Characterization of antifungal compounds isolated from *Combretum* and *Terminalia* species (Combretaceae)

By

Peter Masoko

B.Sc (Med. Sci) (UNIN), M.Sc (Microbiology) (UNIN)

Submitted in fulfillment of the requirements for the degree

PHILOSOPHIAE DOCTOR (PhD)

In the

Faculty of Veterinary Science Department of Paraclinical Science Phytomedicine Programme

At the

UNIVERSITY OF PRETORIA

SUPERVISOR: CO-SUPERVISOR: Prof J.N. Eloff Dr J.A. Picard

Pretoria August 2006

DECLARATION

I, **PETER MASOKO**, hereby do declare that this thesis submitted for the award of the degree of **PHILOSOPHIAE DOCTOR (PhD**) of University of Pretoria is my independent work and it has previously not been submitted for a degree or any other examination at this of any other university.

Peter Masoko

_____ day of ______ 2006

DEDICATION

This work is dedicated first of all, to my parents who were my first teachers, my younger brothers Kegomoditswe, Kabelo, Mojalefa and sister Refilwe. Secondly my grandmother Mosepele Shongwane and my late uncle Mosalagae.

ACKNOWLEDGEMENTS

This study has been a long journey that would not have been successfully made if it were for the support of various persons.

First and foremost, I would like to acknowledge the support, guidance and encouragement of my supervisor, **Prof Jacobus N. Eloff**. Without your positive comments and persistent encouragement this work would have simply floundered on and on. I truly want to thank him for listening to my frustrated rantings and bringing me back to a relative level of clarity and calm. For allowing me to disrupt his precious moments at anytime during his busy work.

This also goes to, **Dr Jackie A. Picard**, my co-supervisor, for the constructive criticism, advices, and patience during the course of this research. Her encouragement and keen interest led to satisfactory realization of this study.

I would like to extend a sincere word of thanks to **Dr Lyndy McGaw** who did the proofreading. Thank you for your willingness and the special effort in terms of timing.

My sincere thanks also goes to **Dr Ladislaus K. Mdee**, for helping with structure elucidation and chemical characterization.

Special thanks to **Dr Joshua Dabrowski** (Pathologist), for helping with histopathology studies.

My profound gratitude goes to **Mr Patrick N. Selahle** (Technologist), for helping with rats handling and technical assistance.

Ms Denise Marais, for continuous and rapid responses to my administrative questions and queries. Always with a smile.

Ms Lita Pauw, for making sure that all necessary equipments and materials are ordered. "Baie Dankie".

I am especially grateful to staff members of Bacteriology Section, Department of Tropical Diseases, University of Pretoria Onderstepoort Biomedical Research Centre (UPBRC) and Division of Pathology, Department of Paraclinical Sciences.

Thank you to **Mr Mathebula** (University of Limpopo, Medunsa Campus) for NMR and **Mr Ian Voster** (University of Johannesburg) for mass spectrometry.

I also appreciate the love and care my friends provided throughout this period. So everyone of you, especially to you **Calvin**, **Molatelo**, **Lerato** and **Moloisi**.

To all persons who helped me in one way or another during this work and whom I have not mentioned by nonetheless, I sincerely extend my thanks.

This study has been made possible by the financial support of **National Research Foundation** (NRF), **Department of Agriculture** (SA) and **University of Pretoria**.

Last, but far from least, I am thankful to all my family members, particularly to my parents **Johannes Motheo** (father), **Johanna Mmakepi** (mother), who have been there for me throughout my student life and for their never-ending motivation, encouragement, unreserved support and love in realizing my dreams come true.

Lastly, I would like to appreciate and to give praise to **God Almighty** for grace, wisdom and comfort throughout the time of study. Glory be to God for indeed thus far has He brought me.

"The light shines in the darkness and the darkness has never put it out" John 1.5

CONFERENCES AND PROCEEDINGS

Paper Presentation

Masoko P., Picard J. and Eloff J.N., (2004). Screening of twenty-four South African *Combretum* species (Combretaceae) for antifungal activities. *Indigenous plant use forum (IPUF)* (*Clanwilliam*).

Masoko P., Picard J. and Eloff J.N., (2004). Screening of twenty-four South African *Combretum* species (Combretaceae) for antifungal activities. Faculty Day, (*Faculty of Veterinary Science, University of Pretoria*)

Masoko P. and Eloff J.N., (2005). The diversity of antifungal compounds of six South African *Terminalia* species ((Combretaceae) determined by bioautography. *Indigenous plant use forum (IPUF) (Grahamatown).*

Masoko P. and Eloff J.N., (2005). The diversity of antifungal compounds of six South African *Terminalia* species ((Combretaceae) determined by bioautography. *Faculty Day, (Faculty of Veterinary Science, University of Pretoria).*

Masoko P., Picard J. and Eloff J.N. (2006). *In vivo* antifungal activity of *Combretum* and *Terminalia* extracts in rats. *Indigenous plant use forum* (*IPUF*) (*Gaborone, Botswana*).

Poster Presentation

Masoko P., Picard J. and Eloff J.N., (2003). Screening of antifungal activity from medicinal plants (Combretaceae). *Indigenous plant use forum (IPUF) (Rustenburg).*

Masoko P., Picard J. and Eloff J.N., (2003). Screening of antifungal activity from medicinal plants (Combretaceae). *Faculty Day, (Faculty of Veterinary Science, University of Pretoria).*

Masoko P., Picard J. and <u>Eloff J.N.</u> (2005). Extracts of 30 South African Combretum and Terminalia species have antifungal activities with MIC's as low as 20 μ g/ml. *53rd Annual meeting of Society Medicinal Plant Research (GA) (Florence, Italy).*

MANUSCRIPTS PUBLISHED AND SUBMITTED

Masoko P., Picard J. and Eloff J.N., (2005). Screening of antifungal activity of six South African *Terminalia* species (Combretaceae). Journal of Ethnopharmacology, **99**. 301- 308.

Masoko P. and Eloff J.N., (2005). The diversity of antifungal compounds of six South African *Terminalia* species ((Combretaceae) determined by bioautography. African Journal of Biotechnology, **4(12)**, 1425-1431.

Masoko P. and Eloff J.N., (2006). Bioautography indicates the multiplicity of antifungal compounds from twenty-four South African *Combretum* species (Combretaceae). African Journal of Biotechnology, **5 (18)**, 1625 - 1647.

Masoko P., Picard J. and Eloff J.N., (2006). Antifungal activity of twenty-four South Africa *Combretum* species (Combretaceae) (*In Press: South African Journal of Botany*).

Masoko P., and Eloff J.N., (2006). Antioxidant activity of six *Terminalia* and twenty-four *Combretum* species found in South Africa (*In Press, Afr. J. Trad. CAM*).

Masoko P. Picard J. and Eloff J.N., (2006). Evaluation of the wound healing activity of selected *Combretum* and *Terminalia* species (Combretaceae) (*In Press, Onderstepoort Journal of Veterinary Research*).

Masoko P., Mdee L.K. and Eloff J.N., (2006). Biological activity of two related triterpenes isolated from *Combretum nelsonii* (Combretaceae) leaves (*Prepared for J. of Ethnopharmacology*).

Eloff J.N. and **Masoko P**., (2006). Resistance of fungal pathogens to solvents used in bioassays. (*Prepared for South African Journal of Botany*).

Most of the chapters in this thesis have been written in the form of a manuscript for publication and will be submitted.

LIST OF ABBREVIATIONS

AIDS	Acquired immunodeficiency syndrome
ATCC	American type culture collection
BEA	Benzene/Ethanol/Ammonium hydroxide (90/10/1 v/v/v)
C ₁₈ column	18-Carbon reverse phase siliga gel column
CEF	Chloroform/Ethylacetate/Formic acid (5/4/1 v/v/v)
CsA	Cycosporin A
DEPT	Distortionless enhancement by polarization transfer
DAC	Dicationic aromatic compounds
DCM	Dichloromethane
dH ₂ O	Distilled water
DMSO	Dimethylsulphoxide
DNA	Deoxyribose nucleic acid
DPPH	2, 2,diphenyl-1-picrylhydrazyl
EF3	Elongation factor
ELISA	Enzyme linked immunosorbent assay
EMW	Ethylacetate/Methanol/Water (40/5.4/4 v/v/v)
GGT	Geranylgeranytransferase
GS	Glucan synthase
HMBC	Heteronuclear multiple bond correlation
HMQC	Heteronuclear multiple quantum coherence
HPLC	High performance liquid chromatography
INT	lodonitro-tetrazolium salts
LC ₅₀	Lethal concentration for 50% of the cells
LPO	Lactoperoxidase
LNBG	Lowveld National Botanical Garden
MIC	Minimum inhibitory concentration
MS	Mass spectrometry
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide dye
NaCl	Sodium chloride
NADH	Nicotinamide Adenine Dinucleotide
NADPH	Nicotinamide Adenine Dinucleotide Phosphate
NCCLS	National Committee for Clinical Laboratory Standards
NMR (¹³ C and	¹ H) Nuclear magnetic resonance (carbon 13 and proton)
PBS	Phosphate buffer saline
R _f	Retardation factor

- rpm revolutions per minute
- SEE Serial exhaustive extraction
- TLC Thin layer chromatography
- UP University of Pretoria
- UV Ultra violet radiation
- v/v volume per volume
- VLC Vacuum liquid chromatography
- WHO World Health Organisation

SUMMARY

Several investigations into the antimicrobial activity of members of the Combretaceae have been undertaken in recent years. Although the antibacterial properties of various species of *Combretum, Terminalia* and *Pteleopsis* have been investigated in depth, this is not the case for their antifungal properties. Due to the increasing importance of fungal infections the aim is to address this by focusing on antifungal activities of Combretaceae species. This was done by focusing on the following objectives:

- Developing minimum inhibitory concentration (MIC) and bioautography procedures for fungi to be used in the laboratory in order to screen *Combretum* and *Terminalia* species for antifungal activity.
- 2. Selecting three or four species for further investigation based on antifungal activity and availability.
- 3. Isolating the antifungal compounds from one or more of the selected species.
- 4. Determining the chemical structure and *in vitro* biological activity of the antifungal compound.
- 5. Developing and applying a protocol and determining *in vivo* antifungal activity of *Combretum* and *Terminalia* extracts and isolated compounds in rats infected with different fungal pathogens.

Leaves of 24 *Combretum* and 6 *Terminalia* species were collected in the Lowveld National Botanical Gardens (LNBG) in Nelspruit. After the dried plants were milled to a fine powder, they were extracted with hexane, dichloromethane, acetone and methanol. Chemical constituents of the 120 extracts were analyzed by thin layer chromatography (TLC). The TLC plates were developed with one of the three eluent systems developed in our laboratory that separate components of Combretaceae extracts well i.e.: Ethyl acetate/methanol/water (40:5.4:5) [EMW] (polar/neutral), Chloroform/ethyl acetate/formic acid (5:4:1) [CEF] (intermediate polarity/acidic) and Benzene/ethanol/ammonia hydroxide (90:10:1) [BEA] (non-polar/basic). To detect the separated compounds, vanillin-sulphuric acid-methanol was sprayed on the chromatograms and heated at 110 °C to optimal colour development. Methanol was the best extractant, extracting a greater quantity of plant material than any of the other solvents. There was similarity in the chemical composition of the non-polar compounds of extracts using extractants of varying polarity

Qualitative analysis of antioxidant activity, the 2, 2,diphenyl-1-picrylhydrazyl (DPPH) assay on TLC plates was used as a screen test for the radical scavenging ability of the compounds present in the different 120 extracts. TLC-DPPH screening method indicated the presence of

antioxidant compounds in some of the extracts tested, with *C. woodii* and *C. hereroense* showing the most prominent antioxidant activity. Methanol and acetone extracted the most antioxidant compounds based on DPPH TLC. In *vitro* studies coupled with the phytochemical analysis confirm that the extracts had antioxidant activity.

The solvent tolerance of the microorganisms was tested using the following solvents; DMSO, acetone, methanol and ethanol. In order to determine the maximum concentration at which different solvents would allow the test microorganisms to reach normal growth, different concentrations from 10 to 100% were used. Uninhibited growth was evaluated as no toxic effects of the solvent. Methanol and ethanol were found to be toxic. The growths of the fungi were not affected by DMSO and acetone concentrations up to 60%.

A serial microdilution assay was used to determine the minimum inhibitory concentration (MIC) values for plant extracts using tetrazolium violet reduction as an indicator of growth. This method had previously been used only for antibacterial activities. To apply it to measuring antifungal activities, a slight modification was made to suit fungal growth conditions. The following fungal pathogens were used: yeasts (*Candida albicans* and *Cryptococcus neoformans*), thermally dimorphic fungi (*Sporothrix schenckii*) and moulds (*Aspergillus fumigatus* and *Microsporum canis*). To determine MIC values, growth was checked after 24 and 48 hours to determine the end point. The MIC values of most of the extracts were in the order of 0.08 mg/ml and some had values as low as 0.02 – 0.04 mg/ml after 24 hours incubation.

TLC plates were loaded with 100 μ g (5 μ l of 20 mg/ml) of each of the extracts. The prepared plates were developed in the three different mobile systems used: CEF, BEA and EMW. The chromatograms were dried for a week at room temperature under a stream of air to remove the remaining solvent. The TLC plates developed were inoculated with a fine spray of the concentrated suspension containing approximately 10⁹ organisms per ml of actively growing fungi e.g. conidia for *A. fumigatus* and yeast cells (blastocysts) for the other fungi in a Biosafety Class II cabinet (Labotec, SA) cupboard. The plates were sprayed until they were just wet, and after drying were sprayed with a 2 mg/ml solution of INT. White areas indicate where reduction of INT to the coloured formazan did not take place due to the presence of compounds that inhibited the growth of tested fungi.

During this study we experienced a number of difficulties. Firstly I found that preparing cultures some days before spraying them makes it difficult to get good results, possibly due to quick mycelial overgrowth and blockage of the spray gun with mycelia. The new method

xi

was developed. This procedure led to reduced overgrowth of the mycelia. In the study of biologically active compounds from extracts, it was indicated that the extracts had antifungal compounds.

Fractionation and bioassay-guided isolation of the antifungal compounds was undertaken on the crude extracts of *C. nelsonii*, based on very low MIC's of the crude extracts on all tested pathogens, it had several compound which are active against all pathogens, lastly it is one of the *Combretum* species which have never being worked on. Antifungal compound was successfully isolated from the leaves of *C. nelsonii*. The structure was elucidated.

After structure elucidation bioassays of isolated active compounds was done to confirm that the compound isolated is the one expected, and how active the compound is, on its own. The compound was very active against all tested pathogens.

Cytotoxicity of the acetone extracts of *C. imberbe*, *C. nelsonii*, *C. albopunctactum* and *T. sericea* were evaluated using Brine shrimp (*Artemia salina*) assay and tetrazolium-based colorimetric assay (MTT assay) on Vero monkey kidney cells. These four extracts were chosen because of the good *in vitro* antifungal activity of crude extracts and there was intention of using them in *in vivo* studies in animal models. The results on brine shrimps indicated that the four leaf extracts have LC_{50} values above 20 µg/ml, the recommended cut-off point for detecting cytotoxic activity. Using MTT assay it was found that the four extracts did not suppress mitochondrial respiration in monkey kidney cells. Only *C. imberbe* was closer to the cut-off value (200 µg/ml), which was used by other authors. In searching for cytotoxic activity to the criteria of the American National Cancer Institute, the LC_{50} limit to consider a crude extract promising for further purification is lower than 30 µg/ml.

In vivo antifungal activity was investigated on the wound irritancy and efficacy of the four most promising, *Combretum nelsonii*, *Combretum imberbe*, *Combretum albopunctactum* and *Terminalia sericea* extracts applied topically to skin wounds in fungal infected skin wound of rat model. Wound irritancy and wound healing were evaluated by macroscopical, physical and histological methods. Aspects evaluated include wound healing, erythema, exudate formation and possible toxic effects of the extracts. Twenty rats were used in two pilot studies (Exploratory studies and Infection with different pathogens). During the pilot studies rats were not irritated by treatment of infection. The wound healed within three weeks. Only one rat was terminated due to weight loss and it was found that nasal discharge was due to external factors, which were not related to the experiment.

xii

The clinical treatment of skin infected with pathogens continues to be a major problem especially in immuno-compromised patients. Therapeutic agents selected for the treatment of infected wounds had ideally shown antifungal activity on *in vitro* studies. I investigated whether these agents would improve phases of wound healing without producing deleterious side effects. All the parameters showed that the crude extracts and amphotericin B were effective in decreasing formation of the exudate, increasing crust formation and that they have antifungal activities used in *in vivo* studies. Acetone extract of leaves of *C. nelsonii, C. albopunctactum, C. imberbe* and *T. sericea* possessed remarkable growth inhibitory activities against fungal pathogens. Acetone extracts of leaves and isolated compound demonstrated wound healing properties comparable with that of antibiotic powder (amphotericin B).

The results of this study in general indicate that the *Terminalia* and *Combretum* species possess substantial antifungal properties. This explains the use of these plants in folk medicine for the treatment of various diseases related to fungal infections.

TABLE OF CONTENTS

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
CONFERENCES AND PROCEEDINGS	vi
MANUSCRIPTS PUBLISHED AND PREPARED	vii
LIST OF ABBREVIATIONS	viii
SUMMARY	х
LIST OF FIGURES	xxi
LIST OF TABLES	ххх
CHAPTER 1 Literature Review	1
1. Introduction	1
1.1Medicinal plants	2
1.1.1.Approaches for selecting medicinal plants	3
1.1.2.Importance of medicinal plants	3
1.1.3. Traditional herbal medicine	4
1.1.4. Ethnobotanical research	5
1.1.4.1. Ethnological	5
1.1.4.2. Developing	5
1.1.4.3. Pharmaceutical	6
1.2. Combretaceae	6
1.2.1. Ethnopharmacology of Combretaceae	8
1.2.2. Antimicrobial activity of the Combretaceae	9
1.2.3. Phytochemistry of the Combretaceae	9
1.3. Some of the work done on Combretaceae family in Phytomedicine	10
Programme	
1.4. Existing antifungal drugs	14
1.4.1. Novel antifungal medicine	15
1.4.1.1. Inhibitors of fungal cell membranes	16
1.4.1.2. Inhibitors of fungal cell wall	17
1.4.1.3. Inhibitors of protein synthesis	18
1.4.1.4. N-myristoyltransferase inhibitors	18
1.5. New potential targets for antifungal development	18

1.5.1. The fungal cell wall	19
1.5.2. The fungal cytoplasmic membrane	21
1.5.3. DNA and protein synthesis	22
1.5.4. Signal transduction pathways	23
1.5.5. Virulence factors	23
1.6. Major groups of antimicrobial compounds from plants	24
1.6.1. Phenolics and Polyphenols	24
1.6.2. Quinones	25
1.6.3. Flavones, flavonoids, and flavonols	26
1.6.4. Tannins	27
1.6.5. Coumarins	27
1.6.6. Terpenoids and Essential Oils	28
1.6.7. Alkaloids	29
1.6.8. Lectins and Polypeptides	30
1.7.Fungi	30
1.7.1. Structure	30
1.7.1.1. Yeast	31
1.7.1.2. Moulds	31
1.7.1.3. Dimorphic fungi	32
1.7.2. Classification	32
1.7.2.1 Clinical classification of the mycoses	33
1.7.3. Multiplication	33
1.7.4. Pathogenesis	33
1.7.5. Host Defenses	34
1.7.6. Epidemiology	34
1.7.7. Diagnosis	35
1.7.8. Treatment	35
1.8. Fungal pathogens used in this study	37
1.8.1. Candida albicans	37
1.8.1.a. Pathogenicity and Clinical Significance	37
1.8.2. Aspergillus fumigatus	38
1.8.2.a. Pathogenicity and Clinical Significance	38
1.8.3. Sporothrix schenckii	39
1.8.3.a. Pathogenicity and Clinical Significance	39
1.8.4. Cryptococcus neoformans	40
1.8.4.a. Pathogenicity and Clinical Significance	40
1.8.6. Microsporum canis	41

1.8.6.a. Pathogenicity and Clinical Significance	41
1.9.Aim and Objectives	41
1.9.1.Hypothesis	41
CHAPTER 2 (Extraction and TLC profiles)	43
2.1. Introduction	43
2.1.1. Extraction	43
2.1.2. Choice of solvents	44
2.1.3. Solvent volume	44
2.1.4. Temperature	45
2.1.5. Extraction time	45
2.1.6. Analysis of compounds in extracts	45
2.2. Materials and Methods	46
2.2.1. Plant collection	46
2.2.2. Plant storage	48
2.2.3. Extractants	48
2.2.4. Extraction procedure	48
2.2.5. Phytochemical analysis	49
2.3. Results	49
2.3.1. Extraction of raw material	49
2.3.2. Phytochemical analysis	55
2.4. Discussion	58
CHAPTER 3 (Antioxidants)	61
3.1. Introduction	61
3.1.1. Antioxidant screening	62
3.2. Materials and Methods	63
3.2.1. TLC-DPPH antioxidant screening	63
3.3. Results and Discussion	64
3.4. Conclusion	70
CHAPTER 4 (Solvent toxicity)	71
4.1. Introduction	71
4.2. Materials and Method	71

4.2.1. Solvents used	71
4.2.2. Bioassays	72
4.3. Results	72
4.4. Discussion	76
4.5. Conclusion	78
CHAPTER 5 Antifungal assays (Minimum Inhibitory Concentration)	79
5.1. Introduction	79
5.1.1. p-iodonitrotetrazolium violet (INT) reaction	79
5.2. Materials and Method	80
5.2.1. Fungal test organisms	80
5.2.2. Minimum inhibitory concentration	80
5.2.2.1. Microdilution assay	80
5.2.2.2. The experimental design	81
5.3. Results (Papers)	82
5.3.1. Antifungal activities of six South African Terminalia species	82
(Combretaceae). J. of Ethnopharmacology, 99, 301-308.	
5.3.2. The antifungal activity of twenty-four South African Combretum species	90
(Combretaceae) (Submitted to SAJB).	
CHAPTER 6 (Bioautography)	111
6.1. Introduction	111
6.1.1. <i>Terminalia</i> paper	112
The diversity of antifungal compounds of six South African Terminalia species	112
(Combretaceae) determined by bioautography. African Journal of	
Biotechnology, 4(12), 1425-1431.	
6.1.2. Combretum paper	120
Bioautography indicates the multiplicity of antifungal compounds from twenty-	120
four South African Combretum species (Combretaceae) (In Press: African	
Journal of Biotechnology).	
CHAPTER 7 (Extraction and isolation of compounds)	

7.1. Introduction	155
7.2. Materials and methods	155

7.2.1. Extraction procedure	155
7.2.2. Analysis by TLC	156
7.2.3. Bioautography	156
7.2.4. Microdilution assay	156
7.2.5. Total activity	157
7.2.6. Isolation	157
7.2.6.1. Open column chromatography	157
7.2.6.2. Analysis and grouping of fractions	158
7.2.6.3. Combination of fractions	158
7.3. Results of Vacuum Liquid Chromatography	159
7.3.1. Extraction	159
7.3.2. Phytochemical analysis	159
7.3.3. Quantitative antifungal activity	160
7.3.4. Quantitative analysis of antifungal compounds	162
7.3.5. Fractionation of VLC fractions	164
7.4. Discussion and Conclusion	173
CHAPTER 8 (Structure elucidation)	176
8.1. Introduction	176
8.1.1. Nuclear Magnetic Resonance (NMR)	176
8.1.2. Mass spectrometry (MS)	177
8.1.3. Distortionless enhancement by polarization transfer (DEPT)	178
8.1.4. Heteronuclear multiple bond correlation (HMBC)	178
8.1.5. Heteronuclear multiple quantum coherence (HMQC)	178
8.1.6. Correlation Spectroscopy (COSY)	178
8.2. Materials and Methods	178
8.2.1. Nuclear Magnetic Resonance (NMR)	178
8.2.2. Mass spectrometry (MS)	179
8.3. Results	179
8.4. Discussion	184
CHAPTER 9 (In vitro cytotoxicity tests of the developed extracts and	185
isolated compounds)	
9.1. Introduction	185
9.1.1. The brine shrimp assay	186

9.1.2. The MTT cytotoxicity assay	186
9.2. Materials and Methods	187
9.2.1. Extracts selected	187
9.2.2. The brine shrimp assay	187
9.2.3. The MTT cytotoxicity assay	188
9.2.4. Statistics	189
9.3. Results	189
9.3.1. The brine shrimp assay	189
9.3.2. The MTT cytotoxicity assay	192
9.4. Discussion	197
9.5. Conclusion	200
Chapter 10 (Bioassays of isolated compounds)	201
10.1. Introduction	201
(Paper) Biological activity of two related triterpenes isolated from Combretum	202
nelsonii (Combretaceae) leaves. (Prepared for Journal of Ethnopharmacology)	
CHAPTER 11 (In vivo antifungal activity of Combretum and Terminalia	
extracts and isolated compounds in rats)	
11.1. Introduction	218
11.1.1. Aim	218
11.1.2. Objective	219
11.2. Materials and methods	220
11.2.1. Selection of rats	220
11.2.2. Housing and feeding conditions	220
11.2.3. Preparation of animals	220
11.2.4. Wound creation	221
11.2.5. Induced fungal infections	221
11.2.6. Preparation of extracts	221
11.3. Exploratory studies	221
11.3.1. Pilot study I (Local irritancy and wound healing study)	221
11.3.2. Pilot study II (Infection with different pathogens)	222
11.3.3 Confirmation study	223
11.3.3.1. Treatment of different sites on individual rats	224

11.3.3.3.Observations	225
11.3.3.4.Daily observations on weekdays	226
11.4. Evaluation of lesions	226
11.4.1. Lesion size measured	226
11.4.2. Other parameters of infection/recovery	226
11.5.Pathological and histopathological studies	226
11.6. Results	226
11.6.1. Paper. Evaluation of the wound healing activity of selected	
Combretum and Terminalia species (Combretaceae) (2006) (submitted to	
Onderstepoort Journal of Veterinary Research). (End of the Chapter)	
11.6.2. Pilot study II (Infection with different pathogens)	230
11.6.3. Confirmation study	243
11.7. Discussion	266
11.8. Conclusion	278
CHAPTER 12 (General Discussion and Conclusion)	298
CHAPTER 13 (References)	303
CHAPTER 14 (Appendix)	327

LIST OF FIGURES

	Chapter 1	Page
Figure 1.1	Schematic view of emerging targets for antifungal drug	19
	development	
Figure 1.2	Working model of glucan synthase	20
Figure 1.3	Caffeic acid	25
Figure 1.4	Eugenol	25
Figure 1.5	Quinone	25
Figure 1.6	Flavone	26
Figure 1.7	Tannins	27
Figure 1.8	Coumarins	28
Figure 1.9	Terpenoids	28
Figure 1.10	Berberine	29

Figure 2.1	Percentage of powdered Terminalia leaf samples extracted by	51
	acetone, hexane, dichloromethane and methanol from the six	
	Terminalia species.	
Figure 2.2	Percentage of powdered Combretum species leaf extracted by	53
	acetone, hexane, dichloromethane and methanol	
Figure 2.3a	Chromatograms of Terminalia species developed in BEA	55
	(top), CEF (centre), and EMW (bottom) solvent systems and	
	sprayed with vanillin-sulphuric acid to show compounds	
	extracted with acetone (Ac), hexane (Hex), dichloromethane	
	(D) and methanol (Met), in lanes from left to right for each	
	group	
Figure 2.3b	Chromatograms of Combretum species developed in BEA	56
	(top), CEF (centre), and EMW (bottom) solvent systems and	
	sprayed with vanillin-sulphuric acid to show compounds	
	extracted with acetone (Ac), hexane (Hex), dichloromethane	
	(D) and methanol (Met), in lanes from left to right for each	
	group	
Figure 2.3c	Chromatograms of Combretum species developed in BEA	57
	(top), CEF (centre), and EMW (bottom) solvent systems and	
	sprayed with vanillin-sulphuric acid to show compounds	
	extracted with acetone (Ac), hexane (Hex), dichloromethane	

(D) and methanol (Met), in lanes from left to right for each group

Chapter 3

- Figure 3.1Reaction of DPPH with hydroxyl groups of free radical (R-OH)
to produce 2-(4-hydroxyphenyl)-2-phenyl-1-picryl hydrazine63
and R-NO2, 2-(4 nitrophenyl)-2phenyl-1-picrylhydrazine
- Figure 3.2aChromatograms of Combretum species developed in BEA65(top), CEF (centre), and EMW (bottom) solvent systems and
sprayed with 0.2% DPPH in methanol, clear zones indicate
antioxidant activity of compounds extracted with acetone (Ac),
hexane (Hex), dichloromethane (D) and methanol (Met), in
lanes from left to right for each group
- Figure 3.2b Chromatograms of *Combretum* species developed in BEA 66 (top), CEF (centre), and EMW (bottom) solvent systems and sprayed with 0.2% DPPH in methanol, clear zones indicate antioxidant activity of compounds extracted with acetone (Ac), hexane (Hex), dichloromethane (D) and methanol (Met), in lanes from left to right for each group

67

Figure 3.2c Chromatograms of *Terminalia* species developed in BEA (top), CEF (centre), and EMW (bottom) solvent systems and sprayed with 0.2% DPPH in methanol, clear zones indicate antioxidant activity of compounds extracted with acetone (Ac), hexane (Hex), dichloromethane (D) and methanol (Met), in lanes from left to right for each group

Figure 4.1	Test tubes of 10 % to 100 % acetone from left to right for each	73
	group mixed with different fungi and 2 mg/ml of <i>p</i> -	
	iodonitrotetrazolium violet (INT) as an indicator. Purple colours	
	indicate fungal growth and clear tubes indicate no growth	
Figure 4.2	Effects of solvents on tested fungi	75
Figure 4.3	Average MIC showing the effects of solvents on tested fungi	75
Figure 4.4	Average MIC of solvents on tested fungi	76

Chapter 5

Minimum Inhibitory Concentration (Papers)

Chapter 6

Bioautography (Papers)

Figure 7.1	Mass extracted by acetone, DCM, acetone, and methanol	160
	from <i>C. nelsonii</i>	
Figure 7.2	Chromatograms of C. nelsonii extracts developed in BEA	161
	(top), CEF (centre), and EMW (bottom) solvent systems and	
	sprayed with vanillin-sulphuric acid to show compounds	
	extracted with acetone, DCM, hexane and methanol	
Figure 7.3	Bioautography of C. nelsonii extracts separated by BEA (top),	162
	CEF (Centre) and EMW (Bottom) and sprayed with C.	
	albicans (A) and C. neoformans (B). White areas indicate	
	where reduction of INT to the coloured formazan did not take	
	place due to the presence of compounds that inhibited the	
	growth.	
Figure 7.4	Bioautography of C. nelsonii extracts separated by BEA (top),	163
	CEF (Centre) and EMW (Bottom) and sprayed with S.	
	schenckii (A), A. fumigatus (B) and M. canis (C). White areas	
	indicate where reduction of INT to the coloured formazan did	
	not take place due to the presence of compounds that	
	inhibited the growth.	
Figure 7.5	Chromatograms of C. nelsonii acetone extracts developed in	165
	CEF solvent systems and sprayed with vanillin-sulphuric acid	
	to show compounds isolated with different eluent systems	
Figure 7.6	Bioautography of C. nelsonii acetone extracts separated by	165
	CEF and sprayed with C. albicans. White areas indicate	
	where reduction of INT to the coloured formazan did not take	
	place due to the presence of compounds that inhibited the	
	growth of <i>C. albicans</i>	
Figure 7.7	Bioautography of C. nelsonii acetone extracts separated by	166
	CEF and sprayed with <i>M. canis</i> . White areas indicate where	
	reduction of INT to the coloured formazan did not take place	
	due to the presence of compounds that inhibited the growth of	

	M. canis	
Figure 7.8	Bioautography of C. nelsonii acetone extracts separated by	166
	CEF and sprayed with S. schenckii. White areas indicate	
	where reduction of INT to the coloured formazan did not take	
	place due to the presence of compounds that inhibited the	
	growth of S. schenckii	
Figure 7.9	Bioautography of <i>C. nelsonii</i> acetone extracts separated by	167
	CEF and sprayed with C. neoformans. White areas indicate	
	where reduction of INT to the coloured formazan did not take	
	place due to the presence of compounds that inhibited the	
	growth of <i>C. neoformans</i>	
Figure 7.10	Chromatograms of C. nelsonii acetone extracts isolated with	168
	90% ethyl acetate and developed in CEF solvent systems and	
	sprayed with vanillin-sulphuric acid to show compounds	
	isolated with different eluent systems	
Figure 7.11	Overview of isolation process of four active compound	169
Figure 7.12	Chromatograms of C. nelsonii DCM extracts developed in	171
	CEF solvent systems and sprayed with vanillin-sulphuric acid	
	to show compounds separated with different eluent systems	
Figure 7.13	Bioautography of C. nelsonii DCM extracts separated by CEF	171
	and sprayed with A. fumigatus. White areas indicate where	
	reduction of INT to the coloured formazan did not take place	
	due to the presence of compounds that inhibited the growth of	
	A. fumigatus	
Figure 7.14	Bioautography of C. nelsonii DCM extracts separated by CEF	172
	and sprayed with C. albicans. White areas indicate where	
	reduction of INT to the coloured formazan did not take place	
	due to the presence of compounds that inhibited the growth of	
	C. albicans	
Figure 7.15	Bioautography of C. nelsonii DCM extracts separated by CEF	172
	and sprayed with C. neoformans. White areas indicate where	
	reduction of INT to the coloured formazan did not take place	
	due to the presence of compounds that inhibited the growth of	
	C. neoformans	
Figure 7.16	Bioautography of C. nelsonii DCM extracts separated by CEF	172
	and sprayed with <i>M. canis.</i> White areas indicate where	

reduction of INT to the coloured formazan did not take place

due to the presence of compounds that inhibited the growth of *M. canis*

- Figure 7.17Bioautography of *C. nelsonii* DCM extracts separated by CEF173and sprayed with *S. schenckii*. White areas indicate where
reduction of INT to the coloured formazan did not take place
due to the presence of compounds that inhibited the growth of
S. schenckii
- Figure 7.18
 Chromatograms of combined fractions of *C. nelsonii* DCM
 173

 extracts isolated with 80% ethyl acetate and developed in CEF
 solvent systems and sprayed with vanillin–sulphuric acid to show compounds isolated.
 173

Chapter 8

Figure 8.1	¹³ C NMR spectrum of Compound I	179
Figure 8.2	¹ H NMR spectrum of Compound I	180
Figure 8.3	HMBC NMR spectrum of Compound I	180
Figure 8.4	HSQC NMR spectrum of Compound I	181
Figure 8.5	gCOSY NMR spectrum of Compound I	181
Figure 8.6	gHMBC NMR spectrum of Compound I	182
Figure 8.7	gHSQC NMR spectrum of Compound I	182
Figure 8.8	Terminolic acid	183
Figure 8.9	Compound 1, a mixture of two inseparable compounds, which	183
	were asiatic acid (1b) and arjunolic acid (1a)	

Brine shrimp assay mortality after exposure to C. nelsonii	189
extract	
Brine shrimp assay mortality after exposure to C. imberbe	190
extract	
Brine shrimp assay mortality after exposure to C.	190
albopunctactum extract	
Brine shrimp assay mortality after exposure to <i>T. sericea</i>	191
extract	
Brine shrimp assay curve of Podophyllotoxin (Positive control)	191
MTT cytotoxicity assay curve for Berberine chloride	192
Percentage cell viability of berberine different concentration	193
MTT cytotoxicity activity of C. imberbe extract against Vero	194
	Brine shrimp assay mortality after exposure to <i>C. nelsonii</i> extract Brine shrimp assay mortality after exposure to <i>C. imberbe</i> extract Brine shrimp assay mortality after exposure to <i>C.</i> <i>albopunctactum</i> extract Brine shrimp assay mortality after exposure to <i>T. sericea</i> extract Brine shrimp assay curve of Podophyllotoxin (Positive control) MTT cytotoxicity assay curve for Berberine chloride Percentage cell viability of berberine different concentration MTT cytotoxicity activity of <i>C. imberbe</i> extract against Vero

	cells	
Figure 9.9	MTT cytotoxicity activity of C. nelsonii extract against Vero	194
-	cells	
Figure 9.10	MTT cytotoxicity activity of <i>T. sericea</i> extract against Vero	195
	cells	
Figure 9.11	MTT cytotoxicity activity of C. albopunctactum extract against	195
	Vero cells	
Figure 9.12	LC ₅₀ of the tested extracts	196
	Chapter 11	
Figure 11.1	Wounds creation	227
Figure 11.2	Wound treating and dressing	228
Figure 11.3	Wound healing and necropsy	229
Figure 11.4 –	Wound healing Paper	
11.9		
Figure 11.10a	Weights of rat 1 to rat 6 in pilot study 2	230
Figure 11.10b	Weights of rat 7 to rat 12 in pilot study 2	230
Figure 11.11a	Temperatures of rat 1 to rat 6 in pilot study 2	231
Figure 11.11b	Temperatures of rat 7 to rat 12 in pilot study 2	231
Figure 11.12a	The average lesion size of lesions infected with C. albicans	232
	and treated with four extracts and Amphotericin B (positive	
	control).	
Figure 11.12b	The average lesion size of lesions infected with C.	232
	neoformans and treated with four extracts and Amphotericin	
	B (positive control).	
Figure 11.12c	The average lesion size of lesions infected with <i>M. canis</i>	233
	and treated with four extracts and Amphotericin B (positive	
	control).	
Figure 11.12d	The average lesion size of lesions infected with <i>S. schenckii</i>	233
	and treated with four extracts and Amphotericin B (positive control).	
Figure 11.13a	The influence of the crude extracts and Amphotericin B	234
	(positive control) on the wound erythema of rat in pilot study	
	2	
Figure 11.13b	Average arbitrary values of erythema of rats in pilot study 2	234
	with error bars	
Figure 11.14a	The influence of the crude extracts and Amphotericin B	235

	(positive control) on the exudate formed of rats in pilot study2.	
Figure 11.14b	Average arbitrary values of exudate of rats in pilot study 2 with error bars	235
Figure 11.15a	The influence of the crude extracts and Amphotericin B	236
	(positive control) on the crust formed of rats in pilot study 2	
Figure 11.15b	Average arbitrary values of crust formation of rats in pilot	236
	study 2 with error bars	
Figure 11.16a	Normal rat skin	237
Figure 11.16b	Fibrosis/Fibroplasia and Angiogenesis	237
Figure 11.16c	Fibrosis	238
Figure 11.16d	Degeneration of cells	238
Figure 11.16	Weights of rats (1 to 6) infected with C. albicans.	243
Figure 11.17	Weights of rats (7 to 12) infected with C. neoformans.	244
Figure 11.18	Weights of rats (13 to 18) infected with <i>M. canis</i> .	244
Figure 11.19	Weights of rats (19 to 24) infected with S. schenckii.	245
Figure 11.20	Temperatures of rats (1 to 6) infected with C. albicans.	246
Figure 11.21	Temperatures of rats (7 to 12) infected with C. neoformans.	246
Figure 11.22	Temperatures of rats (13 to 18) infected with <i>M. canis.</i>	247
Figure 11.23	Temperatures of rats (19 to 24) infected with S. schenckii.	247
Figure 11.24	The average lesion size of lesions infected with C. albicans	248
	and treated with four extracts, isolated compound and	
	Amphotericin B (positive control).	
Figure 11.25	The average lesion size of lesions infected with C.	248
	neoformans and treated with four extracts, isolated	
	compound and Amphotericin B (positive control).	
Figure 11.26	The average lesion size of lesions infected with <i>M. canis</i>	249
	and treated with four extracts, isolated compound and	
	Amphotericin B (positive control).	
Figure 11.27	The average lesion size of lesions infected with S. schenckii	249
	and treated with four extracts, isolated compound and	
	Amphotericin B (positive control).	
Figure 11.28a	The influence of the crude extracts, isolated compound and	250
	Amphotericin B (positive control) on the wound erythema of	
	rat infected with <i>C. albicans</i> .	
Figure 11.28b	Average arbitrary values of erythema of rats infected with	251

C. albicans with error bars

Figure 11.29a	The influence of the crude extracts, isolated compound and	251
	Amphotericin B (positive control) on the wound erythema of	
	rat infected with C. neoformans.	
Figure 11.29b	Average arbitrary values of erythema of rats infected with	252
	C. neoformans with error bars	
Figure 11.30a	The influence of the crude extracts, isolated compound and	252
	Amphotericin B (positive control) on the wound erythema of	
	rat infected with <i>M. canis</i> .	
Figure 11.30b	Average arbitrary values of erythema of rats infected with	253
	<i>M. canis</i> with error bars	
Figure 11.31a	The influence of the crude extracts, isolated compound and	253
	Amphotericin B (positive control) on the wound erythema of	
	rat infected with S. schenckii.	
Figure 11.31b	Average arbitrary values of erythema of rats infected with S.	254
	schenckii with error bars	
Figure 11.32a	The influence of the crude extracts, isolated compound and	255
	Amphotericin B (positive control) on the exudate formed of	
	rats infected with C. albicans.	
Figure 11.32b	Average arbitrary values of exudate of rats infected with C.	255
	albicans with error bars	
Figure 11.33a	The influence of the crude extracts, isolated compound and	256
	Amphotericin B (positive control) on the exudate formed of	
	rats infected with C. neoformans.	
Figure 11.33b	Average arbitrary values of exudate of rats infected with C.	256
	neoformans with error bars	
Figure 11.34a	The influence of the crude extracts, isolated compound and	257
	Amphotericin B (positive control) on the exudate formed of	
	rats infected with <i>M. canis</i> .	
Figure 11.34b	Average arbitrary values of exudate of rats infected with <i>M</i> .	257
	<i>canis</i> with error bars	
Figure 11.35a	The influence of the crude extracts, isolated compound and	258
	Amphotericin B (positive control) on the exudate formed of	
	rats infected with S. schenckii.	
Figure 11.35b	Average arbitrary values of exudate of rats infected with S.	258
	schenckii with error bars	
Figure 11.36a	The influence of the crude extracts, isolated compound and	259

Amphotericin B (positive control) on the crust formed of rats infected with *C. albicans*.

- Figure 11.36bAverage arbitrary values of crust formation of rats infected260with C. albicans with error bars
- Figure 11.37aThe influence of the crude extracts, isolated compound and260Amphotericin B (positive control) on the crust formed of rats
infected with *C. neoformans*.
- Figure 11.37bAverage arbitrary values of crust formation of rats infected261with C. neoformans with error bars
- Figure 11.38aThe influence of the crude extracts, isolated compound and
Amphotericin B (positive control) on the crust formed of rats
infected with *M. canis*.
- Figure 11.38bAverage arbitrary values of crust formation of rats infected262with *M. canis* with error bars
- Figure 11.39aThe influence of the crude extracts, isolated compound and262Amphotericin B (positive control) on the crust formed of rats
infected with S. schenckii.
- Figure 11.39bAverage arbitrary values of crust formation of rats infected263with S. schenckii with error bars
- Figure 11.40Effect of isolated compound on fungal pathogens.263
- Figure 11.41Effect of amphotericin B on fungal pathogens.264Figure 11.42Effect of *C. imberbe* acetone extract on fungal pathogens.264
- Figure 11.42Effect of *C. imberbe* acetone extract on fungal pathogens.264Figure 11.43Effect of *C. nelsonii* acetone extract on fungal pathogens.265
- Figure 11.44
 Effect of C. albopunctactum acetone extract on fungal
 265

 pathogens.
 265
- Figure 11.45Effect of *T. sericea* acetone extract on fungal pathogens.266

LIST OF TABLES

	Chapter 1	Page
Table 1.1	The Combretaceae family	7
Table 1.2	An overview of antifungal agents	15
	Chapter 2	
Table 2.1	Combretum species collected for antifungal and antioxidant	47
	screening	
Table 2.2	Terminalia species collected for antifungal and antioxidant	47
	screening	
Table 2.3	The percentage mass (%) of Terminalia species extracted with	50
	four extractants from dried powdered leaves	
Table 2.4	The percentage mass (%) of Combretum species extracted	50
	with four extractants from dried powdered leaves	

Chapter 3

Table 3.1	Qualitative DPPH assay on TLC of the 30 plants studied	68
Table 3.2	Number of antioxidant bands present in all Combretum species	69
	tested on EMW solvent systems and extractants	
Table 3.3	Number of antioxidant bands present in all Terminalia species	70
	tested on EMW solvent systems and extractants	

Chapter 4

Table 4.1	Toxicity of different solvents on tested fungi	73
Table 4.2	MIC values and final % concentrations of different solvents	74
	against tested fungi	

Chapter 5

Terminalia Paper *Combretum* Paper

Chapter 6

Bioautography papers

Chapter 7

Table 7.1	Solvent mixtures used in column chromatography	158
Table 7.2	The mass (g) of C. nelsonii leaf powder extracted with four	159
	extractants from 502 g.	
Table 7.3	Minimum Inhibitory Concentration (MIC) of C. nelsonii extracts	160
	after 24 H	
Table 7.4	Total activity in ml/g of <i>C. nelsonii</i> extracts after 24 hours	162
	incubation at 37 °C	
Table 7.5	The mass (g) of C. nelsonii acetone and DCM extracts isolated	164
	with different eluent systems	

Chapter 9

Table 9.1	Results showing absorbance values at 540 nm for the various	193
	optimal extract concentration.	
Table 9.2	Relative safety margin (using LC_{50} value from the brine shrimp	197
	assay and the MTT cytotoxicity assay) of the optimal extract.	

Chapter 11

Table 11.1	Treatment in topical to study skin tolerance.	222
Table 11.2	Treatment of different rats in efficacy experiment	222
Table 11.3	Evaluation of erythema and exudate	223
Table 11.4	Treatment of different rats in efficacy experiment.	223
Table 11.5a	Quantitative histopathological findings of wounds of rats	239
	infected with C. albicans after topical application of different	
	creams. (Pilot II)	
Table 11.5b	Quantitative histopathological findings of wounds of rats	240
	infected with C. neoformans after topical application of	
	different creams. (Pilot II)	
Table 11.5c	Quantitative histopathological findings of wounds of rats	241
	infected with <i>M. canis</i> after topical application of different	
	creams. (Pilot II)	
Table 11.5d	Quantitative histopathological findings of wounds of rats	242
	infected with S. schenckii after topical application of different	
	creams. (Pilot II)	
Table 11.6a	Quantitative histopathological findings of wounds of rats	267

infected with C. albicans after topical application of different

creams. (Main Study)

Table 11.6b	Quantitative histopathological findings of wounds of rats	268
	infected with C. neoformans after topical application of	
	different creams. (Main Study)	
Table 11.6c	Quantitative histopathological findings of wounds of rats	269
	infected with M. canis after topical application of different	
	creams. (Main Study)	
Table 11.6d	Quantitative histopathological findings of wounds of rats	270
	infected with S. schenckii after topical application of different	
	creams. (Main Study)	