
A case-study based assessment of Agile
software development

by

William Herman Morkel Theunissen

Submitted in partial fulfillment of the requirements for the degree

Magister Scientia (Computer Science)

in the Faculty of Engineering, Built Environment and Information Technology

University of Pretoria

November 2003

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

A case-study based assessment of Agile software development

by

William Herman Morkel Theunissen

Abstract

This study set out to determine various aspects of theagile approaches to software
development. These included an investigation into the principles and practices driving
these methodologies; determining the applicability of these approaches to the current
software development needs; determining whether these methodologies can comply
with software engineering standards (as set out for example by ISO); investigating
the feasibility of these approaches for the telecommunication industry; establishing
whether practitioners are reaping the benefits that are advertised by agile proponents;
and attempting to discover short-comings of the agile paradigm.

This dissertation examines the aforementioned issues and tries to provide answers
to them. It is argued that:

Agile software development is suited to projects where the system evolves over
the life cycle of the project. These methodologies are intended to seamlessly handle
changing requirements. Thus, using an agile approach might provide a competitive ad-
vantage in developing e-business solutions which are tightly coupled with the business
strategy and needs.

It is shown that agile methodologies can comply with software engineering stan-
dards such as ISO 12207:1995 and ISO 15288:2002. Furthermore diligent applica-
tion of certain agile methodologies may result in a level 3 Capability Maturity Model
(CMM) grading.

Evidence from the feedback of a case study conducted on an XP project team,
supports the view that XP, and agile in general, does indeed live up to its ‘promises’.
However, some potential problem areas were identified that should be kept in mind
when implementing these methodologies.

Finally, anin situ investigation suggests that there are a number of projects in the
telecommunication industry that will benefit from the agile approach and its practices.

Keywords:
agile software development, extreme programming, crystal, feature driven develop-
ment, case study, standards, telecommunication

Supervisor: Prof. DG Kourie
Department of Computer Science
Degree:Magister Scientia

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

A case-study based assessment of Agile software development

deur

William Herman Morkel Theunissen

Opsomming

Hierdie studie het onderneem om verskeie aspekte van die ‘agile’ benadering tot pro-
grammatuur ontwikkeling te bepaal. Die studie het onder andere ondersoek inges-
tel na die beginsels en praktyke wat hierdie metodologieë aanspoor; bepaal of hi-
erdie benadering toepaslik is tot die huidige programmatuur ontwikkelings behoeftes;
bepaal of hierdie metodologieë aan programmatuur-ingenieurswese standaarde (soos
byvoorbeeld ISO s’n) voldoen; ondersoek ingestel oor die lewensvatbaarheid van die
benadering tot die telekommunikasie industrie; vasgestel of die aanwenders van die
metodologieë die geadverteerde voordele soos verkondig deur die ‘agile’ voorstaan-
ders geniet; en enige tekortkominge van die ‘agile’ paradigma probeer ontsluit.

Die verhandeling ondersoek die bogenoemde aspekte en probeer antwoorde daar-
voor vind. Daar word beredeneer dat:

‘Agile’ programmatuur ontwikkeling is gepas vir projekte waar die stelsel ontvou
oor die lewenssiklus van die projek. Hierdie metodologieë is bedoel om sorgloos veran-
derende spesifikasies te hanteer. Dus, deur van ’n ‘agile’-benadering gebruik te maak,
kan ’n kompeterende voorsprong in die ontwikkeling van e-besigheid oplossings wat
sterk gekoppel is met die besigheidstrategie en -behoeftes, verskaf word.

Daar word getoon dat ‘agile’ metodologieë aan programmatuur-ingenieurswese
standaarde soos ISO 12207:1995 en ISO 15288:2002 kan voldoen. Verder deur nouge-
sette toepassing van sekere ‘agile’ metodologieë, kan ’n vlak 3-‘Capability Maturity
Model (CMM)’ gradering bereik.

Bewyse van die terugvoering vanaf ’n gevallestudie wat op ’n XP-projek span on-
derneem is, ondersteun die standpunt dat XP, en ‘agile’ in die algemeen, inderdaad
sy beloftes gestand doen. Desnieteenstaande is daar enkele potensiële probleemareas
geïdentifiseer, wat in gedagte gehou moet word by die implementering van hierdie
metodologieë.

Laastens, het die ter plaatse ondersoek gesuggereer dat daar ’n aantal projekte in die
telekommunikasie industrie bestaan, wat sal baat by die ‘agile’ benadering en praktyke.

Sleutelwoorde:
agile sagteware ontwikkeling, extreme programming, crystal, feature driven develop-
ment, gevallestudie, standaarde, telekommunikasie

Studieleier: Prof. DG Kourie
Department Rekenaarwetenskap
Graad: Magister Scientia

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

Acknowledgements

My sincere thanks to:

• the Almighty, for providing me the opportunity to do this work;

• my father, mother, sister, Ian and grandparents for their continuous support through-
out my studies;

• Prof. D.G. Kourie for his extraordinary mentoring and valuable input;

• Telkom SA Ltd’s Centre of Excellence program and members;

• the Telkom employees that answered all my queries and provided input;

• the Equinox development team, for demonstrating Extreme Programming in
practice and their participation in the case study;

• the CIRG, Polelo and Ceteis research groups at the University of Pretoria, for
their time and assistance.

i

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

Acronyms

AM Agile Modeling

ASD Agile Software Development

BBF Build By Feature

BUD Big Upfront Design

C3 Chrysler Comprehensive Compensation

CM Configuration Management

DBA Database Administrator

DBF Design By Feature

DSDM Dynamic Systems Development Methodology

EIA Electronic Industries Association

FDD Feature Driven Development

HCI Human Computer Interaction

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronic Engineers

ISO International Organization for Standardization

KISS Keep It Simple Stupid

LISP Linked Investment Service Provider

QA Quality Assurance

RAD Rapid Application Development

ROI Return On Investment

RUP Rational Unified Process

SABS South African Bureau of Standards

SEI Software Engineering Institute

SW-CMM Software Capability Maturity Model

ii

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

iii

TQM Total Quality Management

TDL Telkom Development Lab

XP Extreme Programming

YAGNI You Aren’t Gonna Need It

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

Contents

1 Introduction 1
1.1 Background . 1
1.2 Research Objectives . 2

1.2.1 The need for yet another class of methodologies to light . . . 2
1.2.2 Other Objectives . 3

2 Agile Software Development 5
2.1 Introduction . 5
2.2 The Manifesto on Agile Software Development 5

2.2.1 Individuals and interactions over processes and tools 6
2.2.2 Working software over comprehensive documentation 6
2.2.3 Customer collaboration over contract negotiation 7

2.3 The Agile Alliance . 7
2.4 Example Methodologies . 9

2.4.1 Extreme Programming (XP) 9
2.4.2 Crystal . 11
2.4.3 Feature Driven Development (FDD) 12
2.4.4 SCRUM . 12
2.4.5 Dynamic Systems Development Methodology (DSDM) . . . 13

2.4.5.1 Timeboxing . 14
2.4.5.2 Modelling . 15
2.4.5.3 Prototyping . 15
2.4.5.4 Testing . 15
2.4.5.5 Configuration Management 15

2.4.6 Lean Programming . 15
2.4.7 Other Agile Methodologies 17

2.5 Agile Modeling . 17
2.6 Conclusion . 21

3 A Critical Overview of Extreme Programming (XP) 23
3.1 Introduction . 23
3.2 Four Variables of a project . 23

3.2.1 Scope . 24
3.2.2 Cost . 24
3.2.3 Quality . 24
3.2.4 Time . 25

3.3 The values of XP . 25
3.3.1 Communication . 26

iv

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CONTENTS v

3.3.2 Simplicity . 26
3.3.3 Feedback . 26
3.3.4 Courage . 27

3.4 Principles . 27
3.4.1 Fundamental Principles . 27

3.4.1.1 Rapid feedback 27
3.4.1.2 Assume simplicity 27
3.4.1.3 Incremental change 28
3.4.1.4 Embracing change 28
3.4.1.5 Quality work . 28

3.4.2 Secondary Principles . 28
3.4.2.1 Teach learning . 28
3.4.2.2 Small initial investment 29
3.4.2.3 Play to win . 29
3.4.2.4 Concrete experiments 29
3.4.2.5 Open, honest communication 30
3.4.2.6 Work with people’s instincts, not against them . . . 30
3.4.2.7 Accepted responsibility 30
3.4.2.8 Local adaptation 30
3.4.2.9 Travel light . 30
3.4.2.10 Honest measurement 31

3.5 Practices . 31
3.5.1 The planning game . 31
3.5.2 Short releases . 32
3.5.3 Metaphor . 32
3.5.4 Simple Design . 32
3.5.5 Testing . 32
3.5.6 Refactoring . 33
3.5.7 Pair programming . 33
3.5.8 Collective ownership . 33
3.5.9 Continuous integration . 34
3.5.10 40-hour week . 34
3.5.11 On-site customer . 34
3.5.12 Coding standards . 34

3.6 Environment . 35
3.7 The process flow . 36

3.7.1 The Release Planning . 36
3.7.1.1 Exploration . 36
3.7.1.2 Commitment . 36
3.7.1.3 Steer . 38

3.7.2 Iteration . 38
3.7.2.1 Exploration . 38
3.7.2.2 Commitment . 38
3.7.2.3 Steering . 39

3.7.3 Implementation . 39
3.8 Common concerns about XP . 40

3.8.1 On-Site customer . 40
3.8.2 Lack of scalability . 40
3.8.3 Changing requirements . 41
3.8.4 Pair programming . 41

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CONTENTS vi

3.8.5 Cost of Change over Time 42
3.8.6 Lack of documentation . 42

3.9 Summary . 43

4 A Critical Overview of the Crystal Family of Methodologies 44
4.1 Introduction . 44
4.2 A Philosophy of Software Development 44

4.2.1 Three Levels of Listening 45
4.2.1.1 Following (Level 1) 45
4.2.1.2 Detaching (Level 2) 45
4.2.1.3 Fluent (Level 3) 45

4.2.2 Software Development as a Cooperative Game of Invention
and Communication . 46
4.2.2.1 Engineering . 46
4.2.2.2 Innovation . 47
4.2.2.3 Communication 47
4.2.2.4 Cooperative game 47

4.2.3 People Centric . 47
4.2.4 Communication - Cooperative Teams 48
4.2.5 Goals of Software Development 49
4.2.6 Methodology Concepts and Design Principles 49
4.2.7 Agility and Self-Adaptation 51
4.2.8 Methodology-per-project . 52

4.3 The Crystal Family . 52
4.3.1 Family Commonalities . 53
4.3.2 Crystal Clear . 54
4.3.3 Crystal Orange . 55
4.3.4 Crystal Orange Web . 56

4.4 Conclusion . 57

5 A Critical Overview of Feature Driven Development (FDD) 58
5.1 Introduction . 58
5.2 The Process . 59

5.2.1 Process 1: Develop an Overall Model 60
5.2.2 Process 2: Build a Features List 60
5.2.3 Process 3: Plan by Feature 60
5.2.4 Process 4: Design by Feature (DBF) 60
5.2.5 Process 5: Build by Feature (BBF) 61

5.3 Practices . 61
5.3.1 Domain Object Modeling 61
5.3.2 Developing by Feature . 61
5.3.3 Individual Class (Code) Ownership 62
5.3.4 Feature Teams . 63
5.3.5 Inspections . 63
5.3.6 Regular Builds . 63
5.3.7 Configuration Management 63
5.3.8 Reporting/Visibility of Results 63

5.4 Roles . 64
5.4.1 Chief Programmer . 64
5.4.2 Class Owner . 64

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CONTENTS vii

5.4.3 Feature Teams . 65
5.4.4 Release Manager . 65

5.5 Modeling in Colour . 65
5.6 Conclusion . 66

6 Development Standards and Agile Software Development 67
6.1 Introduction . 67
6.2 Standards that are of interest . 67

6.2.1 ISO/IEC 12207:1995 . 68
6.2.1.1 Compliance . 68

6.3 The agile angle . 72
6.3.1 General comments . 73
6.3.2 Clause specific proposals . 74
6.3.3 Incremental Documentation 79

6.4 Conclusion . 79

7 The Equinox Case Study 81
7.1 Introduction . 81
7.2 Methodology . 81
7.3 Rumpe and Schröder’s Survey . 82
7.4 The results . 82

7.4.1 Question 1, 3 and 4 – Respondent’s experience. 82
7.4.2 Question 2 – Are there any bottleneck activities in the way you

implement XP? . 82
7.4.3 Question 5 – How would you rate XP as a factor in the success

of Equinox’ development effort? 83
7.4.4 Question 6 – How do you experience collective code ownership? 83
7.4.5 Question 7 – How do you experience the single room concept? 83
7.4.6 Question 8 – How do you experience pair-programming? . . . 83
7.4.7 Question 9 – Pair-programming as a limiting factor in learn-

ing/experimenting. 83
7.4.8 Question 10 – Rate your XP-project in terms of the extent to

which the listed goals were reached. 84
7.4.9 Question 11 – The ‘level of use’ of XP elements and their con-

tribution to success of project. 84
7.4.10 Question 12 – List the documentation that is generated. 86
7.4.11 Question 13 – How much value is gained from the documenta-

tion? . 86
7.4.12 Question 14 – How comprehensive is the documentation? . . 86
7.4.13 Question 15 – Do you capture/archive the information gener-

ated on white-boards? How? 87
7.4.14 Question 16 – How do you measure your performance/productivity? 87
7.4.15 Question 17 – How would you rate your productivity when

practicing XP compared to traditional processes? 87
7.4.16 Question 18 – Would you advocate the use of XP to others? . 87
7.4.17 Question 19 – Do you have any suggestions for improving any

of the XP elements? . 87
7.4.18 Question 20 – Any additional comments? 87

7.5 General Comments . 88
7.6 Conclusion . 88

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CONTENTS viii

8 The Telkom Case Study 89
8.1 Background . 89
8.2 Methodology . 89
8.3 TDL Software Development Process 90
8.4 Questions discussed . 93

8.4.1 What is the general organisational position and layout of TDL? 93
8.4.2 What is the type/range of software development projects un-

dertaken by Telkom and TDL? 93
8.4.3 What software development process/policy is used? 93
8.4.4 What are the exact standards to which TDL has to comply? . . 94
8.4.5 What is the success rate of projects in TDL? 94
8.4.6 Do you do project reviews (retrospective evaluations) as part

of the development process? 94
8.4.7 What is the current code ownership policy? 94
8.4.8 What are the characteristics of the physical development envi-

ronment? . 95
8.4.9 To what extent do you make use of white-boards? 95
8.4.10 Do requirements change after requirement analysis has been

completed and the project is already in the implementation phase? 95
8.4.11 How strongly is reuse advocated in Telkom and how regularly

is it carried out? . 95
8.4.12 What is the level of interaction with customers? 95
8.4.13 What statistics are kept of each project? 95
8.4.14 What is the time-line breakdown of the different RUP phases

for a typical project? . 96
8.4.15 How much time is spent on investigating new practices, tools,

trends and innovation in software engineering? 96
8.4.16 Do projects often require that the developers have to become

familiar with new domains and/or technology? 96
8.4.17 Is any development maturity measurement (such as CMM or

something similar) carried out? 96
8.5 The key TDL Challenge . 97
8.6 Making RUP more agile . 98
8.7 Conclusion . 98

9 Conclusion 100

Bibliography 103

A The Agile Manifesto 108

B FDD Summarised 110

C Equinox Questionnaire 116

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

List of Tables

2.1 Agile Methodologies Comparison 22

6.1 Primary Life Cycle Processes . 69
6.2 Supporting Life Cycle Processes . 70
6.3 Organisational Life Cycle Processes 71

7.1 The level of element usage. 85
7.2 Each elements’ contribution to the success of development. 85

ix

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

List of Figures

2.1 Growth in Signatories (11 Feb. 2001 – 30 July 2003) 8
2.2 XP Process Summary [XP URL] . 10
2.3 Cockburn’s Methodology Matrix [Cockburn, 2002a]. 11
2.4 Visual presentation of the SCRUM process [SCRUM URL]. 14

3.1 XP Project Process . 37
3.2 XP’s cost of change over time [Beck, 2000]. 42

4.1 Cockburn’s Methodology Matrix [Cockburn, 2002a]. 53

5.1 Visual representation of the five processes within FDD. 60
5.2 Progress Report Example Coad and De Luca [1999] 64

8.1 Summary of the elements of the Rational Unified Process [Rational URL] 91
8.2 TDL Organisational Diagram . 93

x

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

Chapter 1

Introduction

1.1 Background

The predominant multi-year-multi-million-dollar nature of software development projects
associated with projects from the 1960’s to 1990’s seem to have declined over the
last decade. Since the inception of the Internet, the life-cycle time-frames for an in-
creasing number of software development projects have shrunk to a mere few month
and/or even weeks and days. Ever changing technologies, higher levels of competition,
global economies (also known as the ‘Global Village’), development approaches such
as object-orientation and components have caused the software development industry
to once again rethink its strategy. An increased number of today’s business models and
processes do not stay stable enough to justify supporting software development efforts
that can only deliver in two to five years.

The waterfall approach to developing software no longer applies to today’s projects.
This fact has been debated and accepted by academia and practitioners alike.

The replacement methodologies are usually based on some form of iterative devel-
opment. Examples are Hewlett-Packard’s Fusion [Fusion Summary, 1998], Boehm’s
Spiral [Boehm, 1988], Rational’s Rational Unified Process (RUP) [Kruchten, 2000].
These methodologies addressed the need for faster development. However, they still
lack, to a high degree, the ability to deliver working/usable software in the limited
time-frames of days and/or weeks.

As we enter the beginning of the21st century, the words of Tim Berners-Lee “What
is a Web year now, about three months?” [O’Reilly Interview, 1997], seem to be the
order of the day.Internet timehas shifted the software development industry into an
even higher gear, requiring even faster development cycles than ever before. In these
cases software has to ‘go-live’ so fast that ‘traditional’ approaches for facilitating the
development effort have become a bottleneck for development teams.

Another symptom of these Internet-speed type of projects is the tendency of system
requirements changing throughout the project’s life cycle. This may be attributed to
different factors, including:

• The customer only having a vague idea of what he/she wants from the system at
inception;

• Competition by competitors causing changes to business models and processes;

1

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 1. INTRODUCTION 2

• The increased importance of aligning software systems (especially e-business
systems) with the business goals.

In the light of these insufficiencies, methodologists have developed and designed new
methodologies to address the problems experienced by software developers with re-
gard to the aforementioned trends. This resulted in a paradigm shift in the nature
of developing software for Internet-speed projects. These new methodologies became
known as ‘light’ methodologies due to the fact that a large portion of artifacts tradition-
ally associated with software development were discarded. In 2001 a group of these
methodologists came together to discuss their different approaches and to determine
if common ground existed between these approaches. This meeting resulted in a mu-
tual understanding between the attendees, the formation of the Agile Alliance and the
signing of a manifesto. Chapter 2 provides a more detailed discussion on this meeting
and its repercussions. Since then, ‘light’ methodologies have been re-dubbed asagile
methodologies.

The agile movement was spawned by practitioners in industry. This leads to the
question: how does the academic community interpret these new methodology trends?
In the search for an answer to the previously stated question, one struggles to find com-
prehensive academic literature on the agile movement as a whole. Most of the papers
lack global perspectives, preferring to focus on specific portions of agile software de-
velopment. However, Abrahamsson et al. [2002] provided one of the first review and
analysis publications to span over most of the major agile methodologies. During 2002
and 2003, the interest in agile software development by the academic community has
grown tremendously. This growth may be observed from the increased number of pub-
lications in journals such as IEEE Software, IEEE Computer, Cutter IT and Software
Developer Magazine to name a few.

1.2 Research Objectives

This dissertation will attempt to address the following matters:

• the need for yet another class of methodologies

• the main principles underlying agile software development

• the ability of agile methodologies to comply with standards

• an investigation of how agile software development might work in practice

These matters are considered in slightly more detail below.

1.2.1 The need for yet another class of methodologies to light

Several of the contributing factors have already been touched on in the preceding para-
graphs. Various other influences will now be mentioned.

In the past 55 years (taking EDSAC1 as a starting point) of writing programs for
computers, the notion of the correct process for coding systems has changed over and

1Electronic Delay Storage Automatic Calculator - Developed by Maurice Wilkes from the University
of Cambridge. It was the first stored program computer. The computer was based on ideas for the USA
Electronic Discrete Variable Automatic Computer (EDVAC) that was the replacement for the Electronic
Numerical Integrator and Computer (ENIAC). The concept of not only storing data in a computer but also
the program that is run was developed by John W. Mauchly and J. Presper Eckert, the heads of the ENIAC
team [Gough-Jones et al., 1993; Wilkes, 1985].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 1. INTRODUCTION 3

over again, never really stabilising. Since those early days we have seen the process
used by the OS 360 team, a multi-year, multi-million dollar project with over a thou-
sand developers, consuming more than five thousand man-years [Brooks, 1995]. From
this, Brooks – the project manager – developed the concept of asurgical-team(see Sec-
tion 6.3.1) approach to developing software (see [Brooks, 1995]). Then the years of the
waterfallmodel ensued. Some organisations are still clinging to this approach or some
derivative. In the wake of the waterfall model came thespiral approach [Boehm, 1988],
born from the realisation of the shortcomings associated with the waterfall model. With
the advent of object-orientation the realisation of its incompatibility with the waterfall
model caused the search for yet another new approach to software development. This
search resulted in the iterative and evolutionary methodologies. As mentioned previ-
ously, the age of interconnectivity that resulted from the Internet has brought to light
new challenges that software development methodologies need to address.

One such challenge is the fact that speed-to-market is becoming a primary driving
factor in software development. Research by Baskervilleet al. addresses the question
of “Is Internet-speed software development different?” (See [Baskerville et al., 2003]).
Their conclusion is that speed is “paramount” with ‘Internet software development’
and that the cost and quality is of less importance.

Another challenge is the increased notion of satisfying the changing needs of the
customer over adhering to the predefined plan and scope. See Highsmith and Cockburn
[2001].

The foregoing discussion briefly summarizes why the need for agile software develop-
ment has arisen. It adresses the first objective of this study and will not be specificaly
taken up in the remainder of this dissertation.

1.2.2 Other Objectives

The remaining objectives to be discussed in this dissertation are as follows.
Firstly, what is the mainprinciples and ideas behind the agile initiative?In order

to analyse agile software development one needs to gain an understanding of its ori-
gins and beliefs. The history and background of the agile concept will be explored in
Chapter 2. Some examples of agile methodologies are explored in Chapters 3, 4 and 5.
These chapters will form the bases of the theoretical understanding of agile software
development.

Secondly, with today’s trends of outsourcing and the magnitude of unknown soft-
ware vendors in the market, the need for standards and compliance to them has in-
creased. Software acquirers are starting to make use of accredited suppliers when buy-
ing software products.Compliance of agile approaches to international standards– in
particular ISO standards – is investigated in Chapter 6.

Finally, the growth in the hype associated with the agile approaches brings the
question of “How does agile work in practice?” to mind. To address this question, the
implementation and feasibility of agile methodologies in an XP environment (Chapter
7) and a non-agile environment (Chapter 8) are examined.

The in situ case study on XP (Chapter 7) was conducted on a development team
with a long standing connection to the University of Pretoria. These developers were
approached because of their high reputation and their pursuit to gain an in-depth prac-
tical understanding of XP.

Through the second case study (Chapter 8), the feasibility of implementing agile
practices in a non-agile development environment was investigated. The feasibility

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 1. INTRODUCTION 4

study was conducted by means of an analysis of a unit within Telkom SA Ltd. the
current representative software development environment.

The aforementioned questions and the answers gained from this study is sum-
marised and presented in Chapter 9.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

Chapter 2

Agile Software Development

2.1 Introduction

For three days, starting on February 11th 2001, seventeen people got together. The lo-
cation was The Lodge at Snowbird ski resort in the Wasatch mountains of Utah [Agile
History URL]. These people included the authors and advocates of Extreme Program-
ming (XP), Crystal, Feature Driven Development (FDD), SCRUM, Adaptive Software
Development, Dynamic Systems Development Methodology (DSDM) and Pragmatic
Programming. All the people attending this meeting had perceived a need for new
approaches to software development. These new approaches rejected the traditional
document-driven, so-called heavy methodologies paradigm. Due to the opposite nature
of the new methodologies, these were called ‘light-weight’ methodologies. Through
the meeting the attendees hoped to discover common ground between these diverse
‘light-weight’ methodologies. The result of the meeting allegedly exceeded the atten-
dees expectations; not only was common ground found ; it was considered extensive
enough to warrant the formation of an alliance. The common ground was expressed in
a manifesto that was signed by the attendees. The concern by some of the attendees
that the use of ‘light-weight’ to classify their methodologies may lead to a misunder-
standing, was resolved by adopting the classification name ofagile1.

Section 2.2 provides a discussion on the manifesto mentioned above. This mani-
festo outlines the beliefs and principles that form the common ground of agile method-
ologies. An extract from the manifesto, as given in Fowler and Highsmith [2001], is
provided as Appendix A.

The aforementioned alliance is explored in Section 2.3. Several of the methodolo-
gies that are classified as agile is briefly introduced in Section 2.4.

The concept of agile modeling is addressed in Section 2.5.

2.2 The Manifesto on Agile Software Development

Appendix A contains an extract from theManifesto on Agile Software Development
that forms the basis for the mutual ground whereupon all agile methodologies are
based. The manifesto outlines four values and twelve principles that describe the phi-
losophy behind agile software development.

1The concise Oxford dictionary defines agile as “Quick-moving, nimble, active.” Fowler and Fowler
[1964]

5

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 2. AGILE SOFTWARE DEVELOPMENT 6

These values are now described in turn.

2.2.1 Individuals and interactions over processes and tools

This value highlights the importance of the human factor in software development.
By having a paradigm shift in the way methodologists and managers view developers
and stakeholders, the productivity and quality of software products can be maximised.
Thus people should be enabled to bring out their best performance without restricting
them through the processes and tools they are required to use. This fact had previously
been discussed by DeMarco and Lister in the late eighties in their bookPeopleware.
(See DeMarco and Lister [1987]) Practices that are found in some of the agile method-
ologies that are based on this value, includepair-programming2; on-site customerand
co-located small teams. Agile methodologies also promote face-to-face interaction to
maximise communication and information flow between stakeholders.

2.2.2 Working software over comprehensive documentation

Due to the similar nature of this value and theResponding to change over following
a plan value, they will both be addressed together. Any software development effort
should focus on the primary goal – the resultant software product. Agile developers
believe that some methodologies and/or their implementations have lost their focus on
the primary goal of software development. These implementations of methodologies
have started to stress the delivery of artifacts that describe the way the process is im-
plemented. Requiring developers to write comprehensive reports on how each phase
of the process was conducted and the findings thereof, is regarded a time consuming
and an inefficient allocation of human resources. This practice thus increases the cost
associated with development. In business it is considered a fundamental rule thattime
is moneyand paying for highly intelligent and proficient people’s services is very ex-
pensive. Thus as can be easily deduced from the previous statements, the more time
used for software development the more expensive the project and deliverable will be.
This expense needs to be justified by the return-on-investment (ROI) of the resultant
artifacts that are delivered through the project. It is a common occurrence in software
development that the documentation describing the software being developed quickly
loses synchronisation with the actual working software.

As experience in industry has shown, defining exact models of the planned soft-
ware is often impossible, and the practical implementation sometimes brings to light
situations that could not be foreseen. This induces clever adjustment to the implemen-
tation of models to enable the software to work. Such adjustments are then only seen
in the code and not in the original documentation.

Changing requirements is a common occurrence in many software development
projects. This occurrence can be attributed to a diverse range of reasons. Those that
tend to dominate are: firstly, a customer’s inability to really articulate their needs at
the start of a project; secondly, the new breed of projects, namely e-business solutions,
that need to be developed ininternet time3. Accepting and incorporating changes into
software is required to ensure that the customer needs are met and that the software de-
livered provides the maximum value to the users. By denying changes the development

2A technique where two programmers write code together using one computer.
3A term to describe the very fast time periods associated with the development and lifespan of Internet-

related software.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 2. AGILE SOFTWARE DEVELOPMENT 7

team faces the possibility of alienating the customer and, in turn, causing the failure
and breakdown of the project.

The agile advocates believe that devising a detailed plan and forcing adherence to
this plan, discourages the ‘embracing of change’ and encourages the idea of planning
for tomorrow’spossibleneeds. Planning for possible eventualities is believed to in-
crease a solution’s complexity. Some of these possible eventualities may never even
arise and their solution is thus never used. Once again slavishly following a plan may
increase the cost associated with the project, even with agile methodologies. Creating
a detailed plan utilises a lot of effort, thus incurring cost. Making changes to this plan
later on will incur even more cost. Requiring changes to detailed plans translates into
adjusting to unforeseen circumstances. The original plan was therefore incorrect and,
in turn, also the budget. Once again cost piles up on top of cost.

As stated previously, the ROI of artifacts needs to be determined and used to guide
the appropriateness of these artifacts. The guideline may then be stated as answering
the question: “Does this artifact provide more value than the cost associated in produc-
ing it?”.

2.2.3 Customer collaboration over contract negotiation

The days are long gone when developers compile detailed specifications, forcing the
customer to sign off on them, go away and then returning after a year or two with a
software system without further interaction with clients. Keeping the customers at a
distance reduces the quality of the system and increases the the risk of failure of the
project. Maximising the interaction between the customer and the developers is mutu-
ally beneficial. For example, developers no longer need to assume anything regarding
specifications and customers receive software that provides what they really need.

It should be noted that even though agile software development (ASD) emphasises the
left hand side of the enunciated values, the right hand side is not rejected. For example,
when appropriate or required, the compilation of documentation should be done. How-
ever by focusing on the left hand side the primary goal of developing working software
is retained.

2.3 The Agile Alliance

As stated in Section 2.2, the meeting in February 2001 resulted in the formation of
theAgile Alliance. The alliance started off with seventeen people. The same seventeen
people co-authored the ‘Manifesto for Agile Software Development’. Appendix A lists
the original seventeen signatures and members of the alliance. The alliance is a non-
profit organisation that promotes agile software development. The alliance is divided
into a range ofprogramsthat represents the different facets of the organisation. These
programs include the conference program, a program for each major methodology,
the administration program, etc. Using the signatories of the manifesto as guide, the
growth of supporters may be observed. This growth is indicated in Figure 2.1, the data
is taken from the signatory information published on the agile manifesto website, see
Agile Manifesto URL.

The alliance also coordinates the gathering of publications on agile software devel-
opment for hosting on the alliance website. An annual conference on ASD is organised
by the alliance.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 2. AGILE SOFTWARE DEVELOPMENT 8

Figure 2.1: Growth in Signatories (11 Feb. 2001 – 30 July 2003)

 0

 2
00

 4
00

 6
00

 8
00

 1
00

0

 1
20

0

20
01

/0
4/

01
20

01
/0

7/
01

20
01

/1
0/

01
20

02
/0

1/
01

20
02

/0
4/

01
20

02
/0

7/
01

20
02

/1
0/

01
20

03
/0

1/
01

20
03

/0
4/

01
20

03
/0

7/
01

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 2. AGILE SOFTWARE DEVELOPMENT 9

2.4 Example Methodologies

In this section, the author lists some of the methodologies that are regarded as agile. A
brief description of each example is provided without the intent to analyse or criticise.
In subsequent chapters, three of the most prominent agile methodologies will be anal-
ysed in greater detail. These are Extreme Programming (Chapter 3), Crystal (Chapter
4) and Feature Driven Development (Chapter 5).

The list of methodologies claiming to be agile is growing regularly. Even Microsoft
is trying to jump onto the bandwagon with their Microsoft Solutions Framework (MSF)
and Microsoft Operations Framework (MOF) [2002, White Paper]. Using all the right
buzzwords and statements associated with agile methodologies does not necessarily
mean the methodology is based on the values proclaimed by agile.

The methodologies chosen as representative of agile were selected on the basis of
their authors’ role in the establishment of the agile alliance and/or on their perceived
popularity.

2.4.1 Extreme Programming (XP)

XP may be regarded as the most published agile methodology. There are multiple
books, websites, forums and articles dedicated to this methodology. This may be partly
due to the radical principles behind the methodology and partly due to the author’s
tenacity. Formulated during the Chrysler Comprehensive Compensation (C3) project
of 1996, it has seen an increased adoption rate.

With C3, Beck brought his ideas on software development together. Using these
practices, Beck restarted the failing project and successfully completed it in a year with
the aid of 10 programmers.

He based XP on the following four values:

Communication: This means keeping everyone on the project informed regarding ev-
erything in the project.

Simplicity: Make use of the simplest solution that can work.

Feedback: Minimise the response between doing something and getting the result.
This includes: the time between asking a question and getting an answer,
if necessary from an on-site customer representative; and the time between
implementing a feature and confirming its correctness using well defined
automated test cases.

Courage: This refers to the ability to make difficult decisions and thus correct the
project’s direction.

XP is characterised by the following practices:

• The planning game: ‘Plan’ the scope and milestones for the next release.

• Small releases: Release the system iteratively in short cycles.

• Metaphor: Use a simple story of how the system works as a guideline for the
project team.

• Simple design: Ensure that the system is as simple as possible at any given mo-
ment.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 2. AGILE SOFTWARE DEVELOPMENT 10

Figure 2.2: XP Process Summary [XP URL]

• Testing: Continuous testing of code should take place. This includes unit test
cases that are defined and built by the programmers and feature test cases that
are compiled by the customer in conjunction with developers. These tests ensure
that at all times the system runs correctly, in respect of the test cases.

• Refactoring: Continuously simplify and restructure the system without changing
its behaviour. The purpose is to improve the quality of code.

• Pair programming: Develop code using two programmers at one machine.

• Collective ownership: The code belongs to everyone on the team and may be
changed by anyone as needed.

• Continuous integration: Integrate each feature as it is finished into the system.

• 40-hour week: Team members’ working hours are limited to 40 hours. It is
believed that this increases productivity and moral.

• On-site customer: A user who can answer questions as they arise, should be part
of the team.

• Coding standards: Code is written according to a selected standard to ensure
uniformness and optimal communication.

XP emphasises both a partnership of and the separation of business and technical areas
of decisions. Figure 2.2 provides a visual summary of the process.

Some key elements of XP are:
User stories. Requirement specifications are written in natural language using a

single index-card. These stories are short, to the point and written by the customer
with assistance from the developers.

Spikes. This term refers to a quick experimental phase, used to explore uncertainties
encountered during planning and development.

Chapter 3 provides a detailed overview on XP.
More information may be found in Beck [2000]; Beck and Fowler [2000]; and

Jeffries et al. [2000].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 2. AGILE SOFTWARE DEVELOPMENT 11

2.4.2 Crystal

The Crystal Family [Cockburn, 2002a] is a group of methodologies developed by
Cockburn. These methodologies are based on a common set of principles. They are
also distinguished by the fact that they encourage adjustment to different circumstances
and tuning throughout the development cycle.

This family of methodologies evolved from Cockburn’s philosophy of a unique/just-
in-time methodology for each project. He believes that the methodology should evolve
during the project.

Cockburn defined a matrix (Figure 4.1) to suggest a methodology for use in a given
project.

This is done by determining the number of people required for the project on the x-
axis. Cockburn indexes these values by colour: Clear, Yellow, Orange, Red, Magenta,
etc. The y-axis is used to specify the ‘hardness’/criticality of the system. The indexed
values are: Life (loss of life is possible if a problem occurs in the system); Essential
money (loss of essential money might cause bankruptcy); Discretionary money (some
money might be lost due to faults in the system); Comfort (merely causes discomfort
for the user if a problem occurs). The crosspoint indicates which methodology to use.

Figure 2.3: Cockburn’s Methodology Matrix [Cockburn, 2002a].

For example, consider the development of a informative only website. The task is
assigned to a developer and a graphical designer. The nature of the system indicates
a risk of discomfort if a problem exist. The matrix classification is thus a C6 project,
requiring the minimal amount of ‘ceremony’ (such as documentation and validation).
The methodologies associated with C6 includes Crystal Clear and XP.

Key practices of Crystal include: pair programming; methodology tuning through
the use of reflection from workshops; iterative development; and writing test cases.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 2. AGILE SOFTWARE DEVELOPMENT 12

Chapter 4 provides a more detailed overview on Crystal.

2.4.3 Feature Driven Development (FDD)

FDD was created by Coad and De Luca in 1997 and later refined by Palmer among
others [Coad and De Luca, 1999; Palmer and Felsing, 2002].

FDD is comprised out of five processes, namely:

1. Develop an overall model.

2. Build a detailed, prioritised feature list.

3. Plan by feature.

4. Design by feature.

5. Build by feature.

Processes 4 and 5 are grouped together and together used iteratively.
As one may observe from these processes’ names and also the methodology’s

name, the building block of FDD is a feature. A feature is defined as function that
provides value to a client.

The practices that FDD considers important are:

• Domain object modeling;

• Developing by feature;

• Individual class ownership;

• Using feature teams;

• Inspections;

• Regular builds;

• Configuration management.

Several of these practices are not unique to FDD, however the combination thereof is
claimed as being distinct.

The above mentioned processes and practices are further described in Chapter 5.

2.4.4 SCRUM

First presented by Schwaber at an OOPLSA’95 Workshop on ‘Business Object Design
and Implementation’ [Schwaber, 1995]. Schwaber based Scrum on the work by Non-
aka and Takeuchi published as ‘The new product development game’ in the Journal of
Harvard Business Review (p.137-146, January-February, 1986). Sutherland teamed up
with Schwaber to extend, formalise and implement Scrum. The name Scrum is derived
from the rugby game term ‘scrum’ that denotes “getting an out-of play ball back into
the game” through team effort [Schwaber and Beedle, 2001].

Scrum is more of a managerial process to support other development methodologies
and is not restricted to software development. In a software development context this
means that no specific software development techniques are defined. This paradigm of

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 2. AGILE SOFTWARE DEVELOPMENT 13

thinking leads to a black-box approach for some elements of the process. Incorporation
with other methodologies may be observed through the example of XP@SCRUM (XP
and Scrum) [Schwaber and Beedle, 2001]. Thesprint4 phase is an example of this
black-box approach.

Scrum consists out of three phase groups namely: Pregame, Game and the Postgame.
The Pregame phase is divided into planning and system architecture design. The

new release is defined using the currentbacklog5 and estimations of schedules and
costs. High level design and system architecture for the planned release’ implementa-
tion is developed.

The Game phase consists basically of multiplesprints, eachsprint being followed
by a review.

The last phase, also known as the Conclusion or Postgame phase, includes the steps
where the software products are prepared for release to the users. This may include
writing user documentation, executing integration and system testing etc.

Some interesting characteristics of Scrum are:

• It relies on a small team of no more than six members, with the option of using
multiple teams;

• It has a flexible schedule and deliverables, through the ability of prioritising the
backlog;

• It relies on short iterations (sprints) of one to four weeks;

• It advocates a 15 minute Scrum meeting everyday to help the team to stay up to
date with internal progress.

Figure 2.4 shows a graphical representation of the process. Simply stated, a project
starts off with a high level planning phase that results in a backlog. The backlog is
constantly updated as the project proceeds. After the planning phase, a number of
sprints are executed until the development is finished.

As stated previously the sprints are treated as black-boxes and thus defined on a
per project and/or organisational basis. The only requirement is that each day starts off
with a +/- 15 minute stand-up meeting. Each sprint should conclude by being able to
demonstrate the new features added as defined by the backlog for the sprint.

A more detailed description may be found in [Schwaber, 1995; Schwaber and Bee-
dle, 2001].

2.4.5 Dynamic Systems Development Methodology (DSDM)

DSDM was conceived in 1994 through the DSDM Consortium. Since then it has grown
to become the framework of choice for rapid application development (RAD). As of
writing the current version is 4.2. The DSDM Consortium is a non-profit organisa-
tion whose responsibilities include the maintaining and improving of DSDM. Another
responsibility is the licensing of the framework to members for use with projects.

The principles behind DSDM as stated in [DSDM URL] are:

1. Active user involvement is imperative.

4Scrum’s term for describing an iteration. “A Sprint is a set of development activities conducted over a
pre-defined period, usually one to four weeks.”[Schwaber, 1995]

5A Scrum term to describe the list of tasks/features still to be done.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 2. AGILE SOFTWARE DEVELOPMENT 14

Figure 2.4: Visual presentation of the SCRUM process [SCRUM URL].

2. The team must be empowered to make decisions.

3. The focus is on frequent delivery of products.

4. Fitness for business purpose is the essential criterion for acceptance of deliver-
ables.

5. Iterative and incremental development is necessary to converge on an accurate
business solution.

6. All changes during development are reversible.

7. Requirements are baselined at a high level.

8. Testing is integrated throughout the life-cycle.

9. Collaboration and cooperation between all stakeholders is essential.

The core techniques used by DSDM are: timeboxing, modelling, prototyping and con-
figuration management. Each of these are now briefly described.

2.4.5.1 Timeboxing

In DSDM the project delivery date is fixed. Thus a fixed time-frame exists wherein the
development should occur. This time-frame is broken down into smaller time-boxes of
two to six weeks. Each of these time-boxes passes through three phases. Firstly, the
Investigationphase – to determine the correctness of decisions by the team. Secondly,
the Refinementphase acts on the feedback from the investigation phase. Lastly all
the loose ends are tied-up during theConsolidationphase. Each time-box contains a
prioritised list of requirements that should be completed at the end of the time-box.
The list should contain different priorities to enable flexibility when the original plan
needs adjusting.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 2. AGILE SOFTWARE DEVELOPMENT 15

MoSCow is a technique for prioritising requirements in a DSDM project. The
acronym refers to the following rules:

Must haves: things that are fundamental to the projects’ success.
o –
Should haves: things that are important but the projects’ success does not rely on

them.
Could haves: things that can be easily left out without impacting the project.
o –
Won’t haves: things that can be left out this time around and done at a later date.

2.4.5.2 Modelling

DSDM uses modelling to enhance understanding and communication of business needs.
Due to DSDM’s RAD nature, the modelling techniques used should not incur bureau-
cratic overhead to the project. The selected modelling method should try to breach the
gap between developers and business users with a focus on being user-oriented.

2.4.5.3 Prototyping

Through prototypes the users are able to validate the implementation against the re-
quirements. Requirement articulation is also increased by enabling the user to envi-
sion more capabilities for the system. As can be deduced, this technique provides
bi-directional feedback between the developers and the users.

2.4.5.4 Testing

DSDM approaches testing as a constant action throughout the life-cycle of the project.
DSDM also acknowledges the importance of testing by non-technical users.

2.4.5.5 Configuration Management

The prototyping nature of DSDM requires good configuration management to enable
the team to return to a previous prototype version if the current effort produced unsat-
isfactory results.

DSDM acknowledges the fact that it may not be suited for every project and provides
a comprehensive ‘suitability/risk list’ to assist in determining the feasibility of DSDM
on a per project basis.

DSDM is continually refined and extended through the work of the Consortium.
As may be seen from an e-business tailored version named e-DSDM that has been
introduced.

A more detailed analysis, review and comparison with other agile methodologies is
provided in Abrahamsson et al. [2002].

2.4.6 Lean Programming

Through her experience with Lean Manufacturing and Total Quality Management (TQM),
Mary Poppendieck has come to the conclusion that the same principles used in manu-
facturing to improve production may also be applicable to software development. The

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 2. AGILE SOFTWARE DEVELOPMENT 16

adaptation to software development is known as Lean Programming (also known as
Lean Development).

Lean Manufacturing (also known as the Toyota Production System) was developed
by Taiichi Ohno on request by Toyoda Sakichi, the founder of Toyota Spinning and
Weaving company, to enable the production of automobiles. It is based on two values,
namely rapid product flow and build-in quality.

At approximately the same time Total Quality Management was being taught by
Dr. W. Edwards Deming in Japan. TQM and Lean Manufacturing were incorporated
together by Toyota.

The adaptation of the above techniques to software development has brought the
following ‘Lean’ rules to light, as defined by Poppendieck [2001]:

1. Eliminate Waste. Eliminate anything that does not add value to the final product.

2. Minimize Inventory (Minimize Intermediate Artifacts). In software development
the inventory represents the documentation that is generated and not part of the
final program. The value of each document to be produced needs to be evaluated.
The detail level required from the documentation also needs to be ascertain to
minimise the ‘inventory’ and eliminate waste.

3. Maximize Flow (Drive Down Development Time). The concept of reducing cycle
times and the reduction of work-in-progress is applied to software development
through the use of iterative development.

4. Pull from Demand (Decide as Late as Possible). Responding to change is advo-
cated through this principle. Develop for the customers current needs and adjust
the solution to reflect the requirement changes needed by the customer as these
changes occur.

5. Empower Workers (Decide as Low as Possible). Through documentation the
decision making is taken away from the developers. It is Lean Programming’s
viewpoint (and agile’s in general) that the developers should be empowered to do
what they do best – providing solutions to solve a requirement. This means that
the developers are told “what needs to be done, not how to do it” Poppendieck
[2001].

6. Meet Customer Requirements (Now and in the Future). The3rd value of agile
states “Customer collaboration over contract negotiation”. As discussed in Sec-
tion 2.2, it is more important to address the needs of customers than to force
them into signing-off on a fixed specification.

7. Do it Right the First Time (Incorporate Feedback). As with Lean Manufactur-
ing’s approach of building tests into the process to detect when the process is
broken, Lean Programming builds tests into the development process for ensur-
ing that changes do not break the system. This is accomplished through unit and
regression6 tests, preferably using a test driven approach – writing the test cases
before the implementation.

8. Abolish Local Optimization (Sub-Optimized Measurements are the Enemy). The
Lean Manufacturing concept of optimising the overall process over the optimisa-
tion of sub process can be applied to software development’s scope management.

6Regression testing is the processes of validating that changed code does not adversely affect unmodified
code.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 2. AGILE SOFTWARE DEVELOPMENT 17

Trying to manage the scope of the project when changes starts to occur by keep
to the originally envisioned scope size may only result in decision making that
is based on the planned system and not the required system. Thus by managing
the original scope of the project substantial resources may be squandered rather
than investing these resources in providing a system to the users that is of value.

9. Partner with Suppliers (Use Evolutionary Procurement). The practise of using
contracts to dictate all the variables associated with a project may be more harm-
ful to the relationship than being forward coming. Contract negotiation may
also result in substantial cost. Software development should follow the example
of Supply Chain Managementin building mutually beneficial relationships with
suppliers.

10. Create a Culture of Continuous Improvement. Making use of iterative develop-
ment enables the adjustment of both the implementation and the process.

A detailed description of Lean Programming may be found in [Poppendieck, 2001] and
[Poppendieck and Poppendieck, 2003].

2.4.7 Other Agile Methodologies

Other methodologies that are classified as agile includeAdaptive Software Develop-
mentby Highsmith (see [Highsmith, 2000; Adaptive URL]) and Pragmatic Program-
ming by Hunt and Thomas (see [Hunt and Thomas, 1999; Pragmatic Programming
URL]).

2.5 Agile Modeling

Derived extensively from XP and the underlying agile values, Agile Modeling (AM) is
being developed by Ambler. Ambler describes AM as “a collection of values, princi-
ples, and practices for modeling software that can be applied on a software development
project in an effective and light-weight manner” [Agile Modeling URL].

The values referred to above by Ambler are basically the four values defined by
XP: communication, simplicity, feedback and courage. However, AM has a fifth value,
namelyhumility. Humility refers to being able to acknowledge that one does not know
everything and that all the stakeholders involved in a project have certain expertise that
brings value to the project.

As with XP, AM also divides its principles up into core and supplementary princi-
ples. A number of these principles are derived and/or adopted from XP’s principles.
Where this is the case the reader is referred to literature on XP for a more detailed
discussion on these principles. The core principles are:

• Assume simplicity. Use the simplest solution that will satisfy the needs and as-
sume this to be the best solution.

• Embrace change. Accept the fact that requirements change as the project pro-
gresses.

• Enabling the next effort is your secondary goal. Ensuring that the delivered
system can be extended later on is important and should be kept in mind. As
Cockburn noted through his game analogy the secondary goal of the software

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 2. AGILE SOFTWARE DEVELOPMENT 18

development game is to setup for the next game. In essence it means that just
enough documentation should be generated to help the next team to pick up the
threads of the system with as much ease as possible.

• Incremental change. It is usually impossible to correctly define a model of a
system with a high level of detail in a single step. Instead an iterative approach
may help enable a model to evolve over time as the requirements change.

• Maximize stakeholder investment. Before and during modeling a modeler should
keep in mind that stakeholder resource utilisation should be maximised for the
whole project. This means that a thorough evaluation of the return on investment
(ROI) should be done when deciding on generating models. Only generate model
that will provide real value to the project and that are justifiable against the cost
associated with it.

• Model with a purpose. When creating or modifying a model it is important to
know two factors before attempting to do so. Firstly, answer the question of
who the audience of the artifact will be. Secondly, get an understanding of the
purpose for the model. For example, a model to explain a project to management
should be different from a model to help oneself to refactor an existing design to
a better pattern.

• Multiple models. When developing software, one needs to make use of a diverse
set of models to illustrate the system. Different models highlight different aspects
of the system. Even though there is an extensive range of models that may be
used, one needs to select only the most appropriate ones that will satisfy the
current needs.

• Quality work. When the result of work done is of a high quality it should be
much easier to extend and refactor it.

• Rapid feedback. It is important to use practices that enable rapid feedback on
actions taken. This results in closer relationships between the stakeholders.

• Software is your primary goal. Any activity in software development should
only be undertaken with the fundamental aim off fulfilling the needs of the user
through working software. If the activity does not comply with this principle,
the execution of this activity should be re-evaluated.

• Travel light. Every model one decides to keep causes more reworking when
changes occur. It is thus important to only keep the models that add the most
value and to thereby limit the number of model as far as possible.

The supplementary principles are:

• Content is more important than representation. A model may be portrayed by
multiple methods, for example white-board sketches, CRC cards or CASE tools.
The underlying concept being illustrated should be the focus, however, still keep-
ing in mind the purpose of the model.

• Everyone can learn from everyone else. No single person can know everything.
However through interactions people are able to learn from one another. In an
ever-changing world this ability is of utmost importance.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 2. AGILE SOFTWARE DEVELOPMENT 19

• Know your models. One needs to know the strengths and weaknesses of the
diverse types of models to be able to select the most effective ones to use.

• Know your tools. Using the appropriate feature of a modeling tool at the correct
time with the understanding of the result thereof is important for efficiency.

• Local Adaptation. The uniqueness of a project needs to be incorporated into the
modeling methods selected for that specific project. The environment wherein
the project is executed is one of the factors that influence the particular way of
doing modeling. The environment is determined by factors such as the develop-
ment process used and the organisational culture.

• Open and honest communication. Enabling people to speak their mind ensures
that decisions are made based on correct and/ or valuable information.

• Work with people’s instincts. As one gains experience one’s instincts grow more
accurate. These instincts come from one’s subconscious and may be correct
when there are no other facts on which to base decisions. Listening to one’s in-
stincts may force one to investigate a questionable scenario and thus in turn to
provide proof to substantiate a decision. This principle requires courage, men-
tioned above as one of the values associated with AM.

Derived from the above principles are the following core practices:

• Active stakeholder participation. This is similar to XP’s on-site customer prac-
tise but with a broader approach. AM seeks the active involvement of all the
stakeholders – not only from the customer.

• Apply the right artifact(s). Each model has a specific use and it is therefore
necessary to select the appropriate artifact to produce to support the project’s
communication needs.

• Collective ownership. Allow any stakeholder to work on any of the models for
the project.

• Consider testability. Always keep in mind how the design being modeled can
be tested. Thinking about how the design will be tested helps the modelers to
validate their models.

• Create several models in parallel. It might be more productive if one generates
more than one model at the same time. It may also help gain a better overall
understanding into the system being developed.

• Create simple content. Following the KISS (Keep It Simple Stupid) principle
means that the representation of content should be as simple as possible by ful-
filling only the needs of the project. No extra feature that is not part of the
requirement specification should be represented or added into the model.

• Depict models simply. Models needs to be depicted at a level of detail that will
satisfy the needs of the project and fulfil its purpose. For example, if one needs
to see the relationship between classes there may be no need to also display all
the methods available from each class.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 2. AGILE SOFTWARE DEVELOPMENT 20

• Display models publicly. For enhanced communication, the models generated
should be displayed to the development team in a way that is easily accessible.
This may be in the form of a “modeling wall” in the development team’s office.

• Iterate to another artifact. Suspending work on a model that is ‘stuck’ and mov-
ing on to another one may prove to be helpful. Working on another model may
help to gain a better understanding of the system and may resolve the problem
associated with the model that ‘got stuck’.

• Model in small increments. Breaking down development into smaller fragments
enables more agility and provides stakeholders with quicker feedback.

• Model with others. Modeling is a communication aid for the team to gain an
understanding of a problem. It is thus natural to try and use multiple members
as inputs when defining the models. This enhance not only communication but
also the quality of the models and in turn fosters a faster understanding my team
members.

• Prove it with code. After one has created a model it is essential to verify that the
model will actually work. This should be done by implementing the model and
demonstrating the implementation to the customer. A good strategy is to take a
diagram and write the test cases, then the implementation and then execute the
test cases. It is worth noting that the practice ofmodeling in small increments
tends to be more effective.

• Use the simplest tools. Make use of the simplest tool for the purpose of the model
when modeling. It might be more feasible to use a white-board when modeling
a throw-away diagram whose purpose is to gain a visual understanding of the
current feature. In contrast, a software tool may be better suited when a model
needs to be drawn for presentation to stakeholders.

The supplementary practices are:

• Apply modeling standards. As with XP’s coding standards (discussed in Chapter
3), using modeling standards are deemed important to promote communication
and unity in the team context. When modeling in a project context with multi-
ple members involved it is necessary to use conventions to ensure consistency
and better understanding. Selecting a modeling standard and enforcing it helps
promote this.

• Apply patterns gently. When a modeller suspects the possible use of a design
pattern but is still unsure, the modeller should design the system to be as sim-
ple as possible for today’s needs but with the ability to be refactored to the full
pattern when the pattern is deemed as the simplest solution. An example would
be where a system uses two compression algorithms based on a certain selec-
tion process. This scenario leads to the possibility of using theStrategypattern.
However it may be less complicated and faster to use an if statement to choose
between the two algorithms, with the two algorithms implemented in a similar
structural way. Later on when the need arises for a third algorithm, the design
may be refactored to the full Strategy pattern implementation.

• Discard temporary models. A model that has outlived its usefulness should im-
mediately be thrown away. Most models usefulness is limited to gaining an

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 2. AGILE SOFTWARE DEVELOPMENT 21

understanding of a specific issue when developing the system. As soon as the
developers have gained an understanding and implemented it in code there may
be no further need for the model because the synchronisation between code and
the model might be lost very quickly.

• Formalize contract models. Because contract models7 imply a contract between
parties it is necessary to standardise these models. More effort and ceremony
should be spent on developing and maintaining these models. However to con-
form with the travel-light principle, one needs to keep the number of contract
models for a project as low as possible.

• Model to communicate. Models are used to exchange information between dif-
ferent parties. It is important to realise who the audience of the models are going
to be; modeling accordingly will maximise the communication between the par-
ties.

• Model to understand. Modeling is used to explore the problem space. Through
modeling one can design solutions. Multiple solutions can be compared to select
the most appropriate one for implementation.

• Reuse existing resources. When possible one needs to investigate models that are
already available in the problem domain. These may include existing business
process models, data models and requirement models. Applying design patterns
gently is also a means of reuse.

• Update only when it hurts. Models should only be updated when the updated
model will provide more value to the development effort than not updating it.
Having to update a model requires resources that could be better utilised for other
development needs. Models may still be useful enough without updating them,
as with a street-map that still satisfies one’s needs even though it is outdated.

Agile Modeling brings the benefits of modeling to agile software development in an ag-
ile manner. Although some of the agile methodologies de-emphasises extensive mod-
eling, the usefulness of modeling in software development is acknowledged.

2.6 Conclusion

From the above description of the common ground between the agile methodologies
and from the description of several of these methodologies, one may start to gain a
greater understanding of what ASD entails.

The manifesto highlights the important role humans play in developing software
both as the customer and the developer. From the brief introduction to some of the
agile methodologies one may observe that they have the potential of providing the
benefits advocated by their proponents.

Table 2.1 provides a short comparison of the methologies that have been described
in the previous sections.

The following three chapters will provide more in-depth overviews of certain agile
methodologies. The agile methodologies to be investigated are XP (Chapter 3), Crystal
(Chapter 4) and FDD (Chapter 5).

7Models representing API’s (Application Programming Interfaces), XML DTD’s etc.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 2. AGILE SOFTWARE DEVELOPMENT 22

Ta
bl

e
2.

1:
A

gi
le

M
et

ho
do

lo
gi

es
C

om
pa

ris
on

M
et

ho
do

lo
gy

D
is

tin
ct

iv
e

F
ea

tu
re

s

X
P

•
H

ig
hl

y
di

sc
ip

lin
ed

•
P

ro
je

ct
si

ze
lim

ite
d

to
20

pe
op

le
w

ith
th

e
st

an
da

rd
im

pl
em

en
ta

tio
n

•
R

eq
ui

re
s

an
on

-s
ite

cu
st

om
er

•
U

se
s

a
Te

st
-F

irs
ta

pp
ro

ac
h

C
ry

st
al

•
A

dv
oc

at
es

a
m

et
ho

do
lo

gy
-p

er
-p

ro
je

ct
ph

ilo
so

ph
y

F
D

D

•
Is

a
m

od
el

dr
iv

en
ap

pr
oa

ch

•
In

cl
ud

es
a

m
od

el
in

g-
in

-c
ol

ou
r

te
ch

ni
qu

e

S
C

R
U

M

•
A

m
an

ag
er

ia
l

m
et

ho
do

lo
gy

th
at

m
ay

be
us

ed
in

co
m

bi
na

tio
n

w
ith

ot
he

r
so

ftw
ar

e
de

ve
lo

pm
en

t
m

et
ho

do
lo

gi
es

•
F

oc
us

se
s

on
a

da
ily

,1
5

m
in

ut
e

st
an

d-
up

m
ee

tin
g

D
S

D
M

•
P

rim
ar

y
R

A
D

fr
am

ew
or

k
in

E
ur

op
e

•
D

ev
el

op
ed

an
d

m
ai

nt
ai

ne
d

th
ro

ug
h

a
co

ns
or

tiu
m

•
R

el
ie

s
on

a
lic

en
si

ng
sc

he
m

e
fo

r
its

us
ag

e

Le
an

P
ro

gr
am

m
in

g

•
B

as
ed

on
th

e
Le

an
M

an
uf

ac
tu

rin
g

ph
ilo

so
ph

y,
or

ig
in

al
ly

de
ve

lo
pe

d
fo

r
To

yo
ta

’s
as

se
m

bl
y

pl
an

t.
T

hi
s

ph
ilo

so
ph

y
is

us
ed

by
th

e
m

an
uf

ac
tu

rin
g

in
du

st
ry

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

Chapter 3

A Critical Overview of Extreme
Programming (XP)

3.1 Introduction

Extreme Programming (XP) is a ‘light-weight’ software development methodology
(more correctly, an agile methodology). According to Beck [2000] it “is a discipline of
software development”.

This means that a software team has to comply with certain well-defined and well-
circumscribed processes when developing software in order for their development method-
ology to be classifiable as XP. The most important of these processes will be spelled
out below.

XP evolved out of the problems faced by software development, including: soft-
ware not meeting customer expectations; reduced applicability of delivered software;
and the inability to meet schedules[Beck, 2000; Cockburn, 2002a].

XP is summarised in the following sections by referring to the four variables of a
project as specified by Beck [2000] as well as to the values, principles and practices
defined for XP. These sections (i.e. 3.2 to 3.5) are mainly derived from publications by
the original XP team members. (See Beck [2000]; Williams et al. [2000]; XP URL).
Section 3.6 provides insights into the suggested physical working conditions and Sec-
tion 3.7 describes the process. The last section will discuss issues regarding XP that are
perhaps of a controversial nature: the feasibility of an on-site customer (Section 3.8.1),
scalability of the methodology (Section 3.8.2), the impact of changeable requirements
on a methodology (Section 3.8.3), the appropriateness of pair programming (Section
3.8.4), the accuracy of Beck’s cost of change curve (Section 3.8.5) and the lack of
documentation generated by XP (Section 3.8.6).

3.2 Four Variables of a project

Beck [2000] points to four interrelated variables that influence a project: scope; cost;
quality and time. The management of these variables controls the output of the project.
These variables are tightly coupled, thus changing one of the variables causes changes
to the rest.

23

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 3. A CRITICAL OVERVIEW OF XP 24

3.2.1 Scope

Thus, as the scope becomes larger, the system tends to become more complicated and
therefore requires more money and time to complete. However, based on some scope
metric such as function points1one should not simply assume a linear or near-linear
relationship between scope and the other variables. In some applications, a scope en-
largement may significantly add complexity, while in other cases, the added function-
ality may be relatively simple and loosely coupled to the remainder of the system.

3.2.2 Cost

Clearly if costs are constrained, then quality and/or scope and/or time have to be con-
strained as well. However, merely providing more money does not automatically guar-
antee a better balance between the variables but may have unexpected and/or opposite
results. For example, it would be naï¿1

2e to imagine that one could merely provide more
money in the hope that the scope and/or quality of the task would somehow “automati-
cally” increase. Instead, the effect might merely be to take pressure off the developers,
allowing them to complete the task at the same quality and scope levels, in somewhat
longer time. (This is reminiscent of the “law” formulated by Parkinson [1958]: “Work
expands to meet the time available for its completion.”).

3.2.3 Quality

The level of quality required from the output has an important influence on the rest
of the variables. The higher the quality demanded, the more money and time will be
needed andvice versa.

Of course, the idea of software quality remains somewhat nebulous:
The quality of the software to some clients could mean an easy-to-use interface

for users such as graphical interfaces with similar feeling as other applications; or
a 24/7 uptime for services provided by the system; being able to managex number
of transactions per second; having a guaranteed 100% data integrity for input and/or
output; the system provides the most features.

On the other hand to a developer, quality might mean delivering a product that is
based on the best architecture possible; that has the cleanest code; or that provides the
optimal performance.

From the above we can deduce that quality may reflect three dimensions:

• The requirements of the system. The system requirements state what the end
products should look like from the user’s point of view. Comparing the actual
product developed against the stated system requirements therefore gives an in-
dication of the systems quality from the users’s perspective. It should also be
noted that the system requirements directly relates to the scope (Section 3.2.1)
of the system.

• The resourcefulness of the development team. This include the motivational and
incentive factors as well as experience, training and the working environment
(See Section 3.6).

1ISO/IEC/JTC1/SC7 Standard #14143 definition for Functional Size: “A size of software derived by
quantifying thefunctional user requirements”

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 3. A CRITICAL OVERVIEW OF XP 25

• The development process used. This statement raises a lot of debate in the soft-
ware engineering community regarding which process is the best to use and re-
sulting in the highest quality of software produced. This dissertation, and this
chapter in particular, is part of this debate by providing a discussion on XP and
how it achieves quality.

Although a full discussion on quality and its definition in software development is
beyond the scope of this dissertation, how XP allegedly supports it will be mentioned
throughout this chapter.

3.2.4 Time

Time is not necessarily related to cost in a linear fashion. This can be seen from the
cost-of-change/time curve (Figure 3.2) introduced by Beck [2000]. This curve is some-
what controversial and a discussion is provided in Section 3.8.5.
In other contexts, too much time can be as crippling as too little time. If strict discipline
and client interaction are not maintained, it may afford developers the opportunity of
creating unneeded features. A balance needs to be struck between unrealistically tight
time constraints on the one hand (which encourage cutting of corners and which tend
to demotivate the developers) and too much time (which runs the obvious risk of pro-
moting low productivity).

The interrelationship between scope, time, quality and cost that Beck has identified
clearly applies to many contexts and is not limited to XP, nor indeed to software produc-
tion. Furthermore, the question of determining values for these variables is non-trivial
and is a general issue of concern in software engineering and project management. It
is fairly easy to map time and costs to numeric values. The determination of scope
is part of the ‘traditional’ requirements engineering process for which standards are
being developed through ISO/IEC initiatives. Metrics for quantification of scope have
been developed and standardised but are somewhat elusive. In any production context,
these variables should be considered. Variables that can be quantified (e.g. time / cost)
should be made explicit. If explicit metrics for other variables are not appropriate, they
should be qualitatively articulated.

The distinctive part of XP is how agreement between contracting parties is to be
reached on these values. The methodology requires that the “external forces (cus-
tomers, managers)” may determine the values of any three of the variables. It is then
the prerogative of the development team to propose “the resultant value of the fourth
variable” [Beck, 2000]. Clearly, this is not meant to eliminate negotiations but to ensure
a balanced and realistic agreement.

3.3 The values of XP

Values are the characteristics/qualities of something or someone that the valuer regards
as desirable and important. Humans sometimes encapsulate these into a mission and/or
vision statement. Values are adhered to either consciously or unconsciously.

Beck has highlighted four values that he believes ought to be part of any software
development endeavour. In particular in the case of an XP initiative, these values are to
be explicitly striven after. This does not mean that other development methodologies
do not espouse these values, but rather that in XP these values are actively pursued.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 3. A CRITICAL OVERVIEW OF XP 26

The XP philosophy thus dictates that for a project to succeed, the project team
needs to embrace four values: communication, simplicity, feedback and courage. Each
of these values is now briefly reviewed.

3.3.1 Communication

Communication is widely recognised as important in successful human relationships,
whether they be personal (marriage) relationships, work relationships, international
(political) relationships, etc. In fact, in recent times, there has been renewed and grow-
ing interest in “knowledge management” as an important component in contributing
to successful companies. In XP, communication between team members is strongly
emphasised.

For a project to succeed, project team members need to be informed. A project con-
sists of a team of individuals whose work influences one another. For this arrangement
to work smoothly individuals and groups obviously need to communicate with the rest
of the team, to keep them up to date and be kept up to date themselves.

XP recognises that successful projects heavily depend on the right communication
flowing between stake-holders. Through the use of techniques like pair-programming,
on-site customer, the environmental conditions and white-boards XP gives expression
to this value.

3.3.2 Simplicity

The notion of simplicity has long been recognised as an important element in solving
problems. This notion was expressed in the middle-ages through Occam’s razor2 and
later by software development’s KISS (Keep It Simple Stupid) principle.

XP uses the statement: “What is the simplest thing that could possibly work” [Beck,
2000], bringing to light its belief that implementing the simplest solution to solve to-
day’s problem is more important than using a complicated solution for tomorrow’s
possiblerequirements.

This value enhances communication because simple things are easier to communi-
cate [Cockburn, 2002a].

In software development this means that one only thinks of the current requirement
and NOT ofpossiblefuture needs of the system; generalisation and extra functionality
add more complexity to the implementation. This refers to the "You Aren’t Gonna
Need It" (YAGNI) principle.

3.3.3 Feedback

To have factual information on the current state of the system provides the best feed-
back and understanding to the development team. Providing feedback within the small-
est possible time scale enhances decision making, thus management, on the project and
ensures that the project moves in the correct direction.

Feedback ties directly in with the rest of the values, and influences each one di-
rectly: feedback is part of communication and increases courage (see next sub-section).

It is directly reflected in the practices of pair-programming (Section 3.5.7), short
releases (Section 3.5.2) and automated testing (Section 3.5.5). It may also require
courage.

2William of Occam (or Ockham) (1284-1347) stated “Entities should not be multiplied unnecessarily.”
which in turn can be restated/simplified as meaning “Keep things simple”

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 3. A CRITICAL OVERVIEW OF XP 27

3.3.4 Courage

This refers to the ability to make difficult decisions and thus correct the project’s direc-
tion.

The saying of “taking a step backward to take two steps forward”, is an example of
this.

XP relies on this value to enable agility and ensure theembracing of changeprin-
ciple.

The previously mentioned values help toencouragethe team by giving them feed-
back on decisions; communicating strategies and using simple solutions.

Courage also refers to adhering to XP practices and not reverting back to traditional
habits when the pressure starts to build up. Thus the opposite of courage is the fearful-
ness of risking and thus not giving feedback, the laziness of staying in a comfort zone
where one does not express an opinion or communicate. Not expressing opinions may
harm the team by providing the gap for individuals to dominate the group; reducing
responsibility for actions and the reduction of synergy occurs.

These values are regarded as essential for a team to be able to practice XP. They should
be part of the team’s culture.

The above values forms the basis for the principles of XP. These principles are now
discussed in the following section.

3.4 Principles

In this section the principles to use when developing software are discussed. These
principles were derived from the values listed in Section 3.3 and are divided into the
basic or fundamental principles and the secondary group of principles. These principles
will form the basis for the practices used in XP. (See Section 3.5).

3.4.1 Fundamental Principles

These are the basis on which the practices are mainly built. They form the basic under-
lying ‘rules’ for XP.

3.4.1.1 Rapid feedback

From learning psychology we know that the time between action and feedback is crit-
ical for optimal learning [Robbins, 2001]. “... one of the principles is to get feedback,
interpret it, and put what is learned back into the system as quickly as possible.” [Beck,
2000].

This in turn enhances changeability and quicker fault correction. In XP this is im-
plemented in various practices: having an on-site customer (Section 3.5.11); carrying
out automated tests (Section 3.5.5); pair programming (Section 3.5.7) and ensuring that
the environment is appropriate (Section 3.6).

3.4.1.2 Assume simplicity

Solvetoday’sproblem with the simplest solution that can work, without trying to solve
future problems that might not even materialise. This again indicates the reliance on
Occam’s razor and KISS principle (see Section 3.3.2).

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 3. A CRITICAL OVERVIEW OF XP 28

3.4.1.3 Incremental change

A series of small changes makes a big difference and is easier to manage. This can be
compared to driving a car: using small adjustments to the direction a person is able to
travel to the final destination [Beck, 2000].

Refactoring3 in combination with automated testing enables this principle.

3.4.1.4 Embracing change

“The best strategy is the one that preserves the most options while actually solving
your most pressing problem.” [Beck, 2000].

Welcoming change during development is one of XP’s main advantages [Beck,
2000] over other methodologies because it is well suited for developing systems with
requirements that are in a constant flux. This ability differentiate it from most other
methodologies that tries to prevent changes to specifications.

By allowing the customer to update the system requirements may also lead to more
benefits, including customer satisfaction.

“Responding to change over following a plan”[Fowler and Highsmith, 2001; Agile
Manifesto URL] is also one of the four values of agile methodologies.

3.4.1.5 Quality work

Everybody wants to do a good job, to ensure job satisfaction [Robbins, 2001]. When
one does not enjoy one’s work one does not give one’s best and this reduces the quality
of the product. This in turn means that every member of the team must be allowed to
do his best.

Doing quality work enables the team to produce high quality products, leading to
more positive feedback.

3.4.2 Secondary Principles

The more general principles that are encouraged and supplemental to the fundamental
principles are as follows:

3.4.2.1 Teach learning

This principle involves eliminating doctrines with regard to learning, by teaching de-
velopers how to learn instead of learning in a predefined way (spoon-feeding). Beck
uses the example of teaching testing in a specified way (a step-by-step approach) ver-
sus teaching strategies for testing (providing guidelines) [Beck, 2000]. By providing
guidelines on how to test, the team are able to evolve their own techniques and cus-
tomising them as needed.

This idea coincides with Cockburn’s concept of three levels of listening and learn-
ing [Cockburn, 2002a]. The three levels are divided according to the detail of explana-
tion required to understand a concept. As an example Cockburn refers to writing books
on methodologies, where in a level one book the author would provide a lot of technical

3“When we remove redundancy, eliminate unused functionality, and rejuvenate obsolete designs we are
refactoring” [XP URL] from the design and code. Refactoring thus means “A change to the system that leaves
its behavior unchanged, but enhances some nonfunctional quality - simplicity, flexibility, understandability,
performance” [Beck, 2000]

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 3. A CRITICAL OVERVIEW OF XP 29

details including templates etc. for the methodology, whereas with a level three book
the author would only give abstract ideas on what a methodology might contain.

The result of teaching learning will be that teams implementing XP will customise
(Section 3.4.2.8) the practices and process to fit the project and to reduce the baggage4

(Section 3.4.2.9) associated with their projects.

3.4.2.2 Small initial investment

Investing the correct amount of resources ensures that a project starts off on the right
foot. By following a tight budget the stakeholders are forced to focus on what needs to
be done [Beck, 2000].

This principle is illustrated in the following two instances:

• human-resources; The project should not start of with a full development team
committed to it. Instead it should start of with say two developers and incremen-
tally grow to accommodate more developers as the project progresses.

• financial-resources; The customer should not pay a fixed upfront amount of
money for the system but rather commit a small initial amount for the explo-
ration phase and then pay per release or per feature produced.

Doing this ensures that the business and developers are not over committed to the
product’s development, in the negative sense, so that they have the courage and ability
to stop the project when it is not beneficial to the parties anymore.

3.4.2.3 Play to win

There is a difference in playing to win and playing not to lose. The latter means doing
everything “by the book” [Beck, 2000] to be able to say they did the task as specified.

Sports is a good example to illustrate this: when a team is able to be relax (in the
sense of being focused and playing by the rules without making mistakes) throughout
the game, because of their mindset that they will win even if they suffer some setbacks,
then they are playing to win. However, when a team shifts its goal from scoring points
to only making sure the other team does not, then they are only playing not to loose.

This way of thinking seems to stem from the value of courage; being able to focus
and continue following the practices and principles of XP when the going gets tough
will enable the team to win.

Following this principle helps the team to focus on what is relevant to the project’s
success and not expending energy on the formalities, pretending to do what is expected.

3.4.2.4 Concrete experiments

For every decision that is made, it’s validity should be tested to ensure it was the correct
one. XP does this through communication, unit- and functional tests.

When a choice needs to be made regarding design, for example, a test should be
created against which to validate the choice. This reduces the risk involved in guesses
and hopes.

According to Beck, the result of a design session should be a group of experiments
that address the questions raised. For example a decision regarding a data-structure

4Artifacts that the team need to keep and maintain over the course of the project. These includes docu-
mentation and restrictions to specific development tools.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 3. A CRITICAL OVERVIEW OF XP 30

that will support the functional and non-functional requirements should be based on
experiments that tests the best options.

3.4.2.5 Open, honest communication

The stakeholders need to communicate with each other without punishment/rebuttal
from the rest of the team.

As part of of the team culture and processes everybody needs to be able speak
his/her mind without inhibitions.

3.4.2.6 Work with people’s instincts, not against them

XP uses people’s short-term self interest to serve the team’s long-term interest. Beck
recognises that people like to win; to learn; to interact with other people; to be part of
a team; to be in control; to be trusted; to do a good job and to have working software
[Beck, 2000].

The methodology utilises these instincts through its practices to ensure that it will
and can be followed. This tends to differentiate XP from other methodologies where
creativity/initiative is often inhibited by rules and prescriptive practices.

3.4.2.7 Accepted responsibility

Responsibility for a task should not be given to a specific person but should rather
be accepted by him. It is assumed that in a team situation where a task needs to be
completed, someone will eventually choose to do it, even if the task is deemed to be
detestable [Beck, 2000; Gido and Clements, 1999].

3.4.2.8 Local adaptation

XP is not a rigid process that needs to be followed exactly. It is mainly a guideline.
Every team should adapt and shape it to their needs [Beck, 2000].

This is also an approach that is promoted by Cockburn who recommends that a
methodology should evolve to fit the circumstances. Of course, the adaptations made
cannot be arbitrary. Rather the evolution should occur within the broad framework
specified by XP. Practical experiences5 have shown this to be true.

3.4.2.9 Travel light

To enable them to change direction easily (Embracing change) the team should not
carry a lot of baggage.

Commitment to a specific set of tools should be avoided. Documentation for bu-
reaucratic purposes (such as big upfront requirement specification that needs to be kept
up to date) may also cause baggage to be dragged along, see section 3.8.6 for a discus-
sion on documentation.

Being able to ‘travel light’ means the team is moreagile.
Artifacts should be : few; simple and valuable [Beck, 2000].

5The Equinox team experienced increased success as they followed XP practices more strictly [Equinox
Interview, 2002].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 3. A CRITICAL OVERVIEW OF XP 31

3.4.2.10 Honest measurement

The correct types and detail level of measurement needs to be used, that will satisfy the
information needs to be gained. For example using ‘lines of code’ as measurement for
productivity or quality is useless in modern programming languages in particular when
refactoring and optimisation is done.

Measurements such as Feature Points (ISO/IEC/JTC1/SC7 workgroup [ISO/IEC
JTC1-SC7 URL]) may be of more use and more realistic for example.

3.5 Practices

Striving for the values outlined in Section 3.3 and using the principles defined in Sec-
tion 3.4 as guidance, an XP team still needs some concrete practices as reference to
work by. XP practices are derived from the four basic software development activ-
ities: listening (What does the customer want? In essence, requirement extraction);
designing (structuring the system); coding and testing. Most of the practices specified
by XP are not new but were abandoned and or rejected by traditional methodologies
because of contradicting beliefs by their authors. Some of the practices are even found
in ‘traditional’ methodologies in some form. The XP practices are: the planning game;
short releases; use of system metaphors; simple design; testing; refactoring; pair pro-
gramming; collective ownership; continuous integration; 40-hour work week; having
an on-site customer and using coding standards.

These practices are supportive of each other. The weaknesses of one practice are
overcome by the strengths of the others [Beck, 2000].

3.5.1 The planning game

"A good plan today is better than a perfect plan tomorrow."
- General George Patton

This is where the two parties (business people and the developers/technical team) to-
gether make decisions on what should be done. Each party brings its own set of inter-
ests to the table. For the business it is: scope (which features needs to be part of the
product); priority (selecting the most important features); release composition (when
does a group of features provide value to the business) and release dates (when will
the presence of the product provide optimal value). And for the developers: estimates
(time-frame to implement a feature); consequences (providing feedback on business
decisions that are influenced by technical factors); process (work and team organisa-
tion) and a detailed schedule (the order in whichuser-stories6 will be implemented).

This means that decisions by business members influence the decisions made by
developers andvice versa.

Beck divides the planning game into three phases: exploration; commitment and
steering.

A project should start off with a simple plan which is then refined in iterations as
the project progresses. This is possible by enabling the customers to update the plan
themselves with estimates from the programmers.

This technique is implemented with different granularity during the process, see
Section 3.7 for a more technical description. Instances of the game includes release

6The customer writes a story describing what the system needs to do. It consists of about three sentences
in customer terminology [Beck, 2000; XP URL]

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 3. A CRITICAL OVERVIEW OF XP 32

planning (Section 3.7.1) and iteration planning (Section 3.7.2). Where release planning
deals with the story level and iteration planning with tasks. Pairs may even use the
planning game when implementing a task.

3.5.2 Short releases

Releases should be as short as possible containing the features that will give the most
value to the business.

Releasing the product after only a few months or even weeks is possible when
the planning game is used to implement the most valuable stories first and by using
continuous testing and integration to ensure correctness throughout development.

This in turn enhances faster feedback from the users.

3.5.3 Metaphor7

The goal of using metaphors is to create a view/understanding of the system that ev-
eryone can relate to. This enables: a common vision of the system; mutual vocabulary
for describing the system; generalising the problem and highlighting the possible ar-
chitecture of the system [Wake, 2002; XP123 URL].

An example would be to describe pair programming as tag-team wrestling [XP123
URL] or the C3 payroll system8 as lines, buckets, and bins.

When a good metaphor is used it may increase communication and understanding
of the system.

From the survey reported in [Rumpe and Schöder, 2002] it seems that this is the
most difficult practice to follow because most people have difficulty understanding how
it should be applied. It is also the least used practice according to the respondents. This
seems to suggest that practitioners need to get better acquainted with what this practice
means and how they should apply it.

3.5.4 Simple Design

Always keep the design of the system as simple as possible. This is done by only
adding functionality when required and by simplifying complex code with continual
refactoring. This practice also requires that no duplication in logic exists and that code
should be as readable as possible.

The rule of KISS (Keep It Simple Stupid) is of utmost importance. See Section
3.3.2 for a discussion on simplicity.

3.5.5 Testing

This is one of the more important practices, with the other practices relying heavily on
it.

XP uses automated tests to build confidence in the program being developed. By
running all the tests when a change (new feature or refactoring) has been made one not
only confirms that the change did not break the system but also boosts the developers
confidence and morale. Through testing the team gets courage to change the code

7“A story that everyone - customers, programmers and managers - can tell about how the system works”
[Beck, 2000]

8The C3 (Chrysler Comprehensive Compensation) payroll system was the first project using XP [Beck,
2000].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 3. A CRITICAL OVERVIEW OF XP 33

as needed with the knowledge that problems will be caught as soon as the change is
complete and the tests are run. Having tests enables the program/system to become
“more capable of accepting change...”[Beck, 2000].

By writing tests first, requirements can be better understood before implementation
is started.

The programmers write unit tests to validate their implementations and check their
understanding of the requirements.

Customers specify and write, with aid from the programmers, functionality/acceptance
tests for the system according to the user-stories.

Tests need to be automated to ensure quick execution on a regular basis.
The use of automated testing was also heavily sought after by Netscape and Mi-

crosoft for their project development since the middle 1990’s [Cusumano and Yoffie,
2000]. However it was only partly successful during that time due to a lack of tools and
technology, since then tools such as XUnit and JUnit with its extensions have become
widely and successfully used.

3.5.6 Refactoring

The use of coding standards, collective ownership, pair programming and automated
testing provides the possibility for continuous refactoring. Code is continuously refac-
tored when and as needed by any pair during development.

After a new feature is implemented and all the tests succeed, developers may be
able to simplify the implementation because of retrospect, insights and they should do
so. This is only one example of the many instances where refactoring may occur.

A lot of research has been done on this topic. Some publication include Fowler
[1999]; Roberts [1999]; and Opdyke [1992] and a detailed discussion is beyond the
scope of this dissertation.

3.5.7 Pair programming

Two programmers work together on one machine. One uses the machine to imple-
ment the current feature, while his partner thinks strategically, thus globally about the
proposed solution. Together they develop the tests and implementation, refactoring
as needed. Pairs are assigned as needed by the current problem, enabling knowledge
exchange between developers.

This practice is one of the fundamental elements of XP and also one of the more
controversial ideas, causing a lot of debate between traditional and agile methodolo-
gists and their followers. See section 3.8.4 for discussion on this controversy.

3.5.8 Collective ownership

All the developers share responsibility of the system (the code), enabling a pair to
improve it immediately when they need to. This also increases understanding of the
system by the whole team and in turn increases communication.

The practice of allowing any developer access to any code is a controversial idea
that generates a lot of opinions in the software engineering/development field, even
between the different agile methodologies.

The opposing methods include no-ownership and individual ownership. Both are
rejected by XP because of their negative effect on communication, refactoring and
changeability. Restricting access to code causes bottlenecks during development if

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 3. A CRITICAL OVERVIEW OF XP 34

mutual exclusive functionality needs to be added to a single unit of code, for example
a class in a object-oriented language.

3.5.9 Continuous integration

Changes and updates to code made by pairs should be integrated regularly, after a few
hours and not later than at the end of a day of development. This confirms that local
changes did not break the system as the integrated system should always run tests with
a 100% success rate.

One of the effects of this is that there is always a stable and current version of the
system available to be released if needed.

Another result is that the different pairs of developers can update their local working
copy of the system as soon as a pair has integrated their changes, thus reducing conflicts
and ensuring easier integration when it is their turn.

Regular integration is also practiced by Microsoft with their nightly builds practice
[Cusumano and Yoffie, 2000].

3.5.10 40-hour week

Limiting the working hours helps to ensure that developers are focused and creative,
leading to better morale and productivity. “Overtime is a symptom of a serious problem
on the project. The XP rule is simple - you can’t work a second week of overtime.”
[Beck, 2000].

The “40-hours” is not a limit. This can be customised to fit the team’s tolerance,
because some people are able to work 45 hours a week and some only 35.

An advantage of this rule may be that domestic problems due to “working-late” are
reduced, helping team members build better relationships with the organisation. This
brings the saying of “All work and no play makes Jack a dull boy” to mind.

3.5.11 On-site customer

Having at hand a customer who will be using the system and who understands the
domain, to answer questions and to validate functionality is important to an XP project.
This speeds up development and helps with quick correcting of deviation from the real
requirements.

This practice reduces misunderstandings and invalid assumptions by developers.
The business, those that have not experienced the benefits, is mostly against this

practice because of the cost and time associated with committing a user who might be
needed for the organisation’s primary work. This debate is discussed in Section 3.8.1.

This concept is not unique to XP but is based on business thinking that states that
a business should have close relationships with its customers. This is also a practice
encouraged by project management schools [Gido and Clements, 1999].

In the end this is probably the most difficult requirement of XP and it will take a lot
of explanation and motivation to convince the customer to follow this practice.

3.5.12 Coding standards

For optimal collective code ownership and pairing, the team needs to adopt a set of rules
to dictate the practice of writing code for the system. Adoption needs to be voluntarily
by all members and should enhance communication. Thus it should be a team decision.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 3. A CRITICAL OVERVIEW OF XP 35

Sticking to a common style of coding is important because when there is collective
code ownership (Section 3.5.8), pair programming (Section 3.5.7) with constant pair
swopping and refactoring (Section 3.5.6); the code should always look the same with-
out the ability to distinguish who in the team wrote it. Having a consistent style for the
code enhances readability and productivity.

The standard, as with all practices, should comply with the XP values, thus: en-
hance the communication in the team and be as simple as possible and in turn simplify
the code.

3.6 Environment

An important consideration that helps XP to work, is to ensure that the environmental
condition wherein the XP team functions is appropriate. In simple terms this refers to
the working area of the development team.

This form part of a specialised field in human science, where the question is: ‘What
are the perfect working conditions for optimal productivity?’. For intellectually inten-
sive work the emphasis lies with increasing communication and knowledge manage-
ment [Robbins, 2001].

Cockburn gives a detailed discussion on communication and the working environ-
ment in [Cockburn, 2002a]. The conclusion is that the closer team member are to each
other, the higher the level of information flow is between them and this in turn increases
productivity.

In the XP context the working environment is setup for ultimate flow of information
in the shortest time possible.

Beck’s guideline for the workspace layout is:

The best setup is an open bullpen, with little cubbies around the outside
of the space. The team members can keep their personal items in these
cubbies, ... and spend time at them when they don’t want to be interrupted.
... Put the biggest, fastest development machines on tables in the middle
of the space ... This way, if someone wants to program, they will naturally
be drawn to the open, public space. From here everyone can see what is
happening, pairs can form easily, and each pair can draw from the energy
of the other pairs who are also developing at the same time.[Beck, 2000]

Beck also suggest a common place for team members where they can relax on couches
with coffee and toys to help them step away for a break from development when they
get stuck with a problem.

Another feature of the environment should be the use of white boards to enhance
communication. It may be used for quick brainstorming sessions and the displaying of
tasks, stories and project status.

Once again all the values, principles and practices of XP and mostly the local situ-
ation should be taken into account when setting up the environment for development,
because it should be customised to fit with the development team’s culture, keeping in
mind the organisational culture and regulations.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 3. A CRITICAL OVERVIEW OF XP 36

3.7 The process flow

Figure 3.1 gives a visual summary of the process used by XP as described by [Beck,
2000].

As previously stated, XP is a highly iterative process thus the whole process can be
repeated as many times as required to satisfy the customer. Keeping this in mind and the
fact that the same rule applies to the sub parts, then the process flow can be described
as starting off with the ReleasePlanning Game(Section 3.7.1) which produces a small
release as output that has been validated againstAcceptance Tests. This process is
repeated iteratively for the life span of the project.

3.7.1 The Release Planning

The duration of a release is usually between one and three months, where the planning
part may take between one to three weeks.

Being an instance of theplanning gamemeans that this phase consists of the three
sub-phases exploration, commitment and steering (see Section 3.5.1). These phases
are discussed below:

3.7.1.1 Exploration

During this sub-phase both parties try to get an understanding of what the system is
required to do. This is done by writinguser-storiesdescribing each feature of the
system.

The customer does this using natural language and index cards.
The development team takes theseuser-storiesand assignsestimatesto each one.

However, if the developers feel that the story is not specific enough or that it is too
broad they should ask the customer tosplit the story up into more specific stories.
Developers may also usespikes9 to help determine estimates when they are unsure.

3.7.1.2 Commitment

Here the scope and date for the release is determined. The scope is determined by the
list of stories that need to be completed for this release. To decide on which stories
to include in the list the customer first needs to sort the stories by theirvalue to the
business. A value of 1 (high), 2 (medium) or 3(low) should be assigned to each story
and the stories are then grouped accordingly.

Developers then sort these stories according to the level ofrisk involved using the
values 1 (high), 2 (medium) or 3(low).

The result of the above should be matrix that categorises the stories according to
the level of value to the business and the level of risk involved in implementing them.

The next step is for the developers to estimate the currentvelocity10 of the team.
The business/customer finally chooses thescope, either by selecting the story-cards

that will fit into the current release time-frame or by selecting all the cards and then
calculating the release date using thevelocityandestimates.

9This is a quick programming or literature exploration of an issue that developers are unsure of.
10How fast the team can program in Ideal Engineering Time per calendar month. This is indicated by

specifying the number of story-points the team can implement during a iteration.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 3. A CRITICAL OVERVIEW OF XP 37

Figure 3.1: XP Project Process

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 3. A CRITICAL OVERVIEW OF XP 38

3.7.1.3 Steer

The purpose of this phase is to enable the team to update the plan using the knowl-
edge gained thus far. Figure 3.1 shows this sub-process as looking similar to Release
Planning.

The four possible actions that may be taken during this stage are:

• Execute an Iteration. The team implements an iteration worth of stories (see
Section 3.7.2).

• Recover. If the development team realises that they have overestimated their
velocity, they may request the customer to re-select from the remaining stories
(for the current iteration) those that should remain in the current release, based
on the newly calculated velocity and/or estimates.

• Adding of new stories. Business needs may change and this will require the
ability to add new stories to the current iteration. When this occurs the customer
has to replace stories with these new ones, keeping in mind the time estimates
for each.

• Re-estimate. The development team may feel that they need to re-estimate the
time to complete the remaining stories and reset their velocity, if they discover
that the estimates provided previously do not reflect their current understanding
of the system.

3.7.2 Iteration

An iteration’s time scale is approximately one to three weeks and theplanning game
(see section 3.5.1) practice is followed using tasks as the detail level.

The phases specified by theplanning gameand used during an iteration are:

3.7.2.1 Exploration

Developers take the stories and break them down intotasks. The task descriptions are
written on index cards. These tasks should be spitted or combined to form tasks that
can be implemented in a few days, in a similar way as with stories.

3.7.2.2 Commitment

Responsibility for a task isacceptedby a programmer and he/she provides anestimate
on how many ideal engineering days it will take to implement. It should be noted
that the effect of pair programming is not taken into consideration because its effect is
reflected in theload factor that each programmer are able to handle. Theload factor
is a calculated value that reflects the relationship between ideal programming days and
calendar days; it is usually based on historical data.

After the above steps the team should do somebalancing. Each programmer sums
the time estimates of his/her list of tasks and multiplies the sum with his/her load factor.
Over-committed programmers should give up some of their tasks to under-committed
programmers. However if the team is over-committed then the steering phase from
release planning (Section 3.7.1) should be followed to correct this.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 3. A CRITICAL OVERVIEW OF XP 39

3.7.2.3 Steering

Once again the direction of the project can be changed during an iteration by allowing
the following actions:

• Implement a task. This is where a task card is taken and its contents is imple-
mented. See Section 3.7.3 for a more detailed description.

• Recording the progress. Every few days a team member should go around and
find out from each programmer how much time they have spent on each of their
accepted tasks and how many days they have left.

• Recovery. If a programmer becomes over-committed he/she may request assis-
tance using the following options:

1. Request that the scope of his tasks be reduced;

2. Ask the customer to reduce the scope of certain stories;

3. Discard non-vital tasks;

4. Ask for more or better assistance from other members;

5. Ask the customer to postpone certain stories to later iterations.

• Story verification. The functional tests, as specified by the customer, are run to
verify that the story has been correctly implemented.

3.7.3 Implementation

A programmer takes one of his/her tasks and finds a partner with whom to pair program.
This may be someone who is more familiar with a certain part of the possible solution
or technology to be used.

The pair will start off by discussing the task and then write test cases for the task. As
questions regarding the task arises they should discuss them with the on-site customer.
As previously stated, writing the test cases first helps the programmers with building a
better understanding of the requirements for the task.

When all the necessary test cases have been written they proceed to write the im-
plementation. The implementation is then verified by running the test cases.

The pair may refactor the code base as needed during their implementation of the
task.

When they are satisfied with the implementation and all the test cases runs at 100%
they proceed tointegratetheir code into the system.

From the above one can see that XP is actually a highly disciplined process [Beck,
2000; Cockburn, 2002a]. This may come as something of a surprise to those who
regard XP as too informal or undisciplined in regard to processes that are emphasised
by more ‘traditional’ methods (such as production of documentation). The testimony of
Equinox is that departure from the discipline has a negative impact [Equinox Interview,
2002].

In the next section, other criticisms raised against XP are briefly considered.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 3. A CRITICAL OVERVIEW OF XP 40

3.8 Common concerns about XP

Not surprisingly, because of the fairly radical break that has been made with ‘tradi-
tional’ development methodologies various questions have been raised regarding the
practices used by XP. Several of these issues are discussed in this section.

3.8.1 On-Site customer

Managers are inclined to argue that a customer is too valuable to the company in doing
his job for the person to simply be re-assigned to the development team as a customer
representative.

This means that a trade-off has to be made by the client between acquiring a work-
ing system earlier on the one hand; and having the normal output of the customer that
would be reassigned to the development team on the other [Beck, 2000]. Beck states
that “If having the system doesn’t bring more value to the business than having one
more person working, perhaps the system shouldn’t be built” [Beck, 2000].

Another statement made by XP practitioners is:

This may seem like a lot of the customer’s time at first but we should
remember that the customer’s time is spared initially by not requiring a
detailed requirement specification and saved later by not delivering an un-
cooperative system.

Another compromising view is that although a customer sits with the development
team, the programmers will not be able to ask 40-hours (Section 3.5.10) worth of ques-
tions; thus allowing him/her to still do some of his/her work while sitting with the
team.

The survey by Rumpe & Schöder (reported in [Rumpe and Schöder, 2002]) indi-
cates that XP practitioners regard the on-site customer as:

• the XP practice whose neglect is likely to put the project at highest risk;

• the second most difficult XP practice to implement, only preceded by Metaphor;

• the second least used practice.

Although the first point in combination with the last point might suggest that XP does
not work in practice, it seems the project teams surveyed have overcome this difficulty
by using substituting techniques such as part-time on-site customers to try and fill the
gap. With these compromises they reported a zero failure for projects.

The above survey seems to confirm that requiring an on-site customer as part of an
XP process is a very controversial area. Its implementation and acceptance will require
a widespread change of culture in industry requiring a paradigm shift for managers and
software acquirers.

3.8.2 Lack of scalability

XP’s dependence on verbal communication limits the number of people that can effec-
tively partake in a team. XP also requires that the team is centrally located (same room).
This is in direct contradiction to the trend of de-centralised development (diverse ge-
ographical sites in multiple time zones). Note, however, that there are indications that
this trend is being reversed [Paulson, 2001].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 3. A CRITICAL OVERVIEW OF XP 41

Although Beck specifies a maximum of 20 team members, successful projects with
up to 50 members have been reported [Taber and Fowler, 2000] and the survey [Rumpe
and Schöder, 2002] reported that 4.4% of respondents projects consists of more than
40 members.

The above reports suggest that while XP can indeed scale up, further study is
needed to determine critical success factors in doing so successfully.

3.8.3 Changing requirements

Although big upfront design methodologies have mechanisms to support changing the
requirements, they tend to discourage changes. Changes to requirements also tend
to have high costs involved in these methodologies due to the large effort devoted to
requirement solicitation, analysis and design at the start of the project. The reasoning
behind this approach is that the authors assume that the requirements are mostly fixed
and determinable at the start of the project; thus changes are unlikely to occur [Beck,
2000; Cockburn, 2002a].

This view is valid for well known domains that have been implemented before.
These domains tend to be well defined and static, for example accounting systems.

However for domains where the business needs are dynamic and ever changing
this view point is flawed. Web based systems are an example [Reifer, 2002; Equinox
Interview, 2002; Rumpe and Schöder, 2002]. The same problem occurs for example
when developing software and hardware concurrently in embedded products, due to
the fact that the hardware specifications are not fixed until the hardware development
is finished [Grenning, 2002; Balbes and Button, 2002].

3.8.4 Pair programming

This is a controversial practice for all software development processes, even between
agile practitioners.

There are two main objections commonly raised against pair programming:

• Using twice the resources to execute a task is wasteful- a manager tends to be
reluctant to assign two programmers to solve a problem that a single programmer
seems capable of completing.

• Programmers are not sociable personalities- Programmers are stereotypically
regarded as possessing weak communication and social skills, thus preferring to
work on their own. This is only a half truth; programmers prefer communicating
and interacting with their peers [DeMarco and Lister, 1987; Beck, 2000; Cock-
burn, 2002a].

Although both these claims may have some merit, they should be balanced against the
contrary evidence of research done on the effectiveness of pair programming. These
studies are described in [Williams et al., 2000]. In the study, students were split into
a pair-programming group and individual programming group and four consecutive
assignments were given to them. The result was that the pairs produced more correct
solutions than their individual counterparts and as they progressed from assignment
to assignment the failure rates decreased for the pairs whereas the individuals showed
no pattern. In terms of time, the pairs finished their assignments 40% to 50% faster.
The study states that similar results were found between the student and industrial
experiments.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 3. A CRITICAL OVERVIEW OF XP 42

Figure 3.2: XP’s cost of change over time [Beck, 2000].

Time

C
o

st
 o

f
C

h
an

g
e

The author’s personal experience in pair programming, indicated that logic and
semantic mistakes are reduced, implementation time is shortened and debugging be-
comes easier and less time consuming.

3.8.5 Cost of Change over Time

Beck [2000] suggests that using XP produces a flattened cost of change over time curve
that is log(n) (see Figure 3.2). Beck cites an experience where after the system had been
in production for two years, it took them thirty minutes to make a logic change to it
(see [Beck, 2000]), indicating a flattened cost of change because if the change would
have been made two year earlier it would have cost the same.

Cockburn provides a mathematical prove [Cockburn, 2000], based on experience
scenarios, that XP still conform to the traditional exponential cost curve. The differ-
ence according to Cockburn lies in the scale of the curves from big upfront design
methodologies and that of XP. Thus in essence when XP reaches it’s production phase
other methodologies may still be in their requirement specification phase, the time scale
between the approaches are thus different.

Both Beck’s and Cockburn’s curve representations are based on their own experi-
ences and not on generalised scientific research. As a result the alleged flattening of
cost of change over time proclaimed by XP cannot be confirmed.

3.8.6 Lack of documentation

The agile manifesto states “Working software over comprehensive documentation” as
the first value [Fowler and Highsmith, 2001; Agile Manifesto URL]. XP does not gen-
erate any formal documentation accept when the customer request it as one of the
requirements. When this happens the documentation becomes a story and is treated as
such allowing the customer to prioritise its generation. This arrangement means that
documentation does not form part of the process but part of the requirement specifica-
tion of the system.

Big upfront specification and design is the main culprit for generating a lot of for-
mal documentation in software development. Due to XP’s nature of small incremental

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 3. A CRITICAL OVERVIEW OF XP 43

development (Section 3.5.2) and having on-site customers (Section 3.5.11) the need
for formal big upfront design is removed and the documentation needed in the process
reduced to only story and task cards.

For the question ‘What should one put into documentation?’ from a developers
point of view in light of the process, Cockburn [2002a] provides the following answer:
“That which helps the next programmer build an adequate theory of the program”.
From this we see that XP uses the intimate communication in the team to accomplish
this goal. A development manager on one of Becks’ XP projects made the remark
“anyone who couldn’t find the rest of what they needed to know from the code and the
tests had no business touching the code” [Beck, 2000].

The only concern left is, what documentation will be available when the project
is terminated to use if the project is revived later on? If this situation occurs the last
requirement stated by the customer and executed by the development team should be
to write a final report to augment the test cases and code.

3.9 Summary

XP has brought some controversial issues to light and re-emphasised some practices in
the software development community. These practices were mentioned and the con-
troversies discussed. Being the agile methodology with the most publicity has made
XP the reference methodology for debate between big upfront design (traditional) pro-
cesses and agile processes. The adoption of, and experimentation with XP, has in-
creased over the last few years, which in turn has fuelled the debate over whether XP
can work. Initial surveys seem to indicate that XP produces a zero failure rate, keeping
in mind that XP should only be used on projects that are suitable in regard of the ad-
vantages that XP claims to provide. These restrictions on applicability to projects have
been defined in [Beck, 2000], with some restrictions being successfully stretched on
some recorded projects.

Academic interest has grown over the past years but there is still a lack of sufficient
scientific studies to validate XP on a scientific bases. This chapter has tried to provide
a critical overview on XP. However, there are still issues that need to be researched
in more depth, including the range of applicability and how XP influences the cost of
change curve.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

Chapter 4

A Critical Overview of the
Crystal Family of
Methodologies

4.1 Introduction

Based on his methodology-per-project (Section 4.2.8) belief, Cockburn defined a frame-
work (Figure 4.1) to classify projects and methodologies. This classification is intended
to enable project managers to select a methodology that is appropriate for the project’s
specific characteristics. These characteristics include scale and criticality. From expe-
rience Cockburn has designed methodologies that fit into his framework and that have
been used successfully on industry projects. These methodologies, collectively known
as the Crystal family of methodologies, are based on a common set of principles and
beliefs (Section 4.2 and 4.3.1) and are summarised in Section 4.3.

4.2 A Philosophy of Software Development

Cockburn describes his philosophy of software development in [Cockburn, 2002a].
This section will provide a summary of his ideas. Cockburn bases his outlook on
software development on five pillars. These pillars are: the learning process; the coop-
erative game metaphor; the human factor; communication; and the goals of software
development. The aforementioned pillars provide the bases for the principles defined
and used by Cockburn’s methodologies.

How he defines the learning process is summarised in Section 4.2.1. In Section
4.2.2 the notion of software development being a cooperative game is explored. The
influence that people and communication have on the development process is described
in sections 4.2.3 and 4.2.4 respectively, followed by his views of the goal of software
development in Section 4.2.5. Cockburn and Highsmith’s ideas on what principles
should be used when designing a methodology are mentioned in Section 4.2.6 and the
need for agile and self-adapting characteristics is explained in Section 4.2.7.

44

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 4. A CRITICAL OVERVIEW OF THE CRYSTAL FAMILY ... 45

4.2.1 Three Levels of Listening

Cockburn defines three levels of listening to portray the way in which a methodology
should be defined and taught [Cockburn, 2002a]. The three levels/stages of listening
are following, detachingandfluent. Each of these levels are briefly described in the
following subsections. It should be noted that the levels apply to both listening and
learning, and are treated as such throughout this chapter.

4.2.1.1 Following (Level 1)

This is the first stage of listening and is applicable to a new comer with no or little
knowledge or skill in the applicable domain. To learn a new skill the beginner needs to
take an example illustrating the skill and duplicate this example. The result is thus that
when the beginner has duplicated the example he/she can determine whether it works
and how the process is carried out.

An example of level 1 learning is a first year university student learning to program
for the first time. The lecturer will explain the condition statement using a simple
numerical comparison. The student is then asked to implement a conditional statement
in a program using different values for comparisons.

In essence people in this stage require detailed step-by-step instructions on how to
accomplish a task.

In a software development context this is where the developer uses a manual that
describes a specific process for building a software system in detail, including tem-
plates and examples of all the artifacts that are expected to be produced.

4.2.1.2 Detaching (Level 2)

During this stage a person will start to discover limitations to the processes learnt. Al-
ternatives to accomplishing the task with more sufficiency are required and the person
has gained enough skill to be able to learn these alternatives. In the example of learn-
ing to program, a student will learn that nested if statements may be replaced by switch
statements.

For software development this is the same as a developer learning different method-
ologies/processes for developing software.

4.2.1.3 Fluent (Level 3)

By this stage a person has gained enough knowledge to be able to produce the desired
end product without having to follow a specific process. When asked which process
the person is following she may not even be able to confirm which specific process is
being used because anad hocone is used. This is the stage in a software developer’s
life where she uses elements from a diverse range of processes and even self derived
ones to accomplish a task according to the current need/situation.

It is not difficult to recognise these stages in many parts of life. Another example where
these levels of learning are evident is learning to do ballroom dancing. First the dancer
is taught the basic steps of a dance and she practices these steps until she is proficient
enough to move on to learn the advance steps with a set sequence. Only after mastering
the sequence of steps is the dancer ‘allowed’ to dance her own sequence.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 4. A CRITICAL OVERVIEW OF THE CRYSTAL FAMILY ... 46

This breakdown of the different levels of learning bring some insight into how the
skill level of a developer may influence development and implementation of a method-
ology.

After reading Section 4.3 on how the family of methodologies function, one should
notice that the methodologies are introduced on level 3 (fluent) of learning. Doing this
makes the methodology more agile and encourages the notion of a methodology-per-
project.

4.2.2 Software Development as a Cooperative Game of Invention
and Communication

“[A]lthough programming is a solitary, inspiration-based, logical ac-
tivity, it is also a group engineering activity. It is paradoxical, because it
is not the case, and at the same time it is very much the case that software
development is:

• Mathematical, as C. A. R. Hoare has often said

• Engineering, as Bertrand Meyer has often said

• A craft, as many programmers say

• A mystical act of creation, as some programmers claim” [Cockburn, 2002a]

The above is a compromise view of what software development is. Every developer has
his/her own view on what software development is and against which other profession
it may be compared.
The central characteristics of software development will be discussed in this section
with a focus on Cockburn’s interpretation.

4.2.2.1 Engineering

Does programming involve processes that are similar to engineering? Engineering
usually follows a fixed process which starts of with a requirement specification phase
followed by an analysis phase, a design phase and then a building phase. Thus, a kind
of static process leads to a fixed and final physical product. Examples include the
engineering of bridges, roads, washing machines, etc. But software is not the same. It
is usually dynamic in the sense that it evolves and grows iteratively. This statement is
true for new systems whose requirements are not fully known beforehand. Thus, for
example, the user requirements of a website tends to evolve incrementally as the site
is developed and as the site’s ‘life-time’ progress. But for known domains where the
requirements are well established by similar projects that have been done before, the
use of engineering principles is feasible. For example, accounting software has been
produced many times before and is based on a centuries old practice.

However not withstanding the foregoing, engineering practices should indeed be
used in software development; but used “in the small”. For example a feature that forms
part of a system is derived from a requirement of the system. The requirement should
be analysed and some informal design thinking should take place before implementing
the feature. This should be done informally and in a small scale to keep the project
agile.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 4. A CRITICAL OVERVIEW OF THE CRYSTAL FAMILY ... 47

4.2.2.2 Innovation

When software is to be developed, it is because a problem is to be resolved. Clearly
some innovation is required to solve the problem for if nothing new was required then
there would not have been a problem in the first place. This statement thus identifies
one of the characteristics of software development: the requirement for innovative,
creative thinking to provide a software solution to some problem.

4.2.2.3 Communication

Programmers have been stereotyped as being loners who are separated from society,
preferring not to socialise with other people. But is this stereotyping accurate? What-
ever the truth about the general case, most programmers would attest that they commu-
nicate well with their peers, exchanging information on development quite easily.

As with any project, in particular projects requiring highly intellectual input, a high
degree of communication is needed. This high level of communication is required to
coordinate and assist members within the team.

4.2.2.4 Cooperative game

Cockburn characterises software development as a groupgame, where a group game is
defined as goal seeking, finite and cooperative. It isgoal seekingdue to the fact that de-
velopment needs to produce an artifact which, in this context means a software system.
The game isfinitedue to the fact that at some point the project will either be suspended
or it will reach completion when the goal is reached. The game iscooperativebecause
all the parties taking part in the project work together to reach the goal.

These characteristics as being central to software development, clearly influence the
methodologies that Cockburn propose, as will be seen in Section 4.3.

4.2.3 People Centric

In the past few years there has been a growing realisation that people are the most valu-
able resource that a business has. This realisation has had a dramatic impact on the
management of workers by organisations, leading to dedicated departments to manage
and enhance the potential employees. The value of people to software development
organisations has been expressed in for example [DeMarco and Lister, 1987]. An as-
sociated idea is that the more capable the developers, the less developers are needed to
accomplish a task. Cockburn cites a project where it was initially estimate that 6 good
programmers would be needed. This was not possible so they had to constitute a team
consisting instead of 24 mixed skill programmers [Cockburn, 2002a].

All the above leads to the conclusion that any process that makes use of human
resources needs to take the human characteristics into account and be able to adapt
to and support these characteristics. The more supportive the process is to human
nature and needs the more satisfied the people will be which in turn may lead to higher
productivity. The characteristics of humans are too diverse and as such, a complete list
is beyond the scope of this dissertation. However some examples that are relevant to
the discussion are presented in the following paragraphs.

One characteristic of human beings is that they are spontaneous and their behaviour
varies from day to day even when faced with similar situations. One day a developer

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 4. A CRITICAL OVERVIEW OF THE CRYSTAL FAMILY ... 48

will be able to produce 400 lines of code for example and the next only 50 due, for
example to changes in emotional state or to being physically indisposed.

A second characteristic is that individuals also play other “games” in parallel with
the cooperative game of software development. These include the career game and the
game of life. People will normally place higher priority on their careers and personal
lives than on a software project. Where these priorities conflict it would be natural for
a person to harm the project rather than sacrifice a his/her career or personal life. This
situation needs to be kept in mind by managers as well as by methodology designers.

Another factor that influences a person is the motivation for working. Most organ-
isations base their motivation on some reward system, usually monetary, but this may
only be a short term solution. The long term reward for an individual lies in pride-in-
work, pride-in-accomplishment and pride-in-contribution. The detailed issues regard-
ing reward systems are beyond the scope of this dissertation and may be found in many
business management literature sources as well as in [Cockburn, 2002a; DeMarco and
Lister, 1987].

From the foregoing, one would agree that humans cannot be treated as a simple
constant resource associated with a project. Management needs to understand the char-
acteristics of the human resource and to realise that people are the most important fac-
tor in software development. This realisation should promote a people-centric software
development approach.

4.2.4 Communication - Cooperative Teams

In a situation where the progress of a project depends on acquiring information, it is
of utmost importance to shorten the communication delay. For example, if person A
has information that person B needs, then the progress of the project depends firstly
on how long it takes person B to discover that person A has some valuable input and
secondly, on how much energy is required to exchange the knowledge from person A
to person B.

Four different scenarios below illustrate the cost (both time and monetary) involved
in discovering that useful information may be transfered. They are now provided in
ascending order of cost. Assume that the cost for a minute a programmer is a arbitrary
amount, say N.

Scenario 1: Persons A and B are pair-programming, enabling communication to be
instantaneous. Thus the cost is a fraction of two times the cost of a programmer per
minute, thus less than 2N.

Scenario 2: Persons A and B are located in the same open plan room next to each
other but at separate work stations. Given their close proximity, they may notice when
one or the other is searching for information or they may ask one another. The time
laps may be somewhere between 1 to 10 minutes. Thus costing between approximately
N to 10N.

Scenario 3: Persons A and B are located on the same floor but in separate offices.
There is no chance for person A to discover person B’s needs and voluntarily con-
tribute information. Instead person B will need walk to person A’s office, establish A’s
availability and only then ask the question to find out if person A can contribute. It
is quite likely that person B will first try to solve the problem independently before
approaching person A in this situation, thus adding say another 10 to 30 minutes to the
task. This causes a cost of approximately 12 to 35 minutes with a monetary value of
between 12N to 35N.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 4. A CRITICAL OVERVIEW OF THE CRYSTAL FAMILY ... 49

Scenario 4: Persons A and B are located on different floors or in different buildings.
In this situation there is an increased possibility of failed attempts to communicate
because of the increased chance that the required person may be unavailable. For
example person B walks to person A’s office to find that A has just left for a meeting
or a coffee break, B therefore needs to repeat the attempt to communicate later on.
An estimated 10 to 70 minutes or even more might be needed to eventually establish
communication. The cost has increased once again and the calculations of the monetary
cost becomes very variable and perhaps excessively high.

The use of telephones might ameliorate these costs slightly, although many people
are familiar with the frustration of engaged or unanswered calls. In some cases, short
rapid email might cut down on costs. However email can also be excessively time-
consuming. Moving away from face-to-face communication introduces the quality of
communication factor. Research has shown that 55% of communication consists of
body language [Mehrabian, 1981].

When looking at the above scenarios the cost might not at first seem that high.
However, considering that these scenarios will occur multiple times during a project,
the accumulative impact of the cost differences may result in huge time and monetary
waste.

The above illustrates how important effective communication is for a project to
execute efficiently and in within budget constraints.

There has been much research on how to increase the efficiency of communication
as well as on techniques and tools to enable this [Cockburn, 2002a; DeMarco and
Lister, 1987]. A full discussion on communication in relation to cooperating teams is
beyond the scope of this dissertation. Nevertheless, the matter is considered important
by Cockburn and plays an integral role in his proposals as discussed in Section 4.3.

4.2.5 Goals of Software Development

Cockburn considers that the primary goal of software development should be to deliver
working software products that satisfy the users’ needs. A secondary goal is to leave
sufficient ‘markers’ behind for others to follow, for them to get a understanding of how
the system works and for them to be able to extend it.

This clear and explicit goal hierarchy is apparent in the methodologies that he pro-
poses and that are discussed in Section 4.3.

4.2.6 Methodology Concepts and Design Principles

Cockburn [2002a] describes a methodology in the software development context as

“... everything you regularly do to get your software out. It includes who
you hire, what you hire them for, how they work together, what they pro-
duce, and how they share. It is the combined job descriptions, procedures,
and conventions of everyone on your team. It is the product of your par-
ticular ecosystem and is therefore a unique construction of your organiza-
tion.”

Some terms that he uses to describes a methodology are listed below:
Control elementsrefer to any deliverable, standard, activity or technique that is

used or required by a methodology.
Methodology sizeindicates the number of control elements in the methodology.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 4. A CRITICAL OVERVIEW OF THE CRYSTAL FAMILY ... 50

Ceremonyrefers to the amount of precision required from activities. The detail
given and the method used to write a use-case, for example, may range from white-
board designs to a five page template that has to be completed.

TheMethodology weightis the product of the methodology size and the ceremony.
Thus it is the number of control elements multiplied by the ceremony needed for each
element. The result is conceptual but still relevant.

Project sizeis the number of people who participate in the project and who need to
be coordinated.

System criticalitydescribes the degree to which an undetected defect may have an
influence or may have repercussions.

Cockburn [2002a] defines seven principles that are useful when designing or eval-
uating methodologies. They are briefly presented below.

1. “Interactive, face-to-face communication is the cheapest and fastest channel for
exchanging information”. Sections 4.2.2 and 4.2.4 have suggested that this prin-
ciple has substance.

2. “Excess methodology weight is costly”. By requiring the project team to create
more artifacts than is needed to develop software (which is seen as the primary
goal) the methodology size increases. More ceremony to compile these artifacts
is also required. Thus a higher weight is added to the methodology when such
artifacts are required. These higher costs may not provide important value to the
project.

3. “Larger teams need heavier methodologies”. As the number of people associated
with a project increases, the need for control elements also increases accordingly
to meet the communication needs of the project and to manage the cooperation
between the team members. This increase in communication requirements also
leads to more ceremony required for the control elements that are used. Thus,
once again, the weight of the methodology rises.

4. “Greater ceremony is appropriate for projects with greater criticality”. As the
risk of potential cost (monetary, loss of life, discomfort, etc.) grows, more cere-
mony is needed to help absorb the risk.

5. “Increasing feedback and communication reduces the need for intermediate de-
liverables”. Thus, for example, a working piece of the software system should
be delivered as soon as possible to illustrate the developers’ understanding of the
requirements that were specified by the acquirer.

6. “Discipline, skills, and understanding counter process, formality, and documen-
tation”. Software projects depends heavily on tacit knowledge possessed by the
team in general and by specific individuals in the team. The knowledge is not
easily transferable. It is infeasible to capture all the knowledge that exists in
a project due to its tacit and wide range properties. Trying to capture the in-
tellectual thinking that lead toevolving the system can only result in reduced
productivity and efficiency. The goal should be to produce markers that will as-
sist other people in building their own knowledge base on how the system was
developed when they need to extend the project. Highsmith is quoted as stating
that “Process is not discipline” [Cockburn, 2002a], but that discipline is a re-
sult of a person who chooses to execute a task in a specific manner consistently,
whereas process is the execution of a step-by-step list of instructions.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 4. A CRITICAL OVERVIEW OF THE CRYSTAL FAMILY ... 51

7. “Efficiency is expendable in non-bottleneck activities”. For activities that do not
form bottlenecks in the development process, the emphasis on efficiency might
be reduced while ensuring that activities that are bottlenecked are carried out
more efficiently. This means that the project manager should have a holistic
view of the process and project before trying to streamline a particular activ-
ity. An example, as discussed in [Cockburn, 2002a], would be a project that has
five programmers and one database administrator (DBA). If all the programmers
are feeding the DBA with database design requirements that need to be imple-
mented, then this will result in a bottleneck at the DBA who may only manage
to implement the input of, say, two programmers. In this situation, the manager
may either reduce the number of programmers or else ‘reduce’ their efficiency
by not streamlining their activities. This can be accomplished by imposing in-
creased design and rework requirements on the programmers before conveying
requests to the DBA. In essence, streamlining the process as a whole is not nec-
essarily the sum of streamlining the individual elements.

These principles are based on experience gained from projects conducted by Cockburn
and Highsmith over many years. They are offered as a list of plausible principles to
consider when designing a methodology.

4.2.7 Agility and Self-Adaptation

From the previous sections it may be concluded that many factors influence a software
development project and the methodology that should be followed. These factors also
determine the agility of the methodology. As the ceremony and control elements in-
crease, so the agility decreases. To try and stay as agile as possible the manager of the
project should keep in mind what the goals of software developments are. As stated
previously, Cockburn defines the primary goal as delivering working software and the
secondary goal as preparing for the following game. For the manager this leads to the
question: what is “light but sufficient” to attain these goals? The sufficiency of mark-
ers for the project should be determined by the project’s specific needs. The developers
and their managers need to learn to recognise when the generation of documentation
passes the point of being useful to the point of being wasteful of resources. Cockburn
[2002a] provides various guidelines on how to produce sufficient documentation.

Factors that may maximise agility as stated by Cockburn include:

• Two to eight people in one room. This enables effective communication with the
lightest ceremony.

• On-site usage experts. This is based on the advantages associated with rapid
feedback. An on-site usage expert enables the team to ask questions and get
answers almost instantaneously. These experts also provide the opportunity to
create a product that truly addresses the acquirer’s needs.

• One-month increments. This is based on the idea of rapid feedback and its advan-
tages. Using short increments of one to three months enables the development
team to repair the process and the requirements. The one to three month range is
based on feedback provided by projects surveyed by Cockburn and Highsmith.

• Fully automated regression tests. Cockburn states that having automated regres-
sion tests (unit and/or functional) improves the system design quality and the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 4. A CRITICAL OVERVIEW OF THE CRYSTAL FAMILY ... 52

programmer’s quality of life. The system design quality is increased by enabling
the programmers to revise code then and retest the system by a simple command
execution (i.e. by a simple press of a button). The programmer’s quality of life
is enhanced since one is able to confirm that the system is working according to
one’s current understanding by simply running the automated tests.

These factors are similar to the practices proclaimed by XP, with a slight deviation in
magnitude.

A self adapting methodology is one which explicitly advocates that the implemen-
tors adapt the processes and practices of the methodology if and when circumstances
change as the project progress.

Cockburn believes that software methodologies should be self adapting. He ar-
gues that the result of an activity may not be the same from project to project, due to
the uniqueness of each project. An activity that may have increased the efficiency on
one project, may decrease the efficiency on another project. In his view this alleged
unpredictable nature of methodology implementation requires the team to adjust the
methodology, processes and activities throughout the project’s life time. Methodology
reviews should be conducted at different stages during the project. Suggested points
are at the start of the project; in the middle of the first increment; after each incre-
ment and/ or in the middle of increments. The team should determine which practices
worked well and which did not. They should also consider practices that have not been
tried before and which might work.

4.2.8 Methodology-per-project

The fact that each project is unique with regard to the inputs provided and the fact
that the output required is never the same, suggests that the methodology used for
executing each project needs to be specifically tailored for that project. This notion of
a methodology-per-project is what has inspired the Crystal Family of methodologies.

4.3 The Crystal Family

Cockburn constructed afamily of methodologies and gave them the ‘family name’
Crystal. These methodologies are meant to be samples of methodologies that need to
be adjusted to each individual project. The methodologies are based on Cockburn’s
philosophy of software development (see Section 4.2) in which the focus lies on devel-
opment being people-centric, communication-rich and adaptable.

The methodologies in the family are arranged in a two dimensional matrix (refer to
Figure 4.1). The x-axis or horizontal dimension measures the project size (or number of
people involved), and the y-axis or vertical dimension measures the system criticality
(see Section 4.2.6). The indexed criticality values are: Life (loss of life is possible
if a problem occurs in the system); Essential money (loss of essential money might
cause bankruptcy); Discretionary money (some money might be lost due to faults in
the system); Comfort (merely causes discomfort for the user if a problem occurs). The
project size starts at 1 to 6 people and goes on to 7 to 20, 21 to 40 etc. Cells of the
matrix are thus codified as, for example, E20, indicating “essential money/ 7 to 20
people; D500 indicating “discretionary money/ 201 to 500 people; etc.

In addition the matrix is colour-coded. The colours darkens as one moves from right
to left and bottom to top. They range from clear up to violet. The colours are intended

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 4. A CRITICAL OVERVIEW OF THE CRYSTAL FAMILY ... 53

Figure 4.1: Cockburn’s Methodology Matrix [Cockburn, 2002a].

to suggest the increase in “hardness” of projects as they require the co-ordination of
more people and compliance with increasing criticality requirements. Cockburn, some-
what romantically, associates various areas of the matrix with different crystals, such as
clear quartz for C6 and topaz for D20. This is the origin of the term “Crystal Family”.

Using the matrix one is able to select the appropriate methodology for a specific
project.

Thus, for example, consider NASA’s next generation shuttle guidance system as a
project and suppose it has five developers assigned to it. This is a life critical system
(L on the y-axis) with less than 6 people, resulting in an L6 project. This classification
is a ‘diamond-style’ project requiring Crystal Clear practices with more emphasis on
‘ceremony’ , such as documentation, validation etc.

Section 4.3.1 states the common features for all of the members of the Crystal
family. The remaining sections will be devoted to discussions on three of the sample
methodologies that have been developed and used in practice. The first one is Crystal
Clear (Section 4.3.2) for a D6 category project. The second is Crystal Orange (Section
4.3.3) a D40 instance. This is followed by the specially developed Crystal Orange Web
(Section 4.3.4) . A full description of each member of the Crystal family is to be found
in [Cockburn, 2002a]. Each example will be discussed under the subsections of: roles
required, policy standards needed, deliverables and tools suggestions.

4.3.1 Family Commonalities

Members of the Crystal family share a common set of values and principles as well
as the practice of on-the-fly methodology tuning (i.e. they are self adapting). The

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 4. A CRITICAL OVERVIEW OF THE CRYSTAL FAMILY ... 54

common values shared by the family members are the following.

• They are people and communication oriented. This means that tools, processes
and artifacts are supportive of the persons, as opposed to them dictating the
development efforts. This is also the first value stated in theAgile Manifesto
[Fowler and Highsmith, 2001; Agile Manifesto URL].

• They are highly versatile. This means that the project team is not restricted to
working with a specific process but may select parts from different processes,
such as XP.

The Crystal family members are also based on the seven principles discussed in section
4.2.6.

Cockburn also defines two rules that need to be adhered to when creating a member
methodology. Firstly, incremental development should be used. Cockburn suggests
one- to three-month increments. Secondly, retrospective meetings must be held before
and after each iteration, and mid-iteration meetings are also suggested, though not
prescribed.

4.3.2 Crystal Clear

This is an example methodology for a D6 (see Figure 4.1) type of project.
It consists of a single team comprising up to 6 members who are co-located, prefer-

ably in a single office. The system risk should be limited to essential money. The
methodology is strong in communication that is rich and informal and light on deliver-
ables, focusing on frequent deliveries.

Roles that should be assigned to separate people are: a sponsor; a senior designer-
programmer; a designer-programmer and a user. Other roles that need to be assigned
are a project coordinator, a business expert and a requirements gatherer.

A policy standard consisting of the following standards is mandatory:

• Software is to be incrementally delivered in cycles of two to three months.

• Progress is to be measured by the software delivered and not by the documenta-
tion produced.

• Automated testing of functionality is to take place.

• Direct user participation is to take place.

• Two viewings by user are to be held each release.

• As soon as the current task is stable for review, the following task should com-
mence.

• Workshops are to be held at the start and middle of an increment to tune the
methodology.

The above standards may be substituted by equivalent standards from other method-
ologies such as XP.

The deliverables as stated in [Cockburn, 2002a] are:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 4. A CRITICAL OVERVIEW OF THE CRYSTAL FAMILY ... 55

• Release sequence.

• Schedule of user viewings and deliveries.

• Annotated use cases of feature descriptions.

• Design sketches and notes as needed.

• Screen drafts.

• A common object model.

• Running code.

• Migration code.

• Test cases.

• User manual.

Crystal Clear only dictates that documentation should be generated for the afore
mentioned deliverables, however the specifics for the format, detail level, content etc.
is left for local tailoring and specification.

4.3.3 Crystal Orange

Designed for a D40 (see Figure 4.1) project, the orange D40 methodology requires
more ceremony that Crystal Clear to help communications between the team members.
A more thorough description of the methodology can be found in [Cockburn, 1998].

Roles that should be assigned to separate people are: a sponsor; a business expert;
a usage expert; a technical facilitator; a business analyst/designer; a project manager;
an architect; a design mentor; a lead designer-programmer; a designer-programmer; a
UI designer; a reuse point; a writer and a tester.

The members are divided into teams to deal with: system planning; project moni-
toring; architecture; technology; functions; infrastructure and external testing.

Artifacts to produce, as stated in [Cockburn, 2002a] include:

• Requirements document.

• Release sequence.

• Schedule.

• Status reports.

• UI design document.

• Common object model.

• Inter-team specs.

• User manual.

• Source code.

• Test cases.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 4. A CRITICAL OVERVIEW OF THE CRYSTAL FAMILY ... 56

• Migration code.

The policy standards are the same as Crystal Clear (Section 4.3.2)
Crystal Orange has been successfully used in industry projects including the so-

called Project Winifred. This was a D40 Smalltalk project with fixed-time and fixed
price constraints. A full discussion on Project Winifred and Crystal Organge’s imple-
mentation can be found in [Cockburn, 1998].

4.3.4 Crystal Orange Web

Crystal Orange Web was defined by Cockburn for eBucks.com, a joint initiative be-
tween the two South African companies: FirstRand Group and MTN [eBucks URL].
The difference between Crystal Orange and Orange Web lies in the idea that Orange
Web does not consist of a single project. Instead it addresses the type of project that
is in continuous development and that consists of different initiatives that need to be
merged into a single code base. When this methodology was developed, the focus of
the project was on defect reduction. It thus required a different emphasis to the standard
Crystal Orange methodology as will be seen in this section [Cockburn, 2002a].

The team consisted of 50 people that included executives, business people, man-
agers, analysts, programmers, and testers. Cockburn thus classified the project as an
E50 instance.

Some of the conventions/rules used are as follows:

• A fixed length development cycle of two weeks, with the option of switching
to a double-length cycle (four weeks), if needed. This allows all the different
teams to synchronise on the same time line. These cycles are to be followed by
a company-wide (thus all the eBucks project stakeholders) post-cycle reflection
workshop.

• The basic process starts of with the business owner writing a business use case
and a system use case brief. These are reviewed by the business executives for
acceptance as a needed feature. When accepted, the detailed use cases are created
by the business analysts. This detailed use case is then used to implement the
feature. The integration testers test the feature and post the changes to the group
and the call centre. Bug reports for features contained in live systems are sent
to the ‘SWAT team’ by the call centre. The ‘SWAT team’ is then responsible for
fixing these problems.

• The prioritised initiatives that provide the most value are posted for each cycle.
These initiatives are broken down into work assignments that can be completed
and tested within the cycle and are assigned to the developers. The developers
in turn keep a status indication of their work on white boards that are mounted
outside of their offices. Each morning a short status meeting is held between
the business owner and the developers. This is the only time when the business
owner is allowed to ask for the current status. Between 10:00 and 12:00 the
company is on ‘focus time’, during which no meetings are held and phones are
turned off. This is merely anencouragedpractice.

• For testing, automated unit tests are written for each class. Code is only released
for integration testing after a peer review. This means that the integration tester

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 4. A CRITICAL OVERVIEW OF THE CRYSTAL FAMILY ... 57

receives the code, test cases and a guarantee, in the form of a note, from another
programmer. Business users use a special language to write sample transactions
for testing purposes, while the call centre posts user interaction statistics in a
visible area for everyone to see, thus allowing developers to see where improve-
ments to usability of the system are needed.

• In this situation it might be better to physically separate functional teams in or-
der to reduce communication on unrelated projects and to increase speciality
conversations.

4.4 Conclusion

As can be seen from Section 4.3, the Crystal methodologies support the agile man-
ifesto’s principles. It should also be noted that both Cockburn and Highsmith are
founding members of the Agile Alliance. Since the formation of the alliance Cock-
burn has addressed the question of how his methodologies are classifiable as agile and
how some of the other agile methodologies fit into his matrix. He has done this by
producing several publications. (see Cockburn [2002a,b, 2001])

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

Chapter 5

A Critical Overview of Feature
Driven Development (FDD)

5.1 Introduction

Feature Driven Development (FDD) came into existence during a large and complex
banking project for United Overseas Bank, Singapore (1997 to 1998). The process was
developed by incorporating the techniques defined by Peter Coad for object modeling
and the remainder of the process was derived from the experience of Jeff De Luca,
the project manager and technical architect. The bank approached De Luca after the
originally contracted firm abandoned the project, declaring the project undoable after
2 years. De Luca and Coad, with the aid of 50 people, resurrected the project and pro-
duced 2000 features in 15 months [SteP10 URL; DeLuca Biography URL; Highsmith,
2002]. FDD as a formal process was first published in [Coad and De Luca, 1999] with
a focus on the ‘modeling in colour’ approach. Stephen Palmer and the other developers
of the project fine tuned the process. A more generalised and practical description of
FDD may be found in [Palmer and Felsing, 2002].

Kern, one of the contributers to [Coad and De Luca, 1999] and a practitioner of
FDD, represented FDD at the formation of the Agile Alliance. This resulted in FDD
being recognised as one of the official agile methodologies.

In an informal poll conducted by Software Development Magazine’s People &
Projects Newsletter, the use of FDD was rated as the number one defined practice
used for “the project management practice that you turn to most often” [SDM’s P&P,
2003].

As with most other agile methodologies, FDD addresses the problem space of pro-
viding software in the context of decreasing business cycles. As stated in Chapter 1,
software developers are under increasing pressure to deliver working solutions in ex-
tremely short periods of time.

FDD consist of five processes, as will be described in Section 5.2. The best prac-
tices advocated and used by FDD are examined in Section 5.3. FDD specifies roles to
be allocated to team members. These roles are listed in Section 5.4. A brief summary
of the “modeling in colour” technique is provided as Section 5.5. Section 8.7 concludes
with remarks by the author.

58

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 5. A CRITICAL OVERVIEW OF FDD 59

5.2 The Process

[Coad and De Luca, 1999] summarises FDD as “a model-driven short-iteration process.
It begins with establishing an overall model shape. Then it continues with a series of
two-week ‘design by feature, build by feature’ iterations.”

As suggested by the process’ name, the primary concept underlying FDD is the use
of features. Afeatureis defined as “a client-valued function that can be implemented
in two weeks or less” [Coad and De Luca, 1999]. The following template as defined in
[Coad and De Luca, 1999] can be used to express a system’s feature:

<action> the <result> <by|for|of|to> a(n) <object>

For example: “e-mail the registration notification to a user” is a feature, where “e-mail”
corresponds to the <action>, “registration” is the <result> and “user” is the <object>.

To enable implementing a feature in less than 2 weeks or even in a matter of days
or hours a feature needs to be as small as possible. To build confidence that progress is
being made a feature should also be showable to clients.

In turn, business-related features that are grouped together are collectively referred
to as afeature set. The template used for a feature set is:

<action><-ing> a(n) <object>

An example is: “registering a user.” where “register” represent the <action> and “user”
the <object>.

Feature sets in turn form part of amajor feature set, expressed as:

<object> management

Thus, in the previous example, “user management” might be an example of a major
feature set.

The five processes that form FDD are expressed visually in Figure 5.1. The processes
are:

1. Develop an overall model.

2. Build a detailed, prioritised feature list.

3. Plan by feature.

4. Design by feature.

5. Build by feature

Processes 4 and 5 together are executed iteratively, as may be observed from Figure
5.1.

The authors of FDD intentionally summarised the processes for FDD to fit a single
page for each process. This summary may be found in Appendix B. In the light of this
comprehensive summary, it is unnecessary to do more than very briefly mention the
different processes.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 5. A CRITICAL OVERVIEW OF FDD 60

Figure 5.1: Visual representation of the five processes within FDD.

5.2.1 Process 1: Develop an Overall Model

The domain experts, in conjunction with developers, create an initial high-level ‘roadmap’
of the envisioned system. A skeleton model is then generated. This model is refined
and extended using small sub-teams that are assigned portions of the model to investi-
gate and report back on the details required.

The artifacts produced during the process are: class diagrams; informal sequence
diagrams; informal features list and notes on alternative models.

The initial part of this process should only take up approximately 10% of the
project’s time and another 4% on an ongoing basis.

5.2.2 Process 2: Build a Features List

Using the informal feature list compiled during process 1, the team decomposes the list
into features; feature sets and major feature sets.

The identified feature sets and features are then prioritised into four categories:
‘must have’; ‘nice to have’; ‘add if we can’ or ‘future’.

The time allocations for this process is 4% initially and 1% on an ongoing basis.

5.2.3 Process 3: Plan by Feature

The sequence of how the features are to be implemented, and the time-frame for the
implementation is planned out during this process. Responsibility (ownership) for the
classes and features sets are assigned. The milestones to be met after each “design by
feature, build by feature” iteration is defined.

2% of the project time is spend on the initial execution of this process and 2% on
an ongoing basis.

5.2.4 Process 4: Design by Feature (DBF)

The next feature that needs to be implemented is analysed to identify the classes that
contribute to the implementation. The class owners of the identified classes are called

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 5. A CRITICAL OVERVIEW OF FDD 61

up to help compile the required sequence diagrams and the method specifications. The
team concludes by holding a design inspection.

5.2.5 Process 5: Build by Feature (BBF)

From the DBF’s output, each class owner implements the methods assigned to her
including any test-cases required. After the team has inspected the code, the class
owner is allowed to check-in the changes into the configuration management system.

The “design and build by feature” iterations should take up the remaining 77% of the
project time. Each iteration of this “design and build by feature” should not last longer
than two weeks.

5.3 Practices

As with any software development methodology, there exists a set of prescribed prac-
tices that characterise the specific methodology. In most cases it is not only the indi-
vidual practices that are important, but more importantly the grouping of the practices.
Not adhering to one of the prescribed practices may result in the inability to conform to
the respective methodology. This is the case with FDD. The FDD authors acknowledge
that some of the practices associated with FDD are not new. Rather, it is the way in
which they are combined that is claimed to be new. As stated in [Palmer and Felsing,
2002], this combination results in a “whole that is greater than the sum of its parts”.
The rest of the section addresses each of the practices as subsections.

5.3.1 Domain Object Modeling

Through requirement solicitation from the domain experts, the developers are able to
build a visual model of a possible solution to the system. This model should provide
an overview of the system that can be decomposed into more detailed designs in each
iteration as features are implemented.

The technique suggested by [Coad and De Luca, 1999; Palmer and Felsing, 2002]
are the so-called “modeling in colour” technique. The basic idea behind the technique
is to increase the visual presentation of a model by using colour to differentiate certain
aspects of the model. A brief description is provided as Section 5.5.

5.3.2 Developing by Feature

As mentioned before, a feature is aclient-valued functionthat expresses a requirement
in a syntax that the client can understand. Following the strategy of implementing
functionality on a per feature basis enables the developers to focus on implementing
only the functionality that will provide value to the client. From the client’s perspective
this strategy provides a meaningful measure of the project’s status. It also provides a
means of prioritising the functionality to be implemented in the system, helping the
client to steer the project more effectively.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 5. A CRITICAL OVERVIEW OF FDD 62

5.3.3 Individual Class (Code) Ownership

In the object oriented world, classes acts as the primary unit of encapsulation. This
means that when individual code ownership is used, the granularity of use is at the
class level.

The authors of FDD cite three primary benefits for using class ownership. Firstly,
as a means of providing a motivational force to developers. Having ownership of a part
of the code builds pride in ones work. Secondly, it enables coherence at the class level
of code. Thirdly, familiarity with the code is buildup, resulting in an expert for the
inner working of certain pieces of code.

FDD also states that class ownership has better scalability than collective owner-
ship.

However, the authors of FDD also acknowledge the potential drawbacks that indi-
vidual ownership may incur. One of the drawbacks is reflected in the scenario were
there are dependencies between classes. These dependencies may result in one devel-
oper having to wait for another developer to add a certain functionality before being
able to complete his/her own functionality.

A second drawback is the potential loss of knowledge that may arise when one of
the team members departs from the project. In some scenarios it may also result in
developers gaining leveraging power over their superiors. Furthermore, the new class
owner might have difficulty gaining the necessary understanding of the intricacies of
the implementation.

Another drawback not explicitly mentioned, but theoretically possible and similar
to the first drawback, is a scenario where there exists a primary class that multiple
classes depend on. When multiple changes are needed to a single class it might result
in a bottleneck for implementation. An example of this might be instances where the
Mediatorpattern [Gamma et al., 1995] occurs.

The drawbacks, mentioned above, can be managed by following the other practices
prescribed by FDD. For example, making use of feature teams (see Subsections 5.3.4
and 5.4.3) introduces a dynamic team structure that enables class owners to be available
to multiple feature teams and for different features. Inspections (Subsection 5.3.5)
reduce the loss of knowledge in the event of a member leaving.

Nevertheless, it would seem that the above mentioned measures are not foolproof
and that the likelihood of bottlenecks and loss of knowledge may still be high, depend-
ing on the unique characteristics of the project.

On the other side of the fence we have the collective code ownership paradigm.
This paradigm takes the stand that any member of the development team should have
access to the code base and should be able to change any part of the code as needed.
This approach is pursued by methodologies such as XP and the Crystal family, sur-
veyed in Chapters 3 and 4 respectively.

Collective ownership reduces the risks mentioned above that are associated with in-
dividual code ownership. However it may produce chaos if not appropriately managed.
An example of this chaotic scenario would be if multiple developers were allowed to
independently and simultaneously develop code for the same method. This would re-
sult in wasted time and resources. In turn these multiple instances of the same method
may cause problems when the teams attempt to integrate their changes into the sys-
tem. Thus as with class ownership, supporting practices are needed to ensure order
when practicing collective code ownership. These supporting practices, as described
and dictated by XP are: pair-programming; coding standards; automated unit testing
and continuous integration.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 5. A CRITICAL OVERVIEW OF FDD 63

5.3.4 Feature Teams

As mentioned before, a feature team is a group structure created and disbanded on a per
feature basis. This highly dynamic structure supports the practice of class ownership
by reducing the risk associated with it, such as bottlenecks.

Through the use of feature teams, the benefits are gained of more than one mind
working together. Having a team of developers working together to produce a solu-
tion for a feature enables the selection of the most appropriate solution from a larger
possible solution base.

It should be noted that feature teams should generally be as small as possible, hav-
ing between three to six members per team.

5.3.5 Inspections

This is a well-known technique that has been used for the past few decades. The goals
of the inspections include: error reduction; knowledge transfer; and standard confor-
mance. The aforementioned goals in turn support an increase in quality. Inspections is
a delicate technique that needs to be implemented in the correct manner to ensure that
it does not produce negative effects on the developers. Pride in work may be broken by
insensitive reviews. And as pride-in-work is a primary force for class ownership, the
loss of pride and morale may strangle the project.

5.3.6 Regular Builds

Making builds of the complete system at regular intervals is a common agile practice
that is also prescribed by FDD. This practice enables the project team to verify correct
integration and to rectify any integration problems as soon as possible before they
become unmanageable.

Having regular builds also provides the ability to demonstrate a working system
that is as up-to-date as possible to the customer.

Added benefits include the ability to run automated functional and regression tests
on a regular basis.

This practice is also advocated by other methodologies including XP (continuous
integration) and within Microsoft (their nightly build practice).

5.3.7 Configuration Management

As with most software development efforts, a good configuration management (CM)
system should be used to track changes in the system being developed. The type of CM
system to use is dependent on the project’s characteristics. A good practice suggested
in [Palmer and Felsing, 2002] is to not only place the source code under CM but to also
include documentation such as requirement specification and designs.

5.3.8 Reporting/Visibility of Results

The FDD authors claim that FDD’s ability to provide visual status reporting is one of
its strong points.

All the chief programmers meet as a group with the release manager on a weekly
basis. During the meeting, the chief programmers provide verbal status reports on their
assigned features. This activity enable the rest of the chief programmers to gain an

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 5. A CRITICAL OVERVIEW OF FDD 64

understanding of the progress in other feature teams. During the meeting, the release
manager records the status for capturing in the database. The status reports are provided
in a visual format for easy and fast understanding. These reports may be displayed to
the development team in a communal area for enhanced communication. This practice
is also advocated by Cockburn among others. (See [Cockburn, 2002a]).

The visual reports used take advantage of the impact that colour provides. This
may be observed from Figure 5.2. Figure 5.2 provides a summary of the recommended
report that may be generated for each feature set.

Figure 5.2: Progress Report Example Coad and De Luca [1999]

5.4 Roles

As with any methodology, there are some specific roles that need to be represented
for the process to function properly. In FDD, these roles are the Chief Programmer,
Class Owner, Feature Teams and Release Manager. The aforementioned roles are sum-
marised in the following subsections.

5.4.1 Chief Programmer

The responsibility of the chief programmer in FDD is to orchestrate the “design-build
by feature” iterations. This is accomplished through mentoring and leading-by-example.
The characteristics of a chief programmer is, as the title suggests, a highly skilled pro-
grammer with experience and greater productivity than normal programmers.

The authors of FDD claim that adding chief programmers to a team using an agile
approach, may increase the project speed as opposed to slowing down the project as
suggested by Brooks in [Brooks, 1995]. However the authors of FDD still agree with
Brooks’ assertion that adding a normal programmer to a project will slow down the
project.

5.4.2 Class Owner

As mentioned in Subsection 5.3.3, FDD uses a class level code ownership model as op-
posed to the collective code ownership found in most of the other agile methodologies.
This means that responsibility for design and implementation reside with a specific
member of the team, called the class owner in FDD.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 5. A CRITICAL OVERVIEW OF FDD 65

5.4.3 Feature Teams

For every iteration, features are assigned to the different chief programmers. Each
chief programmer analysis the feature and request the class owners who’s classes are
impacted by the feature to join his feature team. It should be noted that a class owner
may be part of multiple feature teams at any point in time.

5.4.4 Release Manager

The release manager is responsible for compiling status reports for use by the develop-
ment team, the customer and management. Reporting in FDD is discussed in section
5.3.8.

5.5 Modeling in Colour

A technique that is recommended, but not required, by the authors is the so called
“modeling in colour” technique. The idea was conceived primarily by Coad during
the Singapore project and based on his and Mayfield’s concept ofarchetypes, first de-
scribed in [Coad and Mayfield, 1992]. An archetype is similar to a stereotype, as used
in UML. However the term archetype is deemed to be more descriptive than “stereo-
type”.

Merriam Webster defines archetype as:

“The original pattern or model of which all things of the same type are
representations or copies.” [M-W URL]

The archetypes that Coad and Mayfield defined are:
The moment-interval archetype. It is something that has an occurrence in time or

that may have a lifespan over a time period. An example would be a order transaction.
An order may start of with a initialisation time, continue to an accept status and end
with a delivery date.

The role archetype. Such an archetype refers to a person, organisation, place or
thing that partakes in something. An example is a sales clerk role.

The description archetype. This is a collection of values that can be reused. A book
is an example of this. A book contains a title, an author and an ISBN number.

The party, place, or thing archetype. This refers to the situation in which someone
or something may play multiple roles. A person may play both a clerk and a union
member role.

Originally the archetypes were applied using UML’s stereotype text elements. How-
ever the indications were lost in the abundance of text on the diagrams and the monotonous
nature of these diagrams. In September 1997, Coadet al. started using different
coloured Post-itTMNotes to aid in the visual representation of the models [Coad and
De Luca, 1999]. As UML and modeling in general is meant to be a visual aid for gain-
ing an understanding of the system, it was just a natural step to use colour to enhance
the visual representation.

The colour assignment is as follow: yellow for roles; green for things; blue for
descriptions and pink for moment-intervals.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 5. A CRITICAL OVERVIEW OF FDD 66

The use of colours to aid modeling has been found highly useful by the Singapore
project members. Since the first usage, it has been successfully used in other projects
and is being promoted by the FDD authors and others.

See [Coad and De Luca, 1999] for a more detailed description on the “modeling in
colour” technique.

5.6 Conclusion

Most of the ideas promoted by FDD are not new. However, as the FDD authors noted,
the packaging of the ideas is new and together it forms the solution presented here.
Some of these ideas come from as far back as the 1960’s and 1970’s.

In regard to the role of modeling FDD has a different outlook in comparison to
some of the other agile methodologies. In FDD, modeling forms an important role in
the process. However it still retains agility when developing these models.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

Chapter 6

Development Standards and
Agile Software Development

6.1 Introduction

Having established the underlying principles and practices associated with agile soft-
ware development, one may be inclined to contemplate whether agile methodologies
are able to comply with established software engineering standards.

The apparent lack of documentation generated by agile methodologies may be at
the root of concern when trying to address compliance. This is partly due to the concept
of generating documentation as proof of compliance to the specified standard.

However, it should be noted that the agile movement is not against documentation
per sebut rather, against the overemphasis on writing documentation that provides no
real value to a project’s main goal of delivering effective software.

Fortunately agile methodologies are, by definition, highly adaptable and are thus
able to comply with standards when required. However, it would seem that there are
almost no guidelines for mapping these standards onto agile methodologies that ensure
their compliance with specified standards. This chapter suggests a few such guidelines,
based on an analysis of currently used ISO software standards. Since XP is perhaps the
best known and most widely used agile methodology, the discussion below will focus
on it as a representative of the various agile methodologies. This means that whenever
there is a need to refer to some specific instance of an agile feature or practice, then
the way this feature is realised in XP will be cited. Other agile methodologies such as
Crystal can be adapted in a similar manner.

Section 6.2 will highlight ISO standards that are of interest to software developers.
A deeper investigation of some of these standards, and guidelines for using the relevant
standards are provided in Section 6.3.

6.2 Standards that are of interest

The most important ISO standards applicable to software development are ISO/IEC
12207:1995 and its replacement ISO/IEC 15288:2002, both referring to theSoftware
life cycle processes. This chapter focuses on the ISO/IEC 12207:1995 standard, since
this is currently used in industry. The ISO/IEC 15288:2002 standard was only approved

67

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 6. DEVELOPMENT STANDARDS AND ASD 68

by ISO in October 2002 and is still under consideration by local standards bodies such
as the South African Bureau of Standards (SABS). At the time of writing, the standard
was not generally available to the public.

Other standards that are also of interest to software development are ISO/IEC
15939:2002 (Software measurement process) and ISO/IEC 14143 (Software measure-
ment - Functional size measurement). Although these standards are used in support of
software development they are not directly relevant to the present discussion and will
not be further considered here.

6.2.1 ISO/IEC 12207:1995

It should be noted that this section will rely on definitions in ISO/IEC 12207:1995
when referring to certain terms. Where needed the definition of a term will be given in
a footnote. ISO/IEC 12207:1995 defines asoftware productas “The set of computer
programs, procedures, and possibly associated documentation and data.”; It defines a
software serviceas the “Performance of activities, work, or duties connected with a
software product, such as its development, maintenance, and operation.”. Asystem
is defined as “An integrated composite that consists of one or more of the processes,
hardware, software, facilities and people, that provides a capability to satisfy a stated
need or objective.”

The ISO/IEC 12207:1995 standard defines a framework for software life cycle pro-
cesses, spanning all stages from the initiation stage through to the retirement stage of
software. The framework is partitioned into threeareas: primary life cycle processes;
supporting life cycle processes and organizational life cycle processes. Relevantsub-
processesin each of these areas are identified and variousactivitiesare specified for
each subprocess. The subprocesses and their associated activities are given in Tables
6.1 to 6.3.

6.2.1.1 Compliance

Compliance with the ISO 12207:1995 standard “is defined as the performance of all
the processes, activities, and tasks selected from this International Standard in the Tai-
loring Process ... for the software project.” [National Committee TC 71.1 (Information
technology), 1995].

This so-called tailoring process is discussed in an annex to the standard itself and
is to be used to customise ISO 12207:1995 to a specific project. The process starts off
by identifying the characteristics of the project environment. These may include the
team size, organisational policy and project criticality. Next, the process requires that
all the affected stakeholders of the project should be consulted on the way in which the
ISO 12207:1995 process should be tailored. Based on this consultation, the processes,
activities and tasks that will be followed during the project should be selected. The
selection should also take into consideration the processes, activities and tasks that are
not specified in ISO 12207:1995 but which nevertheless form part of the contract. The
selection activity should also document who will be responsible for each process, activ-
ity and task. Finally all the tailoring decisions should be documented, and explanations
for the relevant decisions should be noted.

The foregoing implies that if an organisation prescribes conformance to ISO 12207:1995
as a requirement for trade, then that organisation holds the responsibility of specifying
what will be considered as the minimum required in terms of processes, activities and
tasks, in order to conform with the standard. What is to constitute compliance may

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 6. DEVELOPMENT STANDARDS AND ASD 69

P
rim

ar
y

Li
fe

C
yc

le
P

ro
ce

ss
es

A
cq

ui
si

tio
n

su
bp

ro
ce

ss
S

up
pl

y
su

bp
ro

ce
ss

D
ev

el
op

m
en

ts
ub

pr
oc

es
s

O
pe

ra
tio

n
su

bp
ro

ce
ss

M
ai

nt
en

an
ce

su
bp

ro
ce

ss

re
sp

on
si

bi
lit

y
of

th
ea

cq
u

ire
ra

re
sp

on
si

bi
lit

y
of

th
es

u
p

p
lie

rb
.

do
ne

by
th

ed
ev

e
lo

p
e

rc .
do

ne
by

th
eo

p
e

ra
to

r.
re

sp
on

si
bi

lit
y

of
th

em
a

in
ta

in
e

r.

A
ct

iv
iti

es
:

•
in

iti
at

io
n;

•
re

qu
es

t-
fo

r-
pr

op
os

al
[-

te
nd

er
]p

re
pa

ra
tio

n;

•
co

nt
ra

ct
pr

ep
ar

at
io

n
an

d
up

-
da

te
;

•
su

pp
lie

r
m

on
ito

rin
g;

•
ac

ce
pt

an
ce

an
d

co
m

pl
et

io
n.

A
ct

iv
iti

es
:

•
in

iti
at

io
n;

•
pr

ep
ar

at
io

n
of

re
sp

on
se

;

•
co

nt
ra

ct
;

•
pl

an
ni

ng
;

•
ex

ec
ut

io
n

an
d

co
nt

ro
l;

•
re

vi
ew

an
d

ev
al

ua
tio

n;

•
de

liv
er

y
an

d
co

m
pl

et
io

n.

A
ct

iv
iti

es
:

•
pr

oc
es

s
im

pl
em

en
ta

tio
n;

•
sy

st
em

re
qu

ire
m

en
ta

na
ly

si
s;

•
sy

st
em

ar
ch

ite
ct

ur
al

de
si

gn
;

•
so

ftw
ar

e
re

qu
ire

m
en

ts
an

al
y-

si
s;

•
so

ftw
ar

e
ar

ch
ite

ct
ur

al
de

si
gn

;

•
so

ftw
ar

e
de

ta
ile

d
de

si
gn

;

•
so

ftw
ar

e
co

di
ng

an
d

te
st

in
g;

•
so

ftw
ar

e
in

te
gr

at
io

n;

•
so

ftw
ar

e
qu

al
ifi

ca
tio

n
te

st
in

g;

•
sy

st
em

in
te

gr
at

io
n;

•
sy

st
em

qu
al

ifi
ca

tio
n

te
st

in
g;

•
so

ftw
ar

e
in

st
al

la
tio

n;

•
so

ftw
ar

e
ac

ce
pt

an
ce

su
pp

or
t.

A
ct

iv
iti

es
:

•
pr

oc
es

s
im

pl
em

en
ta

tio
n;

•
op

er
at

io
na

lt
es

tin
g;

•
sy

st
em

op
er

at
io

n;

•
us

er
su

pp
or

t.

A
ct

iv
iti

es
:

•
pr

oc
es

s
im

pl
em

en
ta

tio
n;

•
pr

ob
le

m
an

d
m

od
ifi

ca
tio

n
an

al
ys

is
;

•
m

od
ifi

ca
tio

n
im

pl
em

en
ta

-
tio

n;

•
m

ai
nt

en
an

ce
re

-
vi

ew
/a

cc
ep

ta
nc

e;

•
m

ig
ra

tio
n;

•
so

ftw
ar

e
re

tir
em

en
t.

Ta
bl

e
6.

1:
P

rim
ar

y
Li

fe
C

yc
le

P
ro

ce
ss

es

a
“A

n
or

ga
ni

za
tio

n
th

at
ac

qu
ire

s
or

pr
oc

ur
es

a
sy

st
em

,s
of

tw
ar

e
pr

od
uc

to
r

so
ftw

ar
e

se
rv

ic
e

fr
om

a
su

pp
lie

r.”
N

at
io

na
lC

om
m

itt
ee

T
C

71
.1

(I
nf

or
m

at
io

n
te

ch
no

lo
gy

)
[1

99
5]

b
“A

n
or

ga
ni

za
tio

n
th

at
en

te
rs

in
to

a
co

nt
ra

ct
w

ith
th

e
ac

qu
ire

r
fo

r
th

e
su

pp
ly

of
a

sy
st

em
,s

of
tw

ar
e

pr
od

uc
to

r
so

ftw
ar

e
se

rv
ic

e
un

de
r

th
e

te
rm

s
of

th
e

co
nt

ra
ct

.”
N

at
io

na
lC

om
m

itt
ee

T
C

71
.1

(I
nf

or
m

at
io

n
te

ch
no

lo
gy

)
[1

99
5]

c “
A

n
or

ga
ni

za
tio

n
th

at
pe

rf
or

m
s

de
ve

lo
pm

en
ta

ct
iv

iti
es

(in
cl

ud
in

g
re

qu
ire

m
en

ts
an

al
ys

is
,d

es
ig

n,
te

st
in

g
th

ro
ug

h
ac

ce
pt

an
ce

)d
ur

in
g

th
e

so
ftw

ar
e

lif
e

cy
cl

e
pr

oc
es

s.
”

N
at

io
na

lC
om

m
itt

ee
T

C
71

.1
(I

nf
or

m
at

io
n

te
ch

no
lo

gy
)

[1
99

5]

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 6. DEVELOPMENT STANDARDS AND ASD 70

S
up

po
rt

in
g

Li
fe

C
yc

le
P

ro
ce

ss
es

D
oc

um
en

ta
tio

n
su

b-
pr

oc
es

s
C

on
fig

ur
at

io
n

m
an

ag
em

en
t

su
bp

ro
ce

ss

Q
ua

lit
y

as
su

ra
nc

e
su

bp
ro

ce
ss

Ve
rifi

ca
tio

n
su

bp
ro

-
ce

ss
Va

lid
at

io
n

su
bp

ro
-

ce
ss

Jo
in

t
re

vi
ew

su
bp

ro
-

ce
ss

A
ud

it
su

bp
ro

ce
ss

P
ro

bl
em

re
so

lu
tio

n
su

bp
ro

ce
ss

S
pe

ci
fie

s
ho

w
in

fo
r-

m
at

io
n

ge
ne

ra
te

d
by

th
e

lif
e

cy
cl

e
pr

oc
es

s
sh

ou
ld

be
re

co
rd

ed
.

A
dd

re
ss

es
th

e
ad

m
in

is
tr

at
iv

e
an

d
te

ch
ni

ca
l

pr
oc

ed
ur

es
fo

r
th

e
lif

e
cy

cl
e.

E
ns

ur
es

th
at

th
e

so
ft-

w
ar

e
co

nf
or

m
s

to
th

e
sp

ec
ifi

ca
tio

ns
as

de
-

fin
ed

by
th

e
pl

an
s.

U
se

d
to

co
nfi

rm
th

at
th

e
so

ftw
ar

e
pr

od
uc

ts
sa

tis
fy

th
e

re
qu

ire
-

m
en

ts
de

fin
ed

.

C
on

fir
m

s
th

at
th

e
fi-

na
ls

ys
te

m
sa

tis
fy

th
e

in
te

nd
ed

us
e.

U
se

d
to

as
se

ss
th

e
ac

-
tiv

iti
es

in
a

pr
oj

ec
t.

E
ns

ur
es

co
nf

or
m

ity
to

th
e

re
qu

ire
m

en
ts

,
pl

an
s

an
d

co
nt

ra
ct

fo
r

th
e

sy
st

em
.

U
se

d
to

an
al

ys
e

an
d

re
so

lv
in

g
pr

ob
le

m
s

th
at

ar
e

en
co

un
te

re
d

du
rin

g
an

y
pr

oc
es

s.

A
ct

iv
iti

es
:

•
pr

oc
es

s
im

pl
em

en
-

ta
tio

n;

•
de

si
gn

an
d

de
ve

lo
p-

m
en

t;

•
pr

od
uc

tio
n;

•
m

ai
nt

en
an

ce
.

A
ct

iv
iti

es
:

•
pr

oc
es

s
im

pl
em

en
-

ta
tio

n;

•
co

nfi
gu

ra
tio

n
id

en
tifi

ca
-

tio
n;

•
co

nfi
gu

ra
tio

n
co

nt
ro

l;

•
co

nfi
gu

ra
tio

n
st

at
us

ac
-

co
un

tin
g;

•
co

nfi
gu

ra
tio

n
ev

al
ua

tio
n;

•
re

le
as

e
m

an
ag

e-
m

en
t

an
d

de
liv

er
y.

A
ct

iv
iti

es
:

•
pr

oc
es

s
im

pl
em

en
-

ta
tio

n;

•
pr

od
uc

t
as

-
su

ra
nc

e;

•
pr

oc
es

s
as

-
su

ra
nc

e;

•
as

su
ra

nc
e

of
qu

al
ity

sy
s-

te
m

s.

A
ct

iv
iti

es
:

•
pr

oc
es

s
im

pl
em

en
-

ta
tio

n;

•
ve

rifi
ca

tio
n.

A
ct

iv
iti

es
:

•
pr

oc
es

s
im

pl
em

en
-

ta
tio

n;

•
va

lid
at

io
n.

A
ct

iv
iti

es
:

•
pr

oc
es

s
im

pl
em

en
-

ta
tio

n;

•
pr

oj
ec

t
m

an
-

ag
em

en
t

re
vi

ew
s;

•
te

ch
ni

ca
lr

e-
vi

ew
s.

A
ct

iv
iti

es
:

•
pr

oc
es

s
im

pl
em

en
-

ta
tio

n;

•
au

di
t.

A
ct

iv
iti

es
:

•
pr

oc
es

s
im

pl
em

en
-

ta
tio

n;

•
pr

ob
le

m
re

so
lu

tio
n.

Ta
bl

e
6.

2:
S

up
po

rt
in

g
Li

fe
C

yc
le

P
ro

ce
ss

es

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 6. DEVELOPMENT STANDARDS AND ASD 71

O
rg

an
is

at
io

na
lL

ife
C

yc
le

P
ro

ce
ss

es

M
an

ag
em

en
ts

ub
pr

oc
es

s
In

fr
as

tr
uc

tu
re

su
bp

ro
ce

ss
Im

pr
ov

em
en

ts
ub

pr
oc

es
s

T
ra

in
in

g
su

bp
ro

ce
ss

T
he

ac
tiv

iti
es

th
at

m
ay

be
us

ed
by

an
y

pa
rt

y
on

an
y

pr
o-

ce
ss

to
m

an
ag

e
it.

U
se

d
to

se
t

an
d

m
ai

nt
ai

n
th

e
in

fr
as

tr
uc

tu
re

re
qu

ire
d

fo
r

th
e

ot
he

r
pr

oc
es

se
s.

E
na

bl
es

th
e

ab
ili

ty
of

im
pr

ov
-

in
g

a
so

ftw
ar

e
lif

e
cy

cl
e

pr
o-

ce
ss

.

S
us

ta
in

in
g

tr
ai

ne
d

pe
rs

on
ne

l
in

al
lp

ar
tie

s.

A
ct

iv
iti

es
:

•
in

iti
at

io
n

an
d

sc
op

e
de

fin
iti

on
;p

la
nn

in
g;

•
ex

ec
ut

io
n

an
d

co
nt

ro
l;

•
re

vi
ew

an
d

ev
al

ua
tio

n;

•
cl

os
ur

e.

A
ct

iv
iti

es
:

•
pr

oc
es

s
im

pl
em

en
ta

-
tio

n;

•
es

ta
bl

is
hm

en
to

ft
he

in
-

fr
as

tr
uc

tu
re

;

•
m

ai
nt

en
an

ce
of

th
e

in
-

fr
as

tr
uc

tu
re

.

A
ct

iv
iti

es
:

•
pr

oc
es

s
es

ta
bl

is
hm

en
t;

•
pr

oc
es

s
as

se
ss

m
en

t;

•
pr

oc
es

s
im

pr
ov

em
en

t.

A
ct

iv
iti

es
:

•
pr

oc
es

s
im

pl
em

en
ta

-
tio

n;

•
tr

ai
ni

ng
m

at
er

ia
ld

ev
el

-
op

m
en

t;

•
tr

ai
ni

ng
pl

an
im

pl
e-

m
en

ta
tio

n.

Ta
bl

e
6.

3:
O

rg
an

is
at

io
na

lL
ife

C
yc

le
P

ro
ce

ss
es

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 6. DEVELOPMENT STANDARDS AND ASD 72

be further refined and negotiated when defining the contract between the acquirer and
supplier.

6.3 The agile angle

As previously stated, the focus here is on ISO 12207:1995 since it is the most relevant
ISO standard in regard to software development. The present section motivates and
provides guidelines for implementing the standard in an agile context. The discussion
will focus on XP as a typical example of the agile methodologies. The following ques-
tion is addressed: “Can agile methodologies be implemented or extended in such a
way that they conform to ISO 12207:1995 but still retain their agile characteristics?”
To the author’s knowledge there is no literature that directly addresses this question.
Nevertheless, the author takes the view that the question can be answered affirmatively.
In support of this view, implementation guidelines are proposed that will ensure that an
agile-based project conforms to ISO 12207:1995. These guidelines are derived from
an analysis of the standard on the one hand, as well as from an analysis of the charac-
teristics of the agile methodologies on the other.

The task of implementing an agile methodology in such a way that it conforms to
ISO 12207:1995 can be viewed from two perspectives.

1. From the ISO standard’s view the standard should first betailored to meet the
requirements of the project. This tailoring may involve all the parties but demands the
special attention of the acquirer. The “tailored” standard should then be mapped to the
development methods and processes that are used.

2. From the XP perspective, the methodology itself requires that its processes
should be customised to comply with the project requirements. The same holds true
for Crystal. This means the methodology inherently requires that it should be adapted
to support the needs of the project. In the present context, this means that the method-
ology should be adapted to comply with the ISO standard. It should be noted that in
both XP and Crystal, conforming to a standard is regarded as a system requirement
specification in itself and is treated as such.

The discussion below refers to two of the three areas mentioned in the framework:
the area dealing with primary life cycle processes (Table 6.1); and the area dealing
with supporting life cycle processes (Table 6.2). Only the third of the various primary
life cycle subprocess, namely thedevelopment subprocess, is relevant to the present
discussion. Its activities are supplemented by the activities of each of eight supporting
life cycle subprocesses in Table 6.2. The standard itself contains various clauses that
elaborate in greater detail than provided by the tables above on what should happen in
order for these various subprocesses to be realised.

Sections 1 to 4 of ISO 12207:1995 merely describes the standard and the document
itself, whereas sections 5, 6 and 7 provides the prescriptions of the standard and are
summarised in Tables 6.1, 6.2 and 6.3 respectively.

General comments that are broadly applicable to multiple clauses of the standard
are first given below (Section 6.3.1). Then, Section 6.3.2 considers specific clauses and
proposes guidelines to meet their requirements. Only clauses that relate to the devel-
opment subprocess of Table 6.1, or that relate to relevant subprocesses in Table 6.2 are
discussed. Finally, Section 6.3.3 addresses the matter of incremental documentation.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 6. DEVELOPMENT STANDARDS AND ASD 73

6.3.1 General comments

One broad approach for ensuring that an agile development team conforms to the ISO
12207:1995 standard is to assign the task of providing that assurance to one or more
individuals. In essence, then, this person enables the team to produce the necessary
artifacts in the manner required of the standard.

To ensure that the developers, the programmers specifically, are isolated from the
burden of documentation and administrative tasks that are needed to conform to the
standard, it is suggested that an organisational model similar to the one proposed by
Brooks should be followed[Brooks, 1995]. This model of a so-calledSurgical Team
consists of a surgeon (an expert in performing the design); a copilot (who follows
the design and knows the alternatives); an administrator (who manages all the admin-
istrative issues such as resources and legalities); an editor (‘translates’ the surgeon’s
documentation for general usage); an administrator’s secretary; an editor’s secretary;
a program clerk(who maintains changing artifacts through version and configuration
control); a tool smith (who is an expert on development tools); a tester; and a language
lawyer (who is an expert on programming language usage and other specifications).

The above model is for the organisation of a development team and was proposed
in the 1960s. Although it might seem inappropriate for some of the contemporary soft-
ware development projects, it does suggest a few useful ideas. The particular point
worth considering is the notion that the programmers should be isolated from adminis-
trative tasks and from generating documentation. In an agile project this means that the
individuals assigned to ensure compliance with the selected ISO standards should gen-
erate the necessary documentation as required by these standards without burdening
the developers. Thus the documentation sub-team should solicit the required informa-
tion and data in a manner that is as non-intrusive as possible. As an example, when
implementing this proposed model in an XP context, it is suggested that a ‘standard-
conformance’ sub-team should be assigned as part of the development team. The mem-
bers of this sub-team should be co-located in the same room as the programmers and
the on-site customers in order to easily solicit information that is required for documen-
tation. They may do so informally through normal everyday communication, and also
more formally through attending XP required interactions such as regular white-board
discussion sessions. Information should also be gathered from the test-cases developed
and through the use of software tools that can extract relevant information directly from
the source code that has been developed. Where possible, the documentation should
be incorporated as part the source code to conform with the XP principles stating that
the source code should be the main source of information regarding the development
effort.

These personnel arrangements represent a general way to enable an agile devel-
opment team to act in compliance with the ISO standards. However, also in general
sense, an agile development team will quite naturally comply with a substantial part of
the ISO standard’s requirements, merely by virtue of following the agile methodology
itself. In particular, consider the eight supporting life cycle subprocesses mentioned in
Table 6.2. The next section will discuss a number of specific clauses relating to the first
three subprocesses (documentation, configuration management and quality assurance)
as well as to the last subprocess (problem resolution). But a cursory examination of the
remaining four subprocesses in Table 6.2 will reveal that the issues which they address
are, by and large, inherently built into the very substance of the agile methodology
itself.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 6. DEVELOPMENT STANDARDS AND ASD 74

Thus, for example,verification1 andvalidation2 is inherently addressed by the agile
practice of writing code specifically to meet test cases – i.e. test cases are set up prior to
coding and code is not accepted until it has been verified against the test cases. Usually
verification is done through unit test-cases and validation through functional test-cases.

The notion ofjoint reviewsof project activity is strongly built into XP by virtue of
requirements that enforce regular planning sessions, that insist on pair programming,
that demand the rotation of coding tasks (such that code belongs to no particular person
but is constantly reviewed by fresh pairs of developers), that ensure the availability
of an on-site customer representative, etc. These kinds of arrangements ensure that
continuous joint reviews of various levels of activity and at various levels of detail take
place on an ongoing basis within an XP project as a natural outflow of the methodology
itself.

In a broad sense,auditingcan be regarded as a process whereby some independent
agent reviews the activities of the audited party, reporting on the findings in a fairly
formal fashion. The need for auditing typically arises in a context where activities are
carried out in an independent and/or private fashion. But in an XP context, this is the
very antithesis of the way in which code is developed. Instead, code is seen as belong-
ing to the entire development team. Everyone has access to all code and the practice of
rotating coding tasks ensures that different team members are constantly exposed to,
and indeed becoming intimately familiar with, code developed by others. Of course,
if the client has additional auditing requirements (e.g. stemming from concerns about
possible collusion in the development team), then there is nothing to prevent arrange-
ments amongst the various parties to have code independently audited at various times,
or indeed, to periodically insert a code auditor into the development team at different
stages of the development.

6.3.2 Clause specific proposals

This section provides guidelines for ensuring that agile teams adhere to specific clauses
from ISO 12207:1995.

The clauses that will be examined are from Sections 5.3 and 6 of ISO 12207:1995.
The former section relates to the development subprocess of the primary life cycle
processes) and Section 6 deals with various supporting life cycle processes. Clauses in
ISO 12207:1995 that are not specifically mentioned here mainly relate to the business
and organisational activities – for example, the various activities implied in Table 6.3.
They fall beyond the scope of the development activities discussed here.

The various clauses that are to be examined are shown as framed inserts. In each
case the insert is followed by a discussion of the clause and suggested guidelines for
bringing an agile methodology into line with the clause. Note that the clauses are ex-
amined from the development organisation’s perspective – i.e. from the perspective
of the suppliers of the software product. Also note that whenever appropriate, docu-
mentation in regard to the results from and outputs of each of these clauses should be
produced on the basis of the model proposed in Section 6.3.1.

1“Confirmation by examination and provision of objective evidence that specified requirements have been
fulfilled" [National Committee TC 71.1 (Information technology), 1995]. Thus, verification checks that the
system executes correctly.

2“Confirmation by examination and provision of objective evidence that the particular requirements for
a specific intended use are fulfilled" [National Committee TC 71.1 (Information technology), 1995]. In
essence, validation checks that the system provide the functionality required to fulfil the needs of the acquirer.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 6. DEVELOPMENT STANDARDS AND ASD 75

5.3.4.2The developer shall evaluate the software requirements considering the cri-
teria listed below. The results of the evaluations shall be documented.

a) Traceability to system requirements and system design;

b) External consistency with system requirements;

c) Internal consistency;

d) Testability;

e) Feasibility of software design;

f) Feasibility of operation and maintenance.

a) Traceability to system requirements and system design;

b) External consistency with system requirements;

c) Internal consistency;

d) Testability;

e) Feasibility of software design;

f) Feasibility of operation and maintenance.

XP explicitly takes the above into consideration during theplanning gamewith the
aid ofspikesand in collaboration with theon-site customers. During theplanning game
the development team verifies theuser-stories(the system requirements), ensuring not
only their mutual consistency but also their overall feasibility. If the developers are
unsure about auser-story’s characteristics, then they use aspiketo discover in greater
detail what the user-story entails. The feasibility of the software requirements may
therefore also be determined through spikes.

During implementation, the practice ofpair programmingobliges the non-typing
programmer to evaluate the above mentioned criteria. In fact, one of the explicit roles
of the non-typing programmer is to think strategically. By its very nature, such strategic
thinking will invariably relate the current coding task to the overall system’s require-
ments in terms of the foregoing criteria.

Furthermore, testability is addressed explicitly in terms of the test-driven develop-
ment principle that is applied in XP.

Any other issues to emerge during development and that relates to the above clauses
(e.g. in respect of traceability, external consistency etc.) should be discussed in the
team context and, if necessary written as comments in the source code for other mem-
bers to read and/or to be extracted by software tools used by the documentation sub-
team.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 6. DEVELOPMENT STANDARDS AND ASD 76

5.3.5 Software architectural design. For each software item (or software
configuration item, if identified), this activity consists of the following tasks:

5.3.5.1The developer shall transform the requirements for the software item into
an architecture that describes its top-level structure and identifies the software
components. It shall be ensured that all the requirements for the software item
are allocated to its software components and further refined to facilitate detailed
design. The architecture of the software item shall be documented.

5.3.5.2The developer shall develop and document a top-level design for the inter-
faces external to the software item and between the software components of the
software item.

XP relies on the use ofmetaphorsto facilitate the architectural visioning of the
system. Using metaphors helps the developers and customers to bridge the gap of
understanding between the technical jargon of the developers and the business jargon
of the customer. It does this by providing a medium to describe an unknown domain
using a known domain as comparison, thus using a known domain’s architecture as
reference. For more concrete architectural design information, the documenter should
capture information from theplanning gameand fromwhite-boarddiscussions.

Given that XP propounds the idea that the source code should be the documenta-
tion, it is natural that it would be well-disposed towards the use of technologies that
extract user friendly documentation from source code. Examples of such technologies
include Javadoc and model extraction from code. Of course, the deployment of such
technologies will usually impose certain coding standards on the development team.
For example, to use Javadoc effectively means to reach some agreement about where
Javadoc comments will be inserted into the code (e.g. before all public methods), what
the nature of those comments should be (e.g. a statement of all preconditions in terms
of public methods and public instance fields), the Javadoc parameters to be provided,
etc.
Architectural documentation may be complemented by the information generated from
source code whereas design documentation can be mostly derived from the source
code. One of the advantages of generating documentation from the code is that the
documentation is up to date and a true reflection of the system.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 6. DEVELOPMENT STANDARDS AND ASD 77

6.1Documentation process
The Documentation Process is a process for recording information produced by a
life cycle process or activity. The process contains the set of activities, which plan,
design, develop, produce, edit, distribute, and maintain those documents needed
by all concerned such as managers, engineers, and users of the system or software
product.
List of activities. This process consists of the following activities:

a) Process implementation;

b) Design and development;

c) Production;

d) Maintenance.

a) Process implementation;

b) Design and development;

c) Production;

d) Maintenance.

The standard “only tasks the development process to invoke the documentation pro-
cess”[IEEE & EIA, 1998b]. This means that each of the organisations (the acquirers;
suppliers and/ or other 3rd parties) should decide on how to use and implement the
documentation process. Being able to define how to implement the process enables
the development organisation (supplier) to use agile methodologies and adapt them as
needed.

The documentation needed is agreed upon and defined during the tailoring process.
What is to be documented is therefore contracted between the acquirer and supplier.
This acquirer-required documentation, together with documentation that the develop-
ment organisation requires for internal purposes, jointly constitute the set of documen-
tation that is to be generated.

6.2.3 Configuration control. This activity consists of the following task:

6.2.3.1The following shall be performed: identification and recording of change
requests; analysis and evaluation of the changes; approval or disapproval of the
request; and implementation, verification, and release of the modified software
item. An audit trail shall exist, whereby each modification, the reason for the
modification, and authorization of the modification can be traced. Control and
audit of all accesses to the controlled software items that handle safety or security
critical functions shall be performed.

Nowadays there is a diverse range of configuration management software tools that
enable development teams to meet the standard. They include Rational’s ClearCaseR©
and Visible’s Razor. The full list of available products is too extensive to state here.
Configuration control is an integral part of most development organisations and is a

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 6. DEVELOPMENT STANDARDS AND ASD 78

widely accepted practice. It should be noted that using these tools does not automati-
cally ensure conformance to ISO 12207:1995 – the tool should be used in such a way
that the outcome specifically conforms to the requirements of ISO 12207:1995.

6.3 Quality assurance process

The Quality Assurance Process is a process for providing adequate assurance
that the software products and processes in the project life cycle conform to their
specified requirements and adhere to their established plans. To be unbiased,
quality assurance needs to have organizational freedom and authority from persons
directly responsible for developing the software product or executing the process
in the project. Quality assurance may be internal or external depending on whether
evidence of product or process quality is demonstrated to the management of the
supplier or the acquirer. Quality assurance may make use of the results of other
supporting processes, such as Verification, Validation, Joint Reviews, Audits, and
Problem Resolution.

List of activities. This process consists of the following activities:

a) Process implementation;

b) Product assurance;

c) Process assurance;

d) Assurance of quality systems.

a) Process implementation;

b) Product assurance;

c) Process assurance;

d) Assurance of quality systems.

Quality Assurance (QA) is built into XP through the use of functional-, acceptance-
and unit tests as well as through the presence of an on-site customer. It is explicitly
part of the role description of the on-site customer to ensure that the development team
delivers software that meets the requirements of the acquirer by defining and carrying
out acceptance tests and by doing reviews during development.

It would appear, therefore, that XP already does much to ensure quality. Although
the developers on the team could hardly be regarded as unbiased (and therefore as
agents for formally carrying out QA), it may sometimes be appropriate to consider the
on-site customer as an appropriate “external” authority. In some contexts, the extent
to which on-site customer may be considered unbiased may however be limited. For
example, it would be quite natural for a congenial relationship between the on-site cus-
tomer and the development team to be built up over time. In as much as it may be
considered necessary to do more than merely provide for an on-site customer in order
to conform to the standard, a person or sub-team could be assigned to coordinate the
QA in conjunction with the on-site customer. For an even greater assurance of impar-
tiality, a totally independent team may be assigned to verify the quality, without any

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 6. DEVELOPMENT STANDARDS AND ASD 79

reference at all to the on-site customer.

6.8 Problem resolution process

The Problem Resolution Process is a process for analyzing and resolving the
problems (including non-conformances), whatever their nature or source, that are
discovered during the execution of development, operation, maintenance, or other
processes. The objective is to provide a timely, responsible, and documented
means to ensure that all discovered problems are analyzed and resolved and trends
are recognized.

List of activities. This process consists of the following activities:

a) Process implementation;

b) Problem resolution.

a) Process implementation;

b) Problem resolution.

Although XP does not have a specific process labelled “Problem Resolution", its
short iterative development cycles and its high-intensity team interaction processes nat-
urally lead to early problem detection and resolution. Furthermore, it is a natural fea-
ture of XP to support change, including changes required to resolve problems. For
example, accepting changes to the requirements is part of thesteeringphase of the
planning game. However, XP does not make explicit provision for documenting the
problems encountered nor for documenting the changes made to resolve those prob-
lems. Such documentation, if required by the acquirer, should be referred to the docu-
mentation sub-team as proposed in Section 6.3.1.

6.3.3 Incremental Documentation

The guidelines [IEEE & EIA, 1998a,b] to ISO 12207:1995 state that when development
is incremental or evolutionary the documentation generation may also be incremental
or evolutionary. This statement is important to agile methodologies in general, and to
XP in particular, since the system evolves over the duration of development without
the big upfront design that many other methodologies use. Generating documentation
incrementally also supports the idea of generating the documentation from the source
code, since the source code itself is generated incrementally. Thus, the use of tools
to generate documentation from source code has the benefit of ensuring that the docu-
mentation is up to date and of therefore allowing the documentation to reflect the true
nature of the software.

6.4 Conclusion

The guidelines provided here are not intended to be exhaustive. Rather, they provide a
starting point for agile developers who are required to comply with ISO 12207:1995.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 6. DEVELOPMENT STANDARDS AND ASD 80

The guidelines should of course be tested in practice and should be further customised
for specific project needs.

It has been argued above that agile methodologies can indeed be adapted to ensure
compliance with a standard such as ISO 12207:1995. In doing so, care should be taken
to ensure that the development organisation abides by the agile manifesto principle of
“working software over comprehensive documentation”. The previous two statements
might seem to contradict one another, but herein lies the heart of the tension that is un-
der discussion. The agile principle of stressing the development of working software
rather than huge volumes of documentation need not be a rejection of producing doc-
umentationper se. Rather, it represents a shift of focus to what software development
really is all about – the production of software. In situations where documentation is
required, this requirement then becomes a system requirement and should be treated
as such. The acquirer needs to understand that extensive documentation increases re-
source utilisation. This translates into higher cost and perhaps slower delivery of the
system. Where possible, the development team should use tools that automate the gen-
eration of documentation to reduce the resource utilisation. These tools should rely
on source code as input, because source code is the most accurate representation of the
software product. However, it should be realised that the effective use of such tools may
well impose certain coding standards upon the development team, and these standards
will have to be agreed upon and followed.

The guidelines and conclusions presented here were presented at the annualSouth
African Institute of Computer Scientists and Information TechnologistsConference of
2003 [Theunissen et al., 2003].

Of further note is that theSoftware Engineering Institute(SEI) is conducting research
into the ability of agile methodologies to conform to theSoftware Capability Maturity
Model(SW-CMM).

Paulk [2001] provides some findings regarding SW-CMM and XP. He states that
XP is able to reach a level 3 grading with only minor ‘key process areas’ missing that
are of a managerial nature. This shortcoming is due to XP being a technical process
and the focus of CMM being on managerial issues. He concludes that “We can con-
sider CMM and XP complementary” and “XP practices can be compatible with CMM
practices ...”

Achieving ISO 9001 certification for an organisation that uses XP is discussed by
Wright [2003]. Wright describes how his company gained ISO 9001 accreditation
while following XP. He addresses the necessary practices that were needed to comply
with the requirements of the standard. See [Wright, 2003] for a more detailed descrip-
tion.

Having established that agile methodologies are able to comply with standards, the
next question to address is “how do practitioners experience developing software using
agile approaches.” In the next chapter a case study on an XP development team is
provided to address the aforementioned question.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

Chapter 7

The Equinox Case Study

7.1 Introduction

This chapter reports on an evaluation of the practical implementation of Extreme Pro-
gramming (XP) in industry. The evaluation was conducted at the South African fi-
nancial company Equinox Financial Solutions (Pty.) Ltd. Equinox is a LISP1 (Linked
Investment Service Provider) that provides a web-based interface for their customers
on which to transact.

The goal of the evaluation was to determine how a group of South African develop-
ers with limited access to physical XP training were able to use XP as the development
approach. Another goal was to gain an understanding of how the developers experience
XP in practice and if they thought it to have any short comings.

Section 8.2 provides a description of the approach used to conduct the study. An-
other study on XP carried out by other researchers is mentioned in Section 7.3, followed
by a question-by-question discussion on the responses to the study in Section 7.4. Sec-
tion 7.5 highlights some general observations and the chapter ends with concluding
comments in Section 8.7.

7.2 Methodology

Most members of the Equinox development team have a long association with the
Computer Science Department at the University of Pretoria. They have developed a
reputation of being very serious implementors of XP. These members each hold four to
five year degrees and each has over ten years of experience. In recent years, the author
had made their acquaintance and had confirmed their critical but dedicated pursuit of
the XP methodology. As a result, they seemed to constitute an excellent test-bed of XP
expertise whose experience and insights on XP could be probed.

As such, the developers at Equinox were invited to answer a questionnaire (indi-
vidually) on how they experienced XP. This questionnaire is provided as Appendix C.
The development team is rather small, consisting of six developers. From these four
positively responded to the invitation, including the manager who did not complete the
questionnaire since he felt that he did not do any programming and was therefore un-
able to answer the questions as such. Instead he provided his own summary of how he

1A financial service company that buys unit trusts at wholesale rates and resells them to the retail market.

81

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 7. THE EQUINOX CASE STUDY 82

experienced XP. The sample set was nevertheless considered adequate to fulfil the goal
of the case study, namely to verify the results of Rumpe and Schröder’s survey [Rumpe
and Schöder, 2002] and to compare it to a South African context.

The experiences and opinions provided by the developers are described in the fol-
lowing chapters.

7.3 Rumpe and Schröder’s Survey

In a survey conducted by Rumpe and Schröder [Rumpe and Schöder, 2002], the authors
tried to gain quantitative evidence to substantiate XP’s claim of being more beneficial
for software development than traditional methodologies.

Even though the authors acknowledge that it was an initial and limited survey, their
results suggest that “XP is superior to some of the traditional approaches at least in the
domains it was used.” They also cautioned that this conclusion is based on feedback
from supporters of XP and should be seen in this light.

This case study has several questions that correspond to questions in the aforemen-
tioned survey. These overlaps will be addressed where appropriate in the following
section as each question is discussed.

7.4 The results

This section collates the feedback of the respondents, provides some comparisons with
Rumpe and Schröder’s survey and suggests a number of inferences.

7.4.1 Question 1, 3 and 4 – Respondent’s experience.

The methodology experience of the developers is rather diverse. It includes experience
in following the waterfall approach and some of its derivatives. Two out of three re-
spondents have RUP experience. Some experience in a military environment was also
mentioned.

All the respondents have over ten years of software development experience and
more than two years of following the XP approach.

7.4.2 Question 2 – Are there any bottleneck activities in the way
you implement XP?

One of the respondents declared testing as a bottleneck activity in their implementation.
The part of testing that results in the bottleneck is the time it takes to execute the
automated tests.

For release and acceptance testing the automation of the customer tests sometimes
caused problems due to unforeseen issues and/or a misalignment between the practical
and envisaged system.

In later stages of the project the tests became a bottleneck due to the long time
(approximately 25 minutes) they took to run. This is a problem in the case where
committing changes to the system (thus integration) are only allowed after passing
all the tests. Adhering to ‘continuous integration’ and achieving rapid development
becomes difficult in such a situation.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 7. THE EQUINOX CASE STUDY 83

7.4.3 Question 5 – How would you rate XP as a factor in the success
of Equinox’ development effort?

Two-thirds of the respondents gave unqualified support to the view that XP contributes
as a major factor to the success of the development effort. However one of the re-
spondent’s opinion was: “We made a lot of mistakes and the net outcome was that the
company could not bring in enough business to justify the development effort.” This
respondent nevertheless concluded that “XP was better than anything else”.

7.4.4 Question 6 – How do you experience collective code owner-
ship?

All the respondents gave positive feedback on the collective code ownership practice.
They all believed that it is more beneficial to the development effort than any other
code ownership model.

7.4.5 Question 7 – How do you experience the single room concept?

The respondents are in agreement that the single room/“war room” concept is beneficial
to the development effort. They noted however, that it should be done with discipline:
only project related discussion should be allowed, no telephone calls should be allowed,
developers should think about a problem before raising it with other pairs, etc. It
was agreed that the benefits advocated by the XP authors are indeed gained by strict
adherence to this practice.

7.4.6 Question 8 – How do you experience pair-programming?

It was unanimously agreed that pair-programming is more advantageous than individ-
ual programming. It helps the developers to keep to the discipline, including test-first
programming and coding standards. The respondents noted that it provides a learning
aid, not only for technology but also for social interaction and communication. How-
ever, it was thought that this intense communication and social interaction can result in
some drawbacks. The developers sometimes find the requirement of communicating
ideas to other developers difficult and intricate. Some developers found it tiresome to
work in pairs. It was noted that the 40-hour work week countered this problem to an
extent. However the developers indicated that they would like to have some individ-
ual coding sessions to explore parts of the system. This individual code may then be
refactored by the other members before being accepted back into the system.

Having to work on the same project and with the same people over a long period
of time (in this case approximately 2 years) was also indicated as a drawback. Some
developers require new challenges in their careers. This need seems to stem from the
characteristics of a developer. This problem is further addressed in Section 7.5.

7.4.7 Question 9 – Pair-programming as a limiting factor in learn-
ing/experimenting.

On the issue of how pair-programming influences learning and experimenting, the re-
spondents provided two views. Firstly, in the case where a a new member is intro-
duced into the team, the member is able to integrate with team in a very short period
of time. The new member is able to quickly gain an understanding of the system.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 7. THE EQUINOX CASE STUDY 84

Secondly, individuals are able to learn from each other, which increases knowledge
sharing/distribution. However, as soon as a pair needs to investigate new topics it be-
comes more difficult to do so as a pair. The respondents all agree that in this case
each individual should tackle the experimentation individually and re-join afterwards
to solve the problem as a pair. This issue is discussed further in Section 7.5.

7.4.8 Question 10 – Rate your XP-project in terms of the extent to
which the listed goals were reached.

The aim of this question was to determine the extent to which the major goals of soft-
ware development set out by XP was met.

Deliver software on time. The consensus was that this goal waspartially achieved.
The reasons stated was as diverse as the number of respondents. An underlying theme
was that the project was viewed as an ongoing process which was to continue for an un-
defined time. Thus the deadlines were not ‘well-defined’. This view makes it difficult
to give a judgement on this goal.

Let developers have fun in their work. Two of the respondents stated that this goals
waspartially achieved. The other respondent rated it asworsethan previously used
methodologies, since the development environment imposed a communication burden.
As a result of the flat structure of the team there was a lack in the leadership needed to
make decisions during conflicts.

Develop high quality software. This was rated asfully achievedby two out of three
andpartially achievedby the other.

Late changes don’t incur high cost, because one can react quickly to changes. This
was also described asfully achievedby two out of three and the remaining responder
classified it aspartially achieved. It was noted that after a while the changes to ‘the
fundamentals of the system’ became more difficult to handle as the system grew.

In summary, it seems that the goals set out by XP were largely achieved.

7.4.9 Question 11 – The ‘level of use’ of XP elements and their
contribution to success of project.

The respondents were ask to rate the level of usage of each of the XP practices.
The rating options were:

1. Not at all

2. Sometimes

3. Often

4. Continuously

The same question was raised in Rumpe and Schröder survey. However they used a
scale 9 – 0 where 9 indicated ‘fully used’ and 0 ‘not at all’. For comparative purposes
average values in both studies were computed as a percentage of the maximum score.
As may be observed from the results provided as Table 7.1, most of the usage ratings
were similar. Note in particular, the relatively low level of “metaphor” usage in both
cases. One should however keep in mind that the case study only represents the views
of three people in relation to one project’s implementation whereas the survey takes

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 7. THE EQUINOX CASE STUDY 85

multiple projects into account. The particular characteristics of the case study proba-
bly accounts for the relatively high rating with regard to the availability of an on-site
customer, and the slightly lower rating with regard to having a simple design.

Table 7.1: The level of element usage.
Elements Average Rumpe and Schröder

(Scale: 4 – 1) % (Scale: 9 – 0) %

1. Planning Game 4.00 100% 6.03 67.00%
2. Short Releases 3.67 88.89% 6.86 76.22%
3. Metaphor 2.00 33.33% 3.19 35.44%
4. Simple Design 3.00 66.67% 6.98 77.56%
5. Testing 4.00 100% 7.27 80.78%
6. Refactoring 3.67 88.89% 7.77 86.33%
7. Pair Programming 3.67 88.89% 7.29 81.00%
8. Common Code Ownership 4.00 100% 8.01 89.00%
9. Continuous Integration 4.00 100% 7.56 84.00%
10. 40-Hour-Week 3.67 88.89% 7.17 79.67%
11. On-Site Customer 3.33 77.78% 4.09 45.44%
12. Coding Standards 3.33 77.78% 7.01 77.89%

As a secondary question, the respondents were ask to rate the level of contribution of
each of the XP practices to the success of development.

The rating options were:

1. Negative contribution

2. No contribution

3. Helpful

4. Indispensable

Table 7.2: Each elements’ contribution to the success of development.
Elements Average

(Scale: 4 – 1) %

1. Planning Game 4.00 100%
2. Short Releases 4.00 100%
3. Metaphor 3.33 83.33%
4. Simple Design 3.33 83.33%
5. Testing 4.00 100%
6. Refactoring 4.00 100%
7. Pair Programming 3.67 91.67%
8. Common Code Ownership 4.00 100%
9. Continuous Integration 4.00 100%
10. 40-Hour-Week 3.67 91.67%
11. On-Site Customer 3.00 75.00%
12. Coding Standards 4.00 100%

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 7. THE EQUINOX CASE STUDY 86

Rumpe and Schröder’ survey had a similar question to the above, however the rating
and the resulting data was found incompatible to provide a comprehensive comparison.
The result from the survey is represented in a graphical fashion providing no definite
values for comparison.

Even though the sample size of the case study is small compared to Rumpe and
Schröder’ survey, the results on how useful the developers found the practices to be
seem to correlate. However themetaphorpractice seems to be more useful to the
Equinox team than to the respondents of the survey. This conclusion seems to be
contradicted when considering that the respondents rated the usage of themetaphor
practice at only 33.33% (see Table 7.1). This may be attributed to an uncertainty in
regard to the correct usage of this practice. Another deviation seems to be with how
the respondents experienced theon-site customerpractice. The Equinox team found
that having an on-site customer was 75% beneficial whereas Rumpe and Schröder’
respondents had mixed opinions in this regard, when taking into account the written
responses and the approximately 56% rating. Practices such as the planning game,
short release cycles, simple design and continuous integration seem to correlate tightly
between the two studies.

7.4.10 Question 12 – List the documentation that is generated.

The respondents stated that they generated documentation mostly for inter-group com-
munication. This documentation was basically for visual communication in the team
and included:

• class diagrams;

• package dependency diagrams;

• process diagrams;

• diagrams illustrating how transactions flow through the accounting system;

• instance diagrams.

The goal of the documentation was to enable the developers to understand how far they
have progressed with the system and to illustrate some of the fundamental parts of the
system. The diagrams where placed on the walls in the ‘war-room’ for easy reference.

7.4.11 Question 13 – How much value is gained from the documen-
tation?

The respondents found the ‘light-weight’ documentation that they generated invalu-
able. The cost of generating this documentation was justifiable in terms of the value
that it provided. The visual communication gained through this ‘documentation’ was
regarded as indispensable.

7.4.12 Question 14 – How comprehensive is the documentation?

Most of the documents that was generated were high level overviews that merely pro-
vided a guide of what the system entails.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 7. THE EQUINOX CASE STUDY 87

7.4.13 Question 15 – Do you capture/archive the information gen-
erated on white-boards? How?

Some of the information is captured. Initially the white-board’s contents was captured
using a digital camera. However these images where very seldom used. A storyboard
was built as a website to capture the stories, but this was also not really used.

7.4.14 Question 16 – How do you measure your performance/productivity?

The only measurement made by the development team was the number ofstoriescom-
pleted and the projectvelocityper iteration.

7.4.15 Question 17 – How would you rate your productivity when
practicing XP compared to traditional processes?

All the respondents agree that their XP productivity isbetter compared to the ‘tradi-
tional’ processes.

7.4.16 Question 18 – Would you advocate the use of XP to others?

The respondents declared unanimously that they would advocate the use of XP to other
developers. This is directly aligned with Rumpe and Schröder’s results of 100% of
respondents willing to actively advocate XP.

7.4.17 Question 19 – Do you have any suggestions for improving
any of the XP elements?

One of the respondents felt the lack of a centralised authority to step in and make
decisions when the development team was in disagreement. Although XP advocates
the evolution of the design, the respondent suggested that a person with authority in
the team should have a design and vision of the system in his head. This person should
guide the evolution of the system (as derived from the vision) through communication
facilitation.

The rest of the respondents preferred to first ensure that their current implemen-
tation process is fully aligned to the prescriptions of the defined XP discipline before
attempting to change XP.

7.4.18 Question 20 – Any additional comments?

It was noted that due to XP’s particular approach, a newcomer aught to freely embrace
XP, rather than have it forcefully imposed on him/her. For this reason, one should
rather ensure that the team is kept focused on the XP practices and not try too hard to
change the individual.

The issue of how fast to grow the number of developers on a team was addressed by
one of the respondents. This respondent suggested that the team should ‘grow slowly’,
adding not more than one person per iteration. This ensures that the value of adding
more developers is not ‘diluted’ by paying penalties due to the learning overhead.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 7. THE EQUINOX CASE STUDY 88

7.5 General Comments

Some of the possible dangers of implementing XP emerged from the feedback of the
respondents. As mentioned in Subsection 7.4.6, these dangers seem to stem from
the intense social interaction between developers – a group that has been traditionally
stereotyped as anti-social and loners. The traditional culture of software development
has been to give a developer a task and send him/her off to do this task on his/her own.
An opposite method is followed by XP. A pair is assigned a task and together they
need to analyse the problem, approach other pairs and/or customers for more input and
together come up with the solution. This high level of interaction and need for cohe-
sion may become strenuous on the individual. As stated earlier, one of the respondents
noted that the 40-hour week practice helps to manage this strain. The evidence would
suggest that the manager/coach should be aware of this possible problem and try to
manage it pro-actively when needed. Another suggestion is to abide by the XP office
layout (open bullpen/ cave and commons) where individuals have private offices to go
to when the need arises.

This intense social interaction brings another potential problem to the surface. Hav-
ing to constantly work with the same people on the same project over an extended pe-
riod of time may affect the morale of some of the developers. The need to address
challenges is part of the characteristics of most developers. These developers long for
changes in their work, a chance to learn and experience new things. When projects be-
come monotonous, the risk of developers withdrawing from the project increases. This
problem may be ameliorated if developers are able to switch between projects. How-
ever, this is only a solution for bigger companies with multiple concurrent projects.
This is not a viable solution in Equinox’s case .

In regard to the individual vs pair-programming learning, it is the opinion of the
respondents that deeper understanding is gained when developers are able to explore
topics on their own. The author agrees with this opinion and builds on it by indicating
that individual learning helps sustain the idea of bringing individualistic and fresh ideas
into the pair-programming effort. This not only increases the notion of two heads being
better than one, but also decreases the risk of the developers becoming too attuned with
one another, so much so that the quality of the solution degrades.

7.6 Conclusion

The study indicated that XP lived up to its expectations in the case of Equinox. How-
ever, as with most things in life, there exists a learning curve to follow before one
feels comfortable with the new process. When implementing XP as the development
methodology, one needs to understand that mistakes will be made along the way. The
developers at Equinox experienced this and acknowledged that the benefits gained from
XP increased as they became more disciplined and skilled in XP. Through continual im-
provement in the way the practices were implemented and by abiding with the rules as
stated in the literature, the team was able to reap the benefits of XP.

Overall the respondents were quite positive about XP. There were some sugges-
tions and issues raised that need to be addressed. These issues seem to relate more to
managerial matters and not a methodological short coming.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

Chapter 8

The Telkom Case Study

8.1 Background

To determine the applicability of agile methodologies in the telecommunication indus-
try, an investigation of software development activities undertaken by a telecommuni-
cation company has been carried out. The company used in the case study was Telkom
SA Ltd., currently the only South African fixed-line operator. As a first step, the var-
ious sections dealing with software within Telkom were identified. Then, the most
prominent of these sections was selected for further study. This particular section, the
so-called Telkom Development Laboratory (TDL), undertakes in-house software and
hardware development to meet various telecommunication needs. One of the reasons
for selecting it, is the fact that it takes part in a diverse range of telecommunication
projects. The diversity relates to scale (as measured by both cost and time) as well as
to breadth of technologies. Another reason for selecting the section is that some of the
projects undertaken tend to be rather more complex than those in other sections within
Telkom. Some of these projects may not only require the development of software, but
– concurrently – also the development of interdependent hardware1.

This chapter reports on the investigation into the software development processes
undertaken by TDL. Section 8.2 explains the methodology used to conduct the inves-
tigation. The general findings that resulted from the investigation are then discussed in
Section 8.3 and 8.4. Certain problems identified during the investigation and potential
solutions to these problems are discussed in Section 8.5. In Section 8.6, guidelines to
make RUP – the main development methodology followed by TDL – more agile in
character are provided. A few concluding remarks are given in Section 8.7.

8.2 Methodology

The investigation took place in three phases.
Phase one consisted of the identification of software development initiatives within

Telkom. Software development personnel from different sections were approached to

1Although this raises an interesting question in regard to the appropriateness of agile software practices
in scenarios that rely on traditional engineering practices to develop hardware, the matter will not be further
considered in this chapter. The author note in passing however, that hardware often has to be developed to
meet high quality demands (perhaps even as high as zero error tolerance) and its development simultaneously
subject to the constraint that, once produced, it cannot be changed.

89

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 8. THE TELKOM CASE STUDY 90

ascertain whether they could meaningfully contribute to a study about current software
development processes and policies followed in Telkom. From the feedback provided,
the TDL section was deemed to be the most appropriate telecommunication-specific
software development representative. There did not seem to be any compelling reason
to include more than this one division in the subsequent investigation.

Phase two involved information gathering about the software development pro-
cesses in force in TDL. This was done primarily by means of interviewing and ob-
serving, both of which took placein situ. Initially, an interview was conducted with
one of the senior developers, and consisted mainly of a walk through the software de-
velopment process followed by the section. Demonstrations of various software tools
used to assist in the development process were observed. In addition some time was
spent observing the activities that take place in the development environment. During
the observations some informal discussion with team members was instantiated. The
information thus gathered stimulated a number of further questions which were raised
and discussed. Some pre-compiled questions were presented during the interview to
the senior developer acting as liaison. The questions and their answers are discussed in
Section 8.4

Phase three of the investigation then focused on analysing the information that
the interviews and observations had brought to the fore, and on drawing conclusions.
Sections 8.3 to 8.5 discusses the most important findings.
The interviews and observations provided a good insight into the development process
followed by the TDL. This process is described in Section 8.3. In addition, Section 8.4
discusses both the various pre-formulated questions that had been designed to acquire
background information about TDL and the answers received during the interviews.
Finally, Subsection 8.5 discusses a key problem area experienced by TDL and suggests
a number of possible remedies.

8.3 TDL Software Development Process

TDL implements a tailored version of the well-known Rational Unified ProcessR© (ab-
breviated to RUPR©) of Rational Software Corporation to develop its software. Figure
8.1 gives a summary of RUP. Various so-calleddisciplinesare depicted on the vertical
axis, each discipline consisting of a number of activities that logically belong together.
The horizontal axis represents the time line. It shows how the life-cycle phases of
the process unfolds over various iterations within four phases, termed the inception,
elaboration, construction and transition phases respectively.

RUP is aframeworkfor software development projects. It is based on over 16 years
of experience of Rational Software Corporation as well as the experience of other in-
dustry players. RUP defines more than a 100 artifacts, over 40 roles and 9 disciplines
[Kruchten, 2001; Hirsch, 2002]. Because it is a framework, its implementation requires
that the appropriate roles and artifacts have to be selected from the framework’s avail-
able items. However, in-house practices, roles and artifacts may also be incorporated.

In order to comply with local requirements, tailoring generally needs to be carried
out. Removing theBusiness Modelingdiscipline from certain projects undertaken by
TDL is an example of such tailoring. This removal is appropriate, because most of
the projects undertaken by TDL do not require an investigation of the business pro-
cesses. Instead, the clients commonly approach the development team with most of the
requirements already having been specified. This enables the developers to focus on
restating and verifying the provided requirements during theinceptionphase.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 8. THE TELKOM CASE STUDY 91

Figure 8.1: Summary of the elements of the Rational Unified Process [Rational URL]

Much effort and time goes into theinceptionandelaborationphases of the project.
The intention is to ensure that a high quality architecture of the system is developed.
There is a strong belief that if a very good architecture is designed during theinception
andelaborationphases, then the resulting architecture will facilitate the incorporation
of later extensions to the system.

Thus the development teams adhere to the following process:
A team starts off by interacting with the client to compile the requirements of the

system. This will typically include several planning sessions between all the stake-
holders of the project. In addition, research has to be undertaken into the technologies
that could be used during the project. This research may include investigations into
network protocols, hardware that is to form part of the system and solutions to similar
problems that are provided by third parties or by equipment manufacturers.

The requirements are modeled and compiled using use-cases. Once the planning
sessions have produced sufficient information, the information is captured and modeled
into Rational RoseR©, the software development tool created by Rational. As soon
as the requirements have been ‘finalised’ and stabilised, a requirement specification
document is generated for the client, to be signed off and used as the basis for further
development.

After the requirement specification has been produced, an architectural team (typ-
ically consisting of two to three architects) begins the task of analysing these require-
ments. Pairing during the design is preferred, since experience suggests that pair-
development tends to increase the quality of the models produced. The use-cases are
used to derive the architecture. Consistent with the RUP philosophy, an effort is made
to determine the most significant use-cases, especially those that appear to carry the
highest risk. These high risk uses-cases have the most influence on the architecture
and are the first to be tackled during analysis. Thus, as a matter of principle, the team
tries to eliminate risk as early as possible during development by implementing these
high-risk use-cases first. The result of the analysis is reflected in the Analysis Model.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 8. THE TELKOM CASE STUDY 92

The model consists of high level class- and sequence diagrams.
Through the aid of Rational Rose the a Design Model is derived from the Analysis

Model. The model provides a high level description of the code that will be generated
during the Implementation discipline. It may include detailed class-, sequence- and
state- diagrams, all of which are supported by Rational Rose. Object oriented design
patterns are consider during this phase and are recommended as a basis for implemen-
tation if considered appropriate.

At the beginning of the Implementation discipline the base code of the system is
generated by Rational Rose, using the models created through the previous disciplines.
The primary models used are from the Design Model. The source code generated are
usually Java and/or C++ depending on the project. This skeleton code is then filled in
and extended to produce the required implementation. During the implementation the
developers make use of the following practices:

• Pair-programming is used for writing code. Experience by the team has shown
that pair-programming increases the quality of the code.

• The team members are required to abide by the coding convention specified for
the TDL unit. The convention is based on the guidelines provided by Rational.

• Developers write the unit test cases themselves. These test cases are designed to
validate class functionality. They are to be carried out by the testing sub-team,
as described below. The testing sub-team may extend these tests as they deem
necessary.

• Using Rational Rose, the developers are required to reverse engineer the Design
Model so that it remains consistent with the code which they develop.

The Testing discipline starts as soon as any part of the system becomes testable. The
majority of the testing is done by a testing sub-team that is dedicated to writing and
running test-cases on the system. Much of the testing relies on automated testing tools
provided by Rational Rose. The tests may include unit tests, integration tests, func-
tional tests, user interface tests, business cycle tests, performance profiling tests, load
testing, configuration testing and installation testing.

• In the case of unit tests, these are mostly written by the developers for each Class/
code unit.

• The business cycle tests involve the simulation of normal business activities over
different periods of times. In this simulated mode, time is compressed and the
objective is to validate system usage in the field.

• Performance profile testing relies on Rational QuantifyR© and PurifyR©. These
tests are used to help with memory error and leak detection, code coverage and
application performance analysis.

RUP is an iterative process as Figure 8.1 clearly suggests. This means that all the dis-
ciplines described above are repeatedly carried out so that each iteration of a discipline
builds on the previous one in an evolutionary fashion.

As mentioned previously, a key component of the overall TDL strategy is to develop
a very good architecture that will be extendable. TDL believes that this strategy enables
its developers to incorporate changes with little effort. The liaison noted that experience
had shown that if they had a good architecture then they would be able to incorporate
most of the changes and updates to a system with ease.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 8. THE TELKOM CASE STUDY 93

Figure 8.2: TDL Organisational Diagram

8.4 Questions discussed

In this section, seventeen questions are listed. The questions were intended to assist in
acquiring a better understanding of the development efforts by TDL. They were sub-
mitted to the senior developer acting as the representative of TDL during the interview.
In each case, a summary of the responses to the question is provided. The questions
pertain to general software development issues including managerial, process and en-
vironmental factors. The answers provided reflect mainly on how development is done
in TDL.

8.4.1 What is the general organisational position and layout of TDL?

TDL forms part of the “Technical Product Development” department, which in turn is
part of the “Core Network Operations” unit. TDL is subdivided into six groups. One
group (ISS and Quality & Product Certification Services) is responsible for testing, cal-
ibration and validation of hardware measurement tools and thus has nothing to do with
software development. A second group consists of project managers that are assigned
to each project. The remaining four groups are development teams, each headed by
an internal manager and assisted by one of the project managers. The representative
group interviewed consisted of eleven members including senior-, junior developers
and testers. Figure 8.2 provides a organisational diagram to illustrate TDL’s position.

8.4.2 What is the type/range of software development projects un-
dertaken by Telkom and TDL?

The projects are rather diverse and not easily classified under a specific heading. How-
ever, client/server applications are quite common, as well as projects that involve the
development of both hardware and software which are combined into a single product.
Finally, a number of projects center around the integration of multiple systems. These
projects are mostly for internal use and are based on telecommunication-specific needs.

8.4.3 What software development process/policy is used?

A diverse set of software development processes are used by the various development
sections in Telkom. These range across a variety of processes such as the custom-built

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 8. THE TELKOM CASE STUDY 94

process dubbed the “Solution Value Chain” (an end-to-end development methodology
based on the waterfall model). Some sections usead-hocmethods while others rely on
Rapid Application Development (RAD) methodologies. The TDL section itself uses a
tailored version of the Rational Unified Process (RUP) as described in Subsection 8.3
above.

8.4.4 What are the exact standards to which TDL has to comply?

The TDL teams do not need to comply with any specific standardper se. These teams
are merely required to follow the RUP guidelines.

8.4.5 What is the success rate of projects in TDL?

From a technical and developer’s viewpoint the success ratio of projects is very high
indeed, almost reaching 100%. This is attributed to the way in which the RUP process
is implemented. Spending a lot of effort in early understanding of the problem domain
and in defining a good architecture as soon as possible enables the team to determine
the feasibility of the project early on. A project can then be halted, if necessary, before
the implementation/construction stage starts.

Some projects may be described as failures from a business perspective, due to the
fact that they have yielded a poor return-on-investment. The reasons for these failures
are thus usually non-technical and relate more to political or market factors. Political
factors dictate that the business users and/or managers decide against using the system
after it has been delivered. Market factors – such as supplier policies denying the
use of custom software solutions – may cause the customer to buy a solution from
the hardware manufacturer instead. It should thus be noted that the business users
needs to have policies in place to dictate that a thorough investigation needs to be
undertaken before approaching TDL. Management should also stick to their decision
of using TDL’s solution after committing them to a project.

8.4.6 Do you do project reviews (retrospective evaluations) as part
of the development process?

A project debriefing is held after each project. The efficiency of practices and tech-
niques used are evaluated. Changes are considered and noted for future projects. These
changes may include tuning of practices and also configuration changes required to
tools such as Rational Rose with regard to forms and reports used. The author noted
the lack of process reviews during the process for example between iterations. This
may lead to the loss of the advantages gain-able from fine tuning the process on a per
project basis.

8.4.7 What is the current code ownership policy?

The whole team has access to the code and is able to change it as needed (i.e there is
collective code ownership). This is managed by Rational Rose’s version control tools.
Code sharing between teams is rare, however code sharing between projects assigned
to the same team are done when feasible.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 8. THE TELKOM CASE STUDY 95

8.4.8 What are the characteristics of the physical development en-
vironment?

Each team is co-located on the same floor and within the same general area. Each
member has her/his own cubical or office. The testers are grouped together enabling
them to work closely together. The different teams are located in the same building.

8.4.9 To what extent do you make use of white-boards?

The use of white-boards is limited to the inception phase. Preliminary planning and
modeling is done on the white-boards. Thereafter information is captured in Rational
Rose.

8.4.10 Do requirements change after requirement analysis has been
completed and the project is already in the implementation
phase?

The team noted that requirements do sometimes change during the implementation
phase (as is commonly the case in software projects). However they claim that user-
interfaces changes are the most common, whereas the rest of the requirements usually
are stable. This stability is attributed to the effort put into designing a comprehensive
model and architecture through multiple iterations with the client.

The large number of changes to user-interface specification was regarded as a major
problem in most of the projects. This problem and possible solutions are the specific
theme of Section 8.5.

8.4.11 How strongly is reuse advocated in Telkom and how regu-
larly is it carried out?

There is no policy or official strategy to promote reuse in Telkom as a whole. TDL
tries to reuse code across teams and projects under its control. There is an active effort
to reuse code at team level. This is done within projects as well as between projects
wherever possible.

8.4.12 What is the level of interaction with customers?

The development team tries to involve the customers as much as possible in the devel-
opment process. A high level of interaction and communication is encouraged. This
goal is actively pursued.

8.4.13 What statistics are kept of each project?

Through the use of the Rational Rose tools, a large amount of data is collected. This
data can then be reflected in a diverse range of reports that are generated by Rational’s
tools. These reports include defect rates; time spent on tasks and test results. The usage
of the reports is at the managers own discretion.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 8. THE TELKOM CASE STUDY 96

8.4.14 What is the time-line breakdown of the different RUP phases
for a typical project?

The representative responded to this question by discussing a specific project that they
regarded as typical. They estimated the time breakdown as approximately between
10% to 20% for the inception phase. This phase determines if the project will be un-
dertaken. Approximately 30% to 40% time is spent on the elaboration phases. The
construction phase consists of 40% and transition the remaining 10%. From this it is
clear that a significant amount of effort is spent on the development of what is consid-
ered to be an effective design and architecture. It was restated that RUP is an iterative
process and that the time-line breakdown should be viewed in this light.

8.4.15 How much time is spent on investigating new practices, tools,
trends and innovation in software engineering?

Team members are sent on courses on a regular bases. The goal of this training is to
equip the team with knowledge of new potential solutions to problems. The practice
also enables the team members to keep up with trends in the industry.

Investigation of new technologies that may prove to be useful to current and future
projects is also encouraged.

Where applicable new techniques and technologies are used in projects to discover
the practical implications. During the debriefing sessions the effectiveness of the new
technologies are evaluated and discussed.

If an unknown technology is to form part of a project, it will be explored at the
beginning of the project.

8.4.16 Do projects often require that the developers have to be-
come familiar with new domains and/or technology?

A major proportion of the projects introduces some or other new technology or new do-
main. This merely reflects the diverse range of domains and technologies in which the
internal clients are involved. Another reason for this diversity may be that the projects
often entail developing solutions to problems that third parties have not addresses. The
cost associated with buying solutions from third parties may also be a reason for re-
questing TDL to do a project, since the international location of these third parties and
their alleged expertise may lead to inflated prices.

8.4.17 Is any development maturity measurement (such as CMM
or something similar) carried out?

The TDL section does not undergo any formal capability maturity measurement ap-
praisals. This is partially due to the fact that the section mostly addresses internal
development needs and therefore has no pressing need to impress external clients by
a high CMM rating. The managers use the reports generated by Rational Rose for
measuring the team’s performance.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 8. THE TELKOM CASE STUDY 97

8.5 The key TDL Challenge

Like most other software development teams, the interviewed team confirmed that they
experience the familiar problem of trying to meet changing user-interface specifica-
tions. It seems that in many software development projects that contain a user-interface,
the engineers are likely to experience this problem.

The problem is attributable to two factors. The first has to do with the fact that the
customer’s first impression and experience of the system is through the user-interface.
The second factor is the fickle and individualistic nature of human beings. One’s state
of mind differs from day to day. What seemed like a good way of using an applica-
tion yesterday may seem cumbersome and user-unfriendly today. In addition, every
person has individual likes, dislikes and ways of accomplishing a task. As a result,
when multiple people attempt to define the user-interface specifications, disagreement
is inevitable.

Human Computer Interaction (HCI) theory dictates that the design of a user-interface
should be carried out by a specialist and not by the user, see [Shneiderman, 1997]. Ad-
hering to this rule thus means that the customer should not actually be able to define
the interface. While it may be infeasible in practice to completely prevent the client
from having a say in the interface design, it is suggested that this should be adhered to
as far as possible.

Dealing with the problem of changing user-interface specifications seems to be a
major stumble block, irrespective of the process and methodology followed. Some
processes try to reduce this problem by freezing the specification as soon as possible.
This is done by documenting the user-interface specification and requiring the customer
sign off on it. Thereafter, changes to the specification are either entirely disallowed,
or accompanied by heavy penalties. This practice runs counter to the business rule
that proclaims that “The Customer is King”. The customer should be satisfied with
the system. If not, the system may not be used and the project will be deemed to be a
failure. This brings us back to square one. How does one keep the customer satisfied
while limiting changes to the user-interface specification?

One possible approach may be to specify a set of “project rules” at the start of the
project. These rules should then contain the procedure for handling change in general
and user-interface design changes in particular. The repercussion of changes to the
user-interface design in respect of cost and time (project schedule) should be clearly
stated. This approach corresponds to the idea of the “Problem Resolution Process”
defined in the ISO/IEC 12207: 1995 standard. (See [National Committee TC 71.1 (In-
formation technology), 1995]). It should help the customer to understand that changes
to specifications may result in schedule changes and increases to monetary expendi-
tures.

The approach dictated by agile methodologies such as XP, Crystal and SCRUM is
to use specification logs. In this approach, any change is regarded as a new specification
to the system and is introduced into the next iteration. At the start of an iteration the
customer is allowed to choose which of the requirements needed should be delivered
in the next release of the system. The selection of requirements that are to be delivered
next should be based on the priority of the features with respect to the iteration length
(the number of features that can be completed in one iteration). In this scenario the
presence of on-site customers may also produce better results, especially if one or
more of the on-site customers is an HCI specialist. Such on-site customers will also
ensure that the development team will receive faster feedback on the user-interfaces as
they are developed. In turn also reducing the effort required to accept changes.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 8. THE TELKOM CASE STUDY 98

8.6 Making RUP more agile

One of RUP’s practices is that it should be tailored to conform with the project’s needs.
Through this practice, a team and/or organisation is able to adjust its implementation
of RUP to be more agile. Being agile enables a team to reap the benefits of quickly
adapting to change and of providing highly incremental delivery of solutions.

Several papers have been written to provide guidelines on how to adapt RUP to
be more agile. These include [Kruchten, 2001; Hirsch, 2002; Pollice, 2001]. Some
guidelines worth mentioning are:

Artifact usageshould be considered. Artifacts to be generated should be selected
on the basis of the value that they will provide. Limiting the number of artifacts helps to
reduce the effort and expenditure on their maintenance. The detail level of the artifacts
should also be considered especially in TDL’s case.

The level of detailduring planning should be as low as possible to be able to adapt
to change. One should try to limit the scope of detailed plans to a single iteration at
a time. Reducing the time spend on big upfront design and maximising the usage of
iterative development may be applicable to TDL.

Customer collaborationshould be maximised to ensure a constant and quick feed-
back environment. Although TDL tries to collaborate as much as possible with cus-
tomers, this goal should always be actively pursued and maximisation be sought after.

Try using fixediteration cycles, each of which concludes with the delivery of a
functioning software artifact. A fixed iteration cycle of for example one month, result-
ing with either the internal or external release of a limited working software product,
may be beneficial to TDL.

Iteration reviewsshould be held between iterations. These reviews should analyse
the process and practices used. The investigation should produce ideas on how to fine
tune the methodology used to be even more productive.

8.7 Conclusion

Through the investigation conducted, it has emerged that certain techniques and prac-
tices advocated by agile methodologies, are indeed being practiced by the development
team interviewed. These techniques include pair development and automated testing.

However, the underlying principle of RUP is to do a significant amount of upfront
design. This approach towards design (also known as “big upfront design" or BUD)
is required or encouraged by most of the traditional and bureaucratic methodologies.
However the approach is discouraged by the agile community, where the belief is that
following a plan is less important than responding to change. (See principle 4 of the
agile manifesto [Agile Manifesto URL].) The agile viewpoint is that heavy modeling
of a system to produce software causes the development team to focus on the design
and plan of the system and not the actual code of the system.

The agile approach thus considers that the use of intensive modeling to determine
feasibility may not be the most efficient way of producing software. Instead, it con-
siders that the feasibility of a system will become apparent much earlier if high risk
features of requirements are selected to be implemented and practically tested first. If
this approach is followed, the stakeholders are in a position to cancel the project before
too much effort and time has been expended. For example, in applying a BUD method-
ology to a project, the feasibility models may typically take between 2 and 3 months
to reach a stage of being sufficiently detailed to determine the project’s feasibility. In

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 8. THE TELKOM CASE STUDY 99

contrast, an agile methodology such Extreme Programming may detect non-feasibility
within the first or second iteration of attempting to implement the most critical high
risk features. This could typically occur within 4 to 6 weeks.

In respect of the types of projects undertaken by TDL, the use of agile method-
ologies would seem to be a viable approach. However selection of an appropriate
methodology should take into consideration the following aspects.

Firstly, how susceptible is the project’s specification to change? Projects whose
specifications are likely to remain stable from start to finish may not benefit very much
from an agile methodology.

Secondly, is it feasible to deliver the system in an evolutionary way to the users?
Can a system with limited functionality be introduced to the user as soon as possible,
with extended versions being delivered on a regular basis thereafter? This approach
may provide certain benefits to all the stakeholders, and may be of great importance
to them. It is in the nature of agile methodologies to deliver working systems in an
iterative fashion.

Thirdly, the project risk involved needs to be analysed, taking into consideration
practices that may be used to reduce these risks.

In the end, the practice of having a methodology per project as proclaimed by Cock-
burn [2002a], appears to be a sensible approach. The focus should be on the project
“with its constraints and its environment driving your choice in the most adequate pro-
cess configuration.” [Kruchten, 2001] and not on the process driving the project!

For future research the author would like to investigate the implementation of his
recommendations in TDL.

This case study was presented at the annualSouthern African Telecommunication Net-
works and Applications Conferenceof 2003 [Theunissen and Kourie, 2003].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

Chapter 9

Conclusion

This research set out to determine what the whole agile approach to software develop-
ment entailed. In this quest several questions were raised and investigated. To enable
the author to investigate these questions he first had to gain a deep understanding of the
underlying principles and practices associated with the methodologies that are clas-
sified as agile. This understanding was gained through an in-depth literature study.
The result of this enquiry was reported in Chapters 2 to 5. Agile methodologies seem
to build on and maximise the strengths of humans in a software development project,
whereas the ‘traditional’ approach appears to focus on minimising the risk associated
with human ‘short comings’ by establishing more rigid processes. These agile method-
ologies also take a different approach towards the customer. Fulfilling the need of the
customer is of the utmost importance, leading to practices such as having an on-site
customer. This also means that the solution is adapted to the changing requirements of
the customers.

The practices advocated by the agile methodologies are not new. Some may even
be described simply as common sense. However the implementation and combination
thereof is different. This is reflected in the words of extreme programming advocates:
“taking it to the extreme”. Stressing face-to-face communication over comprehensive
documentation is an example of this focus shift.

As with any methodology, the implementation of the methodology is usually unique
to each environment where it is applied, causing different outlooks on the viability of
the associate methodology. This point needs to be kept in mind when evaluating the
feasibility of agile methodologies for a specific project. Other points to take note of are
Cockburn’s methodology-per-project philosophy and the policy of being open to adjust
the practices used as the project progresses.

On the debate of whether agile software development will dominate development
efforts – forcing ‘traditional’ methodologies to disappear – indications are that both
approaches will co-exist and probably influence one other. This may lead to both sides
adopting practices from one other. This opinion is shared by various researchers, such
as Baskerville [Baskerville Communication, 2003].

In the end, when considering software development methodologies one needs to
realise that there does not exist a ‘silver bullet’. Every situation is unique.

Compliance with software engineering standards such as ISO 12207:1995 when
using agile methodologies has been discussed in Chapter 6. Several guidelines enabling
conformance were presented.

To determine whether or not the benefits of these agile methodologies have been

100

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

CHAPTER 9. CONCLUSION 101

exaggerated by their authors and advocates, a case study was conducted on the ex-
periences of established XP practitioners. The case study consisted of a qualitative
analysis of a software development team implementing XP. This team provides an in-
house solution for a financial company that is located in South Africa. The members
are experienced developers and have established academic standings. The analysis was
conducted through interviews and individual questionnaires. The case study brought
several issues to light regarding implementing an XP approach to software develop-
ment. The overall conclusion drawn from the aforementioned study is that XPlargely
provides the benefits advocated by its authors, provided that the practices and princi-
ples defined for XP are strictly adhered to.

An investigation into the current software development practices in the telecommu-
nication industry indicated that several agile practices were being used. This investiga-
tion was conducted primarily through anin situexamination of a software development
unit from Telkom SA Ltd., the primary telecommunication company in South Africa.
The study further indicated thatthere is room for using agile methodologies in a variety
of telecommunication industry specific projects.

Through this study a number of additional questions have emerged for future research.
The growth in the adoption of open source software and the increased utilisation of
component based software development has brought new challenges to software devel-
opment management. Several of these are noted in the following paragraphs.

The influence that open source development and agile software development exert
on each other needs to be explored. Raymond, one of the open source advocates,
provided some comments on this relationship in a recent article (see [Raymond, 2003]).

In Baskerville et al. [2003] the tendency of agile software developers “to build ‘with
reuse,’ but less ‘for reuse”’ was uncovered. This tendency and the influence of compo-
nent based software development on agile software development deserves to be inves-
tigated.

The guidelines proposed in Chapter 6 to aid in complying to ISO 12207:1995 needs
to be practically tested and verified. Further examination into compliance to CMM and
ISO 15288:2002 should also be undertaken.

"As the water shapes itself to the vessel that contains it, so a wise man
adapts himself to circumstances." – Confucius

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

Derived Publications

1. A Case Study of Software Development Processes in the Telecommunication In-
dustry, WHM Theunissen and DG Kourie, Proceedings of the Southern African
Telecommunication Networks and Applications Conference (SATNAC) 2003,
September 2003, Fancourt, Southern Cape, South Africa.

2. Standards and Agile Software Development, WHM Theunissen, DG Kourie and
BW Watson, Proceedings of SAICSIT 2003: Annual Research Conference of the
South African Institute of Computer Scientists and Information Technologists,
September 2003, Fourways, South Africa.

102

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

Bibliography

[Abrahamsson et al. 2002] ABRAHAMSSON, P , SALO, O , RONKAINEN, J ,
and WARSTA, J: Agile software development methods: Review and analysis.
VTT Publication, 2002 (478). – URLhttp://www.vtt.fi/inf/pdf/
publications/2002/P478.pdf . – accessed: 2003/10/17

[Adaptive URL] : Adaptive Software Development Homepage. – URL http:
//www.adaptivesd.com . – accessed: 2003/06/30

[Agile History URL] HIGHSMITH, J: History: The Agile Manifesto. – URL http:
//www.agilemanifesto.org/history.html . – accessed: 2002/02/01

[Agile Manifesto URL] :Manifesto for Agile Software Development. – URLhttp:
//www.agilemanifesto.org . – accessed: 2003/05/20

[Agile Modeling URL] : Agile Modeling Homepage. – URL http://www.
agilemodeling.com . – accessed: 2003/06/30

[Balbes and Button 2002] BALBES, M , and BUTTON, B: . Embedded Systems
Conference. Chicago, 2002

[Baskerville et al. 2003] BASKERVILLE, R , RAMESH, B , LEVINE, L , PRIES-HEJE,
J , and SLAUGHTER, S: Is Internet-Speed Software Development Different? :IEEE
Software(2003), November/December

[Baskerville Communication 2003] : Personal Communication with Richard
Baskerville. September 2003

[Beck 2000] BECK, K: Extreme Programming Explained: Embrace Change.
Addison-Wesley, 2000. – ISBN 201-61641-6

[Beck and Fowler 2000] BECK, K , and FOWLER, M: Planning Extreme Program-
ming. 1st. Addison-Wesley Pub. Co, October 2000

[Boehm 1988] BOEHM, BW: A Spiral Model of Software Development and En-
hancement. :IEEE Computer21 (1988), May, No. 5, pp. 61–72

[Brooks 1995] BROOKS, Jr., FP: The Mythical Man-Month: Essays on Software
Engineering, Anniversary Edition. Addison-Wesley, 1995

[Coad and De Luca 1999] COAD, P , and DE LUCA, J: Java Modeling in Color with
UML. Prentice Hall, 1999

[Coad and Mayfield 1992] COAD, P , and MAYFIELD , M: Object-Oriented Patterns.
: Communications of the ACM(1992), September

103

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf
http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf
http://www.adaptivesd.com
http://www.adaptivesd.com
http://www.agilemanifesto.org/history.html
http://www.agilemanifesto.org/history.html
http://www.agilemanifesto.org
http://www.agilemanifesto.org
http://www.agilemodeling.com
http://www.agilemodeling.com

BIBLIOGRAPHY 104

[Cockburn 1998] COCKBURN, A: Surviving Object-Oriented Projects. Addison-
Wesley Pub Co, 1998. – ISBN 0-201-49834-0

[Cockburn 2000] COCKBURN, A: Reexamining the Cost of Change Curve. :
XP Magazine (2000), September. – URLhttp://www.xprogramming.
com/xmag/cost\protect\T1\textunderscoreof\protect\T1\
textunderscorechange.htm . – accessed: 2002/04/01

[Cockburn 2001] COCKBURN, A: Crystal Light Methods. :Cutter IT Journal(2001)

[Cockburn 2002a] COCKBURN, A: Agile Software Development. Pearson Education,
Inc, 2002. – ISBN 0-201-69969-9

[Cockburn 2002b] COCKBURN, A: Games Programmers Play. :Software Develop-
ment Magazine(2002), February

[Cusumano and Yoffie 2000] CUSUMANO, MA , and YOFFIE, DB: Competing on
Internet Time: Lessons from Netscape and its battle with Microsoft. Touchstone,
2000

[DeLuca Biography URL] : Jeff De Luca’s Biography. – URL http://www.
nebulon.com/pr/bio.html . – accessed: 2003/08/11

[DeMarco and Lister 1987] DEMARCO, T , and LISTER, T: Peopleware: Productive
Projects and Teams. 1987

[DSDM URL] : DSDM Homepage. – URL http://www.dsdm.org . – ac-
cessed: 2003/05/15

[eBucks URL] : eBucks Homepage. – URL http://www.ebucks.com . –
accessed: 2002/10/14

[Equinox Interview 2002] : Personal communication with Equinox development
team. February 2002

[Fowler and Fowler 1964] FOWLER, HW , and FOWLER, FG: The concise Oxford
dictionary of current english. London : Oxford University Press, 1964

[Fowler 1999] FOWLER, M: Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999

[Fowler and Highsmith 2001] FOWLER, M , and HIGHSMITH, J: The Agile Mani-
festo. :Software Development Magazine(2001), August

[Fusion Summary 1998] Engineering Process Summary (Fusion 2.0) / Hewlett-
Packard Company. January 1998. – Research Report

[Gamma et al. 1995] GAMMA , E , HELM, R , JOHNSON, R , and VLISSIDES, J:
Design Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley,
1995

[Gido and Clements 1999] GIDO, J , and CLEMENTS, JP: Successful Project Man-
agement. South-Western College Publishing, 1999

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

http://www.xprogramming.com/xmag/costprotect T1	extunderscore ofprotect T1	extunderscore change.htm
http://www.xprogramming.com/xmag/costprotect T1	extunderscore ofprotect T1	extunderscore change.htm
http://www.xprogramming.com/xmag/costprotect T1	extunderscore ofprotect T1	extunderscore change.htm
http://www.nebulon.com/pr/bio.html
http://www.nebulon.com/pr/bio.html
http://www.dsdm.org
http://www.ebucks.com

BIBLIOGRAPHY 105

[Gough-Jones et al. 1993] GOUGH-JONES, VJ , JACOBS, SJ , ROS, NCJ ,
BRENKMAN, AMJ , PIETERSE, PHS , and VIELHAUER, AA: Rekenaarstudie vir
Vandag - Pascal st.8. 2. Johannesburg : Lexicon Uitgewers, 1993

[Grenning 2002] GRENNING, J: . Embedded Systems Conference. Chicago, 2002

[Highsmith 2002] HIGHSMITH, J: Does Agility Work? :Software Development
Magazine(2002), June

[Highsmith and Cockburn 2001] HIGHSMITH, J , and COCKBURN, A: Agile Soft-
ware Development: The Business of Innvovation. :IEEE Computer(2001), Septem-
ber, pp. 120–122

[Highsmith 2000] HIGHSMITH, JA: Adaptive Software Development: A Collabora-
tive Approach to Managing Complex Systems. Dorset House Publishing, 2000

[Hirsch 2002] HIRSCH, M: . Conference on Object Oriented Programming Systems
Languages and Applications: Practitioners Reports, 2002

[Hunt and Thomas 1999] HUNT, A , and THOMAS, D: The Pragmatic Programmer.
Addison-Wesley, 1999

[IEEE & EIA 1998a] IEEE & EIA: IEEE/EIA 12207.1-1997, IEEE/EIA Guide: In-
dustry Implementation of International Standard ISO/IEC 12207:1995. April 1998.
– Research Report

[IEEE & EIA 1998b] IEEE & EIA: IEEE/EIA 12207.2-1997, IEEE/EIA Guide: In-
dustry Implementation of International Standard ISO/IEC 12207:1995. April 1998.
– Research Report

[ISO/IEC JTC1-SC7 URL] : ISO/IEC JTC1-SC7 Homepage. – URL http://
www.jtc1-sc7.org . – accessed: 2002/12/01

[Jeffries et al. 2000] JEFFRIES, R , ANDERSON, A , and HENDRICKSON, C: Extreme
Programming Installed. Addison-Wesley Pub Co, October 2000

[Kruchten 2000] KRUCHTEN, P: The Rational Unified Process: An Introduction.
2nd. Addison-Wesley, 2000

[Kruchten 2001] KRUCHTEN, P: Agility with the RUP. : Cutter IT Journal 14
(2001), December, No. 12

[M-W URL] : Merriam-Webster Online. – URL http://www.m-w.com . –
accessed: 2003/10/17

[Mehrabian 1981] MEHRABIAN, A: Silent messages: Implicit communication of
emotions and attitudes. 1981

[National Committee TC 71.1 (Information technology) 1995] NATIONAL COM-
MITTEE TC 71.1 (INFORMATION TECHNOLOGY): SABS ISO/IEC 12207:1995,
Information technology - Software life cycle processes / South African Bureau of
Standards. 1995. – Research Report

[Opdyke 1992] OPDYKE, WF: Refactoring: Object-Oriented Frameworks, Univer-
sity of Illinois, PhD Thesis, 1992

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

http://www.jtc1-sc7.org
http://www.jtc1-sc7.org
http://www.m-w.com

BIBLIOGRAPHY 106

[O’Reilly Interview 1997] : O’Reilly Interview with Tim Berners-Lee. 1997

[Palmer and Felsing 2002] PALMER, S , and FELSING, M: A Practical Guide to
Feature-Driven Development. Prentice Hall, 2002

[Parkinson 1958] PARKINSON, CN: Parkinson’s Law: The Pursuit of Progress. John
Murray, 1958

[Paulk 2001] PAULK , MC: Extreme Programming from a CMM Perspective. :IEEE
Software(2001), November/December

[Paulson 2001] PAULSON, LD: The Consultancy Approach to Aligning Business
and IT. : IEEE IT Professional3 (2001), May/June, No. 3, pp. 12–15

[Pollice 2001] POLLICE, G: Using the Rational Unified Process for Small Projects:
Expanding on eXtreme Programming / Rational Software. 2001. – Research Report

[Poppendieck 2001] POPPENDIECK, M: Lean Programming. :Software Develop-
ment Magazine(2001), May/June

[Poppendieck and Poppendieck 2003] POPPENDIECK, M , and POPPENDIECK, T:
Lean Software Development: An Agile Toolkit for Software Development Managers.
Addison-Wesley, 2003

[Pragmatic Programming URL] :Pragmatic Programming Homepage. – URL
http://www.pragmaticprogrammer.com . – accessed: 2003/06/30

[Rational URL] : Rational Software Corporation Homepage. – URL http://
rational.com . – accessed: 2003/06/01

[Raymond 2003] RAYMOND , ES: Discovering the Obvious: Hacking and Refactor-
ing. June 2003. – URLhttp://www.artima.com/weblogs/viewpost.
jsp?thread=5342 . – accessed: 2003/10/01

[Reifer 2002] REIFER, R: Ten Deadly Risks in Internet and Intranet Software De-
velopment. :IEEE Software(2002), March/April, pp. 12–14

[Robbins 2001] ROBBINS, SP:Organizational Behavior. 9th. Prentice Hall, 2001

[Roberts 1999] ROBERTS, DB: Practical Analysis for Refactoring, University of
Illinois, PhD Thesis, 1999

[Rumpe and Schöder 2002] RUMPE, B , and SCHÖDER, A: . 3rd International Con-
ference on Extreme Programming and Flexible Processes in Software Engineering,
2002, pp. 95–100

[Schwaber 1995] SCHWABER, K: . OOPLSA’95 Workshop on Business Object
Design and Implementation, 1995

[Schwaber and Beedle 2001] SCHWABER, K , and BEEDLE, M: Agile Software
Development with Scrum. Prentice Hall, 2001

[SCRUM URL] : SCRUM Homepage. – URL http://www.controlchaos.
com. – accessed: 2002/10/30

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

http://www.pragmaticprogrammer.com
http://rational.com
http://rational.com
http://www.artima.com/weblogs/viewpost.jsp?thread=5342
http://www.artima.com/weblogs/viewpost.jsp?thread=5342
http://www.controlchaos.com
http://www.controlchaos.com

BIBLIOGRAPHY 107

[SDM’s P&P 2003] SDM’S P&P: Software Development Magazine’s People &
Projects Newsletter. August 2003

[Shneiderman 1997] SHNEIDERMAN, B: Designing the User Interface. 3rd.
Addison-Wesley, 1997

[SteP10 URL] : SteP10 Homepage. – URL http://www.step-10.com . –
accessed: 2002/11/04

[Taber and Fowler 2000] TABER, C , and FOWLER, M: An Iteration in the Life of
an XP Project. :Cutter IT Journal13 (2000), November, No. 11

[Team 2002] TEAM, MSF: MSF Process Model v. 3.1 / Microsoft. URLhttp:
//www.microsoft.com/msf/ . – accessed: 2003/06/15, June 2002. – Research
Report

[Theunissen and Kourie 2003] THEUNISSEN, WHM , and KOURIE, DG: . Proceed-
ings of the Southern African Telecommunication Networks and Applications Confer-
ence (SATNAC) 2003. Fancourt, Southern Cape, South Africa, September 2003

[Theunissen et al. 2003] THEUNISSEN, WHM , KOURIE, DG , and WATSON, BW:
Standards and Agile Software Development. : Editors: . ELOFF, J , ENGELBRECHT,
A , KOTZE, P , and ELOFF, M: Proceedings of SAICSIT 2003: Annual Research
Conference of the South African Institute of Computer Scientists and Information
Technologists. Fourways, South Africa : ACM, September 2003, pp. 178–188

[Wake 2002] WAKE, WC: . The Fourth International Conference on eXtreme Pro-
gramming and Agile Processes in Software Engineering, 2002

[Wilkes 1985] WILKES, MV: Memoirs of a Computer Pioneer. Cambridge MA :
The MIT Press, 1985

[Williams et al. 2000] WILLIAMS , L , KESSLER, RR , CUNNINGHAM , W , and JEF-
FRIES, R: Strengthening the Case for Pair Programming. :IEEE Software(2000),
July/August, pp. 19–23

[Wright 2003] WRIGHT, G: . Proceedings of the XP Agile Universe 2003 Confer-
ence. New Orleans, August 2003

[XP URL] : eXtreme Programming Homepage. – URL www.
extremeprogramming.org . – accessed: 2003/02/01

[XP123 URL] : XP123 Homepage. – URL http://xp123.com . – accessed:
2003/01/14

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

http://www.step-10.com
http://www.microsoft.com/msf/
http://www.microsoft.com/msf/
www.extremeprogramming.org
www.extremeprogramming.org
http://xp123.com

Appendix A

The Agile Manifesto

Extract fromThe Agile ManifestoFowler and Highsmith [2001]:
The Manifesto for Agile Software Development

Seventeen anarchists agree:
We are uncovering better ways of developing software by doing it and helping

others do it. Through this work we have come to value:

• Individuals and interactionsover processes and tools.

• Working softwareover comprehensive documentation.

• Customer collaborationover contract negotiation.

• Responding to changeover following a plan.

That is, while we value the items on the right, we value the items on the left more.
We follow the following principles:

• Our highest priority is to satisfy the customer through early and continuous de-
livery of valuable software.

• Welcome changing requirements, even late in development. Agile processes har-
ness change for the customer’s competitive advantage.

• Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

• Business people and developers work together daily throughout the project.

• Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

• The most efficient and effective method of conveying information to and within
a development team is face-to-face conversation.

• Working software is the primary measure of progress.

• Agile processes promote sustainable development. The sponsors, developers and
users should be able to maintain a constant pace indefinitely.

108

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

APPENDIX A. THE AGILE MANIFESTO 109

• Continuous attention to technical excellence and good design enhances agility.

• Simplicity ‘the art of maximizing the amount of work not done’ is essential.

• The best architectures, requirements and designs emerge from self-organizing
teams.

• At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cun-
ningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron
Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber,
Jeff Sutherland, Dave Thomas

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

110

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

APPENDIX B. FDD SUMMARISED 111

Appendix B

FDD Summarised

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

APPENDIX B. FDD SUMMARISED 112

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

APPENDIX B. FDD SUMMARISED 113

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

APPENDIX B. FDD SUMMARISED 114

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

APPENDIX B. FDD SUMMARISED 115

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

Appendix C

Equinox Questionnaire

Individual Questionnaire on the Software Development Approach
at Equinox Financial Solutions (Pty.) Ltd.

1. Which software development processes/methodologies did you use before using
XP?

2. Are there any bottleneck activities in the way you implement XP?

3. How long have you been doing software development?

4. How long have you been practicing XP?

5. How would you rate XP as a factor in the success of Equinox’ development
effort?

Not a factor Minor factor Major factor Most influential factor

6. How do you experience collective code ownership?

7. How do you experience the single room concept?

8. How do you experience pair-programming?

9. Do you experience pair-programming as a limiting factor in learning/experimenting
with new technologies and techniques? Explain?

10. XP was invented to make software development more successful. Some of its
main goals are listed below. Rate your XP-project in terms of the extent to which
these goals were reached. Explain any obstacles in reaching the goals.

116

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

APPENDIX C. EQUINOX QUESTIONNAIRE 117

F
ul

ly
A

ch
ie

ve
d

P
ar

tia
lly

A
ch

ie
ve

d

S
am

e
as

P
re

vi
ou

s
M

et
ho

do
lo

gy

W
or

se

10.1. Delivered software on time 1 2 3 4

10.2. Let developers have fun in their work 1 2 3 4

10.3. Develop high quality software (fewer bugs) 1 2 3 4

10.4. Late changes don’t incur high costs, because
one can react quickly to changes

1 2 3 4

11. What is the level of use of XP-elements in your project? Please specify to what
extent each element contributed to the success of the project.

Level of
use

Contribution
to success
of devel-
opment

N
ot

at
al

l

S
om

et
im

es

O
fte

n

C
on

tin
uo

us
ly

N
eg

at
iv

e
C

on
tr

ib
ut

io
n

N
o

C
on

tr
ib

ut
io

n

H
el

pf
ul

In
di

sp
en

sa
bl

e

11.1. Planning Game 1 2 3 4 1 2 3 4
11.2. Short Release Cycles 1 2 3 4 1 2 3 4
11.3. Metaphor 1 2 3 4 1 2 3 4
11.4. Simple Design 1 2 3 4 1 2 3 4
11.5. Testing 1 2 3 4 1 2 3 4
11.6. Refactoring 1 2 3 4 1 2 3 4
11.7. Pair Programming 1 2 3 4 1 2 3 4
11.8. Common Code Ownership 1 2 3 4 1 2 3 4
11.9. Continuous Integration 1 2 3 4 1 2 3 4
11.10. 40-Hour-Week 1 2 3 4 1 2 3 4
11.11. On-Site Customer 1 2 3 4 1 2 3 4
11.12. Coding Standards 1 2 3 4 1 2 3 4

12. List the documentation that is generated.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

APPENDIX C. EQUINOX QUESTIONNAIRE 118

13. How much value is gained from the documentation?

14. How comprehensive is the documentation?

15. Do you capture/archive the information generated on white-boards? How?
Never Some Always
How:

16. How do you measure your performance/productivity?

17. How would you rate your productivity when practising XP compared to tradi-
tional processes?Beter Same Worse

18. Would you advocate the use of XP to others?Yes No

19. Do you have any suggestions for improving any of the XP elements?

20. Any additional comments?

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– TThheeuunniisssseenn,, WW HH MM ((22000033))

	Front
	Title page
	Abstract
	Opsomming
	Acknowledgements
	Acronyms
	Contents
	List of Tables
	List of Figures

	Introduction
	Background
	Research Objectives
	The need for yet another class of methodologies to light
	Other Objectives

	Agile Software Development
	Introduction
	The Manifesto on Agile Software Development
	Individuals and interactions over processes and tools
	Working software over comprehensive documentation
	Customer collaboration over contract negotiation

	The Agile Alliance
	Example Methodologies
	Extreme Programming (XP)
	Crystal
	Feature Driven Development (FDD)
	SCRUM
	Dynamic Systems Development Methodology (DSDM)
	Timeboxing
	Modelling
	Prototyping
	Testing
	Configuration Management

	Lean Programming
	Other Agile Methodologies

	Agile Modeling
	Conclusion

	A Critical Overview of Extreme Programming (XP)
	Introduction
	Four Variables of a project
	Scope
	Cost
	Quality
	Time

	The values of XP
	Communication
	Simplicity
	Feedback
	Courage

	Principles
	Fundamental Principles
	Rapid feedback
	Assume simplicity
	Incremental change
	Embracing change
	Quality work

	Secondary Principles
	Teach learning
	Small initial investment
	Play to win
	Concrete experiments
	Open, honest communication
	Work with people's instincts, not against them
	Accepted responsibility
	Local adaptation
	Travel light
	Honest measurement

	Practices
	The planning game
	Short releases
	Simple Design
	Testing
	Refactoring
	Pair programming
	Collective ownership
	Continuous integration
	40-hour week
	On-site customer
	Coding standards

	Environment
	The process flow
	The Release Planning
	Exploration
	Commitment
	Steer

	Iteration
	Exploration
	Commitment
	Steering

	Implementation

	Common concerns about XP
	On-Site customer
	Lack of scalability
	Changing requirements
	Pair programming
	Cost of Change over Time
	Lack of documentation

	Summary

	A Critical Overview of the Crystal Family of Methodologies
	Introduction
	A Philosophy of Software Development
	Three Levels of Listening
	Following (Level 1)
	Detaching (Level 2)
	Fluent (Level 3)

	Software Development as a Cooperative Game of Invention and Communication
	Engineering
	Innovation
	Communication
	Cooperative game

	People Centric
	Communication - Cooperative Teams
	Goals of Software Development
	Methodology Concepts and Design Principles
	Agility and Self-Adaptation
	Methodology-per-project

	The Crystal Family
	Family Commonalities
	Crystal Clear
	Crystal Orange
	Crystal Orange Web

	Conclusion

	A Critical Overview of Feature Driven Development (FDD)
	Introduction
	The Process
	Process 1: Develop an Overall Model
	Process 2: Build a Features List
	Process 3: Plan by Feature
	Process 4: Design by Feature (DBF)
	Process 5: Build by Feature (BBF)

	Practices
	Domain Object Modeling
	Developing by Feature
	Individual Class (Code) Ownership
	Feature Teams
	Inspections
	Regular Builds
	Configuration Management
	Reporting/Visibility of Results

	Roles
	Chief Programmer
	Class Owner
	Feature Teams
	Release Manager

	Modeling in Colour
	Conclusion

	Development Standards and Agile Software Development
	Introduction
	Standards that are of interest
	ISO/IEC 12207:1995
	Compliance

	The agile angle
	General comments
	Clause specific proposals
	Incremental Documentation

	Conclusion

	The Equinox Case Study
	Introduction
	Methodology
	Rumpe and Schröder's Survey
	The results
	Question 1, 3 and 4 -- Respondent's experience.
	Question 2 -- Are there any bottleneck activities in the way you implement XP?
	Question 5 -- How would you rate XP as a factor in the success of Equinox' development effort?
	Question 6 -- How do you experience collective code ownership?
	Question 7 -- How do you experience the single room concept?
	Question 8 -- How do you experience pair-programming?
	Question 9 -- Pair-programming as a limiting factor in learning/experimenting.
	Question 10 -- Rate your XP-project in terms of the extent to which the listed goals were reached.
	Question 11 -- The `level of use' of XP elements and their contribution to success of project.
	Question 12 -- List the documentation that is generated.
	Question 13 -- How much value is gained from the documentation?
	Question 14 -- How comprehensive is the documentation?
	Question 15 -- Do you capture/archive the information generated on white-boards? How?
	Question 16 -- How do you measure your performance/productivity?
	Question 17 -- How would you rate your productivity when practicing XP compared to traditional processes?
	Question 18 -- Would you advocate the use of XP to others?
	Question 19 -- Do you have any suggestions for improving any of the XP elements?
	Question 20 -- Any additional comments?

	General Comments
	Conclusion

	The Telkom Case Study
	Background
	Methodology
	TDL Software Development Process
	Questions discussed
	What is the general organisational position and layout of TDL?
	What is the type/range of software development projects undertaken by Telkom and TDL?
	What software development process/policy is used?
	What are the exact standards to which TDL has to comply?
	What is the success rate of projects in TDL?
	Do you do project reviews (retrospective evaluations) as part of the development process?
	What is the current code ownership policy?
	What are the characteristics of the physical development environment?
	To what extent do you make use of white-boards?
	Do requirements change after requirement analysis has been completed and the project is already in the implementation phase?
	How strongly is reuse advocated in Telkom and how regularly is it carried out?
	What is the level of interaction with customers?
	What statistics are kept of each project?
	What is the time-line breakdown of the different RUP phases for a typical project?
	How much time is spent on investigating new practices, tools, trends and innovation in software engineering?
	Do projects often require that the developers have to become familiar with new domains and/or technology?
	Is any development maturity measurement (such as CMM or something similar) carried out?

	The key TDL Challenge
	Making RUP more agile
	Conclusion

	Conclusion
	Bibliography
	The Agile Manifesto
	FDD Summarised
	Equinox Questionnaire

