematical model of the system under 

investigation than deterministic differential equations. 

 

The behaviour of the physical system can often be described by probability and 

thus understanding the theory of SDE’s requires the familiarity of advanced 

probability theory and stochastic processes. 

 

SDE’s have found applications in chemistry, physical and engineering sciences, 

microelectronics and economics. But recently, there has been an increase in the 

use of SDE’s in other areas like social sciences, computational biology and 

finance. In modern financial practice, asset prices are modelled by means of 

stochastic processes. Thus, continuous-time stochastic calculus plays a central 

role in financial modelling. 

 

The theory and application of interest rate modelling is one of the most important 

areas of modern finance. For example, SDE’s are used to price bonds and to 

explain the term structure of interest rates. Commonly used models include the 

Cox-Ingersoll-Ross model; the Hull-White model; and Heath-Jarrow-Morton 

model.   

 

Since there has been an expansion in the range and volume of interest rate 

related products being traded in the international financial markets in the past 

decade, it has become important for investment banks, other financial 

institutions, government and corporate treasury offices to require ever more 

accurate, objective and scientific forms for the pricing, hedging and general risk 

management of the resulting positions. 
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Similar to ordinary differential equations, many SDE’s that appear in practical 

applications cannot be solved explicitly and therefore require the use of 

numerical methods. For example, to price an American put option, one requires 

the numerical solution of a free-boundary partial differential equation. 

 

There are various approaches to solving SDE’s numerically. Monte Carlo 

methods could be used whereby the physical system is simulated directly using a 

sequence of random numbers. Another method involves the discretisation of both 

the time and space variables. However, the most efficient and widely applicable 

approach to solving SDE’s involves the discretisation of the time variable only 

and thus generating approximate values of the sample paths at the discretisation 

times. 

 

This paper highlights some of the various numerical methods that can be used to 

solve stochastic differential equations. These numerical methods are based on 

the simulation of sample paths of time discrete approximations. It also highlights 

how these methods can be derived from the Taylor expansion of the SDE, thus 

providing opportunities to derive more advanced numerical schemes. 
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BASIC NOTATION 
 

t  time 

T  maturity date 

tW   Wiener process 

tS   stochastic process 

tX   stochastic process 

Var (X) variance of the random variable X 

E(X)  the expectation of the random variable X 

( , )N tμ∼  Normal distributed with expectationμ  and variance t 

∼   with distribution 

tF   filtration 

tΔ   small increment in time t 

nΔ   small increment in n 
2L   set of square-integrable functions 

Ω   sample space 

[a,b]  closed interval { xεR : a x b≤ ≤ } 

R   set of real numbers 

Cov (X) covariance of the random variable X 

a Aε   a  is an element of the set A  

| x |   the Euclidean norm of a vector xε dR  

:f R R→  a function f  from R  toR  

a. s.  almost surely 

w. p. 1  with probability 1 

P  probability 
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CHAPTER I - INTRODUCTION 
 

Differential equations are used to explain and model the behaviour of systems 

over time. They have been applied to many areas from chemistry and physics to 

engineering to medicine and finance. For example, the growth of a population 

can be modelled over short periods of time by assuming that the population 

grows continuously with time at a rate proportional to the number of individuals 

present at that time: 

 

( ) ( )dN t
N t

dt
λ= , 

 

where ( )N t  is the number of individuals at time t  and λ  is the constant birth rate 

of the population. The motion of a swinging pendulum can be described by the 

following second-order differential equation (Burden and Faires, 1997): 

 
2

2 sin 0g
t L
θ θ∂
− =

∂
, 

 

where L  is the length of the pendulum, g  is the gravitational constant of the 

earth and θ  is the angle the pendulum makes with the vertical equilibrium 

position. In the theory of the spread of contagious diseases, the following 

elementary differential equation can be used to predict the number of infected 

individuals in a population at any time: 

 

( ) ( ) ( )=
dy t

k x t y t
dt

, 

 

where ( )x t  is the number of susceptible individuals at time t  and ( )y t  is the 

number of infected individuals (Burden and Faires, 1997). 
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Many ordinary differential equations can be solved analytically, and when this is 

not possible, numerical methods are used. The use of numerical methods has 

increased in the recent years with the increase in computing power of personal 

computers. 

 

Ordinary differential equations have proved useful in explaining the behaviour of 

systems over time. However, when there are uncertainties and when 

randomness enters the system, the differential equations need to be adapted in 

order to model the random fluctuations. Stochastic differential equations (SDE’s) 

arise in a natural manner in the description of these systems which are 

influenced by randomness. The behaviour of the physical system can be 

described by probability and thus understanding the theory of SDE’s requires the 

familiarity of advanced probability theory and stochastic processes. 

 

Traditionally, SDE’s have found applications in chemistry, physical and 

engineering sciences, microelectronics and economics. But recently, there has 

been an increase in the use of SDE’s in other areas like social sciences, 

computational biology and finance. Cobb (1998) provides some examples where 

stochastic differential equations are applied to social sciences. In Brown, et al, 

(2006), stochastic differential equations are used to model response times for 

simple decision making. Saarinen, et al, (2006) models the intrinsic dynamic 

behaviour of neurons using stochastic differential equations. Manninen, et al, 

(2006) use stochastic differential equations to model the behaviour of neuronal 

signal transduction networks. Carletti (2006) considers the application of SDE’s 

in biosciences where the Euler – Maruyama and Milstein methods are used to 

determine the solution of the SDE’s that model virus - bacteria interaction.   

 

SDE’s are also prominent in finance where they are used to price bonds and to 

explain the term structure of interest rates. The short-term interest rate can be 

modelled by a stochastic differential equation, suggested by Cox, et al, (1985), 

which is known as the Cox-Ingersoll-Ross model. The Hull-White model, which is 
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an example of an Ornstein-Uhlenbeck process, is used to model future interest 

rates using the current term structure of interest rates. The model was proposed 

by Hull and White (1987) as a solution to the pricing of a European call option on 

an asset that has stochastic volatility. Another model by Heath, et al, (1992) 

shows that under no-arbitrage conditions, the instantaneous forward rate can be 

expressed by a stochastic differential equation. This model is commonly known 

as the Heath-Jarrow-Morton model. 

 

It has generally been accepted that modelling asset price movements is based 

on the idea that asset prices can be represented by stochastic processes 

(Hughston, 1996). The standard continuous dynamic model for an asset price is 

obtained by assuming that the stochastic process tS  for the price of the asset at 

time t is an Itô process, characterised by the stochastic equation: 

 

= +t
t t t

t

dS dt dW
S

μ σ , 

 

which can be written in differential form as: 

 

t t t t t tdS S dt S dWμ σ= + . 

 

This model says that the infinitesimal price movement tdS  at time t, which is 

expressed as a percentage of the price, is given by the sum of a drift t dtμ  and a 

rapidly fluctuating term t tdWσ , where tW  is a Wiener process (Hughston, 1996). 

 

There is a well-developed theory surrounding asset pricing and numerous 

models have been suggested. Models range from the famous Black-Scholes 

model, binomial and trinomial models, and dynamic arbitrage to the Heath-

Jarrow-Morton family of models. The continuous time models require the use of 

stochastic processes and most of them involve stochastic differential equations.  
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The theory and application of interest rate modelling, which forms part of the 

general theory of dynamic asset pricing, is one of the most important areas of 

modern finance. In the past decade, there has been an expansion in the range 

and volume of interest rate related products being traded in the international 

financial markets. According to the International Swaps and Derivatives 

Association, transactions outstanding in interest rate swaps, currency swaps and 

interest rate options at the close of 1995 stood at $17.713 trillion in notional 

principal, while this figure stood at $183.6 trillion at the end of 2004 (International 

Swaps and Derivatives Association). 

 

Thus it is important for investment banks, other financial institutions, government 

and corporate treasury offices to require ever more accurate, objective and 

scientific forms for the pricing, hedging and general risk management of the 

resulting positions. The short term interest rate is important in determining 

companies’ exposure to market movements. Thus, models (like the Hull-White 

and Heath-Jarrow-Morton models) would be used to explain the evolution of 

interest rates and to provide forward estimates of interest rate movements. 

However, since many of these models that arise in practice cannot be solved 

analytically, numerical methods are employed. 

 

During the past twenty years, there has been an accelerating interest in 

developing numerical methods for stochastic differential equations, especially in 

engineering and physical sciences (Burrage and Burrage, 1996). This has been 

supported by continuous improvements in computing capability and the 

equivalent decrease in costs of personal computers.  

 

In the light of the volume of interest rate related derivatives trade worldwide, 

there is a need to highlight and to understand the available numerical methods 

that could be used to solve the stochastic differential equations, thus providing a 

more accurate and efficient way for the pricing and hedging of derivatives 
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products. Further, these numerical methods aide in bridging the gap between the 

well advanced theory of SDE’s and its application to specific examples. 

 

There are various methods that have been proposed to solve SDE’s numerically. 

Monte Carlo methods can be used to simulate the behaviour of the system. 

Under this method, the physical process is simulated directly using a sequence 

of random numbers and there is no need to specify the differential equation that 

describes the behaviour of the system. The physical system is described by 

probability density functions and then the Monte Carlo simulation can begin by 

random sampling from the probability density function (Casella and Robert, 

2005). Many simulations are performed and the desired result is taken as an 

average over the number of observations. 

 

However, Kloeden & Platen (1992) claim that this method is to some extent 

inefficient because it does not use the special structure of the drift and diffusion 

coefficients. Another method to solve SDE’s is to make use of the discretisation 

of both time and space variables, so that the solution is approximated as finite 

state Markov chains. This method is plausible for simple problems, but for high 

dimension problems, this method can involve a considerable amount of 

computing time because the transition matrices contain a lot of unnecessary 

information which must be repeatedly reprocessed during computations. 

 

Another method involves the finite discretisation of the time interval [0, T] only 

and not the state variable. This time discrete approximation can be used to 

generate approximate values of the sample paths at each step of the 

discretisation times. The simulated sample paths can then be analysed using 

statistical methods to determine how good the approximation is to the exact 

solution. This method is efficient and can be easily implemented on a digital 

computer. Consequently, it has been used widely and preferred to other methods 

because it has lower computational costs. 
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Having realised the importance and the recent increased use of SDE’s, the main 

aim of this thesis is to present a brief analysis of the various numerical methods 

that have been developed for solving SDE’s, focusing on strong and weak 

schemes. In addition, this thesis shows how these numerical schemes can be 

derived from Taylor expansions of the stochastic differential equations, thus 

providing opportunities for the derivation of more advanced numerical schemes 

and the application of existing schemes by other researchers that do not have a 

solid background in modern probability theory. 

 

Analogous to deterministic ordinary differential equations where the Taylor 

expansion is used to derive various numerical methods, the Itô-Taylor expansion 

for stochastic differential equations is used to derive various numerical methods. 

The Euler and Milstein schemes provide a good starting point to introduce 

numerical methods for SDE’s. This is then extended to higher order Taylor 

schemes. These schemes involve simulating the derivatives of the coefficients of 

the drift and diffusion terms. Further schemes are presented which replace the 

derivatives with finite differences. Implicit schemes are then presented, which 

takes into account previous simulated values and thus involves less computing. 

These schemes are presented for both the strong and weak convergence 

criteria. 

 

The numerical methods are based on time discrete approximations. Time 

discrete approximations for both the strong and weak convergence criteria will be 

presented. Whereas time discrete approximations which satisfy the strong 

convergence criterion involves the simulation of sample paths at each step of the 

discretisation time, approximations that satisfy the weak convergence criterion 

involve the approximation of some function of the Itô process such as the first 

and second moments at a given final time T . Further, the thesis also contrasts 

the different numerical schemes by providing some analytical results of the 

scheme and comparing it with the known solution. This is done by using Matlab 

software. The effect of varying the step size is also considered. 
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CHAPTER II – LITERATURE REVIEW 
 

The understanding of stochastic differential equations (SDE’s) forms part of 

stochastic calculus. A clear understanding thus requires the knowledge of 

modern probability theory. 

 

The theory of stochastic differential equations is well established. It was originally 

developed by mathematicians as a tool for explicit construction of paths of 

diffusion processes for given coefficients of drift and diffusion. According to 

Arnold (1974: xi) SDE’s “were first treated in 1908 by Langevin in the study of 

Brownian motion of a particle in fluid”. Itô (1942) first introduced stochastic 

integrals “to formulate the stochastic differential equation that determines 

Kolmogorov’s diffusion process” (Mao, 1991: 1). Since then the theory of 

stochastic differential equations within the theory of stochastic processes has 

expanded. 

 

There are several books on stochastic processes and stochastic differential 

equations. Gihman and Skorohod (1972) provide one of the first extensive 

accounts of the calculus of random differential equations defined in terms of the 

Wiener process. Relevant results from probability theory and stochastic 

processes are covered. The first part of the book presents the theory of one-

dimensional stochastic equations whose solutions are Markov diffusion 

processes while the second part provides a general definition of a stochastic 

differential equation based on the idea of a line integral along a random curve. 

 

While these sources provide a general theory of stochastic differential equations, 

they are generally inaccessible to persons intending to apply them. Arnold (1974) 

provides a moderately advanced level of the subject, covering areas from the 

fundamentals of probability theory to Markov and diffusion processes.  Examples 

of both stochastic integrals and stochastic differential equations are also given 

while at the same time providing the solution of the SDE as Markov and diffusion 
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processes. Arnold (1974) goes further by considering the stability of stochastic 

dynamic systems as well as optimal control of dynamic systems. 

 

A more theoretical approach to stochastic processes is provided in Gihman and 

Skorohod (1979). The book covers the theory of martingales, stochastic 

integrals, stochastic differential equations, diffusion and continuous Markov 

processes. The understanding of this book requires knowledge of advanced 

probability theory and as such is not suited for those looking to apply SDE’s in 

their research, especially for researchers in non-traditional fields like 

computational biology and social sciences; areas in which there is an increase in 

the use of SDE’s. 

 

Unlike Arnold (1974) who provides some applications, Schuss (1980) presents 

the theory but, more importantly, the book provides a wide range of applications 

of stochastic differential equations of the Itô type. The material is also presented 

so that applied mathematicians, physicists and engineers may be able to use it, 

without the necessary deeper understanding of modern probability and measure 

theory. The book thus bridges the gap between the mathematical theory and 

wide range of areas in which stochastic differential equations may arise; areas 

from statistical mechanics and transport theory to mathematical genetics. 

 

Understanding stochastic differential equations require the understanding of 

modern probability theory and stochastic calculus. The book by Karatzas and 

Shreve (1988) explores stochastic processes in their continuous time context and 

is thus suitable for readers who are acquainted with the Markov and martingale 

properties in discrete time. Although, measure-theoretic probability is kept at a 

minimum, the book covers areas from martingales and stopping times to the 

construction of Brownian motion. Stochastic integration and stochastic differential 

equations are presented, and the book also provides theoretical underpinnings of 

strong and weak solutions of stochastic differential equations, which are utilised 

in deriving numerical methods for SDE’s. 
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These early publications provide a concise theoretical framework for the study of 

stochastic differential equations. The problem of finding solutions of SDE’s, 

whether numerically or analytically, is kept at a minimum since numerical 

analysis is a branch of mathematics on its own and in order to implement and 

derive numerical methods, the theory has to be well developed and understood. 

These publications thus focused on introducing the theory as well as trying to 

close the gap between the well-developed theory and the various applications of 

SDE’s. 

 

Early attempts were made in the area of numerical methods for stochastic 

differential equations. Milstein (1974) provides an early account for constructing a 

numerical method for solving stochastic differential equations. This method is 

known as the Milstein method. Hovanessian and Chang (1977) provide an 

application of the central difference and predictor methods for finding a solution 

of differential equations with stochastic inputs.  

 

Numerical methods for SDE’s can be constructed by translating a deterministic 

numerical method (like the Euler method or Runge-Kutta method) and applying it 

to a stochastic ordinary differential equation. However, merely translating a 

deterministic numerical method and applying it to an SDE will generally not 

provide accurate methods (Burrage and Burrage, 1996). Suitably appropriate 

numerical methods for SDE’s should take into account a detailed analysis of the 

order of convergence as well as stability of the numerical scheme and the 

behaviour of the errors. The Euler-Maruyama method for SDE’s is the simplest 

method which is a direct translation of the deterministic Euler method, but 

according to Burrage and Burrage (1996), this method is not very accurate. 

However, this method is useful in that it provides a starting point for more 

advanced numerical methods for SDE’s. 
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A very concise publication by Kloeden and Platen (1992) provides a 

comprehensive and systematic presentation of numerical methods available for 

SDE’s. The book focuses on time discretisation methods for initial value 

problems of SDE’s with Itô diffusion as their solutions. Numerical methods for 

both the strong and weak order of convergence are presented. 

 

The preliminary part covers introductory areas of probability and stochastic 

processes that are required for understanding the remaining parts of the book. It 

is thus recommended for those without much theoretical knowledge in measure 

and probability theory but nevertheless would like to apply SDE’s in their 

research areas. This book can also be used by those with advanced 

mathematical background and who are interested in the theoretical 

developments and underlying mathematical issues. For a more theoretical 

treatment of stochastic differential equations, the reader is referred, in addition to 

those mentioned earlier, to the monograph by Ikeda and Watanabe (1981). 

 

While the book by Kloeden and Platen (1992) provides the numerical schemes, 

the complementary book by Kloeden, et al, (1994) presents the computations 

associated with these numerical methods. The computation of the moments or 

sample paths of a given SDE is important for the effective practical application of 

SDE’s and thus the book also focuses on the algorithms associated with these 

computations. Both of these books (by Kloeden, et al, (1994); and Kloeden and 

Platen (1992)) are highly recommended for those with limited technical 

background in mathematics but nevertheless are interested in modelling and 

applying standard numerical methods in their research areas. A familiarity with 

basic programming skills is essential in order to understand the material and to 

effectively carry out the practical exercises. 

 

Since the publication of these books, others have also focused on the numerical 

schemes while emphasising algorithms based on typical software. This is mainly 

due to the advances in computer technology and decrease in costs of computing 
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power. Cyganowski, et al, (2002) provide basic results of stochastic differential 

equations and modern probability theory with the help of the computer software 

package Maple®, although SDE’s are not covered in any great detail. This book 

is not a conventional mathematics book and it is intended to provide an intuitive 

background for those not necessarily in mathematics but who are nevertheless 

interested in modern probability theory. The mathematical proofs are omitted but 

the book uses Maple® to help the reader understand intuitively the ideas under 

discussion. 

 

There has been an increase in the number of literary articles written, with most at 

an advanced level. Apart from the theory (which has been adequately developed 

and presented in the publications listed above) many of these articles focus on 

advanced topics related to numerical methods for SDE’s. Others take a step 

forward to derive new numerical schemes and to adapt existing ones for specific 

purposes, problems that arise frequently in the physical and engineering 

sciences. 

 

Higham (2001) provides an accessible introduction to numerical methods for 

stochastic differential equations. Topics covered include the Euler-Maruyama 

method, Milstein method and Monte Carlo methods and Matlab is used to 

simulate numerical solutions of the SDE’s. Mean-square stability and asymptotic 

stability, as well as strong and weak convergence, are also discussed from a 

practical viewpoint. This paper is suitable for readers with little or no knowledge 

of advanced probability theory or stochastic processes. 

 

Naess (2001) focuses on path integration methods for calculating the probability 

law of the solution of stochastic differential equations. The article focuses on 

calculating the joint probability density function of the phase space Markov vector 

process that solves the nonlinear SDE. Mannella (2002) concentrates on the 

simulations of stochastic processes on a computer, but focuses on algorithms to 

simulate rare fluctuations because this is a topic of great interest in the study of 
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optimal paths. Problems connected to the treatment of boundaries and correlated 

noise are also discussed. “Rare fluctuations are fluctuations which bring the 

stochastic system very far from the phase space which the system explores most 

of the time” Mannella (2002: 1). The algorithms are amended to simulate rare 

fluctuations when the simulation hits a prescribed boundary in the phase space. 

 

This thesis uses the strong and weak convergence criteria to assess the 

efficiency of the numerical scheme. However, Mannella (2002) also studies the 

long-time dynamics of the SDE, unlike the convergence schemes which use 

short-time dynamics. This is motivated by the fact that good behaviour of the 

system at short times does not imply any good behaviour at long times. While 

this thesis studies SDE’s driven by white noise, Mannella (2002) provides an 

introduction to SDE’s that are driven by non-white noise. The simplest non-white 

noise is the exponentially correlated white noise. This is important as it provides 

insight and opportunities to apply numerical methods to SDE’s that are not driven 

by white noise for some real systems. 

 

Most of the literature on SDE’s focus on the engineering and physical science 

systems, but there is an increase in the application of SDE’s to other fields. Cobb 

(1998) provides examples of the use of SDE’s in the social sciences. Carletti 

(2003) applies Runge-Kutta type methods for stochastic ordinary differential 

equations and the Euler-Maruyama method for stochastic delay differential 

equations arising in biosciences. Frutos (2005) applies implicit-explicit Runge-

Kutta methods as an alternative method for pricing financial derivatives, 

especially to value American type contracts. The methods provided in these 

articles assume little knowledge of advanced probability theory and thus the 

article is practical in that these powerful methods can be applied to support 

theories in other areas. 

 

Recently, there has been an increase in numerical methods used to solve SDE’s 

as the current existing methods are being expanded. This increase is partly due 
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to the increase in computing powers and therefore much more complex 

numerical schemes can be solved for many applications. High strong order 

explicit Runge-Kutta methods for stochastic ordinary differential equations are 

presented in Burrage and Burrage (1996) which are a more efficient class of 

explicit Runge-Kutta methods than the current existing methods. 

 

The Runge-Kutta methods based on the increments of the Wiener process have, 

at most, strong order 1.5 convergence. In order to increase the order of 

convergence, Burrage and Burrage (1996) construct a new class of Runge-Kutta 

methods by adding multiple stochastic integral terms from the stochastic Taylor 

series. An explicit four-stage method of strong order 2.0 convergence is then 

constructed. 

 

While most of the methods considered focus on the strong convergence class, 

Platen (1995) provides a short survey on weak schemes for SDE’s and discuss 

several implicit and predictor-corrector type methods. Weak schemes are 

important if the analysis is focussed on evaluating some functional of the Itô 

stochastic differential equation. The advantage of using implicit and predictor 

corrector methods is that these schemes overcome most of the numerical 

stability problems that occur, especially in systems where there are extremely 

different time scales involved (i.e. stiff systems) (Platen, 1995). The explicit 

numerical methods are not able to control the propagation of errors in stiff 

systems. Thus, implicit methods are used. Therefore, weak approximations are 

employed as these provide more freedom in constructing implicit schemes. 

Stability of the stochastic numerical scheme depends more on the 

“approximations own dynamical behaviour which characterizes its ability to 

control the propagation of errors” (Platen, 1995: 69). 

 

When using a particular numerical scheme, not only is the nature and order of 

convergence of numerical schemes important, but the stability of a numerical 

scheme is vital. Stability of a numerical scheme is essential to avoid the possible 
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explosion of the numerical solution. Abukhaled (2004) discusses mean square 

stability of second-order weak numerical methods. The closed form of the second 

moment is used to create a mean square stability criterion for the second-order 

weak numerical schemes. Tocino (2005) studies the mean square stability of the 

second-order two-stage explicit Runge-Kutta methods which have been 

proposed by Tocino and Vigo-Aguiar (2002). The similarity between Abukhaled 

(2004) and Tocino (2005) is that both papers focus on stability of weak schemes 

with respect to the second moment. Tocino (2005) goes further by studying 

stability of linear SDE’s with multiplicative noise. 

 

Tocino and Ardanuy (2002) develop a class of explicit Runge-Kutta schemes of 

second order in the weak sense for systems of stochastic differential equations 

with multiplicative noise. Two Runge-Kutta schemes of the third order have also 

been developed for scalar SDE’s with constant diffusion terms.  

 

In all of the numerical schemes considered, a constant step size was used.  

Lehn, et al, (2002) reviews adaptive schemes which use variable step sizes in 

the numerical scheme. A re-examination of the two main step size control 

algorithms is conducted and their efficiency is compared in a simulation study. 

Adaptive schemes may be one possible way to reduce computational costs. 

These scheme were proposed as an alternative to the higher order schemes that 

require simulating correlated multiple Itô-integrals of the stochastic Taylor 

expansion and evaluating functions (for each time step) which can be a very 

difficult and time-consuming task. In higher order schemes, multiple stochastic 

integrals have to be approximated. This becomes difficult because the multiple 

stochastic integrals do not depend continuously on the trajectories of the Wiener 

process (Lehn, et al, 2002). 

 

The SDE’s that are considered in this thesis have local Lipschtiz coefficients and 

the numerical schemes were based on this assumption. Zhang (2006) proves 

that the Euler-Maruyama approximation for SDE’s for non-Lipschitz coefficients 
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converges uniformly to the solution in the Lp – space with respect to the time and 

starting points. 

 

Convergence of schemes for stochastic differential equations is shown in Fleury 

(2006). Almost sure convergence is established for explicit and implicit Euler 

schemes, explicit Milstein schemes, stochastic Newmark scheme and the implicit 

Itô-Milstein scheme. The family of stopping times is used to ensure the almost 

sure convergence of the schemes. 

 

Burrage and Tian (2001) present a composite Euler method for the strong 

solution of stochastic differential equations driven by d-dimensional Wiener 

processes. This method is a combination of the semi-implicit Euler method and 

the implicit Euler methods and is used to obtain improved stability properties than 

the Euler methods. 

 

Tian and Burrage (2001) introduce implicit Taylor methods for stiff Itô stochastic 

differential equations. These implicit Taylor methods are based on the 

relationship between Itô stochastic integrals and backward stochastic integrals. 

The following methods are considered: the implicit Euler – Taylor method with 

strong order 0.5; the implicit Milstein – Taylor method with strong order 1.0; and 

the implicit Taylor method with strong order 1.5. The authors claim that the 

stability properties of the implicit Euler – Taylor and implicit Milstein – Taylor are 

much better than those of the corresponding semi – implicit Euler and Milstein 

methods. The implicit Euler – Taylor and implicit Milstein – Taylor methods can 

be used to solve stochastic differential equations which are stiff in both the 

deterministic and stochastic components. According to the authors, the numerical 

results for the convergence and stability properties suggest that these implicit 

methods are very promising for stiff stochastic differential equations.  

 

The basic theory of SDE’s and numerical techniques for solving them is well 

developed. This provides the foundation for further research and analysis. 
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According to Higham (2001), current research is being pursued in a number of 

directions. There is the construction of methods with high order of strong or weak 

convergence or improved stability; the design of variable time step algorithms; 

and the analysis of long-term properties such as ergodicity for nonlinear 

problems. 

 

Thus the area of stochastic differential equations, its solutions and wide range of 

applications (from biology to engineering, and from chemistry to finance) makes it 

an interesting area for research, as it encompasses many fields of mathematics; 

from stochastic analysis to applied mathematics to numerical analysis. 

Researchers would thus require the indispensable tools of modern probability 

theory in order to understand this rich and diverse branch of mathematics. 

 

This chapter highlights that the study SDE’s requires a thorough understanding 

of modern probability theory. Numerous authors and texts on modern probability 

theory and stochastic calculus have been mentioned. The excellent text by 

Kloeden and Platen (1992) provides an excellent introduction to numerical 

methods for solving SDE’s. This provides a background for understanding and 

expanding these numerical methods. Higher order schemes that have been 

developed and reviewed recently are highlighted. Recent advances in stability 

issues and convergence of numerical schemes have also been discussed. The 

following chapter provides some preliminary concepts starting with motivating the 

use of an SDE.  
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CHAPTER III – MATHEMATICAL PRELIMINARY 
 
3.1 Wiener process and white noise 
 

A standard Wiener process ( ){ }, 0= ≥W W t t  is defined as a Gaussian process 

with independent increments such that: 

 

   ( )0 0=W ,  with probability 1 

   ( )( ) 0=E W t ,  and 

   ( ) ( )( )− = −Var W t W s t s , 

 

for all 0 s t≤ ≤ . This process was proposed by Norbert Wiener as a mathematical 

description of Brownian motion; which describes the erratic motion of a grain of 

pollen on a water surface due to its being continually bombarded by water 

molecules. 

 

Thus, ( ) ( ) ( )~ 0,− −W t W s N t s  for 0 ≤ <s t  and the increments ( ) ( )2 1−W t W t  and 

( ) ( )4 3−W t W t  are independent for all 1 2 3 40 ≤ < ≤ <t t t t . 

 

The Wiener process has sample paths that are almost surely continuous 

functions of time, but the process tW  is nowhere differentiable (Dana and 

Jeanblanc, 2003). 

 
3.2 Appearance of the stochastic differential equation 
 

An ordinary differential equation 

 

( )xta
dt
dx ,=  
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may be written in symbolic differential form as: 

 

( ) dtxtadx ,= . 

 

The above equation can also be written in integral form as: 

 

( ) ( )( )∫+=
t

t

dssxsaxtx
0

,0 , 

where ( ) ( )0 0; ,=x t x t x t  is a solution satisfying the initial condition ( )0 0=x t x . 

 

Ordinary differential equations are used to model the time varying behaviour of 

systems. Consider the following equation that models population growth1: 

 

( )dx ax t
dt

= , 

 

where ( )x t  is the earth’s population at time t  and a  is the constant growth rate. 

This model however shows that the growth is unlimited. The model was revised 

later to eliminate the effect of unlimited growth2. The model suggests that as the 

population gets high, there is a tendency for individuals to fight over scarce 

resources. These effects are incorporated in the model as: 

 

     2dx ax mx
dt

= − .    (3.1) 

 

This model assumes a constant growth rate a . However, when the system 

undergoes disturbances, stochastic noise is introduced in the model. The growth 

                                                 
1 This model was first suggested by Thomas R Malthus in 1798 to model the population growth 
rate 
2 The model was revised by Pierre-Francois Verhulst in 1838. 
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rate a  need not be constant and in many applications, it is assumed that the 

growth rate varies. Assume that the growth rate a  varies randomly as 

ta λ σ ξ= + , where λ  is some constant rate and tσ ξ  is a rapidly varying 

component and tξ  a stochastic process with zero mean. Substitute ta λ σ ξ= +  in 

equation (3.1) to obtain: 

 

    ( ) 2
t

dx x mx
dt

λ σ ξ= + −  

   ⇒  ( )2
t

dx x mx x
dt

λ σ ξ= − + .    (3.2) 

 

Equation (3.2) can be written in symbolic differential form as: 

 

    ( )2
tdx x mx dt x dtλ σ ξ= − +  

or  

    tdx a dt x dtσ ξ= + ,     (3.3) 

 

where    ( )2a x mxλ= − . 

 

 

 

Equation (3.3) thus provides a more realistic model of the state of the population 

at time .t  Therefore, randomness is modelled as some external sources 

interacting with the system. Equation (3.3) can be interpreted as the integral 

equation: 

 

   ( ) ( )( ) ( )( )
0 0

0 , ,
t t

s
t t

x t x a s x s ds b s x s dsξ= + +∫ ∫ ,  (3.4) 

 

where   b xσ= . 
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Equation (3.4) is written symbolically as a stochastic differential equation of the 

form: 

 

   ( ) ( ), , ξ= +t t t tdX a t X dt b t X dt .   (3.5) 

 

Here, ( ), ta t X dt  represents the deterministic or average drift term while 

( ), ξt tb t X dt  is a rapidly varying continuous random component called the 

diffusion. The term ξt  is a standard Gaussian random variable for each t  and 

( ), tb t X  is a space-time dependent intensity factor. For the special case when 

0a =  and 1b = , notice that ξt  should be the derivative of a Wiener process; 

 

     dtXd tt ξ=  

    ⇒  tt dWXd = . 

 

Thus the SDE in equation (3.5) could be written as: 

 

( ) ( ), ,= +t t t tdX a t X dt b t X dW , 

 

or in integral form as: 

 

 ( ) ( ) ( )( ) ( )( ) ( )
0

0 0

, ,ω ω ω ω ω= + +∫ ∫
t t

t t s s s
t t

X X a s X ds b s X dW , (3.6) 

 

where tW  is a Wiener process. 
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The second integral of equation (3.6) cannot be interpreted as the Riemann (or 

Lebesgue) integral since tξ  in equation 3.5 is a stochastic process and is not 

known. Therefore equation (3.6) cannot be solved in the usual sense. This is due 

to the fact that the Wiener process tW  is nowhere differentiable and the 

stochastic process ξt  does not exist as a conventional function of t . Further, the 

continuous sample paths of a Wiener process do not have bounded variation on 

any bounded time interval (Kloeden and Platen, 1992). 

 

3.3 Itô Integral 
 

As mentioned, the Wiener process is nowhere differentiable so the white noise 

process does not exist as a conventional function of .t  Thus the second integral 

of equation (3.6) cannot be an ordinary (Riemann or Lebesgue) integral. Further, 

the continuous sample paths of a Wiener process are not of bounded variation 

on any bounded time interval, so the second integral cannot be interpreted as a 

Riemann-Stieltjes integral either (Kloeden and Platen, 1992). 

 

Itô (1951) overcame this problem by defining the integral by using mean square 

convergence. Consider the second integral in equation (3.6) above and let 

( )( ) bsxsb =,  be a constant: 

 

( ) ∫=
t

t
sdWbbI

0

. 

 

One would expect that  

 

( ) ( ) ( ){ }0tWWbbI t −= ω , 

 

no matter how it is defined. Consider an integral of a random function f  over the 

time interval [ ]0,1t = : 
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    ( )( ) ( ) ( )∫=
t

t
sdWsffI

0

, ωωϖ .    (3.7) 

 

The integral is defined in two steps. Firstly, consider the case when the process 

f  is simple and secondly, when the process f  is generalised. In order to 

proceed with defining the Itô integral, the following ancillary definitions are 

required. 

 

Definition 
 

1. A process X is adapted to the filtration { }0: ≥ttF  if { }0, ≥∀∈ tX tt F , 

 where { }0: ≥ttF  is an increasing family of σ – algebras. 

 

2. A process 2L∈f  if: 

 

• The process f  is adapted, and 

• The process f  satisfies 

 

    ( )[ ]∫ ∞<
b

a

sdsfE 2 . 

 

3. The process f  is simple if: 

 

• 2L∈f , and 

• There exists fixed points 1 1,..., nt t +  with 1 2 10 ... 1nt t t += < < < = , such that 

f  is piecewise constant on any 1+<≤ jj ttt , i.e. 

 

( ) 1, +<≤= jjj tttftf . 
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Return to the definition of the Itô – integral. 

 

i. The process f  is simple 

 

The interval [0, 1] is sub-divided inton sub-intervals, with 1 2 10 ... 1nt t t += < < < = . In 

order to define this integral, Itô commenced by first defining f  as a non-random 

step function (piecewise constant) ( ) jftf =ω,  on the interval 1+<≤ jj ttt  for 

1,2,...j n= . Thus, equation (3.7) becomes: 

 

    ( )( ) ( ) ( ){ }ωωω
jj tt

n

j
j WWffI −=

+∑
=

1
1

.   (3.8) 

 

Since equation (3.8) is a sum of random variables with zero mean, it implies that 

( )( )ωfI  is a random variable with zero mean. Thus, equation (3.8) defines the 

stochastic integral for the case when f  is simple. 

 

ii. The process f  is generalised 

 

Suppose that { }0: ≥ttF  is an increasing family of σ – algebras such that Wt is 

jt
F – measurable for each t ≥ 0. The integral in equation (3.7) is then extended to 

consider random step functions ( ) ( )ωω jftf =,  on the interval 1+<≤ jj ttt  for 

1,2,...j n= . Since ( ) ( )ωω jftf =,  are random step functions, it is assumed that 

each jf  is 
jt

F – measurable and that jf  is also mean square integrable over the 

sample space. This measurability condition for the random step functions 

ensures the non-anticipativeness of the integrand. It is also assumed that f is 

continuous in t  for all Ω∈ω . 
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Consider: 

 

     ( )
jjj ttt WWE F−

+1
.    (3.9) 

 

Equation (3.9) is zero with probability one, since we assumed that each tW  is 

jt
F - measurable for each t ≥ 0. Therefore it follows that  

 

{ }
jj ttj WWf −

+1
 

 

is 
1+jt

F - measurable and integrable. Therefore, the expectation is zero for each 

1,2,...j n= . That is: 

 

{ }( ) ( )( ) 0
11

=−=−
++ jjjjj tttjttj WWEfEWWfE F . 

 

Therefore, the integral ( )fI  is defined as: 

 

   ( )( ) ( ) ( ) ( ){ }ωωωω
jj tt

n

j
j WWffI −=

+∑
=

1
1

   (3.10) 

 

with probability one. ( )fI  is 1F  - measurable because the thj  term is 
1+jt

F - 

measurable and hence 1F  - measurable. Further, ( )fI  is integrable over Ω  and 

has zero mean. Equation (3.10) is defined when it was assumed that 

( ) ( )ωω jftf =,  are random step functions. 

 

The random step functions are then extended to general functions. Consider the 

case for a general integrand [ ] R→Ωx1,0:f . It is assumed that there are 
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random step functions ( )nf  converging to f . The integral ( )fI  is then defined as 

the limit of integrals ( )( )nfI  of random step functions ( )nf  converging to f . 

 

It is assumed that f is continuous in t for all Ω∈ω  and ( ).,tf  is tF  - measurable 

for t є [0, 1]. Form a partition ( ) ( ) ( ) 1.....0 121 =<<<= +
n
n

nn ttt  such that as ∞→n , we 

have: 

 
( ) ( ) ( ){ } 0max 11

→−= +≤≤

n
j

n
jnj

n ttδ . 

 

Define a step function ( )nf  by ( ) ( ) ( )( )ωω ,, n
j

n tftf = . In order to define the 

integral for general functions, the appropriate mode of convergence needs to be 

defined so that the step functions ( )nf  converge to the integrand f . Thus 

equation (3.10) becomes: 

 

  ( )( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ){ }ωωωω n
j

n
j tt

n
j

n

j

nn WWtffI −=
+

∑
=

1
,

1
.  (3.11) 

 

The problem is to characterise the limit of the finite sums with respect to an 

appropriate mode of convergence. To solve this problem, Itô used the mean 

square convergence. Assume that 

 

  ( ) ( ) ( )( ) 0.,., 2 →− tftfE n  as ∞→n  for t є [0, 1]. 

 

Then the mean square limit of ( )( )nfI  exists and is unique, with probability one. 

This mean square limit is denoted by ( )fI  and is called the Itô stochastic 

integral. 
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The Itô integral is defined similarly on any bounded interval [t0, t] resulting in a 

random variable 

 

( ) ( ) ( )∫=
t

t
st dWsfX

0

, ωωω , 

 

which is tF  - measurable and mean square integrable with zero mean and 

 

( ) ( )( )∫=
t

t
t dssfEXE

0

22 ., . 

 

Since mean square limits are used, then for any 1 2 10 +< < < <… nt t t : 

 

  { }1
1

+
=

−∑ j j j

n

t t t
j

W W W  { }1

2
2

1

1 1
2 2 +

=

= − −∑ j j

n

t t t
j

W W W  

  21 1
2 2

= −tW t , 

 

since { }1

2

1
+

=

−∑ j j

n

t t
j

W W , the mean square limit of the sum of squares, is equal to 

.t  Therefore 

 

   ( ) ( ) ( )2

0

1 1
2 2

ω ω ω= −∫
t

s s tW dW W t ,   (3.12) 

 

which is in contrast to the following from classical calculus for a differentiable 

function ( )w t with ( )0 0w = : 

 

( ) ( )
( )

( )2 2

0 0

1 1
2 2

⎛ ⎞= =⎜ ⎟
⎝ ⎠∫ ∫

w tt

w s dw s d w w t . 
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3.4 Itô formula 
 

For each 0≥t t , define a stochastic process tY  by: 

 

( ) ( )( ),ω ω=t tY U t X , 

 

where ( ),U t x  has continuous second order partial derivatives and tX  is given 

by: 

 

( ) ( ) ( ) ( ), ,t tdX a t dt b t dWω ω ω ω= + . 

 

For brevity, the above is written as: 

 

    dx a dt bdW= + .    (3.13) 

 

Consider: 

 

( ) ( ), ,t t t tdY U t dt X dX U t X= + + − . 

 

The Taylor expansion for U gives: 

 

  tdY  ( ) ( ), ,t t tU t dt X dX U t X= + + −  

 

  U Udt dx
t x

∂ ∂⎧ ⎫= +⎨ ⎬∂ ∂⎩ ⎭
 

 

  ( ) ( )
2 2 2

2 2
2 2

1 2
2

U U Udt dt dx dx
t t x x

⎧ ⎫∂ ∂ ∂
+ + +⎨ ⎬∂ ∂ ∂ ∂⎩ ⎭

+ … (3.14) 

 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  GGoovveennddeerr,,  NN    ((22000077))  



 28

 

Substitute equation (3.13) into equation (3.14) to obtain: 

 

 tdY  ( )U Udt a dt bdW
t x

∂ ∂⎧ ⎫= + +⎨ ⎬∂ ∂⎩ ⎭
 

 

 ( ) ( ) ( )
2 2 2

2 2
2 2

1 2
2

U U Udt dt a dt bdW adt bdW
t t x x

⎧ ⎫∂ ∂ ∂
+ + + + +⎨ ⎬∂ ∂ ∂ ∂⎩ ⎭

 

 

 U U Udt a dt b dW
t x x

∂ ∂ ∂⎧ ⎫= + +⎨ ⎬∂ ∂ ∂⎩ ⎭
 

 

 ( )
2 2 2

2
2

1 2 2
2

U U Udt a dt dt b dW dt
t t x t x

⎧ ⎫∂ ∂ ∂
+ + +⎨ ⎬∂ ∂ ∂ ∂ ∂⎩ ⎭

 

 

 ( ) ( )( )
2

2 22 2
2

1 2
2

U a dt a bdt dW b dW
x

⎧ ⎫∂
+ + +⎨ ⎬∂⎩ ⎭

. 

 

Taking expectations and noting that (Chang, 2004)   

 

    ( )( )2E dW dt= , 

    ( ) 0E dWdt = , and  

    ( )( )2 0E dt = , 

 

equation (3.14) simplifies to: 

 

 ( ) ( ) ( ) ( )
2

2
2

1, , , ,
2t t t t t t

U U U UdY t X a t X b t X dt b t X dW
t x x x

⎧ ⎫∂ ∂ ∂ ∂
= + + +⎨ ⎬∂ ∂ ∂ ∂⎩ ⎭

. (3.15) 

 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  GGoovveennddeerr,,  NN    ((22000077))  



 29

3.5 Stochastic Taylor expansions 
 

As with the determinist Taylor expansion, the stochastic Taylor formula for the 

expansion of smooth functions of an Itô process is used to construct numerical 

methods for stochastic differential equations. The stochastic Taylor formula, 

which is called the Itô – Taylor expansion, is derived by repeatedly applying the 

Itô formula (3.15). For any twice continuously differentiable function RRf →: , 

apply the Itô formula to obtain: 

 

( )tf X ( ) ( ) ( ) ( ) ( )
0

0

21' "
2

t

t s s s s
t

f X a X f X b X f X ds⎛ ⎞= + +⎜ ⎟
⎝ ⎠∫ ( ) ( )

0

'
t

s s s
t

b X f X dW+∫ . 

 

Introduce the following operators, 

 

     0 21' "
2

L f af b f= + , 

 

    1 'L f bf= ,     (3.16) 

 

to obtain: 

 

  ( )tf X ( ) ( ) ( )
0

0 0

0 1
t t

t s s s
t t

f X L f X ds L f X dW= + +∫ ∫ ,  (3.17) 

 

for any [ ]0,t t T∈ . If ( )f x x= , then 0L f a=  and 1L f b= . Thus the above is just 

the original Itô equation for tX : 

 

  ( ) ( )
0

0 0

t t

t t s s s
t t

X X a X ds b X dW= + +∫ ∫ .    (3.18) 
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If formula (3.17) is again applied to the functions f a=  and f b=  in equation 

(3.18), the following is obtained: 

 

 tX  ( ) ( ) ( )
0 0

0 0 0

0 1
t s s

t t z z z
t t t

X a X L a X dz La X dW ds
⎛ ⎞

= + + +⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫ ∫
 

 

   ( ) ( ) ( )
0

0 0 0

0 1
t s s

t z z z s
t t t

b X L b X dz Lb X dW dW
⎛ ⎞

+ + +⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫ ∫  

 

 ( ) ( )0 0 0

0 0

t t

t t t s
t t

X a X ds b X dW R= + + +∫ ∫ ,   (3.19) 

 

where: 

 

  R  ( ) ( )
0 0 0 0

0 1
t s t s

z z z
t t t t

L a X dz ds L a X dW ds= +∫ ∫ ∫ ∫  

  ( ) ( )
0 0 0 0

0 1
t s t s

z s z z s
t t t t

L b X dz dW L b X dW dW+ +∫ ∫ ∫ ∫ . 

 

Repeat this procedure by applying the formula (3.17) to 1f L b=  in equation 

(3.19) to obtain: 

 

  tX  ( ) ( )0 0 0

0 0

t t

t t t s
t t

X a X ds b X dW= + +∫ ∫  

  ( )0

0 0

1
t s

t z s
t t

L b X dW dW R+ +∫ ∫ ,    (3.20) 
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where: 

 

  R  ( ) ( )
0 0 0 0

0 1
t s t s

z z z
t t t t

L a X dz ds L a X dW ds= +∫ ∫ ∫ ∫  

 

  ( ) ( )
0 0 0 0 0

0 0 1
t s t s z

z s u z s
t t t t t

L b X dz dW L L b X dudW dW+ +∫ ∫ ∫ ∫ ∫  

 

  ( )
0 0 0

1 1
t s z

u u z s
t t t

L L b X dW dW dW+∫ ∫ ∫ . 

 

The Itô – Taylor expansion can thus be considered as a generalisation of both 

the Itô formula and the deterministic Taylor formula. 

 

3.6 Convergence Criteria 
 

There are five commonly used concepts for the convergence of random 

sequences (Kloeden and Platen, 1992). These are: 

 

i. Convergence with probability one: 

 

( ) ( ): lim 0 1n
n

P X Xω ω ω
→∞

⎛ ⎞⎧ ⎫
∈Ω − = =⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠

. 

 

ii. Mean-square convergence: 

 

    ( )2
nE X < ∞ ,  for n = 1, 2, ….,  

    ( )2E X < ∞ ,  and 

    ( )2lim 0nn
E X X

→∞
− = . 
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iii. Convergence in probability: 

 

( ) ( ){ }( )lim ; 0nn
P X Xω ω ω ε

→∞
∈Ω − ≥ = , 

 

for all 0ε > . 

 

iv. Convergence in distribution: 

 

( ) ( )lim
nn X XF x F x

→∞
= , 

 

for all continuity points of XF . 

 

v. Weak convergence 

 

( ) ( ) ( ) ( )lim
nn
X Xf x d F x f x d F x

→∞

∞ ∞

−∞ −∞

=∫ ∫ , 

 

for all test functions :f R R→ . 

 

In these definitions, all the random variables are defined on a common probability 

space ( ), ,F PΩ . 

 

Convergence of random sequences is classified into two classes, namely, strong 

convergence and weak convergence. Convergence with probability one, 

mean-square convergence and convergence in probability are the most 

commonly used convergences in the strong class while convergence in 

distribution and weak convergence are classified from the weak class. For the 

weak class, only the distribution function is required and not the actual random 

variables or the underlying probability space. 
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Since many SDE’s cannot be solved explicitly, numerical schemes are employed. 

There are various numerical schemes (see, Kloeden and Platen, 1992) and in 

order to access their usefulness and practicality, certain criteria are required in 

which to access the various schemes. The convergence criterion is just one of 

many other criteria, like mean square stability, asymptotic stability and cost of 

computation, which can be used when assessing the usefulness of different 

numerical schemes. 

 

The numerical schemes for SDE’s employed in this paper are recursive in that 

the trajectories of the solution are computed at discrete time steps. Thus, use is 

made of the convergence criterion that involves calculating some function of the 

error at a specific time step, usually at the end of the time interval. Global errors 

can also be computed. Hofmann and Müller-Gronbach (2004) provides an 

analysis of L2([0,1]) – error of general numerical methods based on multiple Itô – 

integrals for pathwise approximation of scalar stochastic differential equations on 

the interval [0,1]. 

 

Fleury (2006) proves almost sure convergence for the explicit Euler, implicit Euler 

scheme and the Milstein schemes assuming that the coefficients of the equation 

are only locally Lipschitz and the solution process is unique, continuous and does 

not explode. Bernard and Fleury (2001) consider convergence in probability for 

numerical schemes for stochastic differential equations. This thesis uses the 

strong and weak convergence criteria defined below. 
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3.6.1 Strong convergence criterion 
 

In many practical areas, like direct simulations, filtering or testing statistical 

estimators, a good pathwise approximation is usually required and for these 

instances, the absolute error criterion is appropriate. This criterion gives a 

measure of the pathwise closeness at the end of the time interval [ ]0,T  (Kloeden 

and Platen, 1992).  

 

Consider a particular sample path of the Wiener process i.e. TW  is given (and 

hence known) therefore there is no randomness in the SDE and hence no 

randomness in TX  (Cao and Pope, 2003). The increments in the given Wiener 

process are then used to obtain the numerical approximation ( )Y T . The absolute 

error criterion is defined as: 

 

( )( )TE X Y Tε = − . 

 

Here, the Euclidean norm is used. TX  is the Itô process at time T  while ( )Y T  is 

the approximation obtained by approximately integrating the SDE in a sequence 

of time steps i.e. from the numerical scheme. Therefore, the error is the 

expectation of the absolute value of the difference between the approximation 

( )Y T  and the Itô process TX  at time T .  

 

The numerical scheme is consistent if the approximation ( )Y T  converges to TX  

as tΔ  tends to zero. Therefore, a discrete time approximation ( )Y T  with 

maximum time step size δ  converges strongly to X  at time T  if (Kloeden and 

Platen, 1992): 

 

   ( )( )
0

lim 0TE X Y T
δ→

− = .    (3.21) 
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There are various discrete time approximations that can be derived from the Itô – 

Taylor expansion and in order to compare different discrete time approximations, 

the order of convergence of the numerical scheme is used. 

 

A discrete time approximation Y δ  converges strongly with order 0γ >  at time T  if 

there exists a positive constant C, which does not depend on δ , and a 0 0δ >  

such that: 

 

( ) ( )( )TE X Y T C γε δ δ= − ≤ , 

 

for each ( )00,δ δ∈ . Thus the numerical scheme is strong pth order accurate if the 

error is of order ptΔ  (Cao and Pope, 2003). 

 
3.6.2 Weak convergence criterion 
 

In many practical problems, approximating some functional of the Itô process is 

of interest, such as the probability distribution, its mean and variance. Thus, the 

weak convergence criterion is used since the requirements for their simulation 

are not as demanding as for pathwise approximations (Kloeden and Platen, 

1992). Here the sample path TW  is not known but is drawn from the distribution 

of Wiener processes. 

 

Since TW  is a random variable, TX  is a random variable. The numerical 

approximation ( )Y T  is also a random variable because ( )Y T  is obtained using 

samples of Wiener-process increments. Therefore, convergence of TX  and ( )Y T  

is only considered in distribution. The convergence in distribution is analysed in 

terms of means ( )( )TXg  of test functions )(xg (Cao and Pope, 2003). 
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The test functions )(xg  are bounded, infinitely differentiable and the means exist 

as x  tends to infinity. The numerical scheme is weak pth order accurate if the 

error 

 

( )( )( ) ( )( )( )TYgTXg −=ε  

 

is of order ptΔ . Thus,  

 

( )( )( ) ( )( )( ) ptCTYgTXg Δ≤− . 

 

A general discrete time approximation Y  with maximum time step size δ  

converges weakly to X  at time T  as 0δ →  with respect to a class C of test 

functions RR →dg :  if we have: 

 

  ( )( ) ( )( )( )
0

lim 0TE g X E g Y T
δ→

− = ,   (3.22) 

 

for g ∈ C. 

 

A time discrete approximation Y  converges weakly with order β > 0 to X  at time 

T  as 0δ → , if for each polynomial g  there exists a positive constant C, which 

does not depend on δ , and a finite 0δ  such that: 

 

( )( ) ( )( )( )TE g X E g Y T C βδ− ≤ , 

 

for each ( )00,δ δ∈ . 

 

Whereas, the strong convergence criterion gives a measure of the closeness of 

the pathwise approximation to the Itô process, the weak convergence criterion 
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gives an approximation of the probability distribution of TX . Carletti (2006: 425) 

states that: 

 

“the strong order of convergence measures the rate at which the ‘mean of the 

error’ decays as 0tΔ → . The weak order of convergence measures the rate 

of decay of the ‘error of the means’ [as 0tΔ → ]”. 

 

This chapter provides the mathematical preliminary required to understand the 

following chapters. The ordinary differential equation that models population 

growth was used to motivate the appearance of a stochastic differential equation. 

The Wiener process was defined; the Itô-integral was motivated; and the Itô 

formula for calculating solutions of SDE’s was derived. Since many SDE’s do not 

have explicit solutions, numerical methods are used. Analogous to the numerical 

methods obtained from Taylor expansions to solve deterministic ordinary 

differential equations, the methods used in this thesis are derived from stochastic 

Taylor expansions. Hence, there was the need to introduce the stochastic Taylor 

expansion. 

 

As with all numerical methods, in order to determine the efficiency of the 

numerical scheme, a method to determine the error is introduced. The different 

convergences are classified according to the strong and weak class of 

convergence. Convergence criteria are then used. This is used to determine the 

accuracy and efficiency of a particular numerical scheme. Having completed this 

preliminary, the next chapter focuses on some common numerical schemes that 

satisfy the strong convergence criteria are studied. These schemes are provided 

such that they can be expanded to provide other numerical schemes. 
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CHAPTER IV – NUMERICAL METHODS: STRONG APPROXIMATIONS 
 

As mentioned in the first chapter, there are various methods to solve SDE’s 

numerically. These include Monte Carlo methods which can be used to simulate 

the behaviour of the random system. Another method makes use of the 

discretisation of both time and space variables. However, this thesis considers 

discrete time approximations which involve the finite discretisation of the time 

interval [ ]0,T  only and not the state variable. 

 

Strong approximations involve simulating the solution of SDE’s when a good 

pathwise approximation is required. This occurs in direct simulations of the 

solution, or when filtering or testing statistical estimators. The absolute error 

criterion defined in Chapter III is used as a measure of the pathwise closeness at 

the end of the time interval [ ]0,T . There are various strong approximations and 

higher order numerical schemes (Runge-Kutta methods) analogous to the 

schemes used to solve deterministic differential equations, but the focus in this 

thesis is on strong Taylor schemes, explicit strong schemes and implicit strong 

approximations. 

 

4.1 Strong Taylor approximations 
 

As is the case of using deterministic Taylor expansions to derive numerical 

methods for ordinary differential equations, the stochastic Taylor expansion 

(3.20) is used to derive time discrete approximations with respect to the strong 

convergence criterion (3.21). The number of terms to be included in the 

stochastic Taylor expansion in the approximating numerical scheme will depend 

on the desired order of convergence. These strong Taylor schemes provide a 

pathwise approximation of the exact solution. 
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(i) Euler-Maruyama Method 
 

The Euler – Maruyama method applied to an SDE is similar to the Euler method 

used to solve an ordinary differential equation. Consider the following scalar 

SDE: 

 

( ) ( ), ,t t t tdX a t X dt b t X dW= + , 

 

or in integral form: 

 

( ) ( ) ( )( ) ( )( ) ( )
0

0 0

, ,ω ω ω ω ω= + +∫ ∫
t t

t t s s s
t t

X X a s X ds b s X dW ,  (4.1.1) 

 

where { }0,tX X t t T= ≤ ≤  is an Itô process with initial value 
0 0tX X= . Subdivide 

the time interval [ ]0,T  into N  subintervals according to the following 

discretisation: 

 

Tt Nn =<<<<<= ττττ 100 . 

 

The Euler approximation is defined as a continuous time stochastic process 

( ){ }0,Y Y T t t T= ≤ ≤  satisfying the iterative scheme: 

 

( ) ( )( ) ( ) ( )( ) ( )11 1, ,
n nn n n n n n n nY Y a Y b Y W Wτ ττ τ τ τ τ τ τ
++ += + − + − ,  (4.1.2) 

 

for 0,1,2,..., 1n N= −  with initial value 0 0Y X= . The Euler scheme is obtained by 

considering the first three terms of the Itô – Taylor expansion (3.20). 
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  tX  ( ) ( )0 0 0

0 0

t t

t t t s
t t

X a X ds b X dW= + +∫ ∫  

   ( )0

0 0

1
t s

t z s
t t

L b X dW dW R+ +∫ ∫ ,    (4.1.3) 

 

where R  is the remainder and is defined in equation (3.20). Equation (4.1.3) is 

the Itô – Taylor expansion of ( )tX ω  in equation (4.1.1). The Itô – Taylor 

expansion is useful in approximating a sufficiently smooth function in a 

neighbourhood of a given point to a desired order of accuracy. Thus, considering 

the first three terms of equation (4.1.3) provides the Euler scheme in (4.1.2), 

where each term on the right hand side of equation (4.1.2) approximates the 

corresponding term on the right hand side of equation (4.1.1).  

 

For brevity, equation (4.1.2) is written as: 

 

1n n nY Y a n b W+ = + Δ + Δ , 

 

where 

    
1

1

n

n

n nn ds
τ

τ

τ τ
+

+Δ = − = ∫ ,  

    
1

1

n

n n

n

n sW W W dW
τ

τ τ
τ

+

+
Δ = − = ∫ , 

    ( )( ),n na a Yτ τ= , 

    ( )( ),n nb b Yτ τ= , 

    ( )n nY Y τ= . 

 

The Euler scheme for a deterministic ordinary differential equation is obtained if 

0b =  in equation (4.1.2). Thus, the main difference between the Euler scheme for 

deterministic ordinary differential equations and the Euler – Maruyama scheme 
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for SDE’s is that the following random increments need to be generated for the 

SDE: 

 

nn
WWWn ττ −=Δ

+1
, 

 

for 0,1,2,..., 1n N= −  of the Wiener process { }, 0tW W t= ≥ , as defined in Chapter 

II. 

 

The Euler scheme determines values of the approximating process at the 

discretisation times only. The values at the intermediate instances can be 

calculated by using either the piecewise constant interpolation method or the 

linear interpolation method. An overview of these methods is provided in 

Kloeden, et al, (1994: 307). 

 

The Euler scheme is an example of a time discrete approximation (or difference 

method) in which the continuous time differential equation is replaced by a 

discrete time difference equation generating values 1 2, ,..., nY Y Y  to approximate 

1 2
, ,...,

nt t tX X X at given discretisation times 0 1 ... nt t t< < < . The Euler scheme is the 

simplest strong Taylor approximation and attains an order of convergence 

0.5γ = . The proof is given in Kloeden & Platen (1992: 341 - 343). 

 

(ii) Milstein Scheme 
 

The Milstein scheme is obtained by considering the first four terms of Taylor 

expansion given in equation (3.20). It is given as: 

 

tX ( ) ( )0 0 0

0 0

t t

t t t s
t t

X a X ds b X dW= + +∫ ∫  ( )0

0 0

1
t s

t z s
t t

L b X dW dW+ ∫ ∫ . 
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Use formula (3.12) to obtain: 

 

( ){ }
1

21
2

n

n n

t t

s t n
t t

dW dW W n
+

= Δ − Δ∫ ∫ . 

 

From equation (3.16), 1 'L b bb= , thus: 

 

( ) ( ){ }0

0 0

21 1 '
2

t s

t z s n
t t

L b X dW dW bb W n= Δ −Δ∫ ∫ . 

 

Therefore, the Milstein scheme is defined as: 

 

 ( ) ( )( ) ( ) ( )( ) ( )11 1, ,
n nn n n n n n n nY Y a Y b Y W Wτ ττ τ τ τ τ τ τ
++ += + − + − +  

 

 ( )( ) ( )( ) ( ) ( ){ }1

2
1

1 , ' ,
2 n nn n n n n nb Y b Y W Wτ ττ τ τ τ τ τ

+ +− − − . 

 

For brevity, this is written as: 

 

( ) ( ){ }2
1

1 '
2n n n nY Y a n b W bb W n+ = + Δ + Δ + Δ − Δ . 

 

The term 'b  is the partial derivative of b  with respect to x . i.e. ' /b db dx= . 

 

Whereas, Euler – Maruyama scheme has order γ  = 0.5, the Milstein scheme has 

order γ  = 1 (Kloeden and Platen, 1992). 

 

The orders of strong and weak convergence of the stochastic Euler and Milstein 

schemes are low. In order to improve the order of convergence, multiple 

stochastic integrals of tW  are included in the numerical scheme. This is because 
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the simple increments tWΔ  do not provide enough information about the sample 

paths of Wiener process tW  inside the discretisation subinterval [ ]nn ττ −+1  to 

ensure higher order of approximation. Generally, the numerical scheme implicitly 

uses a linear interpolation in the subinterval. Multiple stochastic integrals of tW  

that occur in the stochastic Taylor expansion provide additional information about 

the sample paths of the driving Wiener process within the discretisation interval. 

 

(iii) Order 1.5 Strong Taylor Scheme 
 

A more accurate strong Taylor scheme can be obtained by including further 

multiple stochastic integrals from the stochastic Taylor expansion in the scheme. 

The order γ  = 1.5 strong Taylor scheme is derived by adding more terms from 

the Itô – Taylor expansion to the Milstein scheme. 

 

The order 1.5 strong Taylor scheme is given as (see Kloeden & Platen, 1992: 

351): 

 

 ( ){ }2
1

1 '
2n n n n n

aX X a n b W bb W n b Z
x+

∂
= + Δ + Δ + Δ − Δ + Δ

∂
 

 

 { }
2

2
2

1
2 n n

b b bb W n Z
t x x

⎧ ⎫∂ ∂ ∂
+ + + Δ Δ − Δ⎨ ⎬∂ ∂ ∂⎩ ⎭

 

 

 ( )
2

2 2
2

1 1
2 2

a a aa b n
t x x

⎧ ⎫∂ ∂ ∂
+ + + Δ⎨ ⎬∂ ∂ ∂⎩ ⎭

 

 

 ( )
22 2

2

1 1
2 3 n n

b bb b W n W
x x

⎧ ⎫⎛ ⎞∂ ∂⎪ ⎪ ⎧ ⎫+ + Δ − Δ Δ⎨ ⎬ ⎨ ⎬⎜ ⎟∂ ∂ ⎩ ⎭⎝ ⎠⎪ ⎪⎩ ⎭
, 
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where: 

 

   
1 2

1 2

n

n n

s

n sZ dW ds
τ

τ τ

+

Δ = ∫ ∫      (4.1.4) 

 

is a normally distributed random variable with the following properties: 

 

   ( ) 0nE ZΔ = , 

   ( ) ( )31
3nVar Z nΔ = Δ , 

   ( ) ( )21
2n nCov Z W nΔ Δ = Δ .    (4.1.5) 

 

The properties of nZΔ  are important from a numerical perspective. The multiple 

stochastic integral nZΔ  cannot be generated directly during the numerical 

approximation process with these properties. In order to generate nZΔ , two 

independent ( )0,1N  distributed random variables 1U  and 2U  are generated in 

the numerical approximation and then the following transformation is made: 

 

    1W U nΔ = Δ , 

 

    ( )3
1 2

1 1
2 3nZ U U⎛ ⎞

Δ = Δ +⎜ ⎟
⎝ ⎠

.   (4.1.6) 

 

It has been shown in Kloeden and Platen (1992: 351) that nZΔ  defined in 

equation (4.1.6) has the desired properties (4.1.5). Thus, in order to generate 

nZΔ  defined in equation (4.1.4) during the numerical process, two independent 

( )0,1N  distributed random variables 1U  and 2U  are generated and the 
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transformation in (4.1.6) is made. This transformation is essential in order to 

generate the stochastic multiple integral in the numerical approximation. 

 

Higher order strong Taylor schemes can be obtained by including even more 

terms from the stochastic Taylor expansions. These scheme, however, become 

increasingly more complex, but in some cases simple formulae can be obtained 

by using the special structure of the SDE. Using this approach, the order 2.0 

strong Taylor scheme can be derived (Kloeden & Platen, 1992: 356). 

 

4.2 Explicit strong schemes 
 

(i) Explicit order strong schemes 
 

Using strong Taylor approximations involves determining and evaluating the 

derivatives of the various orders of the drift and diffusion coefficient as well as the 

coefficients themselves for each step. Implementing this procedure can be time 

consuming. Therefore, to avoid the use of derivatives, the derivatives in the 

strong schemes are replaced by their corresponding finite differences. 

 

Using the Milstein scheme, one can derive the explicit order 1 scheme by 

replacing the derivatives by the corresponding difference ratios. However, these 

differences require the use of supporting values of the coefficients at additional 

points. 

 

Use the following Milstein scheme: 

 

( ) ( ){ }2
1

1 '
2n n n nY Y a n b W bb W n+ = + Δ + Δ + Δ − Δ  

 

and replace the derivative 'b  with finite differences, to obtain the explicit order 1 

strong scheme which has the following form (Kloeden & Platen (1992: 374)): 
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( ) ( ){ } ( ){ }2
1

1 , ,
2n n n n n n n nY Y a n b W b Y b Y W n

n
τ τ+ = + Δ + Δ + − Δ −Δ

Δ
, 

 

where: 

 

n nY Y a n b n= + Δ + Δ . 

 

An explicit order 1.5 strong scheme can also be derived by replacing the 

derivatives in the order 1.5 strong Taylor scheme by corresponding finite 

differences. 

 

In principle, the derivatives of the strong Taylor schemes can be replaced to 

obtain corresponding explicit schemes. This procedure may work well for low 

order explicit schemes but as the order is increased the formulae become more 

complicated. Sometimes, the special structure of the equation under 

consideration can be used to derive relatively simple higher order explicit 

schemes which do not involve the derivatives of the drift and diffusion 

coefficients. Kloeden & Platen (1992) provide an explicit order 2 strong scheme 

for additive noise, using the Stratonovich notation, to simplify the notation. This is 

possible, since an SDE which is written using Itô integrals can be equivalently 

written using Stratonovich integrals (see Kloeden & Platen (1992: 154 – 160). 

 

(ii) Multi step schemes 
 

Numerical methods using information from previous discretisation sub-intervals 

when calculating 1ny +  on the interval 1n nt t t +< <  achieve higher accuracy than 

those involving just a single time step. In these multi-step methods, 1ny +  depends 

on the previous k values 1, ,n n n ky y y− −…  for some k > 1. The initial k values are 

generated using an appropriate one-step method. 
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Another advantage of using multi-step over single step methods is that they are 

more computationally efficient because they require only one new evaluation of 

the right hand side of the SDE for each iteration. Sometimes, these multi-step 

schemes are more stable for larger time steps, although there are multi-step 

schemes that are unstable (Kloeden and Platen, 1992). Because stochastic 

simulations require the calculation of many different realisations of the 

approximating process, efficiency and stability are crucial factors to be taken into 

account when using stochastic multi-step schemes. 

 

Kloeden & Platen (1992: 385 - 389) provide a general explanation of how one 

would obtain a two-step order 1 strong scheme and a two-step order 1.5 strong 

scheme using a 2-dimensional Itô system. 

 

4.3 Implicit strong approximations 
 

Implicit strong schemes are those schemes in which the unknown quantity 1ny +  

appears on both sides of the SDE and in general 1ny +  cannot be isolated 

algebraically. These schemes are used to simulate the solution of stiff stochastic 

differential equations. 

 

(i) Implicit Euler Scheme 
 

Generating one of the simplest implicit schemes is rewriting the Euler scheme to 

obtain the implicit Euler scheme: 

 

   ( )1 1 1,n n n nY Y a Y n b Wτ+ + += + Δ + Δ ,   (4.3.1) 

 

where only the drift term is implicit, in order to ensure a solution, and 

( ),n nb b Yτ= . A family of implicit Euler schemes can be generated: 
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( ) ( ){ }1 1 1, 1n n n nY Y a Y a n b Wα τ α+ + += + + − Δ + Δ , 

 

where [ ]0,1α ∈ characterizes the degree of implicitness. When α  = 0, the explicit 

Euler scheme is obtained; the implicit scheme when α  = 1 and for α  = 0.5 the 

generalisation of the deterministic trapezoidal method is obtained. 

 

Implementing the implicit scheme will require solving an additional algebraic 

equation at each time step. This is usually accomplished with standard numerical 

methods such as the Newton-Raphson method. Further, using implicit schemes 

improves the stability of simulations considerably without too much additional 

computational effort (Kloeden and Platen, 1992). 

 

(ii) The implicit Milstein scheme 
 

The implicit Milstein scheme is derived analogously: 

 

 ( ) ( ){ }2
1 1 1

1, '
2n n n nY Y a Y n b W bb W nτ+ + += + Δ + Δ + Δ −Δ ,  (4.3.2) 

 

where again only the drift term contains the unknown 1ny + . 

 

The family of implicit schemes: 

 

( ) ( ){ } ( ){ }2
1 1 1

1, 1 '
2n n n nY Y a Y a n b W bb W nα τ α+ + += + + − Δ + Δ + Δ −Δ , 

 

where again, [ ]0,1α ∈ characterizes the degree of implicitness. When α  = 0, the 

explicit Milstein scheme is obtained; the implicit scheme when α  = 1 and for 

α  = 0.5 the generalisation of the deterministic trapezoidal method is obtained. 
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Implicit schemes for the order 1.5 and order 2 strong Taylor schemes can also be 

obtained, as well as derivative free schemes and multi-step schemes. Kloeden & 

Platen (1992) provide the implicit versions of these schemes for the 

1-dimensional as well as multi-dimensional case. In addition, they also consider 

the special cases when there is additive and commutative noise, sometimes 

using the equivalent Stratonovich representation to ease the notation. 
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CHAPTER V – NUMERICAL METHODS: WEAK APPROXIMATIONS 
 

The numerical methods in chapter IV are based on the strong convergence 

criterion where a good pathwise approximation is required, like in areas where 

direct simulations are required, filtering or testing statistical estimators. However, 

in many practical problems, a good pathwise approximation may not be of 

interest, but rather in some functional of the Itô process, like its probability 

distribution and its moments because it may not possible to determine these 

analytically. Thus, the weak convergence criterion is used, defined in chapter II, 

in cases where we need to approximate expectations of the functionals of the Itô 

process, which governs the stochastic differential equation. 

 

5.1 Weak Taylor schemes 
 

Weak Taylor approximations are obtained from using the stochastic Taylor 

expansion, introduced in chapter II, with a specified number of terms, depending 

on the order of weak convergence that is required. 

 

(i) Weak Euler Scheme 
 

Consider the following Euler scheme introduced in chapter IV, which only has the 

ordinary time integral and simple Itô integral: 

 

1n n nY Y a n b W+ = + Δ + Δ , 

 

where: 

    
1

1

n

n

n nn ds
τ

τ

τ τ
+

+Δ = − = ∫  , 

    
1

1

n

n n

n

n sW W W dW
τ

τ τ
τ

+

+
Δ = − = ∫ , 
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    ( )( ),n na a Yτ τ= , 

    ( )( ),n nb b Yτ τ= , 

    ( )n nY Y τ= . 

 

Since, in the weak approximation, estimating some functional of the Itô process 

is of interest, the Gaussian increments nWΔ  can be replaced by other random 

variables, say nWΔ , which has similar moment properties to nWΔ . Thus the weak 

Euler scheme has the form: 

 

   1n n nY Y a n b W+ = + Δ + Δ ,    (5.1.1) 

 

where the nWΔ  must be independent τ + 1n
A - measurable random variables. For 

example, nWΔ  could be a two-point distributed random variable with: 

 

( ) 1
2nP W nΔ =± Δ = . 

 

If a  and b  are sufficiently smooth, and four times continuously differentiable, 

then the Euler approximation has order of weak convergence β = 1.0 (Kloeden & 

Platen (1992: 457)). This is the order 1.0 weak Taylor scheme. 

 

(ii) The order 2.0 weak Taylor scheme 
 

More accurate weak Taylor schemes can be derived by adding further multiple 

stochastic integrals from the stochastic Taylor expansion, similar to the strong 

convergence schemes. The order β = 2.0 weak scheme is obtained by adding all 

the double stochastic integrals from the Itô – Taylor expansion (3.20) to the Euler 

scheme. This would provide more information about the probability measure of 
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the underlying Itô process. Since only the probability measure is of interest and 

not the sample paths itself, the multiple stochastic integrals could be replaced 

with simpler random variables. These random variables have only to coincide in 

their lower order moments with those of the Wiener process to provide sufficient 

accurate approximation of the probability law of the Itô diffusion. 

 

The order 2.0 weak Taylor scheme is: 

 

  1nY +  ( ){ }21 '
2n n nY a n b W bb W n= + Δ + Δ + Δ −Δ  

 

  ( )221 1' ' "
2 2na b Z aa a b n⎛ ⎞+ Δ + + Δ⎜ ⎟
⎝ ⎠

 

 

  { }21' "
2 n nab b b W n Z⎛ ⎞+ + Δ Δ −Δ⎜ ⎟

⎝ ⎠
, 

 

where, as previously, nZΔ  represents the double Itô integral: 

 
1 2

1 2

τ

τ τ

+

Δ = ∫ ∫
n

n n

s

n sZ dW ds . 

 

In a similar way, order 3.0 and order 4.0 weak Taylor schemes can be derived by 

adding all of the multiple Itô integrals of multiplicity three (for order β = 3.0) from 

the Itô –Taylor expansion and all of the multiple Itô integrals of multiplicity four for 

order β = 4.0, respectively. Kloeden & Platen (1992) derive the order 3.0 weak 

scheme and order 4.0 scheme for the general multi-dimensional case. However, 

it is difficult to generate multiple integrals of higher multiplicity and this is 

exacerbated when the corresponding coefficient functions become complicated. 

Thus, for weak convergence, simpler random variables with analogous moment 

properties to the Wiener process are substituted for the multiple Itô integrals. 
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These schemes become simpler depending on the structure of the SDE, for 

example, if there is scalar or additive noise. 

 

5.2 Explicit weak approximations 
 

Weak Taylor schemes require the determination and evaluation of derivatives of 

various orders of the drift and diffusion coefficients. Similar to what was done for 

the strong schemes, schemes that avoid the use of derivatives can also be 

derived. 

 

(i) Explicit order 2.0 weak schemes 
 

The explicit order 2.0 weak scheme is given as: 

 

  1nY +  ( )( )1
2nY a Y a n= + + Δ  

  ( ) ( )( )1 2
4

+ −
+ + + Δ nb Y b Y b W  

  ( ) ( )( ) ( ){ } ( )
2

0.51
4 nb Y b Y W n n

+ − −+ − Δ −Δ Δ  

 

with supporting values: 

 

n nY Y a n b W= + Δ + Δ , 

 

nY Y a n b n
±
= + Δ ± Δ , 

 

with nWΔ  being τ + 1n
A – measurable. This measurability condition holds if Δ nW  is 

chosen at each step to be independent. For example, Δ nW  could be Gaussian or 

it could be three-point distributed with: 
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   ( ) 13
6nP W nΔ = ± Δ = , 

   ( ) 20
3

Δ = =nP W . 

 

The explicit scheme can be extended in principle to the order 3.0 and order 4.0 

weak Taylor schemes by replacing the derivative of the drift and diffusion 

coefficients by their corresponding finite differences. These formulae become 

more complicated as the order is increased. However, one could take into 

account the special structure of the SDE, like whether there is additive noise or 

not. See Kloeden & Platen (1992: 488) for further reference. 

 

5.3 Implicit weak approximations 
 

Implicit weak approximations involve substituting Δ nW  in the implicit strong 

schemes by other random variables Δ nW , with similar moment properties as the 

Wiener process Δ nW . 

 

(i) Implicit weak Euler scheme 
 

Thus for example, Δ nW  can be replaced by Δ nW  in equation (4.3.1) to obtain the 

implicit weak Euler scheme: 

 

( )1 1 1,n n n n nY Y a Y n b Wτ+ + += + Δ + Δ , 

 

where only the drift term is implicit. The following two-point distributed random 

variable can be used: 
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( ) 1
2nP W nΔ =± Δ = , 

 

for nWΔ . A family of implicit Euler schemes can also be formed, as in Chapter IV: 

 

( ) ( ) ( ){ } ( )1 1 11 , , ,n n n n n n n n nY Y a Y a Y n b Y Wα τ α τ τ+ + += + − + Δ + Δ , 

 

where, as previously, α can be interpreted as the degree of implicitness. With 

α = 0.0 the above scheme reduces to the simplified weak Euler scheme (5.1.1) 

while with α = 0.5, the scheme represents a stochastic generalisation of the 

trapezoidal method. 

 

(ii) The implicit order 2.0 weak Taylor scheme 
 

The order 2.0 weak Taylor scheme is adapted to obtain the implicit scheme. It 

has the following form: 

 

 

  1nY +  ( )1n nY a Y n b W+= + Δ + Δ  

 

  ( ) ( ) ( ) ( ) ( )22
1 1 1 1

1 1' ''
2 2n n n na Y a Y b Y a Y n+ + + +
⎧ ⎫− + Δ⎨ ⎬
⎩ ⎭

 

 

  ( ){ }21 '
2
bb W n+ Δ −Δ  

 

  21 1' ' "
2 2

a b ab b b W n⎧ ⎫+ − + + Δ Δ⎨ ⎬
⎩ ⎭

 

 

where WΔ  is ( )0,N nΔ . WΔ could also be three-point distributed with: 
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   ( ) 13
6

Δ = ± Δ =nP W , 

   ( ) 20
3

Δ = =nP W . 

 

(iii) The implicit order 2.0 weak scheme 
 

This scheme can be derived from the order 2.0 strong scheme by ensuring that 

the drift term only is implicit and Δ nW  is replaced by Δ nW . It has the following 

form, 

 

   1nY +  ( )( )1
1
2n nY a a Y n+= + + Δ  

 

   ( ) ( )( )1 2
4
b Y b Y b W

+ −
+ + + Δ  

 

   ( ) ( )( ) ( ){ }( )
2 0.51

4
b Y b Y W n n

+ − −+ − Δ −Δ Δ  

 

with supporting value 

 

   nY Y a n b n
±
= + Δ ± Δ . 

 

 

5.4 Predictor – Corrector methods 
 

Kloeden & Platen (1992) provide other weak approximating schemes: the weak 

order 1β =  and weak order 2.0β =  predictor-corrector methods. These methods 

are used mainly because of their numerical stability. Further, the difference 
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between the predicted and corrected values at each time step provides an 

indication of the local error. 

 

The predictor terms are given by the weak Taylor or explicit weak schemes and 

the corrector terms are the corresponding implicit schemes made explicit by the 

predicted value 1+nY  instead of the 1+nY  on the right hand side of the implicit 

scheme. 

 

Consider the following modified trapezoidal method of weak order 1β =  with 

corrector: 

 

( ){ }11
1
2

nn n nY Y a Y a n b W++ = + + Δ + Δ  

 

The predictor term is the weak Euler scheme: 

 

1n n nY Y a n b W+ = + Δ + Δ . 

 

Since, in the weak schemes, Δ nW  can be replaced by other random variables 

with similar properties, Δ nW  could be chosen as a ( )0,N nΔ  normally distributed 
random variable, or as a two-point distributed random variable with: 
 
 

    ( ) 1
2nP W nΔ =± Δ = . 
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CHAPTER VI – NUMERICAL RESULTS 
 

This chapter of the thesis deals with the numerical tests, which have been 

programmed in Matlab. The strong and weak convergence criteria lead to 

different discrete time approximations, which are only efficient with respect to one 

of these two criteria. It is therefore important to clarify the aim of the simulation 

before choosing an appropriate scheme, deciding on whether a good pathwise 

approximation of the Itô process is required or whether an approximation of some 

functional of the Itô process is the real objective. 

 

Initially, Brownian motion is generated. Then various numerical schemes, which 

approximate the solution of the stochastic differential equation, are compared to 

the exact solution of a linear SDE with multiplicative noise. This can be easily 

accomplished since we have a closed solution for the linear SDE. Numerical 

estimates are provided for the strong convergence schemes of Chapter IV as 

well as estimates for the absolute error using the absolute error criterion. 

Numerical estimates are then provided for the order 2.0 weak Taylor scheme of 

chapter V. Further, the numerical schemes are also applied to the case when the 

SDE has additive noise. The Ornstein-Uhlenbeck process is used as an example 

of a linear SDE with additive noise. 

 

6.1 Generating Brownian motion in Matlab 
 

The underlying difference between deterministic and stochastic differential 

equations is the need to generate the following random increments of the 

Brownian motion for the SDE: 

 

  
1n nn t tW W W
−

Δ = − .     (6.1) 

 

For computational purposes, it is necessary to discretise the Brownian motion, 

where tW  is specified at discrete t  values. Therefore, let /t T NΔ =  for some 
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positive integer N  and for T  on interval [ ]0,T . From the definition of Brownian 

motion: 

 

( )
1 1~ 0,

n nn t t n nW W W N t t
− −Δ = − − , 

 

or equivalently: 

 

( )
1 1~ 0,1

n nn t t n nW W W t t N
− −Δ = − −  

 

where ( )0,1N  denotes a standard normally distributed random variable with zero 

mean and variance equal to one. Here ( )1n nt t t−− = Δ  is the variance of the 

Brownian motion random variable. In Matlab, the function randn (1,N) will 

generate N  random variables from the standard normal distribution. In order to 

generate a random variable with variance equal to ,tΔ  random variables from the 

standard normal distribution are generated using the Matlab function randn (1,N) 

and each of these variables are then multiplied by ,tΔ  resulting in the random 

increments in equation (6.1). 

 

From equation (6.1), 

 

   
1 01 t tW W WΔ = − , 

   
2 12 t tW W WΔ = − , 

 

implying that: 

 

  1 2W WΔ + Δ  
2 1 1 0t t t tW W W W= − + −  

  
2t

W= , 
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since 0 0t =  and 0 0W = . Therefore: 

 

1
n

n

t j
j

W W
=

= Δ∑  

 

will generate a discretised Brownian motion. The Matlab function cumsum (dW), 

where dW W= Δ , will generate a discretised Brownian motion during the 

simulations. 

 

Figure 6.1 shows a single simulation of a discretised Brownian path, the Matlab 

code for which is provided in Appendix A1. The Brownian path is conducted on 

the interval [ ]0,1T =  and 500N = , so that 1/ 500 0.002.tΔ = =  
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Discretised Brownian Path

 

Figure 6.1: Discretised Brownian path 
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6.2 Strong Taylor approximations – SDE with multiplicative noise 
 

Consider the Itô process { }, 0tX X t= ≥  satisfying the following stochastic 

differential equation: 

 

   ( ) ( ), ,t t t tdX a t X dt b t X dW= + .   (6.2) 

 

Let 

( ), t ta t X Xα= , 

( ), t tb t X Xβ= , 

 

so that equation (6.2) becomes a linear stochastic differential equation with 

multiplicative noise: 

 

   t t t tdX X dt X dWα β= + .    (6.3) 

 

In integral form, the stochastic differential equation is written as: 

 

0
0 0

t t

t s s sX X X ds X dWα β= + +∫ ∫ , 

 

where α  and β are constants. 

 

To derive the closed form solution, Itô’s formula (3.15) is used. 

 

Let ( ) ( )logY t X t=  in equation (3.15).  
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Applying Itô’s formula (3.15): 

 

   ( )logd X t⎡ ⎤⎣ ⎦   =  ( )
( )

( )
( )

2

2
1
2
dX tdX t

X t X t

⎡ ⎤⎣ ⎦−  

     =  ( ) 21
2

dt dW dtα β β+ −  

  ⇒  ( )logd X t⎡ ⎤⎣ ⎦  =  
2

2
dt dWβα β

⎛ ⎞
− +⎜ ⎟

⎝ ⎠
. 

 

Integrate both sides to obtain: 

 

   ( ) ( )log log 0X t X−   =  ( )2

0 0

/ 2
t t

ds dWα β β− +∫ ∫  

  ⇒  ( ) ( )log / 0X t X⎡ ⎤⎣ ⎦   =  ( ) ( )2 / 2 t W tα β β− +  

  ⇒   ( ) ( )/ 0X t X  =  ( ) ( ){ }2exp / 2 t W tα β β− +  

  ⇒    ( )X t  = ( ) ( ) ( ){ }20 exp / 2X t W tα β β− + . 

 

Therefore, the solution for the above linear SDE in equation (6.3) is: 

 

  2
0

1exp
2t tX X t Wα β β⎛ ⎞⎛ ⎞= − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

,    (6.4) 

 

where: 

 

( )0X  =  0X , 

( )X t  =  tX . 
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(i) The Euler scheme 
 

From Chapter II, the Euler approximation is given by: 

 

( ) ( )( ) ( ) ( )( ) ( )11 1, ,
n nn n n n n n n nY Y a Y b Y W Wτ ττ τ τ τ τ τ τ
++ += + − + − .  (6.5) 

 

To simulate the Euler approximation (6.5), for example (6.3), start with the initial 

value 0 0Y X=  and proceed recursively to generate the value: 

 

1n n n n nY Y Y t Y Wα β+ = + Δ + Δ . 

 

Noting that: 

 

    ( )( ),n n na Y Yτ τ α= , 

    ( )( ),n n nb Y Yτ τ β= , 

    ( )1n n tτ τ+ − = Δ , 

    ( )1n n tW W Wτ τ+
− = Δ . 

 

For 0 0 1Y X == , 1.5α =  and 1β = , the following plot is generated (Figure 6.2), 

using step size 52t −Δ = , (of which the Matlab routine is presented in Appendix 

A.2): 
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Figure 6.2: Exact solution and the Euler approximation with N = 2^5 

 

The error is 7.5709 when the step size is 52t −Δ = . 

 

The linearly interpolated Euler approximation differs from the exact solution when 

using a step size 52t −Δ = .  However, as the step size increases, the Euler 

approximation gets closer to resembling the true solution. Figure 6.3 plots the 

exact solution and the Euler approximation with 102N =  and the associated error 

is 0.0195. 
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Figure 6.3: Exact solution and the Euler approximation with N = 2^10 

 

Varying the size of the number of time steps from 52N =  to 142N =  produces 

errors that generally decrease as N  increases. The errors are recorded in Table 

6.2 when the number of time steps is increased from 52N =  to 142N = . 
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N Error

2 ^ 5 7.5709
2 ^ 6 5.4325
2 ^ 7 0.7487
2 ^ 8 0.0094
2 ^ 9 0.1677

2 ^ 10 0.0195
2 ^ 11 0.0087
2 ^ 12 0.0582
2 ^ 13 0.0457
2 ^ 14 0.0670

Euler Scheme

 

Table 6.1: Errors generated by the Euler scheme 

 

Figure 6.4 shows that the numerical scheme is a much better approximation as 

the number of time steps is increased to 142N = . 
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Figure 6.4: Exact solution and Euler approximation with N = 2^14 
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(ii) The Milstein scheme 
 

The Milstein Scheme is given by: 

 

 ( ) ( )( ) ( ) ( )( ) ( )11 1, ,
n nn n n n n n n nY Y a Y b Y W Wτ ττ τ τ τ τ τ τ
++ += + − + − +  

 

 ( )( ) ( )( ) ( ) ( ){ }1

2
1

1 , ' ,
2 n nn n n n n nb Y b Y W Wτ ττ τ τ τ τ τ

+ +− − − . 

 

For the example (6.3), t t t tdX X dt X dWα β= + , the Milstein scheme is: 

 

( ){ }22
1

1
2n n n n t n tY Y Y t Y W Y W tα β β+ = + Δ + Δ + Δ − Δ , 

 

because for ( ), t tb t X Xβ= , the derivative of b  with respect to x  is ( )' , tb t X β= , 

therefore ( )( )' ,n nb Yτ τ β= . 

 

The Milstein scheme with the same step size 52t −Δ =  gives a much better 

approximation to the true solution than does the Euler scheme with the same 

step size. The error for the Milstein scheme is 5.8242 while the error is 7.5709 for 

the Euler scheme when 52N = . Figure 6.5 shows the Milstein scheme 

approximation to the exact solution when 52N = . 

 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  GGoovveennddeerr,,  NN    ((22000077))  



 68

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

time

X(t)

Milstein scheme vs exact solution: N = 2  ̂5

 

 

Exact solution
Numerical solution

 
Figure 6.5: Exact solution and Milstein scheme with N = 2^5 

 

A much better result is obtain when the number of time steps is increased to 
102N = . This is depicted in Figure 6.6. The error using the Milstein approximation 

is 0.0068 when 102t −Δ = . The Milstein scheme is therefore an improved method 

over the Euler method, decreasing the error of the Euler scheme by 

approximately 65% when 102N = . 

 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  GGoovveennddeerr,,  NN    ((22000077))  



 69

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

time

X(t)

Milstein scheme vs exact solution: N = 2  ̂10

 

 

Exact solution
Numerical solution

 

Figure 6.6: Exact solution and Milstein scheme with N = 2^10 

 

The size of N  is varied from 52N =  to 142N =  and again, the corresponding 

errors decrease as N  increases (Table 6.2). 
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N Error

2 ^ 5 5.8242
2 ^ 6 3.4856
2 ^ 7 0.0786
2 ^ 8 0.0064
2 ^ 9 0.0241

2 ^ 10 0.0068
2 ^ 11 0.0025
2 ^ 12 0.0023
2 ^ 13 0.0011
2 ^ 14 7.3684E-04

Milstein Scheme

 

Table 6.2: Errors generated by the Milstein scheme 

 

When 142N = , the numerical scheme traces the exact solution very closely, which 

is clearly visible in Figure 6.7. 
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Figure 6.7: Milstein scheme and exact solution when N = 2^14 
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6.3 Explicit and implicit strong convergence schemes 
 

The following integration schemes satisfying the strong convergence criterion are 

presented: 

 

• Explicit order 1 strong scheme 

• Implicit Euler scheme 

• Implicit Milstein schemes 

 

(i) Explicit order 1 strong schemes 
 

 1nY +  ( ) ( ), ,n n n n n nY a Y n b Y Wτ τ= + Δ + Δ +  

 

 ( ) ( ){ } ( ){ }21 , ,
2 n n n n nb Y b Y W n

n
τ τ− Δ −Δ

Δ
,  (6.6) 

 

where: 

 

( ) ( ), ,n n n n n nY Y a Y n b Y nτ τ= + Δ + Δ . 

 

For example (6.3), 

 

    ( )1n n nτ τ+ − = Δ , 

    ( )1n n nW W Wτ τ+
− = Δ , 

   ( ),n n na Y Yτ α= , 

   ( ),n n nb Y Yτ β= , 

   ( ),n n nb Y Yτ β= , 

   n n n nY Y Y n Y nα β= + Δ + Δ , 
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and 

 

( ) ( ), ,n n n nb Y b Yτ τ−  =  n nY Yβ β−  

=  ( )n nY Yβ −  

=  ( )n n n nY Y n Y n Yβ α β+ Δ + Δ −  

=  ( )nY n nβ α βΔ + Δ . 

 

Therefore, equation (6.6) becomes: 

 

( ){ } ( ){ }2
1

1
2n n n n n n n n n n n

n

Y Y Y Y W Y Wα β β α β+ = + Δ + Δ + Δ + Δ Δ − Δ
Δ

. 

 

Figure 6.8 shows the explicit order 1 strong scheme approximation to the exact 

solution, when 52N =  and the error is 5.1262. 
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Figure 6.8: Explicit order 1.0 strong scheme and exact solution when N = 2^5 

 

The error is 0.0041 when 82N = ; a marked improvement over both the Euler and 

Milstein Schemes. 

 

When 142N = , the error is 0.0023 and the numerical scheme is a very close 

approximation to the exact solution. This is clearly visible in Figure 6.9. 
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Figure 6.9: Explicit order 1.0 strong scheme and exact solution when N = 2^14 

 

Table 6.3 provides errors by varying the number of time steps from 52N =  to 
142N = .  The errors that are produced generally decrease as N  increases. 
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N Error

2 ^ 5 5.1262
2 ^ 6 2.8150
2 ^ 7 0.0996
2 ^ 8 0.0041
2 ^ 9 0.0500

2 ^ 10 0.0092
2 ^ 11 0.0032
2 ^ 12 0.0052
2 ^ 13 0.0027
2 ^ 14 0.0023

Explicit Order 1 
Strong Scheme

 

Table 6.3: Errors generated by the explicit order 1.0 strong scheme 

 

(ii) Implicit Euler scheme 
 

In the implicit Euler scheme, only the drift term is written in implicit form: 

 

( ) ( )1 1 1, ,n n n n n nY Y a Y t b Y Wτ τ+ + += + Δ + Δ . 

 

For example (6.3), t t t tdX X dt X dWα β= + , the implicit Euler scheme is: 

 

  1 1n n n nY Y Y t Y Wα β+ += + Δ + Δ ,    (6.7) 

 

since 

( )1 1 1,n n na Y Yτ α+ + += . 

 

Equation (6.7) implies that: 

 

    1 1n n n nY Y t Y Y Wα β+ +− Δ = + Δ  
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  ⇒  ( )
( )1
1
1

n
n

Y W
Y

t
β
α+

+ Δ
=

− Δ
. 

 

Figure 6.10 shows the implicit Euler scheme approximation to the exact solution, 

when 52N =  and the error is 0.6587, which is lower than the errors produced by 

Euler scheme, Milstein scheme and the explicit order 1 strong scheme for 52N = . 
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Figure 6.10: Implicit Euler scheme and exact solution when N = 2^5 

 

Table 6.4 provides the errors when the number of time steps is increased from 
52N =  to 142N = . 
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N Error

2 ^ 5 0.6587
2 ^ 6 1.4605
2 ^ 7 0.6119
2 ^ 8 0.0227
2 ^ 9 0.2174

2 ^ 10 0.0232
2 ^ 11 0.0103
2 ^ 12 0.0592
2 ^ 13 0.0461
2 ^ 14 0.0666

 Implicit Euler 
Scheme

 

Table 6.4: Errors generated by the implicit Euler scheme 

 
Figure 6.11 depicts the numerical approximation to the exact solution with an 

error of 0.0666, when 142N = . Again, the numerical scheme is a very close 

approximation to the exact solution. 
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Figure 6.11: Implicit Euler scheme and exact solution when N = 2^14 

 

(iii) Implicit Milstein scheme 
 

The implicit Milstein scheme is defined as: 

 

 ( ) ( )( ) ( ) ( )( ) ( )11 1 1 1, ,
n nn n n n n n n nY Y a Y b Y W Wτ ττ τ τ τ τ τ τ
++ + + += + − + − +  

 ( )( ) ( )( ) ( ) ( ){ }1

2
1

1 , ' ,
2 n nn n n n n nb Y b Y W Wτ ττ τ τ τ τ τ

+ +− − − , 

 

where again, only the drift term is depends on 1nY + . For example (6.3), the implicit 

Milstein scheme is: 
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  ( ){ }22
1 1

1
2n n n n t n tY Y Y t Y W Y W tα β β+ += + Δ + Δ + Δ − Δ  

  ⇒  ( ){ }22
1 1

1
2n n n n t n tY Y t Y Y W Y W tα β β+ +− Δ = + Δ + Δ − Δ  

  ⇒  ( ) ( ){ }22
1

11
2n n n t n tY t Y Y W Y W tα β β+ − Δ = + Δ + Δ − Δ  

  ⇒  ( ){ } ( )22
1

1 / 1
2n n n t n tY Y Y W Y W t tβ β α+

⎛ ⎞= + Δ + Δ − Δ − Δ⎜ ⎟
⎝ ⎠

. 

 

Figure 6.12 shows the implicit Milstein scheme approximation to the exact 

solution, when 52N =  and the error is 1.7499, which is lower than the errors 

produced by Euler scheme, Milstein scheme and the explicit order 1 strong 

scheme for 52N = , but the error is not lower than the error of the implicit Euler 

scheme. 
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Figure 6.12: Implicit Milstein scheme and exact solution when N = 2^5 
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Table 6.5 provides the errors when the number of time steps is increased 

from 52N =  to  142N = . 

 

N Error

2 ^ 5 1.7499
2 ^ 6 1.0197
2 ^ 7 0.1247
2 ^ 8 0.0198
2 ^ 9 0.0210

2 ^ 10 0.0032
2 ^ 11 8.6286E-04
2 ^ 12 0.0014
2 ^ 13 7.2974E-04
2 ^ 14 0.0011

 Implicit Milstein 
Scheme

 

Table 6.5: Errors generated by the implicit Milstein scheme 

 

The errors (for the associated time steps) are generally lower than the errors 

produced by the implicit Euler scheme. 

 

The implicit Milstein approximation and the exact solution for 142N =  is provided 

in Figure 6.13.  
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Figure 6.13: Implicit Milstein scheme and exact solution when N = 2^14 

 

6.4 Weak convergence schemes 
 

The order 2.0 weak Taylor scheme is defined as follows: 

 

 1nY +  ( ){ }21 '
2n n nY a n b W bb W n= + Δ + Δ + Δ −Δ  

 

 ( )221 1' ' "
2 2na b Z aa a b n⎛ ⎞+ Δ + + Δ⎜ ⎟
⎝ ⎠

 

 

 { }21' "
2 n nab b b W n Z⎛ ⎞+ + Δ Δ −Δ⎜ ⎟

⎝ ⎠
,    (6.8) 
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where nZΔ  is the following double integral: 

 
1 2

1 2

n

n n

s

n sZ dW ds
τ

τ τ

+

Δ = ∫ ∫ , 

 

with the following properties: 

 

   ( ) 0nE ZΔ = ,      (6.9) 

   ( ) ( )31
3nVar Z nΔ = Δ ,     (6.10) 

   ( ) ( )21
2n nCov Z W nΔ Δ = Δ .    (6.11) 

 

For the example (6.3): 

 

   ( ),n n na Y Yτ α= ,  

   ( ),n n nb Y Yτ β= , 

   ( )' ,n na Yτ α= , 

   ( )' ,n nb Yτ β= , 

   ( )'' , 0n na Yτ = ,  

   ( )'' , 0n nb Yτ = . 

 

Therefore the order 2.0 weak Taylor scheme (6.8) for example (6.3) is: 

 

 1nY +   ( ){ }21
2n n n n n nY Y n Y W Y W nα β β β= + Δ + Δ + Δ −Δ  

 ( )( )21
2n n nY Z Y nα β α α+ Δ + Δ ( ){ }n n nY W n Zα β+ Δ Δ −Δ . 
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In order to generate nZΔ  with properties (6.9) – (6.11), let 1G  and 2G  be two 

independent standard normally distributed random variables which can be easily 

generated in Matlab with the command randn. Then the following definitions of 

nWΔ and nZΔ will have the desired properties (6.9) – (6.11) (Kloeden and Platen, 

1992): 

 

   1nW n GΔ = Δ      (6.12) 

   ( )3/ 2
1 2

1 1
2 3nZ n G G⎛ ⎞

Δ = Δ +⎜ ⎟
⎝ ⎠

.   (6.13) 

 

Therefore: 

 

 ( ) ( )3/ 2 3/ 2
1 2

1 1 1
2 2 3

Var n G n G⎛ ⎞
Δ + Δ⎜ ⎟

⎝ ⎠
( ) ( ) ( ) ( )3 3

1 2
1 1 1var var
4 4 3

n G n G= Δ + Δ  

 

    ( ) ( ) ( ) ( )3 31 1 11 1
4 4 3

n n= Δ + Δ  

 

    ( )31
3

n= Δ , 

 

since 1G  and 2G  are independent. Similarly: 

 

( ) ( )21
2n nCov Z W nΔ Δ = Δ . 

 

Thus nZΔ  can be easily generated by specifying its functional form as equation 

(6.13) in Matlab. Note that equation (6.12) has been used previously to generate 

the Brownian path in the first section of this chapter. 
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Figure 6.14 depicts a comparison of the numerical approximation to the exact 

solution when 52N = . The associated error 2.1735. The order 2 weak Taylor 

scheme produces smaller errors than the Euler scheme, Milstein scheme and 

explicit order 1 strong scheme when 52N = .  

 

However, the implicit Euler and implicit Milstein schemes perform much better 

than the order 2 weak Taylor scheme. This can be explained by the fact that the 

strong schemes provide a good pathwise approximation while the weak 

schemes, some functional of the Itô process is of interest. 
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Figure 6.14: The order 2.0 weak Taylor scheme and exact solution when N = 2^5 
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When 102N = , the error is very small at 6.6027e-05. A comparison of the 

numerical scheme and exact solution when 102N =  is depicted in Figure 6.15. 

Just as in the case with the strong schemes, the order 2.0 weak Taylor scheme 

provides a very close approximation to the exact solution. 
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Figure 6.15: The order 2.0 weak Taylor scheme and exact solution when N = 2^10 

 

The number of discretisation points was changed from 52N =  to 142N = , and the 

corresponding errors were obtained. The errors are provided in Table 6.6. 
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N Error

2 ^ 5 2.1735
2 ^ 6 0.9191
2 ^ 7 0.0778
2 ^ 8 0.0173
2 ^ 9 0.0127

2 ^ 10 6.6027E-05
2 ^ 11 4.0001E-05
2 ^ 12 3.4032E-04
2 ^ 13 1.2792E-04
2 ^ 14 3.8124E-04

Order 2 Weak Taylor 
Scheme

 

Table 6.6: Errors generated by the order 2.0 weak Taylor scheme 

 

The order 2.0 weak Taylor scheme is a very close approximation to the exact 

solution for 142N =  (Figure 6.16). 
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Figure 6.16: The order 2.0 weak Taylor scheme and exact solution when N = 2^14 
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Having specified the variable nZΔ  with properties (6.9) – (6.11), it would then 

become fairly straightforward to implement numerical schemes for the explicit 

and implicit weak approximations. 

 

6.5 Strong numerical schemes – SDE with additive noise 
 

The Ornstein-Uhlenbeck process is an example of a stochastic differential 

equation with additive noise in that the co-efficient of the diffusion term is 

independent of the state variable. The Ornstein-Uhlenbeck process is a mean-

reverting process (Hughston, 1996). The Vasicek model and the Cox-Ingersoll-

Ross model are commonly used stochastic models for the term structure of 

interest rates and these models are based on the stochastic process being 

modelled by an Ornstein-Uhlenbeck process. 

 

The Ornstein-Uhlenbeck process has the following form (Kloeden, et al, 1994): 

 

( )0
0 0

t t

t s sX X X ds dWα μ β= − − +∫ ∫ . 

 

Assume that the mean 0μ = . The above stochastic integral equation is written 

symbolically as the following stochastic differential equation: 

 

    t tdXt X dt dWα β= − + .    (6.14) 

 

Using Itô’s lemma, the Ornstein-Uhlenbeck process has the explicit solution 

(Kloeden, et al, 1994): 

 

0
0

t
at at as

t sX e X e e bdW− −= + ∫ . 
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The above solution is then compared to the numeric solution, using the different 

numerical schemes. This section provides results of the strong schemes when 

applied to the Ornstein-Uhlenbeck process. 

 

i. Euler scheme 
 

The Euler scheme is given as: 

 

( ) ( )( ) ( ) ( )( ) ( )11 1, ,
n nn n n n n n n nY Y a Y b Y W Wτ ττ τ τ τ τ τ τ
++ += + − + − . 

 

For the Ornstein-Uhlenbeck process (6.14), we have:  

 

    ( )( ),n n na Y Yτ τ α= − , 

    ( )( ),n nb Yτ τ β= . 

 

Therefore, the Euler scheme for the Ornstein-Uhlenbeck process is: 

 

1n n nY Y Y n Wα β+ = − Δ + Δ , 

 

where: 

 

    ( )n nY Y τ= , 

    ( )1n n nτ τ+ − = Δ , 

    ( )1n n
W W Wτ τ+

− = Δ . 

 

Figure 6.17 shows the Euler scheme approximation to the exact solution for the 

Ornstein-Uhlenbeck process, when 102N = . The associated error is 0.2361. 
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Figure 6.17: Euler scheme and exact solution: Ornstein-Uhlenbeck process when N = 2^10 

 

The error produced by the Euler scheme for the Ornstein-Uhlenbeck process is 

much higher than the error produced for the SDE with multiplicative noise, for 
102N = .  
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Figure 6.18: Euler scheme and exact solution: Ornstein-Uhlenbeck process when N = 2^14 

 

Figure 6.18 shows that the numerical scheme (for 142N = ) is not a very close 

approximation to the exact solution, especially when T > 0.3. Although the 

numerical solution traces the exact solution, it does not overlap the exact 

solution. 

 

As before, N  is increased from 52N =  to 142N =  and the associated errors are 

recorded in Table 6.7. 
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Multiplicative 
Noise

Ornstein-
Uhlenbeck 

process

2 ^ 5 7.5709 0.7611
2 ^ 6 5.4325 1.1823
2 ^ 7 0.7487 0.9181
2 ^ 8 0.0094 0.2749
2 ^ 9 0.1677 0.0524

2 ^ 10 0.0195 0.2361
2 ^ 11 0.0087 0.8817
2 ^ 12 0.0582 0.6455
2 ^ 13 0.0457 0.6995
2 ^ 14 0.0670 0.4289

Euler Scheme
Error

N

 

Table 6.7: Comparison of errors: SDE with multiplicative noise and Ornstein-Uhlenbeck process 

 

A comparison of the errors in Table 6.7 shows that the Euler scheme produces 

smaller errors for the SDE with multiplicative noise than the SDE with additive 

noise (i.e. the Ornstein-Uhlenbeck process). 

 

ii. Milstein Scheme 
 

The Milstein scheme is given by: 

 

 ( ) ( )( ) ( ) ( )( ) ( )11 1, ,
n nn n n n n n n nY Y a Y b Y W Wτ ττ τ τ τ τ τ τ
++ += + − + − +  

 

 ( )( ) ( )( ) ( ) ( ){ }1

2
1

1 , ' ,
2 n nn n n n n nb Y b Y W Wτ ττ τ τ τ τ τ

+ +− − − . 

 

For the Ornstein-Uhlenbeck process, 

 

t tdXt X dt dWα β= − + , 
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( )( ),n nb Yτ τ β= , and hence ( )( )' , 0n nb Yτ τ = . Therefore, the Milstein scheme 

reduces to the Euler scheme for the Ornstein-Uhlenbeck process. 

 

iii. Explicit Order 1 Strong scheme 
 

The explicit order 1 strong scheme is given by equation (6.6): 

 

  1nY +  ( ) ( ), ,n n n n n nY a Y n b Y Wτ τ= + Δ + Δ +  

  ( ) ( ){ } ( ){ }21 , ,
2 n n n n nb Y b Y W n

n
τ τ− Δ −Δ

Δ
, 

 

where: 

 

  ( ) ( ), ,n n n n n nY Y a Y n b Y nτ τ= + Δ + Δ . 

 

For the Ornstein-Uhlenbeck process, 

 

   ( ),n n na Y Yτ α= − , 

   ( ),n nb Yτ β= , 

   ( ),n n nb Y Yτ β= , 

   n n nY Y Y n nα β= − Δ + Δ , 

 

and 

 

 ( ) ( ), ,n n n nb Y b Yτ τ−  =  nYβ β−  

 =  2
n nY Y n nβ α β β β− Δ + Δ − . 
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Therefore the explicit order 1 strong scheme is: 

 

{ } ( ){ }22
1

1
2n n n n n n nY Y Y n W Y Y n n W n

n
α β β α β β β+ = − Δ + Δ + − Δ + Δ − Δ −Δ

Δ
. 

 

Figure 6.19 shows the explicit order 1.0 strong scheme approximation to the 

exact solution, when 102N = . The associated error is 0.0400. Again, the 

numerical scheme traces the exact solution, but it does not overlap the exact 

solution to provide a good approximation. 

 

Figure 6.19: Explicit order 1.0 strong scheme and exact solution: 

Ornstein-Uhlenbeck process when N = 2^10 
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The simulation is carried out for 52N =  and the number of time steps is increased 

to 142N = . The associated errors are recorded in Table 6.8. The errors do not, in 

general, decrease as the number of time steps is increased. 

 

N Error

2 ^ 5 1.2113
2 ^ 6 1.1855
2 ^ 7 0.8197
2 ^ 8 0.0443
2 ^ 9 0.4011

2 ^ 10 0.0400
2 ^ 11 0.8699
2 ^ 12 1.9973
2 ^ 13 0.4754
2 ^ 14 0.2456

Explicit Order 1 
Strong scheme

 

Table 6.8: Errors generated by the explicit order 1.0 strong scheme: Ornstein-Uhlenbeck process 

 
iii. Implicit Euler Scheme 
 

In this scheme, only the drift term depends on 1nY +  and not β , the co-efficient of 

the diffusion term. The Implicit Euler scheme is: 

 

( ) ( )1 1 1, ,n n n n n nY Y a Y t b Y Wτ τ+ + += + Δ + Δ . 

 

For the Ornstein-Uhlenbeck process, the implicit Euler scheme is: 

 

1 1n n nY Y Y t Wα β+ += − Δ + Δ , 

since  

    ( )1 1 1,n n na Y Yτ α+ + += − , 

    ( ),n nb Yτ β= . 
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Thus, for the Ornstein-Uhlenbeck process, the implicit Euler reduces to: 

 

  1 1n nY Y tα+ ++ Δ   = nY Wβ+ Δ  

  ⇒  1nY +    = 
1
nY W

t
β
α

+ Δ
+ Δ

. 

  

Figure 6.20 shows the implicit Euler scheme approximation to the exact solution 

for the Ornstein-Uhlenbeck process when 102N =  and the associated error is 

0.2433. 
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Figure 6.20: Implicit Euler scheme and exact solution: 

Ornstein-Uhlenbeck process when N = 2^10 
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Just as before, the simulation is carried out and the number of time steps is 

increased from 52N =  to 142N = . The errors are recorded in Table 6.9. 

 

N Error

2 ^ 5 0.8437
2 ^ 6 1.1697
2 ^ 7 0.8670
2 ^ 8 0.2545
2 ^ 9 0.0501

2 ^ 10 0.2433
2 ^ 11 0.8842
2 ^ 12 0.6463
2 ^ 13 0.6997
2 ^ 14 0.4289

Implicit Euler Scheme

 

Table 6.9: Errors generated by the implicit Euler scheme: Ornstein-Uhlenbeck process 

 

iv. Implicit Milstein Scheme 
 

The implicit Milstein scheme is defined as: 

 

 ( ) ( )( ) ( ) ( )( ) ( )11 1 1 1, ,
n nn n n n n n n nY Y a Y b Y W Wτ ττ τ τ τ τ τ τ
++ + + += + − + − +  

  

 ( )( ) ( )( ) ( ) ( ){ }1

2
1

1 , ' ,
2 n nn n n n n nb Y b Y W Wτ ττ τ τ τ τ τ

+ +− − − , 

 

where again, only the drift term is depends on 1nY + . 

 

For the Ornstein-Uhlenbeck process,  

 

    ( ),n nb Yτ β= ,  
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and hence 

    ( )' , 0n nb Yτ = . 

 

Therefore, the implicit Milstein scheme reduces to the implicit Euler scheme. 

 

6.6 Summary of numerical results 
 

i. SDE with multiplicative Noise 
 

Table 6.10 provides a summary of the numerical schemes and the associated 

errors for the SDE with multiplicative noise. 

 

Scheme N = 2^5 N = 2^6 N = 2^7 N = 2^8 N = 2^9

Euler Scheme 7.5079 5.4325 0.7487 0.0094 0.1677
Milstein Scheme 5.8242 3.4856 0.0786 0.0064 0.0241
Explicit Order 1 Strong Scheme 5.1262 2.8150 0.0996 0.0041 0.0500
Implicit Euler Scheme 0.6587 1.4605 0.6119 0.0227 0.2174
Implicit Milstein Scheme 1.7499 1.0197 0.1247 0.0198 0.0210
Order 2 Weak Taylor Scheme 2.1735 0.9191 0.0778 0.0173 0.0127  
Scheme N = 2^10 N = 2^11 N = 2^12 N = 2^13 N = 2^14

Euler Scheme 0.0195 0.0087 0.0582 0.0457 0.0670
Milstein Scheme 0.0068 0.0025 0.0023 0.0011 7.3684E-04
Explicit Order 1 Strong Scheme 0.0092 0.0032 0.0052 0.0027 0.0023
Implicit Euler Scheme 0.0232 0.0103 0.0592 0.0461 0.0666
Implicit Milstein Scheme 0.0032 0.0009 0.0014 0.0007 0.0011
Order 2 Weak Taylor Scheme 6.6027E-05 4.0001E-05 3.4032E-04 1.2792E-04 3.8124E-04  

Table 6.10: Comparison of errors: SDE with multiplicative noise 

 

The error of the Euler scheme decreases when the number of discretisation 

points increases from 62N =  to 82N = . The Milstein scheme performs better 

than the Euler scheme owing to the additional information contained in the 

stochastic double integral. The explicit order 1.0 strong scheme improves on the 
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Milstein scheme by using additional information contained in the multiple 

stochastic integrals. Thus, if improved accuracy is required, one could consider 

higher order explicit strong schemes. 

 

The implicit schemes do not perform as well as the other strong schemes (when 

the number of time steps is beyond 82N = ) although the implicit Milstein scheme 

performs better than the implicit Euler scheme, as expected. The implicit Euler 

and Milstein schemes do not perform as well as the Euler and Milstein schemes, 

respectively. One reason is the fact that example (6.3) could be written in closed 

form for the implicit schemes and thus some information is lost that otherwise 

would have been included in the approximation. 

 

When 52N = , the implicit Euler scheme outperforms the other schemes, in that 

this scheme produces the smallest error while the Euler scheme has the largest 

error (Table 6.10). 

 

When 62N = , the implicit Milstein scheme has the smallest error amongst the 

strong schemes, as expected, while the Euler scheme still has the largest error. 

The order 2.0 weak Taylor scheme has the smallest error for both the strong and 

weak schemes (Table 6.10).  

 

The explicit order 1.0 strong scheme outperforms both the Euler and Milstein 

schemes when 52N =  and 62N = . But as the number of time steps increase, the 

Milstein scheme (in its simplicity) produces lower errors that the explicit order 1.0 

strong scheme. This is clear for N  between 92N =  and 142N =  (Table 6.10). 
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Figure 6.21: Comparison of schemes when the number of time steps increase from N = 2^5 

 

These results suggest that numerical schemes that use more terms (in their 

definition) perform much better than numerical schemes with fewer terms. 

 

As a general trend, the errors decrease as N  increases, for a particular scheme. 

Out of all the six schemes considered, it is only the implicit Euler scheme where 

the error increases as the number of discretisation points is increased from 
52N =  to 62N =  (Figure. 6.21).  
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Figure 6.22: Comparison of schemes when the number of time steps increases from N = 2^8 

 

However, on closer analysis of the results, there is a spike in the graph at 92N =  

and the error increases as the number of discretisation points is increased from 
82N =  to 92N =  (Figure 6.22). It is only the implicit Milstein scheme where the 

error continues to decrease as N increases from 82N =  to 92N = . The error 

generated by the implicit Euler scheme decreases from 102N =  to 112N = , but 

continues to increase as the number of time steps is increased from 112N =  to 
142N = . The errors generated from the explicit order 1.0 strong scheme, the 

Milstein scheme and the implicit Milstein scheme continue to decrease as N  

increases. 

 

The error from the Order 2 weak Taylor scheme is much lower than the implicit 

schemes. One could repeat the approximations a substantial number of times 
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and then calculate the mean error from the approximations. This could then be 

used to construct confidence intervals for the error of the weak Taylor scheme. 

 

These results suggest that the higher order schemes perform much better that 

the lower order ones. Thus, analysts should try to use the scheme with the 

highest order that can be easily implemented, taking note of the computational 

time, especially for non-linear stochastic differential equations. 

 

ii. SDE with additive noise – Ornstein Uhlenbeck process 
 

Table 6.11 provides a summary of the errors produced by the different numerical 

schemes when applied tot eh Ornstein-Uhlenbeck process. 

 

Euler Explicit order 1 Implicit Euler

2 ^ 5 0.7611 1.2113 0.8437
2 ^ 6 1.1823 1.1855 1.1697
2 ^ 7 0.9181 0.8197 0.8670
2 ^ 8 0.2749 0.0443 0.2545
2 ^ 9 0.0524 0.4011 0.0501

2 ^ 10 0.2361 0.0400 0.2433
2 ^ 11 0.8817 0.8699 0.8842
2 ^ 12 0.6455 1.9973 0.6463
2 ^ 13 0.6995 0.4754 0.6997
2 ^ 14 0.4289 0.2456 0.4289

ErrorsN

 

Table 6.11: Comparison of errors: Ornstein-Uhlenbeck process 

 

 
For the Euler scheme, the error decreases as the number of time steps is 

increased from 62N =  to 92N = . However, as the number of time steps is 

increased beyond 92N = , the errors also increase. 
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The implicit Euler scheme produces similar results to the Euler scheme. This is 

evident from Figure 6.23.  
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Figure 6.23: Comparison of errors for the Ornstein-Uhlenbeck process 

 

When the number of time steps N  lies between 62N =  and 92N = , the explicit 

order 1.0 strong scheme produces smaller errors than both the Euler and implicit 

Euler schemes; and the implicit Euler also produces smaller errors than the 

Euler. This is expected since the higher order strong schemes involves more 

terms in the approximation. 

 

However, beyond 92N = , the errors are not consistent, in that errors produced by 

the implicit Euler and Euler scheme are much smaller than the errors produced 

explicit order 1.0 strong scheme. This is evident when 122N = . 
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These numerical results suggest that the numerical schemes performed much 

better for the SDE with the multiplicative noise that the SDE with the additive 

noise (Ornstein-Uhlenbeck process). 

 

One of the reasons could be the fact that the term Wβ Δ  in the Ornstein-

Uhlenbeck process, 

 

1n n nY Y Y n Wα β+ = − Δ + Δ , 

 

does not contain the previous estimated value nY  in the simulation of 1nY + . Thus 

there is much less information for which to estimate 1nY + during the simulation of 

1nY + . 
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CHAPTER VII - CONCLUSION 
 

The numerical schemes for stochastic differential equations considered in this 

thesis have been derived from the stochastic Taylor formula. The Euler scheme 

is the simplest numerical approximation in that it uses the first three terms of the 

Taylor formula (3.20). The Euler scheme for the SDE is similar to the Euler 

scheme for deterministic ordinary differential equations, however for the SDE, 

one needs to generate random increments of the discretised Brownian motion. 

The Euler scheme attains the order of strong convergence γ = 0.5. 

 

For the Milstein scheme, an additional term involving the stochastic double 

integral is included in the numerical approximation. By adding just one more term 

to the Euler scheme, the order of strong convergence increases to γ = 1. In order 

to increase the order of strong convergence, one needs to consider additional 

terms for the stochastic Taylor expansion in the numerical approximation. These 

higher order Taylor schemes generally involve multiple stochastic integrals, 

which contain additional information and generally improve the numerical 

approximation. However, these higher order schemes can become 

computationally complex, even for relatively simple SDE’s. One should use these 

schemes if the structure of the SDE will improve the efficiency of the 

computations. 

 

In the strong Taylor schemes, the derivatives of the drift and diffusion coefficients 

must also be determined at each step in addition to the coefficients themselves. 

To overcome this disadvantage, the derivatives are replaced by finite differences 

in a similar way that Runge-Kutta schemes are use for deterministic differential 

equations. These are the explicit strong schemes. 

 

There are also implicit strong schemes in which the drift term is also a function of 

( )1 stn + value of the approximation. These schemes are practically important in 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  GGoovveennddeerr,,  NN    ((22000077))  



 105

that a wide range of step sizes can be implemented. Therefore, these schemes 

are well suited for simulating the solution of stiff3 stochastic differential equations. 

 

Whereas in the strong schemes a good pathwise approximation is required, for 

the weak schemes, one is interested in approximating functionals of the Itô 

process. This is relevant in many practical problems when the functionals cannot 

be determined analytically. 

 

The explicit order 2.0 weak scheme is a derivative free scheme in that the 

derivatives of the order 2.0 weak Taylor scheme are replaced by finite 

differences. For the implicit order 2.0 weak Taylor scheme and the implicit order 

2.0 weak scheme, only the drift terms are implicit while for the implicit Euler 

scheme, one can have both the drift and diffusion terms being implicit. However, 

because we have unknown on both sides of the equation, difficulties arise in the 

computations when the co-efficient of the drift and diffusion terms are non-

constants and when there is multiplicative noise in the diffusion term. 

 

For example (6.3), the linear SDE had an explicit solution. Further, the functional 

form ( ), t tb t X Xβ=  of the coefficient of the diffusion term is fairly straightforward 

so that there is an explicit expression for its derivative, which in this case is β  

and is independent of tX . Thus, for example (6.3), there is no need to evaluate 

the derivative in each step of the approximation. 

 

In cases where the derivative is a function of tX , the explicit strong scheme 

provides a computational advantage over other schemes where the derivatives 

must be evaluated at each step in the approximation. 

 

 

                                                 
3 Stiff – refers to two or more widely differing time scales in the solutions of stochastic processes 
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The numerical results indicate that as the order of the scheme increases, the 

error decreases. Further, the results indicate the ease with which numerical 

approximations can be performed on a digital computer. Thus, one can use the 

simple Euler and Milstein schemes to obtain reasonable solutions of the 

stochastic differential equations. 

 

This thesis has not considered the issue of numerical stability. However, 

according to Kloeden and Platen (1992), all the one step stochastic schemes 

proposed in this thesis are numerically stable under sufficient smoothness and 

regularity conditions on the drift and diffusion coefficients. 

 

The analysis in the thesis used the fact the time step that is constant during 

simulations. However, one could use varying time steps during a particular 

simulation. Lehn, et al, (2002) reviews adaptive schemes which use variable step 

sizes in the numerical scheme. Thus, further research could focus on 

convergence issues when variable step sizes are used in the numerical scheme. 

The variable step size could also be researched in higher order numerical 

methods, which are complicated when a constant step size is used. 
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APPENDIX A 
 

A.1: Discretised Brownian path 
 

% Discretised Brownian Motion 

 

randn ('state', 200);    % Sets the state so that the same 

% random numbers are generated 

T = 1; N = 500; dt = T/N; 

dW = sqrt(dt)*randn(1,N);   % Since dw is N(0,dt) 

W = cumsum(dW);    % Since W(j) = sum dw(i) for i = 1...j 

plot([0:dt:T],[0,W],'m-'); 

xlabel('time');     % Adds x labels 

ylabel ('W(t)', 'rotation',0);   % Adds y labels 

Title ('Discretised Brownian Path');  % Adds title to the plot 

 

A.2: Exact Solution and Euler approximation 
 

% Generates Brownian Motion - Discretised paths 

 

randn('state',200) 

alpha = 1.5; beta = 1; Xzero = 1;      % problem parameters 

T = 1; N = 2^6; dt = T/N; 

dW = sqrt(dt)*randn(1,N);            % Brownian increments 

W = cumsum(dW);                      % discretized Brownian path 

 

% Exact Solution 

 

Xtrue = Xzero*exp((alpha-0.5*beta^2)*([dt:dt:T])+beta*W); 

plot([0:dt:T],[Xzero,Xtrue],'m-'), hold on 

 

% Euler Scheme 

 

R = 4; Dt = R*dt; L = N/R;           % L EM steps of size Dt = R*dt 

Xem = zeros(1,L);                    % preallocate for efficiency 

Xtemp = Xzero; 

for j = 1:L 
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Winc = sum(dW(R*(j-1)+1:R*j)); 

Xtemp = Xtemp + Dt*alpha*Xtemp + beta*Xtemp*Winc; 

Xem(j) = Xtemp; 

end 

 

plot([0:Dt:T],[Xzero,Xem],'b-*'), hold off 

xlabel('t','FontSize',12) 

ylabel('X','FontSize',16,'Rotation',0,'HorizontalAlignment','right') 

 

emerr = abs(Xem(end)-Xtrue(end)) 

 

A.3: Milstein scheme and exact solution 
 

% Generates Brownian Motion - Discretised paths 

 

randn('state',200) 

alpha = 1.5; beta = 1; Xzero = 1;     % problem parameters 

T = 1; N = 2^8; dt = T/N; 

dW = sqrt(dt)*randn(1,N);           % Brownian increments 

W = cumsum(dW);                     % discretized Brownian path 

 

% Exact Solution 

 

Xtrue = Xzero*exp((alpha-0.5*beta^2)*([dt:dt:T])+beta*W); 

plot([0:dt:T],[Xzero,Xtrue],'m-'), hold on 

 

% Milstein Scheme 

 

R = 4; Dt = R*dt; L = N/R;          % L EM steps of size Dt = R*dt 

Xem = zeros(1,L);                    % preallocate for efficiency 

Xtemp = Xzero; 

for j = 1:L 

Winc = sum(dW(R*(j-1)+1:R*j)); 

Xtemp = Xtemp + Dt*alpha*Xtemp + beta*Xtemp*Winc +0.5*beta*beta*Xtemp*(Winc^2-Dt); 

Xem(j) = Xtemp; 

end 
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plot([0:Dt:T],[Xzero,Xem],'b-*'), hold off 

xlabel('t','FontSize',12) 

ylabel('X','FontSize',16,'Rotation',0,'HorizontalAlignment','right') 

 

emerr = abs(Xem(end)-Xtrue(end)) 

 

A.4: Explicit order 1 strong scheme 
 

% Generates Brownian Motion - Discretised paths 

 

randn('state',200) 

alpha = 1.5; beta = 1; Xzero = 1;     % problem parameters 

T = 1; N = 2^8; dt = T/N; 

dW = sqrt(dt)*randn(1,N);            % Brownian increments 

W = cumsum(dW);                      % discretized Brownian path 

 

% Exact Solution 

 

Xtrue = Xzero*exp((alpha-0.5*beta^2)*([dt:dt:T])+beta*W); 

plot([0:dt:T],[Xzero,Xtrue],'m-'), hold on 

 

% Explicit order 1 strong Scheme 

 

R = 4; Dt = R*dt; L = N/R;          % L EM steps of size Dt = R*dt 

Xem = zeros(1,L);                   % preallocate for efficiency 

Xtemp = Xzero; 

for j = 1:L 

Winc = sum(dW(R*(j-1)+1:R*j)); 

Xtemp = Xtemp + Dt*alpha*Xtemp + beta*Xtemp*Winc + 1/(2*sqrt(Dt))*(beta*Xtemp*(alpha*Dt + 

beta*sqrt(Dt)))*(Winc^2-Dt); 

Xem(j) = Xtemp; 

end 

 

plot([0:Dt:T],[Xzero,Xem],'b-*'), hold off 

xlabel('t','FontSize',12) 

ylabel('X','FontSize',16,'Rotation',0,'HorizontalAlignment','right') 
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emerr = abs(Xem(end)-Xtrue(end)) 

 

A.5: Implicit Euler scheme 
 

% Generates Brownian Motion - Discretised paths 

 

randn('state',200) 

alpha = 1.5; beta = 1; Xzero = 1;     % problem parameters 

T = 1; N = 2^8; dt = T/N; 

dW = sqrt(dt)*randn(1,N);           % Brownian increments 

W = cumsum(dW);                      % discretized Brownian path 

 

% Exact Solution 

 

Xtrue = Xzero*exp((alpha-0.5*beta^2)*([dt:dt:T])+beta*W); 

plot([0:dt:T],[Xzero,Xtrue],'m-'), hold on 

 

% Implicit Euler Scheme 

 

R = 4; Dt = R*dt; L = N/R;           % L EM steps of size Dt = R*dt 

Xem = zeros(1,L);                    % preallocate for efficiency 

Xtemp = Xzero; 

for j = 1:L 

Winc = sum(dW(R*(j-1)+1:R*j)); 

Xtemp = Xtemp * (1 + beta*Winc) / (1 - alpha*Dt); 

Xem(j) = Xtemp; 

end 

 

plot([0:Dt:T],[Xzero,Xem],'b-*'), hold off 

xlabel('t','FontSize',12) 

ylabel('X','FontSize',16,'Rotation',0,'HorizontalAlignment','right') 

 

emerr = abs(Xem(end)-Xtrue(end)) 
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A.6: Implicit Milstein scheme 
 

% Generates Brownian Motion - Discretised paths 

 

randn('state',200) 

alpha = 1.5; beta = 1; Xzero = 1;     % problem parameters 

T = 1; N = 2^8; dt = T/N; 

dW = sqrt(dt)*randn(1,N);            % Brownian increments 

W = cumsum(dW);                      % discretized Brownian path 

 

% Exact Solution 

 

Xtrue = Xzero*exp((alpha-0.5*beta^2)*([dt:dt:T])+beta*W); 

plot([0:dt:T],[Xzero,Xtrue],'m-'), hold on 

 

% Implicit Milstein Scheme 

 

R = 4; Dt = R*dt; L = N/R;           % L EM steps of size Dt = R*dt 

Xem = zeros(1,L);                    % preallocate for efficiency 

Xtemp = Xzero; 

for j = 1:L 

Winc = sum(dW(R*(j-1)+1:R*j)); 

Xtemp = (Xtemp + beta*Xtemp*Winc +0.5*beta*beta*Xtemp*(Winc^2-Dt))/(1 - alpha*Dt); 

Xem(j) = Xtemp; 

end 

 

plot([0:Dt:T],[Xzero,Xem],'b-*'), hold off 

xlabel('t','FontSize',12) 

ylabel('X','FontSize',16,'Rotation',0,'HorizontalAlignment','right') 

 

emerr = abs(Xem(end)-Xtrue(end)) 

 

A.7: The order 2 weak Taylor scheme 
 

% Generates Brownian Motion - Discretised paths 

 

randn('state',200) 
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alpha = 1.5; beta = 1; Xzero = 1;      % problem parameters 

T = 1; N = 2^8; dt = T/N; 

G1 = sqrt(dt)*randn(1,N);            % Brownian increments 

W = cumsum(G1);                      % discretized Brownian path 

 

% Generate random variable Z 

 

G2=randn(1,N); 

dZ=0.5*(dt^1.5)*(G1+1/sqrt(3)*G2); 

 

% Exact Solution 

 

Xtrue = Xzero*exp((alpha-0.5*beta^2)*([dt:dt:T])+beta*W); 

plot([0:dt:T],[Xzero,Xtrue],'m-'), hold on 

 

% Weak Taylor Scheme 

 

R = 4; Dt = R*dt; L = N/R;           % L EM steps of size Dt = R*dt 

Xem = zeros(1,L);                    % preallocate for efficiency 

Xtemp = Xzero; 

for j = 1:L 

Winc = sum(G1(R*(j-1)+1:R*j)); 

Zinc = sum(G2(R*(j-1)+1:R*j)); 

Xtemp = Xtemp + Dt*alpha*Xtemp + beta*Xtemp*Winc+0.5*beta*beta*Xtemp*(Winc^2-Dt)+ 

alpha*beta*Xtemp*Zinc+0.5*alpha*alpha*Xtemp*(Dt^2)+alpha*beta*Xtemp*(Winc*Dt-Zinc); 

Xem(j) = Xtemp; 

end 

 

plot([0:Dt:T],[Xzero,Xem],'b-*'), hold off 

xlabel('t','FontSize',12) 

ylabel('X','FontSize',16,'Rotation',0,'HorizontalAlignment','right') 

 

emerr = abs(Xem(end)-Xtrue(end)) 
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