
UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

The design of a protocol

for collaboration in a distributed

repository - Nomad

by

Jiten Rama

September 2006

Submitted in partial fulfillment of the requirements for the degree Magister

Scientiae (Computer Science) in the Faculty of Engineering, Built Environment

and Information Technology University of Pretoria

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

The design of a protocol for collaboration in a distributed repository - Nomad

by
Jiten Rama

Computer Supported Cooperative Work (CSCW) is the study of how people use
technology, with relation to hardware and software, to work together in shared time
and space. Mobile office environments are becoming commonplace. Workers form
virtual online communities on a global scale and use groupware to collaborate and
complete a common goal. We tend to be mobile, yet need to be available to
collaborate.

This thesis investigates a protocol for our decentralized artifact control system,
Nomad. Nomad enables globally dispersed members of small casually connected
communities to share artifacts which are gathered on a best effort approach. The
Nomad protocol takes into consideration the work habits of users and their variety of
devices.

The major contribution of this thesis is a simulator of the Nomad protocol, which
serves as a proof-of-concept for its design. Specifically, we look at how such a
protocol handles casually connected small communities. We consider high level
aspects such as setting up the community, the overhead of nodes, availability,
scalability and connectivity. We demonstrate scenarios that the protocol will need to
handle. Furthermore, we take a broad look at CSCW, push and pull technologies,
peer-to-peer technologies, and enabling technologies such as Microsoft .Net. These
form the basis of the Nomad design. In addition, we suggest the integration of mobile
agents, which we consider a future addition to Nomad.

It was found that the protocol had to compensate for two nodes that were never online
at the same time. In the case that a best effort approach is not feasible, we propose
alternate approaches at the cost of overhead on a propagation node. The developed
concept provided valuable insight into the problem domain, outlined the boundaries of
the protocol and provided a possible solution for Nomad. The simulator proved to be
a useful tool for determining outcomes from possible scenarios. The results from the
simulator will feed directly into the development of Nomad.

Keywords: CSCW, groupware, information sharing, distributed applications,
simulation, push and pull, communities, P2P, mobile agents, Microsoft .Net.

Supervisor: Prof. J. Bishop
Department: Department of Computer Science
Degree: Magister Scientiae

 - 2 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

Acknowledgments

Dedication hardly ever comes without inspiration. Inspiration is a force which closes
the gap between those that prosper and those that do not. There have been many that
have inspired me along this journey which has now come to an end. Friends and
family, too many to mention, to all those who have inspired me when hope had failed
me, I thank you. I’m sure that each of you will undoubtedly know who you are. That
being said, there are those that should take special mention.

Special thanks go to my supervisor, Professor Judith Bishop for her continuous
support and leadership with her insightful advice from the start to the end of this
journey. Thank you for boosting my confidence when it needed to be boosted. Thank
you for significantly improving this thesis in terms of focus, readability and details. I
cannot fully express my gratitude for your generosity, confidence and superb
guidance.

To my parents, Manilal and Urmilla, who have always been by my side. To my father
who always lead me one step forward knowing that I had learnt life lessons from the
step before. To my mother who never quite knew what this thesis was about, offered
emotional support at any given time. To my parents, to whom I owe my very
existence and wellbeing, I dedicate this.

To Himal, Janita, Divyesh & little Meeshaal whose encouragement paved a path on
which I walked. I gratefully acknowledge the contributions of other Nomad members.

Beryl Stiles whose task it was to grammatically correct the flow of words that makes
up this thesis. I am deeply grateful for your kindness that only angels possess. Thank
you for time and effort in proofreading this thesis.

To Vishani, I thank you for your patience and understanding. We spent much time
apart during this period of time. Your friendship and love have withstood the test of a
thesis, and to that I am immensely grateful.

 - 3 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

Table of Contents

1. Introduction..9
1.1. Background to Nomad ... 9

1.1.1. Project History and Status ..9
1.2. Problem Statement ... 9
1.3. Motivation.. 10
1.4. The Need for a Simulator... 11
1.5. Contributions of this thesis .. 11
1.6. Document Roadmap... 12

2. Background and Related work ...13
2.1. Central Concepts .. 13

2.1.1. Distributed Systems..13
2.1.2. Computer Supported Cooperative Work (CSCW)..15
2.1.3. Groupware ..18
2.1.4. Peer-to-Peer (P2P) ..20
2.1.5. Communities...24
2.1.6. Push and Pull Technologies..26
2.1.7. Connectivity and Casual Connections ..28

2.2. Uses of Nomad... 30
2.2.1. Authoring..30
2.2.2. Student Administration...30
2.2.3. Route management ...31
2.2.4. Scientific research project...31
2.2.5. Software development ..32

2.3. Conclusion ... 33

3. The Nomad Protocol and the Simulator ..34
3.1. The Nomad Protocol Simulator (NPS) .. 34

3.1.1. Interface..35
3.1.2. Definitions ..37

3.1.2.1. Node ..37
3.1.2.2. Artifacts...39
3.1.2.3. Propagation node..40

3.2. NPS Assumptions .. 42
3.3. Nomad Protocol Properties .. 44

3.3.1. Setting up the community...44
3.3.1.1. According to the Nomad Protocol...44
3.3.1.2. Implementation of the Nomad Protocol Simulator..45

3.3.2. Simulating Node Connectivity ...51
3.3.2.1. Node available online ...52
3.3.2.2. Notify online..53
3.3.2.3. Node offline ...54

3.4. Node Types .. 55
3.4.1. TYPE 1 – Workstation..55
3.4.2. TYPE 2 – Mobile Laptop ...55
3.4.3. TYPE 3 – Mobile PDA...56

3.5. Management queues... 56
3.5.1. Transport Item ..56
3.5.2. Transfer and Receive queues ..59

4. Simulation Scenarios ...61
4.1. Influence of Artifact size.. 61

 - 4 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4.1.1. Scenario setup and description ...63
4.1.2. Requesting and transferring artifacts only ..64
4.1.3. Sending of artifact details ...66
4.1.4. Introducing the artifact size limit..69
4.1.5. Conclusion..72

4.2. Simple disconnection scenario... 73
4.2.1. Scenario setup and description ...73
4.2.2. Results ..75
4.2.3. Conclusion..76

4.3. Desired Effort Levels ... 77
4.3.1. Scenario setup and description ...77
4.3.2. Best effort approach..81
4.3.3. Require item ...86
4.3.4. Require item under any condition...94
4.3.5. Conclusion..94

5. Nomad and Mobile Agents..96
5.1. Introduction.. 96
5.2. Motivation.. 97
5.3. Integration of mobile agents into Nomad... 100
5.4. Final word and conclusion ... 101

6. Evaluation...102
6.1. Other Nomad Related Projects... 102

6.1.1. Systems overview...102
6.1.1.1. Novell iFolder ...102
6.1.1.2. SubethaEdit ...103
6.1.1.3. Microsoft Sharepoint...103
6.1.1.4. CoCoDoc...103
6.1.1.5. Basic Support for Collaborative Work (BSCW)..103
6.1.1.6. X-peers ..104

6.1.2. Systems comparison ...104
6.1.2.1. Functional Criteria ...104
6.1.2.2. Architectural Criteria..106
6.1.2.3. Focus Criteria ...106
6.1.2.4. Time Criteria...107
6.1.2.5. Platform Criteria...108
6.1.2.6. User involvement Criteria...109

6.1.3. Discussion...110
6.2. Comparison of similar mobile agent systems .. 112
6.3. Enabling technologies .. 114

6.3.1. .NET Framework ..115
6.3.1.1. Remoting - System.Runtime.Remoting...115
6.3.1.2. Reflection - System.Reflection ...117
6.3.1.3. .Net Version 2.0...118
6.3.1.4. Other technologies ..119

6.3.2. .Net Compact Framework...120
6.3.2.1. Lightweight Nomad ...120

6.4. Conclusion ... 121

7. Conclusion and future work ...122

8. References...125
8.1. Web References ... 127

 - 5 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

List of Figures

Figure 1 : CSCW Quadrants...16
Figure 2 : Centralized file transfer..21
Figure 3 : Decentralized file transfer ..22
Figure 4 : Nomad file transfer ..23
Figure 5 : High level community diagram..25
Figure 6 : Push vs. Pull model..26
Figure 7 : NPS high level class diagram...34
Figure 8 : Simulator options form ..35
Figure 9 : Nomad Protocol Simulator form..36
Figure 10 : SimNode class diagram..38
Figure 11 : SimArtifact Constructor ...39
Figure 12 : SimArtifactDetails constructor...40
Figure 13 : Use of a propagation node..41
Figure 14 : Enumerations used in the NPS...44
Figure 15 : Senders information embedded within email ...45
Figure 16 : Simulating the setup of a Nomad project via email ...46
Figure 17 : SimEmail and SimEmailContent class diagrams ...47
Figure 18 : SimEmail and SimEmailContent constructors ...48
Figure 19 : Simulating sending of email between nodes ..49
Figure 20 : Pseudo code for the NPS getEmail function ..50
Figure 21 : Project detail classes as in NPS..50
Figure 22 : Project details...51
Figure 23 : Typical project data for the NPS..51
Figure 24 : Pseudo code for the NPS goOnline function..52
Figure 25 : Pseudo code for the NPS notifyOnline function ..54
Figure 26 : Creating an SimOnlineNotification..54
Figure 27 : SimTransportItem Constructor...57
Figure 28 : SimTransportItem ..58
Figure 29 : SimTransportItem and relation to NPS classes ..59
Figure 30 : Management Queues..60
Figure 31 : Initial transfer of artifacts...62
Figure 32 : NPS Artifact Size Scenario ..63
Figure 33 : Send artifact ...65
Figure 34 : Data traffic between nodes where artifact updates exist and the artifact is sent65
Figure 35 : Data traffic between nodes where artifact updates do not exist and the artifact is sent66
Figure 36 : Send Artifact Details ..67
Figure 37 : Artifact details structure...68
Figure 38 : Data traffic between nodes where artifact updates exist and the artifact details are sent68
Figure 39 : Data traffic between nodes where artifact updates do not exist and the artifact details are
sent ...69
Figure 40 : Combined Response...70
Figure 41 : Data traffic between nodes where artifact updates exist and the artifact sent dependant on
size..71
Figure 42 : Data traffic between nodes where artifact updates do not exist and the artifact sent
dependant on size ...71
Figure 43 : NPS Simple Disconnection Scenario ...73
Figure 44 : Simple disconnected scenario timeline ..74
Figure 45 : Data transferred in the simple disconnected scenario ..75
Figure 46 : Node counters for simple disconnected scenario ...76
Figure 47 : NPS desired effort level scenario ...77
Figure 48 : Pseudo code for the NPS transferItem function ...79
Figure 49 : Best approach scenario timeline...82
Figure 50 : Data transferred and received between nodes - Best Effort Approach.................................83
Figure 51 : Node Counters Best Effort approach ...84
Figure 52 : Retries per node in Best Effort approach ...84
Figure 53 : Data transferred and received - Best effort with single shopping list85

 - 6 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

Figure 54 : Node Counters - best effort with single shopping list ..85
Figure 55 : Require item scenario timeline...88
Figure 56 : Data transferred and received - Require item...90
Figure 57 : Node Counters for require item approach ..91
Figure 58 : Retry counts per node for require item approach ...92
Figure 59 : Data transferred and received - require item approach with single shopping list.................92
Figure 60 : Node Counters - require item approach with single shopping list93
Figure 61 : Retries per node in require item approach with a single shopping list.................................93
Figure 62 : Pluggable mobile agent system..100
Figure 63 : Remoting Server Object Types ..116

List of Tables

Table 1 : Characteristics of centralized and distributed systems ..13
Table 2 : Artifact Size Scenario Setup..63
Table 3 : Simple disconnection scenario setup...73
Table 4 : Desired effort levels scenario setup...77
Table 5 : Artifact versions on each node ..80
Table 6 : Artifact list on Node D before sending shopping list ..81
Table 7 : Artifact list on Node D after update ..83
Table 8 : Artifact list on Node D before sending shopping list ..87
Table 9 : Final artifact list of Node D at end of scenario..89
Table 10 : Functional criteria..105
Table 11 : Architectural Criteria...106
Table 12 : Focus Criteria ..107
Table 13 : Time Criteria ...108
Table 14 : Platform Criteria..109
Table 15 : User Involvement Criteria ...110
Table 16 : Combined systems comparison ...111
Table 17 : Nomad in comparison with other mobile agent projects ...113

 - 7 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

Papers from this thesis

Jiten Rama and Judith Bishop, A Survey and Comparison of CSCW Groupware Applications,

Proceedings of South African Institute of Computer Scientists and Information Technologists
(SAICSIT) 2006, 198 - 205, 2006.

Jiten Rama and Judith Bishop, Simulating a protocol for a casually connected distributed artifact

repository, submitted October 2006 to IEEE Transactions on Mobile Computing.

 - 8 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

1. Introduction

1. Introduction

1.1.

1.2.

Background to Nomad

In this section we give a brief overview of Nomad. We highlight the project’s history,

intentions and objectives.

Nomad is a framework for a distributed resource management system, with special

emphasis placed on the accessibility of information stored on detached devices, such

as personal computers, laptops, PDA’s and flash-disks. Nomad is intended to address

the emerging problem of information spread and neglect, where users have the same

copy of the same work, stored on various conventional devices, but no way to keep

track of where the most recent version resides. Nomad does not however restrict itself

to personal computing environments, but is also intended to be an information sharing

system in much larger contexts, such as project groups. Information gathering is only

performed on request from a user (pull-based-system), while information sharing on

any of the interacting devices is always active, as long as that device remains on and

connected to the network. [21]

1.1.1. Project History and Status

Nomad was conceived in June 2002, and begun without funding in that year. It

became a Microsoft/THRIP funded project in 2003. In 2004, the funding was diverted

to RoSCtor. In 2005, the project was started again in earnest, with the interest of

ELogics. At the time of writing, this work is supported by Microsoft, THRIP and

Elogics. At the time of writing, the first release of Nomad was being developed. It

aims to implement the basic framework, with extensibility being a main concern.

Problem Statement

This section provides a statement of the problem that this thesis intends to address.

The intention of this thesis spans from the design of the protocol with which Nomad

intends to handle disconnectivity and explore how the protocol may be improved to

handle a variety of scenarios. We show how the protocol will set up the community

 - 9 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

1. Introduction

via email, and maintain the distributed artifacts among the nodes. Nomad is intended

for a small closed community where members randomly or voluntarily, switch from

being online to offline. Nodes may be intended to go offline, due to working hours of

its user, or randomly due to a weak internet connection. The Nomad protocol takes

this into account and has the ability to handle such cases.

The proof of concept that this thesis bases its findings on has been developed in a way

which allows full customization of individual nodes. We aim to show 3 specific types

of nodes, namely, a workstation, a mobile laptop, and a PDA. Other node types can be

easily added. The characteristics of these nodes are shown in section 3.4. The

simulation will show how Nomad will be able to customize different reactions based

on the type of the node. Nomad is primarily used as a “best-effort-approach” to

gathering the most updated artifacts. Further emphasis will be placed on how Nomad

will be able to handle situations where nodes that are never online at the same time.

This could be it due to a variety of reasons, possibly from time zone differences, and

hence different working hours. These nodes will therefore never be able to gather

information from each directly. The ability of another node within a community to act

as a propagation node will resolve this problem. We investigate the advantages and

disadvantages of this approach.

1.3. Motivation

This section offers motivation of why this problem is important and why a solution

will be interesting.

Nomad is intended to be a CSCW tool. Nomad has been in the design phase for most

part of its life cycle thus far. The main reason emphasis has been placed on the design,

is due to the fact that Nomad should be made robust enough to handle current and

future technologies as well as be a usable tool for nomadic workers. In recent years,

enabling technologies such as the Microsoft .Net framework have allowed ease of

development, the ability to develop for multiple devices with a variety of connectivity

options and security aspects. But with the start of new technologies, arise the

problems of uncertainty of how these technologies will react under a variety of

situations. Furthermore, the Nomad requirements have changed over time to include a

variety of situations to which users have become accustomed. Simple examples are

 - 10 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

1. Introduction

ease of use and the ability for the application to run transparent to the user, with as

little user intervention as possible.

A simulated environment has the ability to show a number of situations under

controlled conditions. For this reason, it would be of utmost interest to evaluate how

the Nomad protocol will perform under a variety of environments. This will have a

direct impact on how Nomad will be expanded for future use. It may be shown that

certain objectives that Nomad intends to achieve may be overkill and might even have

a negative effect on the system.

1.4.

1.5.

The Need for a Simulator

The Nomad Protocol Simulator (NPS) has been developed and coded in parallel with

the first release of the actual Nomad application. The initial version of the Nomad

application will have the basic framework implemented, with hooks to include later

pluggable add-ons and new features. Once the initial version has been released, the

results gathered from this thesis will be consulted for development of future releases

of Nomad application. It is therefore necessary for this thesis to produce “close to real

life” results and iron out problems that Nomad might encounter in certain scenarios.

Contributions of this thesis

The intention of this thesis is to illustrate scenarios that Nomad will encounter, and

how the underlying protocol intends to realize each of these scenarios, with specific

emphasis on the connectivity aspect of the protocol. It is not intended to show Nomad

as the total application, since Nomad itself has many components. We do however

take a broad look at aspects that had a direct influence to the design of the NPS as

well as the perspective to which Nomad would fit into the current world. Some of

these topics include distributed systems, Computer Supported Cooperative Work

(CSCW) and peer to peer systems. This thesis intends to offer valuable insight and

reasons that led to use of a simulator, as well as outline the boundaries of the protocol

and provide a possible solution for Nomad. The Nomad Protocol Simulator (NPS)

intends to be a useful tool for determining outcomes from possible scenarios. The

results from the simulator will be taken into consideration for future releases of

Nomad. We do not place any emphasis on the security aspect, but it is discussed in the

future work section of this thesis.

 - 11 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

1. Introduction

1.6. Document Roadmap

This section provides a brief overview of the structure of this thesis. There are 8

chapters in total.

Chapter 1 provides a background to Nomad. We state and motivate the problem that

this text aims to address. In chapter 2, we take a broad look at central concepts

relevant in Nomad. These serve as background knowledge of this text. We compare

these concepts to related work and conclude by demonstrating uses of Nomad. In

chapter 3, we explore the proof of concept that this thesis presents. We show how the

Nomad Protocol Simulator (NPS), simulates aspects related to Nomad. We define

design considerations and assumptions made by the NPS. Chapter 4 presents the

scenarios developed for this text. The scenarios aim to provide a better insight to the

potential problems faced by Nomad, as well as provide a possible solution. We

discuss shortfalls, advantages and disadvantages of the intended protocol to be

implemented by Nomad. We provide possible solutions and highlight possible pitfalls

of the protocol. The scenarios illustrate concepts discussed and presented in previous

chapters of this text. Much work has been done with regard to the possibility of the

integration of mobile agents in Nomad. In chapter 5, we discuss and motivate this

concept. We show advantages and disadvantages of the use of mobile agents in

Nomad. We conclude this chapter with reasons of why this concept will not be

implemented in the first release of Nomad, and hence was not included in the NPS.

Chapter 6 evaluates Nomad against other related Computer Supported Cooperative

Work (CSCW) systems as well as similar mobile agent systems. We discuss the

differences and similarities relating to these projects. This chapter also takes a look at

features of the .Net framework of interest to Nomad. The .Net framework is the

enabling technology that the NPS has been developed on and the framework that

Nomad is currently being developed on. The concluding chapter, chapter 7, sums up

the main findings of this text. We look at possible future work, extensions and

improvements of Nomad and the NPS.

 - 12 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

2. Background and Related work

2. Background and Related work

2.1. Central Concepts

2.1.1. Distributed Systems

In order to distinguish what a distributed system is, we need to understand what it is

not. Table 1, tabulated from Emmerich [38], differentiates a centralized system to that

of a distributed system.

Centralized system Distributed system
Has non-autonomous components Has autonomous components

Often built on homogeneous technology Often built on heterogeneous technology

Multiple users share resources of a

centralized system at any time

A single user allows exclusive access to

unshared components

There is only a single point of control,

and therefore, a single point of failure

There are multiple points of control, and

therefore, a multiple points of failure
Table 1 : Characteristics of centralized and distributed systems

Emmerich [38] states that distributed systems aim to provide the following non-

functional requirements:

• Scalability

• Openness

• Heterogeneity

• Resource sharing

• Fault tolerance

Nomad has been in the design phase for most part of its lifecycle. We now take a look

at how Nomad meets, or intends to meet the non-functional requirements of a

distributed system.

 - 13 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

2. Background and Related work

Scalability denotes the ability of a system to accommodate growth, be it expected or

not. Nomad intends to host a small community. The NPS has shown that the protocol

allows for scalability of a small community in terms of number of users. For the

purposes of this thesis, we assume that the number of nodes in the small community is

a maximum of 10 nodes, and the average community is between 3 and 8 nodes. This

by no means suggests that the protocol will be unable to handle a larger number of

nodes. Nomad has a decentralized architecture, and the design accommodates for a

server-less environment. This allows for concurrent users to share their processing

and data load. In terms of geographic scalability, Nomad uses the internet and email

as its backbone. Therefore, Nomad can scale geographically, as long as there is a

valid internet connection.

Openness denotes the ability to easily modify and extend the system. The intention of

Nomad is to have an initial basic framework, and later add extensions as needed. An

intended extension in the near future is to add mobile agents. This is further discussed

in section 5.

Heterogeneity of components arises from the use of different technologies within the

system. This could be caused by the use of a variety of programming languages,

operating systems, hardware platforms and network protocols. Nomad allows for a

variety of hardware components. These span from, but not exclusive of, PDA’s,

workstations and laptops. Current development on Nomad is undertaken on the

Microsoft .Net framework. .Net facilitates for well known protocols, variety of

devices, and multiple programming language support [30]. Mono is the .Net

equivalent for the Linux operating system. For these reasons, .Net has been chosen as

the development tool for Nomad.

Hardware, software and data form part of resources in a distributed system. In

Nomad, a propagation node is a shared resource. This node would be accessed under

certain scenarios as described in section 3.1.2.3. Each node has particular user-defined

sections, which store the artifacts per project. Security therefore becomes an aspect

for Nomad. Although security is not covered in this thesis, it is planned for future

work.

 - 14 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

2. Background and Related work

Fault tolerance of a system demands that operations continue, even in the presence of

faults. Nomad has the ability to continue even if a particular node is offline, or not

available, and hence not in the community. Error prone connections, due to weak

connections are handled as well. Replication in Nomad could be facilitated by a

propagation node. Peer to peer systems are generally fault tolerant. Section 2.1.4

discusses how Nomad relates to the P2P architecture.

Along with the above requirements, it is often the case that designers of distributed

systems hide the complexities of the distributed components from the end user. This is

termed transparency. Nomad intends to have minimum user interaction. If the user

invokes Nomad, Nomad would create connections to other nodes, gather the needed

artifacts, queue requests if needed, integrate the newer updates into the project, and

update possible dependencies. All these operations would be transparent to the user,

and independent of the location.

2.1.2. Computer Supported Cooperative Work (CSCW)

Computer Supported Cooperative Work (CSCW) is the study of how people use

technology, with relation to hardware and software, to work together in shared time

and space. CSCW began as an effort by technologists to learn from anyone whom

could help better understand group activity and how one could use technology to

support people in their work. These specialists ranged from vast areas of research,

which spanned, but not exclusive of, economists, social psychologists,

anthropologists, organizational theorists and educators. [16]

Technology already plays an important aspect in our everyday lives. From the advent

of the first telephone, to the current usage of email, cellular phones and instant

messaging, humans continue to be social creatures, who aim to keep in touch,

whenever and wherever. In fact, emails and cellular phones are tools of CSCW. In

addition, it was found that instant messaging [7] is a CSCW tool. A more recent tool

which has made an impact in the social arena of CSCW is blogging [8]. Blogging is a

web based communication tool which allows individuals, small groups with a limited

audience to share information. Personal views are placed in the commonplace of

worldwide criticism. The aim of these systems is to give us the ability to collaborate

and communicate at will. Each system is used under different scenarios.

 - 15 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

2. Background and Related work

There are two dimensions of CSCW. These are space and time. Figure 1 shows

examples relevant to this study in the usual CSCW quadrants..

TIME

Same Time Different Time
(Asynchronous) (Synchronous)

Figure 1 : CSCW Quadrants

We illustrate these concepts by means of the following example. Assume David and

Andrei are working on the same project. They are collaborators in a project.

If David and Andrei need to share information immediately, they are sharing their

time. This is termed synchronous. An example of this is the cellular phone. Although

the collaborators are not in the same place, each individual is connected by the time

that they share for the duration of the phone call. This example would fall in the 3rd

CSCW quadrant.

If David sends Andrei an email, they are not sharing time. This is termed

asynchronous. Andrei will only have the information once he reads the email. This

example would fall in the 4th CSCW quadrant.

In the examples above, David and Andrei are not in the same place when the

information is shared. They are therefore distributed. The following examples show

synchronous and asynchronous situations where the collaborators are in the same

place.

1st Quadrant

Spontaneous collaborations,
formal meetings, classrooms

3rd Quadrant

Video conferencing, net
meetings, phone calls

2nd Quadrant

Design rooms, Project
scheduling

4th Quadrant

Emails, writing, voice mails,
fax

SP
A

C
E

D
is

tri
bu

te
d

Sa
m

e
Sp

ac
e

 - 16 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

2. Background and Related work

Information sharing can take place when David and Andrei meet for a cup of tea at tea

time to discuss the project. Although this is a spontaneous collaboration, information

is still shared between the two collaborators. They share the same place, and share the

same time. This example would fall in the 1st CSCW quadrant.

David and Andrei occasionally visit the company’s intranet blog, where other team

members share their ideas, new found bugs, bug fixes and see the general status of the

projects they work on. They hence share the same place, but visit the web-blog at

different times. The information shared in this instance need not be shared

immediately and is generally formed over time, but is still relevant to the totality of

the project. This example would fall in the 2nd CSCW quadrant.

Nomad falls in the in the 4th CSCW quadrant. Nomad aims to provide collaborators

which do not share time or space to easily collaborate and communicate as a virtual

team and co-exist in a community. The terms virtual team and community is discussed

in section 2.1.5 of this text. MOTION ([14],[15]) is a comparable project, similar to

Nomad, which supports the collaboration of nomadic workers. Other projects which

are considered CSCW based are Novell iFolder [48], SubethaEdit [50], Microsoft

Sharepoint [44], CoCoDoc [13], Basic Support for Collaborative Work (BSCW)

([4],[5],[6],[7]) and X-peers [52]. These systems are compared directly with Nomad

in section 6.1.

CSCW is a multidisciplinary, which has gained the interest from many fields [16]. For

example, in the 2004 CSCW conference [9], papers were received from the medical,

social, gaming, organizational and computer disciplines. From a broad view, one can

say that each discipline showed the effect that CSCW has on their everyday

collaborations, and how communication could be improved between collaborators. In

a recent paper [10], the authors look at the evolution of the CSCW research from its

inception to 2004. Among their discoveries, they noted that over time, new CSCW

members entered the community, along with old members playing an influential role

in the CSCW community. New members could play an influence in defining CSCW

and where it is heading, although core members would not allow it too stray to far

from the original intentions. The challenge of CSCW being multidisciplinary is that a

single word, used in a different context, has a different meaning for different groups

 - 17 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

2. Background and Related work

with different global background. A simple word could be interpreted differently by

an individual. Each individual has different priorities, and hence a different

perspective of CSCW. One might oversimplify or over generalize, and in doing so,

might overlook important distinctions. An example could be the word

“implementation”. To a developer, implementation could denote a very detailed

coded algorithm. To an information systems manager, implementation might mean the

introduction of a new system to a company. No one assumes that everyone is

expected to talk in the same language, but we could help in the way that we

communicate with each other. We note what people have to offer and decide if is in

our interest to acknowledge it. [16]

Although CSCW and Groupware are difficult to define, and no single definition

satisfies everyone, there are individual conferences held for each. CSCW is used to

define the research and Groupware defines the technology [16]. It is also common to

differentiate between these terms so that Groupware is technologically focused and

narrows the social forms of cooperation that CSCW spans. [23]

For the purposes of this text, we make a distinction between CSCW and Groupware.

Groupware is considered the enabling technology, be it hardware, software, services

and/or techniques, which allows people to work in groups. CSCW, on the other hand,

focuses on the study of tools and techniques of groupware as well as their

psychological, social, and organizational impact. We now discuss Groupware, and

aspects relating to Groupware.

2.1.3. Groupware

Groupware also known as collaborative software [23], allows many concurrent users

to work on the same project. Whereas a single user system focuses on the individual,

Groupware focuses on the group. What advantages does a Groupware system offer

when compared to a single user system? When working on a project where

communication is essential between collaborators, Groupware facilitates

communication faster and clearer, and enables communication where it would not

otherwise be possible. It aims to allow multiple perspectives, expertise and assistance

with group problem solving. It aims to save time and cost in coordinating group work.

 - 18 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

2. Background and Related work

With this in mind, Groupware is far more complex to design and maintain than a

single user system.

As stated earlier, blogging is a tool for CSCW. Blogging itself is not defined as

groupware, but the blogging system and infrastructure which allow groups to

communicate and collaborate via web pages. It is possible to maintain different

identities, comment on other people’s views and allow collaborators to manage and

coordinate multiple posts, or projects. These features qualify blogging as a group

support technology. The general approach of groupware, as will be seen with each of

the systems compared in section 6.1, is to allow distributed members in a group to

collaborate through some type of infrastructure. The type of infrastructure is

dependant on the service the system aims to offer.

Design

Groupware is generally created around the users of the system. Understanding of the

context of how the system will be used within the group is essential. Analysis of the

type of users and their intentional use of the system is crucial. The system is being

created for the user. The user has to accept the system and group has to adopt use of

the system. For example; users might refuse to use the system if the system is not easy

to use or understand. This would result in a failed system. Prinz [39] confirms the

changing nature of groupware. Requirements pose a problem when they are changed

over time, and much time can be spent on formal processes. Prinz abandons these

formal processes and opts for using scenario based understanding; rapid prototyping

and user driven priorities. Similar problems were faced with Nomad. Nomad

remained in the design phase due to changing requirements, deeper understanding of

the user’s needs and assumptions of outcomes based only on “gut feel”. In this

respect, the design and creation of the Nomad Protocol Simulator (NPS) aimed to

clear idealistic views of Nomad, show possible pitfalls and possible improvements to

the protocol. Scenario based events form a core part of the NPS. The questions of

“What if” and “is this possible” are not only answered, but evidently proved. We

now consider some design aspects relating to Nomad and its users.

In Nomad, collaborators are content to receive an artifact which might not be the

latest version of the artifact. The collaborators would like a global view of the status

 - 19 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

2. Background and Related work

of the project, or status of only part of the project. The best effort approach to

collecting artifacts is sufficient, although this text offers alternate approaches for

certain scenarios discussed in section 4.3.

Communities are made up of a number of nodes. The smallest community will have

two nodes. And since it is expected that the system has a 100% uptime, Nomad

should handle the special case where both nodes are never online at the same time.

Communities are discussed in section 2.1.5.

Users will be mobile for most part of the project lifetime. They could connect to the

community for short periods of time, using any available internet connection. Nomad

thus has to handle a variety of heterogeneous internet connectivity protocols used by a

variety of devices. We look at possible internet connections that the NPS assumes in

section 3.4.

Although there are many aspects relating to Groupware, the design of Nomad was

given special attention. Particular care had to be made regarding transparency and

ease of use. The initial release of Nomad is intended only as a proof-of-concept. Once

this can be demonstrated, Nomad will continue to blossom and new features and

“nice-to-haves” will be added.

2.1.4. Peer-to-Peer (P2P)

Peer to peer (P2P) networks have gained acceptance and their applications are

synonyms with file sharing. More focus though has been brought onto P2P networks

due to the legality struggle with the Napster architecture in the recent years. With

this, many new P2P networks have spawned off, including the Gnutella architecture

which, unlike the Napster centralized architecture, is based on a decentralized

architecture. Androutsellis-Theotokis [33] has prepared a detailed analysis of these

systems, and a wide range of other P2P systems. Iamnitchi [2] states that P2P

networks are preferred due to their ability to operate robustly in dynamic

environments. Furthermore Cugola [15] states that uncoupling from the client-server

architecture is better for mobility since it frees clients from coupling with servers and

allows an arbitrarily large and continuously changing set of nodes to be accessed at

 - 20 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

2. Background and Related work

once. Therefore the search space is dispersed over the nodes. We take a broad look at

these types of systems in this section.

Central Server

Figure 2 : Centralized file transfer

A centralized architecture normally consists of one or more centralized server(s)

which contains indexes of files that exist on each node in the network. Figure 2

illustrates the idea behind file downloading in a centralized architecture. The

requestor node, Node1, queries the central server. The server replies with a search

response. If a match for the file is found, information of the node that has the

requested file is sent with the search result. The requestor node then transfers the file

from the node that has the file. Lan[18] states that the centralized architecture suffers

from two limitations. Firstly, the indexing server could be a bottleneck and single

point of failure. Secondly, since the indexing information on the server is refreshed

periodically; the indexing server could return stale information to requesting peers.

The files could have been deleted at a peer, but since the server does not acknowledge

this until a refresh, stale information is still sent.

Node1 Node2

1. Search
query 2. Search result with node 2

information

3. File transfer

 - 21 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

2. Background and Related work

5. File transfer Servant 1

Figure 3 : Decentralized file transfer

In a decentralized P2P system, all peers are the same, except for the files they share.

Each node acts as a client and server. This is termed servant [51]. There is no single

point of failure, nor is quality of the network compromised if a node is removed.

There is no global index and no central coordination. Figure 3 illustrates the idea

behind a file transfer in a decentralized architecture. Servant 1 is the requestor.

Servant 1 queries the nodes closest to it, in this case Servant 2. Servant 2 then queries

all the nodes that it is close to, Servants 3-6. Search requests typically have a time to

live (TTL) counter [33], which decrements on each hop. Once this value reaches zero,

the message is dropped. This normally determines the depth of the search. Since

Servant 6 has the requested file, it returns with the search result along with its info.

This information contains the IP address, port, node transfer speed and number of file

matches.

Overlay networks combine centralized aspects into decentralized architectures [33].

Certain nodes assume a more important role and are aptly named super nodes. These

nodes are dynamically assigned, so failure in a super node will not cause a failure, but

merely a newly assigned super node.

Nomad tends to have a single depth search, since each node is aware of the other

node, yet there is no central server maintaining the indexes of each node. The number

of nodes in the community is small, so this approach is feasible.

1. Search query

Servant 3 Servant 4 Servant 5 Servant 6

2. Search query 2. Search query 2. Search query 2. Search query

4. Search result
with Servant6 info

3. Search result
with Servant6 info Servant 2

 - 22 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

2. Background and Related work

Figure 4 : Nomad file transfer

Figure 4 illustrates the idea behind a file transfer in Nomad. The requesting node,

Servant 1, sends a request to all online nodes. If a search is successful, a search

response is sent back along with nodes information. Special cases exist where

requests are made while certain nodes are offline. The files or requests are sent to

propagation nodes. The propagation node adds a centralized aspect to the architecture,

and like overlay networks, can be dynamically assigned. Propagation nodes are

discussed in section 3.1.2.3 of this text. Cugola [15] states that most current P2P

based file sharing applications are content with a best-effort approach. An empty

result set is acceptable, even though the file is within the P2P network. This is not

acceptable in enterprise applications. Nomad is not intended to be an enterprise

application, so the best effort is acceptable. If a user requires an artifact from a node

that is offline at the time of the request, Nomad has the ability to change its effort

levels to allow a requestor to receive the required file via a propagation node. Desired

effort levels are discussed in section 4.3 of this text.

Failures are inevitable. In an individual system, a hard-drive could crash; one could

suffer from a network failure or a loss of power. In the case of P2P, failures could be a

bit more complex [29]. Designers of P2P systems should be able to anticipate and

handle software failures, partial or total communication interruption and users who

join and leave the community independently at will, regardless of time. Failures are

bound to happen, but the system should be able to tolerate such failures and more

importantly, recover from such failures.

Servant 2 Servant 3 Servant 4 Servant 5

1. Search query

Servant 1

1. Search query

1. Search query

2. Search
response and
information

3. File
transfer

1. Search query

 - 23 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

2. Background and Related work

Much work has been done with respect to P2P systems. These vary from

improvements to the protocol [42], considerable measurements over time ([17],[32]),

maintenance in the network [18] and comparison of search methods [36]. The NPS

intends to show the protocol in terms of events. The running simulation time of these

simulations is mostly under 20 minutes. The intention is to show that the intended

protocol will sufficiently maintain the nodes and allow them to interact.

2.1.5. Communities

A community or virtual community is defined as a set of members that share a

common goal. Communities are synonymous with small world networks ([1],[2]).

The goal of a community can be broken into individual projects. From the set of

community members, a subset works on each project. A high level diagram depicting

the notion of a community is shown in Figure 5. Individual members may overlap

between projects. Similar definitions are defined by Cugola [15] and Reif [14] for the

MOTION project. Khambatti [24] defines seers as being more influential peers.

Nomad defines every peer to be the same. All peers are on the same level.

A set of members that belong to a project are known as a virtual team. A virtual team

in Nomad consists of one project initiator and many project collaborators. The

project initiator acts like any other collaborator once it has sent the initial email to all

the collaborators. This is further discussed in section 3.3.1.

The members share common artifacts related to the project. Since this community

exists in the realms of cyberspace, they could have an online or offline status. The

community could therefore have a subset of online community members. We

therefore have a dynamic online community.

 - 24 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

2. Background and Related work

ad Community Diagram

Community

Project

Member

Artifact

{subset}

1

1..*+collaborators

1+is part
of

1..*+has

1..* +shared
by

1..*+works
on

1

+belong to

1..*

+have

1+belongs
to

1..*

+has

1
+initiator

1

Figure 5 : High level community diagram

One community can have many projects. Each project has many members and

artifacts. The artifacts that belong to the project are worked on and modified by the

members of the project.

A community has a cause and purpose, striving for a common goal. For example, the

goal could be to author a book. This community could have a single project. Each

member is a specialist in their field. Each member could be in charge of individual

chapters. Each of these chapters could be an artifact. If for example, the chapters were

too high level and each specialist worked on sections in the chapter, then each section

could relate to a single artifact. These artifacts could be code snippets, or pictures, in

fact this paragraph could be a single artifact. The granularity of an artifact and project

are choice driven by the intended members of the community. The artifacts therefore

vary in size. Artifacts within the project could have dependencies. For example, if a

code snippet was modified, the code output and related diagram could have been

modified. The code output and related diagram are therefore dependencies of the code

snippet. For the purposes of this thesis, artifact dependencies are not included.

Artifacts are further discussed in section 3.1.2.2.

 - 25 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

2. Background and Related work

2.1.6. Push and Pull Technologies

Cheverst [22] distinguishes the notion of push and pull as the intention of the user and

the dissemination of information. Information pull is defined as any information that

occurs due to a conscious initiation by the user. Information push, on the other hand,

is information that arrives at the user unexpectedly, but normally due to some

subscription to a service.

Hauswirth [25] contrasts the pull and push models as illustrated in Figure 6.

Request
Consumer Producer Reply

Figure 6 : Push vs. Pull model

The most common example of a pull system is web browser. Information is pulled off

the server when the website is accessed and delivered to your web browser. The

information would have not been accessed, nor would it have arrived at your web

browser if the website had not been accessed. The information was expected by the

user.

In a push based system, the user usually subscribes to a service to which updates are

received without the user having intended to receive this information. A common

example of this is an email news subscription. The user subscribes to the service and

thereafter receives email on a regular basis when it is published from the service. The

email is therefore pushed to the user. The infrastructure in this instance is the email

system. The user has the option to unsubscribe to the service to stop these messages.

In the case of Nomad, a user would unsubscribe from being a member of a project.

Producer

Subscribe

Consumer

Announce Push
Infrastructure

Publish Unsubscribe

Receive

Pull

Push

 - 26 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

2. Background and Related work

Nomad is intended to be a pull based system. Artifacts are sent to the user only on

demand. But Nomad does have push characteristics which make it both a push and

pull based system.

Nomad pulls artifacts from available online nodes when needed on a best effort

approach. But what happens if the node requires an item from a node which is never

online at the same time as it is? The node therefore resorts to using a propagation

node. It should be noted that there can be more than one propagation node within the

community. We discuss the flow of execution in the following example.

Suppose the two collaborators, Vishani and Meeshaal are never online at the same

time. Vishani requires an item from Meeshaal, but Meeshaal is never online when

Vishani is, due to working hours and time zone differences. This example assumes

one propagation node in the community. After a decided number of failed attempts,

set in the NPS as five, Vishani’s request is by design pushed onto the propagation

node. If there are more then one propagation node, the request is forwarded to all

available propagation nodes in the community. The propagation node attempts to send

the request to Meeshaal’s node, assuming that Vishani’s node might have the

incorrect IP address for Meeshaal’s node. After a desired number of attempts, the

propagation node waits until Meeshaal’s node becomes available. Generally the

propagation node attempts a single time before assuming that Meeshaal is offline.

When Meeshaal’s node is available, the propagation node pulls the required item from

Meeshaal’s node, mimicking a request from Vishani’s node and stores the required

item until such time that Vishani’s node is back online. When Vishani returns to work

the next day, she becomes available to the community. The propagation node then

pushes a notification to Vishani stating that the stored item is available. The reason

that this is done is that there might be more than one propagation node in the

community and therefore possibly multiple notifications that are returned to Vishani’s

node. Assuming the item is an artifact; Nomad selects the best artifact based on the

most updated version, and downloads the artifact from the selected propagation node.

If there is more than one possible selection and if user interaction is on, the Nomad

system prompts the user, Vishani, to choose her preferred provider. If however, there

is only one notification that is received, Vishani’s node will automatically pull the

 - 27 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

2. Background and Related work

artifact from the propagation node. If an update has been made, the user is notified.

This scenario is further discussed in section 3.1.2.3.

Another case where Nomad pushes information to its users is when an online

notification is sent. Any Nomad collaborator subscribes to online notifications and

emails implicitly when they become members of that project. Section 3.3.2.2

discusses this further in detail. A similar approach is followed by the MOTION [14]

project.

2.1.7. Connectivity and Casual Connections

If connectivity is the process of having direct access to a network, and being available

to the community, then disconnectivity is the process of disrupting the access to the

network and not being available to the community.

Local Area Network (LAN) connections have a strong connectivity whereas a

wireless connection is considered a weak connection. The reason for this is quite

apparent. A LAN connection has a less probability of having its connection disrupted,

although it is possible.

A fundamental problem in wireless ad-hoc networks is connectivity [3]. An ad-hoc

network needs to be well connected to be useful. A wireless connection has a higher

probability of having its connection disrupted. Examples of disrupted connectivity are

loss of signal or weak signal, battery loss, network coverage or moving out of an

access point range.

Reif [14] states that a system needs to have three modes of connectivity for nomadic

working. These modes are as follows:

• Connected mode: connectivity is strong and a direct connection to the Internet

is available from a fixed network node.

• Disconnected mode: the user has no network connectivity. The user can still

continue to work even though the user has no network connectivity.

• Ad-hoc mode: the user creates a spontaneous network between devices that is

weak and not optimal. None the less, collaboration still takes place.

 - 28 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

2. Background and Related work

A local repository is typically updated while the user is disconnected and the new

version is updated in a version control system when the user connects once again.

There is no need for Nomad to update any other central repository when it becomes

online again.

For the purposes of this text, we define intentional and unintentional disconnections.

An intentional disconnection is a disconnection that is expected by the user. A user

disconnecting when going home after a day’s work is an example of an intentional

disconnection. An unintentional disconnection is a disconnection that is not expected

by the user. The disconnection could be due to a weak network connection or a

sudden loss of power. For the purposes of this text, we state that an unintentional

disconnection is merely a special case of an intentional disconnection.

Tang [3] realizes a formula that calculates the probability that an ad-hoc network is

fully connected. An ad-hoc network would be most optimal when fully connected.

Nomad spans to host a variety of devices. We aim to provide the users with ways to

share files regardless of how connected or disconnected the community is. The files

are shared on a best effort approach, with an option to use a propagation node if a user

is not connected for a long enough period of time to pull the needed artifact from

another offline node.

The availability of hosts in a P2P system is a function of time [29]. Availability could

simply be stated as the host being online and accessible by the community. Bhagwan

[29] continues to state that measuring host availability can be misleading and instead

the unique ID of a host should be used instead. This approach is followed by the NPS.

Furthermore, in the simulation carried out on Overnet, a live P2P network, each host

entered and left the system 6.4 times a day on average, and a total of 20% of the hosts

arrive and depart every day [29]. These measurements were taken over a period of

seven days. These values are interesting since it shows that users vary their

availability due to time of day.

Users who access the community at will and at a variety of times could be dubbed as

casually connected users. They do not have a permanent connection to the

community, and are made available at their own discretion.

 - 29 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

2. Background and Related work

The concept of time difference could be due to users being globally dispersed and in

different time zones. Time therefore plays an important factor in Nomad. In section

2.2 we note some of the uses of Nomad. Time is a significant factor in each of these

cases.

2.2. Uses of Nomad

We now take a look at scenarios where Nomad can be used. These examples were

first noted by the members of the Nomad development team [21].

2.2.1. Authoring

Overview

This is a classic example of two authors working on the same book, article, document

or proposal. These “specialists” work on a single deliverable. They are distributed

worldwide and are highly mobile. Each author is responsible for parts of a

deliverable, and need to view other authors work to ensure that the deliverable forms

a unity.

Why Nomad?

• There is no guarantee as to the connection status or availability of each

worker.

• A best effort view of the document is acceptable. The workers do not need the

latest, complete version of the deliverable.

• The option exists to allow the latest copy of the deliverable if needed through

the use of alternate effort levels.

• The specialists roam between multiple connection points and use any available

internet connection point to collaborate.

2.2.2. Student Administration

Overview

In a complex environment, such as a university, multiple lecturers and tutors are

responsible for providing marks and comments on a student’s progress. University

management has received complaints from students that the marking of student

deliverables, such as assignments and projects, takes too long. Management would

 - 30 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

2. Background and Related work

like to view the progress of marking at any point in time. This would make it easy to

identify any bottlenecks in the marking process. Each marker is required to enter these

marks into a spreadsheet upon completion of marking.

Why Nomad?

• Because of the tedious nature of marking other peoples work, the markers

might decide to work in coffee shops. They will therefore only take their

PDA’s along to enter the marks and update via a wireless link offered by the

coffee shop.

• Some markers, especially the tutors, do not have constant internet connections.

They might choose to go online once or twice daily.

• Management would like to be able to draw a mark sheet at any given time

which will show the latest available marks.

2.2.3. Route management

Overview

A parcel delivery service company would like to be able to draw reports at any given

time of the day to show the progress of deliveries and pickups. These reports can be

used to re-route drivers to maximize throughput. The company makes use of freelance

drivers and therefore are not allowed to install tracking systems in their vehicles.

When a driver makes a stop, they are required to capture the client’s signature on their

PDA. The mobile device will then give instructions to the next stop.

Why Nomad?

• Drivers can only connect to the internet via a wireless internet connection,

such as GPRS. They might roam into areas that do not have internet

connectivity.

• Management requires a best effort view of the progress from all drivers.

• Drivers use mobile devices to capture and store their own progress.

2.2.4. Scientific research project

Overview

A non profit scientific research organization is doing research on the behavioral trends

of chimpanzees and would like to improve the collaboration between scientists. Some

 - 31 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

2. Background and Related work

of the scientists are situated in the remote areas of the African bush while others are

pursuing research in high tech laboratories. The financial support organization would

like to be able to view the current state of the deliverables at any given time.

Why Nomad?

• Researchers make use of mobile devices to capture and store data.

• Scientists work together to compile reports.

• We can introduce a data mining server, which use the results gathered from

the researches to identify trends. These reports will then be viewed, updated

and validated by the field researches. The server could act as a propagation

node in this case.

• Different media types will be shared. Field researchers might capture the

chimps on video while lab researchers might draw graphs and write long

boring reports. Each type simply represents an artifact.

2.2.5. Software development

Overview

Many software development companies want to improve their efficiency by working

a 24 hour day. This can be achieved by employing coders worldwide in different time

zones. Multiple coders will work on the same software component. This concept has

been realized in open source development movement. An example of such a system is

Sourceforge [49]. Open source projects usually have a controlling body or company

that is responsible for the requirements, quality and support of the software project.

The real power lies in the fact that potentially thousands of programmers solve the

same problem differently and the controlling bodies have the freedom to choose the

implementation they desire.

Why Nomad?

• Coders are distributed not only by space, but also by time.

• Nomad will assist the controlling bodies in retrieving the best available

version of artifacts based on their desired criteria.

• Coders may not be online constantly.

 - 32 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

2. Background and Related work

2.3. Conclusion

This chapter has introduced central concepts relevant to the understanding of the rest

of this thesis. We have shown Nomad to be a CSCW Groupware tool that allows

distributed members in a small community to collaborate via technologies such as

P2P. We discussed the design decisions for Nomad and highlight the use of the NPS.

We illustrate examples of how Nomad will allow collaboration. We continued to

show uses of Nomad and why Nomad would be useful in particular scenarios.

The chapter that follows introduces the NPS and design decisions regarding the NPS

and the Nomad protocol.

 - 33 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 34 -

3. The Nomad Protocol and the Simulator

3.1. The Nomad Protocol Simulator (NPS)
This section discusses the proof of concept for this thesis, the Nomad Protocol

Simulator (NPS). A high level class diagram is shown in Figure 7.

cd NPS High Level Class Diagram

Simulator

SimTransportItem

SimShoppingList

SimShoppingItem

SimShape

SimRequestFufilled

SimProjectInfo

SimProjectData

System.Windows.Forms.Form
SimOptionsForm

SimOnlineNotification

SimNodesList

SimNodeDetails

SimInternet

System.Windows.Forms.Form
Form1

SimEmailContent

SimEmail

SimEdge

SimArtefactDetails SimArtefact

SimNode

-forwarded_transport_item

-shoppinglist -request_fufilled

-project_data

+simInternet

+sim

-senders_node_info

-artefact_details -artefact

-project_data

-sim_internet

-fromNode

-toNode

Figure 7 : NPS high level class diagram

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 35 -

The NPS has been developed with the .Net version 1.1 Framework. Nomad is being

developed in the .Net version 2.0 Framework. The reason for this is due to the fact

that version 2.0 offers a wide range of new technologies that could easily be

implemented along with Nomad functionalities. We discuss some of these features in

section 6.3.1.3 of this text.

3.1.1. Interface

We take a brief look at the NPS user interface. This will create an understanding of

some of the terms later used in this text.

Figure 8 : Simulator options form

When the NPS is initiated, a windows form as in Figure 8 is shown. The form shows

the available scenarios. With each available scenario, relative choices are shown.

Figure 8 shows the “Scenario 2 - Artifact size, updates available” option selected.

With this selection, the best effort level is the selected effort level. With the “Artifact

Details” shopping list selection, the “Send Artifact” response type is not possible. The

reasons for these and similar restrictions will be revealed in section 4.1.

Once the NPS options have been selected, the simulation is started.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 36 -

Figure 9 : Nomad Protocol Simulator form

Figure 9 illustrates the graphical NPS. The top of the canvas depicts the activity of

each node in a graphical form. The NPS controls are situated on the bottom right. The

user interaction allows the NPS to take a user informed decision when the option

occurs. A pop up dialog box reveals the options, and based on the user’s selection, the

simulation continues.

When the timer counter is activated, an output file is created and the activity or node

counters of each node is captured every 5 seconds. This file is exported into a

customized Excel Spreadsheet to reveal the graphs seen in the scenario section of this

text. This will be used for analysis of the scenario.

The grid view on the bottom right gives an overview of the counters of each node.

These are definable with the type of scenario. Finally, the key depicting possible

items on the graphical canvas is shown at the bottom of the window.

Text output for every event that happens in the simulation during runtime is written to

the console window when running with a debugger. The option exists to redirect the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 37 -

output to a file if the debugging environment is not used. This file is used as a detailed

analysis of the events that occurred during the simulation.

3.1.2. Definitions
There are a variety of definitions that need to be mentioned before continuing. These

definitions are based on both Nomad and the NPS. Distinctions and similarities are

stated were possible.

3.1.2.1. Node
A Registered Node (RN) in Nomad is a system with processing power which has been

registered to be used in a Nomad project. The RN can contain multiple storage

resources, made available at its own discretion, to form part of the distributed

repository for the project. Each RN has a specified set of permissions to govern

additions, updates and removals of other RNs and the projects structure. Each Nomad

project will have its own set of RNs and together the RNs will form the entire

distributed repository for that project.

The RN has the ability to run Gatherer and will process requests from the Hunter [21].

For the purposes of the simulation, a node will host the functionality of the Hunter

and Gatherer process, but not make a clear definition of these two processes. The RN

will be called a node or SimNode with respect to the NPS and through the rest of this

text. The SimNode class is shown in Figure 10. Note that only relevant attributes and

methods are shown.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 38 -

cd NomadProtocolSimulator

SimNode
- sim_internet: SimInternet
- email_inbox: ArrayList
- other_nodes_for_this_project: ArrayList
- email_address_list: ArrayList
- possible_node_IP_address_list: ArrayList
- items_to_be_transferred: ArrayList
- items_received: Queue
- RandomGenerator: Random

+ «property» NodeId() : int
+ «property» NodeStatus() : E_NODE_STATUS
+ «property» UserType() : E_USER_TYPE
+ «property» EmailAddress() : string
+ «property» UserName() : string
+ «property» ProjectName() : string
+ «property» CurrentIPAddress() : string
+ «property» NodeType() : E_NODE_TYPE
+ «property» PropagationNode() : E_PROPAGATION_NODE
+ «property» NumberOfPossibleIPAddresses() : int
+ SimNode(E_USER_TYPE, string, int, int, int, string, Bitmap, E_NODE_TYPE, SimInternet, string, ArrayList, E_PROPAGATION_NODE)
+ Abort() : void
+ Run() : void
+ threadMainLoop() : void
+ draw(System.Windows.Forms.PaintEventArgs, int) : void
+ go_online() : void
+ notify_online(bool) : void
+ go_offline() : void
+ get_transfer_speed() : int
+ get_IP_at_index(int) : string
+ print_other_nodes_for_this_project_list() : void
+ get_ip_of_next_node_in_this_project_list(int, int*) : string
+ get_ip_from_node_id(int) : string
+ get_node_type_from_node_id(int) : E_NODE_TYPE
+ get_email_address_from_node_id(int) : string
+ update_artifact_list_for_node(int, ArrayList) : void
+ receive_online_notification(SimOnlineNotification) : void
+ update_collaborators_IP_address(int, string) : void
+ send_shopping_list_to_all_nodes(SimShoppingList, E_DESIRED_EFFORT_LEVEL) : void
+ send_to_all_propagation_nodes(SimTransportItem) : ArrayList
+ send_email() : void
+ send_email_to_specified_user(int) : void
+ add_email(SimEmail) : void
+ check_if_there_are_new_emails() : bool
+ get_email() : bool
+ clear_inbox() : void
+ parse_email(SimEmail) : void
+ add_email_address_to_node_address_list(string) : void
+ print_email_server_list() : void
+ add_project_data(SimProjectData) : void
+ get_project_info() : SimProjectInfo
+ parse_project_info(SimProjectInfo) : void
+ print_project_data() : void
+ setup_project_with_users_via_email() : void
+ work_on_artifact_by_name(string) : void
+ get_artifact_at_index(int, bool*) : SimArtefact
+ handle_recieved_artifact(SimArtefact) : void
+ handle_recieved_artifact_details(SimArtefactDetails, int) : void
+ add_artifact_to_artifact_list(SimArtefact) : void
+ update_artifact(SimArtefact) : void
+ add_to_items_recieved_queue(SimTransportItem) : void
+ transport_items_have_been_received() : bool
+ print_items_received_list() : void
+ handle_received_items() : void
+ add_to_requested_shopping_items_queue(SimShoppingList) : void
+ print_requested_shopping_items_queue() : void
+ handle_outstanding_requested_shopping_list() : void
+ handle_requested_shopping_list(SimShoppingList, E_DESIRED_EFFORT_LEVEL) : void
+ add_to_items_to_be_transferred_list(SimTransportItem) : void
+ print_items_to_be_transferred_list() : void
+ handle_items_to_be_transferred_list() : void
+ transmit_transport_item(SimTransportItem) : E_TRANSFER_ACTION
+ remove_request_from_items_to_be_transferred_queue(SimRequestFufilled) : void

Figure 10 : SimNode class diagram

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 39 -

3.1.2.2. Artifacts
An artifact, in terms of Nomad, is considered to be any “piece of information” that

relates to the project. This information could be, but not exclusive of, a paragraph of

text, a picture, a diagram, audio data or documents.

An extensive amount of research relating to the description and ontology of Nomad

artifacts has been done [37]. Nomad allows for artifact dependencies [21]. The work

relating to artifacts in Nomad are not in the context of this text. Interested readers

should reference the work discussed above.

For the purpose of the NPS, artifacts are considered to be data of any form and only

exist in the meta-data that describe the artifact.

public SimArtifact(string _artifactName,
 int _artifactSize,
 string _initialAuthorName,
 int _initialArtifactLocation)
{
 artifactName = _artifactName;
 artifactSize = _artifactSize;
 initialAuthorName = _initialAuthorName;
 initialArtifactLocation = _initialArtifactLocation;
 lastAuthorUpdateName = _initialAuthorName;
 lastArtifactLocation = _initialArtifactLocation;
 last_update_date_time = DateTime.Now;
 initial_date_time = last_update_date_time;
 artifact_handled = false;
}

Figure 11 : SimArtifact Constructor

Figure 11 shows the constructor for the SimArtifact object. When an artifact is

created, we issue the name, size, author and location of the artifact. The initial

timestamp and modified timestamp are the same on creation of the artifact. This

timestamp is taken of current time on the workstation running the NPS. Attributes

assigned within the constructor form the basis of the meta-data of the artifact.

When a user works on an artifact, the lastAuthorUpdateName, lastArtifactLocation

and last_update_date_time attributes are updated to that specific user’s details. The

artifactSize is incremented by 20 Simulator Kilo Bytes(simKB) to mimic change to

the artifact.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 40 -

public SimArtifactDetails(SimArtifact artifact)
{
 artifact_name = artifact.ArtifactName;
 artifact_size = artifact.ArtifactSize;
 artifact_last_update_time = artifact.LastUpdateDateTime;
}

Figure 12 : SimArtifactDetails constructor

As will be discussed in section 4.1.3, the option exists to send the details of the

artifact instead of the artifact itself. Figure 12 shows the constructor of the

SimArtifactDetails object.

In the NPS, an artifact is considered to be a later version if the last_update_date_time

attribute is of a later time than the one it is being compared to. Since we are running

the NPS on a single computer, the timestamp is relative to the artifacts. We note that

since the simulation does not take a long period to run, the creation and update times

are very close to one another as will be seen in section 4. Time differences are noted

in seconds or less. In Nomad, there is a more sophisticated analysis of what is

considered to be “the latest and best artifact” ([21],[37]).

For the purposes of the NPS, ownership of an artifact is not a necessity. At the time of

writing, the idea was to have the project details (section 3.3.1.2 and Figure 22) include

all artifact meta-data, and any user may be allowed to create an artifact. In the case of

the NPS, it was not considered a major issue as it was purely an implementation

concern of Nomad.

3.1.2.3. Propagation node

A propagation node is defined as any node in the community of the project that has

willingly subscribed to host an item for another node. Types of items are discussed in

section 3.5.1 of this text.

A propagation node has the following characteristics:

• It has typically no downtime (never offline by choice).

• It has a high storage capacity.

• It has a good internet connection.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 41 -

The propagation node is useful in scenarios where nodes are in different time zones,

and hence typically never online at the same time. Figure 13 illustrates this concept.

After the retry count of an item is reached, Node A will send the item to the

propagation node, Node C as a forwarded item. The item could be an artifact, or a

shopping list request, or any item which is hosted in a transport item. Section 3.5.1

has a detailed description of a transport item. The propagation node allows an item to

be sent on behalf of Node A that is about to go offline, and hosts the item until such

time as the addressed node, Node B, comes online.

Figure 13 : Use of a propagation node

Node B will send an online notification to all nodes when it becomes available once

again. The propagation node will react by forwarding the item it had been hosting for

Node C
Propagation node

(Online)

Node A
Not a Propagation node

(Online)

Node B
Not a Propagation node

(Offline)

Retry Failed

Node C
Propagation node

(Online)

Node A
Not a Propagation node

(Online)

Node B
Not a Propagation node

(Offline)

Forwarded
Item

Node C
Propagation node

(Online)

Node A
Not a Propagation node

(Offline)

Node B
Not a Propagation node

(Online)

Online
Notification

Forwarded
Item

Node A Node B
Not a Propagation node Not a Propagation node

(Online) (Online)

Request Fulfilled
(optional)

Node C
Propagation node

(Online)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 42 -

3.2.

the Node A. The propagation node then looks at the meta-data of the forwarded item,

and if needed, sends a request fulfilled reply to the requesting node, Node A. This is

optional tag within to the forwarded item and is illustrated in section 3.5.1.

There may be more than one propagation node in a project. But one propagation node

will be sufficient for the protocol. In the NPS, a propagation node is denoted by

yellow bold text, whereas all other nodes are denoted by a beige normal text.

NPS Assumptions
Since the NPS is to simulate aspects of Nomad, certain assumptions would need to be

made regarding the NPS. It will not be necessary to simulate every aspect of Nomad,

but core aspects would need to be implemented. The following is a list of assumptions

the NPS was based on:

I. Using one project.

It will not be necessary to simulate more than one project for the scope of the

scenario. Every other project will be handled in the same manner as the single

project illustrated in the NPS.

II. IP addresses are defined at compile time.

Each node can have one or more IP address, but will be configured at compile

time.

III. Based on the type of connection available and number of IP addresses available,

the IP address will be randomized next time node becomes available online.

IV. A node can be in one of the following states:

• ONLINE_WORKING // Color.Red

• ONLINE_NOT_WORKING // Color.Blue

• OFFLINE_WORKING // Color.Green

• OFFLINE_NOT_WORKING // Color.Gray

Note that this is dependant on both the user status and node status.

NOT_WORKING and WORKING denotes that the user is busy updating an

artifact. OFFLINE and ONLINE denotes the online status of a node.

V. There are two types of users:

• PROJECT_INITIATOR

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 43 -

• PROJECT_COLLABORATOR

 There can only be one PROJECT_INITIATOR but many

PROJECT_COLLABORATOR users in a project. It is the duty of the

PROJECT_INITIATOR to initiate first contact with other nodes via email.

This aspect is further illustrated in section 3.3.1.

VI. There are 3 types of nodes that are modeled

• TYPE1 (WORKSTATION)

• TYPE2 (WIRELESS LAPTOP)

• TYPE3 (PDA)

Each of these node types have specific attributes which will be modeled. For

example, a workstation will have a permanent IP address and a good stable

connection, whereas a laptop and PDA will have many IP addresses and a less

stable connection. The NPS has the ability to easily integrate a new type of

node if needed. The characteristics of each type are outlined in section 3.4 of

this text.

VII. Since the email service plays an important part of the protocol itself, as well as

the internet playing the part of the oracle (one who knows all), these two

systems have been modeled in the NPS. The SimInternet object plays the part of

knowing the state of all nodes in the simulator as well as creating connections

and transferring any form of “data” between nodes. Data is in the form of

emails, shopping lists, artifacts, project details, etc. These data items have been

further encapsulated into a SimTransportItem.

VIII. Simulator Kilo Bytes (simKB) .

The NPS uses Simulator Kilo Bytes (simKB) to signify the data unit used in

simulator. Values of interest are shown in this thesis where appropriate..

We use enumerations as defined in Figure 14 to illustrate concepts relevant to the

NPS. Only relevant enumerations are listed here. These enumerations are explained

within relevant sections of this text.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 44 -

cd NomadProtocolSimulator

«enumeration»
E_TYPE_OF_SHOPPING_LIST

«enumeration»
E_TRANSFER_ACTION

«enumeration»
E_TYPE_OF_TRANSPORT_ITEM

+ REMOTE_NODE_OFFLINE: int = 1
+ LOCAL_NODE_OFFLINE: int
+ RETRY_FAILED: int
+ COMPLETE: int
+ ERROR_FAILED: int

+ ARTEFACT: int = 1
+ SHOPPING_LIST: int
+ ARTEFACT_DETAILS: int
+ FORWARDED_REQUEST: int
+ FORWARDED_REQUEST_FUFILLED: int

+ ARTEFACT_NAME: int = 1
+ ARTEFACT_DETAILS: int

«enumeration»
E_REQUEST_FUFILLED

+ YES: int = 1
+ NO: int

«enumeration»
E_TYPE_OF_RESPONSE

+ SEND_ARTIFACT: int = 1
+ SEND_ARTIFACT_DETAILS: int
+ SEND_ARTIFACT_IF_UNDER_SIZE_LIMIT_ELSE_SEND_DETAILS: int

«enumeration»
E_TYPE_OF_REQUEST

+ DIRECT_REQUEST: int = 1
+ FORWARDED_REQUEST_NO_FURTHER_INTERACTION_NEEDED: int
+ FORWARDED_REQUEST_RESPOND_IF_REQUEST_FUFILLED: int

«enumeration»
E_PROPAGATION_NODE

«enumeration»
E_NODE_TYPE

«enumeration»
E_DESIRED_EFFORT_LEVEL

+ BEST_EFFORT: int = 1
+ USER_DEFINED: int
+ REQUIRE_ITEM: int
+ REQUIRE_ITEM_UNDER_ANY_CONDITION: int

+ TYPE1: int
+ TYPE2: int
+ TYPE3: int
+ TYPE_INVALID: int

+ YES: int = 1
+ NO: int

«enumeration»
E_USER_STATUS

«enumeration»
E_USER_TYPE

+ WORKING: int = 1
+ NOT_WORKING: int

+ PROJECT_INITIATOR: int = 1
+ PROJECT_COLLABORATOR: int

«enumeration»
E_NODE_STATUS

+ ONLINE: int = 1
+ OFFLINE: int

Figure 14 : Enumerations used in the NPS

3.3. Nomad Protocol Properties

This section relates the Nomad protocol to how the NPS is implemented. Where

necessary, this section begins by explaining how the Nomad protocol is expected to

be implemented, and how it has been implemented in the NPS. Certain properties are

only valid for the NPS, but mention is made to the relation of Nomad.

3.3.1. Setting up the community

For each project, communities of users are set up. This section illustrates the

technologies and technique of setting up a project.

3.3.1.1. According to the Nomad Protocol

The Nomad protocol relies on the email infrastructure to set up the community. A

node may belong to one or multiple projects. There exists one Project Initiator and

many Project Collaborators within a project. The onus is on the Project Initiator node

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 45 -

to send the initial email to all Project Collaborators. Figure 15 illustrates the

information embedded within the email.

Figure 15 : Senders information embedded within email

Once this is done, the Project Initiator node reacts like any other Project Collaborator

node. Once the Project Collaborator has received the setup email, Nomad parses the

email, which contains details of the Project Initiator. The Project Collaborator node

then contacts the Project Initiator to get the project details. The project details contain

the email addresses of all other nodes that belong to the project, and other project

related details, such as the list of artifacts within the project.

The Project Collaborator node sends an email to all nodes within the project. When a

Project Collaborator node receives an email, it parses the email. The email contains

the details of the other nodes name, IP address and other relevant information. Once

all nodes have sent emails to every other node in the list, the project is setup. Nodes

may enter and leave the community at any time. Bishop [21] further discusses this

process.

3.3.1.2. Implementation of the Nomad Protocol Simulator

 Figure 16 illustrates how the NPS sets the nodes at startup.

Current
IP

Address

Node
Unique

ID

E-mail
address

Propagation
Node
Flag

Node
Type

From: nodeA@nomad.com

To: nodeB@nomad.com , nodeC@nomad.com, nodeD@nomad.com …

….

mailto:nodeB@nomad.com
mailto:nodeC@nomad.com
mailto:nodeD@nomad.com
mailto:nodeA@nomad.com

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 46 -

sd
 S

et
up

 o
f p

ro
je

ct
 v

ia
 e

m
ai

l
Si

m
ul

at
or

«P
RO

JE
CT

 IN
IT

IA
TO

R»
Si

m
No

de
 :S

im
No

de
Si

m
In

te
rn

et

lo
op

 n

[n
um

_n
od

es
]

lo
op

 m

[n
um

_e
m

ai
ls]

Si
m

Em
ai

l

«P
RO

JE
CT

 C
O

LL
AB

O
RA

TO
R»

Si
m

No
de

lo
op

 o

[e
m

ai
l_

lis
t_

siz
e]

al
t O

NL
IN

E

[!O
NL

IN
E]

[e
lse

 O
NL

IN
E]

Si
m

Em
ai

l
lo

op
 p

[e
m

ai
l_

lis
t_

siz
e]

NO
TE

: N
od

e
at

 th
is

 ti
m

e
ha

s
al

l e
m

ai
l a

dd
re

ss
es

in
 p

ro
je

ct

NO
TE

: O
nc

e
al

l n
od

es
re

ci
ev

e
em

ai
ls

 fr
om

ev
er

y
ot

he
r n

od
e,

 p
ro

je
ct

is
 s

et
up

 b
et

w
ee

n
no

de
s

*S
et

up
(n

)

*a
dd

Em
ai

lA
dd

re
ss

(m
)

se
tP

ro
je

ct
Na

m
e(

pn
am

e)
em

ai
l:=

 c
re

at
eE

m
ai

l(p
_i

ni
tia

to
r,I

Pa
dd

re
ss

)

*a
dd

TO
Ad

dr
es

s(o
)

se
nd

Em
ai

l(e
m

ai
l)

[G
O

TM
AI

L]
:

em
ai

l:=
 g

et
Em

ai
l(s

et
up

)
[G

O
TM

AI
L]

: a
dd

_p
ro

j_
in

iti
at

or
_t

o_
no

de
_l

ist
cr

ea
te

Co
nn

ec
tio

n(
pr

oj
_i

ni
tia

to
r_

IP
)

[O
NL

IN
E]

: l
in

kT
oN

od
e(

pr
oj

_i
ni

tia
to

r)

[!O
NL

IN
E]

: *
re

try

Si
m

Pr
oj

ec
tIn

fo
:=

 g
et

_p
ro

je
ct

_i
nf

o(
)

pr
oj

ec
tIn

fo
:=

 p
ro

je
ct

_d
et

ai
ls(

vo
id

) em
ai

l:=
 c

re
at

eE
m

ai
l(p

_c
ol

la
bo

ra
to

r,I
Pa

dd
re

ss
)

ad
dT

O
Ad

dr
es

s(p
)

se
nd

Em
ai

l(e
m

ai
l)

[G
O

TM
AI

L]
: *

 e
m

ai
l:=

 g
et

Em
ai

l

[G
O

TM
AI

L]
: *

 e
m

ai
l:=

 g
et

Em
ai

l

[G
O

TM
AI

L]
: a

dd
/u

pd
at

e_
no

de
_l

ist
(e

m
ai

l)

[G
O

TM
AI

L]
: a

dd
/u

pd
at

e_
no

de
_l

ist
(e

m
ai

l)

Figure 16 : Simulating the setup of a Nomad project via email

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 47 -

As can be seen, the NPS follows the setup of Nomad closely. It should be noted that

within the NPS, only one project is set up. The same functionality would apply to

other projects that are setup. Adding more than one project would not be

advantageous at this point to the simulator.

The other aspect of importance would be the handling of email between nodes. Since

emails are used for a variety of reasons within Nomad, it would need to be simulated

within the NPS. Emails are sent at the initial project set up. They are also used to keep

nodes in sync with respect to IP addresses when they go offline during the same

period of time and go online with different IP addresses. This is further discussed in

the scenarios of section 4. Figure 17 illustrates the class diagrams for the classes used

to simulate email within the NPS.

cd NomadProtocolSimulator

SimEmailContent

- node_id: int
- current_IP_address: string
- node_email: string
- propagation_node: E_PROPAGATION_NODE
- node_type: E_NODE_TYPE

+ SimEmailContent(string, int, string, E_PROPAGATION_NODE, E_NODE_TYPE)
+ «property» NodeEmail() : string
+ «property» NodeId() : int
+ «property» CurrentIPAddress() : string
+ «property» PropagationNode() : E_PROPAGATION_NODE
+ «property» NodeType() : E_NODE_TYPE

SimEmail

+ to_email_address: ArrayList
- from_email_address: string
- date_time: DateTime
- senders_node_info: SimEmailContent
- email_read: bool

+ SimEmail(string, int, string, E_PROPAGATION_NODE, E_NODE_TYPE)
+ «property» SendersNodeInfo() : SimEmailContent
+ «property» EmailRead() : bool
+ «property» FromEmailAddress() : string
+ print_email(string) : void
+ add_to_email(string) : void

-senders_node_info

Figure 17 : SimEmail and SimEmailContent class diagrams

 Figure 18 show the constructors for the SimEmail and SimEmailContent objects of

the NPS. A single email can be sent to multiple addresses. The SimEmailContent

object acts as a wrapper for the particulars of the SimEmail object.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 48 -

/* SimEmailContent constructor*/
public SimEmailContent(string _node_email,
 int _node_id,
 string _current_IP_address,
 E_PROPAGATION_NODE _propagation_node,
 E_NODE_TYPE _node_type)
{

node_email = _node_email;
node_id = _node_id;
current_IP_address = _current_IP_address;
propagation_node = _propagation_node;
node_type = _node_type;

}

/* SimEmail constructor*/
public SimEmail(string _from_email_add,
 int _node_id,
 string _current_IP_address,
 E_PROPAGATION_NODE _propagation_node,
 E_NODE_TYPE _node_type)
{

/* create the array of addresses this email will be sent to*/
to_email_address = new ArrayList();
to_email_address = ArrayList.Synchronized(to_email_address);

from_email_address = _from_email_add; /* info of sender */
date_time = DateTime.Now; /* timestamp */
email_read = false; /* new email */

/*create the SimEmailContent for this email */
senders_node_info = new SimEmailContent(_from_email_add,
 _node_id,
 _current_IP_address,
 _propagation_node,
 _node_type);

}

Figure 18 : SimEmail and SimEmailContent constructors

Any node has the ability to create, send and receive an email. The email will be sent

to all nodes within the project. Within the NPS, a SimNode creates an instance of

SimEmail and sent through the SimInternet object to the inbox of the addressee.

Figure 19 illustrates the simulation of email between SimNodes.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator
sd

 Im
pl

em
en

ta
tio

n
of

 s
en

di
ng

 e
m

ai
l

Si
m

In
te

rn
et

Si
m

Em
ai

l

«s
 :

Fr
om

 E
m

ai
l»

Si
m

No
de

Si
m

Ed
ge

lo
op

 n

[n
um

_e
m

ai
l_

ad
dr

es
se

s]

«r
 :

Em
ai

l R
ec

ip
ie

nt
»

Si
m

No
de

lo
op

 q

[n
um

_m
ai

l_
in

_i
nb

ox
]

lo
op

 n

[n
um

_e
m

ai
ls_

in
_a

dd
re

ss_
lis

t]

se
nd

Em
ai

l

em
ai

l:=
 C

re
at

eE
m

ai
l(s

.e
m

ai
l_

ad
dr

es
s,s

.cu
rre

nt
IP

)

*e
m

ai
l.a

dd
Em

ai
l(n

)

*a
dd

TO
Ad

dr
es

s(n
)

up
da

te
Ed

ge
(s.

no
de

_i
d,

 n
.e

m
ai

lA
dd

re
ss,

 S
EN

D_
EM

AI
L)

up
da

te
Ed

ge
(S

EN
D_

EM
AI

L)

re
pa

in
t

up
da

te
Ed

ge
(ID

LE
)

se
nd

Em
ai

l(e
m

ai
l)

* r
ec

ip
ie

nt
_n

od
e_

id
:=

 d
et

er
m

in
e_

no
de

_i
d_

fro
m

_e
m

ai
l_

ad
de

ss(
em

ai
l.t

oa
dd

re
ss[

n]
)

ad
dT

oI
nb

ox
(re

cip
ie

nt
_n

od
e_

id
, e

m
ai

l)

*m
ar

kA
sR

ea
d(

em
ai

l.F
ro

m
Ad

dr
es

s,
q.

Fr
om

Ad
dr

es
s)

ad
d_

em
ai

l_
to

_i
nb

ox
(e

m
ai

l)

Figure 19 : Simulating sending of email between nodes

 - 49 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 50 -

public void getEmail()
{
 if (email_inbox.count > 0)
 {
 foreach (SimEmail email in email_inbox)
 {
 /* only read most recent emails */
 if (email.read == false)
 {
 if(email.senders_node_info.node_id in
 other_nodes_for_this_project)
 {
 updateIP(email.senders_node_info.node_id,
 email.senders_node_info.current_IP_address);
 }
 else
 {
 /* New User*/
 this.other_nodes_for_this_project.add(
 email.senders_node_info.node_id,
 email.senders_node_info.current_IP_address);
 email.email_read = true;
 }//end else
 }//end if
 }//end foreach
 email_inbox.clear();
 }//endif
}//end getEmail()

Figure 20 : Pseudo code for the NPS getEmail function

Figure 20 illustrates pseudo code for simulation of receiving email in the NPS. Once

the set up email has been received by the collaborator node, the collaborator node

then contacts the Project Initiator to get the project details. We define the detailed

project information in the NPS as depicted in Figure 21.

cd NomadProtocolSimulator

SimProjectInfo

- project_name: string
- project_users_email: ArrayList
- project_data: SimProjectData
- size: int

+ SimProjectInfo(string, ArrayList, SimProjectData)
+ «property» ProjectName() : string
+ «property» ProjectUsersEmail() : ArrayList
+ «property» ProjectData() : SimProjectData
+ «property» ProjectInfoSize() : int

SimProjectData

- project_artefacts: ArrayList

+ SimProjectData()
+ add_artefact_to_project_list(string) : void
+ print_project_artefacts(string) : void
+ data_size() : int
+ get_artefact_name_by_index(int) : string

-project_data

Figure 21 : Project detail classes as in NPS

The project details that are distributed within in the NPS are shown in Figure 22.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 51 -

 4 simKB 4 simKB per email address 4 simKB per artifact name

Artifact name in project

Figure 22 : Project details

The project has one name, a number or collaborators and a number of artifacts. The

artifacts are described by unique names. For the purposes of the scenarios in the NPS

for this text, all collaborator email addresses and artifact names are sent initially and

are not updated thereafter. These details can however be updated at any time. It

should be noted that each scenario in this text assumes the same startup procedure, in

which the project details are sent at startup.

Figure 23 : Typical project data for the NPS

Figure 23 illustrates a typical setup for the project data. The artifact names and emails

addresses are arbitrary and do not relate to any real life project and data.

3.3.2. Simulating Node Connectivity

An important aspect of the simulator is the ability to simulate the nodes online status.

This represents the online availability of the node and simulates the node connecting

to the community via an internet connection point.

Artifact name in project

4 simKB * 5 artifact names=20 simKB

Project Name

 4 simKB 4simKB * 4emails = 16 simKB

Collaborators Email

nodea@nomad.com

nodeb@nomad.com

nodec@nomad.com

noded@nomad.com

POLEO NOMAD PROJECT simple.cs

universe.jpg

brainstorm.bsm

answer2life.ans

 Total size of project data = 40 simKB

congratulations.mp3

Project Name Collaborators Email
addresses

Artifact name in project Collaborators Email
addresses

Artifact name in projectEmail address of each
Collaborator in project

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 52 -

3.3.2.1. Node available online

When a node becomes available online, and before it connects to the community, it

has to simulate acquiring of a new IP address and updating any new information about

other nodes which has become available via email. Each type of node follows a

different setup procedure to acquire the new IP address from the list of available IP’s.

Node types are discussed in section 3.4. The lists of IP addresses are hard coded at

compile time and any number of IP addressees may be assigned. Once a node has

been assigned with a new IP address, it checks for any new email. Figure 24

illustrates the functionality implemented in the NPS when a node goes online.

public void goOnline()
{
 bool thisNodesIPChanged = false;
 string previous_IP_address = this.CurrentIPAddress;

 /* -------- workstation ------------ */
 if(this.NodeType == E_NODE_TYPE.TYPE1)
 {
 thisNodesIPChanged = false;
 }
 /* ----------- laptop -------------- */
 else if (this.NodeType == E_NODE_TYPE.TYPE2)
 {
 rand = this.Random(10);
 if (rand > 5) /*50% chance of changing IP address*/
 {
 this.CurrentIPAddress = Random(possible_node_IP_address);
 thisNodesIPChanged = true;
 }
 else
 {
 thisNodesIPChanged = false;
 }//end else
 /* ------------ PDA --------------- */
 else if (this.NodeType == E_NODE_TYPE.TYPE3)
 {
 /* randomize to a new IP address */
 while (this.CurrentIPAddress == previous_IP_address)
 {
 this.CurrentIPAddress = Random(possible_node_IP_address);
 thisNodesIPChanged = true;
 }//end while
 }//end else

 /* Check if new email and update if necessary*/
 if (email_inbox.count > 0)
 {
 getEmail();
 }//end if

 /* Notify other collaborators that node is online*/
 notifyOnline(thisNodesIPChanged);

}//end goOnline()

Figure 24 : Pseudo code for the NPS goOnline function

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 53 -

3.3.2.2. Notify online

Once the node is online, it will contact the community to let them know that it is

available. The node tries to send an online notification to each collaborator in the

community. If it is unable to connect to the collaborator, since the collaborator might

be offline, the simulator checks if the user interaction is enabled.

If user interaction is enabled, the system asks the user if an email with the new IP

address should be sent to the collaborator that is not available. Depending on the

choice of the user, the system either sends or does not send an email. The choice has

been added since a user might have a TYPE3 node (PDA) and will not be online for a

long period of time. Therefore, it will be a futile task to send an email if it returns to

being offline soon.

If the user interaction is disabled, the system makes a decision dependant on the type

of node it is. If it is a node of TYPE1 or TYPE2, then the system will send the email

with the updated information. If it is a node of TYPE3, the system does not send the

email with the updated information.

public void notifyOnline(bool thisNodesIPChanged)
{
 bool sent = false;
 bool remote_node_online = false;

 SimOnlineNotification notify = new SimOnlineNotification(this.NodeId,
 this.CurrentIPAddress);

 /* attempt to send notification to each remote collaborator node*/
 foreach (SimNode remote_node in other_nodes_for_this_project)
 {
 remote_node_online = connect_to_remote_node(remote_node);
 if (remote_node_online == true)
 {
 send_online_notification(notify,remote_node.NodeId)
 }
 else /* remote node offline */
 {
 if (thisNodesIPChanged == true)
 {
 if (sim_internet.check_user_interaction_status() == ENABLED)
 {
 /* dialog box requiring YES or NO response*/
 choice = promptUser("Send email to offline user with
your new IP Address?");

 if (choice == Yes)
 {
 /* send an email to the offline remote node with*/
 /* this nodes new IP address */
 send_email_to_specified_user(remote_node.NodeId);

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 54 -

 }
 }
 else //automated
 {
 /* If this is a workstation or laptop */
 if ((this.NodeType == E_NODE_TYPE.TYPE1)
 || (this.NodeType == E_NODE_TYPE.TYPE2))
 {
 /* send an email to the offline remote node with */
 /* this nodes new IP address */
 /* so when remote offline node comes online, */
 /* will check IP and update their list */
 send_email_to_specified_user(remote_node.NodeId);
 }/* else if this is a PDA*/
 else if (this.NodeType == E_NODE_TYPE.TYPE3)
 {
 /* then don’t send email, since a node of this type */
 /*will probably be online for short period of time */
 }//end else
 }//end else
 }//end if /* thisNodesIPChanged */
 }//end else /* remote node offline */
 }//end foreach
}//end notifyOnline()

Figure 25 : Pseudo code for the NPS notifyOnline function

Figure 25 illustrates the functionality implemented for sending online notifications.

An online notification is simply the unique node id and the current IP address of the

node.

/*create an online notification */
SimOnlineNotification notification = new SimOnlineNotification
 (this.NodeId,
 this.CurrentIPAddress);

Figure 26 : Creating an SimOnlineNotification

Figure 26 shows a simple creation of a SimOnlineNotification. Since the online

notification is meant to be sent many times during a real life situation, and therefore

we aim to keep it as simple and small as possible. In the NPS, an online notification

counts as 4 simKB.

3.3.2.3. Node offline

A node simply changes its status to OFFLINE when it goes offline. The reason this

choice is so simplistic, is since it relates to real life as closely as possible. If a node

crashes or has a power loss, Nomad should have the ability to handle this situation.

This can happen regardless of the type of node.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 55 -

3.4. Node Types

After an intensive research into types of devices and protocols used to connect to the

internet, we categorize the types of devices into 3 classifications. For the purposes of

this text, the characteristics of each type described below are assumed to be true. Due

to the ever increasing processing power, mobile devices become more powerful. The

descriptions given below may not be accurate, but the classification is valid and made

for simplicity. The NPS has the ability to add a new type of node if necessary.

3.4.1. TYPE 1 – Workstation

The workstation forms the motivation of this type. This type of device is generally

online for long periods of time with very short, if at all down times. The workstation

is generally powered on for most of its lifetime.

The workstation is normally connected to a Local Area Network (LAN). The LAN

has the characteristics of having an excellent internet connection. The connection is

generally fast, stable and always available. The assigned IP address of the workstation

is normally unchanged, even if the system was temporarily offline.

There is an abundance of available space, processing power and memory on the

workstation. In the NPS, the simulated transfer speed for a node of TYPE1 is 30

simKB/sec.

3.4.2. TYPE 2 – Mobile Laptop

The mobile laptop forms the motivation of this type. This type of device is generally

online for long periods of time with many short down times. This could relate to a

laptop being moved from work to home or vice versa.

The laptop is typically connected to a LAN at work and a dialup connection at home.

The dialup connection could be through a normal phone line. The dialup connection

has the characteristics of having an average internet connection. The connection is

average, stable and always available on demand. The assigned IP address of the

laptop is normally changed when the system moves between places. It therefore has at

least two IP addresses.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 56 -

3.5.

There is an average amount of available space, processing power and memory on the

laptop. In the NPS, the simulated transfer speed for a node of TYPE2 is 20 simKB/sec.

3.4.3. TYPE 3 – Mobile PDA

The mobile Pocket Digital Assistant (PDA) forms the motivation of this type. This

type of device is generally online for short periods of time with large periods of down

time.

The PDA or similar mobile device typically connects to the internet via a Bluetooth

enabled cellular phone or the device might have its own wireless connectivity.

Connection in made by means of General Packet Radio Switching (GPRS) or 3G (3rd

Generation Networks). The GRPS and 3G connections have the characteristics of

having a generally medium to slow internet connection. Most coffee shops offer

wireless internet connections. The connection is generally expensive and therefore

only lasts short periods of time. The connection is poor, unstable and available only

where there is coverage. The assigned IP address of the PDA is never the same as it

roams between different connections.

There is a very small amount of available space, processing power and memory on the

PDA. In the NPS, the simulated transfer speed for a node of TYPE3 is 10 simKB/sec.

Management queues

The NPS simulates two management queues. An Items_to_be_transferred queue

and an Items_received queue. The Items_to_be_transferred queue manages the

items that are transferred from a specific node to other nodes. The Items_received

queue manages the items that are received from other nodes to a specific node. We

define a SimTransportItem which acts as a wrapper for any type of item that is sent

between nodes. We give an overview of how these items fit into the context of the

NPS.

3.5.1. Transport Item

In the initial design of the NPS, for the sake of simplicity we opted to transfer

individual items via the SimInternet object. The problem arose when the number of

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 57 -

items increased. With every new item defined, a new method defining the transferring

of the object in the SimInternet object had to be written.

We then introduced a SimTransportItem which served as a wrapper for any item that

was required to be transferred between nodes. We therefore had a single method in

the SimInternet object which meant a single entry point for any item to be transferred

between nodes. Figure 27 shows the constructor of the SimTransportItem.

public SimTransportItem(int _from_node,
 int _to_node,
 E_TYPE_OF_TRANSPORT_ITEM _type,
 E_DESIRED_EFFORT_LEVEL _effort_level)
{

/* populate local variables */
from_node = _from_node;
to_node = _to_node;
type_of_item = _type;
effort_level = _effort_level;

/* default charateristics of the Transport Item*/
number_of_retries = 0;
item_handled = false;

/** by default - the type of request is a DIRECT_REQUEST
*- only changed when request needs to be sent to
* propagation node*/
type_of_request = E_TYPE_OF_REQUEST.DIRECT_REQUEST;

/** default for forwarded requests - updated on change of
* type_of_request */
forwarded_from_node = _from_node;
forward_to_node = _to_node;
forward_request_id = -1; /*default*/
type_of_forward_request = E_TYPE_OF_REQUEST.DIRECT_REQUEST;

}

Figure 27 : SimTransportItem Constructor

Although it simplified the scalability of introducing new items, we observed an

increase in overhead for the SimInternet object since it is a shared object. The

overhead had an unnoticeable effect on performance. However, the shared object

allowed only a single item to be transferred between nodes at any one point in time.

This was acceptable since the NPS is based on events.

Figure 28 illustrates the SimTransportItem. The meta-data consists of origin and

destination of the item, type of item, effort level of delivering the item, a counter for

the number of times this item was attempted to be sent but failed, a handle flag and

the type of request.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 58 -

If the item is a forwarded item to a propagation node, additional meta-data is

populated describing information pertaining to the forwarded item.

The size of the item is dependant on the item being transferred. The total size is made

up from the item and an additional 20simKB for overhead of the class and wrapper.

SimTransportItem

Item Details

Figure 28 : SimTransportItem

A single item is wrapped within a SimTransportItem. The item could be one of the

following:

• ARTIFACT,

• SHOPPING_LIST,

• ARTIFACT_DETAILS,

• FORWARDED_REQUEST,

• FORWARDED_REQUEST_FUFILLED

A FORWARDED_REQUEST is an item that has been sent to a propagation node and

therefore has an embedded SimTransportItem which will be forwarded to the required

node. A FORWARDED_REQUEST_FUFILLED item is sent on behalf of the propagation

node to the requesting node (Forwarded from Node ID), denoting the success or

failure of forwarding the item to the desired node (Forward to node ID). Figure 29

Ef
fo

rt
 le

ve
l

Fr
om

 n
od

e

N
um

be
r o

f
re

tr
ie

s

To
 n

od
e

Ite
m

ha

nd
le

d

Ty
pe

 o
f

ite
m

Ty
pe

 o
f

re
qu

es
t

Forwarded Item Details

Fo
rw

ar
d

to

no
de

Fo
rw

ar
de

d
fr

om

U
ni

qu
e

fo
rw

ar
de

d
re

qu
es

t
Id

en
tif

ie
r

Ty
pe

 o
f

fo
rw

ar
d

re
qu

es
t

N
od

e

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 59 -

illustrates the relation of the SimTransportItem to other classes and enumerations in

the NPS.
cd NomadProtocolSimulator

«enumeration»
E_TYPE_OF_TRANSPORT_ITEM

+ ARTEFACT: int = 1
+ SHOPPING_LIST: int
+ ARTEFACT_DETAILS: int
+ FORWARDED_REQUEST: int
+ FORWARDED_REQUEST_FUFILLED: int

«enumeration»
E_DESIRED_EFFORT_LEVEL

+ BEST_EFFORT: int = 1
+ USER_DEFINED: int
+ REQUIRE_ITEM: int
+ REQUIRE_ITEM_UNDER_ANY_CONDITION: int

SimTransportItem

- from_node: int
- to_node: int
- number_of_retries: int
- type_of_item: E_TYPE_OF_TRANSPORT_ITEM
- effort_level: E_DESIRED_EFFORT_LEVEL
- type_of_request: E_TYPE_OF_REQUEST
- artefact: SimArtefact
- shoppinglist: SimShoppingList
- artefact_details: SimArtefactDetails
- forwarded_transport_item: SimTransportItem
- request_fufilled: SimRequestFufilled
- item_handled: bool
- forwarded_from_node: int
- forward_to_node: int
- forward_request_id: int
- type_of_forward_request: E_TYPE_OF_REQUEST

+ SimTransportItem(int, int, E_TYPE_OF_TRANSPORT_ITEM, E_DESIRED_EFFORT_LEVEL)
+ SimTransportItem()
+ «property» FromNode() : int
+ «property» ToNode() : int
+ «property» NumberOfRetries() : int
+ «property» ItemHandled() : bool
+ «property» TypeOfItem() : E_TYPE_OF_TRANSPORT_ITEM
+ «property» EffortLevel() : E_DESIRED_EFFORT_LEVEL
+ «property» TypeOfRequest() : E_TYPE_OF_REQUEST
+ «property» ForwardedFromNode() : int
+ «property» ForwardToNode() : int
+ «property» ForwardRequestID() : int
+ «property» TypeOfForwardedRequest() : E_TYPE_OF_REQUEST
+ add_artefact(SimArtefact) : void
+ get_artefact() : SimArtefact
+ add_shopping_list(SimShoppingList) : void
+ get_shopping_list() : SimShoppingList
+ add_artefact_details(SimArtefactDetails) : void
+ get_artefact_details() : SimArtefactDetails
+ change_request_type(E_TYPE_OF_REQUEST, int, int, int) : void
+ add_forwarded_request(SimTransportItem) : void
+ get_forwarded_request() : SimTransportItem
+ add_request_fufilled_item(SimRequestFufilled) : void
+ get_request_fufilled_item() : SimRequestFufilled
+ increment_number_of_retries() : void
+ get_item_size() : int
+ print_item_details(string) : void
+ Copy() : SimTransportItem

SimShoppingList

- shopping_list: ArrayList
- from_node_id: int
- to_node_id: int
- type_of_shopping_list: E_TYPE_OF_SHOPPING_LIST
- response_expected: E_TYPE_OF_RESPONSE

+ «property» FromNodeID() : int
+ «property» ToNodeID() : int
+ «property» TypeOfShoppingList() : E_TYPE_OF_SHOPPING_LIST
+ «property» ResponseExpected() : E_TYPE_OF_RESPONSE
+ SimShoppingList(E_TYPE_OF_SHOPPING_LIST, E_TYPE_OF_RESPONSE)
+ add_shopping_item(SimShoppingItem) : void
+ add_artefact_name(string) : void
+ add_artefact_detail(SimArtefactDetails) : void
+ shopping_list_size() : int
+ get_details() : ArrayList
+ print_info(string) : void
+ print_info() : void

SimRequestFufilled

- to_node: int
- from_node: int
- request_id: int
- request_fufilled: E_REQUEST_FUFILLED
- REQUEST_FUFILLED_SIZE: int = 4

+ SimRequestFufilled(int, int, int)
+ «property» ToNode() : int
+ «property» FromNode() : int
+ «property» RequestID() : int
+ «property» RequestFufilled() : E_REQUEST_FUFILLED
+ print_request_fufilled(string) : void
+ get_request_fufilled_size() : int

SimArtefactDetails

- artefact_name: string
- artefact_size: int
- artefact_last_update_time: DateTime
- SIM_ARTEFACT_DETAILS_SIZE: int = 12

+ SimArtefactDetails(SimArtefact)
+ «property» ArtefactName() : string
+ «property» ArtefactSize() : int
+ «property» ArtefactLastUpdateTime() : DateTime
+ print_info(string) : void
+ get_size() : int

SimArtefact

- last_update_date_time: DateTime
- initial_date_time: DateTime
- artefactName: string
- artefactSize: int
- initialAuthorName: string
- initialArtefactLocation: int
- lastAuthorUpdateName: string
- lastArtefactLocation: int
- artefact_handled: bool

+ SimArtefact(string, int, string, int)
+ SimArtefact()
+ «property» ArtefactName() : string
+ «property» ArtefactSize() : int
+ «property» InitialAuthorName() : string
+ «property» InitialArtefactLocation() : int
+ «property» LastAuthorUpdateName() : string
+ «property» LastArtefactLocation() : int
+ «property» LastUpdateDateTime() : DateTime
+ «property» ArtefactHandled() : bool
+ print_info() : void
+ print_detailed_info(int) : void
+ work_on_artefact(string, int) : void

-forwarded_transport_item
-effort_level

-type_of_item

-shoppinglist

-request_fufilled

-artefact_details

-artefact

Figure 29 : SimTransportItem and relation to NPS classes

3.5.2. Transfer and Receive queues

Once a SimTransportItem is created, the item is placed on the Items to be transferred

queue. The queue is responsible for transferring items to the required nodes via the

SimInternet object. It maintains the retry count of each item and increments the

“number of retries” counter on each failure of transferring an item.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

3. The Nomad Protocol and the Simulator

 - 60 -

Figure 30 : Management Queues

On a successful transfer, the item is added to the receiving nodes Items Received

queue. The embedded item is then identified and handled accordingly. Figure 30

illustrates a high level concept of the management queues. Although finer grain

details such as error checking is not shown, they have been implemented in the NPS.

SimInternet

Transport Item

Item

1. Item added to transport item

Items to be
Transferred Queue

2. Transport
item added to
transfer queue

3. Attempt to transfer
item. Increment retry

counter if failed to
transfer

4. Receive item

Received Items
Queue

Transport Item

5. De-queue item

6. Get encapsulated item

Item

7. Determine action based on
type of Item

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 61 -

4. Simulation Scenarios

Every scenario has the first node, generally Node A, defined as the Project Initiator.

All other nodes are defined as Project Collaborators. Each scenario creates the

community as defined in section 3.3.1.2. Hence the figures related to data transfer

and the number of emails includes the overhead caused by setting up of the project.

4.1. Influence of Artifact size

The initial thought process behind sending of artifacts is depicted in Figure 31. What

is noted is that the artifact name is processed and the artifact is sent across the

network. Since Nomad is to be used initially with small artifacts, such as lines of code

or small paragraphs, the chances are that these artifacts are fairly small and should be

transferred immediately across the network.

If the artifacts were small, they would not have a major effect on other online nodes.

But what if the size of these artifacts became larger? Since there is no version

checking on which artifact to send, this might cause a heavy overhead on the other

collaborator nodes. The worst case scenario is that a node gets an older artifact from

another collaborator. This wastes time and effort of both nodes.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 62 -

ad Transferring Artifacts

Artifact Transferiterative

Transfer From Node
«SimNode»

simInternet
«SimInternet»

Transfer To Node
«SimNode»

GetArtifact (artifactName,IPAddress)
Parse IPaddress

IPAddress
Valid?

Return

Check Node Id Online Node Status

Continue?

Return

Check Node Id
Online

COMPLETE?

Return

Retries
Count

Reached?
Return

Node Status

Get Artifact Artifact

Increment
Complete
Counter

Increment
Retry
Count

INVALID
IPAddress

Valid IP
Address

Check Status

ONLINE/OFFLINE

OFFLINE

COMPLETE

ONLINE

(artifactName,IPAddress)

RETRY_FAIL

Transfer Artifact

Check Status

ONLINE/OFFLINESTATUS

ONLINE OFFLINE

NOT
COMPLETE

Figure 31 : Initial transfer of artifacts

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 63 -

4.1.1. Scenario setup and description

This scenario is made up of the following nodes:

Node name Node Type

A TYPE1

B TYPE1

C TYPE1

D TYPE1
Table 2 : Artifact Size Scenario Setup

A visual description from the NPS is shown in Figure 32.

Figure 32 : NPS Artifact Size Scenario

This simulation is used to show the effect of artifact size and transfers over the

protocol. All nodes are workstations. There are no disconnections. The main idea is to

show the amount of data transferred for the artifacts only, artifact details and send

artifact if under size limit else send artifact details options in the NPS.

When the simulation starts, the project is setup amongst the nodes. Node D then

creates two artifacts, namely “Simple.cs” and “Universe.jpg”. “Simple.cs” is a small

artifact of size 100 simKB and “Universe.jpg” is a large artifact of size 1000 simKB.

Node A proceeds to create the same artifact “Simple.cs” and works on the artifact,

hence having the most updated version of “Simple.cs”. Node B proceeds to create the

artifact “Universe.jpg” and works on the artifact, hence having the most updated

version of “Universe.jpg”. We translate the most updated version of the artifact, as an

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 64 -

artifact that has the latest modification timestamp attached to the artifact. For further

details on artifacts, see section 3.1.2.2 of this text.

If the no update scenario is run, Node D works on “Simple.cs” and “Universe.jpg”. It

therefore has the most updated versions of these two artifacts and therefore does not

need an update from any other collaborator.

Node D creates a shopping list for “Simple.cs” and “Universe.jpg” and sends the

shopping list to all collaborators. For the simulations that follow, the type of shopping

list and type of response differ.

There are two types of shopping lists, artifact name and artifact details. For the latter

case, for the purposes of the simulation, the requesting node has to have the artifact

existent. The reason is that when the details of the artifact that exists on the

collaborator node are sent back to the requesting node, the requestor has to have

something to compare with.

There are three types of responses:

• Send the artifact that exists on the collaborator node;

• Send details of the artifact that exists on the collaborator node; or

• Send the artifact if it is under a certain size, else send details of the artifact that

exists on the collaborator node.

These responses are further discussed in the sections that follow.

4.1.2. Requesting and transferring artifacts only

In this situation, the requestor broadcasts its request to all available collaborator

nodes. The request simply contains the artifact name. If the node has the requested

artifact, it sends the artifact, regardless of the age of the artifact. Figure 33 illustrates

this concept.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 65 -

sd Artifact only
Requestor
SimNode:R

Collaborator
SimNode:C

alt Artifact Exists

[Exist]

[!Exist]

shoppingList(artifactName)

* Exists:= checkIfArtifactExists(name)

sendItem(artifact)

Figure 33 : Send artifact

If updates exist on other nodes, then the total data transferred from other nodes are as

in Figure 34. Node A transferred the updated version of “Simple.cs”. Node B

transferred the updated version of “Universe.jpg”.

Total Data Sent and Received Between Nodes - Updates Available - Send Artifact

28 68 68

1220

260

1040

0
84

0

200

400

600

800

1000

1200

1400

A B C D

Node Name

SimKB

Amount Data Received Amount Data Sent

Figure 34 : Data traffic between nodes where artifact updates exist and the artifact is sent

In the case where artifact updates do not exist, the same amount of data is sent

between the nodes. Figure 35 shows that even though there is no update that is made,

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 66 -

the artifact “Simple.cs” is transferred from Node A and the artifact “Universe.jpg”

transferred from Node B.

Total Data Sent and Received Between Nodes - No Update Available - Send Artifact

28 68 68

1220

260

1040

0
84

0

200

400

600

800

1000

1200

1400

A B C D

Node Name

SimKB

Amount Data Received Amount Data Sent

Figure 35 : Data traffic between nodes where artifact updates do not exist and the artifact is sent

There is an overhead caused by the requestor nodes on the collaborator nodes in the

case where no updates exist. The artifacts are transported over the network from the

collaborator nodes to the requestor nodes, only to be discarded by the requestor node.

It should be noted that Node C has no overhead. It received the request, but since it

had neither of the artifacts, nothing has been transferred back to the requestor.

4.1.3. Sending of artifact details

We need some way to reduce the overhead of the nodes if no updates exist. We take

another look at Figure 33.

If an artifact does not exist on a node, then we can allow the artifacts to be sent to the

requestor node. Furthermore, if the requestor node knows who the owner of the

artifact is, the requestor could request the artifact from the owner initially, and then

could update the artifact thereafter using the best effort approach.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 67 -

If an artifact exists on the node, then the details of the artifact on the requestor could

be sent as part of the shopping list to all collaborators. Only those collaborators whom

have a newer version of the artifact will respond to the shopping list.

The requestor has two options. If the artifact is small, the requestor could request that

any artifact newer than the version that exists on his node, be sent to him. If the size is

unknown, or rather large, the requestor could request that the details of the artifact

that exist on the collaborators node be sent to him. Once the artifact details of the

collaborator nodes reaches the requestor, the requestor can make an informed decision

on which artifact he would prefer, and request that artifact. Figure 36 illustrated this

concept.

sd Artifact details

Requestor
SimNode:R

Collaborator
SimNode:C

alt Artifact Exists

[Exist]

[!Exist]

alt Response Type

[Response = Send Artifact]

[Response = Send Artifact Details]

alt updateArtifact

[Newer]

[!Newer]

shoppingList(artifactDetails)

* Exists:= checkIfArtifactExists(artifactDetails)

Response:= getShoppingListResponse(shoppingList)

sendItem(artifact)

sendItem(artifactDetails)

Newer:= newerArtifact(artifactDetails)

shoppingList(artifactName)

sendItem(artifact)

Figure 36 : Send Artifact Details

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 68 -

We notice that there are more interactions between the nodes as compared to sending

the artifact only (see section 4.1.2). This is due to the sending of artifact details

between the nodes. Figure 37 shows the contents of the artifact details message.

 4 simKB 4 simKB 4 simKB

Last Updated Date & Time Artifact Name Artifact Size

Figure 37 : Artifact details structure

But will these interactions hold a heavier or lighter overhead on the collaborator

nodes?

If updates exist on other nodes, then the total data transferred from other nodes are as

in Figure 38. Node A transferred the updated version of “Simple.cs”. Node B

transferred the updated version of “Universe.jpg”. We compare these figures to that

of Figure 34. There is an increase in the amount of data that is transferred between the

nodes. This is expected due to the sending of the artifacts details message.

Total Data Sent and Received Between Nodes - Updates Available - Send Artifact
Details

92 132 132

1284

292

1072

0

276

0

200

400

600

800

1000

1200

1400

A B C D

Node Name

SimKB

Amount Data Received Amount Data Sent

Figure 38 : Data traffic between nodes where artifact updates exist and the artifact details are
sent

In the case were artifact updates do not exist, a reduced amount of data is transferred

between the nodes. Figure 39 demonstrates the reduced overhead on the collaborators

when the requestor has the latest version of the artifact initially. Although the artifact

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 69 -

“Simple.cs” exists on Node A and the artifact “Universe.jpg” exists on Node B, they

are older than the version that exists on the requestor node, Node D. They are

therefore not transferred as they ultimately would be discarded on Node D.

Total Data Sent and Received Between Nodes - No Updates Available - Send Artifact
Details

44 84 84 40
120

0 0

132

0

200

400

600

800

1000

1200

1400

A B C D

Node Name

SimKB

Amount Data Received Amount Data Sent

Figure 39 : Data traffic between nodes where artifact updates do not exist and the artifact details
are sent

It should be noted that Node C has no overhead in this case as well. It received the

request, but since it had neither of the artifacts, nothing has been transferred back to

the requestor.

The problem now exists on when is the artifact large enough to be sent across the

network? If the internet connection is slow, we do not want to receive big files

unnecessarily. But could we reduce the amount of interactions and implement some

type of configuration on how large, is large?

4.1.4. Introducing the artifact size limit

We are faced with a dilemma, where artifacts are easily transportable over excellent

internet connections, and the node has an abundance of processing power; and weak

connections on nodes with less processing power, that struggle to download the same

artifacts.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 70 -

sd Artifact size dependant

Requestor
SimNode:R

Collaborator
SimNode:C

alt Artifact Exists
[Exist]

[!Exist]

alt Response Type
[Response = Send Artifact]

[Response = Send Artifact Details]

[Response = Send Artifact if under size limit else send details]

alt updateArtifact
[Newer]

[!Newer]

alt UnderSizeLimit
[UnderSizeLimit]

[!UnderSizeLimit]

alt updateArtifact
[Newer]

[!Newer]

shoppingList(artifactDetails)
* Exists:=
checkIfArtifactExist(artifactDetails)

Response:=
getShoppingListResponse(shoppingList)

sendItem(artifact)

sendItem(artifactDetails)

Newer:= newerArtifact(artifactDetails)

shoppingList(artifactName)

sendItem(artifact)

UnderSizeLimit:=
checkIfUnderSizeLimit(artifact)

sendItem(artifact)

sendItem(artifactDetails)

Newer:= newerArtifact(artifactDetails)

shoppingList(artifactName)

sendItem(artifact)

Figure 40 : Combined Response

We implement functionality to customize what a node considers a large artifact. For

this scenario, we choose a size limit of 400 simKB. If an artifact is less than this size,

it will be transported to the requestor node without intervention. If the artifact is larger

than this size, the details of this artifact are sent back to the requestor. The requestor

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 71 -

can make an informed decision of whether the artifact is needed. Figure 40 shows the

sequence of events for each of these response types.

Total Data Sent and Received Between Nodes - Updates Available - Send Artifact If
Under Size Limit Else Send Artifact Detail

44
108 84

1252

260

1072

0

156

0

200

400

600

800

1000

1200

1400

A B C D

Node Name

SimKB

Amount Data Received Amount Data Sent

Figure 41 : Data traffic between nodes where artifact updates exist and the artifact sent
dependant on size

If updates exist on other nodes, then the total data transferred from other nodes are as

in Figure 41. Node A transferred the updated version of “Simple.cs”. Node B has

transferred the updated version of “Universe.jpg”. We compare these figures to that

of Figure 34 and Figure 38. The values are between the comparative figures. There is

an increase in the amount of data that is transferred between the nodes. Specifically,

an extra message is transferred and received from Node B. This is since the artifact

“Universe.jpg” is over the size limit.

Total Data Sent and Received Between Nodes - No Updates Available - Send Artifact
If Under Size Limit Else Send Artifact Detail

44 84 84 40
120

0 0

132

0

200

400

600

800

1000

1200

1400

A B C D

Node Name

SimKB

Amount Data Received Amount Data Sent

Figure 42 : Data traffic between nodes where artifact updates do not exist and the artifact sent
dependant on size

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 72 -

In the case were artifact updates do not exist, the same values of Figure 39 are

achieved. Figure 42 shows the results of this option.

4.1.5. Conclusion

If the artifact does not exist on the requestor node, we need to get the artifact from

collaborator nodes. All artifacts will be sent to the requestor including older versions

and duplicates of a new version. This causes an overhead on the collaborator nodes. If

the artifact size is relatively small, the collaborators will include a relatively small and

possibly unnoticeable overhead. If the artifact size is relatively large, the overhead on

the collaborator nodes will be large and even more evident if the node has a weak or

slow internet connection.

But in the case where the artifact already exists on the requestor node, we can make

use of the artifact details option. This solution shows that there is far less overhead on

the nodes if the artifact that is present on the collaborators node is older than that of

the requestor’s node. Furthermore we could include some logic which allows the

system to make a decision to send the artifact based on its size and modification date.

This is described in section 4.1.4.

Since the use of artifact details reduces overhead on other collaborators nodes, it is a

viable solution that should be included in the Nomad protocol. Since artifact details

can only exist if the artifact exists, we offer the suggestion to make use of dummy

artifacts which will have the timestamp of the creation of the project. In that way, we

could eliminate the need to send an artifact, especially larger artifacts, which will

ultimately be discarded on the requestor’s node, due to the artifact being a later or

same version that exists on the requestor’s node.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 73 -

4.2. Simple disconnection scenario

4.2.1. Scenario setup and description

This scenario is made up of the following nodes as described in Table 3:

Node name Node Type

A TYPE1

B TYPE2

C TYPE3

D TYPE2
Table 3 : Simple disconnection scenario setup

A visual description from the NPS is shown in Figure 43.

Figure 43 : NPS Simple Disconnection Scenario

This simulation is used to show the effect of different types of devices in a

disconnected environment. There are no artifacts that are transferred. Nodes change

from being online to offline following a specific order. Figure 44 shows the events

that take place in this scenario. At event 2, Node B goes offline. It becomes available

online at event 4. At this point it sends an online notification to the other online nodes,

namely Node A, Node C and Node D. At event 6, Node B, Node C and Node D go

offline.

Node B returns to being online at event 8. It has a 50% chance of having the same IP

address. It sends an online notification to the only online node, Node A. Since Node C

and Node D are offline and Node B is a TYPE 2 node, an email has to be sent by Node

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 74 -

B, so if those nodes become online, they know on which IP address Node B is

available on.

Figure 44 : Simple disconnected scenario timeline

Event 10 denotes Node C going online. The IP address of Node C will be changed to a

IP different from the one it had the previous time it was online. It sends an online

notification to the online nodes, namely, Node A and Node B. At this point, Node D is

still offline. Since Node C is a TYPE 3 node, and a characteristic of this type of node

is that it will be online for a very long period of time. If user interaction is switched

on, the user is posed with the question of whether to send an email to Node D. This

option allows the node to send its latest IP address in an email. This option would be

needed if Node C is going to be online for a long period of time.

Node D goes online at event 13. It has a 50% chance of changing its IP address. At

this point it sends an online notification to all online nodes, namely Node A, Node B

and Node C.

We now analyze and evaluate the results gathered from this scenario.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 75 -

4.2.2. Results

We show that the use of an online notification works well in a disconnected scenario.

Figure 45 shows the amount of data transferred during this scenario.

Total Data Sent and Received Between Nodes - Simple Disconnection

16

48 44 44

120

16
8 8

0

20

40

60

80

100

120

140

A B C D

Node Name

SimKB

Amount Data Received Amount Data Sent

Figure 45 : Data transferred in the simple disconnected scenario

Figure 46 illustrates the counters of each node. We now take a more detailed look at

these figures. Node A received 4 online notifications, which totals to 16 simKB. It did

not transfer data due to the nodes disconnections. The 120 simKB is due to sending

project details to the three collaborator nodes at the start of the simulation.

Node B sent four and received two notifications. The total of 16 simKB has been sent

and 8 simKB received on the node due to its own disconnection and the disconnection

of other nodes in the scenario. The 40 simKB received is due to the project details

received upon startup of the project. The same applies to Node C and Node D.

Node C and Node D both received one and sent two online notifications. The total of

8 simKB has been sent and 4 simKB received on the nodes due to its own

disconnection and the disconnection of other nodes in the scenario.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 76 -

Node Counters - Simple Disconnection

1

3

1
2

3 3

5
4

0

2
1 1

0

4

2 2

4

2
1 1

0 0 0 00 0 0 0
0
1
2
3
4
5
6
7
8
9

10

A B C D

Node

Number
Times

NumSentEmails NumGetEmail NumTimesOffline
NumOnlineNotifications Sent NumOnlineNotifications Received NumTimesRetry
NumTimesRetryFailed

Figure 46 : Node counters for simple disconnected scenario

An important aspect for the nodes is the amount of email sent by the online nodes to

the offline nodes on becoming available with a new IP address. Node C received two

emails since there were two nodes that were assigned new IP addresses during the

time Node C was offline.

4.2.3. Conclusion

It was seen that the approach of the protocol is sufficient for the devices that the

protocol intends to cater for. A small, modest overhead is placed on the online nodes

in terms of data transferred and emails received. The amount of online notifications is

proportional to the amount of times a node becomes available online.

The protocol caters for devices that will be online for short periods of time, and if

necessary, user interaction can play the deciding factor on whether a collaborator

should make its presence known in the community.

The protocol makes use of the email framework to keep nodes in contact in cases that

nodes come online with IP addresses that are different to those that other collaborators

are aware of.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 77 -

4.3. Desired Effort Levels

4.3.1. Scenario setup and description

This scenario is made up of the following nodes as described in Table 4:

Node name Node Type Propagation Node

A TYPE1 Yes

B TYPE2 No

C TYPE3 No

D TYPE2 No

E TYPE1 No

F TYPE2 No
Table 4 : Desired effort levels scenario setup

A visual description from the NPS is shown in Figure 47.

Figure 47 : NPS desired effort level scenario

This scenario compares the different effort levels of retrieving an artifact from the

community. The NPS illustrates these approaches as

• Best effort approach,

• Require item approach, and

• Require item under any condition.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 78 -

We discuss each approach later in this section. Figure 48 shows the sequence of

events for each of the approaches when transferring an item between nodes.

public void transferItem(int from_node_id,
 int to_node_id,
 SimTransportItem item)
{
 enum result {SUCCESSFUL, FAILED};
 E_DESIRED_EFFORT_LEVEL effort;

 /* transportItem via management queue*/
 result = transportItem(from_node_id, to_node_id, item);

 if (result == SUCCESSFUL)
 {
 if(item.type_of_request ==
 E_TYPE_OF_REQUEST.FORWARDED_REQUEST_RESPOND_IF_REQUEST_FUFILLED)

 {
 /* Get the original request */
 SimTransportItem embedded_transport_item =
 item.get_forwarded_request();

 /* Create a SimRequestFufilled item */
 SimRequestFufilled req_fufilled = SimRequestFufilled
(embedded_transport_item.FromNode,this.NodeId item.ForwardRequestID);

 /* State it was successful */
 req_fufilled.request_fufilled = E_REQUEST_FUFILLED.YES;

 /* Add the request fulfilled item via the management queue */
 add_to_items_to_be_transferred_list(req_fufilled);
 }
 else if (item.type_of_request ==
 E_TYPE_OF_REQUEST.FORWARDED_REQUEST_NO_FURTHER_INTERACTION_NEEDED)

 {
 /* No response required */
 }//end else

 /* remove item from management queue*/
 deQueue(item);
 }
 else /* result == FAILED*/
 {
 /* Get the desired effort level from the item */
 effort = item.EffortLevel;

 /* --------------------- BEST EFFORT --------------------- */
 if (effort == E_DESIRED_EFFORT_LEVEL.BEST_EFFORT)
 {
 /* remove item from management queue*/
 deQueue(item);
 }
 /* ---- REQUIRE ITEM & REQUIRE_ITEM_UNDER_ANY_CONDITION ---- */
 else if ((effort == E_DESIRED_EFFORT_LEVEL.REQUIRE_ITEM) ||
 (effort == E_DESIRED_EFFORT_LEVEL.REQUIRE_ITEM_UNDER_ANY_CONDITION))
 {
 if(effort ==
E_DESIRED_EFFORT_LEVEL.REQUIRE_ITEM_UNDER_ANY_CONDITION)

 {
 /* reset the number of retries */
 item.NumberOfRetries = 0;
 }//end if

 /* check if we are on the propagation node */
 if (PropagationNode == E_PROPAGATION_NODE.YES)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 79 -

 {
 if(item.type_of_request ==
E_TYPE_OF_REQUEST.FORWARDED_REQUEST_RESPOND_IF_REQUEST_FUFILLED)

 {
 /* Get the original request */
 SimTransportItem embedded_transport_item =
item.get_forwarded_request();

 /* Create a SimRequestFufilled item */
 SimRequestFufilled req_fufilled = SimRequestFufilled
(embedded_transport_item.FromNode, this.NodeId, item.ForwardRequestID);

 /* State it was not successful */
 req_fufilled.request_fufilled = E_REQUEST_FUFILLED.NO;

 /* Add the request fulfilled item via the management queue*/
 add_to_items_to_be_transferred_list(req_fufilled);
 }
 else if (item.type_of_request ==
 E_TYPE_OF_REQUEST.FORWARDED_REQUEST_NO_FURTHER_INTERACTION_NEEDED)

 {
 /* No response required */
 }//end else
 }
 else /* not a propagation node */
 {
 if (sim_internet.check_user_interaction_status() == ENABLED)
 {
 /* dialog box requiring YES or NO response*/
 choice = promptUser("Send request to Propagation nodes?");
 if (choice == Yes)
 {
 /* send this item to all propagation nodes */
 send_item_to_all_propagation_nodes(item);
 }//end if
 }
 else //automated
 {
 /* send this item to all propagation nodes */
 send_item_to_all_propagation_nodes(item);
 }//end else - user enabled
 }//end else - prop node

 /* dequeue or leave on queue depending on effort level*/
 if (effort == E_DESIRED_EFFORT_LEVEL.REQUIRE_ITEM)
 {
 /* remove item from management queue*/
 deQueue(item);
 }
 else if (effort ==
 E_DESIRED_EFFORT_LEVEL.REQUIRE_ITEM_UNDER_ANY_CONDITION)

 {
 /* Leave item on queue - Allows to retry */
 }//end else
 }//end else - effort level
 }//end else - failed
}//end transferItem()

Figure 48 : Pseudo code for the NPS transferItem function

We show that although more recently updated artifacts exist on other nodes, the best

approach method only gathers needed artifacts, defined in a shopping list, from nodes

that are currently online.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 80 -

We introduce the propagation node, defined as Node A in the scenario and depicted

with a yellow bold symbol as in Figure 47. Although the propagation node has existed

in the previous scenarios, it plays a vital role in this scenario.

Table 5 shows the spread of artifacts that exist on each node. The use of version in

this instance relates to the latest modification time, or the last_update_date_time

attribute as defined in section 3.1.2.2.

Artifact

name

Initial artifact

size (simKB)

Node

A

Node

B

Node

C

Node

D

Node

E

Node

F

simple.cs

100 Ver2 - - Ver1 - Ver3

universe.jpg

1000 - Ver2 - Ver1 - Ver3

flowchart.jpg

2000 - - - - - Ver1

Table 5 : Artifact versions on each node

Node F has the latest versions of all three artifacts, and is the only one in the

community that has the artifact “flowchart.jpg”.

When the simulation starts, the project is setup amongst the nodes. Node D then

creates two artifacts, namely “simple.cs” and “universe.jpg”. Node A and Node B

then create later versions of “simple.cs” and “universe.jpg” respectively.

Node F goes offline, but proceeds to create the latest versions of all three artifacts.

At the same time Node B and Node F go offline.

Node D then creates a shopping list which it sends to all available nodes. Figure 49

and Figure 55 illustrate the events during this scenario. In each of the following cases,

the effort level depicts the effort of the community to fulfill the shopping list. If

needed, it makes it possible that the latest artifacts reach the requesting node, Node D.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 81 -

We now take a look at each of these methods and give the artifact list of the

requesting node, Node D, at the start and end of simulation.

4.3.2. Best effort approach

The best-effort approach will be the most used desired approach of Nomad

collaborators. This approach gathers a community wide view of all collaborators that

are online. If a requesting node sends out a shopping list and a collaborator node is

offline or not available to the community, the request to that node is discarded.

Requests are only sent to online nodes.

There are two shopping lists that are sent one after the other. The first contains the

details of the artifacts “simple.cs” and “universe.jpg”. Since the artifact

“flowchart.jpg” does not exist on Node D, we cannot use the artifact details, but

instead send a shopping list with the artifact name only. See section 4.1 for more

information. This is denoted by D2 in Figure 49.

Table 6 show the meta-data of the artifacts that exist on Node D before the shopping

list is sent out. We later see how the artifacts are updated.

Artifact Name simple.cs universe.jpg flowchart.jpg

Size 100 1000 -

Created 2/10/2006 10:30:36

PM625

2/10/2006 10:30:36

PM625

-

Last update 2/10/2006 10:30:36

PM625

2/10/2006 10:30:36

PM625

-

Author D D -

Origin node 4 4 -

Last Author Update D D -

Last Artifact

Location

4 4 -

Table 6 : Artifact list on Node D before sending shopping list

Figure 49 shows an event related sequence of the NPS best effort approach scenario.

We see that at event 2, Node B, Node C and Node F go offline. Soon after, Node D

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 82 -

sends out a best effort shopping list. The online nodes, Node A and Node E receive the

shopping list. Node A responds with an updated version of “simple.cs” and Node D

updates its artifact list.

Figure 49 : Best approach scenario timeline

Table 7 shows the artifact list after the update has been made. We note that the meta-

data for “simple.cs” now has the attributes of the artifact on Node A. The last author

update and last artifact location attributes of “simple.cs” denote that this artifact has

been updated from Node A. The artifact “flowchart.jpg” has not been found on any

online nodes, and therefore has not been received.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 83 -

Artifact Name simple.cs universe.jpg flowchart.jpg

Size 120 1000 -

Created 2/10/2006 10:30:36

PM625

2/10/2006 10:30:36

PM625

-

Last update 2/10/2006 10:30:39

PM15

2/10/2006 10:30:36

PM625

-

Author D D -

Origin node 4 4 -

Last Author Update A D -

Last Artifact

Location

1 4 -

Table 7 : Artifact list on Node D after update

The data transferred between the nodes are presented in Figure 50. The offline nodes

do not send or receive data due to the shopping list being sent. We note for reasons

stated above, two shopping lists need to be sent out in this case.

Total Data Sent and Received Between Nodes - Best Effort Approach - Artifact Details
and Artifact Name Shopping List

109

60 48

220

133

60

412

12 16

178

0 12
0

50

100

150

200

250

300

350

400

450

A B C D E F

Node Name

SimKB

Amount Data Received Amount Data Sent

Figure 50 : Data transferred and received between nodes - Best Effort Approach

Figure 51 shows the counters of each node in the simulation. We note that Node D has

six failed retries due to the two shopping lists per three offline nodes.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 84 -

Node Counters - Artifact Details and Artifact Name Shopping List

1

3

1

2

1

3

5 5 5

7

5 5

0

1 1 1

0

1

0

3

4 4

0

3

4

3

0 0

4

3

0 0 0 0 0 00 0 0

6

0 0
0

1

2

3

4

5

6

7

8

9

10

A B C D E F

Node

Number
Times

NumSentEmails NumGetEmail NumTimesOffline
NumOnlineNotifications Sent NumOnlineNotifications Received NumTimesRetry
NumTimesRetryFailed

Figure 51 : Node Counters Best Effort approach

Figure 52 clearly defines the retry counts per node. We see that Node D is the only

node that suffers from a retry count.

Retries - Artifact Details and Artifact Name Shopping List

0

1

2

3

4

5

6

7

8

9

10

A B C D E F

Node

Number
 retries

NumTimesRetry NumTimesRetryFailed

Figure 52 : Retries per node in Best Effort approach

We could have easily sent a single shopping list with all three artifact names. Figure

53 illustrates the data transferred and received between nodes with a single shopping

list. We notice that the amount of data on the offline nodes is the same as in Figure

50, but the overhead of data on the online nodes are less.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 85 -

Total Data Sent and Received Between Nodes - Best Effort Approach - Artifact Name
Shopping List

48 60 48

188

96
60

380

12 16

80

0 12
0

50

100

150

200

250

300

350

400

450

A B C D E F

Node Name

SimKB

Amount Data Received Amount Data Sent

Figure 53 : Data transferred and received - Best effort with single shopping list

We take note that the number of retries on the requesting node, Node D, is halved to

three since that is only a single shopping list being sent. This is illustrated in Figure

54.

Node Counters - Artifact Name Shopping List

1

3

1

2

1

3

5 5 5

7

5 5

0

1 1 1

0

1

0

3

4 4

0

3

4

3

0 0

4

3

0 0 0 0 0 00 0 0

3

0 0
0

1

2

3

4

5

6

7

8

9

10

A B C D E F

Node

Number
Times

NumSentEmails NumGetEmail NumTimesOffline
NumOnlineNotifications Sent NumOnlineNotifications Received NumTimesRetry
NumTimesRetryFailed

Figure 54 : Node Counters - best effort with single shopping list

In this particular case, the artifacts transferred, namely “simple.cs” from Node A, is a

more updated version of the artifact. If however, the artifact was the same or earlier

version of the artifact, there would be unnecessary transferring of data between the

nodes. This is therefore a disadvantage of a single shopping list. This is more apparent

in the following scenario.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 86 -

4.3.3. Require item

The require item approach will be the used if the artifacts exist on nodes that are

currently offline. This approach gathers a community wide view of all collaborators

that are online and later gathers required artifacts from nodes that were offline at the

time the shopping list was sent. We now introduce the propagation node and the

request fulfilled reply to the scenario. The propagation node and request fulfilled reply

are further discussed in section 3.1.2.3.

If a requesting node sends out a shopping list and a collaborator node is offline or not

available to the community, the request to that node is sent to a propagation node. In

this scenario, Node A acts as a propagation node. Once these nodes are online, the

requests are forwarded to them. If the item was a

FORWARDED_REQUEST_RESPOND_IF_REQUEST_FULFILLED item, the propagation node sends the

requestor node, Node D; a request fulfilled denoting the success of forwarding this

item.

If the nodes do not become available to the community after a period of time, and the

retry count on the propagation node is reached, the forwarded item is discarded. If the

item was a FORWARDED_REQUEST_RESPOND_IF_REQUEST_FULFILLED item, the propagation node

sends the requestor node, Node D; a request fulfilled denoting the failure of

forwarding this item.

If the item was a FORWARDED_REQUEST_NO_FURTHER_INTERACTION_NEEDED, in both cases, the

propagation node does not respond to the requesting node with the success or failure

of forwarding this item.

Table 8 show the meta-data of the artifacts that exist on Node D before the shopping

list is sent out. We later see how the artifacts are updated.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 87 -

Artifact Name simple.cs universe.jpg flowchart.jpg

Size 100 1000 -

Created 2/14/2006 11:39:18

PM703

2/14/2006 11:39:18

PM703

-

Last update 2/14/2006 11:39:18

PM703

2/14/2006 11:39:18

PM703

-

Author D D -

Origin node 4 4 -

Last Author Update D D -

Last Artifact

Location

4 4 -

Table 8 : Artifact list on Node D before sending shopping list

As in the previous scenario, there are two shopping lists that are sent one after the

other. The first contains the details of the artifacts “simple.cs” and “universe.jpg”.

Since the artifact “flowchart.jpg” does not exist on Node D, we cannot use the artifact

details, but instead send a shopping list with the artifact name only.

Figure 55 shows an event related sequence of the NPS “require item” approach

scenario. We see that at event 2, Node B, Node C and Node F go offline. Soon after,

Node D sends out a best effort shopping list. The online nodes, Node A and Node E

receive the shopping list. Node A responds with an updated version of “simple.cs”

and Node D updates its artifact list.

After a number of retries, Node D sends a forward request containing the shopping list

to all propagation nodes. In this scenario, Node A is the only a propagation node in the

community. After the requests are forwarded, Node D goes offline.

During this time, the three previously offline nodes go online. These are Node B,

Node C and Node F. Once these nodes send an online notification to all online nodes,

the propagation node sends the hosted forwarded request from Node D to each node.

If the IP addresses of these nodes have changed, and since Node D is at that time

offline, an email with the new IP address of these nodes is sent to Node D.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 88 -

Figure 55 : Require item scenario timeline

Node D soon goes online and sends an online notification to all online nodes. At this

stage, Node B and Node F respond to the shopping list and transfer their more updated

versions of the artifact to Node D.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 89 -

The forwarded requests are of type FORWARDED_REQUEST_RESPOND_IF_REQUEST_FULFILLED in

this scenario. The propagation node, Node A, sends the requesting node, Node D, a

successful request fulfilled response.

We note that since both Node B and Node F have updated versions of “universe.jpg”,

artifacts from both nodes are transferred to the requesting node, Node D. If the user

interaction is enabled, the user has the option of choosing which artifact they would

rather prefer. An advantage of the artifact details shopping list, is that if Node F

comes online before Node B, the more recent artifact would be transferred to Node D

and updated. When Node B goes online, it would send the details pertaining to it’s

version of the artifact, and in response, Node D would not transfer the item as it is an

older version. This is an issue related to timing and chance of the users in a real life

scenario.

Table 9 shows the updated artifact list on Node D at the end of the scenario. We note

that the last author update and last artifact location attributes of “simple.cs”,

“universe.jpg” and ”flowchart.jpg” denote that these artifacts have been updated or

received from Node F.

Artifact Name simple.cs universe.jpg flowchart.jpg

Size 170 1020 2020

Created 2/14/2006 11:39:18

PM703

2/14/2006 11:39:18

PM703

2/14/2006 11:39:27

PM46

Last update 2/14/2006 11:39:24

PM437

2/14/2006 11:39:27

PM31

2/14/2006 11:39:29

PM546

Author D D F

Origin node 4 4 6

Last Author

Update

F F F

Last Artifact

Location

6 6 6

Table 9 : Final artifact list of Node D at end of scenario

Node D now has the latest versions of the requested artifacts that exist within the

community. But what expense has it had on the other nodes, particularly the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 90 -

propagation node, Node A? Figure 56 shows the total amount of data sent and

received during this scenario where two shopping lists are sent.

Total Data Sent and Received Between Nodes - Require Item Approach - Artifact
Details and Artifact Name Shopping List

436
153 121

4654

133 177

763
1044

20

581

0

3266

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

A B C D E F

Node Name

SimKB

Amount Data Received Amount Data Sent

Figure 56 : Data transferred and received - Require item

The first forwarded shopping list is 64 simKB and the second forwarded shopping list

is 44 simKB. Since three nodes were offline at the time of sending each of the two

shopping lists, the data received on the propagation node is ((64 simKB * 3nodes) +

(44 simKB * 3nodes)) = 324 simKB.

The forwarded item is then unwrapped and transferred to the relevant nodes when

they become available. The first unwrapped shopping list is 44 simKB and the second

is 24 simKB. The amount of data transferred from the propagation node on behalf of

the requestor node is ((44 simKB * 3nodes) + (24 simKB * 3nodes)) = 204 simKB.

For each forwarded item, a request fulfilled response is sent. This response is 24

simKB and there were 6 forwarded requests made, hence an extra (24simKB * 6

requests) = 144 simKB that was transferred from the propagation node.

A total overhead of 324 simKB is received and 348 simKB is transferred on the

propagation node. These are substantial amounts of data for in terms of the NPS.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 91 -

Figure 57 shows the counters of each node in the simulation at the end of the scenario.

Node D has attempted and failed to transfer the shopping item to nodes. The total of

30 retries is made of the five retries per shopping list for the three nodes.

The 12 retry fails are due to attempting and failing twice to send two shopping lists to

three offline nodes and after the failed second attempt, we send forward the request to

the propagation node.

Node Counters - Artifact Details and Artifact Name Shopping List

1
3

1 1 1
3

5 5 5 6 5 5

0 1 1 1 0 10
3

5 5

0
34 3

1 1
4 3

9

0 0

30

0 00 0 0

12

0 0
0

5

10

15

20

25

30

35

A B C D E F

Node

Number
Times

NumSentEmails NumGetEmail NumTimesOffline
NumOnlineNotifications Sent NumOnlineNotifications Received NumTimesRetry
NumTimesRetryFailed

Figure 57 : Node Counters for require item approach

We note that once the propagation node receives the forwarded requests, it attempts to

transfer the item in case its requestor node might not have the correct IP address of the

assumed offline nodes. It fails the initial transfer but transfers the forwarded items

once the nodes send online notifications. This can be seen in Figure 58.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 92 -

Retries - Artifact Details and Artifact Name Shopping List

0

5

10

15

20

25

30

35

A B C D E F

Node

Number
retries

NumTimesRetry NumTimesRetryFailed

Figure 58 : Retry counts per node for require item approach

As mentioned in the previous case in this scenario (section 4.3.2), we could have

opted for a single shopping list which contained all three artifact names. Figure 59

illustrates the data transferred and received between nodes with a single shopping list.

Total Data Sent and Received Between Nodes - Require Item Approach- Artifact Name
Shopping List

210 84 84

4454

96 92
548

1016

12
242

0

3202

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

A B C D E F

Node Name

SimKB

Amount Data Received Amount Data Sent

Figure 59 : Data transferred and received - require item approach with single shopping list

There is, overall, a slightly less amount of data being transferred and received when

compared to Figure 56. This case would be a more viable option since the artifacts

that are transferred are newer versions. The disadvantage would be if the transferred

artifacts were older or the same version as that on the requesting node. If this were the

case, we would have transferred a large amount of data which would ultimately be

discarded by the requesting node.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 93 -

Node Counters - Artifact Name Shopping List

1 2 1 2 1
3

5 5 5 6 5 5

0 1 1 1 0 10

4 3 4

0
34

1 1 1
4 3

9

0 0

15

0
3

0 0 0

6

0 0
0

5

10

15

20

25

30

35

A B C D E F

Node

Number
Times

NumSentEmails NumGetEmail NumTimesOffline
NumOnlineNotifications Sent NumOnlineNotifications Received NumTimesRetry
NumTimesRetryFailed

Figure 60 : Node Counters - require item approach with single shopping list

Figure 60 shows that the retry count for Node D has halved when a single shopping

list is sent. In this particular instance, Node F attempts to transfer each of the updates

before Node D if online again. This is not a cause for concern, but merely the timing

between the threads in the NPS.

Retries - Artifact Name Shopping List

0

5

10

15

20

25

30

35

A B C D E F

Node

Number
retries

NumTimesRetry NumTimesRetryFailed

Figure 61 : Retries per node in require item approach with a single shopping list

Figure 61 shows the retry counts for each node. Although Node F fails on the first

attempt to send the artifacts in response to the shopping list, on the second retry the

artifacts are successfully transferred and the artifacts are updated on the requesting

node, Node D.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 94 -

4.3.4. Require item under any condition

In the previous cases, a request is discarded if it is not successful after a number of

retries. The option exists to reset the retry counter for the item and continue to try to

transfer the item regardless of the number of times the item has failed.

This option could be used in situations where a node has a weak signal and the

connection is always disrupted. The disruptions caused the retry count to reach its

maximum and the request can never be fulfilled.

This option would seem to have more disadvantages then advantages. We note some

lessons that were learnt by using the NPS with this option. We could suffer from

unnecessary data transfer overheads when the request becomes old. The request itself

could become stale and the requestor might not need the request to be fulfilled after a

certain number of attempts. Another disadvantage is that it becomes an overhead on

the propagation nodes and new requests could suffer being satisfied. This is due to the

fact that this request is never removed from the queue until it is completed. With user

interaction however, the option exists to have this item discarded.

For these reasons, this option would not bear enough weight to be included in the

Nomad protocol. If this option is to be implemented, it should be used with caution.

4.3.5. Conclusion

This section takes a look at the various effort levels that Nomad can offer its

collaborators to gather artifacts in the community. The best effort approach, which

will be the most used approach by collaborators, offers a simplistic approach to gather

all artifacts from all nodes that are online at the time the shopping list is sent from the

requestor node.

We introduced the use of a propagation node. Although this scenario makes use of a

single propagation node, there can be more than one propagation node in a

community. The transport item is forwarded to the propagation node after the

requesting node has failed on a number of retries to send the item to other nodes. The

propagation node hosts the transport item of the requestor until such time that the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

4. Simulation Scenarios

 - 95 -

nodes that were previously offline or unavailable, go online and become available to

the community. This however creates an overhead on the propagation node in sending

and receiving data on behalf of the requestor. Although a shopping list has been used

in this scenario, the propagation node can host any transport item. We introduce the

optional use of a request fulfilled response. This response is sent by the propagation

node, denoting the success or failure of transporting the forwarded request.

The require item under any condition is an approach that bears more disadvantages

than advantages. This approach could be used if the node has a very weak internet

connection that is regularly disrupted and most likely would reach the maximum retry

count easily. The item or forwarded item could however become stale. The node

could suffer from the overhead caused in continuously retrying and failing. The item

is kept in the queue and only removed if the transfer is successful. This option

therefore could have dire consequences and should be used with caution.

The NPS shows that the best effort and require item approaches are sufficient for

gathering artifacts from collaborator nodes.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

5. Nomad and Mobile Agents

 - 96 -

5. Nomad and Mobile Agents

During the initial design reviews of Nomad, the use of mobile agents formed a large

part the design. ([20],[31]) In this chapter, we take a broad look at mobile agents, their

use and their intended integration into the Nomad application. The NPS does not offer

mobile agents support, but is intended for future work.

5.1. Introduction

The concept of mobile agents is not novel. Mobile agents use the simple idea of

moving the processing to the data, instead of the data to the processing. Mobile agents

have been used in industry for many reasons and many situations. Example

applications of mobile agents are electronic commerce, personal assistance, secure

broking, distributed information retrieval, telecommunication network services,

monitoring and notification, workflow applications and groupware, and parallel

processing. [11]

So what is a mobile agent exactly? For the purposes of this text, we use the definition

offered by Lange [11]:

‘A mobile agent is not bound to the system where it begins execution. It has

the unique ability to transport itself from one system in the network to another.

The ability to travel allows a mobile agent to move to a system that contains

an object with which the agent wants to interact and then to take advantage of

being in the same host or network as the object.’

The mobile agent system hosts one or more mobile agents and has the ability to send

and receive mobile agents from another mobile agent system. The variety of mobile

agent systems spans from, but not exclusive of, the operating system implementation,

security, interoperability, mobility and the communication aspects. Lall [26] compares

a variety of systems based on their security, mobility and the communication aspects

and prepared a detailed analysis of a significant number of systems.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

5. Nomad and Mobile Agents

 - 97 -

5.2.

A few examples of Java based mobile agent systems are Aglets [11], NOMADS [28],

JADE [43] and µCode [40]. There have been some initiatives to produce mobile agent

systems using the Microsoft .NET Framework, namely MAPNET [12] and

EtherYatri.NET [41]. Some systems, such as CARLA [27] and the Wireless Agent

Simulator [34], have also explored the use of wireless mobile agents in handheld

devices.

There are many aspects of mobile agents which lie outside the context of this text.

Interested readers are directed to Lange [11], Rama [20] and Lall [26] for a more

detailed overview of agents.

Motivation

For the first implementation of Nomad, shopping lists will form simple requests.

Mobile agents would be useful when we have larger and more complex shopping lists

made up of a variety of artifact details, where each artifact may have dependencies

and the dependencies in turn could have dependencies. A user might opt to send a

request out to the community and pick up the results at a later stage.

An example situation is that a collaborator, Himal, is at the airport waiting to board a

flight. He realizes that he needs an updated artifact from the community. He invokes

Nomad, which in turn, sends out an agent on his behalf. Himal then goes offline and

boards his flight. While he is in flight, the agent moves from node to node looking for

the artifact in question. In doing so, realizes that the artifact has dependencies and

adds these artifacts to the shopping list. When Himal reaches his destination, he

makes himself available to the community. The agent realizes that Himal has returned

to an online status and returns to the mobile agent system on his device. The agent

then updates Nomad with the needed information. The information contains, among

other things, the users that the agent has visited, the users that have the needed

artifact, and the dependencies of the artifact, and the users that have the dependencies

of the artifact. At this point, the information is transparent to Himal. Nomad

intelligently decides which node to download the artifact and dependencies from. This

is dependent on a number of reasons, possibly transfer speed or availability of a node.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

5. Nomad and Mobile Agents

 - 98 -

If Nomad cannot decide, it would invoke the user’s interaction. Nomad would then

download the required artifacts and update the project accordingly.

Mobile agents work well in casually connected environments. Lange [11] states that

there are seven good reasons to use mobile agents. We state each of these points,

explain them and relate them to Nomad.

1) They reduce network load.

Distributed systems often rely on communication protocols that involve multiple

interactions to complete a given task. This is especially true when security

measures are active. When processing has to take place on large volumes of data,

move the computations to the data rather then data to computations.

2) They overcome network latency.

Critical real-time systems need to respond real time to changes in the

environment. Nomad is not a time critical system, and does need to respond in real

time.

3) They encapsulate protocols.

A situation can arise when the hosts maintain their respective code that control

outgoing messages. Protocols evolve to improve security and efficiency. Due to

the new requirements, it then becomes cumbersome, if not impossible to upgrade

the protocol code properly. This leads to the protocols becoming legacy code.

Mobile agents move to the remote hosts to establish “channels” based on propriety

protocols.

4) They execute asynchronously and autonomously.

Mobile devices rely on expensive or fragile network connections. Tasks that

require a continuous open connection between a mobile device and a fixed

network will not be feasible economically or technically. Tasks can be embedded

into mobile agents then dispatched into the network. After being dispatched,

agents become independent of the creating process and can operate

asynchronously and autonomously. The mobile device can reconnect at a later

time to the network to collect the agent and hence the results.

5) They adapt dynamically.

Mobile agents have the ability to sense their environment and react autonomously

to changes.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

5. Nomad and Mobile Agents

 - 99 -

6) They are naturally heterogeneous.

Mobile agents are only dependent on their execution environment and are

computer and transport layer independent. This provides seamless system

integration.

7) They are robust and fault tolerant.

The ability to react dynamically to unfavorable situations and events makes it

easier to build robust and fault tolerant distributed systems.

By reducing network load, overall overhead on individual nodes is reduced. As seen

in the NPS simulations earlier in this thesis, data received and transferred between

nodes can bear much overhead on nodes. This is especially seen in the case of

propagation nodes. Propagation nodes act on behalf of other nodes and therefore the

data received and transferred for a forwarded request is overhead for the propagation

node. Furthermore, an agent can move to all nodes in the community and decide that

an artifact needs to be fetched from a single node. This reduces the amount of

multiple artifacts that arrive at the requesting node.

Since agents have the ability to act autonomously and asynchronously, a user can opt

to forward it to the propagation node. It will be able to detect that it is on a

propagation node, and react dynamically accordingly to the environment, in this case,

without user intervention since the user is offline. In the case of devices that have

expensive internet connections, an agent will dynamically opt to send less data if

possible. It would be possible to have less extensive processing, in terms of artifact

comparisons, done on devices with small memory footprints.

The fact that they are heterogeneous, robust and fault tolerant, allows the agents to

make decisions based on their environments that they are executing on. If the

computer is about to shut down, the agent will be aware of having to save its state so

as to persist on startup. It might even make the choice to move to the node of origin

based on user preferences. Since Nomad is based in the .Net framework, it will have

the ability to run on any operating system that supports the .Net environment. This

applies to devices that run on the .Net compact framework as well.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

5. Nomad and Mobile Agents

 - 100 -

5.3.

The use of .Net remoting in Nomad would allow the agent to be independent of

underlying protocols. Hence, in a way encapsulating the needed protocol used to

move between systems.

Integration of mobile agents into Nomad

Nomad’s main aim is to provide a small, closed, community of users with nomadic

tendencies, the ability to share information in a way that would make life simpler.

Rama [20] takes a more detailed look at this integration.

Node A Node B

Nomad Nomad

Figure 62 : Pluggable mobile agent system

With the initial design of Nomad, mobile agents would be a user option. The user

could opt to use mobile agents. For this reason, it was decided that the mobile agent

system be a pluggable system for Nomad. Figure 62 shows a high level illustration of

the pluggable mobile agent system between two nodes. The Nomad communication

channel will remain available for Nomad interactions. These interactions could be

retrieving of artifacts or sending of online notifications. By no means is the intention

of the mobile agent system to replace the Nomad system, but merely give it more

flexibility and customizability.

Agency

Nomad ↔ Agency interface Nomad ↔ Agency interface

Agency

Agency ↔ Agency interface

Nomad ↔ Nomad interface

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

5. Nomad and Mobile Agents

 - 101 -

5.4.

The agency would relay information gathered from agents to Nomad. Nomad in turn

would make the final decision. The agency would be transparent to user and all

interactions from the agency to the user will be filtered through the Nomad system.

Final word and conclusion

Mobile agents have much value to add to Nomad. We have introduced the mobile

agent, and given motivations as to why mobile agents would be useful to Nomad. We

have given situations of how mobile agents could be used in Nomad and the idea of

the agency being a pluggable system to Nomad.

Due to the overall complexity and overhead of a mobile agent system, mobile agents

will not be included into the first release of Nomad. It was realized that the addition of

a mobile agent system to the initial release of Nomad would not introduce any

significant immediate gain to Nomad. Shopping lists are currently small and simple.

The communities are small. Intelligent processing of requests would reduce initial

overhead on nodes for the initial release. The limited number of nodes used for the

first release would ultimately result in resource overhead. Once the amount of nodes

in the Nomad exceeds the point where the overhead in the system adversely affects

the performance, the use of agents would be influential. Mobile agents would be an

optional add-on feature later in the lifecycle of Nomad. We intend to introduce

performance criterion as to whether agents in fact do add significant gain to Nomad.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

6. Evaluation

6. Evaluation

6.1. Other Nomad Related Projects

During the requirements phase of Nomad in 2004, comparisons to other systems were

done to evaluate Nomad. We evaluated three commercial and three academic systems.

The following were the results of our findings [21]. We would like to thank the

Nomad members for their effort in this process.

The commercial products are:

• Novell iFolder [48]

• SubethaEdit [50]

• Microsoft Sharepoint [44]

The academic systems are:

• CoCoDoc [13]

• Basic Support for Collaborative Work (BSCW) ([4],[5],[6],[7])

• X-peers [52]

We give a short introduction to each of these systems. Each system is described by

extracts from related references given above. The reader is asked to follow references

given for each system for more detailed information.

6.1.1. Systems overview

6.1.1.1. Novell iFolder

“Novell iFolder®, which ships in Novell® Open Enterprise Server, allows

your files to automatically follow you everywhere-online and offline-across

multiple systems and the Internet. Any changes you make to a Novell iFolder

directory are automatically and intelligently updated to your company's

Novell iFolder server and your other computers through your Internet

connection. You can also share your files with others in the network.”

 - 102 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

6. Evaluation

6.1.1.2. SubethaEdit

“SubEthaEdit is a powerful and lean text editor. And it's the only

collaborative one you can actually use. By combining the ease of Bonjour with

the world's best text collaboration engine, it makes working together not only

possible but even fun [..]Editing documents in groups can be a challenge.

Versioning systems like subversion or cvs help your group to keep a consistent

copy of your document, but don't provide realtime collaboration. Wouldn't it

be great to edit the same document, live, in realtime, together with everyone in

your group?”

6.1.1.3. Microsoft Sharepoint

”SharePoint Products and Technologies facilitate collaboration within an

organization and with partners and customers. Using the combined

collaboration features of Microsoft Windows SharePoint Services and

Microsoft Office SharePoint Portal Server 2003, users in your organization

can easily create, manage, and build their own collaborative Web sites and

make them available throughout the organization.”

6.1.1.4. CoCoDoc

”We propose collaborative compound document editing as a new paradigm

for editing environments and describe the design and implementation of

CoCoDoc, a framework based on OpenDoc and CORBA. CoCoDoc supports

reuse of existing editors as simple collaborative editors and supports

development of new collaborative compound part editors with flexible

collaboration facilities, thus facilitating a gradual migration towards

collaborative editing environments that are both rich in editing support and

rich in collaboration support.”

6.1.1.5. Basic Support for Collaborative Work (BSCW)

“The BSCW system supports collaboration by providing shared workspaces

over the Internet. A shared workspace allows storage and retrieval of

documents and sharing information within a group. This functionality is

integrated with an event mechanism to provide each user with an awareness of

the activities of others within the workspace. It comprises numerous features,

 - 103 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

6. Evaluation

e.g., support for threaded discussions, version management of documents,

group management, search features and many more. The system is designed

primarily to support self-organising groups.”

6.1.1.6. X-peers

“xpeers is for group communications. It is designed to help people work

together in a secure fashion from anywhere and with almost any type of

computer system. The unique power enables an unlimited range of new

applications for information sharing, collaboration, and coordination. The

basic installation of xpeers solves three core-communication problems:

• Information sharing: xpeers keeps every member in a group in sync. Each

member has a copy of the same version of a file for offline access. xpeers

keeps track what and when to sync. You can add every filetype to the

xpeers universe.

• Communication: xpeers provide private and public instant messaging. You

can create as many topic groups as you like.

• Versioning: xpeers has a built in version control system. You only have

one file on your system, the most recent one. You don't need to keep older

version yourself, the xpeers server has all versions. You can recall a

version at any time.”

6.1.2. Systems comparison

We compare each system based on criteria which are common in Groupware

applications.

6.1.2.1. Functional Criteria

Groupware applications can be described by its functional criteria. The functional

criteria specify what functionalities a user can expect of the system regardless of its

environmental or non-functional constraints.

• Messaging

Provide users the functionality to communicate via synchronous and

asynchronous messages. Synchronous messaging systems are Instant Messaging

 - 104 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

6. Evaluation

systems (IRC, MSM) while asynchronous systems are mostly email-type

applications.

• Conferencing and Electronic Meeting Systems (EMS)

Conferencing and electronic meeting systems provide users with a shared

communication channel, interface or workspace where they can work, talk or

share simultaneously.

• Group Decision Support

Group decision support systems are portal-like applications that ensure all

collaborating users have access to the same, accurate and most up to date data on a

given subject.

• Document Management

Provide document management features such as indexing, searching and

distributing documents to authorized users.

• Document Collaboration

Document collaboration systems include document management functionalities

and extend them by providing history, versioning and change management.

• Compound Document Management

Provide the functionality to see one document as a collection or combination of

smaller documents. Compound document management systems allow users to

view the single merged or compound version of the document.

M
es

sa
gi

ng

C
on

fe
re

nc
in

g
&

 E
M

S

G
ro

up
 D

ec
is

io
n

Su
pp

or
t

D
oc

um
en

t M
an

ag
em

en
t

D
oc

um
en

t C
ol

la
bo

ra
tio

n

C
om

po
un

d
D

oc
um

en
t

M
an

ag
em

en
t

Nomad
Novell iFolder
SubethaEdit
Microsoft Sharepoint
CoCoDoc
Basic Support for Collaborative Work
(BSCW)

X-peers
Table 10 : Functional criteria

 - 105 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

6. Evaluation

6.1.2.2. Architectural Criteria

The architectural criteria of Groupware applications define where and how the

collaboration is managed.

• Central Architecture

Collaboration is managed at a central server. All data is exchanged via a central

point of access. This architecture relates directly to client-server architecture.

• Replicated Architectures

Collaboration is managed by all the peers in the network. Data and information

are exchanged between peers and all peers are equal in such a network. This

architecture relates to pure Peer-to-Peer architectures.

• Hybrid Architecture

The Hybrid Architecture can be seen as a Peer-To-Peer architecture where some

nodes are more significant than other nodes. Data and information are shared

among the peers, but there exists a single or multiple master peers that can

override information received from peers or they can guide peers to other nodes.

This architecture relates to Peer-to-Peer networks with super-nodes.

C
en

tra
l

R
ep

lic
at

ed

H
yb

rid

Nomad
Novell iFolder
SubethaEdit
Microsoft Sharepoint
CoCoDoc
Basic Support for Collaborative Work (BSCW)
X-peers

Table 11 : Architectural Criteria

6.1.2.3. Focus Criteria

Focus area criteria defines the focal point of collaboration. This means that all

collaborative tasks are centered on this particular area and that no collaboration is

possible without the focus criteria being present.

 - 106 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

6. Evaluation

• User Centered

Collaborative tasks focus on the user. This implies that the user is the most

important aspect in user centered collaboration. User centered groupware creates a

communication channel between collaborating users; the groupware is not

interested in what the users do with the channel.

• Artifact Centered

All collaborative tasks focus on the artifact. Artifact centered Groupware provide

methods to collaborate on a specific artifact. The Groupware will typically store

information with regards to the structure and history of the artifact. The

communication channel between users is transparent.

• Workspace Centered

Workspace centered Groupware can be seen as an extension to user-centered

Groupware with the exception that a workspace can exist without users. The

workspace can store the state and in this way allows asynchronous user centered

collaboration. Collaborative users share the same workspace.

U

se
r

C
en

te
re

d

A
rti

fa
ct

C

en
te

re
d

W
or

ks
pa

ce

C
en

te
re

d
Nomad
Novell iFolder
SubethaEdit
Microsoft Sharepoint
CoCoDoc
Basic Support for Collaborative Work (BSCW)
X-peers

Table 12 : Focus Criteria

6.1.2.4. Time Criteria

Time criteria define the restrictions placed on the time of collaboration.

• Synchronized

Collaboration must happen in a structured manner at the same time. Synchronized

Groupware will handle locking and collision detection in real-time.

• Unsynchronized

 - 107 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

6. Evaluation

Collaboration can happen entirely unsynchronized. Unsynchronized

Groupware supports people working together, completely separate from each

other. Collaboration only kicks in when requested from a user, otherwise all work

performed does not affect other collaborating users.

• Mixed (Synchronized & Unsynchronized)

Collaboration can be either synchronized or unsynchronized.

• Serial

Serial collaboration is unsynchronized with the exception that one user must

perform a specific task before another user can continue with another task. Email

is a classical example of serial collaboration.

Sy
nc

hr
on

iz
ed

M
ix

ed

Se
ria

l

U
ns

yn
ch

ro
ni

ze
d

Nomad
Novell iFolder
SubethaEdit
Microsoft Sharepoint
CoCoDoc
Basic Support for Collaborative Work (BSCW)
X-peers

Table 13 : Time Criteria

6.1.2.5. Platform Criteria

The platform criteria define the execution platform for the groupware application.

• Mobile Platforms

Collaboration can be extended onto mobile and handheld devices.

• Operating System based Platform

Collaboration can only occur on nodes sharing the same operating system.

• Browser based platforms

Collaboration can occur via any Web browser.

• Platform independent (Multi-platform)

 - 108 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

6. Evaluation

Collaboration can occur on multiple platforms. These solutions are either built on

top of runtimes such as Java or .NET or there exist a binary distribu le version

for most platforms.

tab

B
ro

w
se

r
B

as
ed

Pl

at
fo

rm
s

M
ob

ile
 P

la
tfo

rm
s

O
pe

ra
tin

g
Sy

st
em

B

as
ed

 P
la

tfo
rm

s

Pl
at

fo
rm

 In
de

pe
nd

en
t

Nomad
Novell iFolder
SubethaEdit
Microsoft Sharepoint
CoCoDoc
Basic Support for Collaborative Work (BSCW)
X-peers

Table 14 : Platform Criteria

At the time of writing:

• Nomad uses .Net and .Net compact framework.

• Novell iFolder runs on Novell Netware.

• X-Peers have binary versions available for various operating systems.

• SubethaEdit runs Mac OS X only.

6.1.2.6. User involvement Criteria

Defines the level of involvement required from the user to gain advantages provided

by the groupware.

• High

High user involvement means that the user is forced to work with a different

interface that he is used to in order to access the collaboration functionalities.

This is typical to shared workspace environments.

• Medium

Medium user involvement implies that users can work with their normal user

interfaces and only need to execute collaborative commands at any given time.

 - 109 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

6. Evaluation

• Low

Low user involvement means that the user is only involved in setting up the

collaboration environment and can then continue to work as if they are not

collaborating. All collaboration functions are automated and intended to be

transparent to the user.

Lo
w

M
ed

iu
m

H
ig

h

Nomad
Novell iFolder
SubethaEdit
Microsoft Sharepoint
CoCoDoc
Basic Support for Collaborative Work (BSCW)
X-peers

Table 15 : User Involvement Criteria

6.1.3. Discussion

Table 16 shows the combination of the systems against all criteria. We note that there

exist commonalities between the systems. All of the above systems:

• Work with closed communities or groups. There is no public file sharing. All

users are aware of all other collaborators in the community.

• Focus is on collaboration; not sharing. This means they work with dynamic

documents (documents that change over time) rather than sharing which

focuses on static documents.

• Execute in a distributed environment using common network protocols such as

TCP and HTTP, with the internet as backbone.

On a functional level, the CoCoDoc framework is the closest match to Nomad. Both

provide a framework to support collaboration on compound documents. Nomad

extends this by adding Group Document Management features.

Microsoft Sharepoint is the only “group decision support” and “serial” project. This

product is least similar to Nomad.

 - 110 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

6. Evaluation

 System

N
om

ad

N
ov

el
l i

Fo
ld

er

Su
be

th
aE

di
t

M
ic

ro
so

ft
 S

ha
re

po
in

t

C
oC

oD
oc

B
SC

W

X
-p

ee
rs

Messaging
Conferencing & EMS
Group Decision Support
Document Management
Document Collaboration

Fu
nc

tio
na

l

Compound Document Management
Central
Replicated

A
rc

hi
te

ct
ur

al

Hybrid
User Centered
Artifact Centered

Fo
cu

s

Workspace Centered
Synchronized
Mixed
Serial T

im
e

Unsynchronized
Mobile Platforms
Operating System Based Platforms
Browser Based Platforms Pl

at
fo

rm

Platform Independent
High
Medium

C
ri

te
ri

a
U

se
r

Low
Table 16 : Combined systems comparison

Other criteria exist, such as quality of service and security, which were not included.

They are not relevant to the onset of this thesis but might be worthwhile to research.

 - 111 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

6. Evaluation

6.2. Comparison of similar mobile agent systems

An important aspect of our work has been the investigation of other mobile agent

frameworks for nomadic communities. Table 2 illustrates the similarities between

other systems when compared to Nomad.

Name Description Language /

Architecture

Wireless

Connectivity

Other

Aglets [11] API from IBM

used to program

mobile internet

agents

Java No Free, Open source,

Educational.

CARLA [27] CORBA based

Lightweight

agents.

Java and

CORBA

Yes Aimed at providing

architecture for

handheld devices.

µCode [40] Mobile code

toolkit

Original in Java

with .NET

ported version

available.

No Open source,

Educational.

SWAN [34] SWAN provides a

test-bed for

devices that make

use of ad hoc

networks.

Java Yes Uses JADE [43] as

underlying Agent

framework.

MAPNET [12] Mobile Agent

Framework

C# and .NET No Follows the MASIF

specification,

Educational.

NOMADS [28] Mobile agent

system that

supports strong

mobility.

Java No Composed of 2 parts,

execution environment

(OASIS) and Aroma –

compatible Java VM

that captures state info.

Monads [45] Research project

aimed to support

nomadic users in

the near future.

Java Yes Most closely related to

Nomad.

 - 112 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

6. Evaluation

EtherYatri.NET

[41]

Mobile agent

toolkit

C# and .NET No Free, Open source,

Educational, integrates

into Visual Studio

Nomad [20] Aims to support

nomadic users.

Use of mobile

agents to add

functionality.

C#, .NET and

the .NET

Compact

Framework

Yes Educational, provides

collaboration between

users with variety of

devices.

Table 17 : Nomad in comparison with other mobile agent projects

Aglets are the oldest system in this comparison. The reason for it being included in

this comparison is that although mobile agent systems have improved in many ways,

Aglets were always mentioned as a comparable system in the literature we

encountered. The architecture and ideas that Aglets brought to the mobile agent

community still form the basis of current systems.

The intention of CARLA is to provide a lightweight version of the bigger framework

CORBA. The minimumCORBA specification is investigated for the reason that

current devices would not be able to run the full CORBA framework. Similarly,

Nomad intends to make use of a lightweight version of the .NET, the Compact

Framework to support such devices.

Simulator for Wireless Ad-hoc Networks (SWAN) makes use of the Java Agent

Development Framework (JADE). SWAN along with the Wireless Agent Simulator

(WAS) was written in Java and was implemented on top of the FIPA-based JADE

[34]. It should be noted that these are wireless agents and not wireless mobile agents,

where the latter migrates between hosts. Agents resided above the WAS and make use

of resources provided by the virtual device. SWAN provides functionality to other

wireless agents and itself, but does not enable them to be migrated across host

boundaries, as is the intention of Nomad.

For mobile agents to move between hosts, agents have to capture their state. By

allowing the state to persist, the agent is able to continue execution when it is revived

once again on the receiving host. NOMADS has the ability to capture and transfer the

 - 113 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

6. Evaluation

full execution state of mobile agents, hence this system supports strong mobility.

Furthermore, NOMADS provides safe agent execution. These features are provided

by an agent execution environment, called Oasis and a new Java compatible virtual

machine called Aroma. Nomad has no intentions to recreate a virtual machine for its

agents, although the execution of agents will be held within the confinements of the

Nomad agent system.

Although there are mobile frameworks available in .NET, none to our knowledge has

functionality for wireless connectivity. EtherYatri.NET and MAPNET are two such

systems. Both these systems allow facilities for user-definable agents. Nomad is a

system that makes use of mobile agents. Users will not be able to create agents

themselves. Agents might encapsulate user preferences, but in no way are user-

defined.

Monads examine adaptation agents for nomadic users. The Monads architecture is

based on the Mowgli communications architecture that takes care of data transmission

issues in wireless environments. Therefore Monads extends existing systems with

mobility-oriented features and is not a new agent system. Monads provide support for

mobile devices, but extend the use of devices to mobile cell phones. Nomad will

support devices that are used by nomadic users that run on .NET compact framework,

but Nomad has no intention at the time of writing to provide support for cell phone

users.

As can be seen, Nomad is comparable to most systems, and intends to achieve the

combination of some of the systems. Support for nomadic users is what Nomad

intends to achieve.

6.3. Enabling technologies

This section mentions a few of the many features that have a direct impact on how

designers develop distributed systems and particularly features that will be used in

Nomad. Furthermore, with the release of the .NET Compact Framework, developers

have access to APIs which allow programs to be developed on mobile devices,

 - 114 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

6. Evaluation

provided that they support the framework. The framework has advantages and

disadvantages, some which will be discussed in this section.

6.3.1. .NET Framework

The .NET Framework is a platform that aims to simplify application development in

the highly distributed environment of the Internet. As opposed to the virtual machine

in Java, the .NET version of a virtual machine is the Common Language Runtime

(CLR). The topic of the CLR is not within the scope of this thesis, though it is

necessary to mention it, as it serves as the backbone to .NET. Some of the features as

noted by Powell [30] follow:

• The CLR simplifies development. The CLR is responsible for the "nitty-gritty"

implementation of code. Memory management is handled by the garbage

collector. Metadata allows dynamic binding of executables. In addition,

reliability is enhanced through type safety. All details of structure size and the

organization of members within an object are kept, so there is never a need to

worry about alignment or packing issues. Furthermore, boundary checking for

arrays or buffers is automatic.

• The CLR works hand in hand with tools (such as Visual Studio), with

compilers, debuggers and profilers to make the developer’s job much simpler.

• The CLR allows for multiple language support. The basis for multiple

language support is the Common Type System and metadata. The basic data

types used by the CLR are common to all languages. There are therefore no

conversion issues with the basic integer, floating point, and string types. All

languages deal with all data types in the same way. There is also a mechanism

for defining and managing new types. All top-level languages compile to

Intermediate Language (IL). Once the compilation is made and the metadata is

generated for the object, the code is easily accessible from other languages.

Therefore it is possible to write a class in VB and inherit from it in C#.

6.3.1.1. Remoting - System.Runtime.Remoting

Remoting is a framework that is built on the CLR for building distributed applications

in an object oriented way. Client applications can invoke functions and access

 - 115 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

6. Evaluation

resources on a server object, be they on the same computer, or a remote computer

over a network, or another application domain in the same process. Communication

between the client and server object is channeled through a proxy object. The proxy

allows the client to make calls to the server, using function calls that seem to be local

to the client.

Server side
Registration

Well-known Client-Activated
Object Object

Singleton SingleCall

Figure 63 : Remoting Server Object Types

There are two types of server object types that .NET supports: well-known objects and

client-activated objects, as shown in Figure 63. Communication with a well-known

object is established each time a message is sent by the client, whereas with a client

activated object, there is a permanent connection until the client is satisfied.

Well-known objects are server-activated objects. Well-known objects are either

singleton or singlecall. With a singleton, all messages from all clients speak to the

same single object running on the server side. On the other hand, with a singlecall,

each message from any client is processed by a new object running on the server. If

the well-known object was a bank, then a singleton would relate to all clients talking

to the same personal banker each time they visit the bank, who would handle all

queries. A single call would then relate to each client having to talk to someone new

each time they had to query something at the bank. It should be noted that well-known

objects must have parameterless constructors.

 - 116 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

6. Evaluation

Client-activated objects are normally used by programmers creating dedicated servers,

which provide services to the client, which they are also writing. The client and server

create a connection, based on a lease time, and then maintain the connection until the

needs of the client are satisfied or the lease time expires.

The System.Runtime.Remoting namespace provides the developer with the needed

classes for remoting objects. Remoting would form the mode of transport for

transport items in Nomad and for transferring of mobile agents between mobile agent

platforms. Using remoting reduces the need for low level socket programming. The

concern with remoting is that firewalls could pose a problem, although the use of a

HTTP channel over a TCP channel could simplify the solution. HTTP has been noted

for its ability to get through firewalls.

6.3.1.2. Reflection - System.Reflection

In section 5 of this text, we discuss the possible use of mobile agents in Nomad. The

need for a mobile agent to know its identity is crucial when moving between the agent

platforms. Reflection allows a program to collect and manipulate its own metadata.

Metadata is the key to a simpler programming model, eliminating the need for

Interface Definition Language (IDL) files, header files, or any external method of

component reference. Metadata allows .NET languages to describe themselves

automatically in a language-neutral manner, unseen by both the developer and the

user [46]. From the assembly, the identity of the agent can be discovered.

The agent would become available dynamically when it arrives at the next platform.

Reflection would allow the application to instantiate an agent object when it becomes

available dynamically. Furthermore, the methods for starting the agent can be

handled by dynamic function invocation. The method Registerwellknownservicetype

uses reflection to build a proxy for an object on the server side. Furthermore,

System.Reflect.Emit supports dynamic creation of new types at runtime.

 - 117 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

6. Evaluation

6.3.1.3. .Net Version 2.0

The NPS was written in .Net Version 1.1. At the time of writing, and during the

development of Nomad, version 2.0 of the .Net framework was released. Although the

NPS was already developed, it was then realized that .Net version 2.0 had much to

offer Nomad. We note a few features of .Net version 2.0 as stated by MSDN [47]

which would be of interest to Nomad.

Access Control Lists (ACL) is used to grant or revoke permission to access a resource

on a computer. An ACL could be used to allow Nomad to view only certain sections

of a computer, thereby allowing only that section to be seen by other nodes. This

would help to aid in privacy of data on nodes.

The NetworkChange class allows applications to receive a notification when the status

of the network connectivity of a node changes. Nomad could use this feature to

automatically send requests when the network becomes available. Other network

features of interest are the Ping, and System.Net.NetworkInformation classes. The

Ping class determines if a remote node is available over the network. The

System.Net.NetworkInformation class can access useful network traffic stats which

might be useful in determining whether a large artifact could indeed be sent over the

current connection, or should be queued for transfer at later time.

File Transfer Protocol (FTP) resources have been made available via the System.Net

namespace. FTP would easily allow file transfer between nodes.

An interesting feature is seen in the System.IO.Compression namespace. This

namespace offers applications to read and write data with the GZIP compression

algorithm. This would greatly reduce the amount of data transferred between nodes.

The System.Net.Mail and System.Net.Mime namespaces allow email to be sent from

an application. Since Nomad relies on email when nodes have become disconnected

with new email addresses, these namespaces would certainly hold promise for

Nomad.

 - 118 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

6. Evaluation

Nomad relies on messages being sent between nodes. At the time of writing, it was

decided that messages would be sent in eXtended Markup Language (XML) format.

The new version of .Net offers a variety of features relating to XML which will be of

interest to Nomad and offer an easier alternative to transfer messages.

The System.Runtime.Remoting and Serialization namespaces form an important aspect

of Nomad. They have been updated in the newer version of .Net, but no immediate

gain was foreseen in the newer versions for use in Nomad.

6.3.1.4. Other technologies

Events and delegates are closely associated in the .NET framework.

‘An event is a message sent by an object announcing that something important

has happened. Events are implemented using delegates, a form of object-

oriented function pointer that allows a function to be invoked indirectly by

way of a reference to the function.’ [46]

Events and delegates would form an integral part of the implementation of Nomad.

Nomad would react to events and respond using a delegate to execute its reaction.

Transport items would need to be serialized to be able to be transferred between

systems.

‘Serialization is the process of taking objects and converting their state

information into a form that can be stored or transported. The basic idea of

serialization is that an object writes its current state, usually indicated by the

value of its member variables, to persistent storage. Later, the object can be

re-created by reading, or deserializing, the object's state from the storage.

Serialization handles all the details of object pointers and circular object

references that are used when you serialize an object.’[46]

The .NET framework offers three predefined types of formatters: XML, binary and

ActiveX. The choice of formatter used for an agent would be that of binary, although

for use on devices, agents would use XML serialization since the compact framework

does not offer binary serialization. Transport items would follow the same process.

 - 119 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

6. Evaluation

6.3.2. .Net Compact Framework

Devices such as the Pocket PC have become main stream in the recent years. Due to

their small “pocket” size, they can be taken just about anywhere making them

convenient in this day and age where people are constantly on the move. They come

with a variety of “lightweight” versions of desktop applications built in, e.g.

Microsoft Office, email clients and Adobe Acrobat Reader. They come with a variety

of connectivity standards, both wired e.g. USB (universal serial bus), or wireless, e.g.

Bluetooth, 802.11(wireless LAN or WiFi) and Infra-red connectivity options.

It would therefore make perfect sense to have these devices included into Nomad.

Although with time, comes greater storage capacity and increased processor speeds,

the devices currently are limited in memory, space and performance. The .NET

Compact Framework is a version of .NET specifically designed for devices with

limited memory, space and performance. As Makofsky [35] states:

‘The class library provided by the Compact Framework is extremely similar to

its desktop counterpart, except that certain functionality has been “slimmed

down” (or entirely eliminated) to better support the limited memory, storage

space and performance of a mobile device.’

The following sections mention a few class libraries that would be of importance to

the Nomad project.

6.3.2.1. Lightweight Nomad

It would have been the ideal if we were able to run the Nomad desktop version on

devices such as a Pocket PC. Unfortunately, a lightweight version is needed due to the

following reasons:

• Although the compact framework allows WiFi connections by simply making

IP connections, at the time of writing, there is currently no Bluetooth support

in either the compact or the full framework.

• Remoting and binary serialization, both of which are of major significance to

the desktop version of Nomad, are currently not supported on the mobile

platform.

 - 120 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

6. Evaluation

With the release of this platform’s SDK, some Bluetooth features have been included

with the window’s sockets, but only for the desktop version.

Functionality for Bluetooth, remoting and serialization will have to be handled in a

different manner for versions running Nomad on mobile devices. A lightweight

version of Nomad will therefore include only some of the functionality of the desktop

version.

CARLA [27] has produced a similar lightweight concept in CORBA. The CORBA-

based Architecture for Lightweight Agents or CARLA project focused on the

minimumCORBA specification, which could be related to the Compact Framework

offered by .NET, whereby certain features were minimized to support devices with

limited memory, space and performance.

6.4. Conclusion

This chapter evaluates a number of CSCW groupware systems against criteria which

we devised. The systems include three commercial systems and four academic

systems, one which is our own system, Nomad. Furthermore, we evaluate Nomad

with other mobile agent systems. We note the similarities and differences of these

systems and Nomad in both evaluations. We conclude by discussing the enabling

technologies, the .Net and .Net compact framework, and features thereof, which will

allow us to make Nomad a reality. We state that future work will include a

lightweight version of Nomad for use on devices with limited memory and processing

power, yet host a variety of connectivity protocols.

 - 121 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

7. Conclusion and future work

7. Conclusion and future work

Nomad is a CSCW groupware tool which allows globally dispersed members in a

virtual community to share information. The community is broken into project groups

who share a common goal. The granularity of the information is dependent on the

members of the community. We use artifacts to denote the piece of shared

information. This could vary from, but not exclusive to, a picture, a sound clip, a

paragraph or a chapter in a book. Nomad makes use of technologies such as peer to

peer to make this a reality even though limited to a single depth search. This is a

viable option since each member is aware of every other member in the project group.

Members in the group switch from being online to offline at any time and for this

reason, we cannot assume a constant connection to the community.

This thesis simulates an underlying protocol which allows Nomad members to

collaborate. A variety of devices could be used in the community and we are therefore

faced with a number of different protocols and bandwidth speeds characterized by

each of these devices. A proof of concept, known as the Nomad Protocol Simulator

(NPS), was developed to model and simulate the high level interaction of nodes based

on events. The results communicated in this thesis are based on the finding from the

NPS. We simulate three possible node types, although other types can be made

available, and demonstrate how the protocol can be customized to adapt to these

nodes based on their characteristics. We illustrate the use of email to set up the

community and keep nodes in sync.

Artifact transfer poses a problem if there are a number of nodes that have the same or

older version of a required artifact. Artifacts could be transferred to the requesting

node regardless of the version. This might not pose a problem if the artifacts are

small. But it the artifacts become rather large, bandwidth of both requestor and

provider can be wasted. If the artifact exists on the requesting node, we could send the

details as part of the request and therefore only send newer versions to the node. It is

also possible to send the details of artifacts that reside on the providing node, and

allow the requesting node to decide which version it wants.

 - 122 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

7. Conclusion and future work

The best effort approach will be the most used method of gathering artifacts. This

method allows artifacts to be gathered from nodes that are currently online. Artifacts

that exist on nodes that are offline, although possibly more updated, will not form part

of this search. If, however, an artifact is required from a collaborator node that is

never online at the same time as the requesting node, a propagation node is used via a

require item approach. We evaluate the overhead of both approaches on both online

and offline nodes. The use of a propagation node to host the request and the artifact of

both nodes is also evaluated. We demonstrate that this solution, although viable,

creates overhead on the propagation node. Therefore, even though any node in the

group could be a propagation node, we define certain characteristics which the node

would need to have before allowing it the status of a propagation node. Furthermore,

we establish that the require item under any condition approach bears more

disadvantages than advantages and if considered, should be used with caution. This is

since the item or forwarded item could become stale and the nodes concerned could

suffer from the overhead caused in continuously retrying and failing. We conclude

that that the best effort and require item approaches are sufficient for gathering

artifacts from collaborator nodes.

This thesis suggests the use of mobile agents in Nomad. We evaluate Nomad against

other mobile agent systems and show their potential use in Nomad. Due to the limited

number of nodes in Nomad and the simplicity of shopping lists, it was realized that

the addition of a mobile agent system to the initial release of Nomad would not

introduce any significant immediate gain to Nomad. Once the amount of nodes in the

Nomad exceeds the point where the overhead in the system adversely affects the

performance, the use of agents would be influential. Mobile agents would an optional

add-on feature later in the lifecycle of Nomad. Since mobile agents pose potential

security risks, for example rogue agents or agents who “steal” the identities of other

agents. Future work intends to introduce performance criterion as to whether agents

in fact do add significant gain to Nomad and the security risks that mobile agents

could pose.

Nomad being a CSCW tool is evaluated against other CSCW tools. We see

similarities and distinguishing factors of Nomad. Furthermore, we suggest enabling

 - 123 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

7. Conclusion and future work

technologies such as .Net and .Net compact frameworks and their use in developing

Nomad. Future work includes the lightweight version of Nomad in the .Net compact

framework.

Communities are intended to be small and secure. Every collaborator is aware of

every other collaborator in the group. One collaborator might belong to more than one

project group. We are therefore faced with shared resources between projects which

could lead to a security risk. Further work would include exploring the security

related aspects concerning shared resources within the community and security

against outside intruders.

We conclude by stating that this thesis provides a possible viable solution, based on

the findings of the NPS, for Nomad users to collaborate in casually connected

environments, where users are mobile for most part of the project.

 - 124 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

8. References

8. References

[1] A. Iamnitchi, M. Ripeanu, and I. Foster. Small-world filesharing communities,

IEEE infocom, 2004.

[2] Adriana Iamnitchi, Matei Ripeanu, and Ian T. Foster. Locating data in (small-
world?) peer-to-peer scientific collaborations, In Proc. of the First Intl.
Workshop on Peer-to-Peer Systems, Cambridge, MA, USA, 2002.

[3] Ao Tang, Cedric Florens, and Steven H. Low. An empirical study on the
connectivity of ad hoc networks, Aerospace Conference, IEEE, (3) 1333-
1338, March 2003.

[4] Appelt, W, WWW Based Collaboration with the BSCW System, Proceedings of
SOFSEM'99, Springer Lecture Notes in Computer Science 1725, Milovy
(Czech Republic), 66-78, December 1999.

[5] Appelt, W.: What Groupware Functionality do Users Really Use?, Proceedings
of the 9th Euromicro Workshop on PDP 2001, Mantua, IEEE Computer
Society, February 2001.

[6] Bentley, R., Appelt, W., Busbach. U., Hinrichs, E., Kerr, D., Sikkel, S., Trevor,
J. and Woetzel, G., Basic Support for Cooperative Work on the World Wide
Web, International Journal of Human-Computer Studies: Special issue on
Innovative Applications of the World Wide Web, Academic Press, 46(6)827-
846, June 1997.

[7] Bentley, R., Horstmann, T., Sikkel, K. and Trevor, J., Supporting Collaborative
Information Sharing with the World Wide Web: The BSCW Shared
Workspace System, in The World Wide Web Journal: Proceedings of the 4th
International WWW Conference, Issue 1, 63-74, December 1995.

[8] Bonnie A. Nardi, Diane J. Schiano, Michelle Gumbrecht, Blogging as social
activity, or, would you let 900 million people read your diary? , [8], 222-231
2004.

[9] CSCW 2004, Proceedings of the 2004 ACM conference on Computer supported
cooperative work, 2004, ISBN:1-58113-810-5.

[10] Daniel B. Horn, Thomas A. Finholt, Jeremy P. Birnholtz, Dheeraj Motwani, and
Swapnaa Jayaraman, Six Degrees of Jonathan Grudin: A Social Network
Analysis of the Evolution and Impact of CSCW Research, [8], 582-591, 2004.

[11] Danny B. Lange and Mitsuru Oshima, Programming and Deploying Java
Mobile Agents with Aglets, Reading MA: Addison- Wesley, 1998.

[12] Dilyana Staneva, Denitsa Dobreva, MAPNET: A .Net-Based Mobile-Agent
Platform, International Conference on Computer Systems and Technologies -
CompSysTech’ 2004

[13] G.H. ter Hofte and H.J. van der Lugt, CoCoDoc : A framework for collaborative
compound document editing based on OpenDoc and CORBA, Proceedings of
the IFIP/IEEE international conference on open distributed processing and
distributed platforms, 15-33, May 1997.

 - 125 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

8. References

[14] Gerald Reif, Engin Kirda, Harald Gall, Gian Pietro Picco, Gianpaolo Cugola,
and Pascal Fenkam. A Web-based peer-to-peer architecture for collaborative
nomadic working, In Proceedings of the 3rd International Workshop on Web-
based Infrastructures and Coordination Architectures for Collaborative
Enterprises, co-located with the 10th International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE 2001).
MIT, Cambridge (MA, USA), June 2001.

[15] Gianpaolo Cugola and Gian Pietro Picco. Peer-to-peer for Collaborative
Applications, In Proceedings of the International Workshop on Mobile
Teamwork Support, co-located with the 22nd International Conference on
Distributed Computing Systems, Vienna (Austria), H. Gall and G.P. Picco
eds., IEEE press, 359-364, July 2002.

[16] Grudin, J. CSCW: History and focus, IEEE Computer, 27 (5), 19-26, 1994.

[17] J. Chu, K. Labonte, B. N. Levine. Availability and locality measurements of
peer-to-peer file systems, In ITCom: Scalability and Traffic Control in IP
Networks, Proceedings of SPIE, (4868) Jul. 2002.

[18] J. Lan, X. Liu, P. Shenoy, and K. Ramamritham. Consistency maintenance in
peer-to-peer file sharing networks, Proc. of WIAPP'03, 3rd IEEE Workshop
on Internet Applications, San Jose, CA, 76-85, June 2003.

[19] Jeffrey D. Campbell, Instant messages: a framework for reading between the
lines, [8], 519-522, 2004.

[20] Jiten Rama and Judith Bishop. Towards a mobile agent framework for Nomad
using .Net, Technical report, Polelo Research Group, University of Pretoria,
2005.

[21] Judith Bishop, Theo Danzfuss, Ronald Klazar, Jiten Rama and Tebalo Tseoali,
Nomad - Collaborative groupware for casually-connected communities,
Technical report, Polelo Research Group, University of Pretoria, 2005.

[22] K. Cheverst and G. Smith. Exploring the notion of information push and pull
with respect to the user intention and disruption, International workshop on
Distributed and Disappearing User Interfaces in Ubiquitous Computing, 67-
72, 2001.

[23] Liam J. Bannon , Kjeld Schmidt, CSCW: Four Characters in Search of a
Context, In J. Bowers & S. Benford (Eds.) Studies in Computer Supported
Cooperative Work: Theory, Practice and Design. Amsterdam North-Holland,
3-16, 1991.

[24] M.S. Khambatti, K.D. Ryu, and P. Dasgupta. Push-pull gossiping for
information sharing in peer-to-peer communities, Proc. International
Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA), Las Vegas, Nevada, 1393-1399, June 2003.

[25] Manfred Hauswirth, Mehdi Jazayeri, A Component and Communication Model
for Push Systems, ESEC / SIGSOFT FSE, 20-38,1999.

[26] Manoj Lall, Selection of mobile agent systems based on mobility, communication
and security aspects, M.Sc dissertation, UNISA, 2005.

[27] Markus Aleksy, Axel Korthaus and Martin Schader, Design considerations for a
CORBA-based architecture for lightweight agents (CARLA), Web
Intelligence and Agent Systems: An international journal1, 259-271, 2003.

[28] Niranjan Suri, Jeffrey M. Bradshaw, Maggie R. Breedy, et al, An Overview of
the NOMADS Mobile Agent System, In Proceedings of ECOOP'2000, Nice,
France, 2000.

 - 126 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

8. References

[29] R. Baghwan, S. Savage, G, M. Voelker. Understanding Availability,
Proceedings of the 2nd International Workshop on Peer-to-Peer Systems
(IPTPS '03), Feb. 2003.

[30] Robert, Powell and Richard Weeks, C# and the .NET Framework, The C++
Perspective, SAMS, Indiana, USA, 2001.

[31] Ronald Klazar, Nomad, Artefact Ubiquity, Extending the Reach of Collaborators
by Means of Mobile Software Agents, Technical report, Polelo Research
Group, University of Pretoria, 2005.

[32] S. Saroiu, K. P. Gummadi, and S. D. Gribble. Measuring and analyzing the
characteristics of napster and gnutella hosts, Multimedia Systems, (9)170-
184, 2003.

[33] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of peer-to-
peer content distribution technologies, ACM Computing Surveys, 36(4):335-
371, December 2004.

[34] Stephen Quirolgico, L. Jay Wantz, et al. Wireless Agents in Ad Hoc Networks,
Innovative Concepts for Agent-Based Systems, First International Workshop
on Radical Agent, WRAC 2002, Springer, 165-174, 2002

[35] Steve Makofsky, Pocket PC Network Programming, Addison Wesley
Professional, 2004.

[36] Tsoumakos, D. and Roussopoulos, N. A comparison of peer-to-peer search
methods, In Proceedings of the Sixth International Workshop on the Web and
Databases, San Diego, CA, 2003.

[37] Wikus Coetser and Judith Bishop, A unified approach to workflow based on
ontologies, Technical report, Polelo Research Group, University of Pretoria,
2005.

[38] Wolfgang Emmerich, Engineering Distributed Objects, Wiley, August 2001.

[39] Wolfgang Prinz, Gloria Mark, Uta Pankoke-Babatz, Designing Groupware for
Congruency in Use, Proceedings of the 1998 ACM conference on Computer
supported cooperative work, 373-382,1998.

8.1. Web References

[40] µCODE, http://mucode.sourceforge.net, Last accessed May 2004

[41] EtherYatri.NET, http://www.geocities.com/siddharthuppal/EtherYatri.htm,
Last accessed May 2004

[42] Improving Gnutella Protocol - Protocol Analysis And Research Proposals,
http://www9.limewire.com/download/ivkovic_paper.pdf, Accessed 10
September 2005

[43] JADE, http://jade.tilab.com/, Last accessed May 2004

[44] Microsoft SharePoint,
http://www.microsoft.com/sharepoint/overview.mspx, Last accessed 31
January 2006

[45] MONADS, http://www.cs.helsinki.fi/research/monads/, Last accessed May
2004

 - 127 -

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd -- RRaammaa,, JJ ((220007))

8. References

[46] MSDN, http://msdn.microsoft.com, Last accessed 22 Feb 2006

[47] MSDN, What's New in the .NET Framework Version 2.0 ,
http://msdn2.microsoft.com/en-us/library/t357fb32.aspx, Accessed: 23
Feb 2006

[48] Novell iFolder, http://www.novell.com/products/ifolder/ , Last accessed 31
January 2006

[49] Sourceforge , http://sourceforge.net/, Last accessed 31 January 2006

[50] Subethaedit, http://www.codingmonkeys.de/subethaedit/ , Last accessed 31
January 2006

[51] The Gnutella Protocol Specification v0.4, 1. Document Revision 1.2.
http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf ,
Accessed 10 September 2005

[52] X-peers, http://www.xpeers.net/ , Last accessed May 2004

The ray traced image that appears at start of each chapter was created by Jiten Rama.
The colored spheres represent the states of a node in the simulator. These are red,
green, grey and blue. The mirror sphere represents the reflective property of the
propagation node to mirror requests of other nodes. Furthermore, the spheres
represent the distributed characteristic of the users of the system.

 - 128 -

	Introduction
	Background to Nomad
	Project History and Status

	Problem Statement
	Motivation
	The Need for a Simulator
	Contributions of this thesis
	Document Roadmap

	Background and Related work
	Central Concepts
	Distributed Systems
	Computer Supported Cooperative Work (CSCW)
	Groupware
	Peer-to-Peer (P2P)
	Communities
	Push and Pull Technologies
	Connectivity and Casual Connections

	Uses of Nomad
	Authoring
	Student Administration
	Route management
	Scientific research project
	Software development

	Conclusion

	The Nomad Protocol and the Simulator
	The Nomad Protocol Simulator (NPS)
	Interface
	Definitions
	Node
	Artifacts
	Propagation node

	NPS Assumptions
	Nomad Protocol Properties
	Setting up the community
	According to the Nomad Protocol
	Implementation of the Nomad Protocol Simulator

	Simulating Node Connectivity
	Node available online
	Notify online
	Node offline

	Node Types
	TYPE 1 – Workstation
	TYPE 2 – Mobile Laptop
	TYPE 3 – Mobile PDA

	Management queues
	Transport Item
	Transfer and Receive queues

	Simulation Scenarios
	Influence of Artifact size
	Scenario setup and description
	Requesting and transferring artifacts only
	Sending of artifact details
	Introducing the artifact size limit
	Conclusion

	Simple disconnection scenario
	Scenario setup and description
	Results
	Conclusion

	Desired Effort Levels
	Scenario setup and description
	Best effort approach
	Require item
	Require item under any condition
	Conclusion

	Nomad and Mobile Agents
	Introduction
	Motivation
	Integration of mobile agents into Nomad
	Final word and conclusion

	Evaluation
	Other Nomad Related Projects
	Systems overview
	Novell iFolder
	SubethaEdit
	Microsoft Sharepoint
	CoCoDoc
	Basic Support for Collaborative Work (BSCW)
	X-peers

	Systems comparison
	Functional Criteria
	Architectural Criteria
	Focus Criteria
	Time Criteria
	Platform Criteria
	User involvement Criteria

	Discussion

	Comparison of similar mobile agent systems
	Enabling technologies
	.NET Framework
	Remoting - System.Runtime.Remoting
	Reflection - System.Reflection
	.Net Version 2.0
	Other technologies

	.Net Compact Framework
	Lightweight Nomad

	Conclusion

	Conclusion and future work
	References
	Web References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings true
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [3600 3600]
 /PageSize [612.000 792.000]
>> setpagedevice

