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Abstract

The current popular, distributed, n-tiered, object-oriented application architecture pro-
vokes many design debates. Designs of such applications are often divided into logical
layer (or tiers) - usually user interface, business logic and domain object (or data) layer,
each with their own design issues. In particular, the latter contains data that needs to be
stored and retrieved from permanent storage. Decisions need to be made as to the most
appropriate way of doing this � the choices are usually whether to use an object database,
to communicate directly with a relational database, or to use object-relational mapping
(ORM) tools to allow objects to be translated to and from their relational form. Most
often, depending on the perceived pro�le of the application, software architects make these
decisions using rules of thumb derived from particular experience or the design patterns
literature. Although helpful, these rules are often highly context-dependent and are of-
ten misapplied. Research into the nature and magnitude of 'design forces' in this area
has resulted in a series of benchmarks, intended to allow architects to understand more
clearly the implications of design decisions concerning persistence. This study provides
some results to help guide the architect's decisions.

The study investigated and focused on the performance of object persistence and com-
pared ORM tools to object databases. ORM tools provide an extra layer between the
business logic layer and the data layer. This study began with the hypothesis that this
extra layer and mapping that happens at that point, slows down the performance of object
persistence. The aim was to investigate the in�uence of this extra layer against the use
of object databases that remove the need for this extra mapping layer. The study also
investigated the impact of certain optimisation techniques on performance.

A benchmark was used to compare ORM tools to object databases. The benchmark
provided criteria that were used to compare them with each other. The particular bench-
mark chosen for this study was OO7, widely used to comprehensively test object persis-
tence performance. Part of the study was to investigate the OO7 benchmark in greater
detail to get a clearer understanding of the OO7 benchmark code and inside workings
thereof.

Included in this study was a comparison of the performance of an open source object
database, db4o, against a proprietary object database, Versant. These representatives
of object databases were compared against one another as well as against Hibernate,
a popular open source representative of the ORM stable. It is important to note that
these applications were initially used in their default modes (out of the box). Later some
optimisation techniques were incorporated into the study, based on feedback obtained from
the application developers.

There is a common perception that an extra layer as introduced by Hibernate nega-
tively impacts on performance. This study showed that such a layer has minimal impact
on the performance. With the use of caching and other optimisation techniques, Hiber-
nate compared well against object databases. Versant, a proprietary object database, was
faster than Hibernate and the db4o open source object database.
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Chapter 1

Introduction

�Too often I've seen designs used or rejected because of perfor-
mance considerations, which turn out to be bogus once somebody
actually does some measurements on the real setup used for the
application�

Martin Fowler, Patterns of Enterprise Application Architec-
ture

Most applications today create or use data that need to be stored and re-
trieved. In the object oriented environment objects are usually used to rep-
resent data. These objects need to be stored or persisted. Persistence is
�the characteristic of data that outlives the execution of the program that
created it� [5]. Object persistence is the storage of objects that are available
after program execution [92]. There are di�erent mechanisms to manage
these persistent data objects [80]. In Java these mechanisms are for exam-
ple: object serialisation, Java Data Base Connectivity (JDBC), using EJB3
(Enterprise Java Beans) Entity beans [68], JDO (Java Data Objects) [93] or
JPA (Java Persistence API) [68] to make objects persistent to a �at �le or to
a database. These mechanisms are sometimes called persistence mechanisms.
These persistence mechanisms might store the data directly to a �at �le on
a physical disk or use data management software systems that manages and
stores the data on the disk. Some well known data management software
systems are: Object Oriented Database Management Systems (ODBMS's),
Relational Database Management Systems (RDBMS's), Object-Relational
Database Management Systems (ORDBMS's) and XML based databases.
Database management systems (DBMS's) are classi�ed based on the models
they use. For example relational databases use a relational model and object
databases use an object model.

A known problem that exists in the persistence of objects using a rela-
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tional database is the mismatch between the object model and the relational
model and the mismatch between the object programming language and the
relational query language [53]. This mismatch is know as the impedance mis-
match. To solve this problem object-relational databases have been created
and traditional relational database vendors have included object persistence
capabilities into their products. Object Relational Mapping (ORM) tools
have been created to try and bridge this mismatch and to make persistence of
objects easier for the developer. Today ORM tools are being used extensively
with RDBMS's to persist objects. ORM tools, object-relational databases
and relational databases with object storage capability can be seen as the
hybrid solutions to store objects, as they use the relational model to store
the object model. Object databases use and store the object model which is
same as the application object model.

These databases are usually located on the bottom layer of an architecture
design. Fowler et. al. [70] states that �layering is one of the most common
techniques that software designers use to break apart a complicated software
system�. A common architectural style is the three-tier layered style as shown
in Figure 1.1.

Figure 1.1: Representation of a three-tier layered client-server style
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Kruchten [86] de�nes an architectural style as: �a family of such systems
in terms of a pattern of structural organisation�. In the context of the three-
tier architecture, the middle layer called the business logic layer, is where the
business logic of a speci�c application is modelled as business logic objects or
domain entities. Theses objects or entities are usually represented as objects
using an object oriented programming language. The entities created in the
business logic layer need to be stored for later retrieval if they represent
persistent data. The entities are stored in the data layer usually using a
database. For this study the focus is the data layer and speci�cally the
performance of the databases and ORM tools used to persist objects in this
data layer.

It is important to choose the right persistence mechanism and associated
database for an application as it could in�uence the time to develop the
application as well as the performance, scalability and maintainability of
the application. A focus of architects is to optimise the performance of
these layers and use the right tools and databases for the type of application
under design or development. Looking at the data layer the architect or
development team must decide between some of these possible persistence
mechanisms and persistent storage facilities:

� A relational database, object relational database, an object database,
�at �les, or if using Java, object serialisation.

� An ORM tool to convert from objects to the relational database.

� Using EJB3 (Enterprise Java Beans) Entity beans, JDO (Java Data Ob-
jects) or JPA (Java Persistence API) to map Java objects to a database
when using the Java language [74, 68, 93].

Each of these has some known advantages and disadvantages. For example
traditionally object databases are seen as making development faster as the
application object model and the database model is the same. While object
databases assist with development, data mining and database reporting tools
are not as mature or common as those found in the relational world. ORM
tools are seen as creating a slight translation overhead but makes it possible
to map objects to relational databases. ORM tools also assist with creat-
ing objects from legacy relational databases for application use. Relational
databases are seen as very fast when doing sequential traversals while pos-
sibly slower with object traversals and joins between di�erent tables. These
advantages and disadvantages will be discussed further in the next chapter.

The study investigates and focuses on the performance of object per-
sistence and will include recent ORM tools and compare them to object
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databases. This comparison is possible because both ORM tools and object
databases persist the same unit namely objects. The ORM tools provide an
extra layer between the business logic layer and the data layer. This study
hypothesises that this extra layer and mapping that happens at that point,
could slow down the performance of object persistence. The aim is to inves-
tigate this extra layer as well as the use of an object database, that cuts out
this extra mapping layer. The study also investigates the impact of certain
optimisation techniques on performance.

There have been other studies in this �eld. For example, Cattell and
Skeen [52] investigated the performance of various relational databases against
object databases, while Carey et al. [48] compared the performance of vari-
ous object databases. More recently, Jordan [80] has made a study of all of
Sun's persistence mechanisms. It was this latter study that inspired the idea
of comparing the ORM tool approach of persisting objects to that of using
an object database approach to persisting objects.

A benchmark will be used to compare ORM tools to object databases.
The benchmark will provide us with criteria that will be used to compare
them with each other. The particular benchmark we have chosen is OO7
[48], widely used to comprehensively test object persistence performance.

Because of its general popularity, re�ected by the fact that most of the
large persistence providers provide persistence for Java objects, it was decided
to use Java objects and focus on Java persistence. A consequence of this
decision is that the OO7 Benchmark, currently available in C++, has had to
be re-implemented in Java as part of this study.

The Open Source Software (OSS) [13] movement is quite popular to-
day and there are open source ORM tools, relational databases and object
databases available. Proprietary and open source tools and databases are
included in the study. The emergence of OSS adds another dimension to the
comparative study. It also opens the possibility of investigating compara-
tive performance of open source object databases against proprietary object
databases. Indeed, one could also investigate open source ORM tools against
proprietary ORM tools. However this comparison was not included in this
study.

db4o [63] and Versant [15], representatives of object databases, and Hi-
bernate [8], representative of the ORM stable, will be compared with each
other. Hibernate and db4o are popular open source products while Versant
is proprietary. The study will focus on running Versant, db4o and Hibernate
with PostgreSQL in their default modes (out of the box) and use them as a
normal programmer would. This initial out of the box state would then form
a basis to which optimisation techniques will be added and compared.

As stated above optimisation techniques will also be investigated. This
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investigation will try and �nd how much certain techniques improve perfor-
mance and in what circumstances could or should these techniques be used.
The techniques that will be investigated are:

� indexes

� lazy and eager loading

� transactions

� caching

� di�erent types of queries

1.1 Research objectives

The study has a few research objectives. These are to investigate the per-
formance of object databases against that of ORM tools and how di�erent
optimisation techniques in�uence the performance. One of the research ob-
jectives is to understand when to use an object database or an ORM tool by
investigating which of them perform better for di�erent types of operations.
The OO7 benchmark provides operations that involve traversals, queries,
inserts and deletes. Using the results for the OO7 operations certain recom-
mendations could be made. For example if an application performs many
traversals of small object trees, the results of OO7 operations could be used
to make a decision between using an object database or an ORM tool. The
same is possible for queries. If an application is query intensive and performs
join-like queries then OO7 benchmark results could be used to provide a
recommendation. Although the benchmark results are used to provide rec-
ommendations, it is important to understand that a benchmark only provides
a guide and that real life applications must be tested and benchmarked with
the di�erent options.

Part of the study is to investigate the OO7 benchmark in greater detail to
get a clearer understanding of the OO7 benchmark code and inside workings
thereof. While other studies have used OO7, the inside workings of OO7 have
not been discussed in great detail. For example the number of objects that
are created, traversed and queried by the OO7 benchmark is documented
in greater detail in this study. Also the process to create and run the OO7
model and benchmark operations is discussed.

The performance of newer open source object databases are investigated
and compared to that of older more established proprietary object databases.
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Also the use of indexes, caches, eager and lazy loading are investigated to
better understand what the impact of these techniques are.

The next section will discuss what type of research will be done.

1.2 Type of research

This research study is an empirical study following the empirical method.
The empirical method can be de�ned as �relying or based solely on experi-
ment and observation rather than theory� [16].

The study as stated before, will use a benchmark and try and show ob-
servable facts, in smaller non-real life experiments, following an empirical
method. Using the results and observations it is hoped to gain some insight
into object persistence performance of object databases, ORM tools and op-
timisation techniques and some plausible explanations for these results.

1.3 Layout of dissertation

This section describes the dissertation layout. Chapter 2 is an overview and
a general background on object persistence, relational and object databases.
Advantages and disadvantages of object and relational databases are also
discussed in this chapter. Chapter 3 mentions benchmark classi�cations and
criticisms against benchmarks. Chapter 3 investigates the OO7 benchmark in
great detail. Its internal workings and some hidden pitfalls will be discussed.
Chapter 4 is an overview of the Java implementation for the OO7 benchmark
that was developed for the study, and discusses some of the details pertaining
to the implementations created for db4o, Versant and Hibernate. In chapter
5 the benchmark results will be presented and discussed for each individual
implementation. It will include the results for using di�erent optimisation
techniques. Chapter 6 will compare the results for db4o, Versant and Hiber-
nate with each other directly. It includes scoring the overall performance of
the respective tools. Chapter 7 discusses performance recommendations pro-
vided by vendors. The chapter also includes performance results when these
recommendations are used. Chapter 8 will provide a summary, conclusion
and re�ections on this study.
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Chapter 2

Persistence Background

�Thus, if you upgrade to a new version of your virtual ma-
chine, hardware, database, or almost anything else, you must
redo your performance optimisations and make sure they're still
helping�

Martin Fowler, Patterns of Enterprise Application Architec-
ture

This chapter will provide background information about object databases, re-
lational databases and ORM tools and discuss advantages and disadvantages
of each. De�nitions and background related to persistence, Java persistence
and optimisation techniques such as clustering and lazy loading are discussed
as well.

2.1 Object database management systems

Object database management systems (ODBMS's) are also called object
databases (ODB), object-oriented databases (OODB) or persistent object
stores. This section provides a few de�nitions as each provides a di�erent
insight into what an object database is.

Kim [84] de�nes an object database as follows:

�An object-oriented database is a collection of objects whose be-
haviour and state, and the relationships are de�ned in accordance
with an object-oriented data model.�

The Object Data Management Group (ODMG) [51], which de�ned standards
for object databases de�nes

�a ODBMS to be a DBMS that integrates database capabilities
with object-oriented programming language capabilities� [51].
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Ambler [30] de�nes an object database to be a

�persistence mechanism that stores objects, including both their
attributes and their methods�.

From these de�nitions it is clear that an object database is based on an
object oriented model and language and stores the whole object with its
relationships and object methods together in the database.

As stated, object databases are based on object-oriented theory and they
use object models. The object model has the following features: object
and object identi�er, attributes and methods, encapsulation and message
passing, a class, type and class hierarchy, inheritance, polymorphism and
complex objects[84, 69, 41, 65, 83].

The next sections will discuss the history and provided functionality of
object databases.

2.1.1 History of object databases

Object databases became available during the middle 1980's and early 1990's
and they were mainly used in Computer-Aided Design (CAD) and Computer-
Aided Software Engineering (CASE) tools. Bertino and Martino[41] classify
these early systems into three generations.

The �rst generation systems include: G-Base by Grapheal; GemStone by
Servio Corp in 1987; Vbase by Ontologic; etc. They were characterised as
standalone systems.

The second generation systems included: ONTOS by Ontologic in 1989;
ObjectStore by Object Design in 1990; Objectivity DB by Objectivity in
1990; and Versant Object Technology also in 1990. These systems were
mostly based on the client/server architectural model and ran on Unix oper-
ating systems.

Itasca was the �rst third generation system. Bertino and Martino[41]
state that Itasca was �the commercial version of the ORION project from
Microelectronics and Computer Corporation (MCC)�. The other well know
third generation product was O2 by Altair and Zeitgeist and developed by
Texas Instruments in 1991. Poet was also developed in 1992 by NKS Soft-
ware and was well known during the 1990's. The third generation systems
were more advanced and provided more management features and data ma-
nipulation languages[41]. The dates of when these systems came out were
obtained from Kroha [85].

In the last few years open source object databases such as db4o and
ozone[4] have appeared. db4o is an object database as well as an embed-
ded database. �An embedded database system is a DBMS that is tightly
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integrated with an application that requires access to stored data, such that
the database system is �hidden� from the application's end-user and requires
little or no ongoing maintenance�. [18].

Most of today's object databases have adopted the ODMG 3 [51] and JDO
[93] standards. Currently a new "4th generation" standard is being developed
by the OMG (Object Management Group) [11] along with inputs from object
database vendors [12]. The last few years have also seen the establishment of
the non-pro�t ODBMS.ORG portal with a focus on providing a forum with
resources and discussions on object databases [12].

2.1.2 Functionality provided by object databases

Object databases provides similar data management features and functional-
ity to relational databases. Some of the functionality and features are given
below [84, 82, 65, 83]:

� Persistence

� Transaction management

� Recovery and backup management

� Concurrency control

� Versioning and schema management

� Indexing

� Query processing, optimisation and object query languages

� Pointer swizzling

� Clustering of objects

� Optimisation features, performance management and monitoring

� Cache management

� Visual interfaces

� Security, authorisation and authentication

Concepts appropriate and relevant to this study will be discussed in the
following subsections.
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2.1.2.1 Persistence

Persistence is �the characteristic of data that outlives the execution of the
program that created it� [5]. Object persistence is the storage of objects that
are available after program execution [92]. For this study the focus is on Java
object persistence.

There are di�erent methods to make objects persistent using an object
database. Java objects can be made persistent in several ways [51, 40, 100].
Using a post-processor, the byte code of the class �les are modi�ed, adding
in the persistence capabilities; using a pre-processor, the Java source �les are
modi�ed before compilation; the persistence can be embedded in the VM
using a modi�ed virtual machine (VM), or the Plain Old Java Objects (also
known as POJOs) are persisted, without any need for modi�cations, just by
calling a method or by extending a certain interface to mark the object as
persistent [53]. Objects can also be made persistent by reachability from
other �persistent root objects� [53] as explained below.

A post-processor is also called a static process [40] and is transparent to
the application code. This means that that the developer does not need to
modify the code during development to add this persistence code and that
the persistence code that is added is hidden from the developer. Versant uses
a post-processor.

A modi�ed VM technique involves the rewrite of a VM with the VM mod-
i�ed to include object persistence and is known as active process [40]. This
technique is also transparent as no code is modi�ed to include persistence. In
the PJama study [33] the Java VM is modi�ed to include persistence. Gem-
stone Facets [71], an Java object database, is based on a modi�ed virtual
machine to provide persistence. One possible risk with the modi�ed VM is
that it is modi�ed and built on a speci�c VM and JDK (Java Development
Kit). If a new JDK comes out, and development is done in this new JDK,
the application code could implement new features in the JDK that are not
in the VM and this could cause a mismatch and con�icts at run-time.

Atkinson [36] points out that �if an object is persistent, all of the objects
that it references must be made persistent�. This concept is called persistence
by reachability or transitive persistence [51, 36, 33].

Object databases can have root objects [40, 53]. Certain objects can be
marked as a root objects. From the root object, other persistent objects that
are reachable can be traversed. If objects are added or linked to the root
object they have to be persisted as well. This persistence is required because
of persistence by reachability.

Another important concept with regard to persistence has to do with an
object's states. An object can be in a persistent state or a transient state
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[51, 40]. An object is said to be in a persistence state if the object is already
stored in the database and can be retrieved later. An object is in a transient
state if that object is not persistent at this point in time but could later be
persisted. Other states, such as states of references to objects, are discussed
in further detail in [40, 93].

Also related to persistence is the concept of transparent persistence [33,
35]. Moss and Hosking [34] refers to the transparency of a program that
arises when �a program that manipulates persistent (or potentially persis-
tent) objects looks little di�erent from a program concerned only with tran-
sient objects�. Transparent persistence is about how transparently persistent
data is stored and accessed in the underlying database and about making
persistence easier and almost hidden from developers. ORM tools, as well as
object databases strive to achieve transparent persistence.

The PJama (or PJava) [33] research project also investigated Java persis-
tence and focused on orthogonal persistence. �Orthogonal persistence is the
provision of persistence for all data irrespective of their type�. Jordan [80]
compared the performance of Sun's Java persistence mechanisms which in-
cluded PJama using a modi�ed OO7 benchmark. This is the same benchmark
that will be used during this study. The OO7 benchmark will be discussed
in greater detail in the next chapter.

2.1.2.2 Transaction management

Kim [84] de�nes a transaction as �a sequence of reads and writes against a
database�. He notes that a transaction has two properties called atomicity
and serializibality. Kemper and Moerkotte [82] also state that transactions
must have the ACID properties:

� Atomicity: all the actions (reads and writes) of a transaction must
succeed or all of them must be rolled back.

� Consistency: The transaction takes �the database from one consistent
state into another consistent state�.

� Isolation: �There should be no interference among di�erent transactions
accessing the database concurrently�.

� Durability: �The e�ects of a completed transaction remain persistent
even if the database� crashes.

Serializibality �means that the e�ect of concurrent execution of more than
one transaction is the same as that of executing the same set of transactions
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one at a time� [84]. Transaction management is there to ensure that the
ACID properties are adhered to.

Amongst other things this study is interested in the performance di�er-
ence between grouping read and write actions into one large transaction on
the one hand and grouping them into smaller transactions, on the other.

2.1.2.3 Versioning and schema management

Kemper and Moerkotte [82] de�ne

�a schema as a set of type de�nitions�including their de�nitions
of the structure and the behaviour�.

An schema changes as objects are added and deleted from the schema over
time and this is called schema evolution [82]. An object or a schema can be
versioned. Kim [84] de�nes schema versioning as

�the versioning of a single logical schema�.

This versioning of the schema makes it possible to load a speci�c version
of the objects into memory for use. Loomis [89] mentions that each object
database has a schema manager and that it functions as the �link between
the database and programming language environments�.

2.1.2.4 Pointer swizzling and lazy and eager loading

Loomis [89] states that

�Swizzling is a technique the object DBMS uses to change object
references to main memory pointers�.

Kim [84] mentions that there is a mapping of objects from their in-memory
format to their disk format in the database and that references between
objects �need to be converted between absolute addresses in-memory and
relative addresses on disk� [84]. These object references are pointers to other
objects that might not currently be in-memory and are still on physical stor-
age. Swizzling is used when objects are loaded into main memory, virtual
memory or an in-memory cache. Kemper and Moerkotte [82] de�ne three di-
mensions of pointer swizzling: in place/copy, eager/lazy and direct/indirect.
This study is interested in eager and lazy loading which is very similar to
swizzling.

Under eager loading, when a given object is loaded into memory, all other
objects which are referenced by this object are also loaded into memory.
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Under lazy loading, the loading into memory of these referenced objects is
delayed until they are actually needed.

Tests have been created for this study to investigate the impact of lazy
and eager loading on performance.

2.1.2.5 Clustering of objects

Kim [84] de�nes clustering as a

�technique used to store a group of objects physically close to-
gether so that they may be retrieved e�ciently�.

Clustering techniques are used to keep page faults to a minimum and locality
of reference high. By locality of reference we mean the degree to which
objects that are clustered together are related to each other. Whether this
clustering be on disk, in memory or in the cache. Some of the clustering
techniques are to group together, on the same page or segment, objects of
the same class type or objects that are related or connected with each other.

2.1.2.6 Cache management

Cache, or bu�er management is about providing and managing a bu�er for
�accessing objects in main memory after they have been fetched from disk�
[53]. By caching frequently accessed objects, or objects that have a high lo-
cality of reference, the access speed of these objects is often increased because
there is no need to fetch these objects again from disk. Access speeds are
increased even more if the whole database or object model can be cached in
memory.

2.1.2.7 Indexing

An index is an search key that is generated for a �eld of an object. The key
helps to quickly retrieve the object during a query using that �eld. Usually
the key, and the reference to the location of the object, are stored in a index
table. The index table could be implemented as a B-tree or hash table for
example. If new objects are stored in the database, and they have �elds that
are being indexed, an entry has to be added to the index table as well.

2.1.2.8 Query processing, optimisation and object query languages

The execution of a query happens in two stages according to Kim [84]. Stage
one is to optimise the query and stage two is to actually run the query on
the database using the optimal query created in the �rst stage.
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A query language can be used to obtain information from the database
model. Most relational databases have three languages: the query language
(QL) of which SQL (Structured Query Language) is the most well-known, the
data de�nition language (DDL) and the data manipulation language (DML)
[69]. A DDL is used to de�ne the data de�nition and schema while the
DML is used to manipulate the data, for example, by inserting data. Object
databases based on the ODMG standard have equivalent languages called
the object de�nition language (ODL), the object query language (OQL) and
the object manipulation language (OML) [51]. The ODL is de�ned by the
ODMG to be a speci�cation language that is used to specify object types.
These speci�cations must conform to the ODMG Object Model to be com-
pliant with the ODMG standard. The OQL is a query language for objects
and can return properties of an object or whole objects. The OML is de�ned
by the ODMG to be a language for retrieving objects and modifying them.

This study will rely on various OQL's. These are Versant's query language
called VQL [100], Hibernate's HQL [76], db4o's SODA query API [61].

2.1.2.9 Security, authorisation, authentication

The security functionality of an object database refers to the way in which
access to data is protected. This includes the authentication process to verify
the identity of the user who is trying to access the data. An authorisation
process is also required to make sure that a user who is trying to access
data has the required access rights to that data. These control processes are
provided by the database management system.

2.1.3 Advantages and disadvantages of object databases

Object databases provide the following advantages:

� Object databases can model and store complex objects and relation-
ships using the object model. Object databases are able to store whole
collections such as lists, sets and map on disk.

� Code and data are stored together and managed together. This means
that there is no need to break op the manipulation code from the model.

� Object oriented programming languages such as Java and C++ are
used as the data manipulation and query languages, so no new language
such as SQL needs to be learnt and used. This provides a solution to
the impedance mismatch problem.
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� Only one model is required. The model de�ned in the object oriented
programming languages is also the data model of the database. There
is no need to map the object model to the relational model. Using
one object model can result in shorter development time and better
programmer productivity as no mapping is needed [89].

� Objects and the references (pointers) to their related objects are stored
together and this will generally improve search or traversal time as no
joins at run-time are needed [89, 40]. This is dependant on how the
objects and their relations are stored on disk. Pointer swizzling is
probably needed here.

Some of the disadvantages of object databases include:

� Users want access to the data for running reports on the database. SQL
is used to query and run reports on relational databases and when using
a object database they either have to learn OQL or get developers to
write reports using programming languages and extra libraries such as
Jasper Reports [21]. While there are many graphical reporting tools
available that run on relational databases, there aren't many that run
on object databases.

� An object database is seen has having �no formal semantics�, whereas
relational databases are based on the relational set theory in mathe-
matics [41, 44].

� Some of the early object databases were seen as slow. While perfor-
mance was a valid concern in the late 80's and early 90's it is generally
not a relevant reason today. The OO1 benchmark study by Cattell and
Skeen [52] has shown that object databases often perform just as well
or better than relational databases. Case reports have shown that ob-
ject database often perform well [58]. Chaundhri and Loomis [55] and
Chaundhri and Zicari [57] provide evidence of case reports, research
studies and benchmarks which show that object databases do perform
well and in diverse application areas.

� Lack of a standard. While the ODMG and JDO standards have pro-
vided standards for use with object databases, these are not so well
integrated or used by many vendors. The new JPA standard for Java
persistence does not even mention object databases.

27

 
 
 



2.2 Relational databases

A relational database is a database based on the relational data model. The
relational model is based on the �set-theoretic notion of relation� [82] and a
relation is �a subset of the Cartesian product of various domains� [65]. A re-
lational database management system (RDBMS) has functionality similar to
an object database. Some of the functionality includes: transaction manage-
ment, recovery and backup management, concurrency control, schema man-
agement, indexing, query processing and query languages, optimisation fea-
tures and performance management and monitoring, cache management, vi-
sual interfaces, security, authorisation and authentication. Object databases
manipulate and store objects whereas relational databases operate on records
in tables. Relational databases will not be discussed in-depth as the main
focus of the study is on object persistence through the use of ORM tools on
relational databases.

2.2.1 Advantages and disadvantages of relational databases

Relational databases have been around for a long time and are currently the
most widely used database technology. Delobel et al. [65] list some of the
advantages provided by relational databases:

� Simplicity: Relational databases and their schemas are reasonably sim-
ple and intuitive.

� A good theoretical base: Relational databases are built on relational
and set theory.

� Data independence: The data and the programs are separate and any
programming language can get access to the data using SQL. This is
an important advantage for many companies and developers. Histor-
ically, one of the reasons why this was an important advantage was
that di�erent languages could not communicate with each other. Data
independence was used as a way to communicate and share data with
other companies and developers if they were using di�erent languages.
Today new technologies exist to share data and communicate between
di�erent systems and languages. Some of these technologies are the
Common Object Request Broker Architecture (CORBA) which allows
developers to share objects and functionality with other languages in
a distributed environment. Web Services and XML are used today to
exchange data and call di�erent services.
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� Advanced integrity and security: The database enforces integrity con-
straints and provides security on many levels: database, table, etc.

� Manipulation of data in sets: Delobel et al. [65] state that �in con-
trast to �rst-generation systems, the relational model provides data
manipulation languages that allow sets to be manipulated globally�.

While relational databases are widely used they do have some disadvantages
[65, 40]:

� Over simpli�ed model: The model was constructed for simple data
structures and relationships. It assumed the use of atomic types such
as integers and strings. These days with the use of object languages
the data is much more complicated with many relationships to other
objects. This is because object oriented languages have made it possible
to model the real world with objects and their relationships. It is
possible to map these relationships in the relation model, but as Delobel
et al. [65] and Loomis [89] state this is not easy to do and the semantic
data of these relations may be lost. To map these relationships one
has to use primary and foreign keys and joins of tables. Joins usually
require extra processing time.

� Limited manipulation languages: SQL languages are tailored for query-
ing. They have a limited set of operations and can be seen as relation-
ally complete but not computationally complete [44]. Usually SQL
is embedded in programming languages to provide persistence storage
and retrieval operations on the data. This means that the programming
language has to convert its types to those of the underlying relational
database. This gap between the programming language's types and the
relational database types is known as an impedance mismatch. The
impedance mismatch and the embedding of SQL code in programming
languages force developers to think in two worlds. Not all developers
are experts in SQL and this can cause problems during development
and extra time to map programming language types to relational types
[40]. ORM tools such as Hibernate make the mapping of primitive
types to database types easier.

� Runtime checking: SQL is only checked at runtime which can make
debugging and testing of systems more complex [40].

� Cost of joins and speed when traversing relationships: Loomis [89] men-
tions that in most cases, retrieval of objects with relationships involve
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relational selection and joining. If there is order involved in the rela-
tionships then the relational data in the selects or joins must be sorted
as well. Loomis [89] further states that joining a table with n rows
with a table of m rows requires n*m comparisons. Optimisations can
be made in the relational world for these types of queries. Most ob-
ject databases store the relationships and references in the database as
pointers and this will generally increase retrieval and traversal speeds.

2.3 Object Relational Mapping tools

To resolve the impedance mismatch problem, various hybrid solutions have
been proposed. Thus, object-relational databases have been developed, and
traditional relational database vendors have included object persistence ca-
pabilities into their products. Object Relational Mapping (ORM or also
known as O-R) tools have also been developed in an attempt to bridge this
mismatch and to make persistence of objects easier for the developer. These
tools provide a mapping between the object model and the relational model,
acting as an intermediary between an object oriented code base, and a rela-
tional database. Bauer and King [39] de�nes the Hibernate Java ORM tool
as �the automated (and transparent) persistence of objects in a Java appli-
cation to the tables in a relational database, using meta-data that describes
the mapping between the objects and the database. ORM, in essence, works
by (reversibly) transforming data from one representation to another�.

Hibernate and Toplink (from Oracle) are examples of ORM tools. Hiber-
nate is increasingly being used and integrated into products such as JBoss,
which is a Java EE (Enterprise Edition) application server.

2.3.1 Advantages and disadvantages of ORM tools

As early as 1990 it was predicted that in the future relational databases
will become more like object-relational databases and that companies will
be mapping their objects to relational databases [84]. Ambler made similar
predictions in 1998 [30]. Looking at the database market today it would seem
that this has occurred. Looking at the growth of ORM tools and considering
that companies such as Oracle have bought the Toplink mapping tool, it
would seem that companies and developers have not moved over to object
databases. Some of the reasons why companies are using ORM tools include:

� Legacy data in a relational database: Barry [37] states that �the data
already resides in one or more relational databases�.
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� Political or technical reasons: Barry [37] states that �the data is new but
for political or technical reasons they are using relational databases.�

� Knowledge of developers: Most students and new developers are taught
about relational databases.

ORM tools provide the following advantages:

� Developers can work with objects and the mapping tools will transpar-
ently persist the data.

� The programming code is reduced in size as the developer does not
need to write all the mapping code or data mapping layers and SQL
statements. The development time is therefore reduced [39].

� The maintainability of the code is improved because object-relational
mapping involves �fewer lines of code� and because changes to the ob-
ject and relational models are easier [39].

� It takes away the need to embed SQL code all over the code base.

� Vendor independence [39, page 28]. �An ORM abstracts your appli-
cation away from the underlying SQL database and SQL dialect� [39].
Many ORM tools support di�erent underlying databases and makes it
possible to switch between di�erent relational database vendors.

� Barry [38] mentions that the ORM mapping tools provide caching
mechanisms and that the use of caching can reduce the impedance
mismatch and improve performance.

The following disadvantages and di�culties are associated with ORM tools:

� It is not trivial to map one-to-many relationships, many-to-many rela-
tionships, and inheritance structures, especially when the application
is large and changing, and the mapping is manual.

� Mapping still requires fairly intimate knowledge of both the object and
relational models. Bauer and King [39] state that they �believe that
Java developers must have a su�cient level of familiarity with�and
appreciation of�relational modelling and SQL in order to work with
ORM. ORM is an advanced technique to be used by developers who
have already done it the hard way�.

� Even though ORM tools ease object mapping many developers are still
embedding SQL-like code in their code and thus it is still not a pure
object solution using just one programming language.
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� ORM tools have still not solved the impedance mismatch problem.

� OQL based languages like HQL still su�er from no compile time check-
ing. If for example the class name is changed in an object model the
OQL/HQL statements in the code, must also be changed. The OQL
statement is a string so if the class is incorrectly renamed an error will
only be thrown at run time. Object databases using OQL will have a
similar problem. New e�orts such as Native Queries [59] in db4o and
LINQ [10, 43] write queries in the programming language that can be
compile time checked.

� There is a performance overhead for mapping between objects and
database tables. Bauer and King [39] state that because ORM is �im-
plemented as middleware� there exists ways to improve and optimise
the performance of this extra layer. This study will investigate if this
extra layer causes a performance overhead.

The next chapter will discuss the OO7 benchmark.
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Chapter 3

OO7 Benchmark

�The choice is always the same. You can make your model
more complex and more faithful to reality, or you can make it
simpler and easier to handle. Only the most naive scientist be-
lieves that the perfect model is the one that perfectly represents
reality. Such a model would have the same drawbacks as a map
depicting every park, every street, every building, every tree, ev-
ery pothole, every inhabitant, and every map.�

James Gleick, Chaos

Questions about the performance of object databases arose during the late
80's and early 90's, soon after academic and commercial object databases
were becoming available. It was at this time that several benchmarks were
created to measure their performance. Well known benchmarks included Hy-
perModel [32], OO1 [52] and OO7 [48]. The OO1 benchmark was intended
to study the performance of engineering applications. The HyperModel ap-
proach was based on earlier versions of the OO1 benchmark. It incorporated
a more complex model with more complex relationships and a wider variety
of operations. The HyperModel benchmark focused on the hypertext model.
The OO7 benchmark was based on both of these benchmarking e�orts. This
chapter will provide an overview of the OO7 benchmark and also discuss why
this benchmark was selected for our benchmarking and comparison investi-
gation.

3.1 OO7 benchmark overview

OO7 was designed to investigate various features of performance, and it
included complex objects which were missing from the OO1 and HyperModel
benchmarks [48]. While the earlier benchmarks used single value results, the
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OO7 benchmark provided a collection of results. Mugal [91] also suggests
that a single valued benchmark result is not as useful as having a collection
of results. Carey et al. [48] indicate that the benchmark is intended to
investigate

�associative operations, sparse vs dense traversals, updates to in-
dexed vs. non-indexed object attributes...�

The benchmark uses a hierarchy of objects, modelling an engineering design
library. Each Model contains either BaseAssembly or ComplexAssembly ob-
jects and has an associated Manual object. ComplexAssembly objects contain
other BaseAssembly objects. BaseAssembly objects contain CompositePart

objects, that contain AtomicPart objects. AtomicPart objects are con-
nected with each other through Connection objects. All of these objects
have some basic attributes and some collections representing one-to-one,
one-to-many and many-to-many relationships. Most of these relationships
are bi-directional. See Figure 3.1 which is based on the one in [46] for more
details.
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Figure 3.1: OO7 object model and the number of objects created in the small
con�guration
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The object model is used as the target of various navigation and persis-
tence operations. There are con�guration settings that can be changed to
in�uence the number of objects created, the number of models, the number
of connections, etc. The benchmark also has a small, medium and a large
database con�guration which speci�es the number of objects to be created
in the benchmark. For each of these database con�gurations it is possible to
con�gure the number of connections between objects. An example of this is
where an AtomicPart is connected to other AtomicParts. Through the use
of the con�guration value, it is possible to control the number of these con-
nections [48]. Carey et al. [48, 46] de�ned 3, 6 and 9 as suggested connection
values. In this way, it is possible to have a small con�guration with 3 con-
nections, a small con�guration with 6 connections, a medium con�guration
with 9 connections, etc.

The benchmark contains operations that operate on the design library
and can be grouped into three categories: traversals, queries and modi�ca-
tions. Although these are well-documented in [46], various features of these
operations that are not so obvious will be mentioned below. The modi�ca-
tion operations refer to the insertion and deletion of objects, and to some
of the traversal operations that not only traverse the object hierarchy but
also modify the objects by swapping values, renaming them, etc. Traversals
are performed �by selecting a random part and then performing a seven-level
depth-�rst traversal (with multiple visits allowed) of the parts reachable from
there� [45].

Operations are run as cold or hot [48]. Cold runs are runs where all the
caches should be empty, and hot runs are where caches are full. There is
also the in-between notion of a warm run, which refers to an initial cold
run to �ll up the caches, followed by a hot run. Chapter 5 will provide the
measurements in regard to these operations under both cold and hot running
conditions.

One of the early di�culties that arose in attempting to use the OO7
benchmark was the issue of query languages [47]. Not all of the systems tested
then had query languages, and those that had, had languages that di�ered in
capabilities. For those that did not have query language capabilities, C++
query methods were written in the hope of enabling comparison across all
of the systems. Carey et al. [47] conceded that this could favour some
implementations with no query language capabilities.

This possible bias is avoided in the present study, since all the systems
that have been chosen for this study have their own object query facilities.
db4o uses SODA (Simple Object Database Access) as well as Native Queries,
Hibernate uses HQL (Hibernate Query Language) and Criteria API, and
Versant uses VQL.
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In selecting a benchmark for comparing our chosen target systems (per-
sistence mechanisms and persistent stores), the OO7 was a natural prime
candidate. Because it has a deep object hierarchy with many complex re-
lationships (one-to-many and many-to-many), it is well-suited to assessing
non-trivial object oriented applications. Furthermore, the fact that the code
was available in C++ meant that it could be converted to Java with relative
ease. Finally, this study was in�uenced by the fact that OO7 had been used
in the recent past for a research study into persisting Java objects [80]. While
our study is similar to the Jordan [80] study, they left out the OO7 queries.
Our study includes queries.

Other studies using OO7 are [72, 67, 87, 101, 90, 73, 60]. Some of these
have a Java version of OO7 but have not documented their approach of
conversion from C++ to Java and for most the code is not freely/easily
available. These studies also have a di�erent focus from our study. Some
of them investigate concurrency, software transactional memory, issues with
regards to PJama, etc.

In the next section benchmark classi�cations are discussed.

3.1.1 Benchmark Classi�cations

In this section the di�erent classi�cations for benchmarks are discussed and
the OO7 benchmark is then classi�ed according to them.

The following type of benchmarks are de�ned by [91, 102, 81]:

� O�cial benchmarks: Benchmarks that will be widely used. There are
two sub-categories:

� vendor benchmarks which are �intended to prevent atrocities in
the marketplace�.

� and research benchmarks which are �intended to further the sci-
enti�c process�.

� Real user usage benchmarks: Benchmarks based on real users usage,
through the use of traces, or a real system that is being tested. This
benchmark is also called a real or realistic benchmark. Realistic bench-
marks are di�cult to repeat.

� Micro benchmarks: These are used to benchmark components of a
system and not the overall performance of a real system. Micro bench-
marks provide more control because only a small part of the system
is being tested and they are more repeatable. This benchmark as well
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as synthetic benchmarks can be oversimpli�ed and might not be very
good at predicting real production system performance [91, 81].

� Run a bunch of programs: DaCapo [42] benchmark is an example of
such a benchmark.

� Synthetic benchmarks: These benchmarks create synthetic or arti�cial
data loads for testing. Synthetic benchmarks are more repeatable and
they are easier to modify. For example it is easy to modify OO7 to add
new implementations for other persistence mechanisms and persistent
stores, and compare them against each other. Synthetic benchmarks
should be considered as providing information of how a system might
perform.

� Macro benchmarks: These benchmarks are more complex because they
test or simulate the real life system. They can become large and di�cult
to control.

These classi�cations can be combined. A benchmark that can create a syn-
thetic load to test small components of a system would be classi�ed as a
synthetic micro benchmark.

Using the de�nitions above, the OO7 benchmark is classi�ed as a research,
micro benchmark with a synthetic load that tries to simulate real world loads
and operations.

3.1.2 OO7 short comings and critique

Mogul [91] states that it is important that benchmarks should be repeatable,
relevant, use realistic metrics, be comparable and widely used. OO7 was
selected for this study as it complied with the above criteria. OO7 is repeat-
able, is relevant to object persistence performance testing, it uses realistic
metrics for testing components of a persistence mechanism and persistent
store, and has been used in other studies.

Although there are other studies that have used OO7, it will be di�cult to
compare our results against theirs. Some of the studies like the original OO7
study [48, 46] used older versions of programming languages and were mainly
implemented in C++. Our study did try to update the C++ version of OO7
so that it could compare the Java and C++ versions of the Versant database
against each other. This e�ort was abandoned because of time constraints
and will be investigated later. Other newer studies like [78] which is also
based on a Java version of OO7, removed tests that modi�ed the model, as
this was not part of their focus, whereas our study includes them. Although
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it is di�cult to compare to other studies, it should be easy to take our
implementation and add other persistence mechanisms and persistent stores,
and compare them to our results. To be comparable one must be testing for
the same or similar concept [95].

It is important to understand the critique and possible short comings of
OO7. Kakkad [81] states that there is normal program behaviour, which is
more CPU intensive, and database program behaviour which is more I/O
intensive. They argue that OO7 and OO1 are better suited for database
behaviour testing and not normal program behaviour testing. It is also im-
portant to include the hot times and not warm traversal times because some
systems might prefetch objects into the cache sooner than other systems.
OO7 reports on the hot times, and our study is focused on testing the per-
sistent store (database) or persistence mechanism behaviour.

According to Kakkad [81] the OO1 benchmark and possibly OO7, have
a low locality of reference and that this could in�uence techniques used in
pointer traversals, pointer dereferences and clustering. This could be a result
of the random linking of objects in OO1 and OO7. Our study is focused on
the performance of traversals, traversals with modi�cations and queries and
not so much on the investigation of how these persistence mechanisms and
persistent stores, achieve this performance. Our study does not investigate
the impact of clustering. OO7 creates a model and asks the persistence
mechanism to persist this model. If the persistent store, under the hood,
is able to cluster these objects together to get a better locality of reference
then so be it. Other benchmarks, like ACOB [66] were created to investigate
clustering and di�erent database server architectures and would be better
suited for studying clustering and locality of references.

It is unknown whether real life systems show a high degree of reference
locality and good clustering. Consider a �nancial or health system as an
example. As time passes more transactions, accounts and products are linked
to user accounts. Locality and clustering could be in�uenced in this example
by the following possibilities:

� New products can be added a few years later and because of space
issues not added to the same extent or page.

� Users can stop using a certain product or the product might not be
o�ered anymore. This could imply that the product could be deleted
over time and create open space on the extent.

� Products can be o�ered by other divisions with their own servers and
products. This product could be linked to a users account but actually
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live on another separate server. This means that not all the data are
clustered together on the same extent or even disk.

The example shows that even real life systems will generally start out with
a high degree of reference locality and good clustering and then after a few
years the clustering and reference locality might degrade. The study will not
investigate clustering and locality of reference as it is not part of the main
focus.

In other studies it was found that OO7 is not well suited for a CAD
workload as it was not based on a real CAD application or traces of CAD
applications but based on a synthetic load [81, 95]. Chaundhri [102] also
states that as the model tried to simulate a CAD application that it could
not be reliably used to test real life commercial and �nancial systems. OO7
was selected for this study not for the fact that it has a CAD-like model,
but rather for the fact that it has a good, deep, tree like, hierarchical object
model. It includes inheritance, bi-directional associations and one-to-one,
one-to-many, and many-to-many associations. These features seem to rep-
resent object oriented models used today. It is important to remember that
OO7 is a synthetic benchmark that will be used to test the performance of
some features (traversal speed, query speed) of a persistence mechanism and
persistent store.

Another critique against OO1 and OO7 is with regards to the collection
types used in the benchmark. It is stated that they do not stipulate what
�kinds of a containers� must be used for the collections. Bags, sets or lists are
di�erent kinds of containers. The critique is not true as Carey et al. [48, 46]
does provide an OO7 benchmark class schema in their appendix in which
they specify what kind of �containers� should be used for the collections.
While OO7 does specify that a Set or List must be used for a collection, the
persistence mechanism and the programming language can provide its own
implementation of a set. For example in Java there are di�erent kinds of
sets: SortedSet, HashSet and TreeSet. The implementer of the benchmark
can select any of them.

Nothing stops an implementer from using the persistence mechanism's
or persistent store's own implementations of collections. Kakkad [81] states
that this makes comparisons di�cult if persistence mechanisms use di�erent
collections. For this study the use of di�erent collections did not matter. If a
persistence mechanism or persistent store did provide a better and faster col-
lection it was used and documented. Hibernate and db4o use the standard
Java collections whereas Versant provided their own persistent collections
(VVector, VHashtable, etc.) [98] and ODMG collections. db4o is busy cre-
ating new advanced fast collections.
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Kakkad [81] mentions that the random number generator implementation
could di�er between di�erent operating systems and that this might in�uence
the performance results. The study has found that the random number
generator in Java di�ers from the one in C++. This di�erence in the random
number generator in�uences the number of objects that are traversed and
queried but the same number of objects are still created in all the tests.
Section 3.3 will provide a discussion on the use of the random numbers and
the random number generator.

Chaundhri [56] critiques the databases sizes used in OO7 studies and
states that larger data sets are needed. Most studies using OO7 either use
the small or the medium database. This study agrees that the database sizes
used are too small compared to the large databases that exist today. Even
though the OO7 small database is very small this study still used it because
it provides a quick initial insight into the performance of the persistent mech-
anisms and persistent stores. The OO7 small database results can then be
compared to the large database sizes. This means that it is possible to see
if a persistent store performs better for a small or large database. The use
of the large OO7 data sets was investigated, but it was found that it needs
more processing power and memory to run than was available for the study.
Nevertheless the large OO7 data sets will be discussed in later chapters.

For further critique on benchmarks read Chaundhri [56]. Chaundhri [54]
also provides a summary of other benchmarks related to object databases.

The following sections will discuss how the OO7 model is created and
some of the interesting issues found in OO7.

3.2 OO7 model creation

This section describes how the OO7 model is created during the benchmark
creation process. The creation process was not well documented and mostly
embedded in the code.

The creation process consists of two phases. Figure 3.2 provides a visual
representation of the two phases.
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Figure 3.2: Phases of OO7 model creation

In the �rst phase the Model, Manual and ComplexAssembly objects are
created. The ComplexAssembly objects in turn create BaseAssembly ob-
jects which are added to the currentComplexAssembly's subAssembly collec-
tion. BaseAssembly objects contain two collections, the private and shared
collections. These collections will, after phase 2, contain CompositePart

objects. In phase one, when BaseAssembly objects are created, random
CompositePart ids are created. These CompositePart ids are generated by
the random number generator and stored in a two temporary maps. One map
represents private collections and the other the shared collections. These two
collections are contained in the LinkingMap class.

Each map contains a <CompositePartId, BaIdList> pair where the
CompositePart id is a key and the associated value is a list of id's, called a
BaIdList, that reference the base assemblies using this associated
CompositePart. The BaIdList list is created by taking the current
BaseAssembly id and adding it to this list for the current CompositePart id
that was generated by the random number generator.

These two maps, and the id's that it contains, will be used in the sec-
ond phase to connect and set the private and shared relationships between
BaseAssembly and CompositeParts. It is important to understand the ids
are used because the CompositePart objects have not been created as yet.

The private and shared collections of relationships track which
CompositePart each BaseAssembly uses and vice versa. These two maps in
the LinkingMap class are stored in memory.

In the second phase the CompositePart objects are created which involves
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the creation of the associated Document, AtomicPart and Connection ob-
jects. The AtomicPart objects are linked (associated) with each other using
Connection objects. Each atomic part can play a �from� or a �to� role in the
association. These linkages happen by iterating through AtomicParts and
selecting the �to�-part to connect with randomly.

The private and shared collections that were created in the �rst phase
are now used to connect CompositeParts to BaseAssemblys. The current
CompositePart id is used in the look-up in the shared or private maps to
return the BaIdList. The BaIdList, with its list of BaseAssembly id's
are then iterated through. Each id is used to look-up the corresponding
BaseAssembly object from the persistence store. These BaseAssembly ob-
jects are then added to the CompositePart's shared and private collections
(set names in the OO7 model: usedInPrivate and usedInShared). The cur-
rent CompositePart is also added to the current BaseAssemblys shared and
private collections (set names: componentsPrivate and componentsShared).
Thus a bidirectional link is established between BaseAssembly and
CompositeParts. These collections and associations are indicated in Figure
3.1.

Figure 3.1 shows the OO7 model graph as well as the private and shared
relationships. The private and shared relationships are indicated by the
ComponentsPrivate and ComponentsShared diamond �gures in the graph.
The relationships are implemented using collections. The M and N labels
represent a M:N (Many-to-Many) relationship.

3.2.1 Early implementation issues

As stated in the �rst phase, an LinkingMap class with two collections was
used, These collections were stored in memory. Another possibility that was
investigated, was to store this class with collections, using the persistence
mechanism, in the database as well for later look-up. This approach was not
used in the end because it di�ered from the approach used in the original
OO7 C++ implementations.

In the initial part of this project, when the Java OO7 version was created,
the actual BaseAssembly objects where stored in the BaIdList instead of the
id's. This caused problems. If each phase is executed in its own transaction
and that �rst phase transaction or session would end, the map in memory,
after the �rst phase, would contain detached objects [76, 68]. �A detached
entity instance is an instance with a persistent identity that is not (or no
longer) associated with a persistence context� [68]. Hibernate de�nes an
detached object as a object which was persistent, and which is being modi�ed
outside of a session. By looking at Hibernate's and the EJB3 de�nition of
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an detached object it is important to note that the detached object was in a
persistence state.

A problem occurred during the linking process of phase two when the
detached objects are accessed and they change to a dirty state and need to be
persisted. Because they were detached objects some persistence mechanisms
like Gemstone Facets and Versant, kept rolling back the object's values to
the previous committed values. In essence the new transaction actually re-
reads the object's original persisted values when committing, and ignored all
changes made to a detached object.

A solution to this problem was to only store the id's in the list, as in the
original C++ implementations of OO7, then look-up these objects during the
second phase and linking process. Using this method, clean objects would be
obtained at the start of a new transaction [98]. JDO calls this the persistent-
clean [93] state.

Hibernate and EJB3 allows detached objects with changes to be merged,
and to save the changes back in the persistent store. Versant and Gemstone
did not allow this.

The creation of the two maps (private and shared) in memory, with their
BaIdList collections, is not really necessary. Carey et al. state in a comment
in GenDB.c class �le, that if the CompositeParts are created �rst and then
the BaseAssemblys there would be no need to track the id's in the collections.
Carey et al. further state that they used the collection approach because this
approach worked better for creating the large database con�guration.

In the large con�guration case (but not in the small or medium con�gu-
ration cases) creating �rst the CompositeParts and then the BaseAssemblys
caused the program to �seek all over the disk�. It is unknown if this seek-
ing is a still a issue with today's persistence stores but it was decided to use
the original collection approach. Ozone [4] have used the approach of creating
CompositePart's �rst. Ibrahim and Cook [77, 78] �rst create the BaseAssembly
objects and then iterate through them, creating CompositePart's and estab-
lishing the links at that point.

OO7 does not specify how these linkages must be done so it was felt that
these approaches need to be documented.

3.2.2 The use of transactions and indexes

Transactions are used when creating the OO7 database and when running
the benchmark operations. OO7 provides two ways of using transactions to
group operations. All the operations can be grouped into one transaction or
they can be grouped into many smaller transactions. When the database is
being created, a session is opened and transactions are committed at certain
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checkpoints. The following transaction strategies are used when creating the
database:

� A transaction can be started right at the beginning of the database cre-
ation process and committed right at the end, when the whole database
model has been created. Thus only one transaction is used.

� There are two while loops in the creation process: a while loop to
create the models and its associated objects in phase 1 as discussed
in Section 3.2; and a while loop to create the CompositeParts and its
associated objects in phase 2. These two while loops can be grouped
into one transaction, or a transaction per loop, or a transaction per
loop iteration.

These strategies and some variations has been documented and classi�ed
during this study and are shown in Figure 3.3 and Figure 3.4. The �gures
shows �ve strategies A, B, C, D and E.

The transaction per loop iteration is used in our study, committing at the
end of each loop iteration (strategy B). Slight di�erences in implementations
have been found in the original OO7 C++ code. In the original Versant im-
plementation, strategy E is used, while strategy A is used in the Objectivity
implementation. It seems, though, that the Objectivity implementation did
use strategy E (calling commit right at the end after 500 objects have been
created instead of for every 100 objects) but the transaction code has been
commented out at some point during its life time.

If creation times are reported when running the OO7 benchmark it is
important to understand which strategy was used, as the strategy could
in�uence the creation times. For example one persistence mechanisms or
persistent store might be faster when the whole OO7 database is created in
one transaction while another might be faster if the OO7 database is create
in stages using a new transaction per stage. Our study includes the creation
times so the strategy used is documented.

Transactions are also used when running the benchmark operations. Each
operation is repeated according to the �repeatCount� setting in OO7. Five
is the default repeat count which was used for all the tests. There is also an
option in OO7 to run all the repeated runs either in one transaction or by
using many transactions. If many transactions are used, each repeat of the
operation will commit and restart a new transaction. For this study many
transactions were used when running the benchmark operations. The study
will provide details on the di�erence in performance in using one versus many
transactions in Chapter 5.
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It is important to use the same strategy for all the persistence mechanism
implementations created and compared to each other.

Indexes are also not de�ned and created at the same time for the vari-
ous implementations. Some of the implementations de�ne indexes when the
model is being de�ned and the index is created at the point when the object
is being persisted while others de�ne the index after the model has been per-
sisted and thus the indexes are created right at the end. This last approach
makes it very easy to add new indexes. More details on index creation will
be provided in Chapter 4

Figure 3.3: Grouping points and strategies A, B and C of transaction place-
ment in OO7
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Figure 3.4: Grouping points and strategies D and E of transaction placement
in OO7

3.3 Random number generation issue in OO7

The random number generator in Java di�ers slightly from the one in C++.
The random number generator is used to randomly assign objects to each
other and for random date creation for the build dates of objects. The
date assignment is working �ne but the main issue is with the randomly
assignment of objects to each other.

In the OO7 model there are 729 BaseAssembly objects that each have 3
connections to CompositeParts. This means that there are 729×3 = 2187
possible connections in total. But if Traversal 1 is run, using the new OO7
Java implementation, only ± 43 680 AtomicParts are traversed whereas in
the original OO7 C++ implementation, 43 740 objects are traversed.

To �nd a reason for this di�erence it is important to understand what
Traversal 1 is doing:

�Traverse the assembly hierarchy. As each base assembly is
visited, visit each of its referenced unshared composite parts. As
each composite part is visited, perform a depth �rst search on its
graph of atomic parts. Return a count of the number of atomic
parts visited when done�

To obtain a count of 43 740 AtomicParts traversed, the 2187 CompositeParts
are multiplied with the number of AtomicParts per CompositePart,
NumAtomicPerComp [48] which is 20 in the small OO7 con�guration, and thus
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2187×20 = 43 740. This means that in our Java OO7 implementation only
2184 (2184×20 = 43 680) CompositeParts are used rather than 2187. The
same happens in Traversal 2a:

�Repeat Traversal #1, but update objects during the traver-
sal. There are three types of update patterns in this traversal.
In each, a single update to an atomic part consists of swapping
its (z, y) attributes The three types of updates are: (a) Update
one atomic part per composite part. (b) Update every atomic
part as it is encountered. (c) Update each atomic part in a com-
posite part four times. When done, return the number of update
operations that were actually performed.�

For Traversal 2a there exists a 1-1 relationship (one AtomicPart per
CompositePart) with the number of CompositeParts being traversed per
Assembly. For the OO7 C++ implementation a count of 2187 is obtained as
expected but only a count of 2184 for the Java OO7 implementation. The
counts obtained for the OO7 Java implementation runs are also inconsistent,
ranging from: 43 620, 43 640, 43 660, 43 680, 43 700 for Traversal 1 and
2181, 2182, 2183, 2184, 2185 for Traversal 2a.

The cause of why this number is lower and di�erent for each run in the
Java version seems to be because of the random number generator and its
setup. When using a random number generator it is important that the
numbers obtained are uniformly distributed. Our experiments observed that
the C++ random number generator produces slightly less duplicates than the
Java random generator. In the original OO7 C++ implementation the next
CompositePart id, is obtained by the following code from the Assembly.c

class:

compId = (o_4b)(random() % TotalCompParts) + 1;

The OO7 Java implementation has modi�ed this code as follows:

long compId = (RandomUtil.nextInt() % SettingsUtil.TotalCompParts)
+ 1; in the BaseAssembly class.

The RandomUtil uses the Singleton pattern to instantiate one Random class
object that will be used to obtain the next positive integer value by call-
ing nextInt(). According to the Java API, the Random class �generates a
stream of pseudo-random numbers�. There are a few possibilities of how to
instantiate and setup this Random class:

� One can instantiate a new random number generator using the default
constructor Random(). This means that �This constructor sets the seed
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of the random number generator to a value very likely to be distinct
from any other invocation of this constructor� according to the Java
API.

� Setting a seed for using Random(long seed) or setSeed(long seed).
The Java API states that �If two instances of Random are created with
the same seed, and the same sequence of method calls is made for each,
they will generate and return identical sequences of numbers.�

To obtain values in the required range one can either:

� use mod:
(Random.nextInt() % SettingsUtil.TotalCompParts)

� or pass in the value to use as a range:
Random.nextInt(SettingsUtil.TotalCompParts)

According to [103] using mod(%) is not recommended as �you e�ectively
reduce the randomness of the results. The low order bits of random numbers
can repeat more regularly than the entire number. This is a known issue
with pseudo-random number generators, and so it's another reason not to
use mod (%).� See [103] for a in-depth discussion on this topic.

Both of the setup methods for the random number generator, as well as
the two methods for setting up the ranges have been used and the counts
are still not the same. The Java random number generator generates more
duplicates than the C++ random number generator. The reasons why this
is so, is beyond the scope of the study.

All this implies that ids are generated for CompositeParts that already
exist, which means that the Java implementation's associations have more
duplicate links/connections. The Java implementation only obtain between
± 2181 and ± 2185 unique links whereas the C++ implementation seems to
obtain 2187 unique links every time, or at least very consistently.

A consistent random generation was obtained in the end by using and set-
ting the seed: setSeed(1L). This meant that the Java implementation is able
to consistently obtain 2185 unique connections for all the implementations.
While this is slightly less than the C++ version, it is at least consistent over
all the con�gurations and OO7 Java implementations for Hibernate, Versant
and db4o.

Table 3.1 shows the number of objects traversed and queried in the OO7
C++ implementation versus that of the new OO7 Java implementation. The
Appendix contains a table with all the descriptions of the OO7 operations
that have been used in this study.
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OO7 benchmark operation Number of objects
being accessed in
the original C++
implementation

Number of objects
being accessed in the

new Java
implementation

Trav1 43 740 43 700
Trav2a 2187 2185
Trav2b 43 740 43 700
Trav2c 174 960 174 800
Trav3a 2187 2185
Trav3b 43 740 43 700
Trav3c 174 960 174800
Trav6 2187 2185
Trav8 2632 of character in

manual
1

Trav9 0 0
Query1 10 10
Query2 (Range) 93 (Date range 1%) 100
Query3 (Range) 965(Date range 10%) 970
Query4 (Random selection) 45 (document,

baseAssembly pairs)
42

Query5(Randomness: uses
baseAssembly.
getComponentsPrivate()
that are generated and
randomly linked)

233 199

Query7 10 000 10 000
Query8 10 000 10 000
Insert
and Delete

10 compositeParts 200
atomic parts

10 CompositePart's
200 atomic parts

Table 3.1: The number of objects being traversed and queried in the small
database con�guration with 3 connections
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3.4 Java version of OO7 Benchmark

The overall approach to producing a Java version of the OO7 Benchmark
is discussed in this section, the principle utility classes that were used, and
the most important ways in which our version di�ers from the original C++
version.

3.4.1 Overall approach

The Java version was written in two stages. An initial attempt took the lead
from another Java OO7 version that had been developed and distributed by
the Ozone open source object database [4]. On investigation, it became ap-
parent that Ozone's Java version was very basic. Not only was it not a full
equivalent of the original C++ version, but valuable debugging and con�gu-
ration settings available in the C++ version had not been incorporated into
the Ozone version.

In a second stage, the original C++ code that had been used for the
Versant implementation was taken as a starting point. An equivalent Java
class was written for each C++ class. Here all of the language structures
that were similar were copied over to the Java version. An example of this
was where similar language structures (such as for-loops) were merely copied
over from the C++ to the Java version. This was done in an e�ort to stay
as close to the original version as possible. This easily led to a Java code
equivalent of OO7, but which did not yet provide any persistence-related
code. However, this was useful in and of itself, as it was deemed desirable
to have a pure in-memory representation of the model. This was to serve
as an absolute baseline in comparing cold and hot object operations across
di�erent platforms. The idea for doing this was taken from Jordan [80]. Once
the pure Java OO7 model was in place, the db4o, Versant and Hibernate
implementations were produced. These will be discussed in Chapter 4.

3.4.2 Utility classes

A Persistence class was designed for use in all the persistence mechanisms
tested (db4o, Hibernate and Versant). This class was used at all points in the
benchmark model where persistence was needed. It has methods for saving,
deleting, updating, etc. hiding the speci�c implementation details.

Each implementation then implemented its persistence code in a sepa-
rate utility class whose methods were called by methods in the Persistence
class. Followers of Design Patterns may recognise this as an example of using
the Bridge pattern. The db4o utility class was called Db4oUtil, Hibernate's
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utility class, HibernateUtil and Versant uses the VersantUtil. The in-
tention was to enable us to hide the persistence mechanism used from the
model. The idea was to use only one model, and to merely interchange the
correct persistence mechanism classes when testing the di�erent platforms.
This aspiration was not realised, as it was found that Hibernate required that
the owner of a hierarchical object tree or associated objects had to be saved
before saving objects on the lower levels. This was not true for db4o and
Versant. Thus, the order of calls to the persistence utility had to be di�erent
in the implementations. Also the way indexes are created di�ered for each
persistence mechanism. This necessitated separate implementations for the
platforms. The original C++ OO7 implementation also used this approach
of writing separate implementations: one for Versant, one for Objectivity,
etc.

Jordan [80] reports that he

�abstracted the interface to the persistence mechanism through
an interface called Store. This interface provides methods to
set/get the root object, begin/end a transaction, and other mis-
cellaneous methods needed to interface with the persistence mech-
anism.�

Jordan [80] also reports that he created a PMStore for each persistence mech-
anism. The Persistence class in our study used a similar approach. The
implementations would call methods on the Persistence class which in turn
would call the correct utility class for the current persistence mechanism.
Currently these utility classes are implemented using static methods. This
means that there is only one handle to the underlying persistent store. On
re�ection this was not a good design choice and will be changed in future.

In addition to these, it is also possible to call query utility classes to test
di�erent query mechanisms. An example of these are in the db4o implemen-
tation: Db4oNativeQueries and Db4oSodaQueries. Separate query classes
are valuable because the actual query code is then moved out of the persis-
tence mechanism utilities like Db4oUtil and into speci�c query utilities.

Our work also uses the OO7 queries operations, unlike Jordan [80] where
they only tested OO7 traversals.

3.4.3 Deviations from the original benchmark

The formula for computing the average hot times was changed by including
the time taken for the last run. Carey et al. [46] had omitted the last run
because they didn't want to include the overhead of commits. Our study
argues that commits are an inherent part of the operation and they may
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have quite an important in�uence on the times. Thus, the average hot time
calculation has been changed to include all of the iteration times except for
the �rst, this iteration time being for the cold run.

Another deviation from the original benchmark relates to documentation
text associated with a Document object. The text is used by a search to
�nd certain characters, a pattern matching test of large text objects. While a
basic text string is included in our Document objects it was felt that searching
through a large texts and large objects was not essential to our study. Thus,
in this study, the time measurements for Traversals 8 and 9 will be less
than they would have been if study had not deviated from the original OO7
benchmark.

Finally, the original OO7 version included so-called �null methods� to
simulate work external to the database. These are called doNothing() meth-
ods in the code and are implemented as for-loops which simply request the
system time. These were not implemented in the Java version, since there
seemed to be no need for them. They are apparently intended to aid in sim-
ulating the overall time that would be taken for an application, and do not
relate to the performance of the respective persistence mechanisms as such.

3.4.4 Run scripts

To create and run the OO7 benchmark, Ant [7] scripts were used as the
build and run tool. This meant that for each of the con�gurations for the
persistence mechanism and persistent store, an Ant script was created to
run the benchmark operations. Figure 3.5 shows how the Ant build �les are
being used. The example shows the build �les for Hibernate.
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Figure 3.5: Ant build process for OO7 Java benchmark

Figure 3.6 below shows a snippet of the original OO7 benchmark com-
mands taken from the Run.one script.

Figure 3.6: Snippet of original run script

The script shows that the database is started and stopped for each op-
eration of the OO7 benchmark. It was found that some Java implementa-
tions started the database and then ran all the operations before closing the
database [77]. It was also found that others tried to modify our implementa-
tion using the approach shown in Figure 3.7. This approach would create the
database then immediately run the operations. Using the approach shown
in Figure 3.7 and the approach of Ibrahim and Cook [77], a situation would
be created where the cache is already �lled with objects after the database is
created. The cache is also �lled after the �rst run of an operation. It would
then be di�cult to ascertain how the cache in�uences a speci�c operation
because the same cache is being used for all operations.
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Figure 3.7: Running the OO7 Java benchmark in one process and VM

Carey et al. [48] state that a lot of e�ort was spent on clearing all the
caches between runs. It is important to clear the cache between operation
runs to clearly see the e�ect of caching when a speci�c operation is run.
For this reason our study's Ant scripts followed a approach similar to the
original scripts. The Ant scripts �rst starts-up the benchmark application in
a new VM and also starts the database. Then the operation is run x number
of times. After the operation has been run the database is closed and the
application, as well as the VM, are stopped. For each operation the Ant
script starts up the benchmark application in a new VM and also starts the
database. This approach is illustrated in Figure 3.8.

55

 
 
 



Figure 3.8: Running each operation of the OO7 Java benchmark in a new
process and VM

The next chapter will discuss the speci�c Java implementations for the
persistence mechanisms and persistent stores that were benchmarked, as well
as the their benchmark con�gurations.
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Chapter 4

OO7 Java implementations

The details of the Java OO7 implementations that were created for the object
databases and ORM tool being tested (db4o, Hibernate and Versant) are
provided in this chapter.

As mentioned in Chapter 3, both the db4o, Hibernate and Versant im-
plementations to persist objects were derived from the Java OO7 in-memory
code version that simply generated and stored objects in memory.

Often, adding persistence to a Java application requires rather intru-
sive additions and changes to the code. There are really three categories of
changes required: telling the object database or ORM Tool what to persist,
how to persist, and when to persist.

Telling the object database or ORM tool what to persist generally means
marking the target classes and attributes. For example, one may be required
to have the persistent objects implement an interface to mark them as per-
sistent, or be part of a framework (for instance, be an Enterprise Java Bean).
One may also need to code in a certain way so that the object database
or ORM tool can recognise patterns (for example getter and setter meth-
ods). Telling it how to persist depends a lot on the how the object database
or ORM tool maps in-memory object representations to storage representa-
tions. For example, one may need to run the code through a pre-processor
for persistence code to be added, or specify persistence-related information
in con�guration �les. Telling an object database or ORM tool when to per-
sist is a more di�cult matter. In general, one is faced with the choice of
storing every change to the objects in memory to the store (which is highly
ine�cient), or adopting some scheme which marks objects as `dirty', to be
stored later, when it is told to (explicitly in the code).

The following sections discuss how the Java implementation were created
for db4o, Hibernate and Versant. It also discusses how objects were marked
to be persistent for each implementation.
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4.1 db4o implementation

db4o[61] is an open source object oriented database that easily and without
extra work to tell it what and how to persist, stores Plain Old Java Objects
(also known as POJOs). db4o does however require one to tell it when to per-
sist. In �rst versions of the implementation, code to save or update objects
in the persistence store was inserted just after the object had been created or
changed in memory. This approach has been changed to use the one or many
transaction strategies as described in Section 3.2.2. Strategy B was used for
creating the database and many transactions was used when running the
operations of the benchmark. At the commit points the new objects are �rst
saved (persisted) using the ObjectContainer.set(object) method of db4o,
then the current transaction is committed using ObjectContainer.commit().

By adding transactions and the persistent calls, producing the db4o im-
plementation from the OO7 Java code was in fact quite straightforward.

When using db4o, one needs to set the update depth and activation depth
parameters [61, 62]. These settings are used to control performance.

The default update depth in db4o is 1. If the default update depth
is used and ObjectContainer.set(objectX) is called then only objectX's
changes are persisted. If the update depth is set to a value greater than
1, then ObjectContainer.set(objectX) updates not only objectX but also
objects referenced by objectX. Note that if an object is saved the �rst time
its associated objects are also saved.

Since the benchmark makes use of objects that have sets of references to
other objects, and since changes should be saved immediately, this default
parameter was changed. The update depth can be set to cascade when an
object is saved or updated. It was found that the update depth of only these
objects: BaseAssembly, CompositePart and Module needed to be changed
to cascadeOnUpdate(true) to store all the changes to the model. The rest
of the object's update depth was kept at the default value.

Activation depth relates to retrieving objects from the database that ref-
erence other objects. db4o can, if needed, retrieve the whole object graph
referenced by the object being retrieved at once. This is called eager loading.
This can be ine�cient, especially if there is no immediate need to use the
entire object tree right away. So, when an object is retrieved that has ref-
erences to other objects, retrieving of the referenced objects can be deferred
until needed. This is a technique called lazy loading, where referenced ob-
jects are fetched only when a reference to them is followed. The tree depth
at which this occurs is called activation depth in db4o. By default, db4o
speci�es activation depth as 5. The activation settings used for db4o will be
discussed in the following section on con�gurations.
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4.1.1 Con�gurations

As stated in Chapter 1 one of the goals of the study, is to investigate the
impact of di�erent performance techniques on the performance of the object
databases and ORM tools. For this reason the following test con�gurations
of db4o were run:

� Running db4o with eager loading on and indexes o�. This con�g-
uration tests the worst performance of db4o with no advanced per-
formance con�gurations settings on. In running the benchmark, the
activation depth was increased to retrieve the whole referenced ob-
ject graph when eager loading was being tested. This meant that
Db4o.configure().activationDepth(Integer.MAX_VALUE) was set
to the maximum for all the OO7 model classes. Indexes can be turned
on or o� by using the created boolean property called useIndexes. db4o
de�nes indexes on class properties/�elds using
Db4o.configure().objectClass(ClassNameX.class)

.objectField("fieldY").indexed(true).

� Running db4o with eager loading on and indexes on. This test is used
to investigate if the use of indexes can improve the performance even
if the whole object graph is being retrieved into memory.

� Running db4o with lazy loading on and indexes o�. There are currently
two approaches to enable lazy loading in db4o. Approach one is to use
the newly created transparent activation framework [62] available in
version 7 of db4o. Approach two is to manually activate the objects
when accessed. At the time of comparing db4o for this study there
was no stable version of db4o 7 and the transparent activation frame-
work available. This meant that approach two was selected as it is the
older and more stable approach. If transparent activation had been
used it would have detected automatically which objects needed to be
retrieved into memory at the correct points and do so automatically.
Transparent activation works by implementing an interface called Ac-
tivatable [62]. Manual activation meant that objects were activated by
calling ObjectContainer.activate(object, depth) and by calling
ObjectSet.next()when using queries. The default activation depth
in db4o was set to 1. To be able to switch between eager loading and
lazy loading, a boolean property USE_LAZY_LOADING was added. The
Traversal class and some of the query (Query 4 and 5) classes needed
to be modi�ed to include the new activation code. For lazy traversals a
new class called Db4oLazyTraversal was added. Db4oLazyTraversal
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class is similar to the Traversal class but includes code to activate
objects. This activation is needed, otherwise with an activation depth
of 1, many null pointer exceptions would be thrown when objects are
not retrieved or activated in memory. Another approach, that was
not followed in the end, was to modify the original Traversal class
by adding a check for USE_LAZY_LOADING all over the class. In the
end it was decided to create a separate class (Db4oLazyTraversal)
and then add an option to choose between lazy and eager in the main
class (OO7JavaBenchmark). The main class creates and runs the bench-
mark, and switches between using the normal eager loading classes or
the lazy loading classes. Query 4 and 5 were modi�ed because, while
most queries activated the needed objects by calling ObjectSet.next()
query 4 and 5, while iterating through the object result sets, retrieved
other attached objects that needed to be manually activated. All the
other operation classes worked �ne with activation depth 1 and the
queries all used ObjectSet.next() to activate objects.

� Running db4o with lazy loading on and indexes on. This test is used
to investigate the impact of using indexes and lazy loading.

� Running db4o with lazy loading on and indexes on in a embedded
database or standalone mode. Embedded database or standalone mode
will be discussed further in the next section. The standalone mode was
added because it is the default mode for db4o. The study wants to
�nd the di�erence in performance between the standalone and net-
working mode. Note that when the model is created and saved to the
database in standalone mode an extra cascade on update depth set-
ting was needed on the CompositePart class to store the whole model.
The reason for this di�erence between the standalone mode and the
networking mode has not been investigated in this study.

These con�guration values are mostly set in the DB4oUtil and StartServer

class, before the db4o container is opened.

4.1.2 Architecture setup

db4o can be run as an[62, 92]:

� embedded database (standalone mode),

� as a local server in the same virtual machine (an embedded server
mode).
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� or as a network server using TCP/IP for communication (networked
mode).

In the early experiments [96] the standalone mode was used, which meant that
the database �le was accessed directly from the OO7 benchmark application
and from inside one VM using no networking communication. Subsequently
db4o was run in networked mode, using a network server (client/server mode)
and using TCP/IP network communication. The server and client are then
started, each in its own VM. Because Hibernate and Versant were using
network communication between client and server it made sense to make this
change and make comparisons more fair. The architecture setup is displayed
in Figure 4.1.

Figure 4.1: Architecture setup of db4o

db4o uses a weak reference cache which is associated with an open database
or ObjectContainer. A container represents a database. In client/server
mode each client will have its own reference cache [62]. It is important to
note that whenever the db4o database container is opened a transaction is
started, and each time a commit is called, the transaction is ended and a new
transaction is immediately created. Thus there is always an active transac-
tion.

Because each client has its own reference cache it can get complicated if
object A is cached by many clients, as changes need to be synchronised. The
db4o reference manual [62] states that each client must �refresh them from
the server when they get updated� using committed callbacks in db4o. For
our implementation and study only one client is used to run the operations
on the OO7 model, so no synchronisation was needed.

Java provides di�erent types of references, which are strong or normal
references, phantom references, soft references and weak references [79]. [22]
states that �An object that is not strongly or softly reachable, but is refer-
enced by a weak reference is called weakly reachable�. If objects are added to
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the cache, using weak references, they can be garbage collected if they later
become unreachable or there are no more references to these speci�c objects.

In the db4o reference manual [62] it is stated that if weak references are
turned o� the speed of the system will improve but that memory usage will
increase. For this study the default weak reference cache was used.

It is interesting to note that db4o does not support standards like JDO
and JPA directly. However there are currently implementations of JDO and
JPA available for use with db4o from JPOX [9].

4.2 Hibernate implementation

Hibernate is an ORM tool that stores in-memory objects to, and retrieves
in-memory objects from, a relational database. Hibernate maps objects from
the pure object model to a relational model. To create the Hibernate OO7
implementation, the in-memory object model of the OO7 Java code needed
to be modi�ed to make use of Hibernate. Hibernate can be used with any
relational database � in this study PostgreSQL [14] was used.

To more clearly understand how the in-memory and pure object model
was modi�ed to make use of Hibernate, certain concepts need to de�ned. Am-
bler [31] provides the following de�nitions related to mapping object models
to a relational model in an relational database:

� �Mapping: The act of determining how objects and their relation-
ships are persisted in permanent data storage, in this case a relational
database.

� Property: A data attribute, either implemented as a physical attribute,
such as String firstName, or as a virtual attribute implemented via an
operation, such as Currency getTotal().

� Property mapping: A mapping that describes how to persist an object's
property.

� Relationship mapping: A mapping that describes how to persist a re-
lationship between two or more objects (generally, association, aggre-
gation, or composition).

� Inheritance mapping: Mapping the inheritance hierarchy to relational
database tables.�

�Hibernate like all other object/relational mapping tools, requires metadata
that governs the transformation of data from one representation to the other
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(and vice versa)� [74]. In using Hibernate, these �mapping metadata� [74]
can be speci�ed in XML mapping �les or in the Java code by using Xdoclet
[6] tags or JPA (Java Persistence API) annotations [74, 68]. In the early
experiments [96], using Java 1.4, Hibernate Xdoclet tags were used in the
code. By using Xdoclet the tags was extracted from the Java �les, using an
Ant task, to create XML mapping �les. Currently Java 5 is being used and
Xdoclet tags have been replaced by JPA annotations. The JPA @Entity tag
is used to mark objects as persistent objects. From the JPA annotations in
the classes, a basic XML mapping �le (.hbm) is extracted using Hibernate's
Ant hibernatetool and hbm2hbmxml tasks [75]. The extracted mapping �le
is then duplicated for each of the test con�gurations that are going to be
used in the benchmark tests. Each �le is changed manually to include the
speci�c Hibernate tags that will be needed for that speci�c test. An example
of this manual change is to include lazy="false" to enable eager loading, or
lazy="true" to enable lazy loading. Section 4.2.4 discusses the Hibernate
test con�gurations.

In the OO7 model there are properties, relationships and inheritance
which all need to be mapped using Hibernate. The mapping of the properties
was relatively straightforward. Most of the time was spent on getting the
relationship and inheritance mappings to work correctly. These mappings
are discussed in the following sections.

In the previous section it was mentioned that when using db4o, one can
set the activation depth of the objects retrieved. It is interesting to note that
Hibernate also provides lazy loading, where it is possible to limit the number
of objects returned.

4.2.1 Relationship mappings

Recall that relationship mapping is the mapping of one-to-one, one-to-many
and many-to-many relationships between objects to their chosen relational
database representations. Most of the types of object oriented relationship,
including aggregation (is-part-of), are found in the OO7 benchmark. It was
therefore necessary to specify how to handle these in our Hibernate imple-
mentation. This was found to be one of the most di�cult parts of the im-
plementation.

All the associations in the OO7 model are bi-directional, and so one has
to consider how to specify relational mappings to allow queries to follow
relationship navigation from both ends. The one-to-many and one-to-one
relationships were implemented as ordinary relational database primary key
/ foreign key entity relationships using the @OneToMany and @JoinColumn

JPA annotations. To elaborate: having a class A and a class B in the object
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model meant having TableA and TableB in the relational model, with each
row in the tables storing the corresponding objects' attributes. If there is
a one-to-many relationship between class A and class B, the relationship is
represented as a column in TableB which keeps primary keys from TableA.
These keys are foreign keys in TableB. To access the B objects from an A
object, select all of the rows in TableB that reference the A object's primary
key as a foreign key. Going the other way, to access the A object from any
B object, select the row in TableA that has the stored foreign key as its
primary key. One-to-one mappings were implemented using the @OneToOne

JPA annotations.
There are two one-to-many mappings associations in the OO7 model.

These are the �subAssemblies� and the �parts� associations shown in Figure
3.1. An example one-to-many mapping (�parts�), which uses a @JoinColumn

tag, related to the OO7 Java Hibernate implementation is shown in Figure
4.2.

Figure 4.2: An example showing one-to-many mapping tables

The other one-to-many mapping, �subAssemblies�, was tagged with
@OneToMany and uses an join table for the mapping. For all the many-to-
many bi-directional associations, join tables were used. A join table stores,
separately from the referenced tables, the primary keys of the related enti-
ties. Extending the example above to a many-to-many relationship between
A objects and B objects, this means the provision an additional table, say
TableAB, with columns A and B storing the list of keys of related A's and
B's. To access the related B objects from an A object would mean executing
a query that found all of the related B objects' keys from TableAB, and then
retrieving those rows in B that had those as primary key. Navigating the rela-
tionship from B's to A's is done similarly. For these mappings @ManyToMany,
@JoinTable and @JoinColumn JPA annotations was used.

An example many-to-many mapping related to the OO7 Java Hibernate
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implementation is shown in Figure 4.3.

Figure 4.3: An example showing many-to-many mapping tables

4.2.2 Inheritance mappings

According to [31, 50, 89, 39], four basic approaches can be used to map object
oriented inheritance structures to a relational model:

� Map the whole class hierarchy structure to one table, i.e. one table
containing all of the combined attributes. In Hibernate this is called
the table per class hierarchy (single table) strategy

� �Map each concrete class to its own table�: i.e. all of the subclasses
that inherit from an abstract class get their own table. This is called
the table per concrete classes approach in Hibernate.

� �Map each class to its own table�. Hibernate calls this the table per
subclass strategy.

� �Map the classes into a generic table structure�.

The Hibernate supporting literature provides strategies to enable one to
use any of the approaches mentioned above [76, ch 9]. In the OO7 Java
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Hibernate code, in general, each class was mapped to its own table. This
table per subclass strategy [76] was selected because it is a straight forward
one-to-one mapping. The strategy of mapping concrete classes to their own
tables was used only in one place, namely to map the OO7 abstract class
called DesignObject and its subclasses: Module, Assembly, CompositePart
and AtomicPart. Figure 3.1 shows DesignObject and the classes that inherit
from it.

The mapping of concrete classes approach generally decreases the num-
ber of tables that are needed, compared to the table per subclass strategy.
However, mapping of concrete classes approach results in duplicated infor-
mation, since the properties of the parent class have to be included in each
child class table [31]. If properties are added later to the parent class, then
they must be inserted into each child class table.

One should keep this complexity in mind when choosing mapping strate-
gies [31]. As the benchmark scenario did not include the addition of proper-
ties, this complexity was not an issue. Furthermore, the properties in child
classes were quite simple: a build date, a string type and an id. (Note: it
was necessary to rename the original `id' �eld to `design_id' as there were
some con�icts in Hibernate with the name `id'.)

Figure 3.1 shows that ComplexAssembly and BaseAssembly objects in-
herit from Assembly. For this inheritance mapping the �joined� subclass
strategy [74] was used.
The JPA @Inheritance(strategy=InheritanceType.JOINED) annotation
was used for this inheritance mapping. A table was created per child class
(base_assembly and complex_assembly) and a main table for the parent
class (assembly table). The main table contains all the properties of the
class and the foreign key id's of the child tables. The main table also con-
tains a column that displays the type of object the row represents which is
either a ComplexAssembly or a BaseAssembly object.

Keep in mind that during this mapping process, objects and their inher-
itance structure can be lost if the mapping is not correctly done [89].

4.2.3 Impedance mismatch di�culties

These mapping complexities are necessary to overcome the impedance mis-
match between the object and relational models. In general, it is not trivial
to map one-to-many relationships, many-to-many relationships, and inheri-
tance structures, especially when the application is large and changing, and
the mapping is manual. Special cases also complicate the mapping. For
example, mapping a class that has more than one association to the same
class is not handled by the simple scheme explained above. For example,
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in the benchmark model, BaseAssembly has two many-to-many mappings
with CompositePart, called componentsPrivate and componentsShared. It
was decided to map these by using a separate join table for each relation-
ship. Two join tables were therefore created, called components_private
and components_shared, each containing the primary keys of the related
BaseAssembly and CompositePart objects.

It is clear that this kind of manual mapping requires fairly intimate
knowledge of both the object and relational models, and the mechanics of
the chosen mappings. For example, when mapping AtomicParts and their
Connections, a problem was encountered that related to the order in which
the objects had to be saved. This was manifested as a referential integrity
constraint in the database. Elmasri and Navathe [69] describe a referential
integrity constraint as the requirement that a tuple in one relation may not
refer to a tuple in another relation unless the latter tuple already exists.
This meant that an AtomicPart object had to be saved �rst before saving a
Connection object that is linked to it.

JPA annotations greatly improved the mapping experience when using
Hibernate.

4.2.4 Con�gurations

For the Hibernate implementation �ve test con�gurations were created. These
are as follows:

� Running Hibernate with lazy loading on and indexes on using JPA an-
notations. This was the basic con�guration from which modi�ed XML
mapping �les (.hbm) were created for each of the other test con�gu-
rations. The study is interested in using annotations and comparing
their performance to that of using mapping �les. The process of creat-
ing the XML mapping �le from JPA annotations is discussed in Section
4.2. @Index annotations was used to tag �elds as indexes. To enable
lazy loading fetch=FetchType.LAZY was speci�ed on all @OneToOne,
@ManyToMany, @OneToMany and @ManyToOne annotations. The annota-
tion con�guration also uses Hibernate Named Queries [74].

� Running Hibernate with eager loading on and indexes o�. This con-
�guration tests the worst performance of Hibernate with no advanced
performance con�gurations settings on. To enable this con�guration
indexes was removed by removing the index="xxx" property on index
�elds and setting lazy=�false� on collections and associations in the
XML mapping �le.
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� Running Hibernate with eager loading on and indexes on. This test
investigates if the use of indexes can improve the performance even
if the whole object graph is retrieved into memory. To enable this
con�guration indexes are added by adding the index="xxx" property
on index �elds and setting lazy=�false� on collections and associations
in the XML mapping �le.

� Running Hibernate with lazy loading on and indexes o�. To enable this
con�guration indexes have been removed by removing the index="xxx"
property on index �elds and setting lazy=�true� on collections and as-
sociations in the XML mapping �le.

� Running Hibernate with lazy loading on and indexes on. This test
investigates the impact of using indexes and lazy loading. To enable this
con�guration indexes are added by adding the index="xxx" property
on index �elds and setting lazy=�true� on collections and associations
in the XML mapping �le. This speci�c con�guration will be used to
compare against the annotation con�guration.

Ant targets have been created for each of these con�gurations. These targets
include the correct Hibernate mapping �les and will �export�, using the Hi-
bernate schema export tools [75], the correct database schema. By exporting
the schema, the database is created from scratch, with or without index �elds
according to the mapping �les used. If an earlier database existed, using a
di�erent con�guration, it will be deleted.

4.2.5 Architecture setup

Hibernate uses JDBC (Java Data Base Connectivity) to connect to a rela-
tional database which in this study is PostgreSQL. The PostgreSQL server
is started up �rst and then connections are made by Hibernate through the
JDBC API. JDBC is an API that provides access to relational databases
(data sources) from Java and wraps SQL statements and results �in an object
layer� [40]. Hibernates creates a Session object for each unit of work that it
is currently busy with. The session is created by calling the SessionFactory.
The session factory represents the data source. Creating a SessionFactory

is expensive so it is usually created once per application or per database being
accessed, and from there sessions are obtained for the unit of work requested
[39].

The session will also create a JDBC connection to the database when
needed. When Hibernate opens a session, the session has an associated cache
which is �a transaction-level cache of persistent data� [76]. This cache is also
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called the �rst level cache. In Bauer and King [39] a session is described as
�a cache or collection of loaded objects relating to a single unit of work�. An
extra second level cache can be con�gured on classes or collections. In the
current study second level caches were not used unless stated otherwise.

Hibernate provides transactions through the use of JTA (Java Trans-
action API) or JDBC transactions. The Hibernate Transaction API was
con�gured to use the standard JDBC transactions. Whenever a session is
started a transaction is also started and associated with the session. When
calling commit the transaction is committed. The session and the session
factory is only closed right at the end and is not included in the timings
of the benchmark operations. All this implies that one session and many
transactions are used per test con�guration. It is important to take note of
the �session-per-operation� anti-pattern as de�ned in the Hibernate manual
[76]. The anti-pattern states that it is not good practise to open and close
a Session for each interaction with the database in one thread. The current
study avoids using �session-per-operation� in all cases. It is also important
to note that how and when a session and transaction is used, could in�uence
benchmark results and it is important to document how they have been used.

Figure 4.4 shows the architecture setup used for the Hibernate benchmark
tests. It is important to note that PostgreSQL is running separately from
the benchmark and Hibernate.

Figure 4.4: Architecture setup of Hibernate

4.3 Versant implementation

Versant [15] is a commercial proprietary object oriented database for Java
and C++. Versant was not included in the original OO7 benchmark study
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undertaken by Carey et al. [48] but was included in a later study by them
[46]. For this study the Versant OO7 implementation was created by adding
the Versant persistence code to the basic in-memory implementation. This
is the same approach which was used for the other implementations.

Versant provides the following API's to persist Java objects:

� Java Versant Interface (JVI), which consists out of the fundamental
JVI, and the transparent JVI;

� ODMG JVI which is based on ODMG 2.0 Java Bindings [98]; and

� Versant JDO Interface (Java Data Objects) implementation for Java
[99, 98].

It was decided to use the JVI transparent interface of Versant. This decision
was based on the fact that neither ODMG nor JDO were used in the Hi-
bernate and db4o implementations as neither of these support ODMG and
JDO.

Looking closer at Java Versant Interface, the transparent JVI is a layer
on top of the fundamental JVI [98]. It is possible to use the wrapper API's
of the transparent JVI, which is a subset, or directly use the fundamental
JVI API's. The JVI �automatically maps the classes and �elds of persistent
Java objects to the Versant object model�. The transparent JVI along with
the underlying fundamental JVI is used to persist objects, to create sessions
with associated transactions and caches, to provide for error handling and to
implement queries.

Versant uses a post-processor byte code enhancer, called the enhancer tool,
and a con�guration �le to enhance the Java class �les. The enhancer can be
run as a standalone utility or as a Java class loader. The standalone utility
has been used for this Versant implementation as the class loader, while being
more transparent and dynamic, includes an overhead as the classes are en-
hanced at run-time. Versant speci�es certain persistence categories of which
persistent capable and persistent aware were used for this Versant implemen-
tation. These categories are speci�ed for each class in the con�guration �le
used by the enhancer. The enhancer is used for example [98]:

� to make Java objects persistent capable and persistent aware;

� from the code, to generate the database schema;

� to include code to know when an object has been changed so that it
could be marked as dirty; and

� to add transaction and locking (read and write locks) related code.
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Persistent capable classes can be stored in the database and persistent aware
classes are classes that operate on persistent capable classes. Persistent ca-
pable classes can either be in a persistent or transient state.

The enhancer also provides code to read objects into memory from the
database once they are accessed. This, as stated in earlier sections, provides
lazy loading of accessed objects. To make transient, persistent capable ob-
jects, persistent in the database the makePersistent(object)method of the
transparent JVI must be used. Versant uses transitive persistence or persis-
tence by reachability to make objects and their associated object reference
tree persistent. This is similar to the update depth of db4o.

Versant provides support for the normal Java collections, as second class
objects [98], and arrays as well as enhanced persistent collections
(VVector, DVector, LargeVector and VHashtable) and the ODMG stan-
dard collections (ListOfObject, SetOfObject, BagOfObject and
MapOfObject). This study tried to use normal Java collections for all imple-
mentations, but a problem was experienced in the Versant implementation for
the shared and private collections in the BaseAssembly and CompositePart.
When the collections were modi�ed in the two model creation phases, changes
to these collections were not saved. According to the Versant Forum �Start-
ing VOD 7.0.1.4 all supported collections in java.util support a concept called
automatic change-tracking�. This feature should assist when SCO's (second
class objects) are changed. This study had been using VVector and VOD
(Versant Object Database) 7.0.1.3 for a while. Versant was upgraded to
VOD 7.0.1.4, to test the use of normal Java collections. However, none of
the changes to the collections were persisted. As a consequence only the
shared and private Java collections were replaced with Versant VVector col-
lections.

The rest of the collections use normal Java collections.
The normal Java collections (java.util package) are stored as second class

objects (SCO) in the Versant database. `The Second Class Object is in some
sense "subordinate" to a First Class (sic)' [98]. These SCO's are serialised
by the Java Serialisation API. �This serialization can result in a performance
loss with large objects that contain references to many persistent objects� [98,
page 198]. Looking at the results for Versant in the next few chapters there
does not seem be a performance loss when using normal Java collections.
The results for the Versant implementation is discussed in Chapters 5 and 6.

The OO7 code is written to operate on Java collections. In db4o when
queries are executed, which involve a collection being returned, an ObjectSet

is returned which is cast to a Java List object. Hibernate queries return Java
List objects automatically.

In Versant, collection results, using Queries 6 API (VQL 6.0) [98], are
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stored and returned as a VEnumeration. This caused casting problems be-
cause the rest of the Java OO7 benchmark code was expecting Java collec-
tions. To solve this problem all VEnumeration results where iterated through,
and added to a Java collection. This newly created collection was returned
for use by the Java OO7 benchmark.

Queries 7.0 is the new Query API that became available during the study
and will be used in future studies.

4.3.1 Con�gurations

For the Versant implementation there are less test con�gurations than the
others. Versant does not provide features to enable lazy or eager loading.
When Versant injects persistence code into the classes, Versant seems to en-
able lazy loading automatically. Versant's persistence collections also enable
lazy loading when objects are accessed. This meant that there was no way
to enable eager loading. The Versant test con�gurations are:

� Running Versant with lazy loading on and indexes and using
commit().

� Running Versant with lazy loading on and indexes o� and using
commit().

The following two extra tests were also included to investigate the impact of
not clearing the cache:

� Running Versant with lazy loading on and indexes on and using
checkpointCommit().

� Running Versant with lazy loading on and indexes o� and using
checkpointCommit().

The cache setup and the di�erence between commit() and
checkpointCommit() will be discussed in the next section.

4.3.2 Architecture setup

The Versant database daemon is started �rst on operating system start-
up. Then using Versant commands, the actual databases can be created,
started and stopped. Java clients are now able to connect to a database
using sessions. Each session is associated with one database. When a session
is created, a transaction is created and associated with that session. There
is a one-to-one association between a session and a transaction [98]. When
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a session is ended the transaction is committed as well. Each session has
an associated �object cache of persistent objects� [98]. The cache has the
following properties [98]:

� �Occupies memory and contributes to the process size.

� Consumes none of the Java heap.�

The cache that is associated with the session is created in the �C memory
space to speed up access to objects in a transaction� [98]. The cache contains
objects associated with the current running transaction. When a object is
needed the cache is searched �rst and if missing, retrieved from the database
and placed in the session cache. The session can be committed using either
commit() or checkpointCommit(). While both end the current transaction
and start a new transaction the major di�erence is that a commit() clears
the object cache while the checkpointCommit() does not clear the cache.

The cache also has an COD (Cached Object Descriptor) table. The COD
table contains address pointers to the objects on disk and will generally make
retrieval of these objects faster [100]. The COD table is not cleared when the
transaction ends and only gets cleared when the session is ended. As with
Hibernate and db4o one session and many transactions, per con�guration is
used.

The standard Versant session was used during this study.
Versant provides B-tree and hash table indexes which can either be unique

or normal [98, 100]. For the Versant OO7 implementation, unique type in-
dexes were used. A unique B-tree index was used for the AtomicPart.buildDate
property, while the rest used hash indexes. The index setup is the same as
in the original Versant C++ implementation.

Versant provides many con�guration settings. These settings include set-
ting how the server bu�er will be �ushed, locking and logging settings, the
database volume sizes, extra tuning parameters, etc. For this study the de-
fault settings were used. It is important to know whether logging and locks
are enabled as these could have a impact on the performance of the per-
sistence mechanism being tested. For all databases and ORM tools in this
study transactions (with locks enabled), as well as logging were used.

Figure 4.5 shows the Versant architecture diagram.
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Figure 4.5: Architecture setup of Versant

4.4 Testing environment and versions used

The benchmark was run on a Dell Latitude D820 laptop with 2G of internal
memory and a Intel Centrino 2.16 GHz dual core CPU (T2600). The 93G
ATA Hitachi HTS72101 hard drive has a drive speed of 5,400rpm. The
laptop has Mandriva Linux 2008.1 installed running kernel 2.6.24.5-laptop-
2mnb. The system uses the ext3 (third extended �le system) [19] journal �le
system. Llanos [88] has shown, by using an TPC-C (Transaction Processing
Performance Counsel) database benchmark implementation, that the type
of Linux �le system used, could have an impact on performance. Llanos
[88] also shows that the use of single or multi-core CPU can in�uence the
performance. For these reasons it is important to document what type of �le
system and type of CPU have been used.

The system was booted into run init level 3 in Linux for the experiments.
This was done to remove the X window [29] system and all the extra appli-
cations that use X.

The JVM, using Ant, was setup using the following parameters:

� <jvmarg value="-server" />. In Java 5.0 a new feature called �er-
gonomics� was introduced. It can be used to automatically tune and
set performance parameters on the JVM by using already speci�ed ma-
chine class pro�les [1, 94]. The two classes are the client and the server
class. The client class creates a client VM optimised for fast start-up
time and a small footprint while the server class creates a VM opti-
mised for fast execution speed [2]. For the study's benchmark runs,
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the server-class was selected.

� minimum and maximum heap settings:
<jvmarg value="-Xms700m" />

<jvmarg value="-Xmx1100m" />.

Furthermore, the laptop was not plugged into a network. Some Linux ker-
nel processess were running in the background which could create a certain
amount of overhead in the measured times. However, there does not appear
to be any reason why such overhead would in�uence one persistence mech-
anism more or less than the other. All the benchmark operations were run
on a standalone PC. Future work will run the benchmark operations on a
dedicated machine while the databases are run on their own server machines.

Technology Version

PostgreSQL 8.2.7
Hibernate Hibernate 3.2.5_ga

PostgreSQL JDBC 8.2-505.jdbc3.jar
Hibernate JPA Annotations 3.3.0.GA

db4o db4o-7.4.71.12224
Versant 7.0.1.4
Java Sun Java 2 Runtime

Environment Standard
Edition (build 1.5.0_15-b04)

Ant 1.6.5

Table 4.2: Versions of the technologies used

4.5 Overall observations on the implementations

When creating an implementation of OO7 for a speci�c object database or
ORM tool, there is bound to be uncertainty about the correctness of the
model that is saved. There is, of course, no silver bullet � no automatic
way to check the correctness - one has to rely on testing. Thus, when the
Module (the parent class in the OO7 benchmark) and its entire hierarchy
are saved, the ideal would be that there should be certainty that the whole
tree is correctly saved and retrieved. Unit tests for all of the operations that
modify the model are required to enhance con�dence that these individual
parts are working correctly. Although this is envisaged at a later stage,
for the interim counters were inserted into the implementations to count the
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number of objects created. The number of persisted objects was then veri�ed
through direct database access.
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Chapter 5

Results by Product

The chapter provides the OO7 benchmark results for each of the OO7 im-
plementations created for Versant, db4o and Hibernate using them in their
�out of the box� state. The results relating to the use of di�erent performance
techniques (indexing, caching and lazy loading) and their impact on the per-
formance of the object databases and the ORM tool are shown and discussed
in this chapter. All the implementations were run using the small con�gura-
tion of the OO7 benchmark with three connections. The small con�guration
database consists of ±43 000 objects.

In Van Zyl et al. [96]1, the in-memory implementation results, for traver-
sals, were also reported. The in-memory implementation was a baseline to
indicate the best possible times, when objects are accessed and stored in-
memory without the use of a database. Objects were kept in-memory in
Java collections and only OO7 traversal operations where supported. The
operations for queries and modi�cations were never implemented for the in-
memory version. The in-memory results showed that in-memory processing
takes up an insigni�cant amount of time. This preliminary investigation did
not reveal anything of signi�cance in interpreting cross-product performance.
Hence, it was considered that very little would be lost in leaving in-memory
results out.

The next chapter, Chapter 6 contains detail comparisons between the
object databases and the ORM tool.

For all the test con�gurations certain initial expectations existed. These
expectations are:

� Lazy loading will be faster than eager loading.

1Note that an error was subsequently found in one of the calculations. An erratum
describing the error and its impact was provided on-line [97].
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� Lazy loading along with indexes should be faster than just using lazy
loading.

� Using indexes should make queries faster.

� Queries should be faster when using an ORM tool along with a rela-
tional database.

� Object navigation will be faster using an object database.

For each of the implementations results are provided for the time to create
the database, traversal times, query times, insert and delete times. It is
important to note that to create the database involves creating new objects
and linking them together.

Queries are used to �nd objects in the model that matched certain query
criteria. When the query results are being investigated it helps to keep the
following classi�cation of the OO7 queries in mind:

� Query 1 refers to queries on one table/class type where object ids are
used to match.

� Query 2 and Query 3 refer to queries that �nd objects in a certain
range.

� Query 7 refers to a query that �nds all the objects of one type of class.
In this case �nd all AtomicPart objects.

� Query 4 and Query 5 refer to queries that �nd objects of type A and
then traverse their one-to-many associations. Query 4 also involves
creating random object ids than must be found.

� Query 8 refers to a query that �nd objects of type A and performs a
�join� with another object B, using ids to do the matching.

All of the queries involve iterating through the results returned and sending
back the number of objects found. Query 6 was not in the original OO7
results as it did not provide any insight into the performance. For this
reason Query 6 was also not included in the current study. Future work
could include it.

The sizes of the databases for PostgreSQL, db4o and Versant are reported
in this chapter. They will be compared with each other in the next chapter
to �nd out which has the smallest database.

All the graphs rely on a logarithmic scale for times. Logarithmic scale
was used because some of the times are very high, near a 1000 or 10 000
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seconds, while others were very low near 0.001 seconds. These low times
could not be seen using a normal scale and for this reason a logarithmic scale
was selected.

5.1 Hibernate on PostgreSQL results

This section discuss the results for the Hibernate implementation of OO7.
The Hibernate test con�gurations are discussed in detail in section 4.2.4.
The results for Hibernate are shown in Figures 5.1, 5.2, 5.4, 5.6 and 5.7.

5.1.1 Creation

Creating the OO7 database using eager loading took too long. To create the
database using eager loading with indexes could take about 2 days and to
create a database using eager loading without indexes could take up to 10
hours. This situation was investigated and it was noticed that there was a lot
of garbage collection happening during database creation. The PostgreSQL
server was also working very hard. In the end the database was created
using the lazy loading Hibernate XML mappings �les. When the benchmark
operations were run, the correct eager loading Hibernate XML mappings �les
were used.

From Figure 5.1 it is clear that using Hibernate with annotations and
named queries is slightly faster than using Hibernate XML mapping. Named
queries were added because it was found that using just annotations was
actually slower than using Hibernate XML mapping �les. �Annotations are
compiled into the byte-code and read at run-time (in Hibernate's case on
start-up) using re�ection� [74]. When Hibernate is started and the session
factory is created the annotated classes are read which seems to create a slight
overhead. When named queries are added it improves the overall speed of
Hibernate.

Using indexes does not slow down the creation times. This was unex-
pected.

The size for the OO7 small databases in PostgreSQL is ± 71 MB.
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Figure 5.1: Hibernate database creation results

5.1.2 Traversals

Figure 5.2 clearly shows that using lazy loading is faster than eager loading
in all the cold runs. In the hot runs however, the eager loading and lazy
loading con�gurations are very close together. A possible reason for this is
that the cache is now populated and being used in the hot runs. Thus, even
though eager loading the object tree into the cache for the �rst time is slow,
it apparently assists in the object traversal or navigation of the tree in the
later iterations.

As stated in the previous chapter a cold run is a run where all the caches
are empty and a hot run is where objects have been cached.

The average speed improvement percentage, due to the cache between the
cold and hot runs for traversals, was calculated using the following formula:

(coldT ime− hotT ime)

coldT ime
× 100

for each operation and then taking the average over all traversals.

Figure 5.3 shows that on average a 91% speed improvement is obtained due
to the cache for all test con�gurations involved in traversals. The �rst level or
session cache provides this improvement because it caches the actual objects
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in the �rst run and the same objects are used in later iterations, using the
same session. There is thus no need to request the objects from the database
again [39].

The speed improvement, due to the cache, provided for eager con�gu-
rations when running traversals is very high and very low when running
queries. Figure 5.3 also shows that the cache in general improves the speed
of the runs for traversals more than for queries. The possible reason for this is
that queries involve more random objects while traversals involve traversing
the same tree of objects.

A possible rule of thumb when traversing and when it is known that the
same group of objects will be traversed, is to use eager loading. This of
course depends on how large the object tree is and on the available memory.

Hot traversals Trav2b, Trav2c, Trav3b, and Trav3c are very interesting.
These traversals involve a large number of objects: 43700 for Trav2b and
Trav3b, and 174800 for Trav2c and Trav3c. Figure 5.2 shows that eager
loading with no indexes performs slightly better than lazy loading in the hot
runs for these traversals. This was not expected because it was assumed that
using lazy loading for large number of objects would always perform better.
A possible reason for why the eager loading run is faster than the lazy, is that
the database is so small, that most of the database could easily be cached in
memory on the �rst run with eager loading. When using lazy loading there
is still a check to see if the object is null or already loaded into memory.

When a larger database which cannot �t into memory is used, it is ex-
pected that lazy loading should be faster than eager loading. If lazy loading
is used for such a small database it creates a slight overhead in the hot runs.
For these traversals (Trav2b,Trav2c,Trav3b, and Trav3c) the graph also in-
dicates that when using an index, the traversal runs are slower.

Indexes are used to improve query times to �nd a speci�c object. When
traversing, the �rst step is to �nd a module with a speci�c ID and then
traverse the rest of the tree from that root. An index will help on the �rst
query for the module, but not for the rest of the object traversals.
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Figure 5.2: Hibernate cold and hot traversal results

Figure 5.3: Hibernate average speed improvement due to the cache for traver-
sal runs
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5.1.3 Queries

The OO7 benchmark was created to test persistence performance with re-
spect to objects. In order to achieve this goal, it emphasises object naviga-
tion.

Most of the queries in OO7 are written in an object navigational way,
meaning that speci�c objects are retrieved or queried for �rst, then their
associated objects are navigated. This means that when a query is executed,
a result set is returned, and then iterated through, accessing or navigating
either the objects properties or its associated objects.

While most queries only iterate through properties, Query 8 also accesses
associated objects. Figure 5.4 shows that the run-time for Query 8 is 3056
seconds when using lazy loading with indexes and 8980 seconds when using
eager loading and no indexes, which is very slow. Query 8 su�ers from the
n+1 select problem [39]. To understand the problem better, one needs to
understand what Query 8 is doing. Query 8 states:

Find all pairs of documents and atomic parts where the document
ID in the atomic part matches the ID of the document. Also,
return a count of the number of such pairs encountered.

In OO7 this means that �rst, all 10 000 AtomicPart objects are found, which
are then iterated through �nding the associated Document object. When iter-
ating through the 10 000 AtomicPart objects, another query per AtomicPart
is executed on the database to �nd the associated Document object. This is
known as the n+1 select problem.

Bauer and King [39] discuss a similar n+1 problem related to lazy loading
in detail and provide solutions for this problem, and also mention that it is
important to minimise the amount of queries sent over the network.

From on-line [3] and personal discussions about why Query 8 was slow
in Van Zyl et al. [96], a modi�cation to Query 8 was suggested2. The
modi�cation was to use a join query to limit the number of queries sent to
the server. Other suggestions included using indexes and lazy loading. The
new join query in HQL is:

from Document doc, AtomicPart part where doc.docId = part.docId

While the new join query was a bit faster there was still another problem.
This had to do with eager loading. If eager loading is on, and the 10 000
AtomicParts are returned, the 30 000 associated Connection objects are also

2These suggestions have been made by William Cook from the Department of Computer
Sciences, UT Austin http://www.cs.utexas.edu/~wcook/
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retrieved. This meant that for each AtomicPart another join was executed
with the table containing the Connections. This is unnecessary as the con-
nections are not used in Query 8. By enabling lazy loading Query 8 increases
in speed and with the new join query the time goes down to about 3 seconds
in the cold runs and 1 second in the hot runs. The new Query 8 is called
Query8Join and both the original and the new query are shown in Figure
5.4.

It is clear from Figure 5.4 that lazy and eager loading have an impact
on the performance of all the queries. Query runs, using eager loading, are
slower than runs where lazy loading is used.

When a large number of objects are queried (Query 7 and 8) and Hiber-
nate is used with annotations and named queries it is slightly slower than
the Hibernate XML con�gurations.

The use of indexes does improve the querying speed. Query 1 involves
�nding AtomicPart objects by matching on an �ID� on which there is an
index. Looking at the hot query graph, it is clear that the index does help
to improve the query speed.

Query 7 is also querying 10 000 AtomicParts but is slightly faster than
Query 8 because there is no join or n+1 query involved.

Query 5, which queries for 199 objects, is very slow because it also su�ers
from the n+1 select problem and could also be rewritten using a join query.
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Figure 5.4: Hibernate cold and hot query results

Figure 5.5 shows the speed improvements provided by the cache between
the cold and hot runs for queries. When lazy loading is turned on the average
speed improvement provided by the cache is 50% and for eager loading the
average is 4%.

It is important to note that Hibernate provides a query cache that can
be used to cache query result sets [39, 76]. The query cache was not used
in these con�gurations. Bauer and King [39] also state that the query cache
provides minimal improvement in most use cases. Because the OO7 queries
are repeated 5 times, using the query cache should improve the speed for the
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OO7 queries in the query test runs.
Figure 5.3 and Figure 5.5 show that cache helps traversal operations more

than queries. For traversals the average speed improvement is 91% and for
queries it is 31%.

This is probably because once the object graph being traversed is in
memory, it is very fast to traverse the references and there is also no need to
ask for the object from the database. The OO7 queries on the other hand
involve mostly querying for random generated object IDs and sending each
query to the database for each random selected object ID to �nd the matched
object. This implies that even if the object is cached in the �rst iteration,
the second iteration and query will probably need to �nd a di�erent random
selected object. There is a high probability that the second object will not
be in the cache.

From the results it is clear that the normal Hibernate session cache does
not improve the query speeds as much as for traversals. If the query cache
was enabled the cache use would have improved. Queries using eager loading
will be slower because objects are brought into the cache that will not be
used and this extra retrieval makes it slower.

Figure 5.5: Hibernate average speed improvement due to cache for query
runs

5.1.4 Modi�cations: Insert and delete

Figure 5.6 and 5.7 clearly show that using lazy loading during inserts and
deletes is faster than eager loading. During insertions, objects are added
to these collections and during deletions objects are removed from these
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collections. This means that the objects and their associated object trees are
unnecessarily loaded into memory using eager loading which makes it slower.

When inserting objects in the cold runs it is observed that the use of
indexes is slower. This is because there is a slight overhead when the index is
created for the newly inserted object. Indexes also make deletes a bit slower
as the index must be removed as well.

During the hot insert runs having an index does not slow down inserts
as the cache kicks in and helps to improve the insert times by caching the
object collections to which the new objects are added.

The Hibernate annotation's con�gurations times are very close to the
Hibernate XML mapping �le con�gurations times.

Figure 5.6: Hibernate cold and warm insert results
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Figure 5.7: Hibernate cold and hot delete results

Table 5.1 shows the average speed improvement provided between the
cold and the hot runs by the cache. The cache improves the insert runs on
average ± 36%. For delete runs the average is very low at 8%. When lazy
loading is used the cache provides on average a 60% speed improvement for
inserts.

In Hibernate inserts are ± 39 seconds faster than deletes.
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Con�guration % Improvement
for Inserts

% Improvement
for Deletes

Eager loading and indexes o� 0.14 8
Eager loading and indexes on 0.33 9
Lazy loading and indexes o� 59 6
Lazy loading and indexes on 60 9
Using annotations with Lazy
loading and indexes on

61 8

Table 5.1: Hibernate average speed improvement due to the cache for modi-
�cation runs

5.2 db4o results

This section discusses the results for the db4o implementation of OO7. db4o
was run in networked mode (a network server and client-server mode) with
the client and server each in its own VM. A standalone con�guration was
included to investigate the performance di�erence between using networked
client-server mode versus standalone mode (embedded database). One of
db4o's strong points is that it runs as an embedded standalone database.
The results obtained will be discussed in the following sections.

5.2.1 Creation

The creation times in Figure 5.8 show clearly that eager runs are about
4 times slower than the lazy runs when running in networked client-server
mode.

During a subsequent review of the results by db4o they recommended
turning cascadeOnDelete o� when performing inserts and updates dur-
ing the database creation and linking process. It was found that there ex-
isted a known bug that in�uenced the inserts [64] and created an extra over-
head. Each time an object was inserted an unnecessary callback was called.
This bug exists in the version of db4o that is currently being used (db4o-
7.4.71.12224) for this study. In later versions this bug has been �xed. It was
decided to add the boolean variable SettingsUtil.useCascadeOnDelete.
This was used to turn cascade on deletes on only when performing deletes.
This solved the overhead. It was not possible to upgrade to a newer produc-
tion version of db4o because then it would have only been fair to upgrade
Hibernate and Versant as well. Future work will use the newer versions of
these products.
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The time to create the database using lazy loading in standalone mode
(embedded mode) was 13433 seconds before �xing the bug. After the bug
was �xed the time to create the database was around 7780 seconds. This is
very slow. This could be related to an extra cascade on update depth setting
that was needed on the CompositePart class to store the whole model when
running in standalone mode. Because db4o is an object database with a focus
on embedded devices and embedded applications on these devices [62] it was
expected that the standalone mode (embedded database) of db4o would be
faster than than the networked client-server mode for such a small database.

The db4o OO7 small database sizes are about 6 to 9 MB.

Figure 5.8: Db4o database creation results

5.2.2 Traversals

Traversal runs traverse the object tree in an object oriented fashion. The
results are shown in Figure 5.9.

In the cold runs it seems that when a small amount of objects are tra-
versed, like in traversal Trav6 (2185), that the standalone and networked
client-server lazy con�gurations are faster than the eager client-server ones.
When the traversals involve a larger amount of objects, like traversals Trav2b
(43740), Trav2c (174 960), Trav3b (43740) , and Trav3c (174 960) the eager
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loading runs are faster than the lazy loading con�gurations. Eager loading
loads the whole tree into the weak reference cache (discussed in section 4.1.2)
on the �rst iteration so it was expected to be slower in the cold run, but the
fact that it seems to be faster than the lazy runs for larger data sets like
Trav2c and Trav3c in the cold run comes as a surprise. In the lazy runs
there could be an overhead on the �rst cold run with all the calls to activate
some of the larger collections, which causes an overhead as it needs to request
these objects from the db4o server and then put them into the cache. Eager
loading uses one call to load the whole tree and lazy loading needs many
calls.

Figure 5.9: db4o cold and hot traversal results

In the hot runs the eager loading con�gurations are all faster.
Trav2a, Trav3a and Trav6 traverse 2185 �root atomic parts�. The main

di�erence is that Trav6 does not involve updates to the objects while being
traversed. The fact that objects are being changed and saved in Trav2a and
Trav3a explains why they are much slower than Trav6. For example the db4o
lazy loading con�gurations take about 20 seconds when performing Trav2a
and Trav3a in the cold runs, but only 2 seconds for Trav6.
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Traversals Trav8 and Trav9 involve traversing a very small amount of
objects and are very fast.

Hibernate di�ers from db4o in that the eager runs was slower in the cold
runs and then slightly faster or very close to the lazy loading runs in the hot
runs. In db4o the eager runs are in most cases faster than the lazy runs in
the cold runs. Hibernate will be compared with db4o in the next chapter.

The speed improvements due to the cache when traversing is shown in
Figure 5.10. It seems that standalone mode, using lazy loading, performs
better in cold runs than in the hot runs and that its speed improvement due
to cache is less. For the standalone mode the cache only provides a 44% im-
provement while for the other con�gurations the improvements are between
86% and 75%. The eager runs have a slightly better speed improvement
when a cache is used in traversals.

Figure 5.10: db4o average speed improvement due to cache for traversal runs

The db4o networked client-server mode is faster than the standalone mode
in the hot runs. It is possible that db4o, when running in client-server mode,
performs caching at the server as well. That could improve the client-server
performance.

As with Hibernate, indexes are used to improve queries to �nd a speci�c
object. When traversing, the �rst step is to �nd a module with a speci�c ID
and then traverse the rest of the tree from that root. Thus an index will help
on the �rst query for the module, but not for the rest of the object traversals.

From the foregoing it seems that eager and lazy loading as well as the
db4o mode have a large impact on the performance. As seen in Figure 5.9,
Trav1, eager loading can make a di�erence of as much as ± 98% in the hot
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runs. Figure 5.9, Trav2c, shows that db4o in networked client-server mode
can be between 63% and 73% faster than db4o in standalone mode in the
hot runs.

5.2.3 Queries

Query results for db4o di�er quite dramatically from traversal results. The
results are shown in Figure 5.11.

Queries run in db4o standalone mode are faster in cold runs than queries
run in client-server mode. It is also faster in most of the hot runs. This could
be related to an overhead in communication between the client and the server
and the fact that some of the queries, like Query 8, also su�er from the n+1
select problem�meaning that there are extra query calls to the server. Using
a join like query, or batching query calls, or creating look-up tables (such as
views in SQL) could improve these query times.

While eager runs are faster for traversals they are actually slower for
queries in hot and cold runs. All the lazy query runs are faster than the eager
query runs. The issue of eager runs being slower with regards to queries is
similar to the issue discussed in Section 5.1.3 for Hibernate queries. As stated,
in for example Query 8, all the associated object collections are loaded when
eager loading is used. This extra loading makes queries slower when using
eager loading. Thus, when a tree is eager loaded and this tree is actually
traversed, eager loading and the cache helps to improve the speed. However,
if the tree is loaded and not used, it creates a huge overhead as can be seen
when running queries.

93

 
 
 



Figure 5.11: db4o cold and hot query results

Query 1 involves �nding 10 AtomicPart objects by matching on an �ID�
�eld on which there is an index. Unlike in Hibernate, the index in db4o
does not improve the query speed. There is a slight overhead when using the
index. For example the db4o eager loading con�guration performs Query 1
in 3.36 seconds and in 3.82 seconds when the index is turned on.

Again, Query 7 is also querying 10 000 AtomicParts but is slightly faster
than Query 8 because there is no �join� or n+1 query involved. Query 7
is performed in 4 seconds and Query 8 in 59 seconds when the db4o lazy
loading con�guration is used.
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Query 5 which is querying 199 objects is actually faster than Query 2
(100), Query 3 (970) and Query 4 (42). Query 5 which is an n+1 type query
is very fast in db4o, probably because of the caching and the fact that it
involves object traversals as well.

Looking at the speed improvements due to cache in Figure 5.12 it is clear
that in standalone mode the cache provides a ± 67% improvement. db4o in
networked client-server mode on average only provides a ± 53%.

Figure 5.12 shows that the cache does not improve the eager runs (on
average ± 43%) as much as the lazy runs (on average ± 65%).

Figure 5.10 and 5.12 shows that the cache helps to improve traversals
speeds (on average ± 81%) more than queries (on average ± 53%) for the
networked client-server mode. In eager query runs, times for large queries
like Query 8 and Query 7 do not dramatically improve when the cache kicks
in during the hot runs.

A possible and expected conclusion is that the cache improves traversal
operation times and that objects used in queries are not cached.

Figure 5.12: db4o average speed improvement due to cache for query runs

5.2.4 Modi�cations: Insert and delete

The db4o results for modi�cations are shown in Figure 5.13 and 5.14. The
modi�cation results are similar to the Hibernate results in that using lazy
loading during inserts and deletes is faster than eager loading. Eager loading
is slower because when inserting and deleting, the database is queried for
objects and then all their associated collections and objects are brought into
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memory which creates an overhead. Objects are then removed or added to
only some of these collections.

Figure 5.13: db4o cold and hot insert results
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Figure 5.14: db4o cold and hot delete results

Having indexes turned on or o� does not seem to in�uence the modi�-
cation times in db4o. It was expected that if indexes are used that there
should be a slight overhead when an object with and index �eld are added
or removed from the database [69, 92, 106,120]. Kemper and Moerkotte [82,
70] state that while indexes improves query speed it slows down inserts, up-
dates and deletes. This is because the index structure being used needs to be
updated. They also state that indexes should be used when the application
involves more read/query access. If the application is more dynamic and
involves many updates, inserts and deletes then less indexes should be used
as they create a overhead.

During inserts and deletes there are only ± 600 objects being added and
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Con�guration % Improvement
for Inserts

% Improve-
ment for
Deletes

Eager loading and indexes o� 77 81
Eager loading and indexes on 77 81
Lazy loading and indexes o� 51 77
Lazy loading and indexes on 62 68
Lazy loading and indexes on in
standalone mode

28 25

Table 5.2: db4o average speed improvement due to cache for modi�cation
runs

removed. It seems that this low number of objects does not cause the db4o
index structure any problems. It would be interesting to �nd out if there is
any overhead when running the larger OO7 benchmark databases. Future
work will investigate this.

Overall inserts and deletes speeds are very close together.
Table 5.2 shows the average speed improvement provided by the cache

between the cold and the hot runs. In the presence of cache, eager runs
improve on average by more than 77% while lazy runs improve on average in
the range of 51% to 77%. Nevertheless, as can be seen in the graphs for hot
insert and delete times in Figure 5.13 and 5.14, this improvement reduces
the eager run times to just over 3 seconds, compared to the lazy run times
which are in the order of 0.5 to 1 seconds.

The cache does not assist as much for the db4o embedded con�guration.

5.3 Versant results

As stated in Chapter 4 there is no eager loading con�guration available for the
Versant implementation. After the �rst iteration of running the operations it
was found that the times did not improve between cold and hot runs. After
further investigation it was found that using commit() cleared the cache
after each transaction was committed. This did not seem fair because db4o
and Hibernate maintain their caches after committing a transaction. For
this reason extra con�gurations were added using a checkpointCommit()

which keeps the current cache associated with the session after committing
a transaction. The results of using both are shown and discussed in the
following sections. Keep in mind that for the Versant implementation some
of the persistent enhanced collections were used.

98

 
 
 



5.3.1 Creation

The Versant creation times are shown in Figure 5.15.
As expected when adding indexes in Versant the creation times are slightly

slower. Adding indexes in Versant is only done at the end when all the ob-
jects have already been created and saved to the database. Versant creation
times are very fast when compared to db4o and Hibernate.

The Versant database size is ± 10MB for the database �le and in total,
with system �les (log �les and pro�le �les), 15 MB

Figure 5.15: Versant database creation results

5.3.2 Traversals

Versant's traversal times are shown in Figure 5.16.
In the cold runs the times for the con�gurations are all very close, but in

the hot runs, use of the checkpoint commit mechanism consistently improves
the time for each traversal type.

Trav6, Trav2a and Trav3a traverse 2185 �root atomic parts�. The main
di�erence between them is that Trav6 does not involve updates to the objects
which are being traversed. The fact that objects are being changed and saved
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explains why Trav2a and Trav3a are slower than Trav6. This is the same
phenomenon that occurred in db4o.

Figure 5.16: Versant cold and hot traversal results

Figure 5.17 shows the cache improvement during the hot runs. As ex-
pected checkpoint commits, which do not clear the cache, show on average, a
85% improvement. Using a commit() shows only a 41% average improvement
as it clears the cache and then has to re�ll it on each run.

As stated in section 3.2.2 many transactions were used when running the
benchmark operations.

100

 
 
 



Figure 5.17: Versant average speed improvement due to cache for traversal
runs

5.3.3 Queries

Figure 5.18 shows that all cold run times are about the same for all con�gu-
rations tested. In the hot runs the con�gurations using checkpoint commits
and the cache are faster for most queries. Query 8 is the slowest query and
involves a join between AtomicParts and Document objects. Again this could
be related to an overhead in communication between the client and the server
and the fact that Query 8 su�er from the n+1 select problem�meaning that
there are extra query calls to the server.

Query 1 involves �nding 10 AtomicPart objects by matching on an �ID�
�eld on which there is an index. With Versant, the use of an index does help
to improve the query speed. It was mentioned before that Versant provides
either b-tree or hash table index structures. For AtomicPart's buildDate

�eld a b-tree is used and for its ID �eld a hash table is used. This selection
of di�erent index structures was used because it was used in the original OO7
C++ implementation. Another reason that buildDate uses a b-tree index is
that the �eld is used in value range queries. B-tree indexes are better suited
for range type queries [100]. The ID �eld uses a hash table because hash
tables are better suited to comparisons involving equality [100].

Query 7 is also querying 10 000 AtomicParts but is slightly faster than
Query 8 because there is no �join� or n+1 query involved.

The time for Query 4, which �nds 42 objects, is actually slower than the
time for Query 2, which �nds 100 objects. The di�erence is in the type of
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queries. Query 2 is a range query and Query 4 �nds objects of type A and
then traverse their one-to-many associations. Query 4 also involves creating
random object ids that must be found. Because Query 4 �nds these random
objects all over the database it is slower.

Query 5 involves an n+1 type query. It iterates through BaseAssembly

objects bringing in their associated private CompositeParts. Using a
checkpointCommit() and the cache improves the speed here as this is basi-
cally a query and then a traversal.

Figure 5.18: Versant cold and hot query results
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Figure 5.19 shows that queries using checkpointCommit() have on aver-
age a 78% improvement due to the cache. Queries using commit() only have
a 61% average improvement.

Figure 5.19: Versant average speed improvement due to cache for query runs

5.3.4 Modi�cations: Insert and delete

Insert and delete times are shown in Figure 5.20 and 5.3.4. The times for
the di�erent con�gurations are very close. It is noted that inserts are faster
than deletes.
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Figure 5.20: Versant cold and hot insert results
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Figure 5.21: Versant cold and hot delete results

Like db4o when indexes are used there is almost no overhead. It was
expected that when an index is used, during inserts and deletes, that these
operations will be visibly slower. As mentioned in section 5.2.4 it seems that
because a low number of objects are being inserted and deleted there is no
major overhead for the index structure.

Table 5.3 shows speed improvements due to the cache. The cache assists
inserts clearly more than deletes.
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Con�guration % Improvement
for Inserts

% Improve-
ment for
Deletes

Lazy loading and indexes o� 62 39
Lazy loading and indexes on 60 36
Lazy loading with indexes o� and
using checkpoint commits

58 35

Lazy loading with indexes on and
using checkpoint commits

60 38

Table 5.3: Versant average speed improvement due to cache for modi�cation
runs

5.4 Summary

In this chapter db4o, Versant and Hibernate were evaluated independently
of each other. In the next chapter these products will be compared against
each other.
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Chapter 6

Comparisons and interpretations

In this chapter Hibernate, db4o and Versant are compared to each other.
Only client-server con�gurations are compared. It is not fair to compare
embedded mode with client-server. Future work could include comparisons
of di�erent embedded databases with each other.

For each object database and ORM tool, the con�guration which gave
the best overall result in the previous chapter is used in the comparisons.

The following con�gurations were selected:

� db4o's lazy and eager con�gurations using indexes. The eager run is
included because for this small OO7 database eager loading improves
the traversal times and is the fastest con�guration of db4o for traver-
sals. Only the networked client-server implementations for db4o are
included. The networked client-server mode is selected because Hiber-
nate and Versant also uses a client-server architecture.

� Hibernate's lazy con�gurations using indexes. Included are the con-
�gurations using Hibernate annotations as annotations seem to be the
norm today. Hibernate XML con�gurations, which were quite fast, are
included as well.

� Versant's con�guration using its custom persistent collections, indexes
and checkpoint commits. The checkpoint commits do not clear the
associated session cache when a transaction is committed. Hibernate
and db4o also do not clear their session caches after commits.

It should be emphasised that the results presented in this chapter have al-
ready been given in the previous chapter. It is only the presentation style that
di�ers. In the previous chapter, results were presented per ODBMS/ORM
tool, while here they are explicitly crossed-compared.
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The chapter is divided into two sections. The �rst gives the actual cross-
comparative data, and o�ers a few plausible explanations of the results. It
should be emphasised that such explanations are in the nature of tentative
hypotheses, and require further study to be con�rmed. Such con�rmation
should be seen as being beyond the scope of this limited study. The second
section relies on a rough scheme for scoring the overall performance of the
respective tools. It is emphasised that the interpretation of the outcome of
such scoring mechanisms needs to be approached rather cautiously.

6.1 Comparison results

In this section the results of the di�erent implementations are compared and
investigated. Again the results are grouped into creation, traversal, query
and modi�cation sections.

6.1.1 Creation

Figure 6.1 shows the creation times. Versant is clearly the fastest followed
by Hibernate and then db4o.

Figure 6.1: Creation times
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Con�guration Database size

db4o with lazy loading and
indexes on

Between 6 - 9 MB

db4o with eager loading and
indexes on

Between 6 - 9 MB

Hibernate using mapping �les
with lazy loading and indexes on

± 71MB

Hibernate using annotations with
lazy loading, indexes on and
named queries

± 71MB

Versant with indexes on and using
checkpoint commits

10 MB for database
�le and in total with
system �les 16MB

Table 6.1: Database sizes

The database sizes are shown in Table 6.1. db4o's OO7 database �le size
is the smallest with PostgreSQL being the largest at ± 71MB. db4o is an
embedded database with a focus on creating small databases for embedded
devices so it is not unexpected that it has the smallest database �le.

1Taking a deeper look at the PostgreSQL database it was found that for
example the AtomicPart table is 18MB with the indexes on that table alone
being 11MB. The AtomicPart table contains indexes on two AtomicPart

�elds and have the largest index table of all the tables. The Connection

table, with its 30 000 connections, has a size of 30MB.

6.1.2 Traversals

Versant is the fastest for most of the cold traversal runs in Figure 6.2 except
for Trav8 and Trav9 where Hibernate with annotations are slightly quicker.
Hibernate's time for Trav8 and Trav9 are 0.14 and 0.13 seconds respectively
versus Versant's 0.16 and 0.16 seconds.

In the hot traversal runs Versant again is the fastest except for Trav8 and
Trav9. Hibernate and db4o's eager loading con�guration are faster in these
traversals. They complete in an insigni�cant amount of time. For Trav9 and
Trav8 some result bars in the �gures appear to be missing. This is because
the values are so close to zero that they are not visible on the current scale.

Trav8 and Trav9 merely scans the Models, Manual object for string

1pgAdmin 3 was used to investigate the table sizes. To �nd the total size the following
command was used: select pg_size_pretty(pg_database_size('oo7jsmall')) ;
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matches. Since they �nd and operate on one object, it is in line with ex-
pectation that they are very fast.

The db4o eager loading con�guration is also slightly faster, by 0.01 second,
than Versant for Trav1 in the hot run.

Hibernate, using the XML con�guration, is the slowest in the following
cold traversals: Trav1, Trav2a, Trav2b, Trav3a and Trav3b. Hibernate with
annotations and named queries is faster than db4o in Trav2c and Trav3c
where a large number of objects are traversed and modi�ed and where the
cache plays an important role.

In the hot runs and most of the cold runs, db4o's eager loading con�gu-
ration performs better than its lazy loading version because of the caching of
all the data in the �rst run. The db4o eager loading con�guration also has
less communication with the db4o server, as the whole tree is cached on the
�rst run.

Figure 6.2: Comparison results of traversals

Taking a further look at some of the traversals the following is observed:

� Cold runs: For Trav1, both db4o's lazy con�guration and Hibernate's
lazy con�gurations are slower than the rest. Also note that Trav1 and
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Trav2b traverse the same number of objects but the objects are mod-
i�ed in Trav2b. When objects are changed in Trav2b the Hibernate
times actually improve compared to the Hibernate times for Trav1.
For Trav2b Hibernate's times improve from around 300 seconds down
to 90 and 25 seconds while the db4o and Versant con�gurations are
± 4 seconds slower. Versant and db4o are slower because more work
is performed as the objects are being modi�ed as well. It would seem
that Hibernate with PostgreSQL times improve when modi�cations are
made. It could be that the changes are not �ushed immediately. db4o
and Hibernates times are very slow for Trav1 ( traverse 43 700 objects)
and Trav2b compared to Versant. db4o's times are between 25 and 15
seconds and Hibernate is between 300 and 25 seconds compared to Ver-
sant's 5 and 9 seconds. It is clear, that when many objects are traversed
and modi�ed in the cold Trav2b run, that Versant scales better.

� Hot runs: Looking at Trav1 and Trav2b times in the hot runs, it is
observed that the times now increase for all con�gurations when run-
ning and modifying objects in Trav2b compared to their times when
merely traversing the objects in Trav1. Although Trav1 times are very
close, db4o's eager con�guration is slightly faster by 0.01 second from
Versant. Moving from Trav1 to Trav2b Hibernate's times increase by
± 13 seconds.

� Hot runs: In Trav2a and Trav3a, which involve changes to a small num-
ber of objects (2185), Versant and Hibernate's annotation con�guration
are faster than db4o.

� Hot and cold runs: In larger traversals like Trav2c and Trav3c, Ver-
sant is the fastest. If once-o� traversals are needed, that involve large
number of objects, Versant performs better.

� Hot and cold runs: Traversal 3 is similar to Traversal 2 but, as stated
previously, involves changing or updating an index �eld. The di�er-
ence between traversal Trav2b+Trav3b (traverse 43 700 objects) and
Trav2c+Trav3c (traverse 174800 objects) is that the �c� traversals up-
date each AtomicPart, in a CompositePart four times per iteration,
while the �b� traversals only carry out the update once per iteration.
Thus performing traversals Trav3c and Trav3b, in a hot runs, the db4o
cache performs better than Hibernate on multiple immediate repeats.
In the cold runs for Trav3c the Hibernate annotation con�guration with
named queries performs slightly better. Traversals Trav2b and Trav3b
changes an index �eld which could create an overhead as the index is
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being updated. While the overhead of changing the index �eld is also
present in Trav3c, it is still very fast because there are a larger number
of objects involved that are more e�ectively cached. The Hibernate
cache assists so that the Hibernate times only increase by 3 seconds
when performing Trav2b and Trav3b in the hot runs. The db4o times
increase by ± 6 seconds when performing Trav2b and Trav3b in the hot
runs. It would be interesting to know if a hash index or b-tree index is
used by Hibernate and to see the performance di�erence between the
two if any.

� Hot and cold run: Carey et al. [45] mention that times increase between
Trav2a and Trav2b because the number of objects being traversed and
updated increase. The same is true for Trav3b and Trav3c. Carey et
al. [45] further states that for Exodus (an object database included in
their study), moving from Trav2b to Trav2 c should not increase the
times because there are �repeated updates to a cached object� and that
for Exodus �only the last change is logged�. For db4o the traversals
times increase moving from Trav2b to Trav2 c. The db4o eager loading
con�guration time increases from 4 seconds for Trav2b to 11 seconds for
Trav2 c in the hot run. This could be related to how db4o transaction
and commits are implemented. The db4o reference manual [62] states
that �Objects created or instantiated within one db4o transaction are
written to a temporary transaction area in the database �le and are
only durable after the transaction is committed�. This writing to �a
temporary transaction area� is also done for existing objects that are
updated. Note that changes are only made durable after commit. Thus,
each time an object is changed and saved during Trav2 c, a call (or
message as it is called in db4o) to the server takes place. In db4o
this default behaviour could be changed by batching calls using the
clientServer().batchMessages(true) setting [62, page 915]. It was
later found that according to the Java Doc comments in db4o 7.4, the
default has been changed and messages are now batched. However
even though messages are batched, there is still a overhead in the db4o
case. This overhead could be related to the way in which messages are
batched or the batching of messages is implemented in db4o. Versant
only updates the database once commit is called. Hibernate also only
synchronises changes to objects in the Session to the database when
commit is called or an explicit �ush is called [39, p 183]2. Figure 6.2

2Bauer and King state that: �The Hibernate Session implements transparent write
behind. Changes to the domain model made in the scope of a Session aren't immedi-
ately propagated to the database. This allows Hibernate to coalesce many changes into a
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shows that Hibernate's and Versant's times remain consistent between
Trav2b to Trav2 c.

� In all the hot runs db4o's lazy loading or manual lazy activation seems
to create an overhead compared to the eager loading con�guration.
These db4o lazy runs are the slowest. For example in Trav2a the db4o
eager loading con�guration runs on average ±1 seconds while the db4o
lazy con�guration takes ±5 seconds.

� Cold run: For Trav6 Versant is the fastest at 0.6 seconds. db4o lazy
loading con�gurations are second at ±2 seconds followed by Hibernate
which is between 7 and 5 seconds. Trav6 traverses the same number
of objects as in Trav2a and Trav3a but with no updates to any �elds.

� Hot run: For Trav6 Versant is slightly faster than Hibernate followed
by db4o. The cache helps to improve all the con�guration times and
bring them closer together.

Looking at the speed improvement due to cache use in Figure 6.3 it is clear
that the Hibernate XML mapping implementation has the best improvement
(around 93%). This cache improvement helps Hibernate to be faster than
db4o in some of the hot runs. This improvement is due to Hibernate's �rst
level cache.

Versant's cache provides a 85% improvement while the db4o cache pro-
vides on average a 80% speed improvement. In summary Versant performs
the best overall for traversals.

In the next section the query performance is investigated.

minimal number of database requests, helping minimise the impact of network latency.�
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Figure 6.3: Comparing traversal and query average speed improvement due
to cache for all

6.1.3 Queries

The query results are shown in Figure 6.4. Versant is the fastest for all the
cold and hot query runs. The only exception is for the extra query that was
added for Hibernate, Query8Join. Using this join query, Hibernate is the
fastest for Query 8.
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Figure 6.4: Comparison results of queries

For the query runs db4o eager con�guration (green bar) is slower than
the db4o lazy con�guration (yellow bar). This is a reversal of the traversal
results in which the db4o eager con�guration was faster than the db4o lazy
con�guration.

Query 8 is the most interesting query as it involves a join between
AtomicPart's and Document objects. As discussed in the previous chapter,
Query 8 su�ers from the n+1 select problem meaning that there are extra
query calls to the server and that if eager loading is used extra collections
are retrieved that are not used. Versant performs Query 8 in 10 seconds in
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the cold run while its average hot run time is 9 seconds.
Hibernate runs Query 8, which su�ers from the n+1 select problem, in

± 3050 seconds and 3058 seconds respectively in the cold run and average
hot run cases. When Hibernate's Query 8 is rewritten using a join and only
one request to the database, its times improves. Query8Join times are ±4
seconds in the cold run, and its average hot run time is ±1.5 seconds.

db4o and Versant do not provide a join-like query. Times for Versant and
db4o could be improved by using di�erent techniques like batching query
calls, or creating look-up collections (such as views in SQL). These techniques
could improve the object database query times but the main focus was on
using query language facilities.

Taking a look at the rest of query runs it is observed that:

� Query 1 is an exact match query. It involves �nding AtomicPart ob-
jects by matching on an �ID� �eld on which there is an index. Hibernate
and Versant perform this query on an index �eld faster than db4o in the
hot and cold runs. db4o using eager loading perform Query 1 in ±19
seconds and db4o using lazy loading takes around 1 second. Versant
and Hibernate perform Query 1 in less that 0.5 seconds.

� Query 2 and Query 3 are range queries. Query 2 �nds 1% of the
AtomicPart' s and Query 3 �nds 10% of the AtomicPart's in a certain
range. It is expected that Query 3 will be slower than Query 2 as it
�nds more objects. Figure 6.4 shows that this is indeed the case. db4o's
lazy con�guration times are slightly faster than Hibernate in Query 3
in the hot run, with this increase in the number of objects involved in
the range. db4o performs Query 3 in ± 0.2 seconds while the Hibernate
con�gurations takes between 0.4 and 0.6 seconds. However, Carey et
al. [46] state that Query 2 and Query 3 are �candidates for b+tree look-
ups�. db4o does indeed use a b-tree index to improve query speeds. It
would be interesting to change some of the settings provided by db4o
for this b-tree and �nd the performance impact that they might have on
these two queries. These settings are: the bTreeCacheHeight(height)
which �con�gures the size of BTree nodes in indexes (sic)� and the
bTreeNodeSize(size) which �con�gures caching of b-tree nodes� [62].
Interesting to note is that �clean b-tree nodes will be unloaded on com-
mit and rollback unless they are con�gured as cached here� [62]. This
cleaning could in�uence the performance as well. Hibernate increases
by almost 1 second between Query 2 and Query 3 in the cold run while
db4o and Versant increases by ± 0.15 seconds.

� Query 5 is similar to Query 8 in that it su�ers from the n+1 select prob-
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lem. Query 5 �rst selects all the BaseAssembly's and then visits each
one. Each visit requires that the private components (CompositePart's)
are looked up and it, too, is then traversed. While visiting each
CompositePart's, its �elds are being compared. It is clear that Query
5 also su�ers from the n+1 select problem. In these situations the ob-
ject databases perform better. If this query is rewritten using a join
and the comparisons are done once on the server, at the time the join
is executed, the times for Hibernate should improve. Also note that in
Query 5, db4o's eager con�guration times improve (from 15 to 0.3 sec-
onds) in the hot run. This is because of the fact that objects and their
associated collections are retrieved and cached throughout the itera-
tions. This is the only scenario where the eager loading con�guration
of db4o is faster than Hibernate. Query 5 is more a traversal in nature
than a query.

� Query 7 is also queries 10 000 AtomicPart but is slightly faster than
Query 8 because no joins or n+1 queries are involved. Hibernate and
Versant are faster than db4o for Query 7 in the cold runs. db4o's lazy
con�guration improves in the hot run to be ahead of the Hibernate
con�gurations. Query 7 does not involve joins or accessing collections
and is just selecting objects of one type/class and iterating through
them. For Hibernate this means it accesses one table.

Overall, Hibernate is mostly faster than db4o in the following queries: Query
1, Query 2, Query 4, Query 7 and in Query 8 using the the join query(Query8Join).
Thus Hibernate is faster than db4o in 5 out of the 7 queries in the cold runs.
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Figure 6.5: Comparing traversal and query average speed improvement due
to cache for all

Figure 6.5 shows the speed improvements due to cache utilisation. Ver-
sant's query speed is clearly assisted by a cache while db4o and Hibernate's
caches appear to assist with traversals more than with queries. Versant's
cache assists with both traversals and queries [98].

It would seem that db4o and Hibernate caches either do not cache query
results automatically, or if they do so, then they do not do so as well as
Versant. In Hibernate an extra query cache is provided but it is not on by
default. Future work should include turning on the Hibernate query cache.
This should increase the Hibernate performance.

Note, �nally, that it is important to know what type the query is and
how many requests are sent on to the server.

6.1.4 Modi�cations: Insert and delete

Figure 6.6 shows that Versant is the fastest for cold and hot inserts, followed
by the db4o lazy con�guration. Versant is also the fastest for cold and hot
deletes, followed by db4o.
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Figure 6.6: Comparison result of inserts

The db4o eager con�guration is the slowest because it unnecessarily re-
trieves extra objects into memory during insertion and deletion.

For db4o and Hibernate it seems that deletes are faster than inserts. Ver-
sant is faster performing inserts and slightly slower when performing deletes.

db4o provides a cascade on delete property that can be set on a class or
on a �eld of a class. Hibernate also provides an cascade on delete property
that can be set on associations. However, Versant does not provide such a
delete option.

The OO7 delete operation de�nition is as follows:

�Delete the �ve newly created composite parts (and all of their
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associated atomic parts and document objects)�

This means that when a CompositePart is deleted, its associated AtomicPart
and Document objects that were added during the insert are also deleted.
Thus the database should be taken back to the same state as before the
inserts.

As a result, the database should contain the same number of objects as
before the inserts. Furthermore, when deleting an AtomicPart its associated
Connection objects should also be deleted.

Figure 6.7: Comparison result of deletes
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In OO7, the delete operation �rst iterates through each CompositePart

object and then access each associated object, marking these objects for
deletion. The CompositePart objects had been linked to BaseAssembly

objects during insertion by adding them to BaseAssembly collections. In
the deletion task, these CompositePart objects are �rst removed from their
collections and then marked for deletion. Their Document and AtomicPart

objects are also marked for deletion.
When an AtomicPart is deleted in db4o or Hibernate, the deletion is

cascaded to their associated Connection objects.
Because Versant does not provide a cascade on delete option, each of

the Connection objects needed to be deleted explicitly, .i.e. to delete a
Connection and its associated objects, a manual method was called. This
method iterates through all Connection objects, marking them for deletion.

This was done, even though Versant provides a hook (or callback) called
vDelete [100] which can be invoked when an object is to be deleted. This
allows a user-de�ned action to be called to delete the associated objects and
collections. vDelete was not used as there wasn't enough information avail-
able on how to implement it, plus it seems that it only provides a automatic
way to call the manual method which is already implemented.

Versant performs deletions faster than db4o and Hibernate which uses
the cascade on delete facility.

Hibernate is very slow to delete these objects. Its slowness could be
related to the size of the tables. The Connection table is ± 30MB.

During insertion, random BaseAssembly objects are looked-up, using
their ids, and CompositeParts are added to their collections. Deletion also
involve looking up the CompositeParts using their ids. Because Versant is
quite fast for queries (look-ups) it could explain the edge that it has over
db4o and Hibernate for inserts and deletes in the OO7 benchmark.

The speed improvement due to the cache can be seen in Figure 6.8. On
average Hibernate's speed improvement due to the cache, for inserts, is 60%,
db4o 70% and Versant at 60%. The cache assists less for deletes. The only
exception is db4o. The db4o cache seems to assist during deletes. On average
Hibernate's speed improvement due to the cache, for deletes, is 8%, db4o 74%
and Versant at 38%.
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Figure 6.8: Comparing insert and delete average speed improvement due to
cache for all

6.2 Scoring the benchmark results

In view of the results given in the previous section, one is tempted to ask
which of the tools is the overall winner. While the earlier benchmarks used
single value results and rankings that would seemingly answer this question,
like TPC-A [52], the OO7 benchmark provides a collection of results.

To determine an overall winner Carey et al. point out that a few ap-
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proaches can be used to create a �single number that can then be used to
rank systems� [49, 47]. Nevertheless, they and Cattell and Skeen[52] warn
against single number results and ranking, pointing out that they may be
�narrow�, since valuable information may be lost when looking at a rank-
ing. In fact Carey et al. demonstrate how di�erent ranking approaches can
provide di�erent results.

While noting the cautions of Carey et al, two of these approaches are
brie�y explored below: the number of �rst places on the benchmark and the
weighted ranking of places. These are discussed in the following sub-sections.

6.2.1 Number of �rst places

The number of �rst places on the benchmark results are provided in Table
6.2. This ranking is created by counting the number of �rst places for each
object database and ORM tool tested, taken over all the OO7 benchmark
operations [47]. This ranking system does not provide a clear picture and
should not be used to make a decision. The weighted ranking of places provide
a better picture of the performance of the systems.

In the previous chapters it was shown that Hibernate performs better with
join like queries and that Query 8 performance su�ers from the n+1 select
problem. For this reason, in calculating these scores, the new Hibernate
Query8Join using the the join query was used instead of the normal Query
8. The study uses the best available time for each product in the ranking
calculations.
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Rank Persistence
Mechanism/Object
database/ ORM Tool

Score

1 Versant 29
2 Hibernate using

annotations with lazy
loading, indexes on
and named queries

3

3 db4o with eager
loading and indexes on

2

4 db4o with lazy loading
and indexes on

2

5 Hibernate using
mapping �les with lazy
loading and indexes on

2

Table 6.2: Ranking according to the number of �rst places

6.2.2 Weighted ranking

The weighted ranking systems works as follows: Each system gets �one point
for a �rst place �nish on a test, two points for a second place �nish, three
points for a third place place�, etc [47]. These points are added together
and the system with the lowest number is the best. These weighted rankings
are shown in Table 6.3. Overall the db4o eager loading con�guration is now
slower than the db4o lazy loading con�guration.
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Rank Persistence
Mechanism/Object
database/ ORM Tool

Score

1 Versant 51
2 Hibernate using

annotations with lazy
loading, indexes on
and named queries

116

3 db4o with lazy loading
and indexes on

125

4 db4o with eager
loading and indexes on

137

5 Hibernate using
mapping �les with lazy
loading and indexes on

141

Table 6.3: Ranking according to weighted ranking of places

The foregoing assessment is rather course-grained. As an alternative, the
weighted ranking results may be computed at a �ner level of granularity.
Consequently, weighted ranking results have been computed separately for
the cold and hot runs. Additionally, ranking results have also been broken
down separately for traversals and queries. These results are shown in the
following subsections.

6.2.2.1 Weighted ranking for cold runs

If the application under consideration operates mostly on data that is not
repeated and mostly on disk, then the cold run ranking is very important.
The weighted ranking results for just cold runs are shown in Table 6.4 below.
The Hibernate con�guration using mapping �les has now moved up a place
to 4th place.
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Rank Persistence
Mechanism/Object
database/ ORM Tool

Score

1 Versant 24
2 Hibernate using

annotations with lazy
loading, indexes on
and named queries

56

3 db4o with lazy loading
and indexes on

58

4 Hibernate using
mapping �les with lazy
loading and indexes on

73

5 db4o with eager
loading and indexes on

74

Table 6.4: Ranking according to weighted ranking of places for just the cold
run

6.2.2.2 Weighted ranking for hot runs

If the application under consideration operates mostly on data that is re-
peatedly accessed and mostly in-memory then the hot run ranking is very
important. The weighted ranking results for just hot runs are shown in Ta-
ble 6.5 below. Versant is �rst followed by the Hibernate con�guration using
annotations. The db4o con�gurations are just behind the Hibernate con�g-
uration. The db4o eager loading con�guration is better than the db4o lazy
con�guration overall in hot runs.
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Rank Persistence
Mechanism/Object
database/ ORM Tool

Score

1 Versant 27
2 Hibernate using

annotations with lazy
loading, indexes on
and named queries

60

3 db4o with eager
loading and indexes on

63

4 db4o with lazy loading
and indexes on

67

5 Hibernate using
mapping �les with lazy
loading and indexes on

68

Table 6.5: Ranking according to weighted ranking of places for just the hot
run

6.2.2.3 Weighted ranking for cold query runs

If the application under consideration operates mostly on data that is not
repeated, mostly on disk and involves queries, then the weighted ranking
results based only on cold query runs in Table 6.6 below are relevant. The
Hibernate con�gurations are just ahead of the db4o lazy con�guration.
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Rank Persistence
Mechanism/Object
database/ ORM Tool

Score

1 Versant 9
2 Hibernate using

annotations with lazy
loading, indexes on
and named queries

17

3 Hibernate using
mapping �les with lazy
loading and indexes on

21

4 db4o with lazy loading
and indexes on

23

5 db4o with eager
loading and indexes on

35

Table 6.6: Ranking according to weighted ranking of places for just the cold
query runs

6.2.2.4 Weighted ranking for hot query runs

If the application under consideration operates mostly on data that is repeat-
edly accessed, is mostly in-memory and involves queries then the weighted
ranking results limited to hot query runs in Table 6.7 below are of interest.
Now the db4o lazy con�guration is ahead of the Hibernate con�gurations�a
reversal from the cold runs
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Rank Persistence
Mechanism/Object
database/ ORM Tool

Score

1 Versant 9
2 db4o with lazy loading

and indexes on
20

3 Hibernate using
annotations with lazy
loading, indexes on
and named queries

21

4 Hibernate using
mapping �les with lazy
loading and indexes on

22

5 db4o with eager
loading and indexes on

33

Table 6.7: Ranking according to weighted ranking of places for just the hot
query runs

6.2.2.5 Weighted ranking for cold traversal runs

If the application under consideration operates mostly on data that is not
repeated, mostly on disk and involves traversals then the weighted ranking
results, for just cold traversal runs in Table 6.8 below are relevant. The db4o
eager con�guration and the Hibernate annotation con�guration are tied in
2nd place. The db4o lazy con�guration is in 3rd place.
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Rank Persistence
Mechanism/Object
database/ ORM Tool

Score

1 Versant 12
2 Hibernate using

annotations with lazy
loading, indexes on
and named queries

31

3 db4o with eager
loading and indexes on

31

4 db4o with lazy loading
and indexes on

32

5 Hibernate using
mapping �les with lazy
loading and indexes on

44

Table 6.8: Ranking according to weighted ranking of places for just the cold
traversal runs

6.2.2.6 Weighted ranking for hot traversal runs

Finally, if the application under consideration operates mostly on data that
is repeatedly accessed, is mostly in-memory and involves traversals, then the
weighted ranking results limited to hot traversal runs in Table 6.9 below
should be considered. The db4o eager con�guration is now in 2nd place
ahead of the Hibernate con�guration using annotations. The Hibernate con-
�guration using XML have moved up to 4th place.
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Rank Persistence
Mechanism/Object
database/ ORM Tool

Score

1 Versant 15
2 db4o with eager

loading and indexes on
22

3 Hibernate using
annotations with lazy
loading, indexes on
and named queries

32

4 Hibernate using
mapping �les with lazy
loading and indexes on

37

5 db4o with lazy loading
and indexes on

44

Table 6.9: Ranking according to weighted ranking of places for just the hot
traversal runs

6.2.3 Summary

Considering all the ranking results, it is clearly important to look deeper and
not merely pay attention to the top ranking. Indeed, even at the �ner level
of granularity computed above, ranking results do not re�ect the fact that
if the application under consideration is to perform queries similar to Query
8, then Hibernate is the fastest�despite the fact that Versant's ranking was
the best for queries. Furthermore, if the application does pointer traversals
over cached data, with no modi�cations during the traversal, then db4o's
eager loading con�guration is slightly faster. Again, this is not shown in
the ranking results above. Clearly, therefore, it is possible to lose valuable
information if just a one number ranking system is used.

Carey et al. [49, 47] state that the OO7 benchmark results should rather
be interpreted by users in such a way that they look at results that are
relevant or close to their application workloads or demands. In [49], they
mention the following workloads:

� �If your workload does a lot of pointer-chasing over cached data, look
at� Trav1 in the hot run for the small OO7 database con�guration.

� In this study the eager loading con�guration of db4o (0.04 sec-
onds) is the fastest for Trav1 in the hot run. Versant at 0.05 and
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Hibernate at 0.06 seconds are very close. All of them are good
candidates.

� �If your workload does sparse traversals over data that you expect to
be disk resident much of the time, look at� Trav6 in the cold run.

� Versant is the fastest for Trav6 (0.2 seconds) in the cold run fol-
lowed by db4o's lazy loading con�guration (2 seconds).

� �If you do a lot of exact match queries over cached data, look at� Query
1 in the hot run.

� Versant is the fastest for Query 1 (± 0.2 seconds) in the hot run
followed by the Hibernate con�gurations (±0.3 and ±0.5 seconds),
the Hibernate annotation with named queries con�guration being
slightly faster than the Hibernate XML con�gurations.

� �If you do range queries over disk-resident data, look at q2b and/or q2c
(sic).�

� Since OO7 has no �q2b� and �q2c� queries, it is assumed they
meant Query 2 and Query 3 in the cold run. Versant is the fastest
for both Query 2 (0.01 seconds) and Query 3 (0.01 seconds). In
second place is the Hibernate con�gurations with the Hibernate
XML con�guration being slightly faster at 0.14 and 0.37 seconds
respectively.

This chapter presented cross-comparative data, and o�ered a few plausi-
ble explanations of the results. Schemes for scoring the overall performance
of the respective tools were also presented. The next chapter will present the
results when incorporating vendor recommendations.
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Chapter 7

Vendor recommendations

Initially the study only focused on using the products in their default modes
(out of the box) and use them as a normal programmer would. This initial
out of the box state then formed a basis to which optimisation techniques
were added. The study never intended to �ne-tune their performance to
the hilt using all the performance techniques and tricks possible. As an
afterthought and as a matter of curiosity the results in the previous chapters
were submitted for review to db4o, Hibernate and Versant. The vendors then
provided some recommendations on how to improve the performance of their
products and current con�gurations.

These recommendations were reviewed and it was decided to selectively
create con�gurations to test some of them and to measure the improvements.
The con�gurations based on the recommendations were mainly those used
for the comparisons. There was only one exception. The Hibernate XML
mappings were not used. It was left out because the fastest Hibernate con�g-
uration, which was the con�guration using annotations and named queries,
was selected and improved using the recommendations.

The Hibernate recommendations were implemented using annotations.
This meant that a branch for the code had to be inserted and the annotations
in the classes had to change to those recommended by Hibernate. These
recommended annotations will be exported to an XML �le in future, to form
the basis of the Hibernate XML con�gurations in future work.

The con�gurations that were selected:

� db4o's lazy and eager con�gurations using indexes. The eager run is
included because for this small OO7 database eager loading improves
the traversal times and is the fastest con�guration of db4o for traversals.
Running in networked mode.

� Versant's con�guration using its custom persistent collections, indexes
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and checkpoint commits

� Hibernates lazy annotation con�gurations using indexes.

Note that while the vendors reviewed the work and results and provided
recommendations it does not mean that they endorsed the results.

The next sub-sections will report on and discuss the recommendations
made for each product.

7.1 Hibernate recommendations

Hibernate provided the following recommendations:

� In the OO7 model ComplexAssembly and BaseAssembly objects inherit
from Assembly. A table was created per child class (base_assembly and
complex_assembly) and a main table for the parent class (assembly
table). This is the table per class strategy [76], also called the �joined
subclass strategy� in the Hibernate Annotations documentation [74].
Hibernate recommended that the table per class hierarchy (single table)
strategy should be used instead of the table per class (joined) strategy.
They stated that the table per class strategy is the �worst in terms of
performance and memory usage�. Because all objects are placed into
one table a discriminator value or tag is used to identify which entries
are ComplexAssembly or BaseAssembly. This recommendation was
implemented.

� Each Module has an associated Manual. This is a one-to-one relation-
ship. Hibernate recommended that the object should be embedded in
the parent class using the @Embedded and @Embeddable annotations.
This approach meant that there was no table for Manual. Manual's
are now stored with their associated Module in the Module table. This
recommendation was implemented.

� In the original mappings created for the Java OO7 model the foreign
keys were explicitly speci�ed. Hibernate will automatically select the
right foreign key to use. There is no need to specify the foreign key.
Hibernate recommended that foreign key selection be left up to the
Hibernate engine. The explicit foreign key speci�cations were removed
following the Hibernate recommendation.

� It is important that one side of a many-to-many and one-to-many bidi-
rectional relationship mapping have the tag inverse = xxx (mappedBy = xxx)
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tag set to true. During the review it was found that this tag was miss-
ing. The inverse is needed otherwise it creates an extra overhead when
being updated [76, ch 19.5]. Hibernate recommended that this tag be
added. Hibernate provides the following rule: �All bi-directional asso-
ciations need one side as inverse. In a one-to-many association it has
to be the many-side, in many-to-many association you can pick either
side, there is no di�erence� [76, ch 1.3.6]. Following Hibernate's rec-
ommendation the inverse = xxx (mappedBy = xxx) tag was added.

� Hibernate recommended changing the relationship mapping between
AtomicPart and Connection objects. Hibernate recommended that
one-to-many mappings be used from AtomicPart to Connection and
that
Connection then use many-to-one mappings back to the �from� and
�to� AtomicPart. The current mapping was using many-to-many map-
pings from the AtomicPart to Connection. While testing the use of
one-to-many and many-to-one it was found that when traversing, the
incorrect number of objects were retrieved. The problem related to
the relationship mapping between AtomicPart and Connection. Two
possible solutions were suggested:

� Continue using many-to-many mappings. This approach is not
recommended by Hibernate.

� During a deeper investigation of the model and the schema de�ni-
tion provided in Carey et al.[46] it was found that from-connections
in AtomicPart are not used in the OO7 benchmark. Only the
to-connections are used to traverse from-AtomicPart to the to-
AtomicPart The extra from-connection collection were removed
from all the implementations (db4o, Hibernate and Versant). The
mappings as recommended by Hibernate were then implemented.
The removal of the extra collection did not have a signi�cant im-
pact on the benchmark results. Also the correct number of objects
were retrieved during traversals. The removal could cause eager
loading results to be a bit faster because there is no need to load
this extra (unneeded) collection into memory.

� Hibernate recommended the use of batching during database creation.
The creation of the OO7 database is a large once-o� process where
objects are inserted into the database. This operation is rightly classi-
�ed as a batch process. Hibernate provides strategies to handle batch
processing and especially batch inserts [76, ch 13.1]. The batch insert
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strategy suggests that the session be �ushed and cleared for every few
object that are created and inserted in the database. The Hibernate
Java Doc states that �Flushing is the process of synchronising the un-
derlying persistent store with persistable state held in memory�. They
also state that clearing: �Completely clear the session. Evict all loaded
instances and cancel all pending saves, updates and deletions�. The
batch insert strategy as recommended by Hibernate was implemented.

� Hibernate also suggested that the POJO's be cleaned-up by removing
all persistent and linking related code from the constructors. This
suggestion was implemented and a new class OO7CreateDatabase was
created. This new class contains all the persistent and linking related
code taken from the POJO constructors.

� Hibernate recommended the use of evict() and adding cascading for
evicts (CascadeType.EVICT) during traversals. They suggested evict-
ing AtomicPart objects and their to-connection collections after they
have been traversed.The Hibernate manual states that �if you are pro-
cessing a huge number of objects and need to manage memory e�-
ciently, the evict() method may be used to remove the object and its
collections from the �rst-level cache� [76, ch 19.3]. Bauer and King
[39] state that �Any persistent object returned by get() or any other
kind of query is already associated with the current Session and trans-
action context. It can be modi�ed, and its state will be synchronised
with the database. This mechanism is called automatic dirty check-
ing, which means Hibernate will track and save the changes you make
to an object inside a session�. Hibernate mentioned that because all
the objects being traversed are in Hibernate session and the session is
checking if objects/entities �have been modi�ed� there is a slight per-
formance overhead. There is also a memory overhead as all the objects
are kept in the �rst level cache in main memory. It was suggested to
remove/evict the objects after they have been traversed. While consid-
ering and testing the use of evicts it was found that because there is also
small modi�cations to AtomicPart objects during a traversal that these
modi�cations need to be �ushed before evicting the objects. Because
�ushing is needed along with the evicts there was no speed improvement
as the extra �ushing created an overhead. The recommendation was
not activated in the end. It is expected that using evicts along with
�ushing will assist in running the medium and large OO7 database
con�gurations. Out of memory exceptions occurred during the initial
running of the medium and large OO7 database con�gurations. By
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using evicts it is expected to solve the out of memory exceptions that
occurred when running these larger con�gurations. When evicts are
implemented in the future it is important to also add evicts for db4o
and Versant. Versant and db4o have the same concept as evict.

� Hibernate recommended the use of fetching strategies speci�cally sub-
select fetching. �A fetching strategy is the strategy Hibernate will use
for retrieving associated objects if the application needs to navigate the
association�[76, ch 19.1]. Subselect fetching is when �a second SELECT
is used to retrieve the associated collections for all entities retrieved in
a previous query or fetch�. This extra select is only performed when
the association is being accessed. Hibernate recommended using subs-
elects on AtomicPart objects and their to-connection collections which
is the largest collections in the OO7 model. This recommendation was
implemented and the Fetch(FetchMode.SUBSELECT) annotation was
added to AtomicPart objects and their to-connection collections.

� The use of cascade deletes for objects involved in the delete operation
of OO7 was also recommended by Hibernate. This recommendation
was implemented.

� Hibernate recommended using MySQL rather than PostgreSQL be-
cause they felt it would perform better. Hibernate con�gurations using
MySQL was added. MySQL version 5.0.51a was used.

� Hibernate suggested using look-up of objects via their id's. For example
session.load(BaseAssembly.class, baseAssemblyId) instead of us-
ing an HQL query. It was suggested that using look-ups by id would
make better use of the cache. Bauer and King [39] state that �the
load() method may return a proxy instead of a real persistent instance.
A proxy is a placeholder that triggers the loading of the real object
when it's accessed for the �rst time;� and that �using load() has a
further implication: The application may retrieve a valid reference (a
proxy) to a persistent instance without hitting the database to retrieve
its persistent state� [39]. The Hibernate Entity Manager manual states
that �this is especially useful to link a child to its parent without having
to load the parent�. So basically the object is retrieved immediately
from the cache if present or a proxy is provided for immediate use. Us-
ing �nd/load by object id would have been useful during the database
creation and linking phase. During this phase BaseAssembly objects
are retrieved using a query and their id. They are then linked with
CompositePart objects. Find/load by object id was not implemented
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for two reasons. First, because the original OO7 uses queries instead
of look-ups the study didn't want to deviate from the original OO7.
A second consideration was, that if �nd/load by object id was imple-
mented, it would only have been fair to add these look-ups to db4o and
Versant as well. So in the end it was deemed a major change and out
of scope for the current study. Future work will investigate the use of
look-up by id's.

During the review process by Hibernate it was suggested to add checks or
assertions into the code to ensure that all the operations performed correctly
after adding the recommendations. Because this was on our to-do list this
recommendation was implemented. Assertions were added as well as code to
check that the correct number of objects were created as well as inserted and
deleted by checking the number of objects in the database.

The results using these recommendations will be shown and discussed in
section 7.4.

7.2 db4o recommendations

The db4o recommendations were:

� Static db4o con�guration classes should not be used anymore because
they are deprecated. The static con�guration classes also a�ect the
performance of db4o. These static db4o con�guration classes were re-
placed following the recommendation.

� db4o recommended turning o� the weak reference cache
( setting config.weakReferences(false)) during database creation
and during insertion of new objects into the database. The db4o ref-
erence manual states that �switching weak references o� during insert
operation releases extra resources and removed the cleanup thread�
and that �Weak references need extra resources and the cleanup thread
will have a considerable impact on performance since it has to be syn-
chronised with the normal operations within the ObjectContainer.
Turning o� weak references will improve speed� [62]. This setting is
very similar to clearing the Hibernate session. The recommendation
was implemented.

� db4o recommended changing the default values of the b-tree to:
config.bTreeCacheHeight(1000) and config.bTreeNodeSize(100).
The db4o reference manual states that �higher values for the cache
height will get you better performance at more RAM consumption�.
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The default node size in db4o is 100 so only the height is increased
from 1 to a 1000. The recommendation was implemented.

� It was recommended that RandomAccessFileAdapter and
NonFlushingIoAdapter should be used. The setup looks as follows:
RandomAccessFileAdapter raf = new RandomAccessFileAdapter();

config.io(new NonFlushingIoAdapter(raf)).
The NonFlushingIoAdapter is recommended to �improve commit per-
formance� as �it allows the operating system to keep commit data in
cache and do the physical writes in a most performant order (sic)�[62].
While this will improve the inserts there is a risk that the database
could be corrupted if a crash occurred. Using the NonFlushingIoAdapter
is very similar to the Versant setting: commit_flush off. The Ver-
sant profile.be �le states that turning commit_flush off �specify
whether server process bu�ers are �ushed to disk after commits�.

� While db4o recommend not using eager loading it was included because
it providing interesting results.

� db4o recommended that db4o should not be run in client-server mode
(networked mode) because it is not the default mode for db4o, although
client-server is the default mode for Versant and Hibernate. Because
the focus of this study was on using persistence stores in a enterprise
environment only client-server mode were considered in the compar-
isons chapters. db4o embedded mode results were included in chapter
5.

While db4o recommended using the embedded mode for db4o in the compar-
isons, which is the default mode for db4o, it was not included in this chapter.
It was deemed unfair to compare client-server mode with embedded mode.
Future work could include running Hibernate with an embedded database
like HSQLDB (HyperSQL DataBase) [20] which could then be compared to
db4o running in embedded mode. Comparing embedded databases was out
of scope.

The comparison between db4o, running in embedded mode and Versant
and Hibernate running in client-server mode is included in Appendix A.3 for
interest sake.

7.3 Versant recommendations

The Versant recommendations:
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� Versant recommended using the default settings provided for the up-
coming the Versant version 8.0 release to increase the general perfor-
mance. This recommendation was not implemented because no new
versions were used after a certain cut o� date. If one product is up-
graded then all the others must be upgraded as well, to be fair.

� The use of gdeletes was recommended because they use less calls to the
server, instead batching delete calls. If it were to be used, then batch
delete calls would also have to be used for db4o and Hibernate as well,
to be fair.

� Versant recommended making sure that indexes are involved during
deletes in the benchmark application. It was found that indexes are
not directly used during deletes in OO7. Objects that are being deleted
do have indexes on some of their �elds. It is expected that �index
tables� or index structures will be updated during object deletion. The
direct use of indexes during deletes were not added as this would be a
deviation from the OO7 benchmark.

The next section will show and discuss the results for the new recommended
con�gurations.

7.4 Results when using vendor recommenda-

tions

In this section the results of the di�erent implementations are compared and
investigated. The original results and the new results obtained using the
vendor recommendations are included on the graphs.

Again the results are grouped into creation, traversal, query and modi�-
cation sections.The results will not be discussed in the same depth as in the
previous sections and chapters as this extra work was not the focus of the
study. Only some of the results that stand out will be discussed.

7.4.1 Creation

By using the recommendations provided by db4o and Hibernate the creation
time have de�nitely improved.

The db4o's eager loading con�guration has a 38% improvement and
db4o's lazy loading con�guration has a 79% improvement. Hibernate has
a ±36% improvement. The newly added MySQL con�guration is ±2 sec-
onds faster than PostgreSQL.

140

 
 
 



Overall Versant is still the fastest followed by Hibernate.

Figure 7.1: Creation times

7.4.2 Traversals

Inspection of the graphs shows that the recommendations have improved
traversal times. For example the cold traversal time for Trav2c using the
new db4o lazy loading con�guration has gone down from 45 seconds to 31
seconds. This is a 31% improvement.

Hibernate's time for Trav1 has gone down from 300 seconds to 87 seconds
in the cold run for the PostgreSQL con�guration using no subselects. This is
a 71% improvement. The MySQL con�guration using no subselects performs
the best of the Hibernate con�gurations for traversals that involve a large
number of objects and traversals with modi�cations. These traversals are
Trav1, Trav2a, Trav2b, Trav2c, Trav3a, Trav3b and Trav3c. It is surprising
to �nd that adding subselects, as recommended by Hibernate, actually slows
down the MySQL con�gurations. For Trav1 in the cold run the MySQL
con�guration with a subselect slows down from 15 seconds to 39 seconds.
This is a 160% decrease in speed. An investigation into the reasons why
subselects on MySQL is slow was regarded as beyond the scope of this study.
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For the Hibernate con�guration using PostgreSQL and subselects the
traversal time in the cold run for Trav1 has gone down from 87 seconds to 17
seconds. This is a 80% improvement. The 80% improvement is also evident
for the traversals Trav2a, Trav2b, Trav2c, Trav3a, Trav3b and Trav3c.

Figure 7.2: Comparison results of traversals

Another surprising result is that the original Hibernate con�guration on
PostgreSQL (the red bar) is faster in cold traversals Trav2b, Trav2c, Trav3a,
Trav3b and Trav3c than the newly recommended Hibernate con�guration on
PostgreSQL with no subselects (the light blue bar). On average the original
Hibernate con�guration on PostgreSQL take about 25 seconds to complete.
The newly recommended Hibernate con�guration on PostgreSQL with no
subselects takes about 87 seconds to complete. This means that the newly
recommended Hibernate con�guration is 248% slower. Hibernate suggested
a possible explanation for this. They suggest that because data is duplicated
in the old con�guration and because foreign keys (FK) are duplicated as
well, traversals can run faster because there is no need to �hit the inverse
side� of an association. Also all the data �is accessible from both sides� of
the association. They also state that by using the table per class (joined)
strategy, the joins do not cause a large overhead as expected because there is
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only one level of inheritance in the OO7 model. If there were more inheritance
levels the performance is expected to decrease (get slower) when using the
table per class (joined) strategy for assemblies.

In cold runs the original Hibernate con�guration on PostgreSQL (the red
bar) is slower than the other Hibernate con�gurations in all cases except for
Trav6, Trav8 and Trav9 where a small number of objects are being traversed.

Versant is still the fastest for all the cold traversals. The only exceptions
are again Trav8 and Trav9 where the Hibernate con�gurations are fastest.

Looking at hot traversals the new Hibernate annotation con�gurations
using the recommendations are now faster than the db4o and Versant con-
�gurations in most cases (6 out of 10). This is a reversal from the results
shown in the previous chapter.

Taking a look at the observations made in the previous chapter the fol-
lowing is noted:

� Cold runs: It is still true that for Trav1, both db4o's lazy con�guration
and Hibernate's lazy con�gurations are slower than the the eager db4o
con�guration and Versant. Also note that Trav1 and Trav2b traverse
the same number of objects but the objects are modi�ed in Trav2b.
When objects are changed in Trav2b it is not true anymore that Hiber-
nate times improve compared to the Hibernate times for Trav1. The
Hibernate times are now slower. Only the original Hibernate con�g-
uration on PostgreSQL improve (the red bar) when modi�cations are
made. For Trav1 the run times were around 300 seconds and are now
around 25 seconds. The reason for this could be that the changes are
not �ushed immediately or it could related to the way in which the
model is mapped. db4o and Hibernate's times are very slow for Trav1
( traverse 43 700 objects) compared to Versant. db4o's times are be-
tween 13 and 19 seconds and Hibernate is between 15 and 87 seconds
compared to Versant's 5 and 9 seconds. It is still true, that when many
objects are traversed and modi�ed in the cold Trav2b run, that Versant
scales better.

� Looking at Trav1 and Trav2b times in the hot runs, it is observed that
the times now increase for all con�gurations when running and modify-
ing objects in Trav2b compared to their times when merely traversing
the objects in Trav1. This is still the case when running the new rec-
ommended con�gurations. There is a reversal now in that Hibernate is
now faster than db4o and Versant.

� For Trav2a and Trav3a in the hot runs, which involve changes to a
small number of objects (2185), Hibernate and the db4o eager loading
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con�guration are now slightly faster than Versant. The Hibernate con-
�gurations on MySQL performs Trav2a in 0.06 seconds while Versant
takes 0.3 seconds.

� In the previous chapter it was mentioned that in traversal Trav3c the
Hibernate cache performs better than db4o on multiple immediate re-
peats, while in Trav3b db4o performs slightly better. Now the new
Hibernate con�gurations are faster in both Traversal 3 and Traversal 2
in the hot runs.

� In larger traversals like Trav2c and Trav3c, Versant is still the fastest
for the cold runs. In the hot runs, the new improved Hibernate annota-
tion con�gurations with named queries, are now the fastest, overtaking
Versant. If once-o� traversals (cold runs) are needed, that involve large
number of objects, Versant performs better. The improved Hibernate
con�gurations are recommended when repeated access is needed and
caching can be used.

� Hot and cold runs: Carey et al. [45] mention that times increase be-
tween Trav2a and Trav2b because the number of objects being tra-
versed and updated increases. The same is true for Trav3b and Trav3c.
Looking at Figure 7.2 it is still true that the db4o traversals times in-
crease moving from Trav2b to Trav2 c. The db4o eager loading con�gu-
ration time increases from 2 seconds for Trav2b to 8 seconds for Trav2 c
in the hot run. The db4o lazy loading con�guration time increases from
5 seconds for Trav2b to 11 seconds for Trav2 c in the hot run. Figure
7.2 further shows that Hibernate's and Versant's times actually remain
consistent between Trav2b to Trav2 c.

� It is still true that in all the hot runs db4o's lazy loading or manual lazy
activation seems to create an overhead compared to the eager loading
con�guration. For example in Trav2a the db4o eager loading con�gu-
ration runs on average ±0.2 seconds while the db4o lazy con�guration
takes ±3.5 seconds.

� For Trav6 in the cold run Versant is still the fastest at 0.6 seconds.
db4o lazy loading con�gurations are second at ±2 seconds followed by
Hibernate which is between 8 and 5 seconds. Trav6 traverses the same
number of objects as in Trav2a and Trav3a but with no updates to any
�elds.

� For the hot Trav6 run, Versant is still slightly faster than Hibernate
followed by db4o.
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In the next section the impact of the recommendations on the queries will
be investigated.

7.4.3 Queries

Figure 7.3 shows the new query results. Looking at queries it is clear that
the Hibernate recommendations have slightly improved the performance of
the query runs. The biggest improvement for Hibernate is Query 8. Query
8 has gone down from around 3000 seconds to about 1300 seconds. This is a
± 56% improvement.

For db4o the db4o eager loading con�guration has improved the cold
Query 8 speed from 5800 seconds down to about 3900 seconds. This is a ±
33% improvement.

Versant is still the fastest for all the cold and hot query runs. Hibernate's
times are now closer to Versant's times.
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Figure 7.3: Comparison results of queries

Taking a look at the observations made in the previous chapter it is noted
that:

� Query 1: Hibernate and Versant still perform this query, which is on
an index �eld, faster than db4o in the hot and cold runs. db4o using
eager loading now performs Query 1 in ±16 seconds and db4o using
lazy loading takes still takes around 1 second. Versant and Hibernate
perform Query 1 in less than 0.3 seconds.

� As explained in the previous chapter: Query 2 and Query 3 are range
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queries. Because Query 3 �nds more objects (�nds 10%) it will be
slower than Query 2 (only �nds 1%). Figure 7.3 shows that Query 3
still remains slower than Query 2. db4o's lazy con�guration times are
still slightly faster than Hibernate in Query 3 in the hot run, with this
increase of objects. Hibernate still increases by almost 1 second between
Query 2 and Query 3 in the cold run while db4o lazy recommended
con�guration increases now by ±0.5 seconds.

� For Query 5 db4o's eager con�guration times improve from 13 seconds
to 0.2 seconds in the hot run.

� For Query 7 db4o's lazy con�guration still improves in the hot run to be
ahead of the Hibernate con�gurations. db4o's lazy con�guration per-
forms Query 7 in the hot run in 0.1 seconds while Hibernate performs
it in 0.8 seconds.

Overall, Hibernate is faster than db4o in the following queries: Query 1,
Query 2, Query 4, Query 7 and in Query 8 using the the join query(Query8Join).
Thus Hibernate is faster than db4o in 5 out of the 7 queries in the cold runs.

Figure 7.4 shows the speed improvement due to the cache for queries
and traversals. For all the recommended runs the cache usage has improved
slightly.
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Figure 7.4: Comparing traversal and query average speed improvement due
to cache when using vendor recommendations

7.4.4 Modi�cations: Insert and delete

Figure 7.5 and Figure 7.6 shows the new insert and delete results. The
recommendations have improved these times.

Looking at inserts the following is observed:

� The db4o eager loading con�guration have improved from 4.7 seconds
to about 3.2 seconds. This is a 32% improvement. The db4o lazy
con�guration has also improved from 0.9 seconds down to 0.27 seconds.
This is a 70% improvement.
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� Hibernate on PostgreSQL has improved from 1.1 seconds to 0.9 seconds
in the hot run. This is a 18% improvement.

Versant remains the fastest for both cold and hot inserts.

Figure 7.5: Comparison result of inserts

The following is observed for the Hibernate con�gurations during dele-
tions:

� The Hibernate con�gurations running onMySQL perform deletes faster
than the Hibernate con�gurations running on PostgreSQL.

� The Hibernate con�guration on PostgreSQL originally took 39 seconds
in the cold run and now takes around 4 seconds. There is a 90% speed

149

 
 
 



improvement for deletes using the Hibernate recommendations running
on PostgreSQL.

db4o remains the fastest for deletes.

Figure 7.6: Comparison result of deletes

Figure 7.7 below shows the speed improvement due to the cache.
Using the new recommendations it is observed that the cache improve-

ment has increased for deletes and decreased slightly for inserts.
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Figure 7.7: Comparing insert and delete average speed improvement due to
cache for all

7.5 Scoring the benchmark results

This section will again use the number of �rst places on the benchmark
and the weighted ranking of places to rank the di�erent con�gurations. In
this section only client-server con�gurations are used. It is deemed unfair
to compare embedded mode with client-server. Appendix A includes, for
interest sake, results where db4o embedded mode has been compared to
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client-server con�gurations. This comparison is not recommended.

7.5.1 Number of �rst places ranking

The number of �rst places using the new recommended con�gurations results
are provided in Table 7.1. As stated earlier in this chapter the Hibernate
XML mapping con�guration was excluded from the benchmark results in
this chapter. The fastest Hibernate con�guration was selected. The previous
rankings from chapter 6 are provided in brackets. The Hibernate con�gu-
ration, running on MySQL, is a new entry so it does not have a previous
ranking. From the table below it is clear that the Hibernate MySQL con�g-
uration perform better than db4o. Versant is still best overall.

Rank Persistence
Mechanism/Object
database/ ORM Tool

Score

1 (1) Versant 23
2 (-) Hibernate using

annotations with lazy
loading, indexes on
and named queries.
MySQL with no
subselect

8

3 (3) db4o with eager
loading and indexes on
Using
recommendations

3

4 (4) db4o with lazy loading
and indexes on
Using
recommendations

2

5 (2) Hibernate using
annotations with lazy
loading, indexes on
and named queries.
PostgreSQL and
subselect

2

Table 7.1: Ranking according to the number of �rst places
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7.5.2 Weighted ranking

Weighted ranking of places results are shown in Table 7.2. The Hibernate
con�guration running on PostgreSQL using a subselect is now in 3rd place.
The con�guration running on MySQL and using no subselect is in 2nd place.
db4o's eager con�guration was third in the �rst place rankings but is now in
5th place.

Rank Persistence
Mechanism/Object
database/ ORM Tool

Score

1 (1) Versant 65
2 (-) Hibernate using

annotations with lazy
loading, indexes on
and named queries.
MySQL with no
subselect

98

3 (2) Hibernate using
annotations with lazy
loading, indexes on
and named queries.
PostgreSQL and
subselect

117

4 (3) db4o with lazy loading
and indexes on
Using
recommendations

143

5 (4) db4o with eager
loading and indexes on
Using
recommendations

147

Table 7.2: Ranking according to weighted ranking of places

As mentioned in the previous chapter the foregoing assessment is rather
course-grained. As an alternative, the weighted ranking results may be com-
puted at a �ner level of granularity. Consequently, weighted ranking results
have been computed separately for the cold and hot runs. Additionally, rank-
ing results have also been broken down separately for traversals and queries.
These results are shown in the following subsections.
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7.5.2.1 Weighted ranking for cold runs

If the application under consideration operates mostly on data that is not
repeated and mostly on disk then, the cold run ranking is very important.
The weighted ranking results for just cold runs are shown in Table 7.3 below.
The db4o lazy loading con�guration has now moved down to 4th place. The
Hibernate con�guration running on MySQL and using no subselect is now
in 2nd place. The db4o con�gurations are now last. Versant is still the best
overall.

Rank Persistence
Mechanism/Object
database/ ORM Tool

Score

1 (1) Versant 24
2 (-) Hibernate using

annotations with lazy
loading, indexes on
and named queries.
MySQL with no
subselect

53

3 (2) Hibernate using
annotations with lazy
loading, indexes on
and named queries.
PostgreSQL and
subselect

62

4 (3) db4o with lazy loading
and indexes on
Using
recommendations

68

5 (5) db4o with eager
loading and indexes on
Using
recommendations

78

Table 7.3: Ranking according to weighted ranking of places for just the cold
run

7.5.2.2 Weighted ranking for hot runs

If the application under consideration operates mostly on data that is re-
peatedly accessed and mostly in-memory then the hot run ranking is very
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important. The weighted ranking results for just hot runs are shown in table
7.4 below. Overall, the Hibernate con�gurations still perform better than
the db4o con�gurations in this situation. The Hibernate rankings are now
closer to Versant.

Rank Persistence
Mechanism/Object
database/ ORM Tool

Score

1 (1) Versant 41
2 (-) Hibernate using

annotations with lazy
loading, indexes on
and named queries.
MySQL with no
subselect

45

3 (2) Hibernate using
annotations with lazy
loading, indexes on
and named queries.
PostgreSQL and
subselect

55

4 (3) db4o with eager
loading and indexes on
Using
recommendations

69

5 (4) db4o with lazy loading
and indexes on
Using
recommendations

75

Table 7.4: Ranking according to weighted ranking of places for just the hot
run

7.5.2.3 Weighted ranking for cold query runs

If the application under consideration operates mostly on data that is not
repeated, mostly on disk and involves queries, then the weighted ranking
results based only on cold query runs in Table 7.5 below are relevant. It is
important to note that when calculating these scores that the new Hibernate
Query8Join, using a join query, was used used in the ranking calculations.

The new Hibernate con�guration on MySQL with no subselects have
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taken over 2nd place. db4o's lazy loading con�guration still performs better
than the db4o eager loading con�guration for queries in cold runs.

Rank Persistence
Mechanism/Object
database/ ORM Tool

Score

1 (1) Versant 10
2 (-) Hibernate using

annotations with lazy
loading, indexes on
and named queries.
MySQL with no
subselect

18

3 (2) Hibernate using
annotations with lazy
loading, indexes on
and named queries.
PostgreSQL and
subselect

19

4 (4) db4o with lazy loading
and indexes on
Using
recommendations

23

5 (5) db4o with eager
loading and indexes on
Using
recommendations

35

Table 7.5: Ranking according to weighted ranking of places for just the cold
query runs

7.5.2.4 Weighted ranking for hot query runs

If the application under consideration operates mostly on data that is repeat-
edly accessed, is mostly in-memory and involves queries then the weighted
ranking results limited to hot query runs in Table 7.6 below are of interest.
The Hibernate con�guration on PostgreSQL with subselects is tied with the
db4o lazy loading con�guration in 2nd place.
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Rank Persistence
Mechanism/Object
database/ ORM Tool

Score

1 (1) Versant 9
2 (-) Hibernate using

annotations with lazy
loading, indexes on
and named queries.
MySQL with no
subselect

19

3 (2) db4o with lazy loading
and indexes on
Using
recommendations

22

4 (3) Hibernate using
annotations with lazy
loading, indexes on
and named queries.
PostgreSQL and
subselect

22

5 (5) db4o with eager
loading and indexes on
Using
recommendations

33

Table 7.6: Ranking according to weighted ranking of places for just the hot
query runs

7.5.2.5 Weighted ranking for cold traversal runs

If the application under consideration operates mostly on data that is not
repeated, mostly on disk and involves traversals then the weighted ranking
results, for just cold traversal runs in Table 7.7 below are relevant. The
db4o eager con�guration is still in 3rd place but ahead of the Hibernate
con�guration running on PostgreSQL using a subselect.
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Rank Persistence
Mechanism/Object
database/ ORM Tool

Score

1 (1) Versant 11
2 (-) Hibernate using

annotations with lazy
loading, indexes on
and named queries.
MySQL with no
subselect

28

3 (3) db4o with eager
loading and indexes on
Using
recommendations

33

4 (2) Hibernate using
annotations with lazy
loading, indexes on
and named queries.
PostgreSQL and
subselect

36

5 (4) db4o with lazy loading
and indexes on
Using
recommendations

42

Table 7.7: Ranking according to weighted ranking of places for just the cold
traversal runs

7.5.2.6 Weighted ranking for hot traversal runs

Finally, if the application under consideration operates mostly on data that
is repeated ly accessed, is mostly in-memory and involves traversals, then the
weighted ranking results limited to hot traversal runs in Table 7.8 below
should be considered. Versant has fallen down to 4th place. The Hibernate
con�gurations are now in 1st and 2nd place followed by the db4o eager loading
con�guration.
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Rank Persistence
Mechanism/Object
database/ ORM Tool

Score

1 (3) Hibernate using
annotations with lazy
loading, indexes on
and named queries.
PostgreSQL and
subselect

19

2 (-) Hibernate using
annotations with lazy
loading, indexes on
and named queries.
MySQL with no
subselect

25

3 (2) db4o with eager
loading and indexes on
Using
recommendations

27

4 (1) Versant 29
5 (5) db4o with lazy loading

and indexes on
Using
recommendations

50

Table 7.8: Ranking according to weighted ranking of places for just the hot
traversal runs

7.6 Summary

The vendors had a limited time to review the benchmark results and while
they have provided a list of recommendations there are still other optimi-
sation techniques that have not been investigated. For example not all the
Hibernate fetch strategies have been investigated. Such an investigation is
left as future work. Also, given more time and using more of the vendor
recommendations it should be possible to improve the results even more.

Overall Versant stayed in �rst place. With the Hibernate recommenda-
tions the Hibernate performance has improved a lot. While the db4o results
have improved it is clear that the new Hibernate recommendations are still
faster in most cases.
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It is important to note that this chapter, which includes more �ne tun-
ing using the vendor recommended optimisations, was added as a matter of
curiosity and was not the main focus of the study.

The next chapter will provide a �nal summary and conclusion of the
study.
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Chapter 8

Summary, conclusions and future

work

This chapter provides a summary of the study and the conclusions reached
during the study. A list of future work is also provided.

8.1 Summary and conclusions

The OO7 benchmark is classi�ed as a research, micro benchmark with a syn-
thetic load that tries to simulate real world loads and operations. As stated
in earlier chapters it is important that benchmarks should be repeatable, rel-
evant, use realistic metrics, be comparable and are widely used [91]. OO7
was selected for this study as it complied to the above criteria.

It is important to note that this study has taken Versant, db4o and Hi-
bernate with PostgreSQL and used them in their default modes (out of the
box). Certain performance techniques and settings were then changed and
documented. Using Versant, db4o and Hibernate with PostgreSQL out of
the box meant that internally they could have settings turned on that might
improve their performance. The study tried to be as fair as possible and
transparent as possible as to what settings were changed. It is also impor-
tant to understand what the defaults are. Also if any of these settings are
changed it must be reported.

The study for example did not investigate the following settings that
might in�uence performance:

� Server side cache settings. For example in Versant the server page cache
size could be set [100, page 270] and could in�uence performance.

� Flushing strategies. Hibernate only synchronises changes to objects in
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the Session to the database when commit is called or an explicit �ush
is called [39, p 160]. Hibernate provides settings that could change
when this �ush occurs. db4o has similar settings. In db4o �switching
o� �ushFileBu�ers can improve commit performance as the commit
information will be cached by the operating system� [62].

� Locking modes. Some of the databases and ORM Tools are able to
switch between pessimistic and optimistic transaction locking modes.

� Transaction logging can be turned on and o�. If turned o�, the speed
could increase but if a crash occurs the transaction changes are lost.

� Di�erent query modes and query fetching strategies. Hibernate pro-
vides di�erent fetching strategies that can improve the performance
of Hibernate when objects are retrieved and queried. Some of these
fetching strategies are join fetching, lazy collection fetching, etc. [76].
db4o provides di�erent query modes that could in�uence performance.
These modes are immediate, lazy and snapshot query modes [62].

The study had a few research objectives. These were:

� Investigate the performance of object databases against that of ORM
tools.

� Find how di�erent optimisation techniques in�uence the performance.

� Understand when to use an object database or an ORM tool by inves-
tigating which of them perform better for di�erent types of operations.
This was discussed in sections 6.2 and 7.5.

� Part of the study was also to investigate the OO7 benchmark in greater
detail to get a clearer understanding of the OO7 benchmark code and
inside workings thereof. Chapter 3 discussed for example the number of
objects that are created, traversed and queried by the OO7 benchmark
in great detail. The process to create and run the OO7 model and
benchmark operations was also discussed in great detail in Chapter 3.

The performance of newer open source object databases was investigated and
compared to that of older more established proprietary object databases. It
was found that Versant which is an established proprietary object database
performed better than db4o, which is an open source object database, in
most cases.
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As stated optimisation techniques were also investigated. The investiga-
tion wanted to �nd how much certain techniques improve performance and
in what circumstances could or should these techniques be used.

The techniques that were investigated are:

� Indexes

� It was found that the use of an index does help for queries. This
was expected. An example where this is clearly seen is Query 1,
which uses an index during look-up. The results for using or not
using an index are show in Chapter 5. Hibernate's indexes seem
to function better than db4o's indexes during queries. This can
be seen in Figure 5.11 where for db4o, turning an index on and
o� for Query 1 is very close in the hot run where the cache assists
to improve the speed. In the cold run having an index actually
makes db4o slightly slower.

� Lazy and eager loading

� The di�erences between lazy loading and eager loading have been
shown in Chapter 5 and Chapter 6. Eager loading improves traver-
sal times if the tree being traversed can be cached between iter-
ations. Although the �rst run can be slow, by caching the whole
tree, calls to the server in follow-up runs are reduced. Lazy load-
ing improves query times and unnecessary objects are not loaded
into memory when not needed.

� Caching

� It was found that caching helps to improve most of the operations.

� By using eager loading and a cache, the speed of repeated traver-
sals of the same objects is increased.

� Hibernate with its �rst level cache in some cases perform bet-
ter than db4o during traversals with repeated access to the same
objects. This is shown in section 7.4.2.

In the end the performance di�erence between using one transaction versus
many transactions to run the OO7 benchmark operations was not included in
the study because of time constraints. The use of di�erent types of queries,
query modes and query fetch strategies was also not investigated. These
omissions will be included in future work. Future work could include creating
test con�gurations where these settings and their impact are investigated.
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Chapter 7 included the performance settings recommended by the ven-
dors. Some of the db4o settings were:

� B-tree settings can be changed when used for queries. db4o �uses spe-
cial B-tree indexes for increased query performance and reduced mem-
ory consumption� [62] and provides settings for changing the B-tree's
cache height and the B-tree nodes sizes. These could in�uence the
performance of the queries.

� Caching on the client side could be turned o�. In db4o the weak ref-
erence cache can be turned on and o�. �Weak references need extra
resources and the cleanup thread will have a considerable impact on
performance since it has to be synchronised with the normal operations
within the ObjectContainer. Turning o� weak references will improve
speed� [62].

Versant has a tuning wizard (vdbadmin) whereby the following settings could
for example be changed to in�uence the performance [15]:

� The amount of memory available for the database at start-up.

� The database size.

� The processing types.

� Commit intensive: Lots of smaller concurrent transactions, opti-
mises transaction throughput.

� Batch intensive: Smaller number of transactions making lots of
changes, optimises for data throughput.

� Application types or pro�les.

� Development only.

� Read/Query intensive.

� Update intensive.

� Create intensive .

None of these settings were changed and the default out of the box settings
were used for Versant.

In Carey et al. [47] they re�ect on the OO7 benchmarking e�ort and
discuss some of the issues they have experienced. Looking at these, the
current study has experienced similar issues:
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� They mention that they were critiqued for not using all the performance
enhancing techniques o�ered by the databases they were benchmark-
ing. They state in their defence that they did not want to make the
benchmark e�ort a tuning contest �for wizards� or vendors but rather
a comparison e�ort of the engines and how a normal �intelligent, but
not exceptional, application programmer� would use them. The cur-
rent study shared their objective of using the products in their �out
of the box� state as a normal programmer would. Chapter 7 included
vendor recommendations. These recommendations were provided by
experts and it is used to compare the vendor recommendation results
with the base, out of the box results created by a normal programmer.
The vendor recommendations have improved the overall performance.
With the use of the base results in Chapter 6 it is now possible to mea-
sure the improvements. If there was no base to compare with, and if all
the performance enhancing techniques were used the �rst time, there
would be no way to see which techniques in�uenced the performance.

� They ask the question of who should audit the auditors/benchmarkers.
They suggest than benchmark results should be reviewed by an inde-
pendent body, for example a standards organisation. There are organ-
isations like TPC (Transaction Processing Performance Counsel) that
are independent and manage the TPC database benchmarks. Today
there is still no organisation handling the OO7 benchmark or bench-
marks created for measuring object database and ORM tools perfor-
mance. The approach currently taken for this study is to provide the
code of the benchmark as open source and to make it possible for out-
siders and experts to review what has been included in the benchmark.

� �Freedom of information�. Many of the licenses at that time (1990's)
prohibited benchmark results from being published without permission
from the vendors. This issue is still true today and permission to release
Versant results was needed. Hibernate, PostgreSQL and db4o have no
such provision in their open source licenses.

When creating and using benchmarks it is important to clearly state what
settings and environment is being used. In this study it was found that:

� Running in client-server mode or embedded mode in db4o has di�erent
performance results. In Chapter 5 it was shown that some queries
are faster when db4o is run in embedded mode and also that some
traversals are faster when db4o is run in client-server mode.
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� That it is important to state when a cache is being used and cleared.
In Chapter 5 it was shown that clearing the Versant cache with every
transaction commit in�uenced the hot traversal times. It is also impor-
tant for example, to state if a �rst or second level cache is being used
in Hibernate as this could in�uence traversal times.

� Having a cache does not always improve random inserts, deletes and
queries. In Chapters 5, 6 and 7 it was shown that the cache assisted
traversals more than inserts, deletes and queries. Because of random
inserts, deletes and queries not all objects accessed will be in the cache.
Also if query caches are used, it must be stated clearly, otherwise it
could create false results.

� It is important to note that it is quite di�cult to generalise. One
mechanism is faster with updates to smaller amount of objects, others
with larger amount of objects; some perform better with changes to
index �elds others with changes to non indexed �elds; some perform
better if traversals are repeated with the same objects. Others perform
better in �rst time traversals which might be what the application
under development needs. The application needs to be pro�led to see
if there is repeated access to the same objects in a client session.

� In most cases the cache helps to improve access times. But if an appli-
cation does not access the same objects repeatedly or accesses scattered
objects then the cache will not help as much. In these cases it is very
important to look at the OO7 cold traversal times which access the
disk resident objects. For cold traversals, or di�erently stated, �rst
time access to objects, in most cases Versant is the fastest of all the
mechanisms tested by OO7.

� By not stating the benchmark and persistence mechanisms settings
clearly it is very easy to cheat and create false statements. It is easy
to cheat if certain settings are not brought to light. For example with
Versant it is important to state what type of commit is being used: a
normal commit or a checkpoint commit.

� It is important to make sure that the performance techniques that
are being used actually improve the speed of the application. It has
been shown that to add subselects to a MySQL database does not
automatically improve the speed.

OO7 benchmark results could be used to provide a recommendation. Al-
though the benchmark results are used to provide recommendations, it is
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important to understand that a benchmark only provides a guide and that
real life applications must be tested and benchmarked with the di�erent op-
tions.

This study started with initial assumptions that object databases will
be faster and that ORM tools will not come close. This study has shown
that Hibernate, an ORM tool, for example, performs better in most cases
than db4o when objects are traversed (Chapter 6 and Chapter 7). This is
especially true in hot runs where the traversals are repeated on the same
objects in memory. It was found that having a cache improves performance
times. Hibernate's �rst level cache performs well for object traversals in hot
runs where the traversal are repeated on the same objects in memory. If
hot query runs are performed db4o performs slightly better than Hibernate.
This is shown in section 7.5.2.4. Chapter 7 has shown how the vendor rec-
ommendations improved the performance of Hibernate, Versant and db4o.
It was also found that Versant was faster than Hibernate in most cases when
performing certain types of queries. But when large queries were rewritten,
like Query 8 to make it a join like query, Hibernate performed better.

In conclusion looking at the results it is important to investigate what
type of operations are important for the application under development and
to benchmark to �nd out which of the ORM tools and object databases are
the best �t with the application. It is also important to be wary of statements
that state that one product is better than the other. These statements need
to be investigated and tested for the speci�c application.

8.2 Future work

Currently there is an ongoing study in which some of this future work will be
included. The following future work has been identi�ed and will be included
in the ongoing study:

� Create multi-user OO7 benchmark as suggested by [47]. This means
creating more simultaneous clients running operations on one database.
Includes tests for concurrency, scaling and performance.

� Create one Java class model that can be included by all implementa-
tions. Currently there is an implementation for each of the the products
being benchmarked with the common model being duplicated. The rea-
son for this is discussed in Chapter 3.

� Currently the utility classes are implemented using static methods.
This means that there is only one handle to the underlying persistent
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store. On re�ection this was not a good design choice and will be
changed in future.

� Run medium and large OO7 benchmark con�gurations. The use of the
large and medium OO7 benchmark con�gurations were investigated.
It was found that they needed more processing power and memory
to run than were available for the study. The medium database has
about 400 000 objects and the large database con�guration 4 million
objects. It took days to create and run the operations. Many of the
database con�gurations failed to complete because of memory issues.
In the end these con�gurations were not used because the necessary
hardware resources were not available for this study. It is estimated
that the database sizes would be between 250 MB and 2 GIG. These
are not large databases by today's standards. The transaction strategy
used in creating and running these larger benchmark operations is also
very important. If one long transaction is used that keeps objects
in memory, out of memory errors might occur. Also some databases
allow the database �le to be pre-grown which could help to improve the
database creation time. These and other strategies will be investigated
in future work as well. Future work will included revisiting and re-
running these larger OO7 benchmark con�gurations.

This study leaves the following matters for future researchers to consider:

� Upgrade the OO7 benchmark con�gurations to create larger tera or
peta byte data sets to investigate large database performance. The
large and medium database sizes are small by today's standards and
need to be enlarged.

� Compare a wider selection of object databases and ORM tools with
each other and other relational databases. Here are some examples of
ORM tools, object databases and relational databases that could be
included:

� Object databases: Objectivity [24], ObjectStore [25], Ozone [4],
Gemstone Facets [71], etc.

� ORM tools: Toplink [27], Apache OJB [17], etc.

� Relational databases: MySQL [23], Oracle [26], etc.

� Currently JPOX [9] provides a JDO and JPA implementation for db4o.
Versant already support JDO. Create a JDO OO7 implementation
switching between Versant and db4o to �nd di�erences in performance
when using the JDO interface.
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� Investigate the relational TPC database benchmarks [28]: TPC-C and
the newly created TPC-E benchmarks. Investigate if these benchmarks
can be used with object databases through the use of JDO and JPA
standards. If they can, compare TPC benchmark results with that of
OO7.
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Appendix A

Appendix

A.1 How to obtain the code and contribute

This study supports the OSS ideal and would like to share the code with
other researchers and collaborators. The code will be available as a project
on Sourgeforge: http://sourceforge.net/projects/oo7j. Note that the code is
distributed under the GNU General Public License (GPL).

The original C++ OO7 implementation can be found here:
http://ftp.cs.wisc.edu/OO7/.

A website and wiki will be created where users and vendors can leave
comments and ideas on how to improve their con�gurations using OO7.

They will be allowed to take the code, add improved con�gurations and
submit them for review and inclusion into the main branch of the project.
All additions and con�gurations must be clearly explained and motivated.

A.2 OO7 benchmark operations

The following table contains a summary of the OO7 benchmark operations.
This data has been obtained from Carey et al. [46, 48]

Operation Name Description of operation

178

 
 
 



Operation Name Description of operation
Traversal T1:Raw traversal speed tTraverse the assembly hierarchy.

As each base assembly is visited,
visit each of its referenced
unshared composite parts. As
each composite part is visited,
perform a depth �rst search on its
graph of atomic parts. Return a
count of the number of atomic
parts visited when done.

Traversal T2 (a,b and c):
Traversal with updates

Repeat Traversal #1, but update
objects during the traversal.
There are three types of update
patterns in this traversal. In each,
a single update to an atomic part
consists of swapping its (z, y)
attributes The three types of
updates are: (a) Update one
atomic part per composite part.
(b) Update every atomic part as it
is encountered. (c) Update each
atomic part in a composite part
four times. When done, return the
number of update operations that
were actually performed.

Traversal T3 (a,b and c):
Traversal with indexed updates

Repeat Traversal T2, except that
now the update is on the date
�eld, which is indexed. The
speci�c update is to increment the
date if it is odd, and decrement
the date if it is even.

Traversal T6: Sparse traversal
speed.

Traverse the assembly hierarchy.
As each base assembly is visited,
visit each of its referenced
unshared composite parts. As
each composite part is visited,
visit the root atomic part. Return
a count of the number of atomic
parts visited when done.
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Operation Name Description of operation
Traversals T8 and T9: Operations

on Manual.
Traversal T8 scans the manual
object, counting the number of
occurrences of the character \I."
Traversal T9 checks to see if the
�rst and last character in the
manual object are the same.

Query Q1: exact match lookup Generate 10 random atomic part
id's; for each part id generated,
lookup the atomic part with that
id. Return the number of atomic
parts processed when done.

Queries Q2, Q3, and Q7.(�These
queries are most interesting when

considered together�[46])

Query Q2: Choose a range for
dates that will contain the last 1%
of the dates found in the
database's atomic parts. Retrieve
the atomic parts that satisfy this
range predicate.
Query Q3: Choose a range for
dates that will contain the last
10% of the dates found in the
database's atomic parts. Retrieve
the atomic parts that satisfy this
range predicate.
Query Q7: Scan all atomic parts.

Query Q4: path lookup Generate 100 random document
titles. For each title generated,
�nd all base assemblies that use
the composite part corresponding
to the document. Also, count the
total number of base assemblies
that qualify.

Query Q5: single-level make Find all base assemblies that use a
composite part with a build date
later than the build date of the
base assembly. Also, report the
number of qualifying base
assemblies found.
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Operation Name Description of operation
Query Q8: ad-hoc join Find all pairs of documents and

atomic parts where the document
id in the atomic part matches the
id of the document. Also, return a
count of the number of such pairs
encountered.

Structural Modi�cation: Insert Create �ve new composite parts,
which includes creating a number
of new atomic parts (100 in the
small con�guration, 1000 in the
large, and �ve new document
objects) and insert them into the
database by installing references
to these composite parts into 10
randomly chosen base assembly
objects.

Structural Modi�cation 2: Delete Delete the �ve newly created
composite parts (and all of their
associated atomic parts and
document objects).

A.3 Comparisons results that include db4o in

embedded mode

In this section db4o embedded mode is compared with Hibernate and Versant
which run in client-server mode. This is not a fair comparison. It is included
because db4o recommended running db4o in embedded mode. These re-
sults might be of interest if one need to decided between using an embedded
database or a client/server database.

Only the results are provided. The discussion of these results fall outside
the scope of the current study.

A.3.1 Creation

The embedded db4o lazy con�guration has a dramatic improvement from
7700 seconds to 15 seconds.
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Figure A.1: Creation times

A.3.2 Traversals

The embedded db4o con�guration using the recommendations are the fastest
db4o con�guration.
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Figure A.2: Comparison results of traversals

A.3.3 Queries

For the query runs the client-server db4o con�gurations are faster in most
cases than the embedded db4o con�guration.
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Figure A.3: Comparison results of queries

A.3.4 Modi�cations: Insert and delete

The embedded db4o con�guration using the recommendations has now gone
down from ±5 seconds down to ±1.4 seconds for cold inserts. This is a 70%
improvement.
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Figure A.4: Comparison result of inserts
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Figure A.5: Comparison result of deletes
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