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Abstract
User tracking and profiling is a growing threat to online privacy. Whilst In-

ternet users can choose to withhold their personal information, their Internet

usage can still be traced back to a unique IP address.

This study considers anonymity as a strong and useful form of privacy

protection. More specifically, we examine how current anonymity solutions

suffer from a number of deficiencies: they are not commonly used, are vul-

nerable to a host of attacks or are impractical or too cumbersome for daily

use. Most anonymity solutions are centralised or partially centralised and

require trust in the operators. It is additionally noted how current solutions

fail to promote anonymity for common Web activities such as performing

online search queries and general day-to-day Web browsing.

A primary objective of this research is to develop an anonymising Web

browsing protocol which aims to be (1) fully distributed, (2) offer adequate

levels of anonymity and (3) enable users to browse the Internet anonymously

without overly complex mixing techniques.

Our research has led to an anonymising protocol called Polar. Polar

is a peer-to-peer network which relays Web requests amongst peers before

forwarding it to a Web server, thus protecting the requester’s identity.

This dissertation presents the Polar model. Design choices and enhance-

ments to the model are discussed. The author’s implementation of Polar is

also presented demonstrating that an implementation of Polar is feasible.
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Chapter 1

Introduction

1.1 The case for privacy

Privacy has been defined as “the ability of individuals to determine for them-

selves when, how and to what extent information about them is communicated

to others” [60]. Similarly, Lategan et. al. [65] define privacy as “a state that

exists when access to private information about a particular individual can be

effectively controlled and managed by that individual even after a third party

has collected such private information”.

The need for privacy is commonly recognised and accepted in social sci-

ences [69, 57]. On a sociopolitical level, for example, privacy allows for

political expression and criticism; on the psychological level it affects self-

definition, allows for self-assessment and protects personal autonomy [70].

Margulis, a social and environmental psychologist, sums up the need for pri-

vacy in the following statement: “privacy is important because it is posited

to provide experiences that support normal psychological functioning, stable

interpersonal relationships, and personal development” [70, p.246].

It should therefore not be surprising to note that, in an increasingly

technology-dependent society where electronic information is readily avail-

able and easily distributable, the protection of electronic privacy has received

increased attention [75].

The increased difficulty of protecting electronic privacy is noted in a num-
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ber of publications. Berman and Mulligan [12] identify three characteristics

of the electronic medium that pose increased challenges to privacy protec-

tion: increased data creation and collection, the globalisation of information

and communication and the lack of centralised control mechanisms. Whilst

centralisation is not necessarily a better solution for privacy protection, lack

thereof often translates to enforcement complications (coordinating and se-

curing distributed decision-making is generally more complex). Another rea-

son given by Chung and Paynter [23] is the efficient and inexpensive collection

of electronic data as well as the potential financial benefits.

Before analysing online privacy issues, the following should be noted: the

concept of privacy is often more complex than realised as it involves a bal-

ance between society’s needs and those of an individual [77]. For example,

when ordering products online, the individual is required to submit a certain

amount of personal information such as name, address and credit card de-

tails. Whilst most individuals would consider such an exchange of personal

information for services rendered as acceptable, it should be noted that re-

distribution, selling or even collection of personal information should only

occur with the individual’s knowledge and consent. Unfortunately this is not

always the case.

One should therefore consider the following with particular reference to

the Internet: to what extent is privacy already threatened on the Internet,

what are possible future threats and how can individuals protect themselves.

1.1.1 Invasion of privacy

A well-known case of unethical consumer data-use involved Lotus Devel-

opment Corporation and Equifax (one of the “big three” credit reporting

agencies in the United States). The planned sale of consumer purchasing

records was thwarted after a public outcry and 30 000 letters of complaint

[77].

In 2002 the Internet ad-serving company DoubleClick came under the

spotlight when it acquired the little-known company Abacus Direct [23, 98].

DoubleClick already owned records of consumers’ browsing habits. This data
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was collected from cookies distributed through their elaborate banner adver-

tising network. Abacus had built up a database of consumer purchasing

habits collected from catalogue retailers and marketers. When DoubleClick

announced plans to link its data with the 2.9 billion personally identifiable

transaction records owned by Abacus, DoubleClick immediately faced a num-

ber of class action lawsuits as the data merger was in violation of their existing

privacy policy.

Great economic value is placed on collecting browsing habits and user

preferences [40]. It is therefore not surprising to note the number of compa-

nies and individuals who actively collect, store and analyse personal infor-

mation on the Internet.

Common methods of tracking users includes the use of cookies [40, 71, 64],

Web bugs [71], the identd identification protocol [40] as well as the user’s IP

address. These methods allow for the collection of clickstream data [71] and

subsequent log analysis [40, 71].

For example, search engines such as Google use Web bugs to track which

links in their search results are clicked by the user [17, 2]. A Web bug is “any

HTML element that is intended to go unnoticed by users, and is present

partially for surveillance purposes” [71, p.260].

Google’s Web bugs are not only used to calculate page rankings but are

also used in their context-sensitive banner advertisements called AdSense.

User clicks are reported back to a Web server which calculates usage statistics

as well as a relevant cost-per-click. Web sites hosting the banner earn revenue

when users click on the ad-serving company’s banner.

User data includes particulars such as the IP address, which Web browser

was used, the previous (or referring) Web page, the cookie, the URL and any

user-entered form data submitted via HTTP GET or POST requests [40].

This data can be stored in Web server logs [40] and is often used to obtain

user-specific clickstream data.

A clickstream is a record of a user’s activity on the Internet or on a

particular site. Information extracted includes Web sites visited, Web pages

visited, how long the user was on a page or site, in what order the pages were

visited as well as the user’s IP address [40]. This information is often used
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to monitor visitor patterns, site problems and even break-in attempts [71].

Collecting user preferences has become popular with Web site owners as

it enables Web site personalisation and allows for targeted marketing tech-

niques [108]. Google News and Google Groups are excellent examples of a

Web site’s use of clickstream data [108]. This data is used in suggesting

more relevant news headlines or news groups (in other words, Web content is

personalised), influencing the weighting of search results as well as displaying

targeted advertisements.

Although Google’s privacy policy states that it does not share personally

identifiable information, Google is silent about what clickstream data it col-

lects and what it does with the information. Such surveillance techniques

make user profiling possible [40, 2], thus revealing a substantial amount of

an individual’s sensitive and potentially incriminating browsing history and

habits.

The collection of clickstream data is not only possible across a single Web

site, but banner advertisement services such as those offered by DoubleClick

and Google’s AdSense have the potential to collect clickstream data across

several sites. These banners have become popular as the cost-per-click feature

offers Web sites a secondary source of revenue [66]. These banners threaten

online privacy because clickstream data can now be collected across all Web

sites hosting an ad-serving company’s banner.

Another particularly worrying fact about clickstream data is the ability

of proxies to collect browsing information. Web proxies generally present

a single gateway to the Internet and are commonly used by organisations.

This means that an individual risks exposing their private browsing history

not only to Web sites but also to organisational proxies as well as ISPs. A

2005 survey by the American Management association reports that 76% of

companies monitor employee Web usage [41].

The threat of online profiling thus exists at different levels: the danger of

being profiled by Web sites, ad-serving companies, organisational proxies or

by ISPs. Whereas Web sites can only trace a user’s actions on the site itself,

organisational proxies, ISPs and to some degree also ad-serving companies

can do so over several sites or even all of a user’s Internet history.
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And finally, whilst current threats are already enough cause for concern,

one should consider possible future threats. Dataveillance, the aggregation of

personal data from multiple sources, is noted by Oliver [77] as another threat

to electronic privacy. The example of DoubleClick and Abacus showed how

the merger of different databases can have serious implications on personal

privacy.

The threat posed by dataveillance will continue to grow as systems be-

come progressively integrated. Consider the case whereby medical insurance

companies start offering free Internet access, or similarly, if multi-discipline

companies such as Virgin acquire an ISP as well as an insurance division.

Merging an individual’s medical history with one’s browsing history will cer-

tainly infringe on the individual’s privacy. This scenario is not unlikely as

already in South Africa medical companies are offering credit card facilities

giving them the ability to record user purchases and simultaneously track

their medical status.

Electronic privacy is clearly an issue that should be addressed.

1.1.2 Privacy protection

Privacy protection can be enforced by legislation, can be self-regulated by

obtaining approval certificates from third parties or can be facilitated through

the use of technology [23].

Although legislation (or self-regulation if legislation is absent or insuffi-

cient) is necessary, it only provides limited assurance that private data is

not misused. A formal agreement between the individual and the entity,

using his or her private data, is usually needed. According to a set of guide-

lines published by the OECD (Organisation for Economic Co-operation and

Development), this agreement should address the following: collection limi-

tation, data quality, purpose specification, use limitation, security safeguards,

openness, individual participation and accountability [76]. Such agreements

exist on the Internet in the form of Web site privacy policies.

However, privacy policies suffer from a number of problems. Olivier [77]

notes the following issues: (1) policies are stated in the policy holder’s own
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terms, (2) the user has no option to “opt-in” or “opt-out” of certain clauses,

(3) the user often has no alternative and is forced to agree to the terms in

order to use the service, (4) policies are often vague and give the policy holder

too much leeway and (5) users usually do not read them at all. Further

inadequacies of policies and cases where policies have failed are discussed

elsewhere [8].

It should additionally be noted that policies often do not cover implicitly

collected information such as clickstream data and policies do nothing to

protect the user from an unauthorised third party.

Noteworthy is the proposed Platform for Privacy Preferences initiative

(P3P) [89], which is an attempt at giving users more fine-grained control

over their personal privacy. However, it still suffers from many of the above-

mentioned problems.

It is noted that when online interactions require personal information

(as in the case of online purchases), policies are useful and often the only

viable solution. Alternative privacy-enhancing technologies do exist; these

include encryption and architectures involving trusted third parties [86, 67].

However, these still necessitate the additional use of privacy policies.

When the exchange of personal information is not required, anonymity

should be considered as it is a strong and useful form of privacy protection.

This dissertation focuses on anonymity.

1.2 Anonymity

When considering the OECD guidelines, anonymity addresses the collection

limitation principle. Withholding personally identifiable information pre-

vents others from collecting any private information at all.

Search engines are an excellent example of where anonymity could be par-

ticularly useful. Search queries can reveal a great deal about an individual’s

work, hobbies, personal preferences and private life [2]. Consider having

access to someone’s search queries submitted over a period of a couple of

months or years. Such information could be used for targeted marketing

purposes or worse, could reveal incriminating or sensitive information.
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In fact, at the time of writing America Online, an American service

provider, had released a collection of 20 million Web queries collected from

roughly 650 000 users over three months from March 2006 to May 2006 [3].

This data is now public information on the Internet.

A paper by Aljifri et. al. [2] presents interesting research on how online

search engines, in particular, infringe on an individual’s privacy. Although

many of their arguments apply equally well to other Web sites, a number of

factors make search engines particularly threatening. Search engines employ

elaborate cataloguing and indexing schemes. Extensive click and user track-

ing is employed in order to rank search results and to display personalised

advertisements, and lastly, individuals frequently require search functionality

and therefore frequently use it [2].

By browsing anonymously one could prevent search engines or other Web

sites from performing user tracking or user profiling. Ideally one would also

want to be anonymous from the Web proxy’s or the ISP’s point of view.

Two common methods of identifying individual Web surfers were already

discussed. These were cookies and the source IP address.

While most browsers allow the individual to disable cookies in an attempt

to safeguard their browsing privacy, a user is still required to have a unique

IP address. This effectively means that disabling cookies only makes user

tracking more difficult but not impossible.

One might argue that where IP addresses are assigned dynamically within

an organisation or ISP network, only the organisation or the ISP can link the

individual to the respective IP address. Whilst this is correct, other methods

of linking IP addresses to individuals do exist. A user who logs into his

Google mail account reveals his IP address to Google. Google will be able

to link all subsequent Google search queries from that IP address to that

individual. Brandi and Oliver [17] identify inference attacks as a method

whereby the user’s identity is inferred based on historic user data.

However, in both cases the user might additionally require protection

from his organisation or ISP. Using a dynamically assigned IP address does

not protect the user because organisations or ISPs control the IP assignment.

This raises the following question: how does one effectively hide the re-
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quester’s IP address from Web servers, an organisation, an ISP or other

observers?

1.2.1 Connection anonymity

Gabber et. al. [48] introduce the terms connection and data anonymity. Data

anonymity is achieved by (1) removing identifying information from commu-

nicated content, (2) the use of pseudonyms or (3) through cryptography [48].

Connection anonymity protects the actual communication channel between

sender and receiver but is less concerned with the data that is transmit-

ted. A clear distinction is thus made between transferred data and channel

meta-data.

Data anonymity is reasonably well-established – clearly seen by the ex-

tensive use of cryptography mechanism on the Internet such as secure sockets

and certificates. Connection anonymity has proven to be less successful [51].

To prevent user tracking and profiling, users can disable cookies and are able

to control what identifying information is submitted; however, the means of

securing against IP address tracking are less mature and infrequently used.

A fair amount of research has been dedicated to building and analysing

various forms of connection anonymity technologies. However, these technol-

ogies are not widely used. Most either require an individual’s confidence in a

trusted third party or impose considerable overheads thus making their use

too cumbersome for general or daily use. Anonymity mixes (introduced in

section 2.3), for example, employ expensive mixing techniques and are thus

not very suitable to interactive or real-time media.

1.2.2 Crowds

One anonymity technology that is of particular interest to this dissertation

is Crowds [90, 91]. Crowds offers anonymous Web browsing by collecting

users into a group called a crowd. Members of this group collaborate by

forwarding Web requests among themselves before passing them to a specified

Web server.
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Anonymity is achieved through a concept called plausible deniability.

Each node could potentially be the original requester. However, every node

can also deny this and claim that it simply forwarded the request on behalf

of some other node.

Plausible deniability creates uncertainty as to who the original requester

is. Note that the concept of plausible deniability does not apply to encryp-

tion. Encryption attempts absolute secrecy. In anonymity research, plausible

deniability is often linked to delegation of responsibility. In Crowds, no single

node assumes responsibility for a request. Instead, responsibility is deferred

to the whole crowd. Plausible deniability is an important concept that fea-

tures throughout this dissertation.

This dissertation introduces an anonymity technology that also offers

shares some similarities with Crowds but specifically aims to improve thereon.

Crowds is discussed in more detail in section 2.6.

1.3 Scope and purpose

It has been shown that the lack of online privacy should be a cause for con-

cern. Individual users risk being tracked and profiled by Web sites, ad-serving

companies, organisational proxies, ISPs and other unauthorised observers.

Anonymity is useful in many cases where personalised services are not

required. This includes performing Web searches and general Web browsing.

Solutions already exist but are not commonly used and suffer from a number

of disadvantages.

The scope of this dissertation covers anonymity on the Internet and cov-

ers current anonymity technologies. Particular interest is taken in connection

anonymity solutions that offer anonymous Web browsing. Traditional ano-

nymous activities such as voting, counselling, whistle-blowing, refereeing and

voicing political and other dissent should be included as well as general or

daily Internet activities that could potentially lead to long-term user profil-

ing.



University of Pretoria etd – Tillwick, H M (2006)

1.3. Scope and purpose 10

1.3.1 Problem statement

The literature review identified a number of problems with existing solu-

tions. Most anonymity solutions are centralised or partially centralised thus

requiring trust in the operators. Available systems are either vulnerable to

a host of attacks or are too inefficient and cumbersome for daily use. A suf-

ficiently adequate solution has still not been found contributing to the fact

that anonymous browsing is not commonly performed.

The purpose of this dissertation is to propose an anonymous Web brows-

ing protocol called Polar, which is (1) fully distributed, (2) offers adequate

levels of anonymity and (3) enables users to browse the Internet anonymously

without overly complex mixing techniques.

More specifically we wish to show how Polar achieves plausible denia-

bility and how it offers various improvements on the original Crowds [90]

design. The original Crowds protocol suffers from inadequate routing, fea-

tures a partially centralised architecture and offers poor levels of anonymity.

Subsequent solutions have offered improvements, however, these are still far

from perfect thus prompting further research.

1.3.2 Methodology

An extensive literature survey will explore the current state of anonymising

technologies. A solid understanding of current research will provide a greater

insight into the strengths and weaknesses of existing solutions.

A framework will be developed to provide a structured approach to an-

onymity design factors, techniques and objectives. This should assist in

identifying problems of current solutions. Given these problems, a set of

objectives will be proposed that a connection anonymity technology should

fulfil.

Our proposed solution to these problems is a model of an anonymous Web

browsing protocol. Strengths and weaknesses of the model will be analysed

by considering different attacks vectors. Enhancements to the model will be

made where appropriate. The model should address all objectives as best it

can.
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Finally, a proof-of-concept prototype is implemented and detailed, prov-

ing the viability of the model.

1.3.3 Research process

The first year of this research was spent reading background material and

getting a solid foundation in privacy solutions and in particular anonymity

techniques. An extensive review of peer-to-peer technologies was conducted.

The idea of using a peer-to-peer overlay in forwarding anonymous con-

tent was conceived in conjunction with Neumann and Olivier [111] and de-

tails were first published at an international conference [111]. A follow-up

paper that took a more theoretical perspective on anonymity techniques was

subsequently written and published [112]. A proof-of-concept prototype was

developed in early 2006 giving greater insight into the details of the Polar

model. The write-up of this dissertation started with the conference papers

and continued until completion in October 2006.

1.4 Overview

Chapter 2 explores the current state of connection anonymity. This is achie-

ved by performing a survey of the literature.

A meta-level look at connection anonymity is presented in chapter 3. An

analysis is made on how connection anonymity has evolved and how and

why certain design choices are made. A conceptual framework describing

what we consider to be important connection anonymity factors is proposed.

Design factors, fundamental connection anonymity strategies and objectives

are considered.

Chapter 4 applies the framework to Polar and refines our problem state-

ment and solution. Shortcomings of current anonymity technologies are iden-

tified. We consider how Polar could solve these.

This dissertation proposes the use of a structured peer-to-peer routing

overlay for use in Polar. Peer-to-peer overlays are discussed and categorised

in chapter 5. Several overlay protocols are considered; the protocol chosen
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for use in Polar is Pastry [97].

Chapter 6 presents the Polar model. Our main ideas and contributions

are discussed and analysed. Polar is analysed from an architectural as well

as a functional level. Implementation details are presented in chapter 7.

Finally, this dissertation is concluded in chapter 8.
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Chapter 2

Anonymising Protocols

2.1 Introduction

This chapter offers an overview of sender and receiver anonymity as well as a

brief introduction to anonymous publishing. These technologies provide the

foundation upon which Polar is built. A good knowledge thereof is beneficial

for a thorough understanding of the research presented in this dissertation.

Specific interest is placed on different methods of achieving anonymity

as well as their advantages and drawbacks. First a general introduction to

proxies and their adoption as anonymity facilitators is given. This leads on to

a discussion about the limitations of simple proxies and improvement made

by subsequent technologies.

The order in which the anonymity solutions are given does not follow a

strict chronological order but instead groups the technologies according to

their approach, their complexity as well according to their intended applica-

tion domain. We conclude with a discussion on Crowds [90], Flocks [78] and

Tarzan [45] which are most relevant to Polar.

2.2 Trusted and semi-trusted proxies

Proxies were originally used for caching to conserve the use of external band-

width. However, proxies also provide a limited means of identity hiding and
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thus feature significantly in connection anonymity.

To our knowledge, dc-nets [21] and variations thereof are the only an-

onymising solutions that attempt anonymous communications without the

use of proxies. Instead broadcasts are used to facilitate a multi-party compu-

tation. Although secure, a dc-net does not scale well and is easy to disrupt;

a single corrupt member can disrupt the service. A dc-net is only remotely

related to the work on Polar and will therefore not be discussed further.

Instead we focus on technologies that utilise proxies.

2.2.1 The Penet remailer

The Penet remailer (also referred to as anon.penet.fi) [58] was one of the

first widely used anonymous remailers. It was started by Johan Helsingius in

1993 and consisted of a mail server that offers anonymous and pseudonymous

email.

The server strips the sender’s real address from the email header before

forwarding the message. It thus functions as a simple mail proxy. Replies

to anonymously sent emails are made possible by providing a pseudonymous

return address. The respective real email address is kept in a correspondence

table by the remailer.

The Penet remailer, although simple and efficient, has numerous draw-

backs. Because the service is centrally managed, it is susceptible to a large

number of attacks, most notably denial of service and compulsion attacks

[88].

Compulsion attacks include external means of acquiring sensitive user

information through extortion, bribing or legal subpoenas. Legal pressure

forced the remailer to reveal identities of certain users [59]. The service has

since shut down fearing further legal action.

The threat of a compromised system could result in all users’ identities

being revealed including a history of their Web or mail usage. There is also

the threat that system administrators willingly release or sell information.

Thus, a considerable amount of trust in the integrity of the system and the

administrators is required.
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2.2.2 Anonymizer

Anonymizer [7] operates similarly to the Penet remailer but offers anonym-

ous Web browsing. It thus suffers from similar trust issues as the remailer.

However, a Web request is only active for a relatively short duration allow-

ing for the network connection to stay open thereby eliminating the need for

long-term correspondence tables.

Whilst many other anonymising technologies have failed, Anonymizer

has been operational since its inception in 1995. Goldberg [51] attributes the

success to the following: ”compared to other infrastructure-heavy attempts,

Anonymizer.com has a relatively simple architecture, at the expense of pro-

tecting against a weaker threat model. But it seems that a weaker threat model

is sufficient for most consumers, and we are starting to see other companies

similarly relaxing their threat models”.

Anonymizer’s simple architecture offers the following advantages:

• It is simple to use and requires no additional software. HTTP requests

are simply relayed via a proxy.

• It is a simple design that imposes little overhead thus allowing for fast

response times.

As Goldberg [51] rightly states, it caters for users who require protection

from a very weak threat model. These users could be classified as low-

sensitivity users; they are often not concerned about (or possibly even aware

of) sniffing and traffic analysis. Simple identity protection from proxy and/or

Web server logs is all that is required.

Anonymizer and other similar solutions have introduced a number of ad-

ditional, value-adding features [51]. These are mostly data anonymity tech-

niques such as encryption of the communication channel, removal of identify-

ing information embedded in the body of the request and numerous spyware

and adware filters.

Another feature or solution is proposed by Gabber et. al. [48]. Many sites

ask for some identification (often username or email address) to verify a user’s

registration and to provide a personalised service. Their solution is called
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the Lucent Personalized Web Assistant (LPWA) and manages pseudonyms

for use with specific Web sites.

These additional features are not central to our work on connection ano-

nymity and hence will only be mentioned in passing.

2.2.3 Type I cypherpunk remailers

Type I remailers [81] improve on the design of the previous generation of re-

mailers by adding distributed trust and public-key cryptography – the Pretty

Good Privacy (PGP) public key infrastructure (PKI) is used. The remailers

get their name from the cypherpunks, a group of cryptography enthusiasts

and professionals who first published details about them [81].

Cypherpunk remailers allow for multiple remailers to be chained together.

The remailers can be located in different jurisdictions making legal attacks

less probable and more difficult.

Cypherpunk remailers function as follows: upon receipt of an email, it is

decrypted and identifying information is removed from the email. The email

is either forwarded in encrypted form to another remailer or is delivered to

the final destination.

Replies are facilitated through the use of reply blocks. The remailer’s

public key is used to encrypt the email address of the sender. This encrypted

reply block can be published or can be inserted into a special header of

an email. Replies to such emails are handled by the appropriate remailer,

which decrypts the contents and forwards the email to the original sender.

Remailers can be chained together by supplying a corresponding reply block

for each link in the chain. Each remailer can only decrypt its own reply block

before passing the email to the next remailer or to the final recipient. This

is an improvement over correspondence tables since return addresses are no

longer held with the remailer but accompany the email in an encrypted form.

2.2.4 Nym servers

Nym servers [72, 16] (short for pseudonym servers) act as gateways between

conventional email and anonymously sent email. Instead of using a previously
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acquired reply block and sending the email to the appropriate remailer, nym

servers allow users to send email to a pseudonymous email address. Nym

servers map pseudonymous email addresses to locally stored anonymous re-

ply blocks. When a nym server accepts an email addressed to one of its

pseudonymous email accounts, it looks up the respective reply block and

forwards the email to one of the cypherpunk remailers.

Reply blocks are suited to store and forward mediums such as email.

Polar, similarly to Anonymizer, facilitates short-term queries and hence an

alternate solution is required.

2.3 Chaum’s mix

The previous solutions assume a weak threat model and do not protect

against a multitude of traffic analysis attacks.

The dangers of traffic analysis were already perceived as early as 1981

when Chaum published his paper titled “Untraceable Electronic Mail, Re-

turn Addresses, and Digital Pseudonyms” [20]. Chaum presents a mix-net

protocol (at the application layer) that offers anonymous emailing. This pro-

tocol forms the basis for the type II remailers. A considerable amount of

research has gone into mix-nets resulting in many variants of the original

protocol. The original protocol is described next whilst in chapter 3 some of

the more recent mix-nets are discussed.

Chaum proposes the concept of a mix that hides the correspondence

between incoming and outgoing messages. This is achieved by

• imposing strict size-invariance through slicing and padding,

• performing cryptographic transformations on the message,

• batching and reordering of messages and

• providing cover traffic which (to an outsider) is indistinguishable to real

traffic.

The cryptographic measures proposed by Chaum merit further explana-

tions. Users of the mix network encrypt the contents of their message M
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using the public key Ka of the recipient a. Chaum proposes that a random

string R be encrypted with the message so as to avoid any brute force attacks

(i.e. guessing X = Y by comparing K(X) = K(Y )). The recipient’s email

address Aa accompanies the encrypted block. Thus, the message sent to the

recipient looks as follows:

Ka(R0, M), Aa (2.1)

A series of mixes can be chained together to form a cascade. This, com-

bined with the layered cryptographic measures, protect the system from cor-

rupt and colluding mixes without the need for a universally trusted author-

ity. Additionally, the distributed architecture allows for mixes to be operated

from within multiple administrative domains.

Link-to-link encryption is performed at each mix in the cascade otherwise

simple message coding attacks are possible (i.e. a direct comparison of the

byte code of two or more messages). The encrypted message sent by the user

thus looks as follows:

Kn(Rn, Kn−1(Rn−1, . . . (Ka(R0, M), Aa), . . .)An−1), An (2.2)

Here n is the nth mix from the recipient. Decryption is performed in a

reversed order of the encryption process.

Chaum also proposes a solution for untraceable return addresses. Return

addresses are essentially reply blocks with nested layers of encryption corre-

sponding to the reverse order of mixes back to the original sender. The sender

Ab would embed the following reply block in a message sent to a recipient:

K1(R1, K2(R2, . . . (Kn(Rn, Ab), An), . . .)A2), A1, Kb (2.3)

Here each Ri ∈ {R1, R2, . . . , Rn} is a random string which also acts as a

key. This key is a public or symmetric key generated by Ab. Upon receipt of

a reply block, recipient Aa encrypts its response Ma using the key Kb. Each

mix Ki uses key Ri to add a layer of encryption to Kb(Ra0 , Ma). The final

mix reveals address Ab and delivers the encrypted response. The original
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sender can remove all layers of encryption because it created all keys.

This method of return addresses also provides a solution to certified email

since the successful receipt of a return message implies the successful delivery

of the original message.

Elsewhere [56, 73] other remailers have been successfully implemented in

close accordance to Chaum’s original design. Variations on the routing and

the mixing (or obfuscation) techniques have also been proposed. These are

covered in chapter 3.

On a final note, because of the performance and resource implications,

mixes are mostly used for low-latency, store-and-forward mediums such as

email. Some variations have been adapted to cater for Web and other appli-

cations as well. These, however, generally use Onion Routing for the actual

data transfer.

2.4 Onion Routing

Onion Routing is related to Chaum’s original mix-net protocol but is more

suited to Web browsing and other interactive or even real-time media. Al-

though many Onion Routers make use of various mixing strategies, Onion

Routing, in the strictest sense, only refers to the actual routing of messages

and not the batching and reordering.

The concept of an Onion Router was first conceived by Goldschlag et.

al. [54] and has been detailed in a number of publications [54, 110, 53]. It

aims to protect the privacy of the sender and receiver of a message whilst

also preventing a compromise of the system through any number of (except

all) compromised routers. One honest node is sufficient to retain anonymity.

As with mix-nets, Onion Routing also uses layered encryption. The dif-

ference lies in the content that is encrypted. Whereas mix-nets wrap the

actual message, Onion Routers use Onions to establish an anonymous, bi-

directional virtual circuit between two communicating parties (over a number

of participating nodes). The virtual circuit then relies on computationally

less expensive symmetric keys to encrypt a stream of data.

A communication consists of three steps: connection setup, data transfer
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and connection tear-down. An Onion is used during the connection setup

phase and is generated by the first (or the initiator’s) Onion Router. The

Onion is constructed similarly to the layered message in a mix-net: a message

is successively encoded with layers of encryption corresponding to each node

in a chain of routers.

Unlike mix-nets, an Onion contains information used to establish a virtual

circuit – each layer not only contains the next Onion but also a forward and

backward symmetric key. Forward and backward symmetric keys are shared

with the succeeding and preceding Onion Routers respectively. This effec-

tively allows for a bi-directional, encrypted and anonymous communication

channel.

For example, if Alice wishes to communicate anonymously with Bob, she

will instruct any number of Onion Routers – say Onion Routers A, B and C

– to establish a communication channel to Bob. Alice creates an Onion and

passes it to the first Onion Router, A. Only A can decrypt the outer layer of

the Onion, thus retrieving further instruction. In our example, A is instructed

to establish a tunnel with B and pass the “peeled” Onion to B. Pre-shared

keys allows A to safely exchange a symmetric key with B thus setting up

a secure communication tunnel between A and B. The same procedure is

followed by B, this time to Onion Router C; a different symmetric key is

used for each link. Finally, C establishes a connection with Bob.

All subsequent communication from Alice to Bob is passed through the

encrypted tunnel between A, B and C. Bob can identify the last Onion

Router but has no way of telling who initiated the communication. Similarly,

each Onion Router only knows the previous and the next Onion Router.

Onion Routers typically forward requests on behalf of a large number of

users. The number, combination and sequence of routers can differ for each

established communication channel. This makes it difficult for adversaries to

trace each hop in a particular chain until the original sender is reached.

Onion Routing also allows for connection-based and connection-less traf-

fic. Reply Onions allow for the responder to reply after the original virtual

circuit has been broken. The reply Onion closely resembles Chaum’s method

for return addresses.
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Whilst Onion Routing focuses on a strong insider threat model (it pro-

tects against colluding proxies) it fails to protect against a number of traffic

analysis attacks. Onion Routing makes no attempt to hide or obscure related

information such as message size or send or receive times. An attacker can

gain such knowledge by performing traffic analysis. This does not always

lead to identity exposure but can weaken the level of anonymity offered by

the system (i.e. there could be less uncertainty as to who the original sender

could be).

Many solutions therefore incorporate some mixing functionality which on

the downside directly affects performance.

A more recent Onion Router called TOR [37] (The second-generation

Onion Router) offers some improvements over the original design. These

improvements include perfect forward secrecy, congestion control, directory

servers and integrity checking. More information about Tor can be found in

their paper [37] or on their Website http://tor.eff.org.

2.5 Anonymous publishing

In order to provide a well-rounded overview of anonymising technologies, a

brief overview of anonymous publishing is presented. Although Polar does

not cater for document publishing, one should take note of the differences

between Polar and anonymous publishing and consider some anonymous pub-

lishing solutions that introduce interesting and related methodologies.

There are some notable differences between anonymous publishing and

the previous solutions offering sender or receiver anonymity. Previously men-

tioned solutions attempt anonymous, point-to-point communication chan-

nels. Anonymous publishing goes beyond just the channel and includes

document storage and retrieval. The object of anonymity is not only the

anonymity of a relatively short-lived request or response but rather a long-

term document that has an associated author and potentially many readers.

This introduces a new set of challenges including document publishing, disk

space allocation, document distribution and document revocation.

Note that anonymous publishing differs from server anonymity (such as
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that offered by Janus [95]). This is because the document and author is

anonymous as opposed to the provider or server of the document. Server an-

onymity might be considered to be an early attempt at something anonymous

publishing does much more effectively.

Dingledine et. al. [34] identify different agents in anonymous publishing

and enumerate different notions of anonymity for each. The different notions

include: author, publisher, reader, server, document and query anonymity.

These notions are layered over the anonymous communications channel. At

first glance it might seem as if reader and query anonymity are relevant to

Polar. However, Dingledine et. al. [34] make no distinction between servers

and proxies and hence a direct relation can not be made.

A brief discussion of some of the more interesting anonymous publishing

systems follows.

2.5.1 TAZ servers and the Rewebber network

The Rewebber network [52] can be likened to the inverse of an anonymising

proxy. The Rewebber network does not protect the requester but rather

provides a means of hosting and locating anonymous content. Anonymity is

achieved by using chains of nested and encrypted URLs – similar in nature to

Chaum’s wrapped messages. The content is hosted by the Rewebber network

but is only retrieved after a number of servers collaborate in sequentially

decrypting the URL until the final server locates the appropriate content.

2.5.2 The Eternity Service

Anderson proposes the Eternity Service [4], an anonymous, write-once data

store. It does not support document removal but instead aims to make

documents always available through the use of scattering and redundancy

techniques. The main goal is availability and the prevention of denial-of-

service attacks. The use of an anonymous payment scheme is also suggested

although none is detailed.

The Eternity Service has a number of unresolved issues such as file index-

ing and anonymous, digital cash [86, 67]. Mojo Nation [74] was a subsequent
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attempt at an anonymous publishing system [74] that employs digital cash,

however, it employs trusted third-parties and is hence not considered further.

2.5.3 Free Haven

Free Haven [34] uses a reputation system to avoid the problems of digital

cash. Servers employ a content-neutral policy that allows them to trade

disk-space with other servers based on a size × duration cost basis. The

documents are split across numerous servers for a publisher specified lifetime.

Free Haven uses inefficient broadcasts for communication. It is interest-

ing to note that Free Haven’s inventors [34] acknowledge the inefficiency of

the system and point out that system efficiency and the system’s perceived

benefit could be more important to an end user than its anonymity proper-

ties.

2.5.4 Freenet

Whilst both the Eternity Service and Free Haven display some properties

of a truly distributed system, Freenet [25, 24] is the first anonymity system

discussed thus far to consider an adaptive peer-to-peer network as its un-

derlying communications facility. It would therefore be interesting to note

the capabilities and advantages Freenet has over other similar client-server

architectures.

Freenet is a co-operative distributed file system that employs transparent

lazy replication [25]. It aims to achieve anonymous file storage and retrieval

for both producers and consumers of information. Participants store and

propagate documents without knowing who the author or the readers are.

Noteworthy is Freenet’s decentralised architecture. Freenet claims its

search is not a broadcast search. In reality however, its routing differs only

slightly from a proper broadcast. Some intelligence is built into the routing;

it is, however, still classified as an unstructured routing overlay.

A peer-to-peer overlay is here used as an all-encompassing term for any

network consisting mostly (but not exclusively) of identical peers. In chapter
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5 different types of peer-to-peer overlays are introduced. Of these, unstruc-

tured routing overlays are the most basic and most inefficient.

In Freenet, nodes attempt to route requests to the most likely location.

Nodes in Freenet have local and not global knowledge. Routing knowledge

thus improves over time as nodes discover other Freenet nodes and “learn”

where particular documents might reside. Requests are propagated through

the network until a hops-to-live count reaches zero.

Routing is inefficient and slow and object location is not guaranteed. It

might prove interesting to consider a structured routing overlay for use in

Freenet. This is left as possible future work and instead the benefits of such

an overlay are considered for use in anonymous browsing only.

Other anonymous publishing systems worth noting are Publius [68] and

Intermemory [49]. However, the remainder of this chapter continues the

notion of peer-to-peer networking, introduced in our discussion on Freenet.

We next consider those solutions whose architectures have strong peer-to-

peer influences.

2.6 Crowds

Reiter and Rubin present Crowds [90, 91] which aims to make browsing

anonymous by collecting users into a group called a crowd. Members of this

group collaborate by forwarding Web requests amongst themselves before

passing them to a specified Web server. The choice of forwarding to another

proxy instead of to the end server is a random decision based on some system-

wide parameter α > 1
2
. Each member acts as a proxy, but is also able to

issue its own request on behalf of the user.

A Web transaction consists of an original requester, the actual request,

a number of proxies that forward the request, the end server as well as the

end server’s response. A request maps out a route through the crowd before

finally reaching the Web server. The response traverses the same route but

in reverse order.

A Web server is thus only able to trace the request back to the final proxy

and is not able to determine where the request originated from. In fact, every
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proxy along the route only knows the previous and the next proxy (or the end

server). Only the original requester knows who issued the request. Sender

anonymity is achieved by allowing members to get lost in a crowd.

Crowds suffers from a number of disadvantages.

• A central server for node discovery and key distribution is required.

Crowds is a network of peers but still suffers from many of the trust

issues typically related to client/server architectures.

• Each node establishes a static virtual path which is used for multiple

requests. Once the path has been compromised all prior and subsequent

requests are exposed. Also, static paths need to be reconstructed each

time a new node joins the network.

• A simple routing algorithm with highly variable path lengths is em-

ployed. The initiating node has no means of controlling the length of

the path.

• Crowds requires all nodes on a virtual path to be honest nodes. Sim-

ple link-to-link encryption is employed between nodes. This requires

intermediate nodes to decrypt and re-encrypt forwarded messages.

Elsewhere [22] reference is made to an enhanced version of Crowds. Cen-

tral servers are no longer required for key distribution; key distribution is

facilitated by the Diffie-Hellman key exchange protocol [33]. In addition, it

is suggested that end-to-end encryption be used instead of link-to-link en-

cryption. An implementation of the enhanced version of Crowds is called

mCrowds [22, 5] and is aimed at the mobile Internet.

Some issues, however, have not been addressed. Polar specifically aims to

address node discovery and reconsiders the suitability of static virtual paths.

Path construction is revised to suit a highly dynamic network of peers as

can be expected on the Internet. Additionally, Polar aims to achieve better

levels of anonymity compared to Crowds.
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Figure 2.1: Different autonomies of Crowds and Flocks.

2.6.1 Flocks

Flocks [78] functions similarly to Crowds, but is primarily intended for use

in an organisation. It essentially forms a clustered network of controlled or

supervised proxies that forward requests originating from outside the Flocks

network. The architectural difference between Crowds and Flocks is illus-

trated in figure 2.1. The figure depicts a typical path that a request and

response map through a Crowds and Flocks network respectively.

Having authority over the anonymising network allows for a forensic an-

alysis: all proxies can be forced to co-operate leading to identity exposure.

In essence, node autonomy is sacrificed for forensics. Flocks is the first tech-

nology discussed thus far that prioritises forensics (or conditional identity

exposure) over anonymity. On the down side, Flocks annuls some of the

benefits offered by distributed systems, since trust (in the administrators) is

still an issue.

Flocks additionally considers caching as a means to improve performance

and to some degree also anonymity. Cached content shortens the path and

bypasses the Web server.

In a follow-up paper [79] Olivier uses a simulation of Flocks to quantify

performance-related issues.
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2.7 Tarzan

Tarzan [45, 46] is an anonymising protocol that is closely related to Polar.

Both technologies attempt plausible deniability similarly to Crowds, but do

so by organising peers using a structured peer-to-peer protocol. This allows

Polar and Tarzan to be fully distributed; as opposed to Crowds’ partially

centralised architecture.

However, various notable differences exist between Tarzan and Polar.

Tarzan operates at the network layer whilst Polar does so at the applica-

tion layer. This gives Tarzan the obvious advantage of being able to provide

an anonymising IP layer routing protocol for a number of transport and

application layer protocols. Polar focuses on the HTTP protocol and can

therefore offer improvements suited to Web browsing.

Tarzan obfuscates network traffic by restricting communication to paired

nodes – paired nodes use cover traffic to hide the existence of real traffic.

Similar mixing techniques are not employed by Polar; instead an alternate

solution is presented.

Tarzan requests are tunnelled through a randomly selected group of par-

ticipants; hence the relation to Crowds (and Polar). Onion Routing is used

for the tunnel setup and allows for a bi-directional tunnel. Although Polar

intends to use Onions as well, it differs in how the request is transferred and

how the tunnel is established. In addition, Tarzan’s tunnels are long-lived

whilst those of Polar are short-lived – Polar tunnels are only active for the

duration of a single Web request.

Node discovery is performed similarly in both Tarzan and Polar. A struc-

tured peer-to-peer routing algorithm is employed. Polar and Tarzan use Pas-

try and Chord respectively. A discussion on peer-to-peer protocols including

Pastry and Chord is presented in chapter 5.

Further differences should become evident as the Polar model is detailed.
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2.8 Conclusion

This chapter offered an overview of the evolution of anonymising technologies.

The first generation of anonymising proxies such as Anonymizer and the

Penet remailer as well as the second generation of Cypherpunk remailers

were considered. The fundamental mixing techniques presented by Chaum,

upon which numerous other anonymising technologies are based, were also

discussed. It was noted how Onion Routing is better suited to low-latency

communications than Chaum’s protocol. A brief introduction to anonymous

publishing was also given and the differences to anonymous Web browsing

were noted.

Polar adopts the idea of employing anonymity seekers as active partic-

ipants. This idea was first presented by Crowds and subsequently revised

by an enhanced version of Crowds. Flocks and Tarzan extended the notion.

Tarzan is of particular interest to Polar because a structured peer-to-peer

overlay is used.

An evaluation of peer-to-peer protocols is presented in chapter 5, but

first, an anonymity framework is presented in the following chapter.
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Chapter 3

A Framework for Connection

Anonymity

3.1 Introduction

In this chapter a more fundamental perspective on connection anonymity is

presented. This perspective is defined and explained by a framework.

The framework was first published in one of our papers titled “Towards

a framework for connection anonymity”[112]. The research was completed

during the earlier phase of the masters. It assists in identifying strengths and

weaknesses of current solutions and allows us to position Polar in relation to

these technologies.

The framework draws heavily from existing connection anonymity tech-

nologies. Our contribution lies in the classification and categorisation of the

techniques.

Chapter 4 subsequently discusses how the framework can be applied to

Polar.

3.2 Purpose

Within the context of this dissertation the framework aims to achieve the

following:
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• provide a more structured and formal view of connection anonymity,

• identify strengths and weaknesses of current anonymity techniques,

• position Polar in relation to existing protocols.

A meta-level approach is taken in order to identify, classify and categorise

existing connection anonymity techniques.

Connection and data anonymity are closely related; connection anonym-

ity often uses data anonymity techniques such as encryption. This disserta-

tion and the framework consider data anonymity only where it directly aids

connection anonymity.

3.3 The Framework

The framework is depicted in figure 3.1. It consists of three sections namely

the design factors, the connection anonymity strategy and the objectives.

These are covered in sections 3.4, 3.5 and 3.6 respectively. The three sections

effectively address the problem statement, the methodology and the desired

result commonly observed in anonymising technologies.

• The design factors define boundaries within which an anonymity ser-

vice must operate including any threats it can expect. Anonymity

versus unlinkability, the application domain and the threat model are

discussed.

• The connection anonymity strategy covers the measures taken by a sys-

tem in order to achieve anonymity. A distinction is made between a

strategy and many techniques performed by that strategy. Techniques

present researched means of protecting user identities; message batch-

ing, reordering and slicing are all examples of connection anonymity

techniques. A combination of techniques constitutes a strategy and

identifies a certain anonymity technology.
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• Lastly, two objectives are discussed. The first relates to the degree of

anonymity offered by a system and the second considers efficiency or

usability factors.

A more detailed discussion on each follows.

3.4 Design factors

An analysis of the literature survey, identified the following noteworthy design

factors: anonymity versus unlinkability, the intended application domain and

the expected threat model. Each is clearly indicated on the framework in

figure 3.1 and is discussed in more details next.

3.4.1 Anonymity and unlinkability

The type of anonymity offered by anonymising technologies is an important

distinction that affects later design choices [112].

A definition of anonymity is given by Pfitzmann et. al. [83]: “anonymity is

the state of being not identifiable within a set of subjects, the anonymity set”.

One should also note the difference between anonymity and unlinkability:

“two or more items (e.g. subjects, messages, events, actions) that within a

system are no more no less related than they are related concerning the a-

priory knowledge” [83].

The anonymising technologies as discussed in chapter 2 do in fact not

achieve anonymity (as per the definition) but rather attempt unlinkability.

On the Internet, participants have an IP address making them clearly distin-

guishable from from each other. Instead, an attempt is made at protecting

the communication channel by hiding the relation between a message (an

email, Web request or other) and the sender of the message.

Polar, for example, forwards Web requests to Web servers such that the

request can not easily be linked to the original requester. All participants of

Polar are clearly distinguished by unique identifiers – this includes their IP

address. However, Polar makes an attempt of unlinking the identifier and

address from a message.
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Figure 3.1: A conceptual framework for connection anonymity
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A paper from 1987 by Pfitzmann et. al. [82] classifies three types of an-

onymity: sender anonymity, recipient anonymity and unlinkability of sender

and receiver. The revised classification of 2001 [83] more clearly differentiates

between unlinkability of sender or receiver and the message. However, a clear

separation of recipient and sender anonymity, as given in 1987, still exists

[114, 24, 95]. The framework therefore also differentiates between sender and

receiver unlinkability as indicated by points I.a) and I.b) in figure 3.1.

The framework considers unlinkability between sender and/or receiver

and short-lived messages. Long-term documents as used by anonymous pub-

lishing is not covered. Publishing systems go beyond just protecting the

communication channel and additionally address storage and anonymity is-

sues of long-term documents (as opposed to short-term messages) [34]. The

framework could be extended to include anonymous publishing. This is,

however, not directly relevant to Polar and is left as future work.

In this dissertation the terms anonymity and unlinkability are used in-

terchangeably. In all cases, except where explicitly mentioned, anonymity

refers to unlinkability.

The framework thus acknowledges the discrepancy between anonymity

and unlinkability and differentiates between sender and receiver anonymity.

3.4.2 Application domain

It makes sense not only to consider the type of anonymity but also the appli-

cation domain intended for an anonymity technology. Typical application do-

mains include emailing, Web browsing, Web services and Internet telephony.

The respective protocols include SMTP, POP3, IMAP, HTTP, SOAP and

SIP. Each requires different volume, speed and latency characteristics and

also gives an indication of the type of data transmitted.

Elsewhere [111] related research shows how privacy concerns commonly

associated with email and Web browsing can be extended to include Internet

telephony.

Of particular interest is the nature of the communication channel and the

sensitivity of the transferred data. Thus, the application domain imposes
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Figure 3.2: The relation of anonymity and communication efficiency.

requirements relating to the desired communication efficiency as well as the

level of anonymity. Optimising both properties has proven to be difficult.

Dingledine [37] notes how anonymity research on a high latency push

medium, such as email, has led to well established and robust anonymous

remailers; however, similar achievements are more difficult for an interactive

low latency communication medium such as Web browsing. System parame-

ters such as message delays or the number of routing hops, present a trade-off

between increased levels of anonymity and routing efficiency.

A desired situation is depicted in figure 3.2(a) whereby anonymity and

efficiency is increased to a point where both values reach acceptable levels

(i.e. for some threshold α and β, anonymity > α and efficiency > β). In

reality, however, it can be observed how the one is roughly proportional to

the inverse of the other; this is illustrated by figure 3.2(b).

We argue that in many application domains it makes more sense to mea-

sure the combined level of anonymity and efficiency. The application domain

is thus defined in terms of the expected sensitivity of the data as well as the

desired efficiency. Most anonymising technologies focus on anonymity alone

and only a few authors [51, 52, 34] note the importance of efficiency.

Goldberg notes: “But it seems that that weaker threat model is sufficient

for most consumers, and we are starting to see other companies similarly

relaxing their threat models” [51]. Similarly, Dingledine states “in many
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cases, the efficiency and perceived benefit of the system is more important to

an end user than its anonymity properties” [34, p.20]. However, anonymity

can not be forfeited at the cost of efficiency: “is there a way to create an

anonymous system with a tolerable loss of perceived efficiency compared to

its non-anonymous counterpart? And what does “tolerable” mean, exactly?”

[34, p.20].

In order to identify important factors affecting the communication chan-

nel, reference is made to chapter 2, which covered many anonymous remailers

and Web proxies. By analysing their communication properties, the fol-

lowing communication channel properties were identified: store-and-forward,

interactive and real-time communication media. Each associates respective

latency and volume requirements. The nature of the communication can be

categorised as either a push or a pull technology. For example, email is a

push technology whereas HTML is a pull technology.

These communication properties affect the choice and suitability of vari-

ous routing and obfuscation strategies. Hence, they feature in the framework

as additional options under the heading of “Application domain”.

3.4.3 Threat model

Threats very often present the focus of anonymity research and should there-

fore be included in our framework.

Attributes that affect the severity and likelihood of attacks should include

the following: (1) location diversity of nodes, (2) active or passive capabili-

ties of an attacker, (3) the extent to which an attacker has compromised the

internal workings of the system and (4) if forward secrecy can be maintained.

These are discussed under the headings of “Location diversity”, “Active/pas-

sive adversary”, “Internal/external adversary” and “Forward secrecy”.

Location diversity

The threat of a global adversary considerably complicates attempts at pro-

viding anonymity to users. This is illustrated by the illustrious techniques

employed by mixes. Mixes aim to protect against a global adversary [20] and



University of Pretoria etd – Tillwick, H M (2006)

3.4. Design factors 36

hence require complex mechanisms to confuse and thwart attackers.

On the Internet, the difference between a global and a local adversary de-

pends on the number of nodes located in the fraction of the network that an

adversary can observe. This fraction is a collection of one or more administra-

tive domains, also referred to as autonomous systems [42]. An administrative

domain is usually managed by one entity such as an organisation or an ISP.

To prevent any one entity from observing all nodes, it would be beneficial

to distribute nodes across multiple domains; this increases location diversity.

Feamster et. al. [42] present a detailed analyses of location diversity. They

argue that the number of autonomous systems traversed by an anonymity

technology should be taken into consideration in order to improve anonymity.

Spreading the communication over numerous autonomous systems prevents

any one authority from observing all communications.

This property is particularly important for Polar; the existence of a global

observer could invalidate the anonymity efforts of Polar.

Active/passive adversary

An adversary capable of observing traffic poses a considerable risk; an ad-

versary who additionally possesses the capability to actively attack a system

presents a much bigger threat. An active adversary is able to alter or delete

data passing through a system [114]. This is possible when the attacker con-

trols the communication channel and/or one or more participating nodes in

the system.

A number of active attacks exist. In mixes, for example, active adversaries

could perform trickle or flooding attacks [100]. If an attacker has the ability

to delay or delete messages, he or she could wait until the mix has flushed

its messages. Thereafter, delayed messages are released one by one, never

allowing the mix to batch and reorder multiple messages. Flooding attacks

work on a similar principle. Each round the attacker floods a mix buffer of

size n with n− 1 messages, thereby reducing the anonymity set from n to 1.

Although more complex mixes combat these attacks through the use of

dummy traffic and advanced pool-flushing algorithms, these attacks never-
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theless present a considerable threat to many existing technologies.

Passive adversaries should also not be underestimated. The threats from

passive adversaries are two-fold: passive adversaries can observe network

traffic [102] or can analyse traffic logs [117]. In both cases, incoming and

outgoing messages can be correlated, possibly leading to identity exposure.

Internal/external adversary

Adequate counter-measures depend largely on a thorough knowledge of antic-

ipated threats. The level of sophistication of an attacker should additionally

be considered. This includes considering whether attackers are passive or ac-

tive or if their knowledge of the system is restricted to external information

or whether internal intricacies are known.

A further distinction is made between what data is compromised. An

internal adversary has knowledge of, or access to, the internal workings of a

system, whereas the external adversary can only compromise the communi-

cation channel [114].

This distinction is particularly important for uncontrolled systems such

as peer-to-peer networks – peers are typically not controlled or protected by

a central authority. Instead, such peer-to-peer systems often allow anybody

to participate. An adversary would thus be able to actively conduct attacks

using knowledge of the internal workings of his locally run node.

Protecting against such an attacker can be difficult. One should there-

fore consider how a system recovers from an incident; this is addressed by

achieving forward secrecy.

Forward secrecy

In cryptography, the terms forward secrecy or forward security refer to a

condition whereby a system continues to be secure even though a previous

encryption key has been compromised [27]. This can similarly be applied to

anonymity. A definition given by Dingledine et. al. [34] states: “a system is

perfect forward anonymous if no information remains after a transaction is

complete which could later identify the participants if one side or the other
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is compromised.”. Thus, the compromise of an anonymous communication

should ideally not invalidate any subsequent requests for anonymity.

For example, Wright et. al. [118] manage to degrade the anonymity of

certain protocols by observing communications over a number of rounds.

These systems fail to protect against replay attacks whereby two identical

requests are handled in the exact same way. This opens up the possibility of

brute force attacks [88] – trying all possible combinations until the winning

combination is found.

Hence, an anonymous system should be adaptive and should be able

to recover from an incident. Achieving anonymity is one goal, regaining

anonymity after it has been lost, is another. If cryptography is used by an

anonymity system, the anonymity offered by the system could benefit from

periodic key renewals [27].

3.4.4 Concluding the design factors

The threat model presents point III. in figure 3.1 and concludes the discus-

sion on connection anonymity design factors.

It should be clear that any anonymity technology could benefit from a

thorough analysis of the threat model, the application domain as well as the

type of anonymity. We hope that our framework assists in gaining a solid

foundation in connection anonymity design factors.

Now that the design factors have been discussed one can proceed with

the connection anonymity strategy. Suitability of a strategy depends largely

on the design factors discussed thus far.

3.5 Connection anonymity strategy

Whilst many comprehensive anonymity taxonomies exist [80, 9, 116], few

take a meta-level approach as is presented here. Instead of listing and com-

paring individual systems, a connection anonymity strategy is presented and

discussed as a set of techniques.

We draw from experiences made by previous and current technologies in
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order to identify and explicitly define various techniques. The categorisation,

as given here, is our own. Limited means of categorising different mix types

has been done before [27, 88]; however, a strict distinction between strategy

and techniques as well as a complete classification thereof is not made.

Furthermore, only those techniques which directly affect anonymity are

considered. Of particular interest to anonymising technologies are obfus-

cation techniques; these measures aim to thwart possible attackers thereby

increasing the level of anonymity.

In section 2.2 it was noted that most connection anonymity technologies

are routing-based and use one or more proxies. Routing is an important as-

pect of anonymity solutions. Many obfuscation techniques therefore address

various routing functions or parameters.

Obfuscation techniques are discussed next, covering items IV.1 to IV.7.

of the framework.

3.5.1 Route selection

Various route selection protocols, that facilitate an anonymous communica-

tion channel, are considered. More specifically, one can observe how and why

certain routing strategies are chosen above others.

Single proxies

Single proxies as used by Anonymizer and the Penet remailer (section 2.2)

allow for a simple and efficient implementation that is vulnerable to many

attacks [51]. A centralised architecture is employed that has a single point

of failure, suffers from trust issues and scales poorly. This architecture offers

weak protection against many known attacks [51].

Cascades

Cascades were first introduced by the cypherpunk remailers (section 2.2.3).

Cascades form a chain of a fixed number of proxies. Each request traverses

all proxies in the cascade. Hence, one entry and one exit point exist.
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Cascades introduce a distributed architecture thereby eliminating disad-

vantages associated with centralised solutions. Several mix-nets adopt this

approach including Chaum’s original mix [20]. Cascades are ideal for low

latency communications and are therefore used in certain real-time systems

[84] and some anonymous Web browsing solutions [14].

Berthold et. al. [15] argue that cascade mixes provide better protection

against global adversaries than free-route mixes. On the downside, cascades

restrict user choice on how to route their messages and also renders the whole

system unavailable if a single link fails.

Free-route selection

Free-route selection implies that there are a number of possible routes from

a source to a target. A distinction is commonly made between source and

loose routing [106, p.104].

The original Onion Routing protocol [54] as well as the more recent Tor

[37] and Mixmaster [73] employ source routing. The sender specifies the

exact path the message must follow. Message sending fails when all specified

hops cannot be traversed in the same sequential order.

Crowds [90] uses loose routing – each hop determines the next hop.

An advantage of free-route selection is that a path can be chosen based

on reputation or reliability statistics. On the down-side, Berthold et. al. [15]

argue that free-routing is more vulnerable to traffic analysis than cascades.

However, unless traffic volume is very low or extensive traffic analysis is

performed, the difference in the level of anonymity offered by the two route

selection strategies is minimal.

Restricted route selection

Restricted routes were first proposed by Danezis [26]. Restricted routing uses

a combination of cascades and free-route mixes to achieve a compromise.

Danezis claims it offers advantages offered by both approaches [26].
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Randomised routing

Crowds [90] is the best known technology that employs randomised routing

– choosing the next hop is a completely random decision. Note that in

Crowds each hop makes a randomised decision and hence loose routing also

applies. In Crowds, the decision to forward the request or pass it to the

Web server is also a random decision; however, the probability is calculated

using a system-wide parameter. While routing is unpredictable, the system-

wide parameter does give an adversary the means to calculate anonymity

probabilities. The level of anonymity offered by such system is therefore a

function of the system-wide parameter.

Not only is anonymity affected but also the overall system efficiency.

Anonymity and efficiency depend on a trade-off between the average path

length and the resultant degree of anonymity [78]. Olivier [78] explores the

relation between the average path length and the system-wide parameter.

Sui et. al. [109] analyse the expected participant payload in Crowds.

Peer-to-peer routing

Peer-to-peer networking was first introduced in the discussion on Freenet

(presented in section 2.5.4).

Crowds also claims to be a peer-to-peer network [90]; however, Crowds

is not completely decentralised. Crowds uses centralised servers for node

discovery and key distribution. This means that while Crowds participants

form part of a peer-to-peer network, a client/server model is still required to

support the peer network.

A more comprehensive discussion and classification of peer-to-peer over-

lays is given in chapter 5. For now it is noted that structured peer-to-peer

overlays present a certain class of routing protocol amongst peers. An overlay

exposes its routing capabilities to other “over-lying” applications.

Structured peer-to-peer overlays are used in more recent anonymity sys-

tems such as Tarzan [45, 46] and Polar [111]. Both systems, similarly to

Crowds, attempt anonymity through the use of volunteers instead of dedi-

cated servers. Volunteers are here used to refer to users who choose to share
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storage space, processing power and/or network bandwidth with the peer

network. This differs to servers which are dedicated to provisioning such

services.

Peer-to-peer networks are more resilient against compulsion attacks since

no single entity controls the service and hence nobody can be held account-

able [112]. Peer networks additionally possess the capability to become

completely decentralised thereby eliminating the need for centralised servers.

This also eliminates the need for server setup and maintenance.

On the down-side, peer-to-peer systems often suffer from reliability and

trust issues resulting from a lack of (centralised) control [38]. This disser-

tation explores the benefits and drawbacks of using a peer-to-peer routing

overlay for the purpose of achieving anonymity.

3.5.2 Path length

In anonymising systems the path length is important because it too offers a

trade-off between the degree of anonymity and system efficiency [55].

Fixed path length

Cascades have fixed path lengths. The known path length is used in various

attacks [55] to reduce the anonymity set. For example, intercepting a message

that has another three hops to go, out of a total of four, identifies the source

of the message as the original sender (not just as another forwarding proxy).

This reduces the level of anonymity offered by the system.

Variable path length

Variable path lengths are considered to be superior to fixed path lengths

[55]. Randomised routing, free-routing and peer-to-peer solutions generally

employ this strategy. However, some solutions impose a bounded number of

routing hops, thereby invalidating some of the advantages of unlimited path

lengths.
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3.5.3 Message delay

Batching and ordering of messages was first introduced by Chaum in his de-

sign of an anonymising mix network [20]. Reordering of messages prevents

timing attacks. Timing attacks [88] assume a first in, first out (FIFO) or-

dering and correlate incoming and outgoing messages using the arrival and

departure time. By delaying the forwarding of messages, multiple messages

can be batched, reordered and then released in a non-sequential order thus

preventing any observer from tracing a request from sender to the final des-

tination.

Threshold delays

A mix with a threshold delay (a threshold mix) collects a fixed number of

messages before releasing them. This method is used in Chaum’s original

mix [20] and is suitable if message volume is high and messages can be re-

leased consistently without too much delay. Since the Internet provides no

guarantees of consistent traffic volumes, threshold mixes have become better

suited to high latency communications such as email. Emails can tolerate

long delays, thus making it a popular choice in mix technologies.

Timed delays

Timed mixes, such as that used in Lance Cottrel’s Mixmaster protocol [73],

restrict the amount of time a batch of messages can be delayed. This is

achieved by periodically flushing the message pool. Timed mixes thus impose

an upper bound on the maximum time taken to route a message (through a

mix network with a bounded number of routing hops).

At first glance, threshold mixes seem more suited to low latency commu-

nications and simultaneously less secure for low volume media – compared to

threshold mixes. Serjantov and Newman [101] offer a more detailed compari-

son of both mix types. Their paper [101] notes how the properties of message

delaying techniques have not been well studied and that “rigorous descrip-

tions of their properties are lacking” [101]. Thus, a simple statement about

the suitability of different delay strategies is not possible without a thorough
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comparison of different parameters and parameter values (e.g. pool size,

traffic volumes and accepted application latency [101]).

Continuous mixes

Continuous mixes (also called stop-and-go mixes) were proposed by Kesdogan

et. al. [63]. Continuous mixes are similar to timed mixes but instead of

having the mix decide on an appropriate time interval, the delay is specified

by the sender of the message. Every message is assigned a random time

delay usually chosen from an exponential distribution function. In effect,

messages are treated individually instead of in batches and the trade-off

between efficiency and degree of anonymity depends on the user specified

delay time.

Continuous mixes prevent flooding attacks (flooding attacks were de-

scribed in section 3.4.3). Continuous mixes discard messages if they are

received after the specified delay has elapsed (i.e. messages expire). This

prevents an adversary from successfully delaying messages, as a significant

delay results in the message expiring. Hence flooding attacks become infea-

sible.

3.5.4 Message release

A distinction between a message delay and a message release technique is not

commonly made. With the exception of continuous mixes, delay techniques

can be implemented with any one message release techniques. The use of a

delay technique necessitates the use of a release technique.

Batch mixes

Batch flushing was originally proposed by Chaum [20] and presents the most

simple release strategy. Here all messages collected during a single round are

released at once.
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Pool mixes

By design, pool mixes achieve stronger anonymity than batch mixes. In

each round, only a random number of messages are released. The remaining

messages are kept for the next round. This is repeated continually allowing

for messages to remain in the mix for multiple iterations. Both Mixmaster

[73] and Mixminion [29] employ pool mixes and both use timed delays.

A disadvantage is that messages are not guaranteed to exit a mix after

a single round. Messages could potentially remain in a mix for a number of

rounds, resulting in significant delays.

Continuous mixes

Continuous mixes release messages according to an exponential distribution

function. The message release strategy is thus the same as the message delay

strategy.

3.5.5 Message slicing and padding

Message slicing and padding was first used by Chaum [20] for the purpose

of improving anonymity. Mixes that delay and reorder messages are still

vulnerable to message length attacks whereby the size of the message is used

to correlate incoming and outgoing messages. Large messages are therefore

sliced into fixed-size packets whilst smaller messages are padded with random

data. A packet-reconstruction protocol is needed to reassemble individual

packets once they are delivered.

Serjantov and Sewell [102] make a clear distinction between message-

based systems (such as mixes) and connection-based anonymity systems

(such as Onion Routing). They argue that the former is used for asyn-

chronous messaging (such as email) whilst the latter is used for low-latency

bidirectional communications.

Mixes such as JAP [14], Mixmaster [73] and Mixminion [29] employ traffic

slicing and padding. They, however, protect against a strong threat model

for anonymous email which is a high latency communication medium. On
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the other hand, performance sensitive systems such as Freedom [16] and Tor

[37] opt not to use fixed-size messages.

In fact version 1.0 of the Freedom architecture initially featured fixed-

size packets but was later dropped in version 2.0. The following reasons

for adopting variable-sized TCP packets are given [10]: many smaller-sized

TCP packets, including TCP acknowledgements are all padded to a fixed-

size length (typically just below 1500 bytes). This leads to reduced useful

bandwidth available to the user. Also, the motivation for fixed-size packets

is annulled by the fact that other traffic analysis attacks such as timing

attacks are possible and allow attackers with similar capabilities to correlate

messages with or without fixed-size messages. Neither Freedom 2.0 nor Tor

have message delay or sizing capabilities.

Message slicing and padding is thus only useful in combination with mes-

sage delay and release techniques. And inversely: message delay and release

are only useful if fixed fixed-size messages are used. And hence the benefits

offer limited additional traffic analysis resistance but cost a lot in bandwidth.

A similar argument exists surrounding the bandwidth-intensive cover traf-

fic technique. Some literature refers to cover traffic as link padding. This

should not be confused with message padding.

3.5.6 Cover traffic

Cover traffic involves creating and transmitting dummy messages. The aim is

to prevent attackers from distinguishing between fake and real traffic thereby

increasing the level of anonymity offered by a system.

The arguments surrounding cover traffic are similar to those for and

against message slicing and padding. The additional bandwidth require-

ments make it impractical for low latency communication mediums. The

majority of solutions employing cover traffic techniques are high-latency mix

networks [73, 29] (typically used for email). Their Web browsing counterparts

[10, 37] on the other hand suggest that this level of resource is not practical

or economical and hence argue against it in favour of increased efficiency and

usability.
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It should be noted that mixes originally aim to protect against a powerful

global adversary. In the ideal case, cover traffic achieves unobservability as

defined by Pftizmann et. al. [83]. Unobservability guarantees anonymity by

preventing outsiders from not even detecting if a communication took place

or not. If cover and/or real traffic is communicated continuously, an attacker

would not know when a real and when a dummy message was communicated.

It has also been suggested that systems must attract many low-sensitivity

users (i.e. users requiring weak anonymity protection) whose network traffic

could act as “cover” traffic. The “cover” traffic provided by a large number

of low-sensitivity users assists in attracting high-sensitivity users.

Additional effects of dummy traffic algorithms have been theorised else-

where [30]. Dummy traffic allows mixes to continue to operate effectively

even when there is minimal network traffic. When insufficient real messages

are available, dummy traffic could be used to fill the messages pools. During

high loads, certain solutions [28] throttle dummy traffic to reduce network

load. However, traffic policies that are independent from traffic load are

considered to be more secure [31], but at the cost of efficiency.

Systems such as JAP [14] originally planned the use of cover traffic. How-

ever, the current implementation does not send dummy traffic due to the ex-

orbitant additional bandwidth requirements and because of minimal added

benefits.

3.5.7 Cryptographic transformations

It has been noted that traffic analysis poses a greater threat than crypt-

analysis [1]. This is understandable as the maturity and strength of current

encryption cyphers make cryptanalysis considerably harder than traffic ana-

lysis. In addition, encrypted traffic still details who is communicating with

whom. Also, a vast amount of Web and email traffic is sent in clear-text.

Section 3.4.1 mentions that anonymity is a subset of security and that

anonymity can benefit substantially from existing security techniques. Cryp-

tography addresses confidentiality. Anonymity requires the confidentiality of

an identity and hence, a clear relation between cryptography and anonymity



University of Pretoria etd – Tillwick, H M (2006)

3.6. Objectives 48

exists. In fact, we know of no implemented anonymity solution that has not

made use of cryptography in one way or another.

Many systems [14, 10, 29, 73, 45, 90, 37] implement symmetric and/or

asymmetric key cyphers. A more detailed description of cryptography, as

used by mixes and Onion Routers, was discussed in sections 2.3 and 2.4

respectively. Also, the importance of achieving forward secrecy through pe-

riodic key renewals was noted in section 3.4.3.

A more detailed analysis of cryptography in anonymity systems is not

presented – the methods of encrypting data or the communication channel

differ little to other computer science fields. It is, however, an important

component of anonymity technologies and is therefore listed as an item in

the list of connection anonymity techniques.

This concludes the discussion on a connection anonymity strategy. We be-

lieve our list of anonymity techniques presents an adequate overview of cur-

rent solution, but also note that additional techniques might be added in the

future. It might even prove worthwhile to explore the use of these techniques

in relation to a time-line or with respect to different application domains.

This could possibly lead to a more visual representation of the use and ap-

propriateness of these techniques under certain scenarios. This is, however,

not central to our research on Polar and instead we conclude the framework

with a discussion of two objectives. These feature significantly in existing

literature and hence merit being included in the framework.

3.6 Objectives

Whilst anonymity is an obvious objective of anonymity technologies, the

measurement of the degree or level of anonymity is not. In order to justify

the usefulness of an anonymous protocol, or perhaps just to compare it to

other protocols, a method of quantifying anonymity is needed.

Unfortunately, a trade-off is often observed between the degree of ano-

nymity and efficiency of a system. Whereas absolute anonymity has featured

significantly in the past, a further objective has emerged. This objective
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Figure 3.3: Reiter and Rubin’s degrees of anonymity

concerns the usability of anonymity technologies. In performance sensitive

applications, system efficiency often influences the perceived usability of the

system.

An understanding of both the strength of anonymity as well as usability

is critical in understanding and balancing both requirements.

3.6.1 Degree of anonymity

Reiter and Rubin [90] present a qualitative scale of anonymity. This scale

ranges from absolute anonymity on the one side, where one cannot perceive

the presence of a communication, to exposed on the other end. Beyond suspi-

cion is applicable when there is evidence of a communication, but all poten-

tial senders are equally likely to have sent the message. Probable innocence

implies that the probability of having sent a message is less than the proba-

bility of not having sent the message; and inversely so for possible innocence.

Reiter and Rubin’s six levels of anonymity are depicted in figure 3.3.

Chaum [21] realises the benefit of anonymity set sizes. The degree of

anonymity is directly related to the cardinality of the anonymity set – a

system can offer better degrees of anonymity the more users it has. This

allows for a quantitative approach and is thus commonly referenced [14, 90,

54]. This approach does, however, not allow for a comparison of different

technologies with the same user base. It also assumes a proportional relation

between users and the degree of anonymity. More recent research [99, 32]

has shown that this assumption is not accurate as not all participants are

equally likely to have sent or received a particular message.

Instead, Serjantov and Danezis [99] and Diaz et. al. [32] propose an
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information-theoretic metric based on Shannon’s [103] concept of entropy.

Shannon defines entropy as the level of uncertainty in a system. In anonym-

ity this would pertain to the level of uncertainty surrounding the true sender

or receiver of a particular message.

Each participant i from the set of all participants S is assigned a prob-

ability 0 ≤ pi ≤ 1 of having sent or received a particular message. This

anonymity probability distribution is used in Shannon’s discrete probability

distribution for entropy. Thus, Serjantov and Danezis [99] give the system

entropy H(S) (and thereby the level of anonymity) as:

H(S) = −
∑
i∈S

pi log2 pi (3.1)

If a particular pi = 1, hence all other pj = 0, then H(S) = 0 and so

the attacker needs no further information as to identify pi as the original

sender or receiver. If all pi are equally probable the entropy resolves to a

simple anonymity set metric H(S) = log2 |S|. The aim is thus to increase

the entropy of a system – the larger H(S) the more information is required

by an attacker to expose anonymous users.

One of the limitations of this metric is that anonymity can only effec-

tively be calculated against a theoretical system model [31]. The probability

pi assigned to each participants often depends on variable factors such as

network traffic load, location diversity of the participants and the expected

attack model (such as the attacker capabilities).

Nevertheless, the metric is a valid contribution towards quantifying ano-

nymity properties of a system.

Anonymity technologies, and in particular mix solutions, traditionally

placed a strong emphasis on achieving absolute anonymity. Absolute ano-

nymity is sought at whatever cost. This was possible for anonymous email

solutions where high delays and resource costs are less of an issue. This

requirement has changed more recently as anonymity technologies have to

provide for anonymous interactive and real-time communications. Due to

resource restrictions, the degree of anonymity offered by high-latency mixes

is not feasible in low latency, high volume anonymous communications. In-
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stead, efficiency or rather usability (being a much broader term) has emerged

as an important objective of anonymity technologies.

3.6.2 Usability

An interesting analogy on the progression and trends of anonymising tech-

nologies is made by Goldberg and is published in two papers in 1997 [50] and

in 2002 [51]. The latter paper discusses the first in retrospect; it explores how

anonymity was addressed in 1997 and how this has changed over a period of

five years.

Goldberg notes how most commercial anonymising technologies have failed,

with Anonymizer being a notable exception. Systems such as SafeWeb and

the Freedom Network [10] could not attract enough paying customers to sup-

port the overhead costs of running a high-quality network. In the end, it was

the large infrastructure requirement that was to be their downfall.

A solution to this came in the form of a distributed architecture that

allowed independent entities to join a network and operate nodes as service

providers [37]. Crowds [91] went even further and required all anonymity

seekers to additionally be anonymity providers.

Whilst this solved the costing issue, the network resource problem re-

mained. Anonymous email solutions such as Mixmaster [73] and Mixminion

[29] have expensive network bandwidth requirements but are not as severely

affected by efficiency constraints such as their low-latency Web browsing

counterparts. Thus, a new set of challenges is introduced for low-latency

anonymity systems.

Unlike cryptography, anonymity cannot be obtained by one or two users

alone. Anonymity systems are only effective once a large number of users

have bought into the system. High-sensitivity users require a large user base

in order to obtain a high degree of anonymity. High-sensitivity users therefore

need many participants to increase the user base and thereby the anonymity

set. Suppose many users find a strong, high-latency system inconvenient.

Suppose it is so few that the anonymity set is too small for the high-sensitivity

users; this would result in the system being is too inconvenient for low-
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sensitivity users and too insecure for high-sensitivity users. As Dingledine

puts it: “systems need users for privacy, but need privacy for users” [35].

Therefore, low-latency anonymity technologies have to relax their threat

models so as to increase efficiency, thereby improving usability and attracting

a larger user base. After all, anonymity is achieved by hiding a user amongst

many other users.

This approach is followed by some (more recent) anonymity technologies

including Tor [37] and Polar [111]. Tor’s strategy is to remain useful enough

to attract many users although it has a weaker threat model than some

other solutions. In addition, user adoption and usability are given as the

most crucial challenges facing Tor [35] and not the degree of anonymity.

Back [11] supports this viewpoint by noting that in many cases the efficiency

and perceived benefit of a system is more important to an end user than its

anonymity properties.

As a final note, that our usage of the term “usability” is a rather broad

one. What we consider to be “usable” (or rather “user-friendly”) includes

efficiency, configurability and deployment issues. Usability describes a user’s

perceived benefits of the actual use or operation of the anonymity technology.

Our paper [112], that initially detailed the connection anonymity frame-

work, introduced the term continual anonymity. Continual anonymity places

increased emphasis on usability with an acceptable (as opposed to absolute)

level of anonymity. What constitutes acceptable depends on the user, the

application domain and the intended uses.

An important notion of continual anonymity is that systems should make

it difficult (or infeasible) for an attacker to repeatedly expose anonymous

users. For example, Polar aims to offer an acceptable level of anonymity for

casual or day-to-day Web browsing. A user might not have highly sensitive

personal information that he or she wishes to protect but might want to

prevent anybody from profiling them. Thus, the exposure of a single Web

request is not as detrimental as the exposure of a collection of requests.

Any solution that is inconvenient, inefficient and time consuming will not

gain widespread acceptance for use in daily browsing activities. This means

that solutions that have considerable overheads or impose detracting delays
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will only cater for a select few users (i.e. those users who require strong

anonymity for use in very specific tasks). These solutions will probably not

be used by individuals who require weak protection. This will inevitably

result in users refraining from using the anonymity service. A need exists to

offer anonymity on an ongoing (or continual) basis.

Usability is therefore noted as an important objective in addition to the

degree of anonymity and is listed as item V I in figure 3.1.

3.7 Related work

A number of taxonomies exist that list and compare individual anonymising

protocols [80, 50, 51, 31, 116]. The fact that few taxonomies actually group

anonymising protocols according to their functionality or capability leads us

to believe that connection anonymity, as a research field, has not matured

fully.

In fact, we know of no other attempts at defining an anonymity frame-

work. A meta-level approach to connection anonymity is not often at-

tempted.

Some related work is presented by Wright et. al. [114, 115, 116] in a num-

ber of published and unpublished papers. A characterisation of anonymous

transactions that bears some relation to the framework is presented in one

of their papers [115].

Both our attempt and that of Wright et. al. [115] share a common goal of

providing a more formal view of anonymity but differ in the approach taken.

Their work could possibly complement sections 3.4.1 and 3.4.3. Some of their

research bears similarities to our analysis of connection anonymity functions

and can be found in an overview paper [116]. Their thesis [114] examines

anonymity with particular reference to the formal specification of anonymity.
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3.8 Conclusion

In this chapter a meta-level approach to connection anonymity was presented.

Issues relating to the problem statement, methodology and objectives of con-

nection anonymity were discussed. These issues were split into design factors,

connection anonymity strategies and objectives.

The framework aims to provide a more structured and formal view of

connection anonymity. A classification of important anonymity concepts was

offered. Two important objectives of anonymity concluded the discussion.

The greatest benefit to Polar of using such a framework should become

evident in the following chapter where an in-depth analysis of Polar in relation

to the framework is made.
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Chapter 4

Introducing Polar

4.1 Introduction

Preceding chapters provide the requisite background of anonymising tech-

nologies. The literature review, as well as research done on the anonymity

framework, assisted in identifying a number of problems with current ano-

nymising technologies.

This dissertation aims to address anonymity issues at three levels. First

and foremost the given problem statement, which was was introduced in

chapter 1, is addressed. Secondly, it wishes to identify a number of higher-

level objectives and address these as best it can. As a result, Polar offer

numerous technical improvements.

This chapter considers the identified problem statement and derives five

high-level objectives. The rest of this dissertation presents our solution to

these objectives and furthermore offers a number of technical benefits.

In addition, this chapter applies the framework to Polar thereby offering

an initial feasibility study and giving a more detailed insight into how Polar

aims to achieve its objectives.

At the end of this chapter the reader should have a good understanding of

Polar’s objectives and how this dissertation will proceed in addressing these.

Subsequent chapters detail and analyse the model.
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4.2 Problems identified

Our research identified the following problems with the current state of con-

nection anonymity:

1. Low-latency communications have received some attention; however,

these solutions are not as mature as their high-latency counterparts.

2. Decentralised architectures are well-suited to anonymity technolo-

gies. Centralised solutions present a single point of failure and require

full trust in the operator of the system.

3. High costs of providing an adequate anonymity service has been the

downfall of many commercial anonymity ventures.

4. Large user bases are desirable. Unlike, cryptography, anonymity

cannot be attained by the sender and receiver alone. An individual

hides amongst many other individuals in order to become anonymous.

5. Usability of an anonymity technology has been noted as an important

factor contributing to the success or failure of an anonymity technology.

Usability describes a user’s perceived benefits of a system compared to

the hassles of operating the system. A user’s perceived benefit depends

largely on the anonymity requirements of a user; high-sensitivity users

require stronger protection compared to low-sensitivity users. Oper-

ating hassles include deployment and configuration complications but

most significantly comprise performance deficiencies (particularly for

for low-latency communications). Poor system usability would deter

low-sensitivity users first. Thus, usability affects the user base and

indirectly also the degree of anonymity as the user base increases.

Whereas in the past the emphasis has been on absolute anonymity

for high-sensitivity users, little has been done to promote continual use

of anonymous technologies amongst low-sensitivity users.

Of the technologies covered in the literature review, only a few are still

operational. A brief overview is presented before proceeding to Polar’s re-

quirements and objectives.
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4.3 Currently active projects

Anonymizer (http://www.anonymizer.com), and Anonymizer clones, are

still operational although they protect against a weak threat model. The

individual has to trust the operator’s integrity and technical prowess in safe-

guarding his or her browsing history.

JAP [14] (http://anon.inf.tu-dresden.de/), a mix cascade, is an ac-

tive project. It requires each mix operator to officially declare that logs are

not kept and are not exchanged with other operators. It only uses limited

mixing techniques.

Gathered from the amount of media attention, Tor [37] (http://tor.

eff.org/) seems to be one of the more popular anonymous Web browsing

solutions. It is a more recent implementation of the original Onion Rout-

ing [54]. An attractive feature of Tor is the fact that it aims to promote

anonymity by improving usability [35]. Tor has a client/server architecture,

but allows anybody to join the network as an Onion Router. Thus, to some

extent, it allows anonymity seekers to also become anonymity providers.

By comparing the list mentioned here with the list of technologies dis-

cussed in the literature review, it becomes apparent that only a few are still

actively used. We believe there is merit in further researching anonymity

technologies, thus hopefully, further promoting their use. Polar should con-

tribute thereto.

4.4 Polar’s requirements

In the introductory chapter in section 1.3 the purpose of this dissertation was

specified: to propose an anonymous Web browsing protocol which is (1) fully

distributed, (2) offers adequate levels of anonymity and (3) enables users to

browse the Internet anonymously without overly complex mixing techniques.

The requirements that the protocol be fully distributed and also minimise

mixing techniques, are challenges.

Early research on peer-to-peer technologies identified structured peer-to-

peer overlays as a possible solution to the requirement that the technology

http://www.anonymizer.com
http://anon.inf.tu-dresden.de/
http://tor.eff.org/
http://tor.eff.org/
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be fully distributed. This dissertation hence also explores the viability of

a structured peer-to-peer overlay for purposes of routing in an anonymity

protocol.

Different types of peer-to-peer overlays are covered in the following chap-

ter. For now it is assumed the reader has a basic understanding of peer-to-

peer networks and can differentiate between these and client/server systems.

4.5 Polar’s objectives

The advantages and disadvantages of using a peer-to-peer network over a

client/server network are many. Pre-existing trust relationships and security

requirements differ significantly. This becomes particularly interesting when

anonymity is given as an additional objective.

Crowds was identified as an existing anonymity technology that already

uses a peer-to-peer network. However, Crowds is not fully distributed and

employs an inefficient routing algorithm. Our model titled Polar will attempt

to improve on the original Crowds design whilst attempting a fully distributed

architecture.

With specific reference to the list in section 4.2, we discuss how Polar’s

fully distributed peer-to-peer network will attempt to address each problem.

1. Low-latency: Polar will attempt anonymous Web browsing. Web

browsing is typical of an interactive low-latency communication me-

dium.

2. Decentralised: Polar will attempt to be fully distributed; this is a

requirement of Polar. We believe that the use of a structured peer-

to-peer overlay will enable Polar to achieve this. Polar should prevent

some of the problems inherent to centralised or partially centralised

system.

3. Costs: The Polar network aims to be a free service maintained and op-

erated by volunteers. The peer-to-peer architecture should require all
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volunteers to also be participants. This alleviates any logistical prob-

lems associated with obtaining and maintaining dedicated hardware.

4. Large user base: the fact that Polar is a free service should promote

the rapid growth of the user base. This is, however, difficult to mea-

sure before-hand as Polar’s success ultimately depends on a number of

factors including the degree of anonymity and usability.

5. Usability: the Polar model should consider the impact that anonymity-

enhancing measures could have on the usability of the system. Polar

should try to cater for high-sensitivity users but not at the expense of

low-sensitivity users. Polar should specifically aim to promote anonym-

ous Web browsing amongst low-sensitivity users. This will increase the

user base thus providing improved protection for high-sensitivity users.

It should be noted that efficiency and anonymity present a trade-off.

Improving both or finding a suitable balance, is a difficult task.

We believe that a peer-to-peer architecture is a suitable choice, able to

assist in achieving these objectives. The rest of this dissertation aims to

explore this statement by detailing and evaluating the Polar model.

First the connection anonymity framework is applied to Polar. This pro-

vides an initial feasibility study of Polar and simultaneously offers a preview

of succeeding chapters.

4.6 Applying the framework to Polar

The framework should assist in identifying relevant concerns of an anonym-

ising technology. This should allow for higher-level planning and analysis

before delving into the technical details.

The framework is thus applied to Polar. Items in the framework, depicted

in figure 3.1, are discussed next in a top to bottom order.
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4.6.1 Anonymity versus unlinkability

Polar prevents linking a Web request to the original sender. It thus offers

sender unlinkability. No attempt is made at anonymising the Web server.

Furthermore, although a Web server can trace a request back to a proxy

within the Polar network, it cannot make a claim about the source of the

request. All nodes participating in Polar are potential proxies in an anonym-

ous transaction. Thus, every Polar node can disassociate itself from a Web

request as it could claim that it only forwarded the request and did not issue

it. Reiter and Rubin [90] refer to this property as plausible deniability.

4.6.2 Application domain

Polar offers anonymous Web browsing. Web browsing is an interactive pull

medium: a Web request is followed by a Web response.

The latency requirements of Web browsing are considerably stricter than

for email. JAP [14] and Tor [37], both of which offer anonymous Web brows-

ing, even refer to their solutions as providing a real-time communication.

Whilst we do not fully agree with this, we do acknowledge that Polar’s com-

munication overhead should be minimal so as to provide the user with an

“acceptable” browsing experience. What users consider to be acceptable and

what not ultimately affect the usability properties of Polar.

Unfortunately, these performance metrics can only be measured effec-

tively in a live system. Polar’s peer-to-peer architecture means that the an-

onymity service is offered by an uncontrolled environment. There are many

unknowns that might affect the performance of the overall system. Such

unknowns include the number of users, the number of requests, the average

volume of requests and the Internet connection speeds of participants.

These issues apply equally well to Crowds. Polar attempts to improve on

the Crowds design by improving overall routing efficiency. This is achieved

through the use of a structured routing overlay which offers some advantages,

namely bounded number of routing hops as well as topology-aware routing.
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4.6.3 Threat model

An advantage of Polar is its highly distributive architecture. Large-scale

distributed systems can operate in multiple administrative domains making

compulsion attacks more difficult [88]. Systems that span multiple networks,

organisations, service providers and countries require an attacker to have in-

creasing technical authority over multiple networks. Thus, Polar’s “location

diversity” makes end-to-end traffic analysis attacks increasingly difficult.

Polar specifically aims to prevent identity exposure through traffic ana-

lysis performed over a single node. Polar does take a number of measures to

prevent this. More notably, Polar introduces the concept of a tail path as

well as a circular communication channel. A clear distinction is also made

between forwarded Web content and Polar control messages. These are in-

troduced in the following chapter.

A disadvantage of Polar is the fact that it is relatively easy to become an

active, internal attacker. Anybody can join the Polar network including ma-

licious users. This is an inherent disadvantage of a peer-to-peer architectures

compared to client/server models. This additionally opens the possibility

of colluding nodes. Powerful adversaries with such capabilities do indeed

threaten the anonymity efforts of Polar.

Whilst this is not a strength of the architecture, Polar does try to min-

imise the possibility and severity of such an attack. This is achieved by

incorporating some concepts related to Onion Routing.

Lastly, Polar achieves forward secrecy because each Web request is treated

individually. A previous Web request has no bearing on current or future

Web requests; this excludes any inference attacks as discussed by Brandi and

Oliver [17]. Such “behavioural” attacks are much harder to protect against.

Again, this is not the focus of this dissertation.

4.6.4 Anonymity strategy

Polar is a peer-to-peer network and hence employs a peer-to-peer routing

protocol. More specifically, Polar operates on a structured peer-to-peer over-

lay called Pastry [97]. Pastry path lengths are variable but also bounded by
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a maximum value. This results in a hybrid situation of variable and fixed

path lengths.

Similarly to Tor, Polar employs minimal obfuscation techniques. No

overly-obtrusive attempt is made at mixing Web request or responses. Mes-

sage delay and release strategies are not employed for the communication

channel.

The arguments for not using these techniques are similar to those offered

by the designers of Tor [37, 35]: the costs of employing such obfuscation tech-

niques outweigh their benefits. Either significant mixing techniques would

have to be implemented so as to adequately increase the degree of anonymity,

or none at all. A half-measure renders the system too vulnerable to traffic

analysis attacks [35], and a fully fledged mixing strategy, as employed by

Mixmaster [73] and Mixminion [29], imposes lengthy message delays.

Furthermore, Polar achieves anonymity through plausible deniability. It

is therefore no secret when a node issues a request, as long as it is not known

whether it issued the request.

4.7 Conclusion

This chapter introduced Polar and specifically covered Polar’s objectives.

The connection anonymity framework was applied to Polar, thereby provid-

ing the reader with an initial overview and analysis of our solution. Some

advantages and disadvantages of Polar where already identified. The rest of

this dissertation provides a more detailed discussion.

First, a number of structured routing overlays are considered. The most

suitable overlay is subsequently chosen for use in Polar.
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Chapter 5

Peer-to-peer Overlays

5.1 Introduction

A peer-to-peer network has numerous advantages and disadvantages com-

pared to more traditional client-server architectures. The trade-off between

these advantages and disadvantages is particularly relevant to privacy appli-

cations. Specifically, the notion of “ownership of a system” and the respective

trust implications differ considerably between the two architectures.

A peer-to-peer routing algorithm seems to be an obvious choice for a PET

based on Crowds – a crowd consists of a group of peers. However, a very

simple routing algorithm with highly variable path lengths is employed in the

original design of Crowds. Also, a central server for node discovery and key

distribution is required. Crowds is a network of peers but still suffers from

many of the trust issues typically related to client/server architectures. Polar

is an attempt to improve on this by employing a peer-to-peer architecture

that is fully distributed.

This chapter discusses peer-to-peer routing algorithms and their relevance

to Polar. More specifically, structured routing overlays are discussed. An

overview of some of the more well-known structured routing overlays is given

as well as a motivation for why Pastry was chosen for use in Polar.
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5.2 Peer-to-peer networks

Shirky [104] defines peer-to-peer as “a class of applications that take advan-

tage of resources – storage, cycles, content, human presence – available at the

edges of the Internet”. Although the notion of resource sharing is one of the

major motivations for peer-to-peer applications, the author believes that the

user’s level of participation as both user and provider is an important notion

that should be included in the definition. We therefore add to this defini-

tion by stating that peer-to-peer applications are distributed systems where

the majority of nodes are equal or at least similar in terms of capability and

responsibility.

A distinction is made between systems where the majority of nodes are

equal and systems where all nodes are equal. Both are commonly referred

to as peer-to-peer networks, however, only the latter is a fully decentralised

network.

Consider Crowds [90] which is referred to as a peer-to-peer network but

where centralised servers still coordinate amongst peers. Other examples

include some well-known file-sharing applications such as Napster and Kazaa

[113]. Although Napster uses peer-to-peer communication for file transfer,

locating a file is still centralised. Thus, core functionality of the network is

provided by a server and not by peers. In Kazaa’s case centralised servers

are used for a subset of non-core tasks such as bootstrapping and reputation

management.

Theotokis et. al. [6] classify Napster’s architecture as hybrid decentralised

and Kazaa as partially centralised. Invariably, Crowds would also not be

classified as fully decentralised because centralised servers are needed for node

discovery and key distribution.

This chapter only discusses fully decentralised peer-to-peer routing archi-

tectures.
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5.3 Unstructured and structured protocols

Whilst the level of decentralisation given by Theotokis et. al. [6] refers to the

capabilities of peers, a further distinction is made between different types of

peer-to-peer routing protocols. Protocols can be unstructured or structured

[113].

Gnutella is one of the more well-known peer-to-peer applications with an

unstructured routing overlay [113]. Queries are performed by broadcasting

to neighbouring nodes. This lookup mechanism generates large loads and is

not very scalable [113, 6].

Wang and Li [113] classify unstructured peer-to-peer routing protocols

such as Napster, Kazaa and Gnutella as first generation peer-to-peer ar-

chitectures. Structured peer-to-peer routing overlays are considered to be

second generation architectures.

Theotokis et. al. [6] give a definition of peer-to-peer networks which seems

more suitable for structured peer-to-peer networks, “peer-to-peer systems are

distributed systems consisting of interconnected nodes able to self-organise

into network topologies with the purpose of sharing resources such as con-

tent CPU cycles, storage and bandwidth, capable of adapting to failures and

accommodating transient populations of nodes while maintaining acceptable

connectivity and performance, without requiring the intermediation or sup-

port of a global centralised server or authority” [6].

The principal keyword in this definition is the word “topology”. Un-

structured protocols generally display little structure and rely on randomised

routing or broadcasts. Structured protocols, on the other hand, function ac-

cording to a well-defined and structured topology.

The routing employed by Crowds is based on a random decision. Crowds’

routing protocol is thus unstructured. Polar explores the viability of achiev-

ing anonymity on a fully decentralised network that utilises a structured

routing protocol.

The motivation for Polar’s use of a structured peer-to-peer routing pro-

tocol can be summarised as follows: structured protocols offer the ability to

efficiently function, scale and self-organise in the presence of a highly tran-
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sient population without the need of a central server.

5.4 Structured overlays

A structured overlay is a routing protocol amongst peers that operates on

top of, and independently from, the underlying physical network. An overlay

exposes its routing functionality to one or more applications running on top.

The peer-to-peer network information of an overlay is soft state thus allowing

for efficient overlay construction and repair.

Nodes and queries are associated with an identifier and a key respec-

tively. Both identifier and key are unrelated to the underlying physical net-

work. Instead they map onto a nodeid space which is also referred to as the

logical peer-to-peer topology. Common topologies include mesh, ring and d-

dimension torus topologies [6], all of which facilitate distributed hash-table

techniques.

Queries are generally messages addressed to a key. The content of the

messages typically depend on the applications running on top of the routing

overlay. Given a key, an overlay is used to route the message to a node

responsible for the key. This overlay should be deterministic, scalable and

arrive at consistent results from any point in the network.

Five structured peer-to-peer overlays are considered. Chord [107], CAN

[87], Pastry [96], Plaxton [85] and Tapestry [119] are discussed next in that

order. A general understanding of the differences between each of the overlays

is beneficial but not essential in understanding the Polar model. The reader

should note some advantages and disadvantages of the discussed overlays.

This dissertation only requires a more thorough understanding of Pastry.

5.4.1 Chord

Chord provides a distributed lookup algorithm that, given a key, yields the

IP address of a node responsible for the key. Chord [107] is a variant of the

consistent hashing lookup routine [62]. The main difference between the two

is the following: 1) the routing table in Chord is distributed (i.e. each node
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Figure 5.1: Message routing in Chord

only keeps track of a portion of the whole network) and 2) Chord is able to

perform in a highly transient node population.

Chord’s nodeid space is a circular ring of size 2m where m is the identifier

length (in number of bits). Each node maintains a routing table with at

most m entries. Each entry i contains the IP address, port and the Chord

identifier of a node that succeeds the current node by at least 2i−1. Thus,

successor si for node n is thereby given by si = successor(n + 2i−1) where

1 ≤ i ≤ m.

Given a key, each Chord node queries its routing table to find that node

which has a nodeid closest to the key. This node is then notified of the

request for the corresponding key. This routine is performed iteratively until

the absolute closest node is reached. The request only travels in one direction

(clockwise) around Chord’s circular nodeid space. Chord’s circular nodeid

space is illustrated in figure 5.1. An example of how a request is routed from

a sending node to the respective responsible node, is also illustrated.

Some of Chord’s routing statistics are as follows: for network size N ,
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given by N ≤ 2m, one can deduce that each node has a routing table size

of O(log N). Similarly, queries are executed in O(log N) messages with an

average lookup of 1
2
log N [107].

When the Nth node joins the Chord ring it assumes responsibility for 1
N

th

of all keys. Each node also keeps track of its predecessor. When a new node

joins the network, its immediate predecessor is notified. This is repeated

for all subsequent predecessors thereby allowing routing state changes to be

updated iteratively in a counterclockwise direction.

Chord aims to achieve the following:

• Load Balancing: the hash function (SHA-1 [44, 39]) distributes the

load with high probability

• Decentralisation: through the use of a distributed hash function

• Scalability: routing table size and lookup cost grow logarithmically

• Availability: supports concurrent node joins and failures

As will be seen next, these objectives differ little to those of other struc-

tured peer-to-peer routing algorithms. However, Chord claims simplicity,

provable correctness and performance as its advantages [107].

5.4.2 CAN

The Content Addressable Network (CAN) [87] is another protocol that adds

fault-tolerance and self-organising capabilities to an existing hash table tech-

nique.

CAN is a d-dimensional Cartesian coordinate space on a d-torus (i.e the

coordinate space wraps). The space is divided into d-dimensional blocks, also

known as zones. Each node is assigned a particular zone and is responsible

for all keys that are located in its zone. Nodes keep track of their neighbours

in the coordinate space. Requests for a particular key are performed by rout-

ing through intermediate CAN nodes whose zones cover the direct path (in

the coordinate space) from the requesting node to the CAN node whose zone
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contains the key. Path length is given by d
N

1
d for perfectly partitioned coor-

dinate spaces where N is the number of nodes in the network [87]. Average

routing path length is d
4
N

1
d . In order to get the same logarithmic lookup

performance as Chord d has to be chosen such that d ≤ log 2N
2

.

The advantage with CAN is the fact that node additions are relatively

simple; an existing node splits its zone and shares one half with the joining

node. Only O(2d) other nodes (all neighbours) have to be notified. Thus,

CAN suits highly dynamic environments such as sensor networks.

A disadvantage is the node deletion procedure. Node deletion results in

another node assuming responsibility for the orphaned zone. Two or more

zones can be held by one node, thus affecting the load distribution of the

network. A background zone-re-assignment process is required to periodically

reallocate multiple zones.

5.4.3 Pastry

Pastry [96, 97] is another wide-area peer-to-peer routing protocol. It offers

application level routing, decentralised control, self-organisation, fault repair

and efficient routing for a scalable and dynamic network.

Because of its relevance to Polar, a more detailed description of Pastry is

presented.

Introduction

Pastry as well as Plaxton and Tapestry (discussed next) are prefix-based

location and routing protocols. They bear some resemblance to Classless

Inter-Domain Routing [47] – addresses are evaluated from left to right (or

right to left) in order to find the largest common prefix (or suffix).

Whereas IP addresses are organised into a hierarchical structure, ad-

dresses in Pastry indicate a position within a circular node identifier space.

Nodeids are 128-bit incremental identifiers of base b, where b is some global

parameter. Nodeids wrap from the maximum value 2128 − 1 back to 0 thus

completing the circle. Each node is assigned a single nodeid.
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Each message is routed towards a key. Keys map onto the circular nodeid

space. Given a key, Pastry routes the message to the node whose identifier

is numerically closest to the key. Depending on the intended application

of Pastry, a respective response can then be sent to the original requester

(indicated by the dashed line).

Pastry nodes maintain partial routing state tables. This often requires

multiple intermediate hops before the final node is reached. Pastry’s routing

algorithm converges; Pastry will always route a key to a node whose nodeid

is closer to key the than the current node’s nodeid. This allows Pastry to

have a bounded number of routing hops and guarantees message delivery.

The discussion on Pastry routing is split into three parts. First the basic

routing is presented, followed by a discussion on route locality and topology-

aware routing and finally, an analysis of Pastry’s self-organising and fault-

repair capabilities is presented.

Routing

Routing tables consists of log2b N rows with 2b − 1 entries each. A typical

value for the global constant b is 4. The total number of nodes in the network

is given by N . The nth row contains pointers to nodes that share a common

prefix of length n. Each entry in that row has one of the b2 − 1 other values

for the (n + 1)th digit. A node forwards a request to an entry in its routing

table that shares the longest matching prefix with the given key. Similar

lookup and forwarding is performed by the next and all following nodes until

the overall numerically closest node is reached.

To illustrate, a routing table for a 24-bit nodeid space of base 4 is con-

sidered. An example of such a routing table is given in table 5.1 for a node

with a nodeid of 311213010232.

Note that in table 5.1 not all routing table entries are populated. Appro-

priate nodes might not exist or might not yet have been discovered.

Note that the illustrated routing table has log2b N = log22 412 = 12 rows

and 2b − 1 = 3 columns. Although four columns are shown, each row has an

entry for the local node’s identifier thus only three entries per row need to
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0 1 2 3
1 –030102302100 –132121301021 –232021301021 311213010232
2 3–02020301010 311213010232 3–20231130102 3–31313003102
3 31–0320102302 311213010232 31–2101102013 31–3222312010
4 311–023111022 311–120100203 311213010232 311–
5 3112–01220110 311213010232 3112–20123130 3112–31323130
6 31121–0231010 31121–1133233 31121–2312001 311213010232
7 311213010232 311213–130111 311213–212311 311213–331021
8 3112130– 311213010232 3112130–21020 3112130–3023
9 311213010232 31121301–3201 31121301–2012 31121301–3121
10 311213010–032 311213010– 311213010232 311213010–330
11 3112130102–01 3112130102–13 3112130102– 311213010232
12 31121301023–0 31121301023–1 311213010232 31121301023–3

Table 5.1: Example of a Pastry routing table

Key Next hop Prefix length Table entry
1 112032132121 → –132121301021 1 T1,1

2 310230321120 → 31–3222312010 3 T3,3

3 311213203122 → 311213–212311 7 T7,2

4 311213010231 → 31121301023–1 12 T12,1

5 311213010232 → 311213010232 12 –

Table 5.2: Routing table lookup example for table 5.1

be stored.

Pastry will always route a key to an entry in the routing table with the

longest matching prefix. Some routing examples are given in table 5.2. By

analysing the examples given it should be clear how Pastry’s node lookup

and routing is performed. Note that examples one to three require at least

one intermediate hop.

Figure 5.2 illustrates a typical path that a request takes through the

network. The figure shows how three intermediate hops are required before

reaching the final node. It also illustrates how the algorithm converges – each

successive intermediate hop is numerically closer to the final node.

The figure also indicates a possible return-path for the response. The

initiating node could embed its network address in the Pastry message, thus

allowing the final node to contact it directly. This return-path is less feasible
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Figure 5.2: Message routing in Pastry

for Polar because this leads to identity exposure of the original requester.

Our solution is presented in the next chapter.

To summarise: Pastry’s routing algorithm is suitable for large-scale net-

works, it has a bounded number of routing hops (log2b N) that increases

logarithmically with the size of the network (i.e. its time complexity is given

by O(log N)). Also, routing tables are comparatively small with at most

(log2b N)× (2b − 1) entries.

Route locality

Not only does Pastry have a bounded number of routing steps but it also

considers network proximity. A scalar proximity metric such as the number of

routing hops or the response time is taken into consideration when populating

or maintaining its routing tables. A Pastry node uses the metric to compare

the newly discovered node with the respective entry in its routing table. The

existing entry is replaced if the new node is closer.

To assist in finding nearby nodes, Pastry maintains a neighbourhood set

M . This is a list of usually 2 × 2b of the closest Pastry nodes according to
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the proximity metric. It is not used for routing but only for updating the

routing table entries.

Over time Pastry requests maps out routes through the network which

minimise the actual distance or time taken for the request. This gives Pastry

a significant advantage over Chord or CAN. Route locality is also commonly

referred to as topology-aware or proximity-based routing.

Self-organisation, fault tolerance and repair

The procedure of joining the network is similar to other structured overlays.

At least one live node has to be known beforehand. This node acts as the

bootstrap node. The joining node notifies the bootstrap node that is wishes

to join the network. The bootstrap node proceeds to route the message via

the network to the joining node. Other nodes along the route can thus learn

of the new nodes’ presence. All nodes that forward the “join” message share

their state tables with the joining node, thus allowing the joining node to ini-

tialise its tables with appropriate values. Finally, the leaf set (discussed next)

is initialised and all neighbouring nodes (in the nodeid space) are notified of

the new node.

Pastry, unlike Freenet (discussed in section 2.5.4), guarantees message

delivery even in a highly transient node population. Each node is required

to acknowledge receipt of a message. Failure to do so results in the previous

node rerouting the message. Fault repair is performed lazily (i.e. a failed

forwarding attempt results in the respective node pointer being removed

from the routing table).

The maintenance protocol minimises failed routing attempts. The main-

tenance protocol runs on each node and ensures that all state tables are up

to date. This is achieved though periodic keep-alive packets that verify the

liveliness of referenced nodes. Failure to respond to a keep-alive message

results in Pastry requesting nearby nodes for a suitable replacement.

Each node maintains a leaf set L (with typical size of 16 or 32) which

keeps track of the neighbouring nodes in the nodeid space. Responsibility

for a key or set of keys can be distributed across the leaf set. This ensures
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that object location is guaranteed unless |L| nodes fail simultaneously. The

likelihood of all |L| nodes failing simultaneously is highly unlikely. PAST [96],

for example, is a peer-to-peer storage facility that uses Pastry and replicates

objects across the leaf set.

Conclusion

Pastry is used by other systems, more notably, a group communication and

event notification facility called Scribe [18], a decentralised Web cache called

Squirrel [61] and as mentioned before PAST [96], an archival and storage

facility.

Similarly, Polar intends to use Pastry’s node discovery and node main-

tenance mechanisms. Chapter 6 considers the suitability of a Pastry-like

routing and location overlay for an anonymity service.

To summarise, Pastry was chosen because of its capability to self-organise

a highly dynamic, fully distributed network. Pastry additionally offers a

bounded number of routing hops, utilises proximity-based routing and guar-

antees object location.

5.4.4 Plaxton and Tapestry

The last structured overlays presented here are Plaxton [85] and Tapestry

[119]. Both are prefix-based routing protocols. Tapestry in particular bears

significant resemblance to Pastry. Tapestry has its roots in the Plaxton loca-

tion and routing protocol but adds fault tolerance, fault repair and topology-

aware routing. Plaxton, on the other hand, assumes a static data structure

and does not support node insertions or deletions.

The main difference between Tapestry and Pastry lies in the way that

object location and replication is achieved. When an object is published

in Tapestry an object/server mapping is stored at each hop between the

publisher and the server. Subsequent requests are forwarded to the server

directly if such an object/server mapping is encountered. Replication occurs

at these intermediate nodes unlike Pastry where objects are replicated close

to the final node.
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Polar has no need for replication. Smaller routing tables such as the

Pastry routing tables would be more beneficial. There is thus little reason

to choose Tapestry above Pastry.

A further consideration swaying our decision to choose Pastry, is due to

the fact that an open-source implementation of Pastry exists. The implemen-

tation is called FreePastry [94] and is covered briefly in the implementation

chapter (chapter 7).

5.5 Conclusion

Polar aims to be fully distributed and hence a structured peer-to-peer overlay

was chosen. The overlay should facilitate the organisation of and the routing

amongst nodes.

This chapter considered different peer-to-peer routing protocols. The

superiority of structured routing overlays over unstructured routing overlays

was noted. Four structured peer-to-peer routing protocols were discussed

in more depth namely: Chord, CAN, Tapestry and Pastry. Our analysis

identified Pastry as a suitable protocol for use in Polar.
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Chapter 6

The Polar model

6.1 Introduction

At this point the reader should have a good understanding of the current

state of anonymising technologies, the problems Polar wishes to address, and

perhaps an idea of how it aims to achieve its objectives. What remains is to

give a detailed description and analysis of Polar.

This chapter details the Polar model. Some concepts specific to Polar

are introduced. We motivate our design choices and provide an in-depth

functional analysis. Measures are presented that aim to improve Polar’s

level of anonymity. How anonymity is upheld under certain attack scenarios

is also discussed.

Chapter 7 delves into more detail and covers our implementation of Polar.

6.2 Objectives

The reader is reminded of Polar’s objectives: Polar wishes to be fully dis-

tributed, offer adequate levels of anonymity and enable users to browse the

Internet anonymously without overly complex mixing techniques.

Polar should function as a proxy between a Web client and a Web server.

The Hypertext Transfer Protocol (HTTP), which is most commonly used to

request and transfer Web content, should be supported. This includes the
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currently active versions of HTTP: version 1.0 [13] and 1.1 [43].

Pastry is the overlay of choice that will enable Polar to operate as a

fully distributed system. This should allow Polar to harness the advantages

of a peer-to-peer architecture. Polar should, however, also try to minimise

disadvantages of such an architecture (compared to client/server models).

6.3 Assumptions

Some assumptions were made during the design of Polar.

For Polar to function efficiently a fully connected network is assumed.

This would require all participating nodes and their respective Internet gate-

ways or firewalls to allow both inbound and outbound Polar traffic. Nodes

that do not allow inbound traffic can not effectively participate in the Po-

lar network. A request originating from such a node would unconditionally

expose its identity: if it can not receive a forwarded request it means any

request originating from that node is its own.

Another assumption is that it is difficult, if not impossible, for an ad-

versary to monitor all (or even the majority of nodes) in a Polar network.

The likelihood of a global observer is considered negligible. Such an observer

would cripple the anonymity efforts of Polar as traffic analysis on all nodes

would invariably expose the identity of the original requester. We believe

this assumption is not unrealistic on condition that the Polar network spans

multiple networks, administrative domains, ISPs and countries. Location

diversity is thus required.

This assumption is not unique to Polar. Many anonymising technologies,

including Crowds [90] and Tarzan [45], also make this assumption. The

reader is referred to section 3.4.3 where this requirement was first discussed.

A foreseeable practical problem of location diversity is the adoption of

Polar during its initial phases, when few nodes have joined the network. The

size and diversity of the network might not be as high as desired. We hope

that the general popularity of peer-to-peer networks amongst Internet users

will promote rapid adoption, thus also increasing node diversity.

On an academic level, we first wish to prove the viability of the Polar
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model assuming a widely deployed network. The practical concerns of de-

ploying and promoting Polar are only mentioned here briefly and are left as

future objectives.

Next, some terminology specific to Polar is introduced. This terminology

is used throughout this and the next chapter.

6.4 The Polar architecture

Polar operates a fully distributed peer-to-peer architecture and hence con-

sists of a network of identical nodes. Note that the objective of being fully

distributed is one of our design challenges; the use of Pastry for the overlay

is a design choice.

The configuration of external and internal participants of Polar relates to

that of Crowds. Each node should act as an intermediary between a Web

content requester, the Polar network and the Internet (multiple Web servers).

A Polar node should never act as a single proxy but should always redirect

client requests via other Polar proxies. Collaboration amongst nodes is thus

required.

Because of their integral role, the following external participants of a

Polar communication are considered:

• clients

• Web servers

Clients request Web content. A client would most commonly be a Web

browser, but can be any application that is able to communicate via TCP

using the HTTP protocol [13, 43]. No configuration is required by the client

or the Web servers, except that the client redirect the Web requests to a

Polar node instead of directly to the Web server.

Web servers participate passively; they merely respond to Web requests.

Polar nodes are internal participants of the architecture.
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6.4.1 Roles

All Polar nodes are identical, and therefore, one can not differentiate between

different functional entities. One can, however, differentiate between differ-

ent roles assumed by nodes during an anonymous communication. Crowds

distinguishes between the initiating node, the final node and intermediate

proxies [90] (note that Reiter and Rubin [90] use alternate terminology but

the meaning does not differ). We adopt these roles and add a further one: the

dummy start node. This term is our own and is introduced later in section

6.6.2.

The first three roles are required because Polar, similarly to Crowds, at-

tempts anonymity by plausible deniability. No single node assumes respon-

sibility for a request. Instead, responsibility is deferred to the whole crowd.

The initiating nodes accepts requests from the client and initiates the setup

of an anonymous communication. The serving node is the last node in the

anonymous communication and deals directly with the Web server; it func-

tions as a gateway to the Internet. A chain of intermediate proxies link the

initiating node and the serving node and simply relay data back and forth.

The identity of the serving node is no secret as it merely acts on behalf

of the Polar network. Web servers should be aware of this. Any attempt at

tracking or profiling serving nodes will prove futile. Web behaviour displayed

by the serving node is not indicative of that node’s true behaviour. This

concept of a “delegation of responsibility” is nothing new as it is common to

all proxy-related anonymity technologies.

The following roles a Polar node can assume, are suggested:

• initiating node

• serving node

• intermediate proxy

• dummy start node

Detailed functions of each role should become apparent as specifics of the

Polar model are detailed.
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6.4.2 Communication in Polar

Polar’s use of a routing overlay already implies a clear separation between

routing and other functionality. After all, routing overlays expose routing

functionality to other applications. One would thus have to consider how

closely integrated Polar’s anonymity efforts are with the routing performed

by Pastry.

The previous chapter discusses how routing overlays use messages to com-

municate with other nodes. Similarly for Pastry, control messages co-ordinate

routing state amongst nodes while data messages distribute application-data.

Polar aims to anonymise Web content; however, HTTP applications typ-

ically treat the transferred content as a stream of data and not as individual

messages [13, 43]. It would therefore make sense to distinguish between a

communication channel (where content is treated as a stream of data) and

Pastry messages.

Channels

TCP/IP (Transmission Control Protocol over the Internet Protocol) is an

obvious choice as a transfer medium between nodes; TCP provides stream-

based communication and HTTP is generally transferred via TCP/IP.

It would therefore make sense to link the TCP connections in such a

manner that a TCP/IP tunnel is established from the initiating node to

the serving node. In fact, the tunnel starts at the Web client, traverses all

participating nodes and passes through to the Web server. This tunnel is

referred to as a channel. The channel is thus a logical term for a chain of

TCP/IP connections between Polar nodes.

A channel would typically be used to transfer the Web request in one

direction and return the Web response in the other. However, a significant

contribution of the work presented here is the clear segregation of a Web

request and its response. We believe it makes sense to treat the request as a

message and the response as a data stream.
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Web requests and responses

It was mentioned how HTTP content is often transferred as a stream of

data. Whilst this is true, it should also be noted that HTTP [13, 43] is a

request/response protocol: a Web response is only issued on receipt of a Web

request. The request traverses the channel in one direction and the response

is returned in the opposite.

HTTP/1.1 [13, 43] differentiates between eight different types of requests.

Particular attention is drawn to the GET, POST and PUT requests. This

differentiation is important because it gives an indication of the size of the

request. GET requests are most common and typically small in size. Only

the URL is passed in the request (besides some possible other header fields).

A POST message is used to submit additional HTML form data. One can

generally expect POST requests to be somewhat larger than GET requests.

Nevertheless, Web requests are generally relatively small compared to the

average Web response. This holds true for all Web requests except for the

PUT request; the PUT request uploads a potentially large resource.

Although both HTTP RFCs [13, 43] do not enforce any rigid size cate-

gories, the intended use of each type implies a certain size expectation. Web

responses are expected to be considerably larger than Web requests (with the

exception of some PUT requests). This should be obvious when considering

that Web servers host requested content.

Two reasons necessitate an interest in HTTP request types. Firstly, we

wish to prove that a Web request and not necessarily a Web response could

expose the identity of a Polar Web surfer. It will be shown how Polar in-

troduces an anonymity-improving technique that prevents the Web response

from exposing the identity of the original requester. Secondly, if the first

reason holds, then one should attempt to protect the user’s Web request.

We believe that the use of message-based communication is useful if the

message content is small. Returning large Web responses as messages, instead

of via a stream, is less practical. One should ascertain whether the same holds

for smaller Web requests. Perhaps one should reconsider the assumption that

HTTP communication in Polar should be fully stream-based? Our proposed
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solution is presented later in this chapter.

Messages

The Pastry overlay uses messages to transfer small amounts of data from one

node to another.

A distinction is made between two types of Pastry messages. The first

type, a control message, is used internally by Pastry to communicate the

routing state of the peer-to-peer network amongst nodes. Control messages

are instrumental during node discovery and node maintenance. The second

type of message transfers application data. In Polar’s case, the second type

of message could assist in establishing a communication channel. They are

thus referred to as channel setup messages.

How channel setup messages are used and how they are related to Web

requests is discussed in the functional analysis which is presented after the

requisite terminology has been introduced. Terminology, relating to the types

of communication in Polar, is summarised by the following list:

• channels – transfer Web requests and Web responses

• control messages

• channel setup messages

Clearly differentiating between the three types of communication will play

an increasingly important role as Polar’s anonymity capabilities are explored.

6.4.3 Proxy and routing layer

The last Polar-specific terminology is the proxy and the routing layer. A

clear separation between routing and channel setup is advisable; a functional

routing protocol is required in order to distribute messages and establish an

anonymous communication channel. We therefore propose delegating Polar’s

routing and channel setup functionality into two layers:

• proxy layer
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• routing layer

The proxy layer should operate above the routing layer because it depends

on the routing layer’s capability of distributing messages. The routing layer,

on the other hand, operates independently from the proxy layer. The proxy

layer establishes an anonymous communication channel between a client and

a server via a number of Polar proxies.

The main functionality of the routing layer is node discovery, route se-

lection and the distribution of application data via messages. Channel setup

messages are used to inform other nodes of requests or changes in the proxy

layer. Pastry was chosen as the routing protocol and is responsible for ser-

vicing the routing layer.

6.5 Functional overview

Now that the requisite terminology has been defined, functional processes of

the Polar model can be considered. This is done by analysing the required

steps in setting up an anonymous communication channel.

A user wishing to browse anonymously should configure his client to redi-

rect his Web requests to a local Polar node and not directly to the Web server.

As far as the user is concerned, Polar should simply be considered as a dis-

tributed proxy. Any routing and channel setup details should be hidden from

the user’s Web client.

Local nodes

Although the initiating node could potentially run on a remote machine, it

makes sense to have a local instance. Client requests to a remote node would

expose that particular request as the original request. Consider the scenario

whereby requests originate from a machine, but the machine does not accept

requests itself – either because no Polar node is running on that machine or

because inbound traffic is being blocked. This would imply that all requests

originating from that machine are original and not redirected requests.
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Incidentally, this feature makes leeching unattractive. Leeching refers to

the process of deriving benefit from services offered by a peer-to-peer network

without having actively participated in the network. Successful participation

in the Polar network requires a fully functional local Polar node. We hope

this feature will increase Polar’s user base as users are required to join in

order to benefit from the service offered.

Channel setup

Channel setup is initiated by the initiating node. The following questions

remain: how does the initiating node choose an intermediate node, how do

intermediate nodes choose each other and how do nodes know when to assign

a serving node?

Our initial paper on Polar [111] argues that channel setup messages be

routed using the Pastry overlay. Loose routing is performed as each node

determines the next routing hop. Emphasis is placed on improving routing

efficiency by employing a protocol with a bounded number of routing hops.

However, subsequent research identified numerous implications that such a

loose routing approach has on anonymity. Re-evaluating the advantages and

disadvantages of loose versus source routing was thus required.

Two options were considered. The first is loose routing similar to that of

Crowds: forwarding is a random decision based on some global parameter α.

Onion Routing [54, 110] presented the second option: the initiating node uses

an Onion to establish a bi-directional channel passing through a preselected

sequence of nodes.

Tarzan [45] already explores the combination of Onion Routing over a

structured peer-to-peer overlay. However, a number of notable differences

exist between Tarzan and our proposed solution. Polar’s differential treat-

ment of Web requests and responses presents the first deviation. In addition,

our revised solution employs a hybrid technique: an Onion is used to transfer

the Web request and simultaneously create a uni-directional channel for the

Web response. The Polar Onion is detailed later in this chapter.

It is also noted that unlike Onion Routing, Polar aims to hide the initiat-
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ing node amongst peers; the original Onion Routing design clearly differen-

tiates between Onion Routing servers and anonymity seekers. In Polar (and

Tarzan), these two roles are combined.

The rest of this chapter is organised as follows. Improvements to Polar’s

original channel setup are first considered. Moreover, the concepts of a sym-

metric communication and a communication tail are introduced. We briefly

explore the problems of Polar’s initial loose routing approach and continue

to describe the revised channel setup. Finally, Polar is evaluated in light of

a number of attacks.

6.6 Improving anonymity

Adversaries can often infer a significant amount of information leading to

possible, or even probable, identity exposure. Polar should thus aim to im-

prove the degree of anonymity.

6.6.1 Symmetric communications

Danezis [27] introduces the concept of entropy in his design of a mix network.

He equates entropy, the measure of disorder of a system, to the achievable

degree of anonymity of a system. This makes sense in a mix technology where

the aim is to create disorder for the purpose hiding information.

We believe this is an important concept in anonymity research, however,

our notion of symmetry also plays an important role. The term symmetry

is used informally elsewhere [45]. We are not aware of any research that

considers the relation of entropy and symmetry.

Anonymity is achieved by hiding identifying information. We believe this

can be accomplished by increasing entropy or symmetry. Entropy seeks disor-

der to hide identifiable information amongst “noise”. Symmetry seeks order

and equality to hide identifiable information amongst similar information.

Communication symmetry is here defined as the inability to infer iden-

tifying information by making the communication patterns of the original

requester appear no different to that of other participating nodes. Traffic
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patterns include network connections and data transfer.

Crowds, for example, violates the symmetry property as the initiating

node displays different traffic patterns to nodes that simply forward the re-

quest. Consider an adversary that is capable of monitoring inbound and

outbound traffic of a single node. In the original Crowds design, the initiat-

ing node only has one outbound connection. All other nodes have two: one

inbound connection from the preceding node and one outbound connection to

the succeeding node. As illustrated in figure 6.1(a), node A is the only node

without an inbound connection. An adversary that observes an outbound

Web request without a prior inbound request (as for node A) could safely

deduce that this node is the original requester. This is a serious shortcoming

of Crowds and henceforth we intend to improve on this.

It should be noted that Crowds encrypts the Web request. Therefore, an

adversary would still have to determine which request was issued to success-

fully infringe on an individual’s privacy.

However, in Crowds, the Web request is visible to each intermediate hop.

In related technologies, such as mCrowds [22], Tarzan [45] and Polar [111], the

Web request is only visible to the initiating as well as the final node. Invasion

of privacy is thus possible if the final node is corrupt and the initiating node

has been identified.

Polar attempts anonymity by plausible deniability. Each node seeks to

refute the fact that it issued the request – whether the actual Web request is

known or not. Thus, if the initiating node is able to effectively hide amongst

its peers, even though the Web request has been compromised, then a better

degree of anonymity is offered.

Symmetry is thus an additional mechanism that could assist in offering

better levels of anonymity. We believe the notion of symmetry should play

an important role in connection anonymity.

Communication symmetry prevents identity exposure through traffic an-

alysis performed on a single machine. We note that symmetry is effective

against attackers with a partial view of the system. A global observer could

still use timing attacks to expose the original requester amongst a set of

seemingly symmetric nodes. We already assume the likelihood of a global
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Figure 6.1: Towards symmetric communications
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observer to be infeasible. The question thus remains: how can Polar achieve

communication symmetry?

6.6.2 Communications tail

Polar attempts communication symmetry by requiring the initiating node to

not only construct a channel to the serving node, but also to some previous

node. This node is referred to as the dummy start node. Polar should not

necessarily route directly to the dummy start node but could do so over a

number of hops.

The channel to the dummy start node is illustrated in figure 6.1(b) by

the dashed line from node A to node F via nodes H and G. This channel

is referred to as the tail path. The channel from the initiating node to the

serving node is referred to as the forward path.

The arrows in figure 6.1 indicate the source and destination of a TCP

connection (e.g. in figure 6.1(a) node A connects to node B). Note that this

differs to figure 6.1(b) where node B establishes the connection back to node

A. The choice of connecting to the preceding or succeeding node is trivial as

long as communication symmetry is achieved.

Incidentally, arrows in the second figure also indicate the direction of the

returned Web response. The serving node submits the request to the Web

server and relays the Web response back through the channel to the dummy

start node. Any intermediate node could potentially be the initiating node.

One question remains: how does the initiating node communicate the

Web request to the serving node? The initiating node can not send the re-

quest via the forward and the tail path as this violates the symmetry property

and reveals the initiating node.

The proposed solution to this problem is two-fold. Firstly, channel setup

messages should be readable by the two communicating nodes only. Encryp-

tion of messages is thus required. Secondly, the request should be communi-

cated via channel setup messages and not through a channel.

Message-based communication could be used for the request whilst stream-

based communication should be used for the response. We wish to show that
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if a tail is present then the returned response can not expose the identity of

the initiating node. Thus, only the Web request needs to be protected.

The proposed channel setup is detailed first followed by a discussion on

how channel setup messages can be obfuscated.

6.6.3 Illustrated by example

To illustrate the proposed channel setup, one could consider the traffic pat-

terns of the nodes from figure 6.1(b). Table 6.1 lists the chronological order

of sent channel setup messages (Msg), successful channel connections (Chl),

the submitted Web request (Req) and the respective server response (Rsp).

The arrows indicate data flow between the source and the destination node.

Note that TCP connections, used during a channel setup, need to be

established before data transfer is possible. A TCP connection is established

with another machine using a three-way handshake [93]. A machine either

initiates or accepts a connection. A connection attempt is observable by any

entity capable of monitoring network traffic at or in between either end of

the connection.

The setup of the tail and the forward channel can be done in parallel; with

the only restriction being that the times tT1 , tT2 , tT3 ≤ tFi for 1 ≤ i ≤ 12 (refer

to table 6.1). At time tT1 a message is sent from the initiating node (node A)

to node H, notifying it of a new channel setup. At time tT2 a TCP connection

is made from node A to node H commencing the tail setup. Note that the

tail node does not know if this is the initiating node or simply another tail

node. The tail setup process is repeated for the tail nodes G and F .

Once the initiating node has established its tail connection (with node

H), it pretends it is a node on the forward path and initiates a channel

to the serving node. This process is detailed at times tF1 and tF2 . Using a

channel setup message, node A notifies node B that a forward path should be

created. This channel setup message additionally contains the Web request.

Node B connects back to node A at time tF2 . Node B repeats this forward

path setup, and subsequently, so do nodes C, D and E.

Each node links the inbound and outbound TCP/IP connection thus
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forming a channel from the dummy start node to the serving node. The

serving node is the only node that forwards the Web request to the Web

server (time tF11). The response is relayed back to the dummy start node

from time tF12 to tF19.

6.6.4 Analysis

The process of establishing a forward channel is similar to that of the tail

channel. The only significant exception is the fact that on the forward chan-

nel a connection is established from the notified node back to the requesting

node (compare times tT2 and tF2 ). This allows the initiating node to blend

in with other forward nodes bringing us one step closer to communication

symmetry.

Note that from an internal observer’s perspective: node H can not deduce

that node A is the original requester as node A could simply be a another tail

node. Similarly, node B does not know if node A is an intermediate proxy

or an initiator. Each node only knows the preceding and succeeding node.

Nodes H and B know of node A but should not know of each other. In fact,

nodes H and B have no means of telling which other nodes, beyond A, are

involved. How to best choose the preceding and succeeding nodes is covered

in the discussion on location diversity further on in this chapter.

The Web response is passed from the serving node right back to the

dummy start node. Any node along this path could potentially be the orig-

inal requester. Once a channel has been established one can at most deter-

mine which nodes are involved, but it is impossible to identify the original

requester. A Web response does not expose the original requester.

Identity exposure can thus only occur during a channel setup. This is

considered next.

6.6.5 Traffic patterns

Nodes located on the forward path display an outbound connection (to the

preceding node) followed by an inbound connection (from the succeeding

node). This is reversed for Tail nodes which display an inbound connection
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Time Forward path Time Tail path

tT1 A
Msg−−−−−→ H

tT2 A
Chl−−−−−→ H

tF1 A
Msg−−−−−→ B tT3 H

Msg−−−−−→ G

tF2 B
Chl−−−−−→ A tT4 H

Chl−−−−−→ G

tF3 B
Msg−−−−−→ C tT5 G

Msg−−−−−→ F

tF4 C
Chl−−−−−→ B tT6 G

Chl−−−−−→ F

tF5 C
Msg−−−−−→ D

tF6 D
Chl−−−−−→ C

tF7 D
Msg−−−−−→ E

tF8 E
Chl−−−−−→ D

tF9 E
Chl−−−−−→ D

tF10 E
Chl−−−−−→ ws

tF11 E
Req−−−−−→ ws

tF12 ws
Rsp−−−−−→ E

tF13 E
Rsp−−−−−→ D

tF14 D
Rsp−−−−−→ C

tF15 C
Rsp−−−−−→ B

tF16 B
Rsp−−−−−→ A

tF17 A
Rsp−−−−−→ H

tF18 H
Rsp−−−−−→ G

tF19 G
Rsp−−−−−→ F

Table 6.1: Channel setup for figure 6.1(b)

Abbreviation Description
Msg Channel setup message
Chl Channel setup by TCP/IP
Req Web request
Rsp Web response
ws Web server

Table 6.2: Description for table 6.1
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followed by an outbound connection. It seems communication symmetry has

not been fully achieved. However, it can be proven that an external observer

might at the very most deduce whether a node is located on the forward or

tail path but can not deduce whether a node is the initiating node or not;

this holds true for any traffic monitoring performed on a single Polar node.

Tables 6.3, 6.4 and 6.5 list the observable traffic of an initiating, for-

ward and tail node. Node labels of the requesting and notified nodes are

substituted by r and n respectively to simplify the comparison between ta-

bles. Note that for tail nodes the requesting node is closer to the serving

node whilst the notified node is closer to the dummy start node. This is the

opposite for forward nodes.

By analysing the traffic patterns one can observe how the traffic is not

symmetric across all three nodes. Each displays a different sequence of sent

messages (Msg) and channel connections (Chl). However, Polar requires the

initiating node to blend in with the Crowd. Clearly, this is currently not the

case.

6.6.6 Control Messages

Currently, the only difference between the initiating node and a forward node

is the fact that the initiating node requires two outbound messages (at time

tT1 and tF1 ). Forward nodes on the other hand have one inbound and one

outbound message. This identifies the initiating node and therefore deserves

further attention.

Channel setup messages differ little to Pastry’s network control messages

and hence we propose encrypting all message-based communication in Po-

lar. This would allow channel setup control messages to blend in with the

standard join and maintenance messages. An adversary should not be able

to identify whether an initiating node sent two channel setup control mes-

sages or whether only one or both of these control messages where join or

maintenance messages.

The reader is reminded of the discussion on HTTP Web request sizes.

Hiding channel setup messages, that contain the Web request, is only feasible
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Time Inbound Outbound

tT1 A
Msg−−−−−→ r

tT2 A
Chl−−−−−→ r

tF1 A
Msg−−−−−→ n

tF2 n
Chl−−−−−→ A

Table 6.3: Traffic patterns of initiating node A

Time Inbound Outbound

tF7 r
Msg−−−−−→ D

tF7 D
Chl−−−−−→ r

tF9 D
Msg−−−−−→ n

tF10 n
Chl−−−−−→ D

Table 6.4: Traffic patterns of node G on the forward channel

Time Inbound Outbound

tT4 r
Msg−−−−−→ G

tT5 r
Chl−−−−−→ G

tT7 G
Msg−−−−−→ n

tT8 G
Chl−−−−−→ n

Table 6.5: Traffic patterns of node D on the tail channel
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if the size of the channel setup message differs little to existing Pastry control

messages. It is assumed that GET requests, as well as restricted POST

requests, are small enough to satisfy this criteria. We believe this assumption

is realistic; modifying an implementation of Pastry, to control message sizes

in line with expected channel setup message sizes, should not be an obstacle.

It is additionally noted that the use of message slicing and padding is also a

viable possibility.

One could ask why similar obfuscation techniques could not be applied

to the anonymous communication channel. In other words: why not encrypt

the inbound and the outbound channel thereby complicating traffic analysis?

Would this not enable one to hide the inbound and outbound connection of

an initiating node amongst other connections also serviced by the initiating

node?

We argue that this solution is less feasible for lengthy data streams than

for control messages because of the following reasons:

1. The highly dynamic nature of Pastry’s peer-to-peer network means that

frequent keep-alive and network maintenance messages are required. It

is therefore assumed that control messages are plentiful and are sent

out periodically at unpredictable intervals. By making channel setup

control messages indistinguishable from other control messages, it can

be argued that an adversary’s efforts at identifying the initiating node

by observing Pastry messages are severely complicated if not infeasible.

Essentially, existing control messages achieve the same result as the use

of cover traffic (i.e. control messages obfuscate channel setup messages).

2. The number of channels serviced by any Polar node are less predictable.

Successfully hiding an initiating node’s inbound and outbound connec-

tion amongst other connections depends on the number of currently

active connections.

3. Control messages lend themselves to fixed message sizing because of

their limited size. Data streams on the other hand are less suitable

to message slicing and padding. Section 3.5.5 discussed the benefits
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Time Inbound Outbound

tT2 A
Chl−−−−−→ r

tF2 n
Chl−−−−−→ A

Table 6.6: Amended traffic patterns of initiating node A

Time Inbound Outbound

tF7 D
Chl−−−−−→ r

tF10 n
Chl−−−−−→ D

Table 6.7: Amended traffic patterns of node G on the forward channel

Time Inbound Outbound

tT5 n
Chl−−−−−→ G

tT8 G
Chl−−−−−→ r

Table 6.8: Amended traffic patterns of node D on the tail channel

and drawbacks of message slicing and padding for data streams. It

argued that the additional overhead and minimal benefit outweigh the

advantages.

Chapter 3 presents a number of mixing strategies. These included cryp-

tography, cover traffic and message slicing and padding. Research on our

framework observed how these obfuscation techniques were particularly use-

ful for message-based anonymity technologies, but become less practical as

data size and network latency requirements increase. For this reason Polar

employs these strategies only for its message-based communications.

Now that it has been argued that channel setup messages could be hidden

from an external observer, it is possible to revise the traffic patterns and omit

(or rather hide) the channel setup messages of tables 6.3 – 6.4. The revised

traffic is listed in tables 6.6, 6.7 and 6.8. Note how the traffic pattern of the

initiating node is identical to that of the forward node.

Therefore, from an external observer’s perspective, the initiator node

blends into the crowd as it appears indifferent (and hence symmetric) to
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any other participating forward node. An observer can thus only differen-

tiate between a forward and a tail node but can not identify the initiating

node. The tail path allows for the Web response back to (and past) the

initiating node without compromising its identity.

By encrypting and sizing control messages, we claim that traffic analysis

performed over a single node is not sufficient to identify a node as the initi-

ating node. From an external observer’s perspective, communications seems

symmetric across all participating forward or tail nodes. Polar thus offers a

significant advantage over Crowds.

6.7 Routing in Pastry

The focus thus far has been mainly on the channel configuration. Whilst

channel setup messages were covered, routing thereof was only briefly men-

tioned. We alluded to the possible use of Onion Routing. How an initiating

node chooses participating nodes and how an Onion could establish an ano-

nymous communication has not yet been detailed.

Our inceptive Polar paper [111] proposed a loose routing approach. Next

we argue against such an approach and subsequently introduce a Polar Onion

which facilitates source routing.

6.7.1 Convergent and bounded routing

Section 5.4.3 introduces Pastry and discusses the join, routing and main-

tenance protocols. To summarise briefly: Pastry is a prefix-based routing

algorithm. Identifiers indicate a position in a circular nodeid space. The

algorithm is guaranteed to converge [96]. A node closest to the key can be

found, although possibly via a number of routing hops. Pastry’s number of

routing hops is bounded to | log2b N | where N is the number of nodes in the

Pastry network and b is a global routing parameter.

From this summary two properties in particular should raise concerns: the

fact that routing is convergent and bounded. Both properties affect Polar’s

anonymity efforts and hence need to be addressed.
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Figure 6.2: Polar’s original channel configuration

The problem is briefly discussed. Let us assume that the serving and

dummy start node are at opposite ends of the Pastry ring and the initiating

node is located somewhere in between. The original Polar routing algorithm

would have resulted in a channel configuration similar to the one illustrated

in figure 6.2. The figure demonstrates how two channel setup messages are

routed to the keys 10021 and 30021. These keys indicate the location of the

serving and dummy start node.

Pastry nodes keep partial routing tables and hence routing is generally

achieved via intermediate nodes. In the best-case scenario, the specified

nodeid is found in the routing table. In this case, the message is delivered to

the destined node in only one hop. Consider the scenario where, in figure 6.2,

node A can route directly to node E and F . This results in only three nodes

maintaining an anonymous communication channel. This property is not

ideal as Polar requires a greater number of routing hops in order to increase

the anonymity set.

In the worst-case scenario it would take the initiating node A | log2b N |
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web
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Figure 6.3: Anonymity exposure through convergent routing

hops to route to the specified nodeid.

The fact that Polar’s algorithm is bounded also means that Polar’s for-

ward and tail path is bounded. Thus, the anonymity set decreases the further

an initiating node is from the target node.

Figure 6.3 is used to illustrate the problem. Let us assume that the

maximum number of routing hops is seven. It is also assumed that nodes are

sorted in alphabetical order meaning node C will always route to A or B and

never to nodes {D, E, . . . , Z}. A Web request by node A is compromised if:

1. the initiating node requires the maximum number of routing hops to

reach the target node (in the given example: seven hops to reach node

H)

2. the first hop knows how many nodes precede or succeed it (e.g. if node

B knows it is the second node of a sequence of eight)

This statement can be generalised. Let N be the total number of nodes in

the network and S(nT ,nI) = {n1, n2, . . . , nk} be the sorted sequence of nodes

located between some initiating node nI and some target node nT . If

|S(nT ,nI)| = k (6.1)

then the size of the anonymity set A(nT ,nI) is given by

|A(nT ,nI)| = N − k − 1 (6.2)

If node n1 claims it is not the initiating node, then the anonymity set

is the set of all nodes excluding those which lie between node n1 and node
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nT . Note that this holds if the routing algorithm converges (i.e. the request

is always routed towards the target node). Also note that the serving node

(node nT ) is excluded from the anonymity set.

The anonymity set decreases as k → N ; the more nodes numerically

closer to a target node the smaller the anonymity set.

Let us assume that there are no non-participating nodes in figure 6.3.

Therefore N = 8 and k = |B, C, D,E, F,G| = 6 and |S(H,A)| = 8− 6− 1 = 1

meaning that anonymity is compromised. Although this is a very crude

example for a minimal set of nodes, it does illustrate the problem.

These complications are not unique to Pastry. It can be shown that the

case is similar for Chord [107], CAN [87] and Tapestry [119] – these algorithm

also converge and are bounded.

6.7.2 Source routing

It was shown how bounded and convergent routing algorithms are unsuit-

able for attempting anonymity. Still, it would be desirable to harness the

efficiency and the self-organising capabilities of a peer-to-peer overlay. It

would therefore be advisable to fully separate node maintenance and chan-

nel setup.

Loose routing is appropriate for the routing layer; however, source routing

should be considered for the channel setup. Source routing gives the initiating

node increased control and allows for cryptographic techniques to assist in

securing a channel setup.

A well-known source routing protocol for anonymity is Onion Routing

[54, 110]. Onion Routing was detailed in the background chapter. It protects

against colluding nodes, the channel length is bounded thus reducing latency

and it is geared towards stream-based communication.

Onion Routing might at first glance appear to be an appropriate technol-

ogy for Polar’s anonymous Web browsing; however, Polar already differen-

tiates between message-based communication for Web requests and stream-

based communication for Web responses. Unlike Onion Routing, Polar has

a communication tail and operates amongst peers – it does not differentiate
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between Onion Routing servers and anonymity seekers. Polar thus requires

a revised Onion Routing algorithm.

We adopt the Onion Routing terminology and propose using a Polar

“Onion”. The Onion should distribute Web requests securely and should

establish a uni-directional stream of data for the Web Response.

6.8 Polar Onions

It is noted that the term “Onion” is generally reserved for Onion Routing

[54] and implies a messages wrapped in layers of encryption. Chaum [20] first

proposed the concept of a layered message for the purpose of achieving ano-

nymity. Chaum’s layered messages and Onions differ in the type of content

that is transferred. Onions do not carry the actual secret but rather assist in

establishing a channel via a sequence of nodes. The secret is communicated

via the channel. The Onion secures the channel by distributing forward and

backward symmetric keys amongst successive Onion Routers.

Our proposed solution uses an Onion to transfer the secret (the Web re-

quest) and establish a channel for the response. Strictly speaking, it does

not comply with the original definition given by Goldschlag et. al. [54]. How-

ever, the term “Onion Routing” has been commoditised to the extent that

numerous flavours exist [37, 45]; hence the terminology is used here as well.

Note that Polar Onions are embedded in channel setup messages, the terms

Onions and channel setup messages are thus used interchangeably.

The proposed channel setup, using Onions, is detailed next.

6.8.1 Channel construction

It is assumed each node has a suitable routing table from which it can select

participating nodes. This routing table is called the node map and is covered

later in this chapter.

For each node n the routing table maps the node’s network address An

and a public key Kn to the respective Pastry nodeid In. The routing table

entry for node n thus consists of the tuple (An, In, Kn).
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Upon receipt of a client Web request, the initiating node selects a random

sequence of nodes {n1, n2, . . . , nϕ}. The sequence contains one dummy start

node, one initiating node, one serving node and zero or more intermediate

nodes.

The sequence should thus consists of three or more nodes – a greater

number increases latency but also lessens the chance of a collusion attack.

The length of the channel is implementation-specific or alternatively can

be user-specified according to the desired strength of anonymity versus the

expected latency.

The first node of the sequence is the dummy start node whilst the last is

the serving node. The initiating node nI is inserted at any position except

first or last. A channel is therefore given by:

Schannel = {n1, n2, . . . , nI , . . . , nϕ} (6.3)

= {n1, . . . , nI−1} ∪ {nI} ∪ {nI+1, . . . , nϕ} (6.4)

= Stail ∪ {nI} ∪ Sforward (6.5)

The initiating node prepares two Onions: one for the tail path and one

for the forward path. The routing table is queried for the respective address

Ani
and public key Kni

for all ni ∈ Stail∪Sforward. The Onion is constructed

by successively encoding a secret with layers of encryption corresponding to

each node in the sequence of nodes. A layer is encoded using Kni
such that

only ni can decrypt it.

The secret, in our case, is the Web request (Req) and a symmetric en-

cryption key Kτ generated by the initiating node. The symmetric key is used

by the serving node to encrypt the response. A symmetric cipher should be

used because these are generally computationally less expensive than asym-

metric ciphers and are well suited for stream-based encryption. Note that

Polar treats the response as a data stream. The Onion for the forward path

is thus given by:

(KnI+1
(KnI+2

(. . . (Knϕ(Req, Kτ ), Anϕ), . . .), AnI+2
), AnI+1

) (6.6)
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The iterative process of constructing an Onion is detailed in steps (6.7),

(6.8) and (6.9). Step (6.7) shows an Onion with a single layer. The public

key of the last (and serving) node is used to encrypt the Web request (Req)

and the symmetric encryption key Kτ .

Knϕ(Req, Kτ ) (6.7)

Knϕ−1(Knϕ(Req, Kτ ), Anϕ) (6.8)

...

(KnI+1
(KnI+2

(. . . (Knϕ(Req, Kτ ), Anϕ), . . .), AnI+2
), AnI+1

) (6.9)

The second step (6.8) shows an Onion with a second layer. The public

key of the second-last node Anϕ−1 is used to encrypt the encoded message as

well as the address of the succeeding node (node Anϕ in this case). When

node Anϕ−1 unwraps its layer of the Onion it will retrieve a peeled Onion as

well as the address of the next hop.

Note that node Anϕ−1 does not know that it is the second-last node. It

should not be able to calculate its position from the size of the embedded

Onion. It does not know how many layers still need to be unwrapped to get

to the Web request. It does also not know the size of the Web request. Any

inference based on the size of the Onion is therefore infeasible except for very

small Onions.

Inference is only possible if the Onion only has one layer and if the Web

request is close to the minimum Web request size. This allows an adversary

to guess that it is unlikely for the Onion to have more than one layer. This

can easily be rectified by having the initiating node expand the size of the

Web request. This can be done by inserting unneeded HTTP header values

(by including fake user-agent or referrer [43] details for example). Also note

that even if a node can guess how many hops are still to come, it can not

infer how many hops have already been completed.

The process of recursively wrapping the Onion and the address of the

next node is repeated for all nodes on the forward path. A similar Onion is
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constructed for all nodes on the tail path (i.e for all n ∈ Stail). The Onion

for the tail path is given by:

(KnI−1
(KnI−2

(. . . (Kn2(An1)) . . .), AnI−2
), AnI−1

) (6.10)

Note that the Onion for the tail path does not have an embedded Web

request. This is not necessary. The tail merely allows for a Web response to

be returned to (and past) the initiating node without revealing its identity.

Pseudo-code for the Onion construction routine is detailed in algorithm

1 and 2.

Algorithm 1 Onion construction algorithm for the forward path

Require: Req, Kτ

1: nI ⇐ initiator
2: forward nodes ⇐ {nI+1, . . . , nϕ}
3: onion ⇐ (Req, Kτ )
4: for n ⇐ nϕ to nI+1 do
5: onion ⇐ Kn(onion), An

6: end for
7: send onion to nI+1

Algorithm 2 Onion construction algorithm for the tail path
1: nI ⇐ initiator
2: tail nodes ⇐ {n1, n2, . . . , nI−1}
3: onion ⇐ ()
4: for n ⇐ n1 to nI−1 do
5: onion ⇐ Kn(onion), An

6: end for
7: send onion to nI−1

Once both Onions have been constructed, they are passed to the first

node on the forward and tail path respectively. Each intermediate node can

only remove its respective layer from the Onion. Doing so reveals the network

address of, as well as the Onion for, the next hop.

The serving and the dummy start node remove the last layer. The serving

node additionally retrieves the embedded Web request. It determines which
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Web server this HTTP GET request is destined for, issues the request, en-

crypts the response using the received symmetric key and sends the response

back through the recently established communication channel. The response

then traverses the channel all the way back to the dummy start node.

The initiating node can be located at any position along the channel.

The initiating node accepts the response, decrypts it and passes it to the

requesting Web client.

6.8.2 Channel reconstruction

Polar channels are short-lived: a new channel is required for each Polar Web

request.

This differs to both Crowds [90] and Tarzan [45] where static channels

are used for multiple Web requests. These static channels pose a threat to

forward secrecy: once a channel’s initiating node has been revealed, all prior

communication could be compromised (assuming that adequate logging was

done). In Polar, only a single Web request would be compromised.

Reiter and Rubin [90] claim that collaborators are more likely to link

many distinct, dynamic channels to an original requester than one static

channel. They argue that distinct channels could be linked using related

channel content or timing of communication on channels. Whilst this is a

threat, we believe that a much more sophisticated attacker is required to

compromise and link (using inference) many distinct channels compared to

an attacker who only needs to compromise a single channel.

In addition, node joins and failures require all static channel in Crowds

to be rebuilt [90]. Crowds is thus very susceptible to denial-of-service attacks

– repeatedly joining and leaving the Crowd forces the whole network to re-

peatedly construct new channels. The highly dynamic nature of the Polar

network makes a similar approach infeasible.

In Tarzan [45], channels are long-lived because of the expensive channel

setup routine. Symmetric keys first need to be shared with all participating

nodes before the channel can be established. Only then can the Web request

be transmitted via the channel.
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Polar’s Channel setup is less expensive: the serving node receives the

Web request as the channel setup is completed. In fact, querying the Web

server and completing the channel setup occurs almost simultaneously.

This advantage of a Polar Onion is next listed together with a number of

other advantages.

6.8.3 Advantages of Polar Onions

The Polar Onion is used to establish a uni-directional channel from the serv-

ing node to the dummy start node. This differs to Onion Routing’s bi-

directional stream from the initiating node to the serving node.

Advantages offered by Polar Onions are two-fold: Polar Onions offer im-

provements over Crowds and the original Onion Routing protocol:

• Embedding the Web request inside the Polar Onion means the serving

node can immediately issue the Web request as soon as channel setup

has been completed. The serving node does not have to wait for the

request to traverse the recently established channel. This is the case

with the original Onion Routing protocol [54].

• Once a communication channel has been established, identity exposure

is no longer possible by tracing the returned Web response. The re-

sponse is sent past the initiating node to the dummy start node. An

adversary can at most determine which nodes participate in a channel

but can not infer which node originally issued the request.

• Polar is not susceptible to network edge analysis as the original Onion

Routing design. Onion Routing differentiates between Onion Routers

and clients. A compromised request immediately exposes the identity

of the client. Polar consists solely of peers. A peer can claim that it

merely forwarded the request but did not issue it.

• Onions prevent any number of corrupt nodes (except all) from compro-

mising the Web request. All participating nodes have to successfully
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unwrap an Onion before the Web request is revealed. This is par-

ticularly effective against collusion attacks. Also note that if a Web

request is compromised, it does not necessarily reveal the identity of

the initiating node.

• Encrypting the Web response provides a weak form of data anonymity.

Encryption complicates traffic analysis; if by some means the original

requester’s identity is indeed exposed, Polar still guarantees that the

request and response is concealed from all bar itself and the serving

node.

We believe that Onion Routing offers numerous advantages over other

loose routing protocols. It was furthermore shown how Polar offers numerous

improvements over the original Onion Routing protocol.

6.9 Node selection

Thus far it was assumed that each Pastry node has an appropriate rout-

ing table from which channel participants can be chosen. The process of

populating and maintaining such a routing table is detailed next.

Care should be taken to prevent adversaries from polluting routing tables

as this could increase the chance of a collusion attack. Possible collusion

attacks would thus have to be considered first before an appropriate node

selection process can be suggested.

6.9.1 Collusion attacks

It was shown how communication is symmetric across all nodes on the for-

ward channel; nodes on the forward channel display similar TCP connection

attempts.

However, traffic patterns still differ between nodes on the forward and

tail path. Consider an adversary capable of monitoring nodes located on

the forward and tail path. Identity exposure is at greatest risk when the
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first node on the tail and forward path, party to the same communication

channel, collude.

Onion Routing makes collusion attacks more difficult but not impossible.

Onion Routing allows the initiating node to choose the participants and

requires collusion of all nodes responsible for an Onion. Only once all nodes

have colluded is privacy compromised; the request and the original request

could be revealed.

We believe identity exposure in Polar is only possible if nodes collude.

One would therefore have to consider how these attacks could be performed

and how likely or successful these could be.

Timing attacks

Channel setup requests addressed to two nodes in quick succession could

indicate both nodes are party to the same communication channel. Note

that Polar does make an attempt at hiding channel setup messages amongst

Pastry control messages. This, however, only provides weak protection as

colluding nodes can share information regarding received and sent channel

setup messages. Channel setup messages contain Onions which are layered in

encryption and differ in size and content. Thus, the only useful information

would be receive and sent times.

Identifying whether two nodes participate in the same channel is therefore

possible by comparing channel setup times. The request is not revealed

because this requires collusion across all nodes. This attack is therefore less

successful at compromising the actual Web request but could be used to guess

if a node is an initiating node.

Message coding attacks

A somewhat more likely attack can be performed by analysing the returned

Web response. Note that Polar does encrypt the response using end-to-end

encryption. Comparing the byte-code of the response is therefore possible.

However, the response is sent through to the dummy start node. Any

node between the serving node and the dummy start node could potentially
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be the original requester. Traffic monitoring should therefore have occurred

during channel setup. Only during channel setup is it possible to distinguish

between forward and tail nodes. Identifying the original requester after a

channel has been completed is no longer possible.

Global observers

The greatest threat is posed if an adversary is capable of observing the major-

ity of nodes party to a communication. More specifically, identity exposure is

possible if the first tail and forward node as well as the serving node collude.

Note that this differs with Tarzan [45], mCrowds [22] and Onion Routing

[110] where collusion of only the first and last hop is required.

Polar is thus vulnerable to collusion attacks. However, an attempt is

made to minimise such attacks by adequate node selection. Node selection

is done by retrieving nodes from a routing table.

6.9.2 Routing tables

Pastry’s internal routing table is unsuitable for the purpose of selecting which

nodes participate in a channel. All nodes in the Pastry routing table share

a prefix of length l where 0 ≤ l ≤ log2b N . Using Pastry’s internal routing

table for node selection would make inference, based on the prefix of selected

nodeids, possible.

The proxy layer should therefore create and maintain an additional node

map. This map is geared towards improving anonymity through adequate

node selection.

Note that the Pastry routing table is still required. The proxy layer de-

pends on the routing layer for adequate node discovery and message routing.

In fact, the routing layer is queried for appropriate entries for the node map.

The routing table maps nodeids to their respective network address. The

node map, on the other hand, maps IP addresses of participating nodes to

their respective nodeid. The node map should additionally store the respec-

tive public key of a node.

There is at least one compelling reason to create an additional table that
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maps IP addresses instead of nodeids: Polar should aim to maximise location

diversity.

6.9.3 Location diversity

In section 3.4.3 it was discussed how location diversity plays an important

role in preventing collusion attacks. In other words, when constructing an

anonymous channel amongst nodes, the nodes should be chosen in such a

manner as to maximise the number of administrative domains traversed by

that channel.

The effectiveness of such an approach is based on the assumption that an

adversary can operate multiple corrupt Polar nodes, but that the IP addresses

thereof are rarely scattered throughout the IP address space. The adversary

would need to acquire or compromise a sufficient number of machines located

in differing administrative domains. However, an adversary is more likely to

operate a contiguous address space. This assumption is also made by Tarzan

[45] and MorphMix [92].

The IP address prefix gives a good (but not guaranteed) indication of

how diverse two IP addresses are. Two addresses which share a short prefix

are more likely to originate from different domains than two addresses which

share a long prefix. Feamster et. al. [42] propose a method whereby network

topology maps are used to model inter-domain routing. These are complex

and difficult to obtain or generate and hence, are less for suitable for Polar.

Comparing IP address prefixes is simpler, more practical and sufficiently

adequate for Polar.

6.9.4 Node map

Polar’s node map is related to Tarzan’s routing table [45]. In fact, we borrow

from Tarzan and use a hierarchical routing map that groups IP addresses into

a three-tier hierarchy: first amongst all known /16 subnets (this includes all

class A and B addresses) then amongst all /24 subnet and finally the complete

IP address. A sample node map is illustrated in figure 6.4.
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Figure 6.4: Polar’s node map

Each IP address in the node map represents a discovered Pastry node.

The entry maps the IP address to the node’s nodeid and public key. The node

map can be potentially large (however, a minimal amount of information is

stored). For a Polar network of N nodes, the node map will at most contain

N entries.

To construct an Onion with ϕ layers, ϕ different /16 addresses are ran-

domly selected from the first tier of the node map. If the node map is

populated with less than ϕ /16 addresses then multiple /24 addresses can be

selected.

The set of ϕ nodes now presents a random sequence of {In1 , In2 , . . . , Inϕ}
nodes. The initiating node can now be inserted at any position in the se-

quence except first or last.

The biggest threat is posed if the initiating node’s preceding and suc-

ceeding node and the serving node collude. The sequence should therefore

be reordered in such a manner that the Initiating, the preceding, succeeding

and the serving node have sufficiently distinct IP address prefixes. This can

be done by selecting three nodes from the sequence that share the shortest

matching prefix with each other, as well as with the initiating node. These
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three nodes are then selected as the preceding, succeeding and serving nodes.

6.9.5 Populating the node map

The Pastry overlay should be used to assists in locating appropriate entries

for the node map.

We propose that node discovery message be used to query remote nodes

for their network address and their public key. A solution by Andersson et.

al. [22, 5], titled mCrowds, proposes an enhancement to the original Crowds

protocol [90]. It is proposed that the Diffie-Hellman protocol [33] be used

to exchange public keys between nodes. A central authority, as employed by

Crowds, is not needed.

A similar method could be adopted by Polar. Node discovery messages

should be used to initiate a key exchange using the Diffie-Hellman protocol.

Node discovery messages should be sent out periodically at unpredictable

intervals to random nodeids. The node closest to the nodeid should respond.

It is additionally proposed that when node discovery messages are sent,

nodes also share their Pastry leaf set. The leaf set was introduced in chapter

5 and contains a list of |L| of the closest neighbouring nodes in the Pastry’s

nodeid space. The public keys of the nodes in the leaf set should also be

shared.

By sharing the leaf set, additional entries can be created in the node map.

These entries should be classified as “unverified” if no prior key exchange was

performed.

This added measure of sharing the leaf set allows a Pastry node to learn

of other nodes and to cross-check public keys reported by different nodes.

This prevents any one node from assigning a different key to each requesting

node.

If public keys are not cross-checked, it would be possible to perform key-

mapping attacks. Key-mapping attacks are performed by sharing a different

key with each Polar node. A table is kept mapping an encryption key to a

Polar node. If encrypted content is received, all stored keys are tried until

the successful key is found. The table identifies which node performed the
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encryption. thus compromising anonymity.

Cross-checking public keys with other nodes prevents a key-mapping at-

tack. If nodes report different public keys for any particular node, that node

should be flagged as “unverified”.

6.9.6 Node transience

Polar is designed to operate in a highly dynamic network of peers. Node

joins and failures are expected to be frequent. This could render a large

number of entries in the node map obsolete. Polar, similarly to Pastry,

employs a lazy node repair algorithm. Obsolete routing table entries are

removed when routing to that entry fails. A failed Onion Routing attempt

should similarly be communicated back to the initiator. To prevent identity

exposure, the initiating node should relay the node failure message through

to the dummy start node or the serving node – depending on whether the

failed node was situated on the forward or tail path. A node failure message

simultaneously indicates to participating nodes that a particular nodeid is

obsolete and needs to be removed. Participating nodes subsequently close

the channel. The initiating node is required to restart the channel setup.

We believe that node transience is less of a problem for Polar than for

Tarzan [45] as Polar’s channel setup routine is less expensive than Tarzan’s

– Polar already initiates a new channel for each Web request, unlike Tarzan,

where a long-term channel is intended.

Polar is a peer-to-peer network that is open and accessible to anyone.

This, however, introduces a number of complications and are considered next.

6.10 Security

We have shown how Polar establishes an anonymous communication channel.

This channel services a requesting node whilst hiding its identity from (1)

the Web server, (2) participating nodes and (3) unsophisticated adversaries.

However, the examples thus far have assumed a cooperative Polar network.

How does Polar fare against a more sophisticated adversary with insider
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knowledge and/or capable of manipulating the Polar network?

When considering the presence of global observers and powerful insiders,

it becomes apparent that Polar is vulnerable to a number of attacks. These do

not necessarily lead to identity exposure but can affect the level of anonymity

and/or the reliability of the system.

Some attacks are common to a variety of anonymity solutions whilst

others bear particular reference to Polar. Polar’s attempt at anonymity,

whilst maintaining its status as a fully distributed peer-to-peer architecture,

makes for a particularly interesting discussion on anonymity, security and

peer networks.

6.10.1 Security and anonymity in peer-to-peer networks

The peer-to-peer paradigm introduces a number of notable differences to

traditional client-server architectures. Peer networks have become popular

because of their ability to scale well and to effectively share resources in a

highly transient population whilst resisting centralised control [6]. However,

peer networks are also notoriously difficult to secure. Literature on secu-

rity in peer-to-peer networks [19, 36] lists the following reasons why security

enforcement in peer-to-peer networks is so difficult:.

• Many traditional means of ensuring accountability between partici-

pants becomes unworkable. In particular, there is a lack of top-down

enforcement of accepted behaviour.

• The open environment allows many diverse autonomous parties, with-

out preexisting trust relationships, to pool their resources.

• The large, dynamically changing network makes it difficult to track

badly behaving participants. A pseudonym (a nodeid) that has ac-

quired a bad reputation can simply be thrown away.

• Routing is complicated because users must choose nodes in the network

without knowing the entire state of the network. This is not true for all

peer-to-peer networks. It is, however, true in our case because Pastry

nodes have incomplete or partial routing tables.
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• An adversary might render a network useless by volunteering a flood of

unreliable and/or corrupt participants. This attack is called the Sybil

attack [38].

Nevertheless, the fact that peer-to-peer networks are resistant to cen-

tralised control, makes them particularly attractive for privacy-enhancing

technologies. This fact was also the primary motivation for initially consid-

ering further research in a peer-to-peer anonymity technology.

We should note that the combination of anonymity and peer-to-peer net-

works introduces further complications: it is hard to detect or verify a par-

ticipants behaviour and at the same time maintain a participant’s anonymity

[36]. As Dingledine et. al. [36] put it: “reputation data is harder to gather in

the presence of anonymity”. However, this fact can also be used to Polar’s

advantage.

We argue that because Polar attempts plausible deniability (as a means

of achieving anonymity), a fully distributed peer-to-peer network does offer

a suitable architecture. The fact that reputation data is harder to gather can

work in our favour; it increases the uncertainty (entropy) that a particular

node was or was not the original requester.

Next we highlight a number of attacks on structured peer-to-peer net-

works. We conclude with the statement that peer-to-peer networks are suit-

able in attempting plausible deniability; however, it is also much harder to

guarantee availability in such networks.

6.10.2 Attacks on structured peer-to-peer networks

In their paper titled “Secure routing for structured peer-to-peer overlay net-

works”, Castro et. al. [19] offer an informative analysis of security in struc-

tured peer-to-peer networks. We use their paper as well as that of Dingledine

et. al. [36] to consider different attack vectors on Polar.

According to Castro et. al. [19] secure routing in structured peer-to-peer

networks requires the following:

1. secure assignment of nodeids
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2. secure routing table maintenance

3. secure message routing

Unfortunately, these three requirements have not yet been addressed by

Polar. Secure assignment of nodeids is discussed next followed by a discussion

on the security of Polar’s routing table maintenance and message routing.

Secure assignment of nodeids

A secure assignment of nodeids prevents corrupt nodes from misusing the

identity of other nodes. This includes identity theft for the purposes of send-

ing or receiving messages on behalf of other nodes. It additionally prevents

a malicious user from obtaining a large number of nodeids. This attack is

known as the Sybil attack [38] and is particularly threatening to Polar as it

increases the chances of corrupt nodes colluding against honest nodes.

Castro et. al. [19] offer one solution only: the use of a trusted certification

authority to assign and digitally sign nodeid certificates. The certification

authority should restrict the number of nodeids any particular user can ob-

tain by requesting some form of payment in return. However, even then,

certification authorities are not fully guaranteed to prevent an attacker from

acquiring a large collection of nodeids [19].

The use of a trusted certification authority clearly defies Polar’s objective

of being a fully distributed anonymising technology. It furthermore inhibits

the roll-out of the Polar network by requiring users to first register with a

trusted certification authority. Where privacy, central control and trust is an

issue, this will prove problematic.

Castro et. al. [19] dash any hopes of a fully decentralised nodeid assign-

ment by the statement “it appears to have fundamental security limitations.

None of the methods we are aware of can ultimately prevent a determined

attacker from acquiring a large collection of nodeids” [19, p.6].

Polar does not make any attempt at securing nodeid assignment. How-

ever, Polar’s Onion Routing approach and its location diversity efforts greatly

reduce the chance of a successful collusion attack and so some form of security

is already built into Polar.
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Secure routing table maintenance and message routing

Determined attackers can pollute routing tables by supplying bad routing

table updates to existing nodes. This increases the fraction of rogue nodes

in the routing table which furthermore reduces the probability of routing

successfully. Polar’s node discovery messages, used to populate the node

map, make Polar vulnerable to such an attack.

Unfortunately the suggested solution to this problem is also less than

ideal. Castro et. al. [19] assume a “relatively” secure assignment of nodeids,

make use of a constrained routing table (in addition to the normal routing ta-

ble) and apply a failure test to determine the successful routing of a message.

Neither technique is suitable to Polar.

Tarzan [45] offers a solution by requiring routing table entries to be vali-

dated before being used. This is similar to our proposed solution of sharing

the leaf set and flagging node map entries as “verified” or “unverified”. In

Tarzan, a score is attributed to a routing table entry. Each node that verifies

the correctness of the entry increases the score. A similar technique can be

applied to Polar’s node map. For every leaf set received in response to a

node discovery message, an entry is created in the node map, or the score of

an existing entry is increased. A threshold value is then used to select those

nodes with a score greater than the threshold.

A greater threat is posed by a corrupt bootstrapping node. The boot-

strapping node issues initialisation information to the joining node. In such

a case, an attacker can guarantee that the joining node only learns of corrupt

nodes. Polar does not protect against such an event. It is left up to the user

to acquire a trustworthy bootstrapping nodes.

Polar can at most offer some levels of protection to users who join a

legitimate network. Polar’s Onion Routing and location diversity offers some

protection provided not all nodes are compromised.

If our assumption holds, that an adversary operates most nodes from

within an administrative domain, then it is possible to employ “sanity checks”.

An alarm should be triggered when most routing table entries contain nodes

from only a few (or even one) administrative domains.
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6.11 Summary of Polar

A brief summary of the chapter is presented next. It highlights the contri-

butions made by the author. It additionally gives an analytical overview of

Polar and briefly compares it to previous solutions.

Plausible deniability

Polar achieves anonymity though plausible deniability. Anonymity is upheld

if there is sufficient doubt about whether a node issued the original request

or not.

Although Polar employs a derivative of Onion Routing, it is not sus-

ceptible to network edge analysis as the original design. Onion Routing

differentiates between Onion Routers and clients. A compromised request

immediately exposes the identity of the client. Polar consists solely of peers.

In Polar, the “client” could claim that it merely forwarded the request but

did not issue it.

Crowds [90] and Tarzan [45] also employ plausible deniability. However

the initiator can still be exposed even after the request has been issued. This

is possible if the request can be traced back to the initiating node. Polar

prevents such “trace-back” attacks through the use of a tail. The response

can no longer expose the identity of the initiator.

Protection against log analysis

A tail does increase the risk of collusion attacks between nodes on the forward

and tail channel. More importantly, however, it prevents identity exposure

through traffic analysis performed on a single machine. We perceive this

threat to be far greater than the threat of colluding nodes. Polar is therefore

particularly resistant against simple log analysis performed by organisations,

ISPs or external observers.



University of Pretoria etd – Tillwick, H M (2006)

6.11. Summary of Polar 118

Fully decentralised

Polar provides a routing layer which allows it to organise and maintain a

network of peers in the absence of a central authority. This makes Polar par-

ticularly resistant against compulsion attacks (achieved through extortion,

bribing or legal subpoenas).

Resistance against collusion attacks

Although collusion attacks pose a threat to Polar, they are severely compli-

cated by Polar’s combined attempts at Onion Routing and node diversity.

A highly sophisticated adversary is required to expose Polar’s anonymity

efforts.

Efficiency

Channel setup is less expensive than Tarzan’s. The differential treatment of

Web requests and Web responses allows Polar to transmit the Web request

inside an Onion. Two round-trips, one for the channel setup and one for the

transfer of the Web request, are no longer needed. A response can be issued

as soon as the channel has been established.

Forward secrecy

The less expensive channel setup additionally allows a new channel to be

efficiently built for each request. A compromised channel only implicates one

request. This differs to Crowds [90] and Tarzan [45] where a compromised

channel implicates all transmitted Web requests.

Peer validation

Polar adopts Tarzan’s peer validation concept. Although a weak form of

security, it does add an extra layer of protection and prevents key-mapping

attacks.
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Peer-to-peer security

Polar’s peer-to-peer network has some inherent security implications. Polar

tries to minimise the severity of the implications. Polar Onions require collu-

sion amongst all participating nodes. Peer validation complicated network-

wide attacks. Polar’s node diversity and proposed “sanity-check” offers some

means to alert the user of a possibly insecure peer network.

6.12 Conclusion

This chapter discussed the Polar model. The author’s main contributions

were presented, analysed and compared to existing solutions.

Message-based communication for the Web request and stream-based

communication for the Web response was suggested. Such an approach en-

hances the anonymity efforts of Polar. Communication symmetry was intro-

duced and a communication tail was subsequently proposed.

A Polar Onion enables secure message-based communication and also

establishes a communication channel. The combination of using layered en-

cryption for the request and a communication tail for the response gives Polar

significant advantage over existing solutions.

Pastry continues to play a vital role in organising the network. It addi-

tionally assist in populating the Polar node map.

Polar’s attempt at anonymity in a fully distributed peer-to-peer network

makes for an interesting discussion on security. Ultimately, Polar’s plausible

deniability and location diversity properties allow it to protect its users by

severely complicating traffic analysis. A sophisticated global adversary is

required to adequately and consistently breach Polar’s communications. This

is highly unlikely.

The following chapter presents implementation details. It aims to detail

any specifics omitted in this chapter.
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Chapter 7

Implementation

7.1 Introduction

In this chapter the author’s implementation of Polar is detailed. The proof-of-

concept prototype serves to prove that an implementation of Polar is feasible.

The proxy layer in particular is examined. We start by listing internal

components of a Polar node. Their role and functionality is described using

flowcharts. This chapter aims to clarify any remaining details which have

not yet been explicitly stipulated.

7.2 Prototype

A proof-of-concept prototype was developed in the Java programming lan-

guage and consists of roughly 1500 lines of code. The prototype complies to

the Java language specification version 1.5; it is capable of running on most

operating systems provided that the Java run-time version 1.5 or greater has

been installed. This makes the application accessible to a large user-base.

An open-source version of Pastry called FreePastry [94] is used for the

routing layer. FreePastry is a Java implementation of Pastry and is developed

and maintained at the University of Rice.

The prototype serves in identifying any issues not considered during the

theoretical design of Polar. This implementation was not widely deployed
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and hence no statistical data or benchmarks were collected.

To effectively benchmark Polar one would have to acquire a large user base

from many different autonomous systems. A fully developed Polar applica-

tion would thus have to be made available for general download. A prototype

not robust enough to be used for production would most certainly discourage

users from using it, thus hindering the collection of adequate statistical data.

The aim of this dissertation is not the deployment and benchmarking of

Polar, but rather to introduce the Polar model and reason its suitability as an

anonymous Web browsing protocol. The prototype merely serves as a proof-

of-concept demonstrating that an implementation is possible. How such an

implementation could be designed is also addressed. A fully-fledged imple-

mentation and deployment of Polar would most certainly assist in further

promoting the Polar model; however, this is not presented in this disserta-

tion and is left as future work.

The presentation of our Polar model is completed by providing a more

fine-grained functional insight into the suggested logical components of a

Polar node. Components are grouped into modules, constructs and partici-

pants.

7.3 Modules, constructs and participants

The author suggests that seven functional modules facilitate the operation of

a single Polar node. The modules interact with three logical constructs and

create and maintain an anonymous communications channel between one or

more local clients and multiple Web servers.

Figure 7.1 illustrates the relationship between modules, constructs and

the external participants. Modules perform the required functionality of a

Polar node. A construct is used here to describe a logical entity created and

maintained by one or more Polar nodes. For example, a channel is logical

construct created and operated by multiple Polar nodes. Similarly for a

Pastry message; a message is created by a particular node and is used to

communicate information to other nodes. The node map is unique for each

Polar node. Its main use is to store pointers to participating nodes:
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Each module is responsible for a specific set of tasks.

• The initiator module accepts client Web requests, selects a set of

nodes from the node map, constructs the Onions and initiates the setup

of a channel.

• The message-handler module processes message-received events trig-

gered by the routing layer. Messages received include channel setup

messages, channel failed messages and node discovery messages. The

module performs the necessary steps according to the message type.

• The listener module listens for and accepts TCP/IP connections.

It links an inbound and an outbound connection belonging to the

same channel. Data received from the inbound connection is tunnelled

through the outbound connection.

• The node map maintenance module ensures the node map is pop-

ulated with appropriate values.

• The routing protocol implements the Pastry routing algorithm. The

protocol routes a message to a given nodeid.

• The routing tables consists of Pastry’s leaf set, neighbourhood set

and the primary routing table.

• The join and maintenance protocols are also specific to Pastry.

The protocols ensure that Pastry’s routing tables are up-to-date.

Figure 7.1 groups the components according to the layer they operate in.

The initiator, listener, message-handler and node map maintenance module

operate at the proxy layer. The routing tables as well as the routing, join

and maintenance protocols are situated in the routing layer.

The three logical constructs are used in the proxy layer. Each node

manages a node map and deals with several channels and multiple Pastry

messages.
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• The Pastry messages facilitate message-based communication be-

tween a node’s routing and proxy layer. The routing layer is able to

send messages to other nodes. Pastry messages include Pastry’s control

messages as well as Polar-specific messages. The proxy layer deals with

Polar-specific messages such as channel setup, channel failure and node

discovery messages.

• The channel facilitates a communication between a client, multiple

nodes and a Web server. An graphical illustration is given in figure 7.2

by the dashed lines. The arrows indicates the flow of the Web response.

• The node map is unique to every node. It maps a collection of IP

addresses to the nodeids and public encryption keys of the respective

nodes. This information is used during the construction of a Polar

Onion.

The proxy layer establishes and maintains the anonymous communication

channel. The tasks performed by the proxy layer are unique to Polar and

hence comprises solely of the author’s code. The routing layer on the other

hand is not developed by the author but is an implementation of Pastry

researched and developed at the University of Rice (http://www.rice.com).

The three routing layer modules represent a very coarse overview of Free-

Pastry’s functional entities. These three modules could possibly be broken

down into more fine-grained modules. This dissertation is more concerned

with the proxy layer and hence the focus is on the four proxy layer modules.

Insight into the functional operation of the modules is presented next.

7.4 Functional details

Three proxy layer modules are discussed in the following order: first the

initiator module followed by the connector and finally the listener module.

The node map maintenance module was discussed in the previous chapter.

A discussion on the implementation of the node map maintenance module

http://www.rice.com
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would add little to what has already been discussed. A more detailed dis-

cussion of this module is therefore not presented here.

7.5 Initiator module

A user wishing to anonymise his Web request should configure his client to

redirect requests to a local Polar node, and not directly to the Web server.

Polar listens to a pre-configured port and accepts client TCP/IP connections

originating from the local machine. Note that once a connection has been

accepted, Polar should immediately re-enter the listening phase, thereby sup-

porting multiple concurrent connections. The two tasks of listening for and

accepting connections are indicated by the first two steps in figure 7.3.

Once a connection has been accepted, the HTTP request is captured. The

initiator module reads from the data stream and assumes that the content

conforms to the HTTP /1.0 [13] or HTTP /1.1 [43] specification; the stream is

read eight bytes (an octet) at a time and mapped to the ASCII [105] character

set. This suffices to read and interpret characters for HTTP requests and

responses [13, 43].

Simple parsing is done to capture a Web request: the character stream is

scanned for an empty line (i.e. two successive carriage return and line feed

characters). This indicates the end of an HTTP request. Channel setup can

now commence.

First a number of addresses are selected from the node map. The node

map additionally provides an appropriate nodeid, port number and public

key for the respective node located at that IP address. The node selection

algorithm is detailed in the previous chapter. The channel length can be user-

specified or can be a random range-bound value. Future implementations

should provide a simple user interface where a length can be specified.

Once nodes have been selected, the initiator can start constructing the tail

and forward Onion. This procedure is also detailed in the previous chapter

in algorithms 1 and 2 in section 6.8.1.

The two Onions are subsequently embedded in separate Pastry messages.

The messages are addressed to the fist hop on the tail and forward path
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respectively. The routing layer is instructed to deliver the messages to the

specified IP address and port number. The embedded Onions instruct the re-

spective nodes to continue constructing the anonymous communication chan-

nel.

As per our discussion in section 6.6, in order to combat traffic analysis

on a single node, the tail Onion should be sent prior to the forward Onion.

The initiating node thus displays similar traffic patterns to other nodes on

the forward channel.

The Pastry routing layer routes the messages directly to the specified node

and not via a number of intermediate nodes; the target node’s IP address is

specified and not the nodeid. Although it is possible to bypass the routing

layer and send the message using the proxy layer alone, it makes little sense

to duplicate the messaging functionality already provided by the routing

layer. Note that FreePastry allows messages to be addressed to a nodeid or

IP address and port number.

It should be noted that the benefits of the Pastry routing overlay is best

harnessed by the node map maintenance module. As discussed in section

6.9.4, the node map is populated by acquiring the Pastry leaf set of other

nodes. This task is performed by the node map maintenance module. The

initiator module merely depends on the accuracy of the node map, as well

as the existing messaging capability of the routing layer.

Figure 7.3 indicates three possible fail-over points. At each point a con-

ditional statements verifies whether message delivery or channel setup suc-

ceeded. Failure to send or connect to any node results in the node map

maintenance module being notified. The respective entry is removed from

the node map and the channel setup then needs to be re-initiated.

If no failure is encountered, the initiator module delegates the remaining

tasks to the message-handler and the listener module.

Note that the initiating node connects to a tail node and instructs the

forward node to connect to it. The message-handler actively establishes a

connection to another node. The listener module is responsible for accept-

ing connections initiated by the message-handler. The message-handler thus

typically connect to a remote listener module. The listener module addition-
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ally links an inbound and an outbound connection thus linking a preceding

and a succeeding node to form a channel.

The initiator module is only active during the initial phase of a channel

setup. Once the Onions have been dispatched, the tasks of the initiator are

complete. It will only be called upon (again) if the channel setup fails. The

client TCP connection remains open until the Web response is served to the

client. Responsibility of maintaining the client connection is passed to the

listener module.

The message-handler is discussed next followed by the listener module.

7.6 Message-handler module

The flowchart of the message-handler module is depicted in figure 7.4. The

message-handler module responds to message-received events, triggered by

the node’s routing layer (or directly by the initiator module). The module

reacts to three different types of messages: channel setup messages, channel

failure messages and node discovery messages.

7.6.1 Node discovery messages

A node discovery message indicates that another node wishes to obtain the

current node’s leaf set. Node discovery messages are dispatched at regular

and unpredictable intervals by the node map maintenance modules. The

returned leaf sets are used by the maintenance module to populate the local

node’s node map. The reader is reminded that the leaf set contains a set of

nodes that are closest to the current node in the circular nodeid space.

7.6.2 Channel failure messages

Channel failure message indicate channel construction on either the tail or

the forward path has failed. The failure message is routed from the point

of failure right through to the serving or dummy start node depending on

whether the point of failure is located on the tail or forward path.
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Figure 7.4: Functional flowchart of the message-handler module
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Located somewhere in between is the initiating node. The initiating node

re-initiates the channel; it chooses a new set of nodes and re-constructs and

re-sends both Onions. This process is repeated until channel setup succeeds.

What implications the repetitive channel reconstruction has on possible

identity exposure, has not been verified. This is left as future work.

7.6.3 Channel setup messages

Channel setup messages contain an embedded Onion. Failure to peel an

Onion results in the current node returning a channel failure message.

Successfully peeling an Onion reveals its contents. The content could be

one of three possibilities:

• an empty Onion – indicating the current node is the dummy start node

• the Web request and symmetric key – indicating the current node is

the serving node

• details of the next hop as well as the next hop’s Onion – indicating

that the current node is an intermediate proxy

A discussion on the three possibilities is presented next. The respective

functions performed by the message handler are depicted in figure 7.4 starting

at the conditional statement labelled “Onion type”.

Dummy start node

If the current node is the dummy start node then channel setup, for the tail,

is complete. No further action is required by the dummy start node; it waits

until the Web response is received or until the channel is closed. The Web

response is simply discarded.

Serving node

If the current node is the serving node, a connection is established with the

Web server. Determining which server the request is intended for is done by
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parsing the Web request until the HTTP HOST header field is found. This

header field specifies the host address of the Web server and is a mandatory

header for HTTP requests [13, 43]. The format of the HOST header field is

given as:

Host = "Host" ":" host [ ":" port ]

The host value represents a host name or IP address. The optional field

port is the IP port number. Incorrectly formatted Web requests result in

the channel being closed.

Once a connection has been established with the Web server, the connec-

tion as well as the symmetric encryption key is registered with the listener

module. The connection and key is registered because the listener module

is responsible for relaying the returned Web response via the appropriate

channel. Note that the listener module links an inbound and outbound con-

nection. The message-handler thus issues the request and passes the respon-

sibility to the listener module.

The listener module is responsible for performing similar functions for

intermediate proxies. Intermediate proxies are covered first before detailing

the functions of the listener module.

Intermediate proxy

Intermediate proxies need to extend the channel by linking succeeding and

preceding nodes.

By analysing figure 7.4 it can be observed how tail and forward Onions

are treated slightly differently by the message-handler. In the previous chap-

ter it was discussed how forward nodes display an outbound connection (to

the previous node) followed by an inbound connection (from the succeeding

node). Tail nodes display an inbound connection (from the preceding node)

followed by an inbound connection (to the succeeding node).

The functions performed by the tail and forward nodes are thus quite

similar, only the order differs slightly. Our implementation uses the message-

handler module to perform outbound connections whilst inbound connections

are accepted by the listener module.
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Figure 7.5: Flowchart of the listener module

The message-handler alerts the listener module of an expected inbound

connection. The listener module additionally notes from which node the

inbound connection is expected. Once the inbound connection had been

accepted and identified, it can be linked to the outbound connection. The

task of reading from the inbound connection and relaying to the outbound

connection is performed by the listener module.

7.7 Listener module

The listener module completes the channel setup by joining the preceding

and the succeeding node’s channel. At the final node, the channel and the

connection to the Web server is joined.

A channel is registered with the listener by either the initiator module
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or the message-handler module. In both cases the respective message, used

to create the channel, is registered as well. The message contains necessary

details to distinguish one connection from the other.

A primary function of the listener module is to listen for inbound TCP

connections and accept them.

Two nodes could potentially share multiple channels. To distinguish the

one from the other, the Pastry message identifier is used. This identifier

should present the first n bytes of data that is sent through the channel.

The listener reads these bytes as a numeric identifier and determines if an

appropriate channel has been registered. If this is the case, the inbound

and the outbound channel can be linked. This means that each read on the

inbound channel is followed by a write on the respective outbound channel.

The listener module thus functions as a simple relay.

The listener module on the final node performs an additional task of

encrypting the response using the symmetric key (which was embedded in

the Onion). The listener module on the initiator module decrypts the data

and passes it to the Web client.

Note that the initiating node links an inbound channel to two outbound

channels: one to the client and one the the first tail node.

This completes the discussion on our implementation of Polar. Although

other approaches are possible, we believe that the suggested implementation

performs the required functionality in an optimal and logical manner.

7.8 Conclusion

This chapter presents a more technical discussion on our implementation

of Polar. The reader should now have a detailed understanding of Polar’s

objectives and how it is proposed these objectives are achieved.

A final task is to conclude this dissertation. This is done by briefly sum-

marising what has been discussed, what problems where identified and how

they were addressed.
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Chapter 8

Conclusion and future work

8.1 Introduction

Now that Polar has been fully presented, a re-evaluation of Polar’s objectives

and how Polar addresses these, is possible.

The author believes that Polar offers an adequate solution to the given

problem statement. Achieving absolute and practical anonymity is a diffi-

cult; however, the contributions made by this dissertation are thought to be

significant and should further assist in promoting anonymity research.

We conclude with a summary of this dissertation.

8.2 Summary

The introductory chapter highlighted the need for electronic privacy. It was

argued that the lack of online privacy should be a cause for concern. Individ-

ual users risk being tracked and profiled by Web sites, ad-serving companies,

organisational proxies, ISPs and other unauthorised observers.

Anonymity is appropriate if personalised services are not required. On the

Internet, this should include traditional anonymous activities such as voting,

counselling, whistle-blowing, refereeing and voicing political and other dis-

sent. It should, however, additionally include performing Web searches and

general (unpersonalised) Web browsing. The user’s private browsing history
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should be protected.

This dissertation covered connections anonymity technologies, with spe-

cific interest in anonymous Web browsing.

Problem statement

Anonymity solutions do exist but suffer from a number of deficiencies: they

are not commonly used, are vulnerable to a host of attacks or are impractical

or too cumbersome for daily use. Most anonymity solutions are centralised

or partially centralised and require trust in the operators.

An extensive review of existing anonymity technologies was presented. It

was noted how mixing techniques are more suitable for low-latency appli-

cations such as email and generally offer good levels of anonymity. Similar

attempts for anonymous Web browsing have been less successful, largely due

to the high delays associated with mixing.

Crowds [90] attempts anonymous Web browsing, not through mixing

techniques, but by plausible deniability. It too suffers from a multitude

of deficiencies, more notably: a partially centralised architecture, inefficient

routing and weak levels of anonymity. Polar’s aim is to offer a solutions to

these deficiencies.

Polar aims to be (1) fully distributed, (2) offer adequate levels of ano-

nymity and (3) enable users to browse the Internet anonymously without

overly complex mixing techniques. Our proposed solution uses Pastry as the

underlying peer-to-peer routing protocol. This allows Polar to operate in a

highly dynamic peer network whilst being fully distributed. The author be-

lieves that Polar’s level of anonymity exceeds that of Crowds and compares

well to other existing solutions. Although Polar is vulnerable to a number

of traffic analysis attacks, it is significantly difficult for an attacker to expose

the identity of a Polar request.

Objectives

This dissertation aimed to contribute towards three aspects. First and fore-

most it wished to address our problem statement. Secondly, it aimed to
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address the identified higher-level objectives. Lastly, it aimed to provide

numerous technical improvements over similar existing techniques.

Chapter 4 derived five objectives from a set of problems identified by

our literature review. Now that the Polar model has been detailed, a re-

evaluation of these objectives is possible.

• Low-latency: Polar offers an anonymous Web browsing solution. Spe-

cific attempts are made at reducing latency. Embedding the Web re-

quest inside the Polar Onion allows the serving node to immediately

issue the Web request. The serving node does not have to wait for the

request to traverse the recently established channel.

• Decentralised: a structured routing overlay allows Polar to be fully

distributed. This makes Polar particularly resistant against compul-

sion attacks (achieved through extortion, bribing or legal subpoenas).

Pastry [96] was chosen because of it’s ability to self-organise a highly

dynamic network of peers.

• Costs: bandwidth and hardware costs are covered by participants.

Polar is designed to be a free service that is self-maintained and oper-

ated by volunteers. This alleviates logistical costs and problems asso-

ciated with obtaining and maintaining dedicated hardware, personnel

and bandwidth.

• Large user base: participation is uncontrolled and open to anybody;

no central authority controls the network. It was discussed how an-

onymity can only be provided if a user actively participates in the

network – each user requires a local Polar node. Abusing the Polar

service without active participation is futile.

• Usability: Polar’s source routing allows the initiating node to choose

the channel length. The channel length can be user-specified according

to the desired strength of anonymity versus the expected latency. This

feature is indifferent to what is offered by Onion Routing. However,

Polar’s tail allows the initiating node to be situated closer to the serving
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node and simultaneously offer improved levels of anonymity compared

to an approach without a tail.

Solution

Polar’s channel setup is less expensive than that used by Tarzan [45]. The

differential treatment of Web request and Web response allows Polar to treat

requests as messages and the response as a data stream. The request can

subsequently be embedded in an Onion.

Two round-trips, one for the channel setup and one for the transfer of

the Web request, are no longer needed. A response can be issued as soon as

the channel has been established.

A Polar Onion is used to establish a uni-directional channel from the

serving node to the dummy start node. This differs to Onion Routing’s

bi-directional data stream from the initiating node to the serving node.

Onions prevent any number of corrupt nodes (except all) from compro-

mising the Web request. All participating nodes have to successfully unwrap

an Onion before the Web request is revealed. This is particularly effective

against collusion attacks.

Once a communication channel has been established, identity exposure is

no longer possible by tracing the returned Web response. An adversary can

at most determine which nodes participate in a channel but can not infer

which node originally issued the request.

Polar is not susceptible to network edge analysis as the original Onion

Routing design. Onion Routing differentiates between Onion Routers and

clients. Polar consists solely of peers. Unlike Onion Routing, a compromised

Polar request does not necessarily expose the initiator. A peer can claim

that it merely forwarded the request but did not issue it, thus, plausible

deniability guarantees some level of protection.

A tail does increase the risk of collusion attacks between nodes on the

forward or tail channel. More importantly, however, it prevents identity

exposure through traffic analysis performed on a single machine. We per-

ceive this threat to be far greater than the threat of colluding nodes. Polar
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is therefore particularly resistant against simple log analysis performed by

organisations, ISPs or external observers.

The less expensive channel setup additionally allows Polar to efficiently

build a new channel for each request. A compromised channel only implicates

one request. This differs to Crowds [90] and Tarzan [45] where a compromised

channel implicates all transmitted Web requests.

8.3 Reflection

A number of people and factors where instrumental in the completion of this

dissertation, both on an academic as well as a personal level.

On an academic level, two papers [111, 112] in particular assisted in

formulating ideas that eventually led to the final Polar model. Papers were

co-authored with Olivier [111, 112] and Neumann [111] and were published

in peer-reviewed conference proceedings.

• H. Tillwick, T. Neumann, M.S. Olivier, H.S. Venter, and J.H.P Eloff.

Polar: Proxies collaborating to achieve anonymous Web browsing.

Proceedings of the Fifth International Network Conference (INC2005),

pages 317–324, Samos, Greece, July 2005. SM Furnell, PS Dowland

and G Kormentzas (eds).

• H. Tillwick and M.S. Olivier. Towards a framework for connection

anonymity. In Research for a changing world Proceedings of SAICSIT

2005, pages 113–122, White River, South Africa, September 2005. J

Bishop and DG Kourie (eds).

The first paper [111] details the initial Polar model and provides the

foundation upon which the revised model is built. The second paper [112]

greatly assisted in structuring and analysing existing connection anonymity

techniques. The knowledge acquired was subsequently used to enhance the

original Polar model.
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8.4 Future work

Now that the Polar model has been presented, it opens the possibility of a

more extensive, practical and statistical analysis of Polar. Polar has not been

formally analysed in a specification language. Such an approach could reveal

additional deficiencies not identified in the theoretical design of Polar.

Polar has not been extensively benchmarked and tested. A proof-of-

concept prototype was implemented but due to time and resource constraints,

only limited testing was performed. We believe adequate statistical data

can only be collected by observing a fully-deployed Polar network. This

is because Polar requires a reasonably large user base from many diverse

network locations.

A foreseeable practical problem is the initial deployment of Polar when

the user base is small. Deploying, promoting and benchmarking Polar is left

as future work.

In conclusion, we additionally hope that the contributions made by our

model and framework will promote further advances in connection anonym-

ity.
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Glossary of Abbreviations

AS Autonomous Systems

ASCII American Standard Code for Information Exchange

API Application Programmer Interface

CA Certification Authority

CAN Content Addressable Network

CPC Cost-per-click

CIDR Classless Inter-Domain Routing

DNS Domain Name System

DHT Distributed Hash Table

FIFO First in, first out

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

IETF Internet Engineering Task Force

IMAP Internet Message Access Protocol

IP Internet Protocol

ISO International Standards Organisation

ISP Internet Service Provider

LIFO Last in, first out

LPWA Lucent Personalized Web Assistant

MD5 Message Digest 5
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OECD Organisation for Economic Co-operation

POP3 Post Office Protocol version 3

P2P Peer-to-peer

P3P Privacy for Preferences Project

PGP Pretty Good Privay

PKI Public Key Infrastructure

SIP Session Initiation Protocol

SOAP Simple Object Access Protocol

SMTP Simple Mail Transfer Protocol

SHA Secure Hash Algorithm

TCP Transmission Control Protocol

TTP Trusted Third Party

UDP User Datagram Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator
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