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ABSTRACT 

ROLE OF GRAIN ORGANISATIONAL STRUCTURE IN SORGHUM PROTEIN 


DIGESTIBILITY 


by 


Kwaku Gyebi Duodu 


Promoter: Prof JRN Taylor 

Co-promoter: ProfPS Belton 

Department: Food Science 

Degree: PhD (Food Science) 

Sorghum (Sorghum bie%r (L.) Moench) is a drought-tolerant basic food cereal in many parts 

of Africa and Asia. Wet cooking decreases the digestibility of sorghum proteins significantly 

and this is a limitation to the use of sorghum as food . Uncooked sorghum protein digestibility 

is also considered lower than other cereals. 

In vitro protein digestibility of uncooked and cooked condensed ..tannin-free sorghum varieties 

and a white maize variety was examined at four levels of grain organisational structure: whole 

grain, endosperm, protein body preparations and isolated proteins. The possibility of 

polyphenols and gelatinised starch having an effect on in vitro protein digestibility of 

sorghum and maize was also examined. Fourier transform infrared (FTIR) and solid-state l3C 

NMR spectroscopic methods were used to investigate changes in protein secondary structure 

on thermal processing. Electrophoresis (SDS-PAGE) was used to investigate the possibility of 

protein crosslinking on thermal processing by examining molecular weight differences. 

Uncooked and cooked sorghum protein digestibility improved from whole grain, through 

endosperm to protein body preparations. However, uncooked and cooked maize protein 

digestibility was essentially the same at these levels. Uncooked sorghum protein digestibility 

was lower than uncooked maize at the whole grain level, same as maize at the endosperm 

level and higher than maize at the protein body-enriched level. Isolated kafirins and zeins 

from sorghum and maize had similar uncooked protein digestibility. Total polyphenol content 
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of sorghum decreased from whole gram to endosperm and increased from endosperm to 

protein body preparations. 

As expected, cooking reduced protein digestibility of sorghum whole grain, endosperm, 

protein body preparations and extracted kafirins. Cooked sorghum whole grain and 

endosperm had similar protein digestibilities but cooked protein body preparations were more 

digestible. There was overall improvement in sorghum protein digestibility with change in 

organisational level. Protein digestibilities of uncooked and cooked maize were essentially the 

same at all the organisational levels. 

Treating cooked whole grain and endosperm samples of sorghum and maize with alpha­

amy lase before pepsin digestion improved protein digestibility . In the protein body 

preparations where the proportion of starch was lower, such treatment had no effect on protein 

digestibility. 

SDS-PAGE under non-reducing and reducing conditions of uncooked and cooked protein 

body preparations from normal sorghum, maize and sorghum mutants (of known high protein 

digestibility) showed oligomers ofMr 45, 66 and >66 kDa and monomeric kafirins and zeins . 

Sorghum had more 45-50 kDa oligomers than maize. In comparison with maize, more of 

these oligomers were resistant to reduction in cooked normal sorghum. 

SDS-PAGE also showed that residues of the protein body preparations remaining after pepsin 

digestion consisted mainly of a-zein (uncooked and cooked maize) or a-kafirin (uncooked 

normal sorghum), whilst cooked normal sorghum had in addition, ~- and y-kafirin and 

reduction-resistant 45-50 kDa oligomers. 

FTIR and solid-state l3C NMR spectra of normal sorghum, maize and sorghum mutants 

indicated a change in protein secondary structure from a-helical to antiparallel intermolecular 

~-sheet conformation on cooking. The extent of secondary structural change seemed to be 

greater in sorghum than in maize. 

Grain organisational structure does influence sorghum protein digestibility. Interfering factors 

in the grain outer layers, namely pericarp and germ may be responsible. The decrease in 
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sorghum total polyphenol content from whole grain to endosperm accompanied with an 

increase in uncooked and cooked sorghum protein digestibility suggests that polyphenols may 

affect sorghum whole grain protein digestibility. In contrast to earlier reports, uncooked 

sorghum protein digestibility may not always be lower than that of maize. It depends on the 

nature of the material being assayed. Gelatinised starch, probably by reducing accessibility of 

pepsin to protein, reduced digestibility of sorghum and maize whole grain and endosperm. 

It appears that cooking reduces protein digestibility in sorghum by unravelling of prolamin 

polypeptides in the a-helical conformation which re-associate either through disul phide or 

non-disulphide crosslinks to form the anti parallel intermolecular ~-sheet conformation. This 

conformation may be less digestible due to restricted enzyme access to the protein . Such 

crosslinking may occur to a greater extent in sorghum than in maize perhaps due to subtle 

differences in prolamin tertiary structure between the two cereals, contributing to the worse 

digestibility of cooked sorghum proteins. 
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Do not be afraid of walking slowly 

Be afraid only of standing still 

- Old Chinese proverb 
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