
Design implications of an online collaborative workspace developed using

open source software

By

Paul Bothma

Dissertation

Submitted as partial fulfilment of the requirements for the degree

MIS Multimedia

In the

Department of Information Science

Faculty of Engineering, Built Environment and Information Technology

University of Pretoria

Study leader: Prof. Johannes Cronje

November 2006

i

Summary

Design implications of an online collaborative workspace developed using

open source software

This thesis reports on a pilot project which was developed to meet the needs of specific

research groups for a collaborative workspace. The main components of the project

include a digital library, online discussion forum, adaptive hypermedia engine and a

statement database.

Such a system was deemed necessary because of today's global network of researchers

who are divided by both location and time. The need therefore exists for a system which

allows researchers to work on a project without the need to be in the same physical

location. Such a system is called an online collaborative workspace. An online

collaborative workspace allows researchers to work together on projects by providing

various means of sharing information and resources.

The main research question addressed in this study is:

 What are the user requirements and design specifications of an online

collaborative workspace developed in open source software?

In order to answer this main question, the following sub-questions need to be

addressed:

 What are the main design principles and functionalities of such a collaborative

workspace?

 How can they be integrated in developing a modular open source framework?

 To what extent can such a framework be customised for implementation in new

or existing collaborative projects?

 What are the usability requirements of such an online collaborative workspace

and how should one go about to test the usability of such a framework?

Before being able to accurately determine the user requirements of an online

collaborative workspace, we first need to determine which features exist in current

systems. The main question driving the literature survey therefore is:

 What are the main components of current online collaborative workspaces as

reported in the literature?

Chapter 2 of this report is devoted to identifying and researching the various

ii

components that define an online collaborative workspace. Each of these components

are investigated in detail by means of informal interviews as well as a literature survey.

The components that were identified include a digital library, online discussion forum

and collaborative workspace. In addition to identifying the various components, this

chapter also addresses the motivation for the use of open source software and the

importance of usability.

With the information obtained in chapter 2, chapter 3 sets out to develop a framework

which addresses each of the components that were identified. The various features and

properties of each component were identified and decisions were made with regard to

the best method of implementation. In addition to the components that were developed,

this chapter also focuses on various design implications such as modularity and the use

of open source software.

Chapter 4 describes the various projects where the framework was implemented. For

each of the projects the user requirements, customisations and usability issues are

addressed. This chapter highlights the framework's ability to be customised to suit the

diverse needs of research projects.

The final chapter provides a set of conclusions summarising how the main objectives of

the study were addressed. Moreover, the limitations of the study are addressed and an

outline is provided as to how these limitations are to be addressed in future work.

iii

Table of Contents
1 Chapter 1 ...1

 1.1 Research questions...1
 1.2 Research methodology..2

 1.2.1 Informal survey...2
 1.2.2 Literature survey..3
 1.2.3 Project development...4

 1.3 Limitations...5
 1.4 Chapter division...5

 1.4.1 Chapter 1..5
 1.4.2 Chapter 2..6
 1.4.3 Chapter 3..6
 1.4.4 Chapter 4..6
 1.4.5 Chapter 5..6

 1.5 Summary...6
 2 Chapter 2 – Literature survey...8

 2.1 Introduction...8
 2.1.1 Digital library..8

 2.1.1.1 Brief overview..8
 2.1.1.2 Characteristics of a Digital Library..9
 2.1.1.3 Advantages of a Digital Library...11
 2.1.1.4 Open Archives Initiative..12
 2.1.1.5 Current implementations..13

 2.1.1.5.1 EPrints...13
 2.1.1.5.2 Greenstone..14
 2.1.1.5.3 DSpace..16

 2.1.1.6 Summary findings..18
 2.1.2 Adaptive hypermedia..19

 2.1.2.1 Brief overview..19
 2.1.2.2 User profiling/models... .20
 2.1.2.3 What can be adapted...21

 2.1.2.3.1 Link level adaptation...21
 2.1.2.3.2 Content level adaptation...22

 2.1.2.4 Recommendation system...23
 2.1.2.5 Adaptive hypermedia methodologies...24

 2.1.2.5.1 Dexter model...24
 2.1.2.5.2 AHAM...25

 2.1.2.6 LinkBases and link services..26
 2.1.2.7 Current implementations..27

 2.1.2.7.1 The GUIDE system...27
 2.1.2.7.2 ELM-ART..29

 2.1.2.8 Summary findings..30
 2.1.3 Collaborative Workspaces...31

 2.1.3.1 Introduction...31
 2.1.3.2 Characteristics of collaborative workspaces...31

 2.1.3.2.1 Session vs. document centric design...................................31
 2.1.3.2.2 Ad hoc vs. formal systems...32
 2.1.3.2.3 Features of collaborative workspaces..................................33

 2.1.3.3 Current implementations..34

iv

 2.1.3.3.1 phpGroupWare..34
 2.1.3.4 Summary findings..35

 2.2 Open Source Software...36
 2.2.1 A brief history of free/open source software......................................36
 2.2.2 The open source model...38
 2.2.3 Open source development tools..39
 2.2.4 Open source projects..40

 2.2.4.1 The Apache Software Foundation...40
 2.2.4.2 Linux...41
 2.2.4.3 The Mozilla Foundation...42

 2.2.5 Motivation for the use of open source software.................................43
 2.3 Usability..45
 2.4 Literature survey findings..46

 2.4.1 Critical reflection on the literature..46
 2.4.2 Open Source Software..49

 2.5 Summary...50
 3 Chapter 3 - Framework architecture and research methods...........................51

 3.1 Introduction...51
 3.2 Design principles...53

 3.2.1 Modularity...53
 3.2.2 Three-tiered architecture..53
 3.2.3 Implemented technologies and software...54

 3.3 Functional components..55
 3.3.1 Content module..55

 3.3.1.1 Overview..55
 3.3.1.2 Classes..56

 3.3.1.2.1 Module..56
 3.3.1.2.2 Loader...56
 3.3.1.2.3 Metadata...57
 3.3.1.2.4 Link...57
 3.3.1.2.5 Section..58
 3.3.1.2.6 Page..59
 3.3.1.2.7 Subject..60

 3.3.1.3 Clustering...60
 3.3.1.4 Integration of modules...61

 3.3.1.4.1 Modules and components..62
 3.3.1.4.2 Interface..62
 3.3.1.4.3 Java Server Pages..63

 3.3.1.5 Database...63
 3.3.1.6 Adaptation..65

 3.3.1.6.1 Adaptive presentation...65
 3.3.1.6.2 Adaptive navigation...66

 3.3.1.7 Recommendation system...66
 3.3.1.7.1 Requirements and history..66
 3.3.1.7.2 Personal preferences...67

 3.3.1.8 Content Management...68
 3.3.1.8.1 Content submission...68
 3.3.1.8.2 Theme management...68
 3.3.1.8.3 Link management..69
 3.3.1.8.4 Page requirements..69

 3.3.1.9 Configuration... .70

v

 3.3.1.9.1 Standard settings..70
 3.3.1.9.2 Additional settings...70

 3.3.2 Discussion forum..71
 3.3.2.1 Overview..71
 3.3.2.2 Classes..71

 3.3.2.2.1 Module..71
 3.3.2.2.2 Loader...72
 3.3.2.2.3 DiscussionMessage..72
 3.3.2.2.4 DiscussionTopic...73
 3.3.2.2.5 Discussion...73

 3.3.2.3 Integration...73
 3.3.2.4 Database...74
 3.3.2.5 XML & XSL..74
 3.3.2.6 Functionalities..74
 3.3.2.7 Forum management...75
 3.3.2.8 Configuration..75

 3.3.2.8.1 Standard settings..76
 3.3.2.8.2 Additional settings...76

 3.3.3 Repository and workspace..77
 3.3.3.1 Overview..77
 3.3.3.2 Classes..77

 3.3.3.2.1 Module..77
 3.3.3.2.2 Loader...78
 3.3.3.2.3 MetadataField..78
 3.3.3.2.4 Metadata...80
 3.3.3.2.5 File..80
 3.3.3.2.6 Hierarchy Explorer...80
 3.3.3.2.7 Directory...81
 3.3.3.2.8 DocumentSearch...81
 3.3.3.2.9 Document..82
 3.3.3.2.10 RepositoryInstance..83
 3.3.3.2.11 Open Archives Initiative (OAI)..83

 3.3.3.3 Integration...83
 3.3.3.4 Hierarchy & Document storage..83
 3.3.3.5 Presentation & Functionalities..84

 3.3.3.5.1 Metadata...84
 3.3.3.5.2 Document content...85
 3.3.3.5.3 Available functionalities...85

 3.3.3.6 Search...86
 3.3.3.6.1 Search interfaces...86

 3.3.3.6.1.1 Simple..86
 3.3.3.6.1.2 Advanced..87
 3.3.3.6.1.3 Full text..87

 3.3.3.7 Database...87
 3.3.3.8 Document management...89

 3.3.3.8.1 Document submission...89
 3.3.3.8.2 Editing, revision, accepting and removal of documents.......89
 3.3.3.8.3 Directory management..90

 3.3.3.9 Configuration... .91
 3.3.3.9.1 Standard settings..91
 3.3.3.9.2 Additional settings...91

vi

 3.3.4 Statement database...93
 3.3.4.1 Overview..93
 3.3.4.2 Classes..93

 3.3.4.2.1 Module..93
 3.3.4.2.2 Loader...93
 3.3.4.2.3 Link...93
 3.3.4.2.4 Metadata...94
 3.3.4.2.5 Statement...94
 3.3.4.2.6 StatementDatabase...95

 3.3.4.3 Integration...95
 3.3.4.4 Presentation & Functionalities..95

 3.3.4.4.1 Browsing databases...95
 3.3.4.4.2 Viewing statements...96

 3.3.4.5 Database...96
 3.3.4.6 Statement database management...96
 3.3.4.7 Configuration... .97

 3.3.4.7.1 Standard settings..97
 3.3.4.7.2 Additional settings...98

 3.4 Supporting core modules...98
 3.4.1 Graphical User Interface component...99

 3.4.1.1 Overview..99
 3.4.1.2 Classes..99

 3.4.1.2.1 Loader...99
 3.4.1.2.2 FieldValidator..99
 3.4.1.2.3 Link...100
 3.4.1.2.4 Expression...101
 3.4.1.2.5 Interface..101
 3.4.1.2.6 InterfaceComponent..102

 3.4.1.3 XML & XSL...102
 3.4.1.4 JSP template...103
 3.4.1.5 Configuration.. ..104

 3.4.1.5.1 Standard settings..104
 3.4.1.5.2 Additional settings...105

 3.4.2 User component..105
 3.4.2.1 Overview...105
 3.4.2.2 Classes...106

 3.4.2.2.1 Loader...106
 3.4.2.2.2 ProfileEntry..106
 3.4.2.2.3 Profile..107
 3.4.2.2.4 User...108

 3.4.2.3 Functionalities..108
 3.4.2.3.1 My homepage..109
 3.4.2.3.2 View profile..109
 3.4.2.3.3 View recommendations...110
 3.4.2.3.4 Create a new project...110
 3.4.2.3.5 Manage users..110

 3.4.2.4 User management..110
 3.4.2.5 Database...111
 3.4.2.6 Configuration.. ..111

 3.4.2.6.1 Standard settings..111
 3.4.2.6.2 Additional settings...112

vii

 3.4.3 Plugins..112
 3.4.3.1 Overview..112
 3.4.3.2 Plugin chain...113
 3.4.3.3 Examples...114

 3.4.3.3.1 AlterMessage...114
 3.4.3.3.2 NotifyAdministrator...114
 3.4.3.3.3 AlterContent..114
 3.4.3.3.4 NotifyOriginalSender...114

 3.4.4 Security..115
 3.4.4.1 Overview..115
 3.4.4.2 Security model...115

 3.4.4.2.1 Role-based security model...115
 3.4.4.2.1.1 Default..115
 3.4.4.2.1.2 User..115
 3.4.4.2.1.3 Worker..116
 3.4.4.2.1.4 Admin...116
 3.4.4.2.1.5 Super..116

 3.4.4.2.2 Authorization...116
 3.4.4.2.3 Authentication...116

 3.4.4.3 Navigation..117
 3.5 Research methodology..117

 3.5.1 Research approach...117
 3.5.1.1 What is development research and why do we use it?........................118
 3.5.1.2 What are the most common attributes of development research?......118
 3.5.1.3 Why can this project be seen as development research?....................119

 3.5.2 Research method..119
 3.5.2.1 Sampling..120
 3.5.2.2 Data collection...120
 3.5.2.3 Interpretation...121
 3.5.2.4 Limitations...122

 3.6 Summary...123
 4 Chapter 4 - Implementations..124

 4.1 Introduction...124
 4.2 Implementations..125

 4.2.1 DISSAnet...126
 4.2.1.1 Overview..126
 4.2.1.2 Client requirements..127
 4.2.1.3 Features and functionalities...127
 4.2.1.4 Lessons learnt..129

 4.2.2 IKS..130
 4.2.2.1 Overview..130
 4.2.2.2 Client requirements..131
 4.2.2.3 Implementation and customisations...131
 4.2.2.4 Lessons learnt..133

 4.2.3 IFLA-KM...135
 4.2.3.1 Overview...135
 4.2.3.2 Client requirements..136
 4.2.3.3 Implementation and customisations...136
 4.2.3.4 Lessons learnt..136

 4.2.4 The Wellness Firm...138
 4.2.4.1 Overview..138
 4.2.4.2 Client requirements..139

viii

 4.2.4.3 Implementation and customisations...139
 4.2.4.4 Lessons learnt..140

 4.3 Summary...141
 5 Chapter 5 – Conclusions and recommendations...143

 5.1 Introduction...143
 5.2 Summary findings regarding research objectives..................................143

 5.2.1 What are the main components of current online collaborative
workspaces as reported in the literature?...143
 5.2.2 What are the main design principles and functionalities of such a
collaborative workspace and how can they be integrated in developing a
modular open source framework?...145
 5.2.3 To what extent can such a framework be customised for
implementation in new or existing collaborative projects?........................146
 5.2.4 What are the usability requirements of such an online collaborative
workspace and how should one go about to test the usability of such a
framework?...146
 5.2.5 What are the user requirements and design specifications of an online
collaborative workspace developed in open source software?147

 5.2.5.1 User requirements..147
 5.2.5.2 Design specifications..149
 5.2.5.3 Open source software...151

 5.3 Reflections...152
 5.3.1 Methodological reflection..153
 5.3.2 Substantive reflection...153
 5.3.3 Scientific reflection...154

 5.4 Recommendations...155
 5.4.1 Policy and practice..155
 5.4.2 Future work...157

 5.5 Final conclusions...158
 Bibliography ...163
 Appendix ..168

ix

1 Chapter 1
This thesis reports on a pilot project which was developed to meet the needs of specific

research groups for a collaborative workspace. The main components of the project

include a digital library, online discussion forum, adaptive hypermedia engine and a

statement database.

Such a system was deemed necessary because of today's global network of researchers

who are divided by both location and time. The need therefore exists for a system which

allows researchers to work on a project without the need to be in the same physical

location. Such a system is called an online collaborative workspace. An online

collaborative workspace allows researchers to work together on projects by providing

various means of sharing information and resources.

Although many projects exist that address specific requirements of the research

community the literature survey and interviews performed during this study, indicated

that the existing systems do not necessarily satisfy all the needs of users. Moreover,

most systems are built using proprietary software, thus limiting customisation of the

components to suit an institution's or a specific research group’s unique needs. Another

result of proprietary software is the cost involved with development, therefore making

the final system unobtainable to most research groups.

The main reason, therefore, for the development of this framework was to create a

prototype, using open source software, that satisfies the needs of specific research

communities by addressing the shortcomings of the existing systems.

 1.1 Research questions
As a result of these limitations, it became evident that there is a gap in the solutions

available to today's researchers. The main research question addressed in this study

therefore is:

 What are the user requirements and design specifications of an online

collaborative workspace developed in open source software?

In order to answer this main question, the following sub-questions need to be

addressed:

 What are the main design principles and functionalities of such a collaborative

workspace?

 How can they be integrated in developing a modular open source framework?

1

 To what extent can such a framework be customised for implementation in new

or existing collaborative projects?

 What are the usability requirements of such an online collaborative workspace

and how should one go about to test the usability of such a framework?

Before being able to accurately determine the user requirements of an online

collaborative workspace, we first need to determine which features exist in current

systems. The main question driving the literature survey therefore is:

 What are the main components of current online collaborative workspaces as

reported in the literature?

 1.2 Research methodology
Due to the fact that the final outcome of this research project was to develop a

framework that meets specific user requirements, it was decided to follow a

developmental approach. The research methods that were used, therefore, consisted of

first identifying the user requirements of today's research community. This was done by

combining the findings of both an informal survey and a literature review of existing

systems. The literature survey consisted of consulting both scholarly research and

existing systems. An informal survey provided invaluable insights as to exactly what

features are required by today's research community. Lastly, the framework, meeting

the user requirements, could therefore only be developed after gaining a better

understanding of the research field.

 1.2.1 Informal survey
The need for the development of a framework that supports online collaboration of

researchers, arose out of the needs of DISSAnet and IKS research projects. These are

two research projects which expressed the need for a system which would allow its

members to share documents and thoughts amongst each other. DISSAnet's focus was

on providing researchers a centralised repository where conference proceedings could

be stored and retrieved. IKS, on the other hand, required a system where indigenous

knowledge from across Southern Africa could be stored and made available to research

community. The requirements for such a system were obtained by interviewing the

people involved and also by performing a literature survey. The interview process

consisted of talking to the researchers and discussing their needs as a research group

and how one could go about addressing those needs.

2

 1.2.2 Literature survey
Before embarking on a research project, it is important to first ascertain whether any

similar systems exist, and if so, what functionalities they provide. This is made possible

by performing a literature survey, which is described by Fouche [Fouche 2002] as a

scrutiny of all relevant sources of information. A literature survey allows one to

investigate other research projects' methodologies and practices, which assists one in

determining the best course of action. Moreover, by performing a literature survey,

researchers are made aware of other projects in the same area of study, hence

duplication of research efforts can be avoided.

An online collaborative system is comprised of a collection of services which allow users

to work collaboratively on a project. The services that were identified included digital

libraries, adaptive hypermedia, online discussion forums and collaborative workspaces.

Many such services already exist in the form of either free or proprietary systems.

Examples of each such service were identified and researched to determine their

features, specifications and success. The research process involved with each of the

systems comprised of sourcing documentation, examples and research papers from the

Internet, including digital libraries and online journals. Typical search terms that were

used included “adaptive hypermedia”, “collaborative workspaces”, “digital library”,

“linkbases”, “link services” and “ad hoc information systems”. This information was

then used to provide amongst others an overview of each service as well as their

features, advantages and characteristics. Lastly, examples of current implementations

of each such system is provided, consisting of an overview of the implementation and its

key features and functionalities. As stated, most of the research was done using sources

obtained from the Internet. One such source is the Association of Computing and

Machinery (ACM), which provides researchers as well as scholars an invaluable source

for conference proceedings, journals and articles in their digital library. By reviewing the

existing services needed to develop an online collaborative workspace, a better

understanding was obtained as to how these services could be integrated to provide a

framework capable of bringing project members together.

Another focus of the survey involved the research of Open Source Software (OSS), which

played a key role in the development of the framework. A review of both old and new

literature provided enough insights on the benefits on Open Source Software and also

the strategies to be followed when building such a framework. Only after identifying the

services needed to provide an online collaborative system could the decision be made

as to what software would be needed in the implementation of such a system. Included

3

in the list of required software are a relational database system, web service and

various programming languages. Examples of each of these requirements were

reviewed and a decision whether to adopt the specific technology was made based on

the functionality, flexibility and scalability of the technology.

 1.2.3 Project development
Development and implementation of the framework consisted of first deciding on a

broad set of specifications, after which a prototype was developed. The prototype was

reviewed by the group of researchers who assisted in the analyses of the user

requirements of the online collaborative workspace. An iterative development and

review process was followed to ensure that the final implementation of the framework

would satisfy the needs of the specific research communities.

a) Broad specification

A broad specification, comprising a list of features, was designed after reviewing

existing systems and interviewing a group of researchers. I decided to adopt a

broad specification in stead of a detailed specification, as this allowed for the

rapid development of a prototype which could be enhanced with each

development interval.

b) Prototyping

The use of prototyping allowed me to rapidly develop a system that can be

tested and reviewed by, for instance, a group of researchers with an interest in

the project [Strydom 2002]. By adopting a method of continuously submitting a

prototype system for review, I could quickly and effectively address any issues

which might arise. A prototype system would typically start by implementing the

list of broad specifications that were identified, after which each feature would be

tailored to suit the needs of the users. By following this breadth-first approach, I

could quickly grasp the impact and scale of the system.

c) Usability

A collaborative workspace's purpose is to allow project members to interact with

one another using a virtual medium. It is therefore important for that medium to

assist the users in their task as effectively and efficiently as possible. An

important consideration of any framework that is to be used by users is usability.

Usability is defined by Nielsen [Nielsen 1993] as not only a single one dimensional

concept, but rather a multi-dimensional collection of attributes. The accepted list

of attributes of usability include learnability, efficiency, memorability, low error

4

rate and satisfaction. When developing any system, it is important to understand

the user's needs, abilities and the scenario in which such a system is to be used.

An important step of determining the usability of a system is done through

iterative user testing [Shneiderman 2005]. Nielsen [Nielsen 1993] proposes

“discount usability” which holds that when the number of test users is limited , it

is important to ensure that the participants are representative of the expected

user group.

 1.3 Limitations
The main user requirements that were identified by the informal interviews were for an

online collaborative workspace that provided researchers with a structured,

asynchronous system to assist then in sharing information and ideas. As a result certain

features such as a shared whiteboard and synchronous chat, which were identified in

the literature survey, were not implemented in the framework. Certain features that

were not implemented in the current framework were, however, identified to be of great

use to researchers and will certainly be addressed in future work and research.

In addition to the functional limitations, there also existed limitations with regard to the

usability testing of the framework. Because of the fact that a developmental approach

was followed, the usability testing of the framework consisted of working closely with

the experts involved with the study and was therefore tested throughout the various

stages of the development process. Expert testing, instead of exhaustive user testing,

was the preferred choice for usability testing due to the complexity and the constant

changing of user requirements of the framework. Another motivation for expert testing

is the fact that not all of the functionalities provided by the framework have been

implemented in the various projects. One such an example is the adaptive hypermedia

engine provided by the framework which has, at the time of writing, not yet been

implemented in any of the research projects; it was, however, identified by the original

DISSAnet research project as a requirement but was not utilised due to various reasons.

The final chapter of this study addresses the limitations that were identified and how

future work could address these limitations.

 1.4 Chapter division

 1.4.1 Chapter 1
As an introduction to the subsequent chapters, the first chapter provides the main

objective of this study as well as a set of sub-problems. The chapter continues with the

5

proposed research methodology for this study in order to solve the various problems

that were identified. Following the research methodology is a short discussion of the

areas and topics that are not covered by the study. Ending off the chapter is an outline

of the chapters comprising this research study.

 1.4.2 Chapter 2
This chapter is devoted to gaining a better understanding of the components that define

an online collaborative workspace. Each of the components was identified and

researched by means of a literature survey. Digital libraries, online discussion forums,

collaborative workspaces, adaptive hypermedia and open source software were

identified as the main areas of interest. The literature survey is divided into a number of

sections; each addressing a different field.

 1.4.3 Chapter 3
With the information obtained from the literature survey, it was possible to define a set

of specifications to be addressed by the framework to be developed. This chapter

describes the various components of the framework and how they address the design

specifications. The components involved include an adaptive hypermedia engine, a

digital library, online discussion forum and statement database. Each component is

described in detail and includes the full technical specification, uses and configuration.

 1.4.4 Chapter 4
The completed framework was implemented in various research projects to test its

ability to meet the users' functional as well as usability requirements. This chapter

describes the various instances where the framework was implemented. Each

implementation was customised to meet the specific research project's needs which

were identified during an interview process.

 1.4.5 Chapter 5
The final chapter provides a set of conclusions summarising how the main objectives of

the study were addressed. Moreover, the limitations of the study are addressed and an

outline is provided as to how these limitations are to be addressed in future work.

 1.5 Summary
This chapter first identified the importance and main research objectives of the research

study, viz. determining the user requirements and design specifications of an online

6

collaborative workspace using open source software. Following the introduction and

research questions the research methodology outlined the processes which will be

followed in order to answer the research questions that were identified, and included an

informal interviews, literature survey and lastly project development. The informal

interviews consisted of obtaining a list of user requirements from research experts.

Following the interviews, the literature survey provided a more in-depth understanding

of the various components that are needed in an online collaborative workspace as they

exist today. Lastly the process of developing and testing such a prototype system

consisted of working closely with the research experts and continuously revising the

user requirements and evaluating the usability of the framework.

Included in this chapter is a list of limitations that were identified through the gap

analysis between the user requirements as obtained from the informal interviews and

the components that were identified during the literature review. Lastly, the chapter

division provided an outline of what is to follow in the rest of the study.

The following chapter is devoted to identifying the various components that are needed

to develop a successful online collaborative workspace. This is done by performing a

literature survey in which conference proceedings, research publications and various

existing systems are evaluated in order to obtain a clear understanding of what is being

done in the field of online collaborative workspaces.

7

 2 Chapter 2 – Literature survey

 2.1 Introduction
In chapter 1 the question driving the literature survey was formulated as:

 What are the main components of current online collaborative workspaces as

reported in the literature?

This chapter aims to answer this question by identifying and investigating the various

components of online collaborative workspaces and open source technologies that can

assist in the development of such a system.

Firstly, the focus is on the main components which form the base of such a system. The

list of components comprises of a digital library, adaptive hypermedia and collaborative

workspaces. A brief overview describing each component and also its characteristics is

provided. A review of current implementations, in both scholarly research as well as

commercial systems, of the various components provides insightful information into the

features of these components and how they can be adapted to suit the needs of an

open source collaborative workspace.

This chapter is concluded with the history and characteristics of the open source

software movement as well as the open source model used to develop free software.

The open source software movement has ensured that there exists a multitude of tools

and applications which makes the development of an online collaborative workspace

based on open source a reality. Components of a collaborative workspace

 2.1.1 Digital library

 2.1.1.1 Brief overview

A common misconception is that a digital library is merely a digital version of a real-

world library. There are, however, numerous differences between digital and real-world

libraries. The most obvious difference is of course the fact the digital libraries are digital

and in most cases do not represent a physical library.

As a result, digital libraries do not necessarily adhere to real-world principles. For

example, various new ways of storing and representing documents need to be devised

to allow for the complex components of modern-day documents. Although many digital

libraries try to imitate real-world libraries by using elements and principles well known

to users, these are not always successful as computer screens and the interaction with

8

computers have certain limitations [Wiederhold 1995].

As an example we investigate the use of a card based metaphor, such as the use of

Dewey Decimal cards in libraries, as a means to display search results. Whilst the

metaphor is known to anyone who has used a library before, the use of such visual

elements can hinder the user's ability to navigate the results due to, for example, the

difficulty in quickly and easily selecting search results. In addition to hindering the user's

experience, such elements are also not printable thus limits the ability to file or use

search results in any other format as that which it is originally presented in. As a result,

developers of digital libraries have to move away from the paradigms of real-world

libraries and create new ways of allowing users to navigate the information space of the

digital library.

Wiederhold [Wiederhold 1998] identifies other social differences between digital and

real-world libraries; however, these are beyond the scope of the research.

 2.1.1.2 Characteristics of a Digital Library

Levy [Levy 1995] identifies three core components of a library, viz.

 Documents

These are the physical documents or artefacts that are contained within the

library and can vary in their rate of change and duration/lifespan.

 Technology

The artefacts in the library are created by humans using some form of

technology, be it pen and paper or any other form of craft.

 Work

Humans are needed to create the library and manage the collections of work. In

addition to creating the library, humans are also the consumers of the

information contained within the library. Both the creation and use of the library

thus entails work being done by humans.

By comparing digital libraries with real-world libraries, one can see that in essence the

three core components remain unchanged. There does, however, exist some differences

in the implementation of each component. For example, the technologies used to create

artefacts for the digital library will be digital and the underlying technologies supporting

the library will also be digital. Thus, for a digital library the core components' attributes

would become:

 Documents

9

A library can contain either a single fixed version of a document, or there could

be multiple versions of a document that can change as time progresses.

 Technology

The underlying technologies of a digital library and its artefacts will inherently be

of a digital form.

 Work

Most work done by humans on the digital library, be it managing or research, will

be done by individuals working alone. For example, a student could sit in his/her

room and use the digital library without any interaction with humans.

At the 1998 DLib Working Group on Digital Library Metrics [DLib 1998] the following

properties for a digital library were proposed:

 Provide a collection of services

A digital library must serve a broad range of users such as researchers,

publishers, managers and even machines. It is therefore important for any digital

library to expose a collection of services that can be utilised by these users to

satisfy their specific needs. Examples of services include storing, retrieving,

indexing and browsing of information.

 Support to users in dealing with information objects

A digital library must support users in dealing with the collection of information

objects by not only allowing users to access information but also to manage the

vast collection of documents, users and hierarchies. In addition to allowing

humans to use the digital library, a digital library must also be made accessible to

automated queries that are made on behalf of users or for automated harvesters.

 Provide a collection of information objects

The basis for a digital library is the information that it contains which forms the

content for the library. In a traditional library information objects were limited to

physical documents and articles, whereas digital libraries can contain electronic

representations of traditional documents but also live data such as sensory

information.

 Organization and presentation of information objects

In real-world libraries users have to locate a book using the author, title, date and

directions to the physical location of the bookshelf containing the book. Digital

libraries work in much the same manner, requiring users to have some

information pertaining to the desired document, such as a part of the document's

10

title or the author. However, instead of providing the physical location the book

on a shelf, a digital library provides a link to the document within the repository.

Ongoing research is required in order to ensure that digital libraries provide

access to information in a manner that is most suitable for humans and that

comply with usability guidelines.

 Be available directly or indirectly

Information contained within a digital library can either be the full text of the

document itself, or a reference to a document in another digital library, or simply

the physical location of the book in a real-world library.

 Available via electronic/digital means

Each entry in a digital library must at least be accompanied by metadata

information that contains information relating to the document; however, the

document's full text need not necessarily be stored in the digital library.

The list of properties that were identified provided a starting point for the digital library

component of the online collaborative workspace. There exists a correlation between

the before mentioned list of features and attributes and the user requirements that

were identified during the informal surveys.

 2.1.1.3 Advantages of a Digital Library

A digital library can have certain advantages, if implemented correctly, above a

traditional real-world library. Some advantages worth noting include:

 Support for enterprise and work group activities [Anderson 1997]

Corporations are increasingly making use of digital libraries to store documents

relating to their business practices and models in digital libraries to allow access

to both employees and consumers.

 Searching [Lesk 1995], [Thong 2004]

A major benefit of digital libraries is the ability to create full text indices of a

document's text which allows users to locate documents based on not only

limited metadata but also the content.

 Accessibility [Lesk 1995], [Thong 2004]

A single copy of a document can be accessed simultaneously by numerous users

across the globe at any given time, thus making the limitations of time and space

obsolete. Also, the document can be delivered in a format that is most suitable to

the users, for instance if a user accesses the digital library from a mobile device,

11

the document can be formatted appropriately.

 Preservation [Lesk 1995]

Digital content can be copied without error and without damaging the original

source. This reduces the need for storing original copies in a secure location,

which greatly increases the cost incurred by real-world libraries.

 Tracking [Thong 2004]

A digital library can provide detailed statistics and trends relating to which

documents are accessed by certain user groups. This provides administrators

with useful information that can help with the improvement of the digital library.

 Associative linking and annotations [Miles-board 2004]

A digital library can be enhanced by allowing users to add annotations and

associative links that can provide useful cross-linking and value added

information to existing documents. Researchers can then use these associative

links and annotations in the search for information.

 Multimedia/Rich media [Lesk 1995]

Digital libraries are not bound by the same limitations that real-world libraries

face when it comes to the format of the information objects. Real-world libraries

are, typically, limited to printed media and a limited set of audio-visual aids.

However, digital libraries can contain a vast array of information objects ranging

from static documents to interactive media and possibly even games. The

availability of these new rich media information objects can greatly assist users in

their information gathering needs and research.

The efficiency and effectiveness of the digital library could be greatly improved by

focussing on the various advantages that were identified during the literature survey.

These advantages have to be kept in mind during the development stages to ensure

that the benefits provided by the digital library component of the framework supports

users and researchers in their work.

 2.1.1.4 Open Archives Initiative

The Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) [OAI-PMH

2004] aims to allow for interoperability between repositories and services by allowing an

application-independent framework for developers on which they can build their

services. There exist two classes of participants in the OAI-PMH, namely:

 Data providers

12

These are the digital libraries that support the Open Archives Protocol and allows

its repositories to be harvested by service providers.

 Service providers

Typically, service providers do not have any content of their own and merely

provide users with search functionalities that make use of data providers'

repositories that are harvested using the Open Archives Protocol.

The process of harvesting metadata from data providers is done by a harvester, which is

in essence an application that queries a set of repositories and collects metadata

relating to the documents contained therein. Once the initial set of metadata has been

harvested for all the documents, the harvester will periodically query the repositories

again in order to obtain metadata for new submissions and also to update information

pertaining to documents already harvested. Service providers will then use the

harvested metadata to build their own search functionalities for their end-users

[Shreevese 2004].

 2.1.1.5 Current implementations

There is a multitude of existing open source implementations of digital libraries such as

EPrints and Greenstone. This section will give an overview of Eprints, Greenstone and

DSpace as well as outline some of their key functionalities. In addition to open source

digital libraries, there also exists a large collection of research digital libraries that

provide researchers with a valuable source of research information. This section will end

off with a discussion on how the features and functionalities that were identified in these

examples will affect the framework.

 2.1.1.5.1 EPrints

This discussion provides an overview of EPrints, the functionalities provided by the

system as well the use of Open Access. [Eprints 2005] and [Wikipedia 2006] were used

as the main sources for the information that is provided.

a) Overview

GNU/EPrints is an open source digital library that assists researchers in publishing

their work in what is called an Open Access Institutional Repository. Development

began in 2000 at the Electronics and Computer Science department of the

University of Southampton as an outcome of the 1999 Santa Fe meeting. An

Eprints repository consists of a collection of ePrints which are pre-prints (before

peer-review) and post-prints (after peer-review) of electronic research articles.

13

b) Open Access [BOAI 2002]

A key benefit of the EPrints system is that it complies with Open Access

requirements by allowing researchers the ability to submit and review

unpublished works. The Budapest Open Access Initiative has as its goal the open

access to peer-reviewed research/journal articles and proposes creating a new

generation of self-archiving open-access journals as a means to obtain this goal.

Open Access allows researchers to publish their collections of work to open

journals allowing any researcher or scholar to freely download any body of work.

As a result, the research community will not only reap financial benefits but will

also benefit from the accelerated research cycle [Brody 2005] and enjoy

increased visibility [Hajjem 2005].

c) Functionalities [Gutteridge 2005]

 Open Archives Initiative (OAI)

Supports OAI version 2.0 and supports the Dublin Core metadata schema by

default and also allows users to easily configure additional metadata schemas.

 Really Simple Syndication (RSS)

Users can subscribe to a repository's RSS feed which will inform them of new

additions to the repository. This frees the user from having to constantly access

the repository to find out if any new submissions have been made.

 Scripting Application Programming Interface (API)

Provides a powerful scripting interface which allows users to write custom scripts

that can be used to manage the repository based on a user's more specific needs.

 Full-text searching

A full-text index of the content of the ePrints contained within the repository is

maintained which allows for full-text searching. Formats that can be indexed

include Adobe Acrobat, HTML and Microsoft Word Documents.

 Multi-level browsing

Rather than just being able to browse by one specific field, users can create views

containing a subset of documents which can then in turn be used to create new

views based on a different field.

 2.1.1.5.2 Greenstone

This discussion provides an overview of Greenstone which is a software suite that allows

researchers or institutions the ability to create and distribute digital libraries.

14

[Greenstone 2006], [Witten 2000] and [Wikipedia 2006] were used as the main sources

for the description of Greenstone's functionalities.

a) Overview

Greenstone is a suite of software that can be used to build and distribute digital

library collections and was developed by the New Zealand Digital Library Project

at the University of Waikato. Two key design aspects of Greenstone include

platform independence and interoperability. Greenstone can run on GNU/Linux,

UNIX, Apple OS-X and also Microsoft Windows. In addition to being platform

independent, Greenstone is also capable of importing and exporting its data in a

variety of commonly supported formats, such as METS and DSpace.

b) Functionalities

 Data structures automation

Greenstone automatically creates data structures from the provided material

instead of requiring users to manually sort and organize the body of information.

These data structures then form the base for any searching and browsing

activities done by the user.

 OAI

As with EPrints, Greenstone also supports the OAI-PMH version 2 which allows it

to be both a data and service provider.

 Interfaces

Greenstone consists of a Reader interface which exists to allow users of the

digital libraries to access information and view documents. In addition to the

Reader interface, Greenstone also has a Librarian interface which assists

moderators of the digital library to administer the collection of documents as well

as search forms and metadata schemas.

 Metadata formats

A collection of predefined metadata schemas supported by Greenstone include

Dublin Core, RFC 1807, New Zealand Government Locator Service and Australian

Government Locator Service. In addition to the predefined metadata schemas,

moderators can also implement additional metadata schemas such METS, MARC

and BibTex.

 Available via the web and CD-ROM

Greenstone repositories are mainly aimed at the Internet enabled users; however,

the repositories can also be distributed on CD-ROM to allow users without Internet

15

access access to information.

 2.1.1.5.3 DSpace

This section provides an overview as well as a description of the DSpace system's

features and benefits. All information was obtained from [Dspace 2006], [Tansley 2003],

[Branschofskyh 2002].

a) Overview

DSpace was developed from a joint venture, started in 2000, between MIT Labs

and Hewlett Packard to assist MIT in storing and sharing their research output.

After its development, DSpace was made available under a Berkeley Software

Distribution (BSD)-style licence to allow other research institutions to also share

documents and intellectual property among one another. A key concern which is

addressed by DSpace is the need to be able to store information and documents

that may otherwise be lost due to, for instance, a university department's closure

or a research project ending prematurely. By providing an archiving system,

DSpace allows researchers to continuously submit their research works which

ensures its safe storage as well as allowing other researchers to review their

unpublished works.

b) Functionalities

 Document ingestion

DSpace provides the ability for administrators to import a collection of external

documents into its internal storage engine. Documents are submitted as a batch

where they are stored in a pool awaiting the approval or rejection from DSpace

moderators. The DSpace moderators or 'gatekeepers' are notified of the new

submissions after which they will review each individual document and its

associated metadata for inclusion in the repository. Once a document has been

accepted by a moderator, it will be visible to the users of the DSpace repositories.

 Browsing, searching and linking

Users can access documents in the DSpace system using any of the following

methods, viz. searching, browsing or via an external reference. Documents are

stored in a logical hierarchy allowing users to drill down to the desired topic or

research area using a simple browsing interface. Alternatively, if a user only has a

keyword or phrase, he/she can use the search functionality to search for

documents in the collection. Lastly, the document identification features of

DSpace allows a user to follow an external link to directly access a specific

16

document.

 Interoperability

DSpace provides numerous methods with which it can interact with existing

systems. One such feature is DSpace's ability to export data in an open XML

format allowing other systems to import metadata and document content using

batch operations. Moreover, DSpace supports the OAI [OAI-PMH 2004] protocol

allowing it to expose its collection of documents as well as the ability to harvest

documents contained within other systems.

c) Components

 Data models

DSpace's data is organised in such a way as to reflect the organisation which the

system serves. Each implementation is divided into the following components,

viz. community, collection, item, bundle and bitstream. There exists various top-

level communities, each representing, for instance, a research division such as a

laboratory or department. A community comprises of various collections of similar

object, for instance, the research projects with which the community is involved.

Each collection contains a number of items, which are the actual documents

stored in the repository. Each item is represented by a number of bitstreams,

which are the actual components of the document, to form a bundle.

 Metadata

Metadata is used to describe the various properties of the items contained within

the various collections. The metadata is further divided into descriptive,

administrative and structural schemas, each describing a different property of the

item. Dublin Core is used for the descriptive metadata schema which describes

information about the item, such as author, title, date and abstract. The

administrative metadata is a proprietary schema which is used to describe,

amongst others, the authorisation requirements associated with each item.

Lastly, structural metadata is used to describe the actual presentation of the

items various components, such as images and tables.

 E-People

DSpace uses the term e-people to describe any person or machine which has

access to its resources. E-People are represented by information such as name,

surname, email address and also subscriptions. Moreover, each e-person is

assigned authorisation information which determines the actions which can be

performed.

17

 Authorisation

Each action that is exposed to the e-people of the DSpace system has an

associated role assigned to it. This authorisation information is used to ensure

that only authorised users perform certain actions. An example role is called

READ, which limits an e-person to be able to only access an item without the

ability to modify that item.

 Handles

A Handle is a globally unique identifier which is assigned to each collection and

item contained within the DSpace communities. By using Handles to identify

items, DSpace allows users to make persistent links to items which ensures link

consistency. Each DSpace site is assigned a prefix which is to be used when

creating a Handle for an item. A typical example of a Handle is 1721.21/367.

which can be represented as hdl:1721.21/367 or

http://hdl.handle.net/1721.21/367. In the former example, a user can simply enter

the Handle into any capable browser and will be directed to the item on the

associated DSpace site. The latter example points to a web proxy which will also

direct the user to the item associated with the Handle.

 2.1.1.6 Summary findings

From the literature surveyed, we have learnt that a digital library allows researchers to

publish their research findings to a centralised repository,which assists the research

community to share their findings and ideas. The following collection of features were

identified during the literature survey and have to be present in any successful digital

library:

 Submit documents

 Edit, remove documents

 Metadata describing documents and repositories

 Browsing and searching repositories

 Integration between various online digital libraries

 Multiple user type support

The various properties and advantages that were identified will have to be incorporated

into the digital library component of the online collaborative workspace. This will ensure

that users are assisted in their various tasks when using the digital library.

18

http://hdl.handle.net/1721.21/367

 2.1.2 Adaptive hypermedia

 2.1.2.1 Brief overview

Adaptive hypermedia systems arose from users' diverse needs regarding the

presentation of information when browsing large hypermedia systems. In an adaptive

hypermedia system a user can be presented with customised content and navigation

links based on his user profile [Brusilovksy 1998] and [Kristofic 2005]. Questions that

need to be addressed with adaptive hypermedia systems include:

 Which systems can be adapted? [Brusilovsky 1998]

It is important to identify the systems or application areas where adaptive

hypermedia will benefit users the most. Most commonly, these systems will

contain vast amounts of information that needs to be adapted to suit the

individual needs of its users.

 What can be adapted and how? [Brusilovsky 1998]

Adaptation can be divided in two main categories, viz. link level adaptation and

content level adaptation. The presentation of content can be tailored to suit the

user's understanding of the subject matter, whilst the links can be adapted to

guide the user through the information space.

 User features needed for adaptation? [Brusilovsky 1998], [Kristofic 2005]

Certain information is needed in order to build a user model representing the

user's understanding of a topic and specific needs. These include a user's

background, navigational habits, personal preferences and goals.

 What will adaptation achieve? [Brusilovsky 1998]

Lastly, it is important to determine whether the adaptation of content and links

will assist the user's information and navigational needs. The goals of adaptation

are specific to each area of implementation and can thus be tailored to best

support the characteristics of that system.

Adaptive hypermedia systems have been implemented in a number of different

disciplines, such as educational systems [Brusilovsky 1998], [Kristofic 2005], context-

aware tourist guides [Cheverst 2002], [Wilkinson 2000] and online marketing [Kobsa

2001]. These systems all typically contain vast amounts of information and each user's

information needs are unique, thus providing the perfect opportunity for adaptive

hypermedia to support users in their information gathering needs.

Each user of an adaptive hypermedia system has his own profile which forms the basis

for all personalisation functionalities. These profiles contain information relating to a

19

user's knowledge, goals, background and preferences [Brusilovksy 1998] and [Kristofic

2005]. As mentioned before, a user can either create his personal profile by supplying

certain information or his profile can be dynamically created by tracking his interaction

with the site. By using a user's personal profile the hypermedia system can adapt the

presentation of content, level of difficulty of the content and also the links that are

available to the user. Users will thus be presented with information most appropriate for

their level of understanding of a topic and can also be guided through the information

space in such a manner that will best benefit their information needs.

 2.1.2.2 User profiling/models

As mentioned previously, each user of the adaptive hypermedia system is represented

by a profile containing certain information. Some information, such as demographics

[Kobsa 2001], must be supplied by the user upon registration, whereas other

information can be gathered by the system by tracking a user's behaviour. Information

needed to provide the user with adaptive content and navigation include [Brusilovsky

1998], [Kristofic 2005] and [Kobsa 2001],

 User background

The background of the user is important, such as level of education and

computer literacy. This type of information can amass to vast amounts, so careful

consideration is needed when determining exactly what background information

is needed. Examples of user background information include age and gender

which need to be provided by the user upon registration, as it cannot be inferred

from the user's actions or preferences. Moreover, a user's interests and hobbies

can also be added to his background information.

 User knowledge

A user's knowledge is represented by the domain knowledge that he/she has

read. This information is obtained by tracking his navigational behaviour and

interaction with components throughout the site. Navigational behaviour could

include the links that were followed and the amount of time spent reading an

article. This information can then be used to infer a user's knowledge pertaining

to certain subjects and can also assist in adaptive content presentation.

 User goals

By knowing the user's information needs and goals the system can anticipate the

user's next actions and can also limit the scope of information to fit in with the

user's goals. Typically, a user will need to supply his goals beforehand to assist

20

the system in quickly adapting the content and links accordingly. However, the

system could also use the user's first couple of clicks to infer a goal. For instance

if a user navigates to DVDs in an online shopping mall, then the system can

quickly limit the scope of products when calculating recommendations.

 User preferences

Preferences can be divided into preferences relating to a user's preference of a

certain area of research and also when it comes to the presentation of

information and links. Certain preferences must be explicitly supplied by the user,

for example visual styles. However, certain preferences such as level of detail and

areas of research can be inferred by the system by tracking a user's behaviour

throughout the site.

 2.1.2.3 What can be adapted

An important question to ask about adaptive hypermedia is what can and should be

adapted. One should identify the components of the system that need to be adapted for

individual users. The two components of an adaptive hypermedia system that can be

adapted are the content and links [Brusilovsky 1998] and [Bailey 2002].

 2.1.2.3.1 Link level adaptation

A key component of any hypermedia system is the ability to add links allowing users to

browse a hierarchy of documents and to also create links between these documents.

Every user visiting a site is unique, thus his information gathering needs will be unique.

This provides the perfect opportunity to adapt the presentation and availability of links

found throughout the site. When working with link adaptation, the following aspects of

links can be adapted:

 Direct guidance

This is the simplest form of navigation support as it only relies on a simple linear

navigational structure that informs the user which is the next document to view.

It is best suited for educational or instructional systems where the user has to

follow a linear path through the information space. In addition to providing the

user with links to document that he/she must read next, direct guidance can also

inform the user with documents that he/she should have read in order to

understand the current set of documents.

 Link presentation

A link's visibility can be increased or reduced based on its relevance to the user.

21

For instance, if a user has not yet followed a link and the system deems the link

to be of high importance then either the size or the colour of the link can be

augmented to attract the user's attention and to highlight the importance of the

link. This will assist the user in deciding which link to follow whilst reading a

specific document or when browsing the site's directory hierarchies.

 Adaptive ordering

Another means of link adaptation is adaptive ordering where links are sorted

according to their perceived importance to the user. However, adaptive ordering

can cause confusion amongst users due to the fact that the ordering of links will

not necessarily remain constant [Debevc 1994].

 Link hiding

Probably the most helpful form of navigation support is link hiding which protects

the user from irrelevant information. The system can hide links from the user if

the link points to information that is not relevant to the user's preferences or if

the user is not yet ready to read the information. Link hiding can be applied to

contextual as well as navigational links to limit the scope of the information space

available to the user.

 Adaptive annotation

Links can be augmented with annotations to provide a limited amount of

information to the user regarding the document to which the link points. This

information can help the user to make a decision quickly on whether to follow the

link or not. Examples of information include the difficulty, rating and perhaps a

few keywords or a brief abstract describing the document. By providing the user

with this information before following the link, the user is spared the exercise of

scanning the document to determine whether it is of any importance or not.

 2.1.2.3.2 Content level adaptation

Content level adaptation can be applied to the visual presentation of the information

and physical content itself [Brusilovsky 1998], [De Bra 2003, 2] and [Boll 2003]. For

example, a user could select a certain visual style as his preferred interface which will

cause the information to be displayed in a certain manner. With the actual adaptation of

content the following distinctions can be made:

 Adaptive text presentation

A popular method of hiding information from the user is by using stretch text.

Stretch text is the process of limiting the amount of information that is directly

22

visible to the user by replacing large sections of irrelevant or less relevant

information with a single description with the option to expand the complete

section. This will greatly reduce the clutter on the screen and can assist the user

in quickly finding the desired information.

 Adaptive multimedia presentation

Another method of adapting the content is by selectively displaying certain

multimedia elements based on a user's preferences. For instance, if the user is

accessing the site using a mobile device, it would be senseless to display large

images and videos. The same is true for users from rural or under developed

areas that have bandwidth limitations. Adaptive multimedia presentation can

thus help the user achieve the most of his time browsing and reading information.

Multimedia components can also be tailored, dynamically, in its style and content

to suit a certain age group [Boll 2003].

 Interface adaptability

In addition to the adaptation of the actual content, the interface presented to the

user can be adapted to suit his specific needs. An example of such adaptation is

the various visual styles that can be provided to the user to choose from. This

allows users to select a visual style that is best suited to, for instance, their

accessibility preferences. For example, upon registration, a user with poor eye

sight could select the visual style that places emphasis on readability rather than

visual richness.

 2.1.2.4 Recommendation system

Apart from adapting the content and links of a document, adaptive hypermedia systems

can also recommend additional reading to users [Han 2005], [Schafer 2002], [Bao 2005]

and [Mobasher 2001]. This is possible due to the fact that users can be clustered based

on their personal preferences as well as their navigational history. These clusters of

users can assist in providing recommendations based on material that similar users

have read. Likewise, documents can be clustered together and recommendations can be

made by informing users of documents that have similar attributes to those that a user

has read previously. Dynamic recommendations can ease the amount of manual linking

and suggestions made by moderators of a large collection of documents.

Recommendations can be divided into the following groups:

 User history [Bao 2005], [Mobasher 2001]

By analysing a user's navigation history it is possible to recommend documents

23

that the user can read next or documents that the user should have read by now.

Additional metadata is required in order to denote the sequence in which

documents must be read. Therefore if a user has finished reading an introduction

on a certain subject the system can automatically recommend the subsequent

document. Likewise, if the user has failed to read an introduction to a certain

subject, the system can inform the user that he/she still has to read it.

 Profile matching against other users [Herlocker 2000]

Users may be assigned to clusters based on their personal preferences,

navigation history and level of interest in subjects. It can then be assumed that

users in a cluster will have an overlap in their interests, therefore the system will

be able to make recommendations based on documents that other users in a

user's cluster have read that he/she has not yet read. In addition to providing

recommendations, these groups of users can also be grouped into a community

where they can share their thoughts and ideas with each other.

 Profile matching against other documents [Schafer 2002]

As with the users of the system, the documents in the system can also be

clustered into groups based on their attributes. If a user has already read, for

instance, two documents in a cluster, he/she could automatically be made aware

of other documents in the cluster that could be of interest.

 2.1.2.5 Adaptive hypermedia methodologies

In order to provide users with effective adaptive hypermedia services the system needs

to be able to accurately model the user, the information and relationships between

information items. This can be accomplished through the use of various hypermedia

models, such as the Dexter Model [Halasz 1994], [Halasz 1990] and AHAM [De Bra

1999], [De Bra 2003, 2].

 2.1.2.5.1 Dexter model

The Dexter Hypertext Model [Halasz 1994], [Halasz 1990] is the result of two small

workshops that were held, the first being at the Dexter Inn in New Hampshire in 1988. A

key focus of the workshops was to determine the common abstractions that were used

in existing hypermedia applications. The Dexter Model divides a hypertext application

into the following three layers:

 Storage layer

The storage layer can be described as a database containing all of the

24

components and relational links between these components. A component can be

described as a node containing, for instance, a document on a certain subject.

One limitation of the Dexter Model is its inability to describe the structure of

these components in more detail. As a result, each component is merely seen as

a generic container, and doesn't allow for the distinction between, for instance,

text and images.

 Within-component layer

Unlike the storage layer of the Dexter Model, the within-component layer is

specifically concerned with the structure of the components. The within-

component layer's specifications are purposefully not elaborated on to allow for

the maximum number of variations that can be stored within a component. It is

up to the system's developers to choose a model that will be used to describe the

structure of the components in more detail.

 Run-time layer

Once all the components and relational links have been authored it is up to the

run-time layer to present the content and navigation to the user. For each session

instantiated by a user a new unique session ID will be assigned. Throughout a

user's session the system will keep track of changes that were made to the

relational links between the components. If, for instance, a component is

removed or relocated in the storage-layer, all links pointing to that component

will be altered accordingly. It is up to the run-time layer to handle all the

interactions between the user and the system's storage and within-component

layers.

 2.1.2.5.2 AHAM

The Adaptive Hypermedia Application Model (AHAM) [De Bra 1999], [De Bra 2003, 2] is

based on the Dexter Model and was developed to allow for the use of persistent user

models to allow for adaptation. Adaptation is achieved through a teaching model which

consists of a set of pedagogical rules that define the relationships between and

sequences of documents.

In contrast to the Dexter Model, AHAM makes use of a persistent user model which is

continuously updated to reflect the user's level of knowledge and navigational history.

The user model can contain the history of all the nodes that a user has visited including

the time spent on each of these nodes. This information can then be used to determine

the level of detail in which each topic needs to be explained to the user. If, for instance,

25

a user has read enough on a certain subject then the next time that he/she requests a

page on that same subject, the system could automatically provide information that is

applicable to the user's level of understanding of the subject. An example user model

would be represented by:

UID (name) Knowledge value Read Ready-to-read

AH Expert True True

Digital_Library Intermediate False True

OSS Novice False False

Table 1: Example of AHAM user model

As can be seen in this example, a user's understanding of a subject and his readiness to

read a resource is expressed in his user model. This example states that he/she has

read AH and OSS but has not yet read Digital_Library. The system will allow the user to

read advanced topics in the Digital_Library domain because he/she has read enough

information relating to digital libraries and each time that the user has accessed such a

resource the system will increase the knowledge factor which ultimately will allow the

user to access the more advanced resources in the specific domain.

Together with the persistent user models, AHAM also incorporates a teaching model

which uses a set of pedagogical rules for each document to determine whether a user is

ready to read a certain document and also to provide users with recommendations. A

pedagogical rule generally takes the form:

< Access(C) => C.read := true, post >

Illustration 1: Example AHAM pedagogical rule

In this example rule, a user's profile will be updated to set the state of resource C to

read after he/she has accessed the resource.

< Access(C) and D.knowledge-value >= Known, D.ready-to-read := true, post >

Illustration 2: Example of pedagogical rule

In this example, once a user has read resource C and his understanding of subject D is

at least “known”, then in the user's model resource D will be set to be ready to be read.

 2.1.2.6 LinkBases and link services

As mentioned in Section 2.1.2.3.1, adaptive hypermedia systems provide users with

customised navigation based on their level of understanding of a subject as well as a

26

user's personal history. In order to allow for the customised presentation of links, there

exists the need for the separation of links and content. The content of the site exists in a

form that contains no links, only text and images. In addition to these documents of text

and images, adaptive hypermedia makes use of what is called LinkBases [Carr 2001] or

link services. [Carr 1999], [Hall 1996]. Microcosm [Hall 1996] is an example of a system

which allows users a personalised navigation experience by providing various LinkBases

that can be applied to large bodies of information.

LinkBases allow for the separation of content and text by storing links in databases

which can be queried by a system to insert links in to any standard body of text. When a

user views a document, the adaptive engine will query the user's personal profile and

history to determine his level of understanding of the themes contained within the

document as well as the list of documents that the user has view in the past. This

information can then be used to determine whether any additional links should be

inserted into the document to provide the user with further reading material. Similarly,

the adaptive engine could remove links which it deems are of little or no importance to

the user.

Links can be stored in various formats in databases, depending on the desired use of the

links. A LinkBase may contain links pertaining to a specific document or could be used to

augment any document viewed by a user. When a link is intended for a specific

document and word within that document, it would typically be represented in a format

such as Xlink [DeRose 1989], which is a standard method of pointing to a certain word

in, for instance, an HTML document. In the event that a LinkBase is intended to be used

for any collection of documents, links would typically be represented by only a word and

an associated URL. These links are then inserted into any document containing those

specific words.

LinkBases and Link Services therefore allow for true adaptive hypermedia by a allowing

content moderators the ability to separate content and links which results in users being

presented with customised navigation options.

 2.1.2.7 Current implementations

The following section describes two implementations of adaptive hypermedia systems,

viz. The GUIDE System [Cheverst 2002] and ELM-ART [Brusilovsky 1996]. An overview of

each implementation as well as its functionalities and usage is provided. Lastly, the

successfulness of each system's ability to provide accurate recommendations will be

reviewed.

27

 2.1.2.7.1 The GUIDE system

When visiting a city tourists will usually make use of a brochure or tourist map to decide

which attractions to visit. Unfortunately this method of exploring a city is static and does

not take into account a tourist's personal preferences, weather conditions and temporal

information. For example, if it is raining a tourist will not necessarily be interested in

walking around a historic castle. Instead, a tourist will rather explore the city's local

galleries and museums. Adaptive Hypermedia can be used in order to circumvent these

limitations. An example of such a system is the GUIDE [Cheverst 2002], [GUIDE 2006]

application that acts as an adaptive guide to the city of Lancaster in England.

The GUIDE system consists of a Fujitsu TeamPad Tablet which the tourists will carry with

them and a number of base stations that serves the information. When a visitor

receives his GUIDE unit, he/she can supply some personal information and his personal

preferences with respect to specific interests, age group, dietary requirements and

attractions already visited. This information is stored on the GUIDE unit creating a

personal user model which is then used when determining which attractions to

recommend.

In addition to a user model, the GUIDE system also incorporates an environment model

which stores information pertaining to the city's attractions. The environment model

consists of geographical information, hypermedia information and active components.

An active component would typically be information that can change from time to time,

such as opening times of museums.

As tourists walk around the city, the GUIDE system will continuously track their

movements and provide information and recommendations based on their current

location. This is achieved by the GUIDE system sending a query to the nearest base

station which returns information, such as opening times and activities, about the

attractions in its vicinity. The GUIDE system will then use this information, together with

the visitor's user model, to provide the visitor with only the relevant attractions. In

addition to the visitor's personal preferences, the GUIDE system will also use temporal

data, such as the time of year and day of the week, in order to further filter or adapt the

information. For example, attractions that are closed on public holidays will be removed

from the list and the GUIDE system could either recommend another similar attraction

or provide the visitor with the dates on which the attraction is open.

Interaction with the GUIDE system is achieved through a web browser which is

embedded in the application. Visitors can then read information, view images and follow

links to other attractions in the city. Standard HTML is used to author the content with

28

the addition of custom mark-up which allows authors the ability to interact with the

GUIDE system. An example of the custom mark-up is the “Insert Neighbours” tag, which

the GUIDE system will process and then subsequently alter the content with links to

nearby attractions (based on the visitor's user model and temporal data).

On evaluating visitors' feedback of the GUIDE system, it became evident that the

filtering of certain information proved to be an annoyance to the users. For example,

when an attraction was found to be closed by the GUIDE system, due to for instance it

being a public holiday, it was removed from the list of attractions. However, certain

attractions such as museums have beautiful architecture which visitors would like to

view even though they were not able to enter the building. This raises the issue of

“intelligent” filtering by adaptive hypermedia applications based on a user's perceived

goals versus the actual goals of the user [Suchman 1987], [Cheverst 2000].

 2.1.2.7.2 ELM-ART

ELM-ART [Brusilovsky 1996] an online adaptive course-ware environment used to teach

students the Lisp programming language. It is used in conjunction with course material

and notes which is presented by lecturers to the students. The environment allows

students to apply the knowledge obtained from the lectures and notes by providing

example problems with real-time feedback. ELM-ART provides the following services to

the students:

 Online course material

Students are provided with an electronic copy of the course's material and

textbooks together with a reference manual containing a set of course concepts

with references to the course material. The content of the material is presented

to the students as HTML pages with hierarchical links to navigate the course

material and also content links allowing students to easily navigate the online

course material. Contextual links between reference material are added

dynamically by the ELM-ART system because it is designed to be an intelligent

system which “knows” and “understands” the course material and can therefore

create links between various concepts.

 Adaptive navigation support

ELM-ART uses adaptive navigation to support students in their decision making

when deciding which links to follow. Links are sorted according to their relevance

to the student's current information needs and can be annotated with short

descriptions and various icons to denote its properties. Adaptive navigation is

29

discussed in more detail in Section 3.3.1.6.2.

 Prerequisite-based help

An additional method of assisting the student in understanding the course

material is to provide him/her with recommended reading when he/she has

problems understanding certain concepts. For example, if a student accesses a

page which has a set of prerequisite concepts that the student does not yet

understand, the system can dynamically provide links to additional material.

 Intelligent problem solving support

A key feature of ELM-ART is its ability to support students with example-based

programming and encourages students to re-use code from previous examples.

Students are required to solve Lisp problems by entering the programming code

in a text box after which the ELM-ART system will evaluate the answer and supply

the student with feedback and tips if necessary. Students can also ask the system

for help with solving a problem and will supply the student with advice that is

based on the student's preferred method of learning.

The key to the intelligent behaviour of the ELM-ART system is its knowledge about the

subject domain represented by a network of concepts, plans and rules. In support of its

intelligent techniques, ELM-ART's knowledge base has been enhanced with conceptual

knowledge of Lisp and the course. At the core of this knowledge base is the LISP

conceptual network which represents all important concepts and relationships between

them. Examples of such concepts include common Lisp objects, Lisp and general

programming constructs. ELM-ART makes use of heuristics, “part-of” and “is-a”

relationships to infer prerequisites and uses the resulting knowledge together with the

student's knowledge of the material to adapt the content and links accordingly.

 2.1.2.8 Summary findings

From the preceding literature survey, adaptive hypermedia can be described as a

technique that allows a system to provide each user with a customised experience when

visiting a site. The following features were identified to be crucial to any adaptive

hypermedia system:

 Link level adaptation

 Content level adaptation

 Customisable interfaces

 Descriptive metadata for content

30

 User profiling and tracking

 User preferences

 Recommendation system

After identifying the various features and properties of an adaptive hypermedia system,

the next step would be to determine how each should be addressed in the development

of an online collaborative workspace. Chapter 3 describes in detail how these various

features were implemented in the framework in order to provide adaptive features to

the users.

 2.1.3 Collaborative Workspaces

 2.1.3.1 Introduction

In many of today's collaborative projects, members can be separated geographically

from one another. This has lead to the emergence of online collaborative workspaces to

allow project members to communicate with one another and to share documents and

resources effectively.

 2.1.3.2 Characteristics of collaborative workspaces

When analysing collaborative workspaces, one finds different approaches as to how

systems allow interaction between project members, resource sharing, tracking and

storage. Certain systems will, for example, focus on providing members with real-time

collaboration whilst others will focus more on asynchronous document management and

versioning.

This section will outline some of the key features and characteristics of collaborative

workspaces as they exist today.

 2.1.3.2.1 Session vs. document centric design

Most collaborative tools fall into two main categories [Spellman 1997], [Dourish 1992],

[Geyer 2003] with regard to their functionalities, namely:

 Session-centric

These are synchronous systems that allow project members to communicate in

real-time with one another, for example teleconferencing.

 Document-centric

With document-centric systems, the focus is on document management with no

synchronous interaction between project members.

31

Both categories have their own strengths and weaknesses. Session-centric systems are

ideal for real-time communication between members. However, once the session is over

there is no structured trace left of the collaborative efforts, hence there is a lack of

persistence. In the case of document-centric systems, real-time collaboration does not

exist, which can hamper the speed at which decisions are made. Clearly, a need exists

for the existence of a system that combines the strengths of both document and session

centric collaborative systems.

Spellman [Spellman 1997] has proposed such a system, and places the focus on

creating a collaborative “place” where project members can meet and perform both

synchronous and asynchronous work. These place-based systems enable synchronous

work through the use of whiteboards, teleconferencing and chat, whilst allowing for

asynchronous work through the use of document management systems. Place-based

systems thus provide project members with the ability to work together on a document

and then store the document allowing persistence which enables future reviews and

modifications.

In addition to the need for session and document centric applications, project members

also require the collaborative workspace to be easy to use [Dommel 2005]. In the past,

collaborative systems' focus was on the computer and on how it can help the users,

whereas the focus has to shift to the needs of the users. Users need to be able to work

in the collaborative workspace and focus on their work instead of having to focus on the

tools required to accomplish it.

 2.1.3.2.2 Ad hoc vs. formal systems

Over the years collaborative workspaces have evolved because of the emergence of

new technology coupled with users' evolving needs. Most collaborative systems can be

grouped into either ad hoc or formal categories, with usually little overlapping between

the categories [Geyer 2003], [Muller 2004].

Ad hoc systems would typically not involve more than sending documents between

project members via email. This process would suffice for small scale projects where

document iterations are few and the project consists of a small group of members. Ad

hoc systems do, however, not provide a central repository for the tracking of changes to

documents, conversation history or notes. Moreover, ad hoc systems generate a vast

amount of emails, making it very difficult to manage versions of documents and

organising notes.

An alternative to using an ad hoc systems is to adopt a more formal collaborative

32

system. Formal systems have the advantage of being tailor built for collaborative work,

providing users with synchronous and asynchronous communication, sophisticated

document tracking and a central repository for storing resources. There are, however,

drawbacks to using formal systems as they are often very complex to set up and

maintain, making it difficult for project members to implement.

Geyer [Geyer 2003] proposes a new approach that is carefully balanced between ad hoc

and formal systems placing the focus on sharing objects in a lightweight and informally

structured system. This “object-centric” approach aims at making the objects

collaboration-ware, meaning that the objects are designed to be used collaboratively

instead of making collaboration an afterthought.

 2.1.3.2.3 Features of collaborative workspaces

In order to develop an effective collaborative workspace, one first needs to understand

the needs of a project's team members. In his research, Tang [Tang 1988], has

identified a set of characteristics which he observed from a group of people interacting

with one another during typical project meetings. These characteristics included the

following:

 Store information

Any documents, notes and feedback made during a meeting need to be stored to

allow for future reference or modification. Online collaborative workspaces need

to allow users to store resources logically so that it can be retrieved quickly and

easily by the team at a later stage. A document needn't be a document in the

traditional sense, rather it can be a video, animation, sound clip or application. An

additional benefit provided by online systems is that members can search for

resources and also compare different versions of the same document to track

changes. Section 3.3.3 provides information on how a digital library full fills the

need to store and retrieve documents.

 Convey ideas

During a project meeting, members generate ideas such as feedback and

suggestions which can take the form of small notes or illustrations. These ideas

need to be conveyed to the rest of the team so that they can be evaluated and

incorporated into the project. An online collaborative system should therefore

allow members to share various types of objects with the rest of the team by

providing a means with which a member can submit his ideas to, for instance, a

shared whiteboard. In the event of asynchronous collaboration, members must be

33

able to submit their ideas to a shared repository where other members can view

and comment on the idea at a later stage. Section 3.3.2 describes an online

digital discussion forum that allows user to post and reply to a threaded

discussion board.

 Represent ideas

During an individual member's decision making process he/she will typically need

to write down his thoughts on a piece of paper. A user must therefore also be

able to store these thoughts in an online system for retrieval and expansion at a

later stage. It could also be required of an online collaborative system to allow

other members of the project to access and comment on these thoughts. An

example of a statement database that allows users to post their thoughts and

statements is described in Section 3.3.4.

 Engage attention

An advantage of project members sitting around one table is that a team member

can easily direct the rest of the team's attention to a specific region of a diagram

or document. This is hard to mimic in most online systems due to the restrictions

that word processors and other applications have. Developers of online

collaborative systems must therefore implement their own methods of overlaying

notes and sketches onto existing documents to allow users to direct a team's

attention.

 Manage events

Almost all projects have certain dates on which certain objectives need to be

reached or when events are to take place. A key requirement therefore for any

collaborative project to be successful is the ability to set these dates, and also to

allow project members access to these dates via an online calendar. Each project

can have multiple calendars, each representing a different aspect of the project,

for instance, public or private events and deadlines. The IFLA-KM project, which is

described in Section 4.2.3, makes use of such an online calendar.

 2.1.3.3 Current implementations

 2.1.3.3.1 phpGroupWare

phpGroupWare [phpGroupware 2006] is an online collaborative environment, written in

PHP, allowing project members to interact with one another using the Internet. It

consists of more than 50 web based tools, such as a calendar, file manager, address

book and a forum. Administrators are able to manage all aspects of the application, for

34

example select which modules to install, set user permissions, create themes and user

groups.

The ability to know each of the project members' availability and important dates are a

vital part of any project. phpGroupWare includes a calendar allowing project members

to schedule meetings, set recurring events, specify deadlines and also holiday periods.

Project members can set email notifications for upcoming events, changes to event

information and also event cancellations. Each member can also create his own

categories in the calendar to help organise events. Users have the option of a set of

views when exploring the calendar, for example day, month, year views, as well as a

group planner displaying the user's various categories with a detailed time line of all

events.

phpGroupWare has a fully threaded forum allowing project members to create topics,

post messages and reply to existing messages. Each aspect of the project can therefore

be represented by a topic with its own threaded discussion reducing the amount of time

required by users to find the relevant threads. One feature that phpGroupWare's forum

lacks is the ability to search for messages in the forum.

A file manager provides a central repository for storing files relating to the project,

allowing users to easily share documents. The file manager does not, however, allow for

any metadata describing the documents, limiting the ability to properly describe each

document and complicating the process of keeping track of versions.

phpGroupWare has a built-in RSS reader which allows project members to keep track of

important news events. Project leaders can prescribe a set of required RSS feeds, whilst

users can select additional feeds that match their personal preferences. Each RSS

headline links to the detailed news item or article, providing a very simple and effective

method of conveying essential information to project members in a central location.

Another method of sharing useful and important information with the team is through

the use of shared bookmarks and notes. A bookmark consists of the URL, title,

description and rating for the resource and is stored in a hierarchy of bookmarks

according to its subject. In addition to the bookmarks, the notes system is also a useful

method of sharing bits of information between project members.

phpGroupWare is an excellent example of an open source implementation of an online

collaborative workspace. It supports almost of all the required functionalities outlined by

Tang [Tang 1988], with the exception of a shared whiteboard and the ability to properly

support document versioning.

35

 2.1.3.4 Summary findings

A collaborative workspace allows researchers to share their thoughts and ideas with one

another during a project's various stages. This allows researchers to always have access

to each other's thoughts and inputs. Collaborative workspaces comprise the following

features and characteristics:

 Session vs. document centric designs

 Ad hoc. vs. formal systems

 Store information

 Convey ideas

 Represent ideas

 Engage attention

 Manage events

It is important to keep all of these features in mind when developing an online

collaborative workspace, as the integration of the various components will determine

the success of the framework. The framework will therefore have to integrate the

various components to ensure that users can seamlessly move between each

component whilst performing their tasks.

 2.2 Open Source Software
As is stated on The Open Source Initiative's website [OSI 2006], Open Source Software is

“The basic idea behind open source is very simple: When programmers can read,

redistribute, and modify the source code for a piece of software, the software evolves.

People improve it, people adapt it, people fix bugs. And this can happen at a speed that,

if one is used to the slow pace of conventional software development, seems

astonishing.”

 2.2.1 A brief history of free/open source software
The following history of free/open source software has been adapted from [OSI 2000],

[GNU 2006].

In the 1960s and 1970s computer science students would freely distribute the tools that

they developed in university laboratories amongst one another. This resulted in the idea

that software should be free and open to allow a community to easily make

modifications and to share those modifications with the rest of the community. Richard

36

Stallman started his computer science career in 1971 at the height of this software

sharing environment, which prompted him to develop a vast array of freely available

tools for the ITS operating system on which he worked.

In the early 80's, this community of students broke down with discontinuation of the

PDP-10, for which the ITS was developed, and the subsequent emergence of the

proprietary VAX operating system. This resulted in the students being lured away from

the universities' research laboratories to the commercial world of the closed source

proprietary software model.

Stallman was determined to continue the free software community in which he started

his computer science studies, so he decided to devote himself to creating free software.

Free software, according to Stallman, must allow users the following:

1. Run the program for any purpose

Users must be granted the right to use the software for any purpose as they see

fit without any restrictions.

2. Modify the program

Each user of a piece of software has unique needs, therefore users must be able

to alter the original software to suit their needs. Moreover, they must be allowed

to redistribute their modified version of the software free of charge or for a fee, in

the case of additional support being provided, as they see fit.

3. Redistribute copies

Once a user has obtained a copy of the software, he/she must be allowed to share

it with his friend or post it on for instance his web site to allow users to download

it for free.

4. Distribute modified copies

Modified versions of the original software must also be allowed to be distributed

freely to allow the rest of the community to benefit from the enhancements to the

software.

In 1984, Stallman resigned from MIT and formed the Free Software Foundation to

support his and other developers' efforts in creating free software and focussed his

efforts on his GNU (Gnu's Not Unix) version of the Unix operating system. In addition to

Stallman's work, the X Consortium created a free windowing system and Larry Wall

created Perl, which is one of the most commonly used scripting languages to date.

The GNU General Public License (GPL) was drafted in order to ensure that free software

would always remain freely modifiable and distributable. The GPL states that the source

37

code of free software may be viewed, changed and added to, as long as it is then again

distributed under the same GPL license.

In 1991 Stallman's team started working on their own kernel for their implementation of

Unix called GNU. While development was under way on the GNU kernel, Linus Trovalds

started his own implements of the Minix kernel which he called Linux. The Linux kernel

was quickly adopted by the free software community and programmers were allowed to

modify the original source and resubmit it back to Linus. In no time at all Linux became

the de facto kernel for the open source community.

One of the landmark events in the history of free software was when, in 1998, Netscape

decided to release the source code of their web browser under the GPL. Shortly after

Netscape's announcement, a body of individuals formed the Open Source Initiative (OSI)

to highlight the benefits of free software to the business community and to certify free

source licenses. This, together with Netscape's announcement, prompted other large

companies such as IBM, Oracle and Corel to follow suit in their support of Linux.

The use of open source software has grown at a tremendous rate, for instance Linux's

share in the server market has since 1997 grown from a statistically insignificant

percentage to 28.3% [ZDNet 2004]. This is a clear indication of the popularity and

advantages obtained from the use of free/open source software.

 2.2.2 The open source model
Eric Steven Raymod, in 1997, wrote a book entitled “The Cathedral and the Bazaar”

[Raymond 2002] in which he reviews two development models used in the software

environment today. In his book, Raymod describes what he calls the Cathedral and the

Bazaar development models and provides a case study of an open source utility which

was developed using the Bazaar model. Traditionally, large projects would be based on

the Cathedral model where there exists clear development goals and each task is

specifically assigned to an individual or group of developers. In contrast, the Bazaar

model allows for projects to evolve organically and allows any developer to take part in

the development and testing of any component of the project. Most projects in the Linux

world have been developed using the Bazaar model, which has greatly contributed to

the speed and frequency with which modifications and updates are made.

The Bazaar model does not clearly identify roles and goals and should exhibit the

following patterns [Robles 2004]:

 Users should be treated as co-developers

This allows the development process to be opened to the maximum extent

38

allowing users to take part in testing, suggesting and actual development of the

project.

 Early releases

A project's initial release should be made available to the public as soon as

possible to allow users to become co-developers in the project. This will greatly

increase the interest and impact of the project.

 Frequent integration / Release often

By frequently releasing updates to the project, it is allowed to evolve in an

incremental way, at the same time allowing for parallel debugging and frequent

feedback from users and developers.

 Maintain several versions

Usually, there will exist two versions of a project, viz. the development version

which is less stable but contains the latest features and a production version

which is more stable but is less feature rich. This allows for both developers and

more conservative users to use the software whilst satisfying their individual

needs.

 High modularization

Central to the success of the Bazaar model is the reuse of modules by different

software projects, which limits the need to code certain features from scratch.

 Dynamic decision making structure

The decision making process with open source projects can range from a single

leader who delegates responsibilities to other developers, a more democratic

model where decisions are made together or committees that represent whole

families of projects.

Most open source projects, such as Linux, Netscape, Apache and Perl, are developed

using the Bazaar model. Moreover, SourceForge [Sourceforge 2006] contains more than

110,000 open source projects, all of which are being developed using Raymond's Bazaar

model.

 2.2.3 Open source development tools
A vast array of development tools have emerged together with the rise of open source

projects. These are essential tools needed to guarantee the success of any large scale

open source project. Included in the list of tools are:

 Source code version control

39

Most open source project developers are volunteers and do not necessarily work

in the same office or even continent. This has resulted in the need for a robust

version control system that can allow multiple developers to work on the same

file simultaneously. An example of such a system is Concurrent Versioning

System (CVS) [CVS 2006], which allows for concurrent development on a file and

the subsequent merger of all the changes.

 Testing tools

Testing tools are used when systems undergo integration, and is used to provide

automated testing. An example of such a system is Tinderbox [Tinderbox 2006],

which assists developers by running a continuous build of the project and informs

developers of any integration problems.

 Bug tracking tools

Central to the success of open source projects is the ability to quickly identify,

report and fix errors in the code. These tools are used to log bugs and the current

status of the bug, who is responsible for the bug and common scenarios in which

the bug might occur. It is then up to the author of the offending bug to fix it and

update the status of the bug and submit the updated version to, for example, CVS

or Subversion. Examples of such systems include Bugzilla [Bugzilla 2006] and

GNU GNATS [GNATS 2006].

 Communication

Developers of open source projects are usually spread across the globe making it

necessary for tools to allow for communication between one another. This is

accomplished via websites, such as Freshmeat [Freshmeat 2006], SourceForge

[Sourceforge 2006] and GNA [GNA 2006], mailing lists and instant messengers.

 2.2.4 Open source projects
Open source has been embraced by a large number of companies and user groups.

However, there are some that stand out as being at the forefront of bringing open

source software to the world. These include the Apache Software Foundation [Apache

2006], Linux [Linux 2006], [Kernel 2006], MySQL [MySQL 2006] and the Mozilla

Foundation [Mozilla 2006].

Section 3.2.3 describes the open source software that was used in the development of

the framework described in the dissertation.

40

 2.2.4.1 The Apache Software Foundation

Apache is one of the most recognisable names in the open source community, most

notably for its web server. The Apache Software Foundation (ASF) [Apache 2006] was

formed in 1999 as a natural outgrowth of The Apache Group, who, in 1995, was

responsible for the development of the Apache HTTP Server [Httpd 2006]. The primary

goals behind the ASF is to:

 Provide a foundation for open source projects by providing hardware,

communication and business infrastructure.

 Distribute funds that were received to best support the development of its

projects.

 Create a legal body that protects its volunteers from any legal actions.

 Protect the Apache brand, applied to its projects, from being abused by other

organizations.

From 1995 until 1999 a group of developers came together to maintain the web server

that was created by the NSCA, which was abandoned by its original developers. That

server was freely available and the source code was also available for anyone to

download and modify. As a result of the openness of the project, users were able to start

maintaining the project themselves and quickly started to exchange patches and

information on how to prevent problems and to enhance the current software. The web

server that was developed from 1995 until 1999 became known as the Apache HTTP

Server and accounts for 65% of the server market today. In addition to their web server,

the ASF is now also responsible for a vast number of other projects such as mod_perl

[mod_perl 2006], Xerces [Xerces 2006] and Jakarta [Jakarta 2006].

The success of the ASF is due to the manner in which projects are managed. Each

project is lead by a committee supervising all aspects of the project, such as its users,

developers and committers. A user is someone who uses the software developed by

Apache and might contribute by providing feedback and reporting on new bugs that

were discovered. In contrast to users, developers are programmers who submit patches,

write documentation and suggest features or enhancements. Developers are

encouraged to actively participate in the development of the project by the prospects of

becoming a committer. A committer is someone who also actively develops but has the

added privilege of being allowed write access to the code repositories, thus not having

to wait for someone else to provide a patch or suggestion.

41

 2.2.4.2 Linux

Linux [Linux 2006], [Kernel 2006] is usually used to refer to the kernel and the complete

operating system and is one of the most prominent examples of free software. In 1991,

Linus Trovalds began working on a clone of the Minix operating system at the University

of Helsinki. His aim was to extend the original Minix kernel but was denied access to the

original source code, forcing him to develop his new kernel from scratch. The first

version of the kernel, version 0.01, was released on the Internet in September of 1991

and was followed in October by version 0.02. While Linus Trovalds was developing his

kernel, Richard Stallman (founder of the GNU movement) was also busy developing a

kernel for his set of GNU applications. Stallman eventually gave up on his kernel which

resulted in the “marriage” of Linux and GNU.

Officially, the term Linux is to be used for the kernel which Linus Trovalds developed and

GNU/Linux for the combination of the set of GNU tools and the Linux kernel. GNU/Linux,

by itself, is rarely used on its own and is usually packaged in distribution or distro. A

distro uses GNU/Linux together with the X-Windowing System and a custom installer to

allow users to easily install and interact with the operating system. Currently there

exists roughly 400 Linux distributions of which Red Hat [Red Hat 2006], Debian [Debian

2006] and Slackware [Slackware 2006] are the most common, to name but a few.

The Linux kernel, as with GNU applications, is contributed to by a vast number of

developers. Linus Tovalds, however, has the final say with regards to the direction in

which the kernel must go and also which features and patches are allowed into the

official version of the kernel. Typically, when a developer would like a new feature,

he/she would have to write the code himself, or get another kernel developer to do it.

Once the feature has been compiled, it will be tested thoroughly by numerous

developers, after which it would be submitted to Linus Trovalds, where he will decide

whether to allow it into his source tree for the official kernel. This development model

allows for a great number of contributors, greater stability whilst ensuring that Linux has

a clear direction for its future.

 2.2.4.3 The Mozilla Foundation

The Mozilla Foundation [Mozilla 2006] has much the same roots as the Apache Software

Foundation (ASF). As with the ASF, the Mozilla Foundation was formed as a result of their

flagship project; the Mozilla web browser. In 2003, Mozilla.org, which coordinated the

Mozilla open source development, announced the formation of the non-profit Mozilla

Foundation aimed at continuing Mozilla's open source development projects. America

Online played a vital role in the formation of the foundation by providing start-up funds

42

and additional resources such as equipment, trademarks and intellectual property.

A distinction must be made, however, between Mozilla and the Mozilla Foundation. The

Mozilla Foundation is the non-profit organization created to support Mozilla in its open

source development projects. Mozilla has as its key characteristics the following:

 Software producer

Mozilla is best known for its Firefox web browser [Firefox 2006] and Thunderbird

email client [Thunderbird 2006].

 Provider of development tools

In assisting open source development, Mozilla has created an error logging web

tool [Bugzilla 2006], a web tool that allows for querying of a project's source files

[Bonsai 2006] and a web tool that constantly reports on the various builds of their

applications [Tinderbox 2006].

 Open source community

Founded by Netscape in 1998, Mozilla quickly became a leader in the

development of open source projects. Mozilla's millions of users and large

development community can be attributed to their use of the Internet to connect

developers with one another and also to keep in touch with their users' needs.

The Mozilla developer community consists of forums, newsgroups, chat rooms

and developer zones containing documentation on its more than 150 projects.

There also exists more than twenty Mozilla related web sites aimed at Mozilla's

user community with information ranging from simple user guides to tutorials on

how to extend Mozilla to suit a user's specific needs.

 Technology industry partner

Over the years Mozilla has partnered with numerous large corporations such as

IBM [IBM 2006], Red Hat [Red Hat 2006] and Sun Microsystems [Sun 2006, 2]

while many large institutions, such as the French Ministry of Agriculture, have

switched to Mozilla's software. Mozilla's also provides resources on how to

implement their software in third-party applications.

 Advocate of standards

Mozilla is a great advocate of web standards and strives to create software that

complies the standards set out by the World Wide Web Consortium (W3C) [W3C

2006].

 Educators

In order to promote the use of its technologies and also web standards, Mozilla

43

has compiled documentation aimed at software developers, web developers and

also end users. This documentation assists developers in understanding web

standards and also provides then necessary information on how to successfully

implement Mozilla's software.

Mozilla has played an integral part in the promotion, development and guidance of open

source software over the past couple of years and will continue in doing so in the future.

 2.2.5 Motivation for the use of open source software
As stated previously, open source software was used for the development of this

framework because of its various benefits over proprietary software. This section will

expand on the various benefits of open source software, as compiled from [Gonzalez-

Barahona 2000], [Bobulous 2004], [CPR 2004].

 It's free

Most research institutions would rather spend their resources on research instead

of software. For this reason, the use of open source software, which is provided

free of charge, is much more beneficial to research institutions with limited

financial resources. Open source software, therefore, allows institutions the

opportunity to obtain sophisticated solutions without the cost incurred when

opting for proprietary solutions.

 Availability of source code

The source code of open source software is available to anyone and can therefore

be altered to suit a specific user's or institution's specific needs. In the event that

a certain feature is not provided by the original software solution, users then have

the choice to either implement the feature themselves or obtain a modified

version of the software. This allows users and institutions much more freedom

when compared to proprietary software.

 Cross platform

The ability to modify open source software allows developers to port software to

any operating system. This allows, for instance, Apache's web server to run on

Linux, Unix, Apple's Mac OS and Microsoft Windows. By providing users the

freedom of choice with respect to operating environments, open source software

limits the need for additional supporting software to be acquired. For example, if

an institution uses a Unix server and a software solutions used MySQL and

Apache and was developed on Mac OS, it can easily be ported to Unix without the

need to purchase an additional server running Mac OS.

44

 Not bound to a specific company

Open source software is usually developed by a group or community of

developers who act on a volunteer basis. For this reason, the life time of open

source software is usually not bound to a specific company or individual. Another

advantage of the community based development is that the interests of users are

pursued instead of ideals or marketing objectives of a large company. This

ensures that the software will always focus on supporting users and their

requirements as well as international standards.

 Additional choice

Open source allows users much more choice within a product or solution. One

such reason is the ability of open source projects to “fork”, creating a new project

with a new set of goals and features. A project might fork because of developers'

different views on the direction of the project or in the case where the target

users might differ. An example of where the target users base might differ is with

stable and experimental releases of a project. Certain users might prefer a more

stable production release of a solution, where another group could prefer an

experimental release for use in research environments. Moreover, the turnaround

time for additional features are much quicker than that of proprietary software,

allowing users easier access to more feature rich software.

The motivation for the use of open source software becomes clear from the above

mentioned list of advantages. As a result, the final framework will be more accessible to

researchers and users because of its cost, portability and availability. In the end,

researchers and institutions will benefit from the various advantages of open source

software.

 2.3 Usability
Usability is concerned with the ability in which a system succeeds in addressing the

human computer interaction requirements. A project or institution would greatly benefit

if the following list of usability attributes, identified by Nielsen [Nielsen 1993], are

addressed.

 Learnability

The framework was developed with the user's needs in mind, and therefore the

need to make the system easy to learn was critical. By constantly consulting

users and project stakeholders, each project implementation could be tailored to

suit the proficiency level of the target users. This allowed the framework to be

45

quickly adopted by users allowing them to rapidly learn the various features at

their disposal.

 Efficiency

It is important for a user to be able to quickly perform a set of tasks after he/she

has become familiar with the available features. Once again, by constantly

consulting the various stakeholders, the implementation of the framework could

be tailored to provide the users with the necessary features to allow them to

effectively perform various tasks. For example, certain metadata fields could be

populated automatically for a user when he/she submits a document to one of the

digital libraries. This frees the user from having to repeatedly enter information,

such as the name and date of a conference, when submitting conference papers.

 Memorability

A user must retain his skills once a user has learned the features of the system

and has become proficient in performing certain tasks. The memorability of the

system would therefore allow any user who has not used the system for a certain

amount of time to easily continue to perform certain tasks again when needed.

Once again, this is achieved by consulting the various stakeholders and ensuring

that the process of performing tasks are simple and easy to remember.

 Low error rate

A low error rate will greatly increase the efficiency of users as well as ensure that

the system satisfies their needs. It was therefore important to observe the users

when they performed certain tasks such as submitting a new document to the

digital library. A clear understanding of common mistakes and pitfalls were

identified by observing users and the common mistakes that they made whilst

using the system. This information was then used during the implementation of

each instance of the framework to ensure a low error rate. For example, certain

fields are required when submitting a new document to the digital library. In

order to ensure accuracy, these required fields were first validated to limit the

number of times that a user had to go back and fix errors.

 Satisfaction

Users will be encouraged to use a system more often when they enjoy the tasks

that they need to perform. It is therefore important that the system be developed

and presented in such a way that the user experiences a high level of

satisfaction. This high level of satisfaction can, as with the other usability

requirements, only be obtained when the input from users are evaluated and

46

incorporated into the system. For example, the interface plays a large role in how

the user perceives the system, emphasising the need to tailor the design and

visual elements to meet the requirements of the target users.

 2.4 Literature survey findings
This section will outline the findings of the literature survey and will first provide a

reflection on which components and features can be integrated in order to develop a

modular system that complies with user requirements. Thereafter, the role of open

source software in the development of such a framework will be discussed.

 2.4.1 Critical reflection on the literature
The preceding literature survey provided a better understanding as to which

components need to be implemented in an online collaborative workspace as well as

how each of these components should be implemented. Following is a list of the main

components that were identified:

 Digital library

 Adaptive hypermedia

 Collaborative workspace

It is important to integrate the various components and their respective features, that

were identified in the literature survey, in order to develop a framework that meets all

the user requirements. From literature survey it can be seen that there exist

overlapping features between the various components which can be integrated to

provide an online collaborative workspace that supports researchers in their research

efforts. The features that can be integrated to provide a truly online collaborative

workspace include:

a) Metadata

The use of metadata is critical when describing information objects contained in

both a digital library and an adaptive hypermedia system. Metadata can be used

to describe the various properties of objects, ranging from title, author and

abstract to more complex properties such as level of difficulty, sequencing and

requirements. It is therefore important to find a unified metadata solution that

can be integrated for all the information objects used throughout the framework.

b) Information management

The submission and management of information objects is a common occurrence

47

in all three of the main components. Each component, however, has a slightly

different approach to storing and managing information objects. It is therefore

important to find a means of managing these information objects that is best

suited to all scenarios. A unified way of submitting, editing and revising these

information objects would therefore greatly assist the development and

modularity of a framework supporting these various components.

c) Information retrieval

In addition to the management of documents, it is also necessary for users and

researchers alike to be able to retrieve these information objects using various

information discovery techniques. These techniques include browsing repository

hierarchies, searching and direct linking. Certain techniques are more suited to

other components due to the nature on the information objects. For example,

research documents are described by a richer metadata schema, allowing for

more complex search queries to be performed.

d) Convey ideas

An important aspect of researchers working in a collaborative environment is the

ability to convey ideas relating to various topics. These ideas can take various

forms, ranging from simple statements to threaded discussions on certain topics.

Examples of such components include threaded discussion boards, synchronous

chat applications and shared whiteboards. Once again, metadata helps with both

the organisation and retrieval of these ideas.

e) User profiling

User profiles can be used to provide users with customised information as well as

recommendations. This can be useful in projects where researchers focus on one

specific area in a multi-dimensional research project. By using profiles, users are

spared the time consuming task of filtering through information that is of no

importance to their specific domain. The use of metadata to both describe user

interests and information objects is invaluable when determining which

information is best suited for each user.

By reflecting on the various components that were identified in the literature survey, it

is evident that the integration of these components will provide a framework that would

meet all the user requirements of an online collaborative workspace. A framework

comprising of a digital library, collaborative workspace and discussion forum would allow

users to share their thoughts and research findings in one centralised place, which will

greatly improve efficiency. Effectiveness is achieved through the standardisation of

48

information management by both the system and the users. Moreover, users will

become accustomed to performing tasks in one system, using standardised steps, which

will allow them to quickly become experts in the submission as well as retrieval of

information.

The following chapter details the various modules that were identified to comprise the

framework. These modules were derived from the components and features that were

identified during the literature survey. Following is a list of the core modules that were

developed to meet the user requirements of an online collaborative workspace.

 Content module

One of the features that were identified to allow users to focus on a certain area

of a research project is adaptive hypermedia. The content module provides the

framework with adaptive hypermedia capabilities to customise the content,

presentation and navigation for each individual user.

 Online discussion forum module

An important aspect of an online collaborative workspace the the ability for

researchers to share and convey ideas. The online collaborative workspace

provides users with a threaded discussion forum where they can post, read and

reply to comments and ideas.

 Digital library and workspace module

Most research projects have as an outcome the publication of various research

findings. The digital library and workspace allows researchers to publish the

documents and researcher to a centralised repository where it can then be

accessed by the research community. In addition to providing researchers with a

centralised repository, the workspace also allows researchers to review and

revise a document during its life cycle.

 Statement database module

The statement database allows researchers to make comments regarding certain

topics or ideas. It therefore provides researchers with another form of conveying

ideas to the research community.

 2.4.2 Open Source Software
Open source software allows developers the ability to develop applications and

frameworks using software that is freely available. This allows institutions to rather

focus their resources on research instead of expensive proprietary software. The various

software and programming languages that were reviewed include the following:

49

 Programming languages

There exists various programming languages that can be utilised in order to

achieve a certain goal. Java is an example of a programming language that can

be used in both the development of standalone applications as well as sever-side

programming. The best example of where Java is used as a server-side language

is in Java Server Pages, which allows for very robust and sophisticated web-based

applications. Another language that can be used in both a scripting as well as

server-side environment, is Perl. Perl is a scripting language that is renowned for

its ability to process data such as text files. An extension to Perl, which was

developed to enhance its server-side performance is mod_perl.

 Mark-up languages

Mark-up languages have come a long way in the past couple of years. An

example of how these languages have evolved is the use of XML which can be

used to describe the complex properties of documents and information objects.

XML has the advantage that it is readable by both humans and computers and its

ability to be used in a multitude of programming environments. A companion to

XML is XSL, which is used in the presentation of XML data structures. The

combination of XML and XSL, therefore, allows for multiple views of the same XML

data.

 Databases

A relational database provides the ideal storage mechanism for data, because of

its ability to effectively store, alter and retrieve information. MySQL is one of the

best known open source databases in use today. Its conformance to standards,

speed, scalability and portability makes it an ideal choice in any development

project. SQL is a standard language which is used to access and alter data

contained within a relational database. The advantage of SQL is that it is, as with

XML, readable by both humans and computers.

 Servers and operating systems

A web server is needed to allow users access to server-side applications, such as

CGI and JSP. Two well known open source examples of such servers are Apache's

web server and Jakarta Tomcat. These two servers can be used in unison to lever

the benefits of each. A typical configuration would be to use Apache to serve

static content and CGI whilst forwarding any request for JSP to Tomcat for

processing. Linux is an operating system that is freely available and is perfectly

suited to be both a workstation as well as a web server.

50

 2.5 Summary
The preceding chapter provided a review of the various components and methodologies

which can be used in the development of an open source online collaborative

workspace. Included in the review of components were digital libraries, collaborative

workspaces and adaptive hypermedia. A clear understanding of each component's roles

and advantages was obtained which greatly assists in the development of an online

collaborative workspace.

The components that were identified satisfied one of the two main objectives that were

set out in the research question. Developing an open source framework is the other

main objective and the review of the open source movement, development

methodologies and technologies provided valuable insight into how to accomplish this

objective.

Following the review of the components and tools required to develop an online

collaborative workspace, the next chapter now describes the development process of

such a system. The chapter starts with a review of the development methodologies that

were used in the development of such a framework followed by the main components

and features.

51

 3 Chapter 3 - Framework architecture and research
methods

 3.1 Introduction
When designing a framework of this size and nature, it is important to consider various

design strategies, architectures and technologies in order to provide the best solution.

The various strategies that can be followed could have a great impact on the

development style, the ability of the framework to adapt to changes and also the ability

to make changes in the future. This chapter describes the approach that was taken in

order to make the framework as flexible, robust and reusable as possible, whilst using

the best open source software available.

The main specifications of the framework were derived from the various functionalities

found in the online collaborative systems which were discussed in the previous chapter.

These include, amongst others, an online digital library, discussion forum and user

management. In addition to the components and functionalities that are found in most

online collaborative systems, this framework also contains an adaptive component

which allows for the customisation of content and presentation to each user. Each of the

functionalities were closely examined to determine how exactly they would be

implemented and integrated to allow for modularity of the framework.

This chapter therefore consists of the following three main sections,

 Design principles

The design principles of the framework guided the development process by

providing a sound basis for the work to be done. There were three main principles

which were followed during the development stages, viz.

○ Modularity

○ Three-tiered architecture

○ Open source software

 Functional components

The function al components consist of four main modules which aim at addressing

the various user requirements that were identified during the literature review,

and consist of:

○ Content module

As mentioned previously, adaptive abilities were added to the framework to

52

allow users personalised presentation and content [Brusilovsky 1998],

[Kristofic 2005] based on their unique needs and interests. This module is

responsible for the presentation of content that is tailored for the user based

on his personal profile. Each page contained within the module has specific

mark-up to allow sections for be expanded, recommendations to be made and

link alterations which results in each user being presented with a custom view

of the page.

○ Discussion forum module

The online discussion forum allows user who might be based in various

locations around the world to exchange ideas and comments. Each branch of

a project can be represented by a different topic in the discussion forum

allowing project members to subscribe to only those areas of the forum which

are of interest to them. The discussion forum's threaded approach provides

users with the ability to reply on entries which allows other users to, in turn,

reply one those replies.

○ Repository and workspace module

A key requirement of any collaborative project is the ability to share

documents and ideas [Anderson 1997], [Wiederhold 1995]. The repository

assists project leaders in storing document for a project and allows users

access to a structured hierarchical view of the repositories. In addition to

providing users with documents, the repository module can also be extended

to become a workspace where users can edit and submit multiple versions of

a document. Moreover, users can search the documents in the repositories

making use of any of the three search interfaces, viz. simple, advanced and

full text. Each document in the repository is described using the full Dublin

Core metadata schema as well as a collection of additional metadata fields

developed specifically for the framework.

○ Statement database module

The statement database provided a space where users can make a statement

pertaining to certain topics. A statement can range from a quote to a mission

statement to a question. Unlike the discussion forum, the statement database

is therefore a space where users can share their views for which they do not

expect a reply.

 Core supporting modules

○ Graphical user interface

53

A key aspect of the framework was to allow for the modification of the

interface without altering the underlying Java code. An advantage of this

separation is the customisation which can be achieved in order to suite a

user’s personal preferences.

○ User component

A key functionality of the framework is the ability to build a user profile that

describes a user’s individual interests and contains personal information. Each

user is represented by a User component containing his personal details,

history and personal preferences.

○ Plugins

Plugins are used by the framework to allow for the customisation of certain

events that are triggered by modules and components. Each module exposes

a set of events that can accommodate the use of custom plugins.

○ Security

Security plays a key role in the development of the framework to ensure

authorization and authentication of users and their actions throughout the

site. A role-based security model, that contains five levels, is used as the base

for the security of the framework.

 3.2 Design principles
Various design principles were followed throughout the development of this framework.

These principles ensured that the resulting framework would be robust, scalable, flexible

and customisable to suit the various requirements posed by each implementation. This

section will discuss the three main design principles and how each attributed to the

framework's success. Section 5.3.3 in chapter 5 reflects on the benefits that were

identified from the use of the various design principles.

 3.2.1 Modularity
The framework is built on a modular architecture in order to allow for the addition,

removal and modification of modules without impacting the entire system. Each module

was developed with careful consideration for the rest of the framework to ensure

optimum code reuse and allow for integration between each of the modules. When a

new module is added to the framework, it can then make use of the Application

Programming Interfaces (API) exposed by the existing modules which greatly increases

effectiveness and productivity.

54

 3.2.2 Three-tiered architecture
In addition to the modular approach, the framework also makes use of a three-tiered

architecture [CMU 2006], [Wiederhold 1995], [Halasz 1994], [Halasz 1990] allowing for

the separation of the database, processing and presentation layers. This separation

increases performance, flexibility, reliability and re-usability in a system. The three-

tiered architecture comprises of the following layers:

 Database

A relational database is used to store all the information contained within the

framework, such as users, discussion forum posts and document metadata.

Standard SQL queries are used by the business logic layer to interact with the

database when updating, inserting and removing data.

 Process management/business logic

This layer is responsible for performing process management and interacting with

the database and presentation layers. Typical operations performed by this layer

includes database queries, instantiation of components and logging of system

processes. All of the components mentioned in this chapter are stored in this

layer.

 Presentation layer

The presentation layer is only layer of the architecture that the user actually

interacts with. It is responsible for communicating with the correct objects middle

tier and also for rendering the resulting output obtained from those objects.

 3.2.3 Implemented technologies and software
Open source software was used exclusively in the development of the framework in

order to make it as accessible, flexible and cost effective as possible. A great number of

technologies and software applications are used by this framework, each contributing to

either a certain area of development or for providing a platform on which the framework

is hosted. There exists three main categories into which the software and technologies

can be grouped, viz.

 Helper scripts

These scripts are not part of the core framework but eases certain cumbersome

tasks such as installing and configuring a new instantiation of the framework. All

of the scripts are written in the Perl [perl.com 2006], [perl.org 2006], [CPAN 2006]

programming language and executed on the command line of the operating

system.

55

 Core functionalities

These are the core functions and components out of which the framework is

composed. Java [Sun 2006] is used as the primary programming language for the

middle tier whilst a combination of XML [xml.org 2006], [xml.com 2006], XSL and

JavaScript [Javascript 2006], [WDVL 2006] Is used for the presentation layer. The

front-end of the framework, which is used to display everything to the user, uses

Java Server Pages and CGI.

 Server software

The server software provides a platform on which the framework is hosted and

consists of a MySQL [MySQL 2006] database and Apache HTTP web server [Httpd

2006]. It was decided to make use of open source solutions based on the fact that

proprietary software, such as Microsoft's Internet Information Services and SQL

Server, would have added a considerable financial overhead to the project.

 3.3 Functional components
The literature survey and informal interviews provided insight as to which components

and features should be implemented in an online collaborative workspace. This section

will describe, in detail, the various modules that were developed to provide a framework

that meets satisfies the user requirements that were identified. Each module will be

described by a section containing an overview, the various classes comprising the

module, its functionalities, integration into the core framework as well as its

configuration.

 3.3.1 Content module

 3.3.1.1 Overview

The content module provides for either static or dynamic content. In addition to

providing users with content, the presentation of the content and links can also be

adapted to suit the preferences and knowledge level of the current user. This is known

as Adaptive Hypermedia and is discussed further in Section 2.1.2. It has to be stated

here that there is a difference between the documents contained within the repositories

and the static and dynamic pages of the Content module. Section 3.3.3 describes the

repositories and their documents in more detail.

Static content per definition is content that is supplied to the system that requires no

special processing or adaptation. An example of static content would be a page that was

copied from a journal or a newsletter that is to be displayed to all users in the same

56

manner.

Dynamic content, on the other hand, allows for adaptation to be presented in a unique

manner to each user and also to the same user over time. The main principle behind

dynamic content is to adapt the presentation of content and links to suit the current

user’s needs. For instance, certain sections might be hidden to a user if the system

deems it necessary not to display the content again.

Another feature of the content module is that it allows for the cross-referencing of pages

within the collection to allow for a fully linked hyperspace. Pages can be linked using

either of the following methods;

 Linking

Links are created within the pages that can reference either another page within

the collection or any other resource on the Internet or within the site.

 Sequencing and requirements

When dealing with educational or instructional pages, certain pages might have a

set of requirements that need to be met before the content can be understood.

Thus, by identifying required pages the collection can become interlinked

allowing a user to further explore his knowledge of a topic.

 3.3.1.2 Classes

In order to develop the content module the following set of classes were developed.

 3.3.1.2.1 Module

The module class is found throughout the framework, and is essentially a specialization

of the root Module class that defines and exposes certain required functionalities. Most

of the required functionalities have already been defined in the root Module class, thus

requiring very little specialization of the class.

An example of specializing the module is the loading of security roles associated with

each of the subjects. Each subject contained within the site has its own set of required

security constraints, for instance, submitting a new page requires a user to be at least a

WORKER.

 3.3.1.2.2 Loader

The loader is also a specialization of the root Loader class and is primarily concerned

with loading initial configuration values, such as subjects, from the configuration files. A

57

thread runs in the background to assure that any changes made to the module’s

associated configuration information is picked up and handled accordingly.

 3.3.1.2.3 Metadata

Metadata is used to describe a page as well as each section and link within the page. In

essence, the metadata class consists of a collection of fields that can be used to

describe a resource. The field information is loaded for the module’s configuration file

and stored in a hash table to allow for lookups. Each metadata field is an instance of the

MetaDataField class, which will be further described in Section 3.3.3.2.3.

In addition to containing a list of all the fields, the metadata class also assists in

ensuring that required information is supplied when submitting a new page by utilizing

the Validator component.

Furthermore, the metadata can be serialized to XML to allow transportation of the field

information over the Internet. An example use of this is using the XML describing a page

to allow an Open Archives Harvester to harvest the metadata of the pages within the

collection. Section 3.3.3.2.11 will expand further on the uses of OAI to allow for

metadata harvesting.

 3.3.1.2.4 Link

In essence the link class assist in the linking of two resources in the site. A link consists

of the following information:

 Metadata

A limited set of metadata fields is used to describe the link. These include a

unique identifier and also the type of resource to which the link points, e.g.

ARTICLE.

 Word

A link has an associated word, which will be the hypertext anchor that points to

the resource. Typically, all occurrences of a word within a section will become a

link to the specified resource.

 URI

The URI is the actual location of the resource, either within the site or on the

Internet. If, for instance, the link points to a local resource the URI will be a

JavaScript function that passes tracking information to the module to assist in

updating the user’s profile.

58

 Title

Each link can have a descriptive title that contains the title of the resource to

which the link points as well as the dates and times on which the user has visited

the resource. This information will assist the user’s decision-making process on

whether to follow the link or not.

 Internal document ID

If the link points to an internal resource, the associated resource ID is required to

track the user’s navigational behaviour throughout the site. Also, the ID is used to

load additional information that can be used to create the title of the link.

When a link is rendered in the browser, the user’s personal preferences and history is

taken into account to adapt the presentation accordingly. One example of such

adaptation is the addition of the dates and number of times that a user has followed the

current link. This information is added to the title of the link, which is displayed when

the mouse hovers over the link’s anchor word.

A moderator creates links between pages and resources by simply selecting a word or

phrase from a page’s content and then selecting the target resource. This information is

then stored in the XML representing the page. Section will describe the structure of a

page’s XML in more detail.

 3.3.1.2.5 Section

An page consists out of various sections, each containing its own metadata information

and links. Each section contains the following properties and information:

 Metadata

A reduced Dublin Core metadata set is used to describe the properties of the

sections. These include the identifier, title and description. In addition to the

before mentioned fields, a section also has a list of descriptive keywords and a

special field that indicates whether the section can stretch or not.

 Links

Each section has its own collection of links, that are instances of the Link class,

which is applied to the content of the section when rendered.

 Content

The content of the section can be either normal text of formatted HTML. When

the content is rendered, the collection of links for the specific section is loaded

and adapted based on the current user’s personal preferences.

59

As mentioned, the links and content for each of the sections are separated. The reason

for this is that it allows for better link management and link adaptation. This is known as

LinkBases and has been used in, for example, Microcosm [Hall 1996], which is described

in Section 2.1.2.6.

Sections contain a special field that indicates whether it has the ability to stretch. In

brief, stretch text is used to hide information that is deemed to be of less importance for

the user. For example, if a section contains a long non-technical introduction that is not

of very high importance, a user might not want to read it again on subsequent visits.

Thus, by using stretch text this particular section can be hidden and a short description

can be displayed in its place. If a user wishes, he/she can then expand the full text of

the section to read the entire section.

 3.3.1.2.6 Page

An page is a collection of sections and links that can either be part of a collection or

sequence of pages, or it can be a single entity. The content of the site is divided into

various subjects, each containing a collection of pages. XML is used for the definition of

page sections and content, which allows for user editing and also the system to parse

the information. Once loaded, a page’s XML is converted to a Page class that is

serialized to the server. This approach was taken to allow users to edit the XML, which

takes longer to parse, and storing the serialized object, which loads much faster, for

future usage by the system.

Each page also contains the full Dublin Core metadata set describing its content. In

addition to metadata each section also contains a set of themes that further describes

the content and allows for recommendations based on a user’s personal preferences. A

weighted value is assigned to each of the page’s themes to indicate the conformance to

the particular theme. For example, a page might have a theme structure similar to the

following:

Data mining: 25.0

AH: 70.0

The theme information is also used to update a user’s personal preferences

dynamically. Thus if a user visits a page on Adaptive Hypermedia frequently then his

level of interest in this theme will be increased proportionately to the weighted value of

the page and time spent reading the content.

The following sequence of events occur when a page is rendered and displayed to the

60

user:

 Load XML or serialized Page object

The XML version of the page is always considered to be the master copy. Thus, if

the XML is newer than the serialized object version of the page the XML will be re-

parsed and a new object will be created. This was done to allow users to edit the

XML, which is both understandable to humans and computers, when the need

arises, whilst ensuring that the object version of the page will be kept up to date.

 Load metadata and themes describing page

The metadata information and themes describing the page is loaded from the

page object and stored in an internal metadata object. This information is then

used to recommend additional page that a user would benefit from reading. For

example, if the current page is part of a sequence, then the collection of pages

that should have been read as well as the pages that follow can be loaded and

recommended to the user.

 Load collection of sections

Each of the sections of the page is loaded including their associated metadata

information and links. The sections are then stored in the page's internal

collection of sections and rendered according to the user’s personal preferences.

 Render content and links

Lastly, the content and links are rendered as HTML, or XML, for the current user.

Each of the sections will be rendered according to their specific attributes. For

example, a stretch text section will be rendered differently from sections marked

as being of high importance. Also, each of the sections’ links will be adapted to

reflect the user’s history and personal preferences.

 3.3.1.2.7 Subject

Subjects are used to organise the collection of pages within the site. Each subject has its

own separate set of themes describing the pages contained within it. Security

restrictions are placed on each of the subjects to limit access to authorised users.

 3.3.1.3 Clustering

Pages are clustered based on their themes and associated weighted values. The reason

for clustering pages is to allow for faster filtering when making recommendations to the

user. Each cluster is represented by a set of themes with associated weighted values

and a collection of pages. Cluster information is updated every time that a page’s theme

61

values are changed, ensuring accurate cluster representations.

A cluster manager was developed to be responsible for the creation and maintenance of

cluster information. Initially the cluster manager contains an empty collection of

clusters. Once a new page is passed to the cluster manager, it will be compared to the

collection of existing clusters. In the case where there are no existing clusters, a new

cluster will be created around the newly added page’s theme values. All subsequent

pages’ themes will then be compared to that of the existing cluster. If there are no

matching clusters a new cluster will be created around the page’s theme values. This

process continues until all pages have been added to at least one cluster.

In order to ensure that a page will match at least one cluster’s representation, a certain

amount of leniency is used to allow pages to match loosely to a cluster’s set of theme

values. For example, if there exists a cluster represented by the following themes:

Data mining: 25.0

AH: 70.0

and a new page is passed to the cluster manager with themes such as:

Data mining: 30.0

AH: 65.0

then the new page will be added to the cluster because of the leniency used when

matching themes. The following pseudo algorithm describes the theme comparison used

in the clustering process.

Get the current Page's ThemeStructure

For each of the clusters

Get the current cluster's ThemeStructure

For each of the themes in the cluster's ThemeStructure

Get the intersection of the cluster's ThemeStructure and that of the page

Increment the total difference between the ThemeStructure objects

If the total difference is less than threshold

Add page to cluster

Table 2: Pseudo algorithm for clustering process

62

 3.3.1.4 Integration of modules

One of the main goals of developing a modular framework was to allow various models

to interact with one another and also with the core functionalities of the framework. For

example, the content module uses the MetaDataField class defined in the Repository

module and uses the interface functionalities exposed by the core Interface component.

The following section will describe the interaction between the Content module and

other modules and components contained within the framework.

 3.3.1.4.1 Modules and components

In order to reduce code redundancy, various modules can interact with one another via

exposed functionalities and classes. The Content module uses the following

functionalities of other modules and core components:

 MetaDataField

Defined in Repository module.

A metadata field consists of various attributes defining default values,

requirements, rendering information, etc.

 ThemeStructure

Defined in core Module component.

A theme structure consists of a set of theme and weight values that are used to

either describe a page’s content or a user’s personal preferences.

 Various XML utilities

Defined in Utilities component.

XML is used to store the page’s master copy, thus various XML parsing and

traversal functions are required to manipulate the XML structure.

 Configuration settings

Defined in Configuration component.

The content module has its own configuration settings that need to be accessible

to the module. Also, global configuration settings need to be accessed via the

root configuration component.

 User preferences and history

Defined in User component.

A user’s personal preferences and history need to be updated based on the

information that has just been accessed. For example, the user’s personal

preferences and history need to be updated to reflect the newly acquired

63

knowledge and to provide the user with further recommendations.

 3.3.1.4.2 Interface

As with all the modules, the content module utilises the Interface component’s

rendering capabilities as well as navigational support. The interface component allows

the module to present its information in different manners without the need to

reconfigure the module’s output. This is achieved by structuring all content and links as

XML, which is then processed by the Interface and rendered using a selected XSL

document.

Similarly, navigational links for the module are also presented selectively by the

Interface component based on the current user action and roles. For example, a

WORKER will be presented a different set of links for the management section of the

content module when compared to a normal USER.

The workings of the Interface component and navigational support will be described in

more detail in Section 3.4.1.

 3.3.1.4.3 Java Server Pages

Java Server Pages are used throughout the framework to present information to the user

and to handle any direct input from the user. This separation of presentation and

functionality allows the developers of modules to be freed from the need to reconfigure

modules for each type of interface.

Each class of the component module exposes a function that can return HTML or XML,

which is used by the JSP and Interface component to present the information based on

the currently selected XSL document. Similarly, links are stored in the configuration

document of the content module, which is accessed by the JSP and Interface component

and presented selectively based on the current user’s security role and action.

The JSP is responsible for sending HTML content to the client browser, and also to handle

all page requests. Based on the current user action, the JSP will instantiate the correct

class of the content module and pass any required parameters, as obtained from the

client’s request, to the module to complete the request. The resulting HTML will then be

obtained from the Interface component and presented to the client.

 3.3.1.5 Database

A relational database is used to store the metadata associated with each of the pages

contained within the collection. The reason behind the storing of metadata in both a

64

database and XML is to accommodate searching the collection of pages. When

searching for a page, the relational database provides for far better searching criteria

and speed compared to XML search functionalities. As with the updating of the page

object, the database is also automatically updated every time that the master XML

document is altered to ensure data validity.

The metadata schemas used to describe the pages include the full set of Dublin Core

fields as well as three Learning Object Metadata(LOM), fields, viz

 Keyword

The Dublin Core schema only supports full text descriptions of resources, hence

the need to use the keywords field of the LOM to describe key concepts contained

within a page.

 Requirement

Adaptive hypermedia relies heavily on the use of user profiles which contains a

history of resources that a user has accessed. By using this knowledge of the

user's history and the requirements of each of the pages, the system can

accurately provide the user with a collection of pages that he/she can read next.

The requirement field of the LOM schema assisted in accurately describing the list

of pages which are required to be read before a specific page is ready to be read

by the user.

 Difficulty

Not all users have the same level of understanding of all subjects, therefore some

users might prefer to only read pages and sections that are on their level. The

LOM difficulty field is thus used to describe the difficulty level of each page

content and concepts.

In addition to the before-mentioned metadata schemas, the custom schema developed

for the framework, called Malcolm, is used to define the clusters to which each page

belongs.

A standard relational SQL database is used to store the metadata for each of the pages.

The following fields define the structure of the database:

65

Field name Field type Field description

dc_title varchar(100) The title of the page.
dc_creator varchar(100) The creator of the page’s content.
dc_subject varchar(100) The subject of the page.
dc_description blob A brief description of the page’s content.
dc_publisher varchar(100) The publisher, if any, of the page.
dc_contributor varchar(100) An optional contributor to the content of the

page.
dc_date datetime The date on which the page was created.
dc_type varchar(32) The type of resource that is described.
dc_format varchar(16) The format of the page’s content. Default is

text/xml.
dc_identifier varchar(36) A unique identifier assigned to the page.
dc_source blob The original source, if any, of the page.
dc_language varchar(5) The language of the page’s content, e.g. en-GB.
dc_coverage blob The domain area which the resources covers.
dc_relation blob The relationship to other resources.
dc_rights blob Any associated copyright information.
Lom_requireme
nt

 varchar(255) A list of required page ID’s for this page.

Lom_difficulty varchar(10) A weighted value indicating the difficulty of the
content.

Lom_keyword blob A list of keywords describing the page.
malcolm_cluster
s

 varchar(255) A list of cluster ID’s to which this page belongs

Table 3: Field definitions for the Content's XML storage

XML is used as the primary master storage medium for page information. The reasoning

behind the use of XML is because of its ability to accommodate complex data structures

and also its human and computer readability. Primarily a page’s XML consists of

descriptive metadata and a collection of sections. Appendix A contains an example XML

document representing a page.

 3.3.1.6 Adaptation

Adaptation of content has to do with using a user’s personal preferences and history. A

user model is used to represent the user’s preferences and assumed knowledge of the

domain. There exist two main adaptation techniques, as defined by [Brusilovksy 1998]

[Bailey 2002], viz. adaptive presentation and adaptive navigation. This section focusses

on how adaptation has been implemented in the framework. For a more detailed

information such as the reasoning for adaptation and the strategies that can be used,

refer to Sections 2.1.2.1 and 2.1.2.5.

 3.3.1.6.1 Adaptive presentation

Adaptive presentation is concerned with customizing the layout and presentation of

content to the user based on his personal preferences. Methods used by the content

module include stretch text that will conditionally display certain sections if a user has

66

read them before and the content moderator has deemed them to be of less

importance.

For example, if a section contains an introduction to the page and is marked as being

stretchable, then once the user has read the page and returns on a subsequent visit the

section will be hidden and a brief description will be displayed in its place. The user can

then expand the full contents of the section if he/she wishes. Another use of stretch text

is to hide information that a user might not find interesting or that has another difficulty

level than that of the current user.

Adaptive presentation can thus be used to reduce page clutter as well as to assist a user

in reading only relevant information.

 3.3.1.6.2 Adaptive navigation

Adaptive navigation allows for the customisation of link presentation and ordering. The

main method of adaptive navigation used was link adaptation. Link adaptation is the

process of adapting the presentation of links and the addition of useful information. For

example, the user’s personal history is used to determine the dates and number of

times that the user has followed the link. Also, by using the end point of the link,

information regarding the destination of the link is be added, such as the title of the

page and difficulty level of the content. Another example of the use of adaptive

presentation is the altering of link visibility by using various colours to denote the

perceived importance of the link.

A crucial component of adaptive navigation is the user’s personal preferences that

contain information like a user’s interests and preferred style. Also, the user’s history is

important to determine the dates on which the link was accessed as well as whether the

link is of high importance. It is assumed that resources visited often are deemed to be

important to the user.

Further methods of adaptive navigation that can be implemented in the future is

adaptive ordering, where links are ordered based on their perceived importance to the

current user. This method will also make extensive use of the user’s personal

preferences and history.

 3.3.1.7 Recommendation system

In order to assist the user in finding relevant information, recommendations are made

based on his personal preferences and history. A user’s history is used to determine

relevant pages based on other pages’ requirements, and a user’s personal interests are

67

compared to that of pages contained within the collection.

 3.3.1.7.1 Requirements and history

A user’s navigational behaviour is tracked throughout the site in order to create a

history containing the list of pages that a user has read. Combing a user’s history and

requirements of sequential pages the system can recommend pages that might be of

interest to the user.

For example, the collection contains pages A, B and C, with page A being a requirement

for B and C. Assuming the user is reading page A, then he/she will be presented with a

list of recommended further reading containing both pages B and C. If the user moves

on to page B, he/she will be presented with a list of recommended pages, that he/she

should have read by now, containing page A.

These types of recommendations are useful when dealing with instructional material

where one page logically follows another.

 3.3.1.7.2 Personal preferences

A user’s personal preferences consist of a collection of interests each with a weighted

value. This allows for a structured representation of a user’s interests, which can be

used when recommending additional pages.

Recommendations are made by comparing a user’s own personal preferences with that

of the collection of page clusters. Each cluster of pages is represented by a set of

themes each with a weighted value that is used to determine the relevance to the

current user’s interests. In order to assure that recommendations are made without a

user’s personal preferences having to match exactly to one of the clusters, a certain

amount of leniency is used. This leniency thus allows for fuzzy matching of user and

page clusters.

The following pseudo algorithm describes the process of matching a user's preferences

with the ThemeStructures of the pages when making recommendations.

68

Get the current Users's ThemeStructure

For each of the pages

Get the current pages's ThemeStructure

For each of the themes in the pages's ThemeStructure

Get the intersection of the page's ThemeStructure and that of the user

Increment the total difference between the ThemeStructure objects

If the total difference is less than threshold

Add page to list of recommendations

Table 4: Pseudo algorithm for recommendation process

Using the set of user clusters, the system can make another set of recommendations.

User recommendations are made by comparing the history of users, in a user’s cluster,

with that of the current user. The set of recommendations consist of two main types, viz.

 Users

All users, with public profiles, within the current user’s clusters are displayed in a

list, allowing the user to contact them if he/she wishes.

 Pages

The histories of similar users are compared and then using the pages appearing

most frequently a collection of recommended pages is then created. This list is

then presented to the user as recommended reading.

 3.3.1.8 Content Management

An important aspect of the content module is the ability to administer the content

contained within the collection. The content management system allows for the

following administrative functions, viz. submission and removal of content, editing of

themes and requirements of pages and link management.

 3.3.1.8.1 Content submission

Each page in the collection is described by its own set of Dublin Core metadata. By

using easy to use form fill-ins and a set of required steps, the content module’s content

submission function ensures the validity of the XML file.

On submitting a new page, the required metadata fields need to be filled in and is

validated using a set of Validators. Once the metadata has been supplied, each of the

sections of the page needs to be created. Each content section has a reduced set of

69

metadata consisting of a title, description, a set of keywords and whether the section is

stretchable. The content module is then responsible for the creation of the page from the

XML file as well as the serialized object version of the page. Also, the metadata

describing the page is added to the page database.

 3.3.1.8.2 Theme management

Themes are used to describe the content of each of the pages contained within the

collection. Each of the pages contains a set of themes each with a weighted value.

Administrators can edit the themes describing any of the pages in the collection via the

content management interface. The procedure consists of selecting the desired page

and then simply selecting a weighted value for each of the themes to describe the

content of the page. Once the page’s themes have been updated the cluster manager

will re-cluster the current page to ensure the validity of clusters.

 3.3.1.8.3 Link management

Links in the content of a page are stored separately from the content sections to allow

for easy maintenance and adaptation. Each link is described in the XML as a separate

node containing descriptive metadata and linking information.

The following steps are required in order to add a new link for a specific page:

1. Choose a section to contain the link

Once a page has been selected the user is presented with a collection of the

page’s sections. Each section can contain any number of links, each specific to

the current section.

2. Selecting a word or phrase

Links are basically anchors on specific words or phrases within the page’s

sections’ content. On selecting a word or phrase, the next step is to supply

required link information.

3. Fill in required link information

Each link must define the type of resource to which the link points, the unique

identifier of the resource and a title describing the link. This information is

gathered using the link assistant that requires the user to complete a set of steps

regarding the link properties.

Once all the link information is gathered, the new link is created and the page’s XML file

and associated serialized object document are updated to reflect the changes.

70

 3.3.1.8.4 Page requirements

Page requirements are used for recommendations and sequencing of pages within the

collection. Each of the pages in the collection can have a list of required pages that need

to be read prior to the current one.

Requirements are made using the management interface by simply selecting a page for

which to edit the requirements, and then selecting each of the required pages from the

collection. Once all the required pages have been selected the XML file and serialized

object representing the page are updated as well as the page database.

 3.3.1.9 Configuration

All relevant configuration information for the content module is stored in its associated

XML configuration file. The configuration manager is responsible for loading the initial

configuration values and then monitoring the configuration file to ensure that when

changes are made, they are automatically loaded to ensure validity of configuration

information. See Appendix A for an example configuration file for the content module.

 3.3.1.9.1 Standard settings

Standard settings are settings required by the framework to allow for successful

integration with the core components and other modules. The standard settings for the

content module is as follows:

 Events & Plugins

Events are triggered by various actions within the module, for instance the

addition of a new page. For each of the events there is a collection of associated

plugins that are executed to allow for customisation of the module.

 Navigation

The navigation sections contain a collection of links used by the JSP of the

module. Each link consists of a type, URI, title, required condition and optional

JavaScript code.

 Help

Context sensitive help information is defined here, which is used by the JSP and

module to present help on various actions.

 3.3.1.9.2 Additional settings

In addition to the required standard settings, the Content module also relies on

additional settings to be supplied. Additional settings are module specific, and consist of

71

the following:

 Database

The database settings contain information on the creation of the SQL database

and also any default values to be inserted into the database. Basically, this

section defines a set of SQL statements that can be used by an administrator

when installing a new instance of the framework.

 Subjects

The content of the site is divided into a set of subjects, which is defined here in

the configuration document. Each subject entry consists of an ID, name,

description and default user role. Also, each of the themes representing the

subject is listed with a weighted value for each. Lastly, the security constraints

are defined for each of the associated actions, for example the required role

necessary to submit a new page.

 Metadata

Metadata is used to describe the properties of each of the pages contained within

the collection. This section defines the set of metadata fields used to describe the

pages.

 Validators

Validators are used to ensure the validity of information supplied by the user

when, for instance, a new page is submitted. This section contains a collection of

Validators each representing an HTML form field. The Validators are grouped

together to allow for selective use, based on the current action. For example,

there exists a group of Validators associated with submitting a new page.

 3.3.2 Discussion forum

 3.3.2.1 Overview

The online discussion forum allows for a fully threaded topic-based forum. Users can

select from any of the available topics, post messages or reply to existing messages.

Each topic has its own security constraints to limit access to authorized users. In

addition to limiting access to certain users, the security constraints can also limit actions

available to users based on their security roles.

Forum topics are described by a title, description and also a set of themes. As with the

content module’s pages, each topic is described by a set of themes each with a

weighted value. Topics can be recommended to users by comparing a user’s personal

72

interest with the weighted values of the forum.

 3.3.2.2 Classes

The discussion forum module comprises of the following collection of Java classes.

 3.3.2.2.1 Module

The module class is found throughout the framework, and is essentially a specialization

of the root Module class that defines and exposes certain required functionalities. Most

of the required functionalities have already been defined in the root Module class, thus

requiring very little specialization of the class.

An example of specializing the module is the loading of security roles associated with

each action. The availability of actions to users is based on security constraints, for

example only administrators can edit the existing messages in the forum.

 3.3.2.2.2 Loader

The loader is also a specialization of the root Loader class and is primarily concerned

with loading initial configuration values, such as security roles, from the configuration

files. A thread runs in the background to assure that any changes made to the module’s

associated configuration information is picked up and handled accordingly.

 3.3.2.2.3 DiscussionMessage

Each message in the discussion forum is represented by a DiscussionMessage instance.

A database is used to store message information and a new DiscussionMessage object is

created when a message is to be viewed. The following properties define a message in

the discussion forum:

 Identifier

A unique identifier is assigned to each message within the discussion forum.

Identifiers typically comprise of the message’s parent topic and a unique

numerical value.

 Topic

The identifier of the topic containing the message is used in order to locate and

correctly represent messages in the discussion forum.

 Type

A message can either be a new post or a reply to an existing message.

 Parent

73

If the message is a reply to an existing message, the parent will be the identifier

of that message. Otherwise, the parent will be ROOT to indicate that the message

is a topic level post within the topic.

 Level

The level of the message is the depth of the message in the particular topic. For

instance, a new post will be level 0 and a reply to a message will be one level

deeper than the parent message. The level of the message will determine the

indentation of the message in the threaded display of the messages within the

topic.

 Author

The author field of a message contains the username of the user who submitted

the message and is automatically set as the default value when a user posts a

message to the forum.

 Date

This is the date and time on which the message was submitted to the discussion

forum.

 Subject

Each message can have a unique subject or continue with an exiting message

subject. Replies to messages typically have “RE:” appended to the start of the

parent messages’ subject to indicate that the message continues a previous

discussion.

 Body

The body of the message is the actual content of the message. By default, all

HTML is stripped from the message body, but this can be changed in the

configuration settings.

 3.3.2.2.4 DiscussionTopic

The discussion forum consists of various topics that are used to logically group the

collection of messages. A topic consists of a name, description and a collection of

themes describing the topic. Also, each topic defines its own security constraints to limit

access and actions to authorized users. Very few actions are defined in the

DiscussionTopic class, which is primarily used as an abstraction to assist in the grouping

of messages.

74

 3.3.2.2.5 Discussion

The Discussion class performs most of the functions associated with the discussion

forum. These functions include posting messages, querying the collection of messages

and loading topics from the XML configuration file.

 3.3.2.3 Integration

One of the main goals of developing a modular framework was to allow various models

to interact with one another and also with the core functionalities of the framework. For

example, the discussion forum module uses the interface functionalities exposed by the

core Interface component.

The interaction between the discussion forum module and other modules and

components contained within the framework are similar to that of the content module as

described in Section 3.3.1.

 3.3.2.4 Database

A relational database is used to store message information for each message within the

discussion forum. SQL is used to query the database for specific message information,

for instance when creating a new DiscussionMessage object. A single database table is

used to store all the messages for each of the topics.

Field name Field type Field description

id int(11) A unique identifier for the message.
topic varchar(50) The name of the topic to which the message

belongs.
type enum('post','reply'

)
The type of message, either post or reply.

parent varchar(16) The identifier of the message’s parent message, or
ROOT if the message is a new post.

level smallint(6) The level of the message in the thread.
author varchar(50) The username of the author.
date timestamp(14) The date and time on which the message was

submitted.
subject varchar(255) The subject of the message.
body blob The body content of the message.

Table 2.5. Field definitions for the Discussion Forum table.

 3.3.2.5 XML & XSL

The threading of messages in the discussion forum requires a recursive function to

properly build the tree of messages. An XML tree is constructed representing the

threading of the messages for a certain topic. Once the tree has been constructed a

recursive XSL style sheet is applied to the XML to transform the tree into HTML.

75

 3.3.2.6 Functionalities

The discussion forum allows for the following actions to be performed depending on

their security levels:

 View topics

A list of all the topics comprising of the title, description, number of posts, replies

and active users is presented to the user. Each topic has its own set of security

constraints that will limit certain actions to authorized users.

 View messages for a topic

Once a topic has been selected, the user is presented with the threaded display

of the messages contained within the forum. Messages are indented based on

their level in the tree to indicate new posts and replies. Also, the themes

describing the current topic are displayed to provide further information on the

type of messages that belong to the topic.

 View a specific message

A user can view the detailed contents of a message by selecting the subject from

the threaded list. The message details consist of a subject, author, date and

message body. Also, a user can view the list of replies to the current messages

with links to each message’s details.

 Reply to an existing message

When viewing a message, a user can also reply to the current message. The reply

will then be inserted into the database with the appropriate information to

indicate the parent and level of the message.

 Post a new message

Posting a new message allows a user to start a new discussion or ask a question

pertaining to the selected topic. The only required information for a new message

is the topic, subject and content of the message. Default values are automatically

inserted for the author and date of submission.

 Search for messages

A user can search for messages in the discussion forum by supplying a word or

phrase and the desired topic. Search results consist of the message’s subject,

author and date of submission, with the subject linking to the detailed message

view.

76

 3.3.2.7 Forum management

A moderator can administer messages within the forum via the web based management

page. The content of a message can be altered if the need arises or the message can be

completely removed from the discussion forum.

Forum topics can only be managed by altering the discussion forum’s associated XML

configuration document.

 3.3.2.8 Configuration

All relevant configuration information for the discussion forum module is stored in its

associated XML configuration file. The configuration manager is responsible for loading

the initial configuration values and then monitoring the configuration file to ensure that

when changes are made they are automatically loaded to ensure validity of

configuration information. See Appendix A for an example configuration file for the

discussion forum module.

 3.3.2.8.1 Standard settings

Standard settings are settings required by the framework to allow for successful

integration with the core components and other modules. The standard settings for the

discussion forum module is as follows:

 Events & Plugins

Events are triggered by various actions within the module, for instance the

addition of a new document. For each of the events there is a collection of

associated plugins that are executed to allow for customisation of the module.

 Navigation

The navigation sections contain a collection of links used by the JSP of the

module. Each link consists of a type, URI, title, required condition and optional

JavaScript code.

 Help

Context sensitive help information is defined here, which is used by the JSP and

module to present help on various actions.

 3.3.2.8.2 Additional settings

In addition to the required standard settings, the module also relies on additional

settings to be supplied. Additional settings are module specific, and consists of the

following:

77

 Database

The database settings contain information on the creation of the SQL database

and also any default values to be inserted into the database. Basically, this

section defines a set of SQL statements that can be used by an administrator

when installing a new instance of the framework.

 Topics

Discussion forum topics are each represented by an XML node comprising of an

identifier, name, description and collection of themes. Each topic also defines a

set of security constraints for each action associated with the discussion forum.

 Validators

Validators are used to ensure the validity of information supplied by the user

when, for instance, a new message is submitted. This section contains a

collection of Validators each representing an HTML form field. The Validators are

grouped together to allow for selective use, based on the current action. For

example, there exists a group of Validators associated with submitting a new

message.

 3.3.3 Repository and workspace

 3.3.3.1 Overview

In essence the repository is a hierarchical storage of documents of any format.

Documents can be retrieved by either browsing or using the search functionality. The

repository module allows for the creation of a fully functional digital library supporting

versioning, hierarchies, browsing, searching, etc.

Documents are submitted to the repository, accompanied by descriptive metadata, and

stored in the appropriate location in the hierarchy. A relational database is used to store

the metadata to allow for fast searching. Also, on submission of a document a reverse

index of the content is created to allow for full text searching of documents.

The Repository Module was developed to be flexible enough to allow for implementation

in the following two formats:

1. Digital Library

When implemented as a digital library, the repository limits the functionalities that

can be performed on the documents contained within. In essence, a digital library

is used to store documents as they appear in their final format. It is therefore

suited for documents or articles that have been through a peer review process

78

which serve to provide users with valuable reference material.

2. Workspace

Unlike a digital library, a workspace allows users the ability to change documents

contained within the repository. Users can check-out a document to make

changes and then submit a new version of the document to the repository. It can

therefore be used in a collaborative environment where documents are not yet

finalised and need to evolve in conjunction with the project.

 3.3.3.2 Classes

In order to develop the content module the following set of classes were created.

 3.3.3.2.1 Module

The Module class is found throughout the framework, and is essentially a specialization

of the root Module class that defines and exposes certain required functionalities. Most

of the required functionalities have already been defined in the root Module class, thus

requiring very little specialization of the class.

An example of specializing the module is the loading of security roles associated with

each action. The availability of actions to users is based on security constraints, for

example only administrators can edit the hierarchy of the repository.

 3.3.3.2.2 Loader

The loader is also a specialization of the root Loader class and is primarily concerned

with loading initial configuration values, such as security roles, from the configuration

files. A thread runs in the background to assure that any changes made to the module’s

associated configuration information is picked up and handled accordingly.

 3.3.3.2.3 MetadataField

Metadata is used extensively throughout the repository to describe document properties

to allow for proper and structured storage and retrieval. A metadata field is used to

describe a specific property, for instance the title, of a document. The metadata fields

describing the document is defined in the configuration XML and consists of the

following components:

 Name

Each field is identified by a unique name, for instance title. The field name is used

to store and retrieve the field via the metadata class.

79

 Description

A brief description of the field, which can be used to assist a user when

submitting a document.

 Type

The type of field can either be TEXTBOX, LIST or TEXT. Each field will be rendered

differently depending on its type.

 Label

A label is presented next to the field when, for instance, a user submits a new

document. Labels are typically not more than two words.

 SQL field name

This is the field’s associated field name within the repository database.

 SQL create statement

Each field defines its own SQL statement that is used to create the field in the

repository database. This will assist administrators when creating a new instance

of the repository or framework.

 XML Namespace

XML namespaces are used to eliminate ambiguity between fields with the same

name.

 Required

A Boolean value indicating whether the current field is a required field or not.

 Order by

A Boolean value indicating whether this field can be used to order search results.

 Primary

A Boolean value indicating whether this field is one of the primary fields. Primary

fields are those that are displayed to the user when submitting a new document.

 Collection of values

Each field can have a default value as well as a list of values from which the user

must select at least one. Restricting a user to a certain collection of values can

ensure data validity and correctness.

 Validator

Validators are used to ensure that users fill in required fields and that field values

are valid. For example, a Validator can be used to ensure that a date field is in

the format yyyy-mm-dd. Validators will be discussed in further detail in Section

80

3.4.1.2.2.

Each metadata field is rendered based on its type and current values. The different

types of fields are:

 Text box

Text boxes are single line input fields that are used primarily for properties with

shorter values. An example of a text box is the title field of a document. Values

can be constrained using Validators to ensure data validity, for example date

formats.

 Text

Text fields are used for fields requiring more descriptive information, for example

the description of a document. As with text boxes, the values of text fields can be

constrained using Validators.

 List

List fields are used when a user has to select from a list of values. An example

use is the subject field of a document. An advantage of using lists is that users

are forced to use a value that is recognized by the repository, which will allow for

better storing and retrieval of documents. List values are defined in the XML

configuration document describing each of the metadata fields.

 3.3.3.2.4 Metadata

Metadata is used to describe the properties and attributes of a document. In essence,

the metadata class consists of a collection of fields that can be used to describe a

resource. The field information is loaded for the module’s configuration file and stored in

a hash table to allow for lookups.

In addition to containing a list of all the fields, the metadata class also assists in

ensuring that required information is supplied when submitting a new document by

utilizing the Validator component.

Furthermore, the metadata can be serialized to XML to allow transportation of the field

information over the Internet. An example use of this is using the XML describing a

document to allow an Open Archives Harvester to harvest the metadata of the

document within the repository. Section 3.3.3.2.11 will expand further on the uses of

OAI to allow for metadata harvesting.

81

 3.3.3.2.5 File

A file represents a document stored on the server somewhere in the repository’s

hierarchy. Primarily, a file is used by the Explorer class to construct the XML

representation of the repository hierarchy. A file contains only the information necessary

to construct the XML hierarchy. This information exists of the document’s identifier,

parent folder in the hierarchy, title, creator, date and whether the document has been

accepted or not. The hierarchy will then be constructed using the XML representing the

file.

 3.3.3.2.6 Hierarchy Explorer

The hierarchy explorer performs a recursive traversal of the directories contained within

the hierarchy to build an XML representation of the hierarchy. Once the XML

representation has been created it can either be rendered using XSL or used for any

other purpose. One such purpose is to allow an OAI Harvester to determine the

collection of sets contained within the repository. For more information on OAI

Harvesting, see Section 3.3.3.2.11.

Depending on the current required action of a user, the hierarchy explorer can either

only construct the directories defining the hierarchy, or the list of files contained within

each directory can also be loaded. In the case where file information is also required,

the explorer will make use of the File class to define the properties of each file contained

within a directory.

Finally, for presentation an XSL document can be used to recursively traverse the

hierarchy of the repository to present the repository’s directories and files to the user.

By using XSL for the presentation, one can easily switch between presentation styles

without the need to recompile the module or alter the XML representation.

 3.3.3.2.7 Directory

A directory represents a logical node of the hierarchy representing the repository. A

database is used to describe the collection of directories in the hierarchy. Also, each

directory is represented by a folder on the server that will contain the actual documents

contained within the repository. The information describing a directory consists of:

 Identifier

A unique identifier used to access the directory. Each identifier is derived from a

directory’s parent directory’s identifier.

 Path

82

The path to the folder, on the server, representing the directory in the hierarchy.

This path’s structure will match that of the hierarchy.

 Parent

The identifier of a specific directory’s parent directory. This is used for reverse

lookups when traversing back up the hierarchy.

 Level

An integer value denoting the level of a specific directory in the hierarchy. The

root of the hierarchy is level 0 and each subsequent sub-folder is one level higher.

 Title

A title describing the directory that is used when presenting the hierarchy.

 Role

A required security role that a user must have to access the current directory.

This security level will cascade down to every sub-directory in the hierarchy.

Each directory also contains a list of File objects that each represents a document

contained within the directory. All of the information describing a directory, such as

properties and files, are converted to XML, which is then rendered using XSL.

 3.3.3.2.8 DocumentSearch

The repository is fully search able allowing for simple, advanced and full text searches.

All search related operations are defined in the DocumentSearch class. The

DocumentSearch class will perform a search for documents using the supplied criteria

and render the search results using HTML. Searching is made possible and effective due

to the use of metadata to describe document properties and the subsequent storing of

this information in an SQL database.

For more information on the repository’s search functionalities, see Section 3.3.3.6.

 3.3.3.2.9 Document

The Document class is the core of the repository and represents the documents

contained within the hierarchy. A document consists primarily of metadata describing its

properties and the actual document content, for instance an Adobe Acrobat Document.

Once a user requests a document a new instance of the Document class is instantiated

and the appropriate properties of the requested document is loaded.

The following steps are taken when a user requests a specific document in the

repository:

83

1. Extract repository information

A document’s identifier comprises of the identifier of the repository and a unique

number of the document. It is necessary to thus extract the identifier of the

repository to be able to load the correct instance, which contains useful

information for the presentation of the document.

2. Load properties

An additional property, which is not loaded by the metadata, is the collection of

users that need to be informed once a document has been unlocked. The list of

usernames is loaded and stored internally to allow for notifications.

3. Load metadata

Each document is described using a set of metadata fields stored in a relational

database. This information is thus loaded from the database via the document’s

metadata class and stored internally.

4. Load document versions

Various versions of the same document can exists side-by-side, thus each version

is described by its own metadata structure and has an entry in the repository

database. It is thus necessary to load a reduced set of metadata describing each

version of the document to allow the user to access any of these versions.

5. Render document information

Lastly, once all the information has been loaded a document has to be rendered

using HTML. The HTML formatting is defined in the Document class and also the

repository module’s XML configuration document. There exist two main tasks

when rendering the document, viz. presentation of metadata and the

presentation of the actual document content. More information on the rendering

of the document and available functionalities will be discussed in Section 3.3.3.5.

 3.3.3.2.10 RepositoryInstance

Various repositories can co-exist within the repository, each being an instance of the

RepositoryInstance class. Each instance is in essence only an abstract class that

contains some information describing the repository as well as a set of functions

commonly used throughout the repository. These functionalities include the loading of

metadata fields from the XML configuration document, accessing certain subsets of the

metadata fields and information describing the repository.

Each document is aware of its parent repository’s identifier and is thus able to load the

correct instance and access specific functionalities. An example of where a document

84

uses its parent repository is when determining what information is to be rendered as

HTML, such as metadata.

 3.3.3.2.11 Open Archives Initiative (OAI)

The repository is Open Archives compliant and uses the functionalities exposed by the

OAI class to allow for metadata harvesting. These functionalities include the loading of

information, serialization of document metadata to XML, etc. OAI functionalities will be

discussed in further detail in Section 3.3.3.2.11.

 3.3.3.3 Integration

One of the main goals of developing a modular framework was to allow various modules

to interact with one another and also with the core functionalities of the framework. For

example, the repository module uses the interface functionalities exposed by the core

Interface component.

The interaction between the repository module and other modules and components

contained within the framework are similar to that of the content module as described in

Section 3.3.1.

 3.3.3.4 Hierarchy & Document storage

The repository is based on a hierarchical storage that represents the logical structure

and ordering of the documents contained within. The hierarchy consists of a root

directory with a collection of sub-directories, each containing its own set of sub-

directories and documents. Documents are submitted to the appropriate directory within

the repository to allow for logical browsing and searching.

The hierarchy of the repository is defined in a database as well as represented by

folders on the server. A database was used to allow for easier maintenance and to

enable for a directory to have a title that is not restricted to the identifier. Also, more

information can be stored in a database regarding the properties of a directory, such as

its identifier, title, level and required security role.

Security constraints are placed on each of the directories in the hierarchy to restrict

access to authorized users. This allows moderators to create, for instance, directories for

each project within a corporation and only allowing access to project members. A

directory’s security role cascades down to all sub-directories and only higher roles can

be applied to these directories.

The repository hierarchy is presented to the user as a tree structure that contains the

85

titles of sub-directories and the collection of documents within the current directory. A

user can then either choose to view a directory’s sub-directories or select a document

from the collection. Each document is represented by its title, date of creation and

author.

As mentioned earlier, the metadata describing a document and the actual content of the

document are stored separately. The descriptive metadata information is stored in a

relational database, whereas the document’s actual content, for example Adobe Acrobat

Document, is stored on the server in the appropriate folder.

 3.3.3.5 Presentation & Functionalities

An important aspect of the repository is the presentation of a document and its

associated metadata. Much attention must be paid to this because of the importance of

allowing a user to easily understand the information and functionalities on the page. The

presentation of a document is divided into three main sections, viz. the metadata, actual

document content and a collection of available functionalities.

 3.3.3.5.1 Metadata

The metadata describing the document is divided into three main sections, viz.:

 Bibliographic details

The default collection of metadata fields describing the bibliographic information

regarding a document consists of the title, author, subject, date of creation and

status.

 Document abstract

The document abstract is defined in the Dublin Core description field of the

document’s metadata

 Full metadata information

Here the full collection of metadata fields describing the document is listed. This

contains the full Dublin Core metadata set as well as additional information used

by the framework.

The default presentation of a document’s metadata is limited to the bibliographic

details; however, the user can choose to view the additional metadata information.

 3.3.3.5.2 Document content

The document content is the actual content of the original document or information

object and can be stored in various formats, such as Adobe Acrobat Documents, JPEG

86

images or AVI video’s. By default, the content is not displayed and the user is presented

with the option to view the content in the current browser or open the document in a

new browser window. Each of these available functions are defined in the associated

XML configuration and can be limited to certain repository instances. For example, the

workspace repository allows for the additional function of checking-out the document for

editing, which effectively locks the document until the user has resubmitted a new

version.

 3.3.3.5.3 Available functionalities

Various functions are available to the user depending on the repository instance and the

security level of the current user. The functionalities for each instance of a repository

are also determined by the type of implementation, viz. digital library or workspace. The

functions available consist of the following:

 View document metadata

This allows the user to either view or hide the bibliographic details, full document

abstract or full metadata information for the current document. This function is

available for both digital libraries and workspaces.

 View location of document in the hierarchy

The location of the current document in the repository hierarchy is displayed, and

each of the parent directories can be browsed. This function is available for both

digital libraries and workspaces.

 Available document versions

Displays a list of all available versions of the current document, with links to each

version. This function is only available for workspaces.

 OAI representation of document’s metadata

Documents contained within the repository can be represented as and XML

document that is OAI compliant. This function is available for both digital libraries

and workspaces.

 Edit the document’s metadata

Allows the user to edit any of the metadata fields describing the current

document. This function is available for both digital libraries and workspaces.

 Revise the current document

A user can post a revised version of the current document to the repository. This

function is limited to workspaces.

87

 Unlock the current document

Allows a user to unlock the current document if it has been checked-out by

another user for editing. This function is only available in workspaces.

 Remove the current document

The current document can be removed from the repository using this function.

This function is available for both digital libraries and workspaces.

Each of the available functions are limited to authorized users. The security constraints

for each function are defined in the repository module’s associated XML configuration

document and can be customized for each repository instance.

 3.3.3.6 Search

The search functionality allows users to search the collection of documents using a set

of criteria. There are three types of search interfaces available to the user, viz. simple,

advanced and full text.

Search results presented to the user are grouped according to the document’s location

in the hierarchy. Each search result contains the title, author and date of creation for the

document, with the title of the document being a link to the full document. To assist a

user in choosing a document, its abstract is displayed in a small pop-up window when

the mouse is pointed to the document’s title.

 3.3.3.6.1 Search interfaces

 3.3.3.6.1.1 Simple
The simple search is the most basic of the three interfaces and provides for only limited

accuracy. A user can search for a single word or phrase occurring within one or more of

the available metadata fields. Search results thus consist of documents where at least

one of the selected metadata fields contains the search word or phrase. For example, a

user can search for documents containing the word ‘Hypermedia’ in either the title or

abstract of the document.

 3.3.3.6.1.2 Advanced
The advanced search allows for more accurate searching because of its ability to limit

search words to specific fields. In other orders, a user can search for documents

containing the word ‘Hypermedia’ in its title and that were created by a person with the

surname ‘Jones’. The collection of available metadata fields comprises of the title,

subject, location in repository, author’s first and last name, and date of the document.

88

 3.3.3.6.1.3 Full text
In addition to searching the metadata describing documents, a user can also search the

full content of a document using a full text search engine. A reverse index is created for

each of the documents contained within the repository. The global index is updated

once a new document has been submitted. A search algorithm has been developed to

allow for the searching of a single word or a collection of words that must appear in the

correct order.

The search phrase is split into an array containing single search words.

Remove any non-word characters from each of the words.

Remove any stop words that are commonly found in the English language.

For each of the search words do the following:

Select the documents containing the search word and the position of the word.

Update the list of documents with the occurrence of the word and position.

For each of the documents in the search results do the following:

Determine whether words in document are in correct order based on search phrase.

Add result to list only if correct number of words match and ordering is correct.

Sort search results alphabetically using each document’s title.

Table 6: Pseudo description of the full text search algorithm.

 3.3.3.7 Database

An SQL database is used to store the metadata describing the document in the

repository as well as the hierarchy of the repository. All search queries are presented to

the database using standard SQL syntax using the JDBC database driver. The two main

repository tables in the database are for the documents and directories of the hierarchy.

Field name Field type Field description

ID varchar(36) A unique identifier of the directory.
path varchar(200) The path to the folder on the server.
parent varchar(36) The identifier of the directory’s parent.
level char(3) The level of the directory in the hierarchy.
title varchar(200) A title describing the directory.
role int(11) The required user role to access the directory.

Table 3.7. Field definitions of the Directory table.

The following table is used to describe the documents contained within a repository. It

89

uses a combination of the Dublin Core metadata schema as well as a custom schema,

called Malcolm, that was developed specifically for the framework. The reasoning for the

development of a custom metadata schema was because specialisation of the

framework's Repository Module and the inability of the existing schemas in those areas.

Field name Field type Field description

malcolm_parent varchar(36) The identifier of the parent directory.
malcolm_path varchar(255) The path to the document on the server.
malcolm_submittedBy varchar(16) Username of the person who submitted

the document.
malcolm_locked tinyint(1) A Boolean indicating whether the

document is locked.
malcolm_notifyList char(1) A list of usernames of users to be notified

once the document becomes unlocked.
malcolm_accepted tinyint(1) A Boolean indicating whether the

document has been accepted.
malcolm_version varchar(16) The version of the document, e.g. 1.1.
malcolm_status varchar(16) The status of the current document, e.g.

draft.
malcolm_visibility enum Either private or public visibility.
malcolm_instance varchar(16) The name of the framework instance

containing the document.
malcolm_role int(11) The role required to access the

document.
dc_title varchar(255) The title of the document.
dc_creator varchar(100) The author of the document.
malcolm_creatorConta
ct

 blob Contact details of the document’s author.

dc_subject varchar(100) The subject of the document.
dc_description blob A description of the document.
malcolm_keywords varchar(255) Keywords describing the document.
dc_publisher varchar(100) The publisher of the document.
dc_contributor varchar(100) Names of contributors to the document.
dc_date date The date on which the document was

published.
dc_type varchar(32) The type of document, e.g. Conference

paper.
dc_format varchar(36) The format of the document, e.g.

text/html.
dc_identifier varchar(36) A unique identifier for the document.
dc_source blob The original source of the document.
dc_language varchar(5) The language in which the document is

written, e.g. en-GB.
dc_coverage blob The domain area which the resource

covers.
dc_relation blob The relation of the resource to other

resources.
dc_rights blob Any copyright information regarding the

document.

Table 3.8. Field definitions of the Documents table.

90

 3.3.3.8 Document management

 3.3.3.8.1 Document submission

Submitting a new document to the repository comprises of the following three steps:

1. Fill in metadata fields

The first step in submitting a new document is the supplying of all required

metadata information. A user is presented with a collection of fields, which must

be completed when submitting a new document. Depending on the type of

information required, a user is either presented with text boxes used for free form

text, or drop down lists, used in the event that specific pre-defined values need to

be selected. All supplied information will be validated using the appropriate group

of Validators as defined in the XML configuration document.

2. Select location in hierarchy

Once the metadata has been supplied, the user will be presented with the

hierarchy of the repository and he/she must then select the appropriate directory

for the document. The location in the repository will depend on the document’s

requirements, for example the document could be a specific department’s

research report and must be placed in that department’s research report

directory.

3. Upload document content

The last step in submitting a new document is the actual uploading of the

document’s content, which can be in any format, for example Adobe Acrobat

Document. Once the document has been uploaded it will be stored in the

appropriate folder on the server with a file name matching the identifier of the

document, e.g. Library123.document.

 3.3.3.8.2 Editing, revision, accepting and removal of documents

A requirement of any digital library is the ability to manage the existing collection of

documents in the repository. The repository module allows for the following

administrative functions for existing documents:

 Editing existing documents' metadata

A moderator has the ability to edit the metadata of a document after it has been

submitted to the repository. All of the metadata fields are editable, except for the

identifier of the document, which needs to remain consistent to ensure data

integrity, which is read only. Any modifications to the document’s metadata is

91

validated in the same way as when a new document is submitted to the

repository.

 Submitting revised versions of documents

The repository allows for various versions of the same document to exist side by

side in the digital library. Once a document has been submitted, a user can

check-out the document for editing and then submit a revised version of the

document. Once a document has been checked-out, the document is locked until

the user submits a revised version, ensuring that version control is enforced. Each

version of a document inherits the metadata of the original version, whilst

allowing for editing of any fields’ value.

 Accepting new documents

A new document that is submitted to the repository is not automatically

accepted, and will thus not be visible to users. In order to ensure content quality

a document must first be reviewed by a moderator who can then accept it into

the repository. Once a document has been accepted it will be visible to users by

browsing or search the repository.

 Removing existing documents

Documents can be permanently removed from the repository. Once a document

has been removed all entries in the repository database and content files are

removed from the server.

 3.3.3.8.3 Directory management

A moderator has the ability to alter the hierarchy representing the repository by adding

or removing directories. New directories are added by simply supplying the folder name,

directory title and required security role for the new directory. Lastly, the location in the

hierarchy of the new directory has to be selected from the list of existing directories. If a

new directory is created with, for instance, a security role of USER and its parent

directory has a WORKER role, the directory’s role will automatically be changed to

WORKER because of the security role cascading rules.

Existing directories can be removed from the hierarchy as well as all files contained

within the directory. A moderator also has the choice of leaving the directory’s files on

the server for future use. In this case on the database entry for the directory in the

directory table is removed to restrict users from browsing the contents of the deleted

directory.

92

 3.3.3.9 Configuration

All relevant configuration information for the repository module is stored in its

associated XML configuration file. The configuration manager is responsible for loading

the initial configuration values and then monitoring the configuration file to ensure that

when changes are made they are automatically loaded to ensure validity of

configuration information. See Appendix A for an example configuration file for the

repository module. .

 3.3.3.9.1 Standard settings

Standard settings are settings required by the framework to allow for successful

integration with the core components and other modules. The standard settings for the

repository module is as follows:

 Events & Plugins

Events are triggered by various actions within the module, for instance the

addition of a new document. For each of the events there is a collection of

associated plugins that are executed to allow for customisation of the module.

 Navigation

The navigation sections contain a collection of links used by the JSP of the

module. Each link consists of a type, URI, title, required condition and optional

JavaScript code.

 Help

Context sensitive help information is defined here, which is used by the JSP and

module to present help on various actions.

 3.3.3.9.2 Additional settings

In addition to the required standard settings, the module also relies on additional

settings to be supplied. Additional settings are module specific, and consists of the

following:

 Database

The database settings contain information on the creation of the SQL database

and also any default values to be inserted into the database. Basically, this

section defines a set of SQL statements that can be used by an administrator

when installing a new instance of the framework.

 Repositories

Each repository instance is defined in the repository configuration. A repository is

93

described by an identifier, title, description and default required security role.

Also, each of the available actions is assigned a security role to restrict access to

that action to authorised users.

 Metadata

Metadata is used to describe the properties of each of the documents contained

within the repository. Each repository instance can have its own set of metadata

fields describing the documents. This section defines the set of metadata fields

used to describe the documents for each repository instance.

 Open Archives Initiatives

This section contains a string commonly used by the OAI class for the repository.

An XML node consisting of a name and the associated string represents each

entry.

 Search information

The search settings comprise of a list of supported document formats for indexing

and various rendering options for search results. Search results can be

customized without altering the underlying code by separating the formatting

options and the actual Java code.

 Document downloading options

As with the search results, the rendering of a document’s downloading options is

also defined in the repository’s XML configuration document. Various downloading

options for a document’s content exist, and can be customized for each of the

repository instances. For example, the workspace repository allows a document

to be checked-out for editing.

 Validators

Validators are used to ensure the validity of information supplied by the user

when, for instance, a new page is submitted. This section contains a collection of

Validators each representing an HTML form field. The Validators are grouped

together to allow for selective use, based on the current action. For example,

there exists a group of Validators associated with submitting a new page.

 3.3.4 Statement database

 3.3.4.1 Overview

The statement database allows users to make statements or submit quotes regarding

certain topics. Each topic database contains a collection of statements that are grouped

94

by the creator of the statement. Statements are described using a reduced Dublin Core

metadata set consisting of a date, creator, rights and original source. Additional

metadata fields that were added include the person who submitted the statement and

any additional notes.

The statement database can be used as a general database where users can post ideas

or comments regarding certain topics. These statements can then be discussed further

using, for example, the online discussion forum and eventually a new research project

might develop.

 3.3.4.2 Classes

The following collection of Java classes were created to form the statement database

module.

 3.3.4.2.1 Module

The module class is found throughout the framework, and is essentially a specialization

of the root Module class that defines and exposes certain required functionalities. Most

of the required functionalities have already been defined in the root Module class, thus

requiring very little specialization of the class.

An example of specializing the module is the loading of security roles associated with

each action. The availability of actions to users is based on security constraints, for

example only administrators can remove statements from the database.

 3.3.4.2.2 Loader

The loader is also a specialization of the root Loader class and is primarily concerned

with loading initial configuration values, such as security roles, from the configuration

files. A thread runs in the background to assure that any changes made to the module’s

associated configuration information is picked up and handled accordingly.

 3.3.4.2.3 Link

Links are used to create references between either two statements or any other

resource available within the framework. A link consists of the following properties:

 Identifier

Each link is identified by a unique identifier consisting of the topic and a unique

numerical value.

 Type

95

Links can either point to a resource within the framework or to a URI outside of

the scope of the framework.

 Resource type

An internal link can point to either of the following resources: a document, a

message in the discussion forum, another statement or a page.

 URI

The URI of the end point is created based on the type of resource and the scope

of the link. If, for instance, the link points to a document in the digital library the

link will contain the repository instance name and the document’s unique

identifier.

 Title

The title of the link can either be the title of the web page to which the link points

or the title of the resource, for instance the title of a document in the digital

library.

 Internal document identifier

If the link points to an internal resource, the internal document identifier will be

the unique identifier of the resource to which the link points, for instance the

unique identifier of a document in the digital library.

 3.3.4.2.4 Metadata

Metadata is used to describe the properties and attributes of a statement. In essence,

the metadata class consists of a collection of fields that can be used to describe a

resource. The field information is loaded for the module’s configuration file and stored in

a hash table to allow for lookups.

In addition to containing a list of all the fields, the metadata class also assists in

ensuring that required information is supplied when submitting a new document by

utilizing the Validator component.

 3.3.4.2.5 Statement

Statement information is stored in a database and also a serialized Statement object

file. The database contains the metadata information describing a link and the serialized

object contains a list of all the statement links. When the list of statements is compiled

for the user, only the metadata from the database is loaded; however, when a user

96

views a specific statement the metadata as well as the collection of links is loaded. This

is done because the links are not required when browsing the collection of links, thus

saving processing power.

 3.3.4.2.6 StatementDatabase

A statement database is used to group statements covering the same topic. Each

database is described by a title, description and collection of weighted theme values.

Also, security constraints are placed on each available action, for instance only

administrators can remove a statement from the database.

Statement databases are defined in the module’s associated XML configuration

document, which is described in Section 3.3.4.7.

 3.3.4.3 Integration

One of the main goals of developing a modular framework was to allow various models

to interact with one another and also with the core functionalities of the framework. For

example, the repository module uses the interface functionalities exposed by the core

Interface component.

The interaction between the statement database module and other modules and

components contained within the framework are similar to that of the content module as

described in Section 3.3.1.

 3.3.4.4 Presentation & Functionalities

 3.3.4.4.1 Browsing databases

There can exist various databases each representing a certain topic and containing a

collection of statements. A user can select a specific database form the database

collection or by following a link from another resource. Each database in the list is

described by a title, description and a collection of weighted theme values.

After selecting a database, the user is presented with the collection of statements

contained within the database. Statements are grouped according to the creator and

then sorted by date. Each entry in the list represents a statement and comprises of the

actual statement and its date of submission. A user can then choose to view more

detailed information on any of the presented statements.

 3.3.4.4.2 Viewing statements

When viewing a statement the user is presented with the statement text as well as the

97

option to view any of the associated metadata describing the statement. The metadata

describing the statement consists of submission date, creator, original source, additional

notes, copyright information and the person who submitted the statement.

In addition to the viewing the statement’s text and metadata, a user can also view any

related links to additional resources that were created by other users. Also, a user can

create his own link to any resource within the framework or to a web site outside of the

framework’s scope. Links are created using a wizard and requires a user to complete a

set of steps in order to gather the required link information. Section 3.3.1.2.4 describes

the Link object that represents each link within the statement’s collection.

 3.3.4.5 Database

A database is used to store metadata associated with each of the statements contained

within each of databases. There exists only one database table for all of the statements

and the malcolm_database field is responsible for indicating the database to which a

statement belongs.

Field name Field type Field description

dc_identifier varchar(36) A unique identifier for each statement.
malcolm_statement blob The actual statement text.
dc_creator varchar(100) The creator of the statement.
dc_date date Date of submission or when statement was

made.
dc_source blob Original source of the statement.
dc_rights blob Copyright information associated with

statement.
malcolm_submitted
By

 varchar(16) Person who submitted the statement.

malcolm_accepted tinyint(1) Boolean value indicating whether statement
has been accepted.

malcolm_notes blob Any additional notes on the statement.
malcolm_database varchar(50) Name of the database to which the

statement belongs.

Table 4.9. Definition of the Statement database’s table.

 3.3.4.6 Statement database management

A limited set of management options is available to users of the statement database.

Certain management actions are limited to authorized users only. The three

management actions are the following:

 Create a new statement

Most users will be able to create a new statement in a database. Users are

required to fill in the required metadata information in order to submit a new

statement. Validators are used to ensure that required fields are filled in and that

98

the data is in the correct format.

 Accept a pending statement

Once a new statement has been submitted a moderator must first accept it

before it will be visible to general users. A moderator can list all the statements

within a selected database and then accept or reject pending statements.

 Remove an existing statement

A moderator can select statements to be removed from the statement databases.

Once a statement has been deleted its metadata will be removed from the

database as well as its collection of links.

 3.3.4.7 Configuration

All relevant configuration information for the statement database module is stored in its

associated XML configuration file. The configuration manager is responsible for loading

the initial configuration values and then monitoring the configuration file to ensure that

when changes are made they are automatically loaded to ensure validity of

configuration information. See Appendix A for an example configuration file for the

statement database module.

 3.3.4.7.1 Standard settings

Standard settings are settings required by the framework to allow for successful

integration with the core components and other modules. The standard settings for the

repository module is as follows:

 Events & Plugins

Events are triggered by various actions within the module, for instance the

addition of a new document. For each of the events there is a collection of

associated plugins that are executed to allow for customisation of the module.

 Navigation

The navigation sections contain a collection of links used by the JSP of the

module. Each link consists of a type, URI, title, required condition and optional

JavaScript code.

 Help

Context sensitive help information is defined here, which is used by the JSP and

module to present help on various actions.

99

 3.3.4.7.2 Additional settings

In addition to the required standard settings, the module also relies on additional

settings to be supplied. Additional settings are module specific, and consists of the

following:

 Database

The database settings contain information on the creation of the SQL database

and also any default values to be inserted into the database. Basically, this

section defines a set of SQL statements that can be used by an administrator

when installing a new instance of the framework.

 Statement databases

This section described the collection of statement databases. Each database has

a title, description and a set of themes describing it. Also, security constraints are

defined for each of the actions, for instance removing an existing statement from

the database.

 Metadata

Metadata is used to describe the properties of each of the statements contained

within the databases. This section defines the set of metadata fields used to

describe the statements for each of the databases.

 Browsing

The various methods of rendering a statement is defined in the browsing section.

This allows administrators to alter the presentation of statements without the

need to edit the underlying Java code. The three rendering options that can be

altered are rendering statements for users browsing a database, administrators

accepting statements and administrators removing existing statements.

 Validators

Validators are used to ensure the validity of information supplied by the user

when, for instance, a new page is submitted. This section contains a collection of

Validators each representing an HTML form field. The Validators are grouped

together to allow for selective use, based on the current action. For example,

there exists a group of Validators associated with submitting a new statement.

 3.4 Supporting core modules
In addition to the various functional components that were described in the preceding

section, the framework also consists of a collection of core components. These

components provide the base for the development of the framework and are not

100

necessarily always accessible or apparent to the users.

 3.4.1 Graphical User Interface component

 3.4.1.1 Overview

A key aspect of the framework was to allow for the modification of the interface without

altering the underlying Java code. This was achieved through the use of XML and XSL

documents. Each component and module represents its output using XML and the

interface component is responsible for transforming the XML to HTML using a set of XSL

documents.

By separating the presentation from the processing of a module’s output the resulting

HTML can be customized to suite the user’s personal preferences as per the

requirements of the framework.

 3.4.1.2 Classes

The GUI component’s classes are used extensively by each of the modules’ JSP pages to

present the user with content. Various classes were developed to assists in the

rendering of HTML and the presentation of navigational links.

 3.4.1.2.1 Loader

The loader is also a specialization of the root Loader class and is primarily concerned

with loading initial configuration values, such as subjects, from the configuration files. A

thread runs in the background to assure that any changes made to the module’s

associated configuration information is picked up and handled accordingly.

 3.4.1.2.2 FieldValidator

Validators are used throughout the framework to ensure that user input is valid. The

FieldValidator class assists in validating HTML input by using any of the following

methods:

 Required

A Validator can be used to check whether required fields contain a value. No

checking is done, however, for the validity of the field’s value.

 Regular expression

Certain fields’ values have to be in the correct format to ensure data validity.

Regular expressions can be used to validate the input of a field to check whether

it is in the correct format. For example, if the value of a date field has to be in the

101

format yyyy-mm-dd, then a Validator is used with the following regular

expression: ^\d{4}\-\d{2}\-\d{2}$.

 Compare

The compare Validator is used to compare the values of two or more fields. An

example use is when a user has to enter his password twice when registering as a

new user.

Validators are defined in each of the modules’ and components’ configuration

documents and are grouped according to actions. For example, the repository module

has a group of Validators that are used when a new document is submitted. A module is

responsible for retrieving the group of Validators for the specific action after which each

of the Validators is inserted into the HTML as JavaScript. The JavaScript is responsible for

validating the values supplied by the user when the HTML form is submitted. An error

message is displayed for each of the fields containing an incorrect value.

 3.4.1.2.3 Link

All navigational links used within the framework are defined in a module’s XML

configuration document and is represented by a Link object. Links are divided into

primary and secondary links depending on whether they are intended for primary or

secondary navigational purposes. In order to allow for flexibility parameters can be

passed to links, which are then used to substitute variables in the URI’s.

Each link is represented in the configuration document by an XML node containing the

following:

 Type

The type of link can either be primary or secondary.

 URI

A link can either point to another resource within the framework, a URL of a web

site or a JavaScript function. JavaScript functions can be defined in the Link’s

script block.

 Title

The title or label of the link that is rendered in the HTML or optionally it can be an

image.

 Conditions

Links are displayed conditionally based on certain criteria that are defined in the

conditions block. Conditions consist of a required user role and optional actions.

102

 Script

Any additional JavaScript functions performed by the Link must be defined in the

script block. The Link’s JavaScript functions will be inserted in the HTML

document’s script element.

A Link object “knows” whether it should be displayed based on certain criteria, such as

the user’s security role and the current action of the user. Before any link is rendered it

first performs the following steps based on the current user’s security role and action:

1. Check security role

Each link requires a user to have a specific security role before it will be

accessible to the user.

2. Check conditional constraints

A link will only be displayed if the user is performing the correct action. For

example, a link might only be required for when a user is managing the group of

users. Thus a constraint can be used to check whether the user’s current action is

‘manage_users’. An Expression object, which is described in Section 3.4.1.2.4, is

used to represent each constraint.

 3.4.1.2.4 Expression

Expressions are used to compare the user’s current action with the constraints of a

specific link to determine whether a link should be rendered. An expression can

compare parameters with pre-defined values and can either be required to match a

certain value or not to match a value. There is no limit on the number of expressions

that can be attached to a link and a link will only be rendered if all of the conditions are

met.

For example, the link to add a new user is only required when a user is managing the

group of users within the framework; an expression can then be used to check whether

the user’s current action is ‘manage_users’ and then only render the link if the match

was successful.

 3.4.1.2.5 Interface

The Interface class is responsible for managing the XML output of a JSP page and

transforming it to HTML using a selected XSL document. Each JSP page is responsible for

loading the appropriate Interface from the framework and passing XML and any

additional parameters to the object. Link management is also done by the Interface,

which is responsible for loading the appropriate links based on the current user’s

103

security role and current action.

Interfaces are defined in the component’s associated XML configuration document and

are loaded by the Interface component’s Loader. An Interface consists of a collection of

components, metadata, and XSL transformer. An Interface exposes certain components

that are defined in its associated XSL document that can be accessed by the JSP page.

Each component is in essence an XML fragment that is rendered by the XSL transformer

resulting in an HTML document.

An additional function of the Interface class is link management. Links are defined in a

module’s associated XML configuration document, which are then loaded by the module

and stored internally. The Interface class assists in determining which links to load by

exposing a function that returns a set of links conforming to certain criteria. For

instance, the JSP page passes the current user’s security role and action to the

Interface, which will then query the current module and retrieve the appropriate links.

The collection of links is then passed to the Interface, which in turn renders the links to

be presented as HTML.

 3.4.1.2.6 InterfaceComponent

An Interface consists of a collection of components represented by InterfaceComponent

objects. Each object contains an XML fragment that can be altered and rendered as

HTML by the XSL transformer.

 3.4.1.3 XML & XSL

A combination of XML and XSL is used in order to allow for multiple presentations of the

same content without the need to alter the underlying Java code. Each module’s output

is represented using XML, which is used by the JSP page in conjunction with an Interface

object to produce HTML. An XML representation of a module’s output consists of the

following:

 Metadata

Metadata can be used to describe the HTML document for a number of reasons.

One such reason is for the search engine to better index the content of a page.

The metadata section consists of a collection of metadata fields each with a name

and value. An example of metadata for a page could be the title and author of the

document.

 Components

An HTML page comprises of a set of components, each representing an area of

104

the document. Typical components include primary and secondary navigation,

content sections and a footer. A component is an XML fragment that has a name

and content, which is rendered using the Interface’s XSL transformer.

The Interface’s XSL document is responsible for transforming the XML components and

metadata to HTML. This requires the XSL document to conform to the framework’s

standard functionalities to ensure that the information is correctly rendered. There exist

three main templates that are responsible for transforming metadata, content and

navigational links.

Examples of both the XML and XSL documents can be found in Appendix A.

 3.4.1.4 JSP template

JSP pages have to conform to a certain template to ensure security and link integrity.

The JSP template consists of the following required components:

1. Load user object

The username of the current user is stored in the JSP session, which is used to

load the User object and profile for the current user. If the username is not

defined the user will have to be redirected to the login page.

2. Obtain parameters

All of the parameters passed to the JSP page must be obtained and stored in both

an array and hash table for use by the security module and interface module.

Example parameters include the current action, step and identifiers.

3. Check security

Security works by passing the current user’s security role and the current action

of the user to the module being accessed. The module will then query the

underlying security component to determine whether the user has the required

credentials to perform the requested action. If the authorization fails the user will

be redirected to a JSP page informing him/her of the failure.

4. Load interface

After a user has been granted access to the JSP page the next step is to load the

appropriate interface based on the module’s settings and the user’s personal

profile. A copy of the Interface object is retrieved, which is used to populate the

components that make out the interface.

5. Load root links for top navigation

The framework contains a set of root links that are loaded by default, which must

105

be displayed in the appropriate component of the interface. These links are also

constrained by security restrictions, which will be evaluated by the interface

object.

6. Populate interface components

Interface components have to be populated with the appropriate XML fragments

to construct the content of the JSP page. Depending on the requirements of the

module, certain components will be populated whereas others will be left empty.

The interface will use the populated components to construct the final HTML

page.

7. Load primary navigation for module

The primary navigation for a module is loaded from the module’s XML

configuration document and is identified by links of type PRIMARY. By default

there exist three components for the primary links that can be accessed by the

interface, viz. to the top,left and right of the page. It is therefore possible to place

the navigation of the site on any of these locations, depending on the client's

needs..

8. Load secondary navigation for module

Secondary links are loaded and handled in the same manner as primary links and

are identified by links of type SECONDARY.

9. Render interface

After populating the navigation and content of the JSP page the interface object

renders the collection of components as HTML and passes it the to the client’s

browser.

 3.4.1.5 Configuration

The configuration for the GUI component is mainly concerned with defining the various

interfaces available to the framework. Also, additional links and Validators that need to

be loaded are listed in the configuration document.

 3.4.1.5.1 Standard settings

The standard settings of the GUI component consist only of the plugins defined for

various events that are triggered by the interface functions.

• Events & Plugins

Events are triggered by various actions within the module, for instance the

addition of a new document. For each of the events there is a collection of

106

associated plugins that are executed to allow for customisation of the module. An

example list of such plugins include the notification email sent to a moderator in

the event of changes that were made to a repository, or in the event that a user

replies to a discussion forum post the user who posted the original entry is

notified.

 3.4.1.5.2 Additional settings

In addition to the required standard settings, this component also relies on additional

settings to be supplied. Additional settings are module specific, and consists of the

following:

 Link loaders

Any additional links that need to be loaded for the framework are defined in this

section. For example, the User component isn’t responsible for loading its links,

which requires the GUI component to do it instead.

 Validator loaders

As with the loading of additional links, the GUI component must also load any

additional Validators required by components, such as the list of Validators for the

Users component.

 Interfaces

All available interfaces must be defined in the GUI configuration document. Each

interface consists of a name, path to an XSL document and a Boolean indicating

whether the interface is available to users.

 3.4.2 User component

 3.4.2.1 Overview

A key functionality of the framework is the ability to build a user profile that describes a

user’s individual interests and contains personal information. Each user is represented

by a User component containing his personal details, history and personal preferences.

The User component assists in the handling of all user related functionalities and is

available to the rest of the framework’s modules and components. For example, the

user’s model can be queried to obtain his list of personal preferences, which can be

used to provide him/her with recommendations.

A relational database is used to store a user’s personal details, such as his name, email

address and list of memberships. This information is thus easily obtainable using

107

standard SQL queries by the Java code. In addition to a database, a user’s personal

model is stored as a serialized User object and is stored on the server. The User object

contains information relating to the user’s history and personal preferences, which can

be obtained through the User model’s exposed functions.

 3.4.2.2 Classes

Three core Java classes, that expose certain management and querying functionalities,

are used to define a user model. These classes are capable of interacting with other

modules and the list of core components of the framework.

 3.4.2.2.1 Loader

The loader is also a specialization of the root Loader class and is primarily concerned

with loading initial configuration values, such as security roles, from the configuration

files. A thread runs in the background to assure that any changes made to the module’s

associated configuration information is picked up and handled accordingly.

 3.4.2.2.2 ProfileEntry

A user’s history comprises of a collection of ProfileEntry objects, each containing the

identifier of the resource and dates on which the resource was visited. The collection of

profile entries can be queried to obtain the dates on which a resource has been visited

in order to recommend additional resources to the users. This information can be

presented to a user when he/she points to a link, which can assist a user in his decision

making process. There exist four methods of querying the dates of a profile entry, viz.:

 GetDates

Returns the list of unedited dates on which a user has visited a specific resource.

The list may contain duplicate date entries. This is useful when calculating the

number of times that a user has viewed a specific resource which in turn can be

used to assess the popularity of that resource.

 GetNumberOfVisitsForDate

Returns the number of times a user has visited a resource on a specific date. This

can be used to determine trends throughout the population of users who access

the information resources. By analysing trends, a moderator or site administrator

can provide more accurate time-based recommendation to users.

 GetDistinctDates

Returns a list of dates on which a user has visited a resource, with the list

108

containing no duplicate dates. This information can be useful to users of the

services, by providing them with a list of dates on which they have accessed

certain resources. A user could therefore make an informed decision on whether

to access the resource or not.

 GetDatesAndCount

Returns the list of distinct dates on which a user has visited a resource with the

number of visits for each date. A user can use this information when deciding on

whether to access a resource, because he/she now knows how often he/she has

accessed each of the available resources.

 3.4.2.2.3 Profile

A user profile is responsible for maintaining the user’s personal preferences and history

of resources that were visited. After each visit to a resource, the user’s history is

updated to reflect the new addition and modifications are made to the user’s personal

preferences. The Profile class exposes the functions required to maintain and query the

user’s profile. These functions include:

 Loading properties

A user’s details are stored in both a relational database and a serialized object.

Depending on the information that is required, the details can either be loaded

from the database or the serialized object. If only the user’s personal details are

required then the database will be used, otherwise for user’s preferences the

serialized object will be loaded.

 Query history

The complete history of a user can be queried or a subset thereof. For example,

the dates on which a user has visited a specific resource can be obtained or the

complete list of dates for all of the resources that a user has visited. This

information can then be used to recommend additional resources or be presented

to an administrator to monitor site usage.

 Update preferences

A user’s personal preferences consist of a collection of weighted theme values

that can be queried and updated using the user’s profile. After each visit to a

resource that is described by a ThemeStructure, the user’s personal preferences

are updated to reflect the user’s changing interests. A combination of the time

spent visiting the resource and the resource’s weighted theme values are used to

109

increment a user’s personal preferences.

 Log entry

The user’s history is maintained by logging each visit to a resource. If there exists

no prior entry for the resource in the user’s history a new entry will be made

using the resource’s unique identifier, type and the current date. Any subsequent

visits to the resources will result in the addition of the current date to the list of

dates on which the resource has been visited.

 Update clusters

Each user belongs to at least one user cluster that is maintained by the User

component’s associated ClusterManager. After each update of a user’s personal

preferences the ClusterManager will re-evaluate the user’s preferences and

relocate the user to another cluster if the user’s interests no longer fall within the

current clusters.

 3.4.2.2.4 User

The User class encapsulates all the personal information, preferences and functionalities

of a user within the framework. Each user of the system is represented by a User object

that is serialized to disk to allow for persistence. The main properties of the User class

consist of the following:

 Personal information

Contains the user’s name, email address, password and Boolean value indicating

whether his profile is private or public. This information is stored in the relational

database as well as the serialized object representing the user.

 Profile

An instance of the UserProfile class that contains the user’s history and personal

preferences. This object is serialized together with the personal information of the

user.

 Memberships

A hash table of all the research projects to which the user belongs together with

the security role for each of the projects. For example, a user may have a

WORKER security role for the AH research project and ADMIN for the WWW

research project.

The User class also provides methods to allow for user registration, login and

maintenance of personal information.

110

 3.4.2.3 Functionalities

There exists a broad range of functionalities available to the user via his personal

homepage. Once a user has successfully logged in, he/she is directed to his personal

homepage where he/she can perform any of the following functionalities.

 3.4.2.3.1 My homepage

On a user’s personal homepage a user is presented with the following blocks of

information, viz.:

 Pages

A list of recommended pages is displayed based on the user’s personal

preferences. The pages are grouped according to their respective subjects and

are linked to the full content of the page. This provides a user with a

recommended reading list every time he/she visits his homepage.

 Forum topics

As with the recommended list of pages, the user is presented with a list of

recommended forum topics. Each recommended topic consists of the title and

description of the topic with a link to the discussion forum.

 My documents

This section provides the user with a list of all the documents that he/she has

submitted to any of the repositories in the framework. Documents are grouped

according to their respective repositories and consist of the title, author and date

of submission.

 3.4.2.3.2 View profile

A user’s profile is presented to him/her and allows for modifications to his personal

information and preferences. The profile information is divided into the following three

sections:

 Personal details

A user can edit his name and email address by changing the values in the pop-up

window.

 Personal preferences

The values of each of the topics that describe the user’s personal preferences can

be altered manually by the user. The user is presented with a list of all the topics

with the current weighted value together with all the weight options in a drop

down menu. The values can then be modified and updated to reflect the user’s

111

level of interest for each of the topics.

 History

A user’s history is grouped according to the modules contained within the

framework. Each module’s history is represented by the collection of resources

that were accessed together with the dates for each of the resources. A user can

remove any item from the history if the framework administrator allows the

modification of a user’s history.

 3.4.2.3.3 View recommendations

This section contains recommendations based on a user’s personal preferences, history

and similar users. Each of the three groups of recommendations is presented separately

and is described further in Section 3.3.1.7.

 3.4.2.3.4 Create a new project

The framework allows for various instances, each representing an individual research

project. Project managers can request the addition of their projects to the framework by

completing a project requisition form. The form consists of the project’s acronym and a

short description. After submitting the form, the framework administrator can review the

request and then create a new instance with the project manager as the administrator.

 3.4.2.3.5 Manage users

Administrators of both the framework and individual projects can manage the collection

of users and their rights. See Section 3.4.2.4 for the available management

functionalities.

 3.4.2.4 User management

Administrators of both the framework and individual projects can manage the collection

of users and their rights. Depending on the administrator’s privileges, an administrator

can perform any of the following management functionalities:

 Remove an existing user

A user can be removed entirely from the collection of users of the framework.

Once a user has been removed, his personal information stored in the database

as well as his serialized User object will be deleted.

 Edit a user’s role

Each user has a specific role within the collection of research projects, for

112

instance a user might be a WORKER in one project and a normal USER in another.

Administrators have the ability to alter the security roles for a user for any of the

instances of the framework.

 Edit a user’s memberships

There can exist various research projects, each represented by an instance of the

framework. Users must thus be allocated membership to the appropriate

research projects. A user is required to request the collection of memberships to

which he/she wants to have access to. It is then up to the individual

administrators of each of the projects or the framework administrator to allows or

deny users access to selected research projects.

 Build user clusters

User clusters are used to group similar users based on their personal preferences.

An administrator can periodically re-build the clusters to ensure that there are no

stray users or clusters within the ClusterManager.

 3.4.2.5 Database

A relational database is used to store personal information describing each of the users

of the site. In addition to the database, a user’s personal preferences are stored in a

serialized User object.

Field name Field type Field description

username varchar(50) The unique username of the user.
password varchar(16) The encrypted password of the user.
email varchar(50) The email address of the user.
name varchar(50) The name of the user.
public tinyint(1) A Boolean value indicating whether the user has a

private or public profile.
membershi
ps

 varchar(50) A list of research projects and security roles for each,
e.g. www.1,ah.3.

clusters varchar(255) A list of cluster identifiers to which the user belongs.

Table 6.10. Field definition for the Users table.

 3.4.2.6 Configuration

The configuration for the User component is mainly concerned with defining the set of

links, plugins and Validators used by the component.

 3.4.2.6.1 Standard settings

Standard settings are settings required by the framework to allow for successful

integration with the core components and other modules. The standard settings for the

113

User component is as follows:

 Events & Plugins

Events are triggered by various actions within the module, for instance the

addition of a new document. For each of the events there is a collection of

associated plugins that are executed to allow for customisation of the component.

 Navigation

The navigation sections contain a collection of links used by the JSP of the

module. Each link consists of a type, URI, title, required condition and optional

JavaScript code.

 Help

Context sensitive help information is defined here, which is used by the JSP and

component to present help on various actions.

 3.4.2.6.2 Additional settings

In addition to the required standard settings, the component also relies on additional

settings to be supplied. Additional settings are module specific, and consists of the

following:

 Database

The database settings contain information on the creation of the SQL database

and also any default values to be inserted into the database. Basically, this

section defines a set of SQL statements that can be used by an administrator

when installing a new instance of the framework.

 Validators

Validators are used to ensure the validity of information supplied by the user

when, for instance, a new page is submitted. This section contains a collection of

Validators each representing an HTML form field. The Validators are grouped

together to allow for selective use, based on the current action. For example,

there exists a group of Validators associated with registering as a new user.

 3.4.3 Plugins

 3.4.3.1 Overview

Plugins are used by the framework to allow for the customisation of certain events that

are triggered by modules and components. Each module exposes a set of events that

can accommodate the use of custom plugins. For example, when a new user registers

114

the User component’s register event is fired, which in turn will execute the set of

plugins. Plugins can be used, amongst other things, to alert a repository moderator of

any additions to the digital library.

A plug-in class is created for each plug-in and specializes the Plugin class that is defined

as part of the core framework. The chain of plugins for a module is defined within its

associated XML configuration document. A plug-in node consists of the following

properties:

 Name

A name is given to each of the plugins to allow for identification.

 Classname

The fully qualified Java class name of the plug-in's Java class information. This

information is used to instantiate the correct instance of the plug-in.

 Type

A plug-in can either be executed at the beginning or the end of an event.

 Parameters

Parameters can be passed to plugins to allow for customisation. Each parameter

consists of a name and an associated value. The values of parameters can

contain place holders for variable substitution by the plug-in.

 3.4.3.2 Plugin chain

A chain containing a set of plugins is created for each event exposed by a module.

Plugins are executed in the order in which they appear in the chain and can either be

executed at the beginning or end of an event. The plug-in chains are defined in a

module’s associated XML configuration document and are loaded and then stored in a

hash table.

The following steps are taken for an event that requires the execution of plugins:

1. Module loads appropriate chain

The current module loads the correct chain of plugins from the global chain

manager.

2. Event function passes parameters to chain

The current event then passes the current object and event type as parameters

to the chain, which will be used during the execution of the plugins. Only plugins

that match the ‘type’ parameter, PRE or POST, are executed. The object that is to

be modified or containing information used by the plug-in is also passed to the

115

chain. Example objects are a document contained within the repository or a User

object.

3. Plugin chain loads appropriate plugins

Only the appropriate plugins are executed by the chain. As mentioned, plugins

can either be executed at the beginning or the end of a function as specified by

their type property.

4. Execution of plugins

Lastly, the set of plugins is executed by passing the object to the plug-in for

servicing. A plug-in can either edit the object that is passed to it, or use

information contained within the object to perform additional tasks. For example,

a document contained within the repository can be passed to a plug-in, which will

use the title and author to alert the moderator of a new submission to a digital

library.

 3.4.3.3 Examples

The following is a list of default plugins that have been developed and that can be

customised to suit the requirements of the project.

 3.4.3.3.1 AlterMessage

Any email message that is sent using the Utilities class will automatically be altered by

this plug-in. Examples of how an email message can be altered includes adding a

default header or footer to the message, scanning the email for viruses, redirecting the

message to a central repository and so forth.

 3.4.3.3.2 NotifyAdministrator

In the case of certain events, such as the addition of a new document, an administrator

is notified via email of that event. Plugins can be customised to include information

regarding the event, for instance the name of the new document and the person who

has submitted the document. This plug-in thus allows the administrator to quickly act in

the case of events that require his attention.

 3.4.3.3.3 AlterContent

One of the framework's core functionalities is to allow users to submit content to the

various repositories and discussion forums. For this reason it might be necessary to alter

the content of information that is submitted to the workspace to ensure that

inappropriate words are removed. This plug-in can be set-up to make use of a word list

116

that contains words deemed inappropriate for the workspace.

 3.4.3.3.4 NotifyOriginalSender

This plug-in is useful for the discussion forum when users have posted various messages

and can not afford to spend time monitoring the threads for replies. Once a user replies

to a message in the discussion forum the user who has posted the original message is

notified via email about the reply and is provided a link to the thread to allow him/her to

view the reply.

 3.4.4 Security

 3.4.4.1 Overview

Security plays a key role in the development of the framework to ensure authorization

and authentication of users and their actions throughout the site. A role-based security

model, that contains five levels, is used as the base for the security of the framework.

All users of the framework are required to register and login before being allowed access

to the site. However, there exists a default account which will be assigned by default to

all visitors of the site that will allow limited access to information and functionalities

contained within the framework.

 3.4.4.2 Security model

 3.4.4.2.1 Role-based security model

A role-based security model is used to restrict the actions of users based on their level

within the security hierarchy. There exists a total of five roles within the framework, viz.:

 3.4.4.2.1.1 Default
All visitors to the site are assigned the default role which will allow them to access static

content contained within the site. This is the most basic account and is an anonymous

account, hence users are not required to login to use the account. As a result of the

visitor's anonymity no information regarding his navigation and preferences is stored,

thus limiting the ability to provide any adaptive functionalities.

 3.4.4.2.1.2 User
Almost all functionalities and modules within the framework requires a user to be

registered. This security role will allow users to browse all static content and also allow

access to most of the modules. However, users will in most cases not be able to submit

117

any information to the site. These users will, for instance, consist of students that need

to access information but has no need to submit new information to the site.

Any user that registers will be assigned this role, which only an administrator is able to

change, and is required to login to be able to access this site. Registered users thus

have the added ability to change preferences and all navigation information is logged

and recommendations are made based on the user's preferences and navigational

behaviour.

 3.4.4.2.1.3 Worker
A worker is a user that has a more active role in the framework. Typically, this user is

able to submit documents to the repositories, post messages in the forum and submit

content to the site. These users will, for instance, consist of researchers and project

leaders that need to publish information to the various repositories and discussion

forums.

As with users, workers are also required to register and login before being able to use

the site. Only an administrator can assign a user the worker role.

 3.4.4.2.1.4 Admin
Administrators are allowed all the functionalities and actions of workers with the

additional ability to accept information that has been placed in the pending queue. Also,

administrators can edit the roles and memberships of all users and workers of the site.

As with users, administrators are also required to register and login before being able to

use the site.

 3.4.4.2.1.5 Super
A super user, in essence, is an administrator with the ability to grant a worker

administrative privileges.

 3.4.4.2.2 Authorization

Authorization of users is achieved by requiring all users of the site, except visitors, to

first register and then login to access the site. Upon a user's first visit, he/she is required

to register by providing certain required information, such as a username and password.

The user will then be assigned the User role which, as mentioned in Section 3.4.4.2.1

will allow him/her certain privileges. On each returning visit, the user will have to supply

his username and password in order to gain access to the site.

118

 3.4.4.2.3 Authentication

Authentication is the process of ensuring the user who is attempting to perform an

operation is who he/she claims to be. As security plays a key role in the framework, each

operation that is exposed to the users of the site requires a certain security level. Thus,

for each action that the user performs his current security level, which is stored in a

session database, is compared to that of the current action. If the user has a sufficient

security role he/she will be granted privileges to perform the requested action. In the

case that the user is trying to perform an action for which he/she does not have a

sufficient security role he/she will be redirected to a error page informing him/her of the

access violation. By checking the user's credentials for each action the chance of URI

spoofing is greatly reduced.

An additional means of ensuring authentication is by only displaying the links to actions

for which the user has a sufficient security level. Section 3.4.4.3 discusses this in further

detail.

 3.4.4.3 Navigation

XML configuration files are used throughout the framework to allow easy customization

of components and their primary and secondary navigation. Each navigational

component of the site contains data relating to the title and the destination of the link.

In addition, each link also contains information that is used to determine whether the

link should be rendered or not.

When a collection of links is to be displayed the Interface module will first perform the

following two checks to determine whether a link should be rendered;

 Applicability (is the link valid for the current action)

Firstly, each link's applicability is determined based on a set of tests that must all

be true in order for the link to be valid for the current page that the user is

viewing. For instance, the Manage Repository link will only be displayed as a

secondary link if the user is currently viewing a repository. By limiting the links in

this manner, a user is not able to perform actions that might cause the framework

to behave in a manner that might compromise security.

 Sufficient rights

Secondly, each link contains a minimum user role that the user must have in

order to access the link. For instance, if a link requires the Worker role only

Workers, Administrators and Super users will be able to see the link. This will thus

also limit the links that a user will be able to see, thus limiting the ability of a user

119

to perform URL spoofing to perform actions because he/she will not be aware of

the function in the first place.

 3.5 Research methodology

 3.5.1 Research approach
A development research approach was followed during the development and

implementation of the framework. This section will provide an explanation of what

development research entails as well as the most common methods thereof. Lastly, this

section will provide an explanation as to why this research project could be considered a

development research project.

 3.5.1.1 What is development research and why do we use it?

Development research, unlike traditional research, entails an iterative and interactive

development approach where both the development team and the various stakeholders

work closely together. This results in the participants being able to provide the

development team with timely feedback on various aspects of the project. There exists

various motives [van den Akker 1999] for the use of development research in projects,

viz.

 Timely feedback

In the case of a project being developed for a specific research group,

development research assists the developers in obtaining timely feedback from

the parties involved. This assists the team in identifying and correcting issues

which might arise before such issues cause to a great impact on the rest of the

system. For example, the proposed method of submitting information to the

various repositories is too complex, according to the participants, then the

development team could change the process and incorporate those lessons into

the other components of the framework without the need to revise previous work.

 Evolutionary design

It is nearly impossible to envision exactly how a system should function and

which functionalities should be provided. Development research could therefore

assist researchers and developers in constantly revising the specifications and

requirements to incorporate the lessons that were learnt as well as new features

that were identified. For example, during the development process, a new feature

such as document versioning could be identified as a necessity for a collaborative

workspace.

120

 Relevancy

Too often research is conducted in seclusion and researchers lose their relevancy

in the research community. By occasionally obtaining feedback from other

researchers, a research project's team could re-evaluate their approach in solving

a specific problem.

 3.5.1.2 What are the most common attributes of development
research?

Development research does not necessarily differ that much from traditional research.

There are, however, some specific features that are unique to development research

[van den Akker 1999]. The two main groups are formative evaluation and problems

associated with development research.

 Formative evaluation

Development research projects would typically have less respondents in the

evaluation process. This has the result that the evaluation process of the project

provides results of a higher quality and relevance than that of a project following

a more traditional approach. One reason for the higher quality feedback is due to

the fact that the researcher can interview each participant individually thus

obtaining more in depth information regarding the various aspects of the project.

 Problems associated with development research

Role division is sometimes a problematic issue in development research projects.

This is because of the conflicting views of the researchers and developers with

regard to which features should be incorporated in to a project. For example,

developers would usually pursue their ideals for creative innovation whereas

researchers would opt for a more empirical motivation. Development researcher

is sometimes also plagued by a lack of formal methodological processes. It might

therefore be required, in certain events, to adopt the research approach in order

to accommodate the changing of, for instance, the organisational structure of the

project.

 3.5.1.3 Why can this project be seen as development research?

During the development of this project the user requirements were constantly refined.

As a result, the project had to constantly evolve to meet the new specifications that

were set out. During each iteration of the development process, the lessons that were

learnt could be incorporated in the following phases. This resulted in a framework that

ultimately met all the user requirements of the various parties involved, whilst

121

incorporating all the lessons that were learnt during the various design phases in order

to ensure a robust, effective and efficient framework.

 3.5.2 Research method
The research methods that were used during the development of this project consisted

of three main areas. Each of these areas attributed to the project by providing a

motivation and method for the research, data collection, and interpretation of outcomes.

This section will describe these areas in more detail and how each attributed to the final

outcome of the project.

 3.5.2.1 Sampling

The motivation for the use of the DISSAnet project as a platform for the development of

a framework was based on the client requirements set out by the project members. An

online collaborative workspace was needed by the DISSAnet project which would enable

the participants to share research findings and collaborate on various projects. This

proved to be an ideal project to investigate the user requirements of such a system and

also whether such a system could successfully be implemented in similar projects. The

research participants were chosen based on their involvement in the DISSAnet project

as well as which contributions they could make to the identification of the user

requirements and usability testing of the final framework.

 3.5.2.2 Data collection

During the design stages and development of the framework, various methods and

sources of data collection were utilised. It was imperative to collect data at each of the

stages to ensure that the user requirements were met and also to ascertain whether be

best approach was always followed. The three main stages of data collection were:

 Interviews

The interview process consisted of an informal process where a discussion was

held with various researchers and users of online services, such as workspaces,

discussion forums and digital libraries. During the interview process, the user

requirements for each of these systems were identified, discussed and

documented. After the completion of the interview process, the various

requirements for each of the components were used to construct a broad list of

specifications that could used to develop a prototype system. Additional

interviews were held during the various development phases to constantly obtain

feedback which could then be incorporated during the following phases.

122

 Usability testing

The usability testing of the framework involved working closely with the various

participants project. There existed two main methods of assessing the usability of

the framework, viz.

○ Interviews

The current phase of the framework was presented to the various research

participants after which an informal interview was conducted. During the

interview process, the participant were allowed to ask questions and make

comments regarding, amongst others, the steps involved in preforming

certain tasks, the structuring of information and the interface. This information

was then documented and incorporated during the following development

phases.

○ Observation

Another method of obtaining data relating to the usability of the framework

was to observer participants whilst performing certain tasks. This process

comprised of giving the participants a certain set of tasks which they had to

perform. During this process, each participant's actions and responses were

observed to determine where he/she had difficulty performing a task. This

information was then also documented and provided an invaluable insight as

to where the usability of the framework was lacking.

 Development approach

The development approach that was followed required constant re-evaluation and

revision of work that has already been done. Details of the various components

and their respective features were constantly documented during the various

development phases. Examples of such details include methods and their

parameters, database tables and interaction with the user. This information was

then used with the development of each new module to determine how the

existing modules could be utilised and modified to accommodate the integration

of the new module. Other examples of data that was collected was lessons that

were learnt during the previous development phases and how this information

could be used to avoid making certain mistakes again.

123

 3.5.2.3 Interpretation

An effort was made to follow or use best practice during this research project. This

section will provide explanations for the reasoning behind the use of the various

methodologies during this research study.

 Identification of user requirements

Before being able to develop a framework for a research project, one first had to

determine the various user requirements. This was done by performing both a

literature survey and informal interviews. The reasoning behind the use of a

literature survey was because of the knowledge that could be obtained form the

scholarly research currently currently being done on collaborative research.

Although the literature survey provided invaluable insights into collaborative

workspaces, additional knowledge had to be obtained on the exact user

requirements of such an online collaborative workspace. The informal interviews

provided just that.

 Design specifications

It was envisioned that the framework being developed could be implemented in

various research projects in the future. For that reason it would be required to be

able to add new or modify the existing components of the framework. A modular

approach was therefore the best approach to ensure that the modification of one

component would not impact the rest of the framework. Moreover, certain

implementations would not require all of the components, and would therefore

require that only certain features be implemented. Once again, the modular

approach would assist one in enabling certain components without disrupting the

rest of the framework.

 Development of the framework

As stated earlier, a developmental approach was followed for the development of

the framework. The motivation for this approach was because of the ever

changing user requirements for which it was required to constantly revisit past

work to ensure conformance. By working closely with the stakeholders involved in

the project, it was possible to address both issues and new user requirements as

they were identified. The interactive and iterative approach that was followed was

therefore best suited to the nature of the project.

 Usability testing

The usability testing, as with the development, approach was done as an

interactive and iterative process. During the development of the project, the

124

stakeholders were involved in assessing the various attributes involved with

usability. By following this interactive approach, usability issues were quickly

identified and addressed which ensured that those issues would not arise during

future phases of the project.

 3.5.2.4 Limitations

Due to the scope of this research study, certain limitations do exist. Examples of such

limitations include the number of participants involved in the user requirements and

usability testing. As a result, the initial framework that was developed does not

necessarily meet the needs of the broader research community. Moreover, the usability

testing, which involved expert users, might not accurately address all the usability

needs of less proficient computer users. It must be stated that this framework was

developed with various implementations in mind, and that the lessons that will be learnt

from each implementation will be used in order to further enhance the features and

usability of the original framework.

 3.6 Summary
This chapter highlighted the need for careful consideration of which technologies,

architecture and design principles are to be used in the development of a robust and

flexible collaborative workspace framework. Various modules were described that were

needed to ensure that such a framework could be developed in a manner allowing for

further enhancements and the addition of added functionalities.

A key design principle that was followed during the development of the framework was

modularity. Modularity is essential in any framework that wishes to reap the benefit of

code reuse and integration. During the development of the framework, it became

evident that the various modules would benefit from using existing modules' features. It

was therefore required to constantly revisit and re-engineer those classes so that they

could be used seamlessly throughout the framework. One such example of where

integration was used in the development of this framework is through the use of a

standardised Metadata object which is used to describe the various information objects.

Another such an example is the standard digital library and a collaborative workspace

which is both provided by the Repository module which can adapt to suit the needs of

the specific implementation.

If any framework is to be successful, it has to be tested thoroughly whilst still under

development. However, the most effective method of testing reliability and flexibility

and whether the framework satisfies the needs of a project's members is by

125

implementing it in various projects. Chapter 4 will discuss the various projects in which

this framework have been implemented and also the resulting changes that were made

in order to accommodate the users' specific needs.

126

 4 Chapter 4 - Implementations

 4.1 Introduction
The development of the framework consisted of first identifying the broad set of

features that needed to be implemented. During the various development phases of the

framework, each feature was investigated in more detail and subsequently revised to

meet the needs of the users. Usability played a significant role in the development

phases of the framework, as the constant feedback from the research experts which

were involved ensured that the resulting framework met their functional and usability

requirements. All of the user requirements were met after the completion of the initial

framework. It was only during interviews and discussions with other research projects

that if became evident that certain features were still lacking. This provided a great

opportunity, however, to test the customisability and modularity of the framework

during the resulting implementations.

Following is a list of all the projects where the framework has successfully been

implemented, including a short description of each project.

 DISSAnet

DISSAnet is a research project which aims to create a platform for the

advancement of Library and Information Science research in South Africa. For this

project it was necessary to create a collection of repositories where conference

proceedings for conferences organised by DISSAnet could be stored.

 IKS

The Indigenous Knowledge Systems (IKS) project provides a database of experts,

projects and resources aimed at documenting and preserving indigenous

knowledge held by communities throughout Southern Africa. The focus of this

project is to provide visitors to the site with a comprehensive digital library rather

than being a collaborative workspace.

 IFLA-KM

The IFLA-KM is the official site of the Standing Committee for Knowledge

Management of the International Federation of Library Associations and

Institutions, IFLA. It provides visitors with various repositories, including, amongst

others, a collection of toolkits, a library of articles relating to knowledge

management and a collection of activities organised by the committee.

 The Wellness Firm

127

The Wellness Firm is a company that provides wellness services and solutions to

corporate clients. The services range from complete physical assessments to

online Journalling with registered psychologists. With this implementation the

framework was used to provide a corporate intranet for The Wellness Firm's

employees. It consists of a set of repositories, an online discussion forum and an

online calendar.

Each of these implementations will be discussed in the following steps:

 Overview

The overview provides background information on the project to highlight the

various domains where the framework can be successfully implemented. This will

also provide a better understanding of the basis for the client requirements.

 Client requirements

This section will provide an overview of the purpose of the implementation and

then also any additional requirements which might arise from the interviews with

the project members. After obtaining a better understanding of the various

requirements, it was then possible to ascertain which customisations were

required.

 Customisations

After obtaining a better understanding of the client's requirements, the process of

customising the framework could begin. This consisted of customising the

repositories' metadata schemas, interface and also available features. In some

cases, additional functionalities were required, which were also then developed

and implemented during this phase.

 4.2 Implementations
In order to test the effectiveness and usability of any system it is important to subject it

to user testing and evaluation. This chapter reviews each of the instances where the

framework has implemented as well as the usability issues that were encountered with

each of these implementations. Each implementation could easily be customised to

meet the client's specific needs due to the framework's vast array of features and

modular design. Primarily, the framework is used for research projects where team

members need to publish documents and use the Internet to collaborate with one

another. However, the adaptability of the framework has allowed it to also be

implemented in commercial sites focussing on providing visitors a rich browsing

experience by allowing its owners the ability to update its content and maintain a digital

128

library of useful resources.

The framework's design specifications were drawn up after careful examination of

existing digital libraries and online collaborative workspaces. This allowed the

framework to provide a broad spectrum of modules and functionalities, from which each

new implementation could be developed. The various project leaders for each project

were questioned on their specific needs before actually implementation began. From

these interviews, it became evident that not all of the features of the framework were

required for each of the projects. Moreover, the framework did not necessarily meet all

of the project leaders' requirement, hence the need for the development of customised

functionalities for each implementation. In addition to developing new features for each

implementation, the design for each were also customised to meet the corporate

identity requirements for each project. For example, each project focussed on a different

research area requiring a custom metadata schema for its repositories and discussion

forum topics. In certain cases, it was necessary to add a custom module to satisfy the

requirements of the project. An example is the calendar module that was implemented

for the IFLA-KM project.

With each alteration and customisation of the various implementations of the

framework, the original framework grew to accommodate more modules and features

which greatly improved its effectiveness. The feedback and requests from users of the

various implementations provided invaluable information during the revisions of the

original framework which was constantly revised to accommodate the users' needs.

Following is a list of the research as well as commercial implementations of the

framework. Customisation of each implementation included custom designs and

features, metadata schemas used to store documents in the various repositories and

the availability of features to the users. Each of the implementations will be reviewed

and a description of the project, features and customisations will be provided.

 4.2.1 DISSAnet

 4.2.1.1 Overview

DISSAnet is a research project which aims to create a platform for the advancement of

Library and Information Science research in South Africa. For this project it was

necessary to create a collection of repositories where conference proceedings for

conferences organised by DISSAnet could be stored. Visitors to the site are allowed

access to the publicly published conference proceedings whereas moderators have the

responsibility of maintaining the collection of repositories.

129

Also worth noting is the fact that the framework was developed based on the needs of

DISSAnet and grew from there. The DISSAnet website is therefore an example of a pure

implementation of the framework.

 4.2.1.2 Client requirements

The DISSAnet project's requirements to provide an online repository for conference

proceedings became the main objective for the development of this framework. An

informal specification document was drawn up by the DISSAnet project leaders outlining

the desired features for such an online digital library. Even though the development of

an online digital library would satisfy the current needs of the project, it was decided

that additional features should be developed that could greatly benefit the DISSAnet

project leaders in the future.

At the time of writing, the current implementation of the DISSAnet web site does not

incorporate all the features of the framework, but plans do exist to further extend the

features provided to its visitors.

 4.2.1.3 Features and functionalities

Following is an outline of the components and features provided by the DISSAnet

website.

 Static information

Not all of the information contained within the site is generated dynamically

which therefore requires a moderator to publish static content to the site using

the administrative functions provided by the framework. Examples of such

content includes conference information and a history of DISSAnet.

 Browsing

Visitors to the site can browse for conference proceedings of the past conferences

that were organised by DISSAnet as well as those of other conferences. The

repository contains as its root folders the collection of conferences, each

containing in turn a collection of dates on which the conferences were presented.

For instance, a visitor could access the conference proceedings for the 2004

ProLISSA conference by selecting the ProLISSA conference folder and then

following the link to the 2004 conference. Once a visitor has selected the desired

conference, he/she will be presented with a collection of all the papers and

presentations for that particular conference.

 View conference proceeding

130

After a visitor has selected the desired conference and date, he/she can then

select a specific proceeding from the provided list. Each conference paper is

accompanied by a full Dublin Core metadata schema describing, for instance, the

title, author and date of the paper. In addition to the metadata, the visitor also

has access to the full text of the paper in Adobe Acrobat format which he/she can

either view in a frame below the metadata or in a new window.

 Searching

Visitors can search for conference proceedings in cases where they don't have

the detailed information relating to the conference or date. The search

functionality provides visitors with both a simple and an advanced search option

allowing them to provide as many or as few search parameters depending on the

complexity of the search. Alternatively, visitors can perform a full text search by

providing either a single word or sentence contained within the conference

paper's full text document.

 Repository management

Moderators of the site are tasked with managing the collection of conferences

and their respective proceedings. This is done using the administrative functions

provided by the framework. Moderators can create the top level folders for

conferences and also sub-folders for each conference to allow for, for instance,

the addition of a new date on which a specific conference took place. Moreover,

moderators can manage the papers for each conference and can either submit a

new paper or remove or edit an existing entry.

 User management

The implementation of the framework only allows for two groups of users, viz.

visitors and moderators. It is therefore the responsibility of the moderators alone

to manage the repositories due to the fact that visitors to the site are limited to

browsing information. There exists one user account which is used as a default

account for all visitors to the site whilst moderators are required to login using

their own user names and passwords.

131

 4.2.1.4 Lessons learned

The DISSAnet project was the first project for which the framework was implemented.

During the implementation of the framework various lessons were learnt with respect to

the user requirements, possible customisations and usability requirements of such a

system. This section will reflect on the various lessons that were learnt and how they

could affect possible future implementations of the framework in other projects.

 User requirements

The user requirements of the system continually changed during the

development of the framework. An important aspect to keep in mind during

future implementations is that the user requirements could change over time

132

Illustration 3: DISSAnet

which requires one to be flexible enough to adapt to these changes. From the

implementation of the framework in the DISSAnet project, it was evident though

that the modular design of the framework was the best design approach.

 Customisations

Certain aspects of the framework had to be customised after the initial prototype

had been developed and tested. These included the interface of the web site, the

metadata schemas and also the modules that were utilised. The ease with which

these customisations were possible is a testament to the flexibility of the

framework.

 Usability requirements and testing

The initial testing of the framework for the DISSAnet project highlighted certain

difficulties when performing certain tasks. By evaluating the user response that

was obtained during testing and interviews, one could quickly determine which

areas of the framework required improvements with respect to usability. A great

advantage of working closely with the project stakeholders was that user

requirements, with respect to usability, were always identified and addressed

promptly.

 4.2.2 IKS

 4.2.2.1 Overview

The Indigenous Knowledge Systems (IKS) project provides a database of experts,

projects and resources aimed at documenting and preserving indigenous knowledge

held by communities throughout Southern Africa. Currently, the various repositories are

maintained by the University of Cape Town's Centre for Information Literacy and a group

of individuals. The IKS project's main areas of interest lie with documenting experts,

projects and resources that were identified as being important in the understanding and

preservation of indigenous knowledge. At the time of writing, there was a total of

roughly 2900 records in the three repositories.

IKS's focus is more on providing an online digital library than being an online

collaborative workspace. Members are able to upload records to the database and,

pending a moderator's approval, the records will be made accessible to other members

via either browsing and searching for resources. Similarly to the DISSAnet project, IKS

also provides browsing, searching and management functionalities. However, unlike

DISSAnet, IKS only allows registered members to access information through browsing

and searching of the three repositories. In addition to the before mentioned

133

functionalities, IKS also provides a discussion forum consisting of a four main threads,

one for each repository, as well as a general discussion board. The forum allows

members to submit new questions and statements or to reply on existing posts.

 4.2.2.2 Client requirements

The IKS project proved to be a great test case for the framework's ability to allow for

various repositories where each repository uses a different custom metadata schema to

define their respective information objects. Most digital libraries make use of standard

metadata schemas, such as Dublin Core, to describe their information objects. However,

the IKS project's aim is to describe information objects that aren't found in standard

digital libraries. It quickly became evident that a new collection of metadata schemas

had to be developed in order to accurately describe these information objects. For

example, one of the repositories contains a collection of experts in their respective

fields. Each expert is described using a custom metadata schema that was specifically

designed for the IKS project to ensure not only an accurate description of the

information object, but also its relations to other objects in the various repositories.

In addition to testing the frameworks adaptability with regards to metadata schemas,

the IKS project also tested the framework's ability to store a large collection of

information objects. The project required the storing, searching and browsing of

thousands of information objects without impacting the usability and availability of the

services.

 4.2.2.3 Implementation and customisations

As mentioned previously, the framework was designed in such a manner as so allow

customisations as per the client's specific needs. One such an example is the

modification of the browsing function, which for the projects repository added a map of

South Africa with its provinces lighting up when the user points to one of the sub-folders.

Moreover, when the user clicks on a specific province, he/she will be directed to that

specific province's projects within the repository. These features were added to enhance

the browsing experience for the user by providing multiple methods of accessing the

same data in the repository hierarchy.

In addition to the customisation of functionalities, the IKS project also required custom

metadata schemas to be used in order to accurately describe the various repositories'

resources. Each repository had its own specific requirements, in addition to the Dublin

Core metadata schema, with regard to metadata due to the specialised nature of the

resources being described. As an example, consider the experts repository which is used

134

to provide a database of experts within certain fields of indigenous knowledge. It was

obvious from the start of the project that the standard metadata schema used to

describe literature would not be sufficient and therefore close attention was paid when

creating an additional schema to adequately describe these resources. Most of the new

fields that were identified were used to describe biographical and contact information

for the experts and contained simple free formed textual data. There were, however,

certain fields that made use of lists to ensure data conformity when dealing with for

instance research areas. These fields allowed for multiple selection of, for instance,

research areas as well as cross-linking to projects contained within the projects

repository. The following table lists the new metadata schema's set of custom fields.

Field name Description

experts_title The title of the expert, e.g. Mr.

experts_institutionName The institution where the expert is employed.

experts_institutionType The type of institution where the expert is employed.

experts_institutionPosition Position held at institution.

experts_postalAddress Postal address of expert.

experts_postalAddressCity Postal address city.

experts_postalAddressCode Postal code.

experts_physicalAddress Physical address of the expert.

experts_physicalAddressCity City where expert lives.

experts_physicalAddressCod
e

Physical address' code.

experts_tel Telephone number of the expert.

experts_mobile Mobile number of the expert.

experts_fax Fax number of the expert.

experts_email Email address of the expert.

experts_expertise The expert's list of expertise.

experts_researchGroups A list of research groups that the expert is involved
in.

experts_projects A list of projects that the expert is involved in.

experts_qualifications A list of the expert's qualifications.

experts_uri A URI to the expert's personal home page.

Table 11: Custom metadata fields for the Experts database.

Similarly to the experts database, the project database also required a customised

metadata schema accurately describe the entries in the database. The projects

metadata schema also consisted of a range of simple text fields such as contact

information as well as lists to once again ensure data conformity. Below is a table

135

containing the list of custom metadata fields that were identified.

Field name Description

projects_dateCompleted The date on which the project is to be completed.

projects_fieldPrimary The primary fields with which the project is
concerned.

projects_fieldSecondary The secondary fields with which the project is
concerned.

projects_fieldTertiary The tertiary fields with which the project is
concerned.

projects_keywords A list of keywords describing the project.

projects_locationProvince The province within South Africa where the project
resides.

projects_locationRegion The region within the province where the project
resides.

projects_locationCoordinates The GPS co-ordinates of the project's location.

projects_uri A URI to the project's home page.

project_contactDetails Contact details of the primary person responsible for
the project.

Table 12: Custom metadata fields for the Projects database.

During the beginning stages of the project there weren't enough records for each

repository to warrant the use of sub-folders. As a result, records were placed in the root

of each the repositories. As the number of records grew, it became apparent that sub-

folders were indeed needed for each repository. An additional feature was therefore

added to allow moderators the ability to move existing records from the root of the

repository, or any other sub-folder, to a different sub-folder contained within the same

repository. This is an example of how the framework can be adapted so suit a client's

needs and also how such features can be incorporated into the core framework enabling

it to grow continuously.

 4.2.2.4 Lessons learned

Various lessons were learnt during the initial implementation of the framework for the

DISSAnet project. These lessons were then incorporated in the original framework to

ensure that future implementations would benefit from those lessons. During the IKS

project, however, certain new lessons and customisations arose. The following were

learnt with respect to user requirements, customisations and usability requirements.

 User requirements

The main focus of the IKS project's user requirements was to be able to have

customised metadata schemas that could effectively describe the indigenous

136

knowledge of the various repositories. During the later implementation phases

certain changes had to be made to fields describing the various information

objects. From this it was clear that ample time be spent during the initial phases

of the implementation to ensure that the various repositories and their respective

metadata schemas are defined correctly.

 Customisations

The main customisations for the IKS project were for the development of

customised metadata schemas. Fortunately the framework's support for custom

metadata schemas succeeded in meeting the project's complex needs. Additional

customisations were, however, required later on due to the increasing number of

records that were stored in the various repositories. From this, it was evident that

even though the initial user requirements are laid out during the initial phases of

the implementation it could still be required to perform additional customisations

during the various phases of the project.

 Usability requirements

As with the DISSAnet project, the usability requirements of the project were

addressed during the various phases by working closely with the various

stakeholders. This close relationship, once again, proved to be very beneficial in

the identification and addressing of usability requirements.

137

 4.2.3 IFLA-KM

 4.2.3.1 Overview

The IFLA-KM is the official site of the Standing Committee for Knowledge Management of

the International Federation of Library Associations and Institutions, IFLA. It provides

visitors with various repositories, including, amongst others, a collection of toolkits, a

library of articles relating to knowledge management and a collection of activities

organised by the committee. The site consists of a public section containing the five

main repositories, SC Activities, Toolkits, Resources, People and Newsletters, and a

members only section which has a discussion forum and an events calendar.

138

Illustration 4: IKS

 4.2.3.2 Client requirements

As with the IKS project, the IFLA-KM project required the development and

implementation of custom metadata schemas to effectively and accurately describe the

various repositories' information objects. In addition to the custom metadata for the

repositories, the project also required the addition of extra functionalities. One such

addition is the calendar which was specifically developed and implemented for the IFLA-

KM project. The newly added calendar had to accommodate different sets of calendar

events, metadata for each event and the ability to browse these events.

 4.2.3.3 Implementation and customisations

The online discussion forum provides members with two threads to discuss knowledge

management issues as well as general comments. An extra feature that was added for

the IFLA-KM project is a graphical calendar which allows members to submit events that

might be of interest to other members. The Calendar Module was built on top of the

existing Statement Module, which greatly reduced the development time. This is a great

example of how existing modules can be utilised to extend the features provided by the

framework. Any user who is allowed access to the calendar can post new events in the

public events calendar, whereas the private calendar is restricted to moderators.

However, as with the document submission for the repositories, the events that are

posted by members must first be accepted by the site's moderators. Users of the

calendar can browse any of the available calendars and view each event's date, location

and a description describing the purpose of the event.

As with the IKS project, the IFLA-KM project contains a list of people that are involved in

the project. An advantage of using XML to describe a metadata schema is that that

schema can be copied and seamlessly incorporated in another project. Refer to Table

11: Custom metadata fields for the Experts database. for more detailed information with

regard to the people/experts metadata schema.

 4.2.3.4 Lessons learned

Very few lessons were learnt from the IFLA-KM project due to the fact that its

requirements closely matched those of the IKS project. The following list details the

knowledge that was gained from the implementation of the IFLA-KM project.

 User requirements

The requirements, with respect to the metadata schemas, were better defined

during the initial implementation phases in order to ensure that they remained

unaltered for the remainder of the project. Moreover, the additional user

139

requirements for the project's additional module were also defined in detail

during the interviews. These strenuous guidelines were a direct result result from

the lessons that were learnt during the IKS project.

 Customisations

The lessons learnt from the IKS project resulted in a more streamlined

implementation process of the various customisations for the IFLA-KM project. An

example of such a customisation is the addition of the calendar module, for which

the requirements and specification were set out before the development began.

This resulted in less iterations being required to meet the functional and usability

requirements of the project members.

 Usability requirements

As with the IKS project, the usability testing of the IFLA-KM project consisted of a

close working relationship with the project members. Very few changes had to be

made to the framework, due to the fact that most of the usability issues which

arose in the previous project were already addressed. The most significant

usability testing of this project was concerned with the addition of the calendar

module.

140

 4.2.4 The Wellness Firm

 4.2.4.1 Overview

The Wellness Firm is a company that provides wellness services and solutions to

corporate clients. The services range from complete physical assessments to online

journalling with registered psychologists. With this implementation the framework was

used to provide a corporate intranet for The Wellness Firm's employees. It consists of a

set of repositories, an online discussion forum and an online calendar. Very little

customisation was required for this implementation due to the fact that the root

framework had by this time grew to incorporate the features that were added to the

141

Illustration 5: IFLA-KM

previous implementations. From this, it is evident that the project has reached maturity

and that future implementations of the framework would also require very little

customisations, if any.

 4.2.4.2 Client requirements

For the Wellness Firm's intranet, the client required the ability to organise documents,

provide forums to its users and a calendar to store events. It was of high importance

that The Wellness Firm implemented an intranet that was available to its employees due

to the fact that they were based throughout the whole of South Africa. Each employee

was therefore granted access to The Wellness Firm's various protocols, events calendar

and online discussion forum. Moreover, the client required that the design be altered to

match the corporate identity of The Wellness Firm to ensure that visitors to the site

made aware of the link between the intranet and the firm.

This specific implementation was the first to incorporate the Workspace Module which

provides additional functionalities to the digital library. These include the ability to

manage different versions of the same document in the repository by allowing user to

check-out a document, alter the content of that document, and the resubmitting the

document as a new version of the original document. The various version of the

document can then be accessed by a user when viewing the various documents

contained within the workspace. This feature, combined with the use of the online

discussion forum, proved invaluable to the client because of the fact that the

contributors to the documents where scattered throughout the country, providing a true

online collaborative workspace.

 4.2.4.3 Implementation and customisations

This implementation consists of two main repositories viz. Digital library and

Workspaces , with plans to add an additional repository for People, an online discussion

forum and a calendar. A key requirement of this project was to provide the employees

and managers with an online collaborative workspace where they can download

resources, publish documents and share thoughts in the discussion forum. Moreover, a

public calendar is provided providing everyone with a centralised calendar where events

and other time sensitive information can be published. The forum is divided into several

main threads such as meetings, deadlines, resources and ideas. This once again

provides employees and managers with a centralised point where information can be

shared.

Another important aspect of the site's functionality is the management of users and

142

their rights within the various repositories and forums. This is done by an administrator

who can set their levels of access, for example User and Worker. All of the user

administration is done through the member administration function provided by the core

framework. This allows the administrator to set the memberships and roles for each of

the members. Fortunately, the framework was designed with role based access in mind,

thus providing the administrator the ability to specify the required roles for each action

of each repository and forum thread.

 4.2.4.4 Lessons learned

The implementation of the framework for the Wellness Firm was the first instance where

a commercial project was involved. This section will expand on the lessons that were

learnt during the implementation phases.

 User requirements

The user requirements, unlike the previous implementations, were defined much

more clearly. This was because of the fact that the client had very specific needs

for which a formal quote was issued. As a result, the user requirements did not

change, unlike the other projects, which caused the implementation of the

framework to follow a linear approach. The linear approach of the project was far

removed from the time consuming iterative approach of the previous implements

which resulted in the project being completed much quicker.

 Customisations

Very few functional requirements were required for the implementation of this

project. The vast majority of customisations were related to interface design and

configuration of the various repositories' metadata schemas. This proved to be a

great testament for the framework, which meant that if could be successfully be

implemented in both research as well as commercial project without the need for

many additional customisations.

 Usability requirements

The usability requirements of this particular implementation were more

subjective than those of the previous implementations. This was because of the

client's own preferences with regard to interface design and functional layout.

Unlike the research projects where the stakeholders had efficiency and

effectiveness in mind, this project relied more on the visual impression of the site.

This resulted in the usability testing being of lesser importance to the overall

success of the project.

143

 4.3 Summary
This chapter discussed the various projects in which the framework has successfully

been implemented and customised. Each of the projects were unique with regard to

their target users and specifications. It was therefore necessary to first interview the

stakeholders of each project in order to better understand the requirements. After

obtaining the requirements and specifications, the framework could be implemented

144

Illustration 6: The Wellness Firm

and customised to suit the needs of the project. This proved to be an excellent test of

the framework's modularity and of its features to be customised. Another aspect that

was addressed in this chapter was the framework's usability which was evaluated during

the various implementation phases of each project.

It is evident from chapters 3 and 4 that because of the iterative development approach

which was followed that the ADDIE model was crucial to the success of the framework.

The ADDIE model consists of continuously revising past development and making

changes as needed during the various development phases. In addition to revising the

framework during the development stages, it was also necessary to revise the

framework during the various implementations stages due to the new knowledge that

was obtained.

The following chapter addresses the main research question as well as the various sub-

problems that were identified during the beginning of this study and how the framework

addressed each of these. Thereafter, the chapter reflects on what was learned during

the literature survey, development and implementation of the framework. Lastly, the

chapter ends off with future work which could further extend the features and usability

of the framework that was developed during this study.

145

 5 Chapter 5 – Conclusions and recommendations

 5.1 Introduction
The preceding chapters first outlined the main objectives for the study and also the

approach to be taken in order to first understand the research field by means of a

literature survey. Following the literature survey, the next chapter describes how the

knowledge obtained from researching scholar;y works and existing collaborative

workspaces was used in order to develop and implement a framework that addresses

the various user requirements. Lastly, the framework's ability to be customised and its

usability is proven by reporting on the various research projects for which the

framework has successfully been implemented.

This chapter answers the main research question of this study by stating the four sub-

questions and how each was answered. Also included in this chapter is a summary of

future work that can be done in order to further enhance the features and usability of

the framework. The chapter concludes with a brief summary of the purpose of the

research study as well as how it was executed.

 5.2 Summary findings regarding research objectives
The purpose of this study was to determine the user requirements and design

specifications of an online collaborative workspace. In order to address the main

objective of the study, a further four sub-questions had to be answered. This section will

describe how each of these four sub-questions were approached and subsequently

answered.

 5.2.1 What are the main components of current online
collaborative workspaces as reported in the literature?
A literature review was done in order to determine the main components of current

online collaborative workspaces. This was done to ensure that the study would address

the needs of current researchers who need to collaborate on projects whilst being

divided by location and time. The literature review comprised of first identifying existing

systems and also research in the field of collaborative workspaces. A clear distinction

had to made between existing collaborative systems and scholarly research due to the

different approaches of each. In the case of existing systems, the best approach was to

evaluate the online solutions that were available. This proved useful in determining the

features and methods for performing tasks that are most commonly available to users.

146

A thorough understanding of the user requirements of an online collaborative workspace

were obtained through the evaluation of the existing systems. Unlike the existing

systems, the scholarly research did not provide online evaluation versions of the

projects. In this case, the best approach was to do a thorough review of the publications

that were available. A great advantage of the literature review was that the research

provided a great insight in the ongoing research on the needs of users and how they can

interact with one another through an online collaborative workspace. Thus, the existing

systems provided a great insight into the features that are most commonly available to

users, whereas the scholarly research provided an in-depth look into the motivation for

the features that users need.

From the literature review and system evaluation, the following key components were

identified:

 Digital library

A digital library allows researchers to share both published and unpublished work

on the Internet for review and participation by other researchers and scholars.

The two main types of digital libraries that were identified, were a repository

where published work could be shared between researchers and scholars alike

and also a repository where unpublished work could be submitted for peer

review. This allows researchers to quickly share their research findings with the

research community, bridging the time associated with publishing one's findings

in a publication such as a research journal. Moreover, scholars can search the

repositories for research relating to their specific interests or needs.

 Adaptive hypermedia

Adaptive hypermedia provides users with both customised content and

presentation tailored to suit their individual needs. This is of great importance in

systems that contain a diverse collection of research fields which might

overwhelm the user. In the case of an online collaborative workspace, adaptive

hypermedia could be used to limit the research fields to those in which the user

has an active interest. This will allow the user to, for instance, quickly find the

repositories containing information pertaining to his specific field of researcher.

Another example is the customisation of the content's level of difficulty available

to the user. For instance, a researcher would typically not be interested in reading

an introduction relating to the fields of study in which he/she is involved, due to

the fact that it would be of little use to him/her. It is therefore possible to present

researchers with content of a higher level difficulty, whereas scholars would be

147

first be presented with introductions to the field of study. Moreover, the links

available to the users could also be adapted to guide a user through his

information gathering process.

 Collaborative workspace

A collaborative workspace can be seen as the virtual place in which researchers,

who are separated geographically, can share resources, information and ideas.

Various forms of collaborative workspaces exist, each focussing on the specific

needs of the project. One such example is the distinction between synchronous

and asynchronous interaction between researchers. In the case of synchronous

systems, participants would typically make use of a shared whiteboard and real-

time chat in order to share ideas with one another. Asynchronous systems, in

contras, provide researchers with a means to store information such as research

findings and ideas persistently, allowing other participants access who might be

in a different time zone. Another distinction could be made between ad hoc and

formal systems where the focus is on how information is shared between

researchers. Ad hoc systems would typically make use of email and other forms

of sharing information without any formal structure for storing and describing the

information. Formal systems, on the other hand, provides researchers with a

highly structured method for describing, storing and accessing information.

 5.2.2 What are the main design principles and functionalities of
such a collaborative workspace and how can they be integrated in
developing a modular open source framework?
A key design principle that was followed during the development of the framework was

modularity. Modularity allows the framework to be easily adapted and customised to

suit the requirements outlined for each implementation. Each of the components

comprising the framework was developed with interoperability in mind. This allows, for

instance, one module to re-use features exposed by other existing modules in the

framework. By using this interoperability between the various modules, the

development time is reduced and the duplicating of code is avoided. The list of modules

that were developed include the following, a digital library, adaptive hypermedia engine,

online discussion forum, statement database and user management.

Another key aspect in the development of the framework was the use of open source

software. By using open source software, the development and implementation cost of

the framework was greatly reduced. This reduction in cost makes the framework more

accessible to researchers and their institutions. Another benefit of developing the

148

framework using open source software, is that anyone can further extend and enhance

the features that are available to suit their specific needs.

A certain level of progression, with regard to the design principles, was made during

each implementation of the framework in the various projects. The lessons that were

learnt during each implementation included certain limitations with respect to

integration of modules' functions and also exposed a lack in naming conventions within

both the database and public functions. These lessons provided insight into how certain

aspects of the modularity of the framework could be altered in order to accommodate

the modification and addition of modules. One such example of such progression is the

refinement of the various module's configuration documents to streamline the

implementation process. Another area where progression was made was with the

interface improvements that were made for each of the functionalities exposed by the

various modules.

 5.2.3 To what extent can such a framework be customised for
implementation in new or existing collaborative projects?
An important requirement of the framework was that it be customisable to suit the

needs and requirements of various research projects' members. The customisation of

the framework ranged from customising the interface to adding new features and

modules. Before each implementation process, the needs of the research project was

identified, and the ability of the current framework to meet these needs was assessed. A

list of additional features and modules were identified if it became evident that the core

framework could not satisfy all the requirements. These new features were then

developed and integrated into the new implementation of the framework and would in

some cases also be added to the core framework for future implementations.

In most cases, the framework's features were sufficient in meeting the research

projects' needs, however, there were cases where some additional development was

required. The additional features that were developed included a calendar containing

various events, a map based search for the repository and management features such

as moving documents between repositories. From this, it was evident that the initial

user requirements that were identified during the initial interviews and literature

surveys did not meet all the needs of today's research projects. However, the

framework's ability to adapt and incorporate these new requirements was proven with

each new implementation.

149

 5.2.4 What are the usability requirements of such an online
collaborative workspace and how should one go about to test the
usability of such a framework?
Any system that is designed to be used by people need to conform to certain usability

requirements. This is necessary to ensure that the system is learnable, memorable,

effective, has a low low error rate and satisfies the user requirements. In order to

determine in what manner a system adheres to these usability requirements, it is

required that the system be tested by users. It was decided to subject the framework to

various user tests during the development phases of the framework in order to ensure

that any issues that might arise be addressed promptly. The usability testing consisted

of working closely with the project experts who provided constant feedback with respect

to the usability requirements. After each feedback session, the various remarks and

input could be analysed and the appropriate alterations to the framework could be

made. In the end, the finalised framework succeeded in meeting the usability

requirements of the users by allowing them to easily learn the system and effectively

perform their required tasks.

One implication of the expert testing that was identified during the various

implementations of the framework was that it did not provide an accurate view of the

usability of framework. During the implementation of the framework in the various

projects, it became evident that users who were less proficient in computers had some

difficulties when performing routine tasks. This resulted in certain functionalities being

revisited in order to accommodate the feedback that was provided by the users of the

system.

 5.2.5 What are the user requirements and design specifications of
an online collaborative workspace developed in open source
software?
The main research question of this study can be divided into three parts, viz: user

requirements, design specifications and the use of open source software. This section

will expand on how each of these parts were addressed.

 5.2.5.1 User requirements

The main objective of the research study is to develop a framework that meets certain

user requirements. A literature survey was performed in order to establish what features

are most commonly available in existing collaborative workspaces and those were

implemented as follows:

150

 Digital library

The digital library allows researchers the ability to submit published or

unpublished documents to various repositories. Each document is accompanied

by a Dublin Core as well as customised metadata schemas that describe

properties including title, author, date and location. Users of the digital library can

either browse the directory hierarchy of a repository for documents, or can

perform a search to locate a specific document. The digital library module was

developed to support two types of repositories, viz.

○ A standard repository

A key characteristic of the standard repository is that documents that are

submitted to the library are finalised research works. The standard

repository's functionalities were modelled on that of Dspace [Dspace 2006],

Greenstone [Greenstone 2006] and ePrints [Eprints 2005] which were

reviewed in chapter 2.

○ Workspace repository

Unlike the standard repository, the workspace allows researchers to submit

draft versions of their findings to the digital library for peer review. Any

document in the workspace can therefore be checked-out by other users and

edited or revised and then resubmitted to the library. The emphasis of the

workspace is therefore to allow researchers a common repository where

collaboration assists them in their research efforts.

 Adaptive hypermedia

In addition to providing static content, the framework also supports adaptive

hypermedia. The adaptive hypermedia engine provides various methods in which

the content, interface and links can be customised for each user of the site. A key

component of the adaptive hypermedia engine is the profiling of users, which

allows the system to store user preferences and navigational behaviour. This

information is then used when a user visits a page to determine exactly how the

various components can be customised. The customisation can be grouped into

the following three groups, viz.

○ Content

The content of the page can be adapted using, for instance, stretch text which

will hide information from the user which the system deems to be of less

importance. In addition to stretch text, the system uses the user's perceived

knowledge of the subject matter to customise the level of difficulty of the

151

content that is available.

○ Links

Link level adaptation assists the user in navigating the information space by

ordering, hiding and emphasising links on a page. Key to the success of link

adaptation is the ability to know both where a user has been and also how the

information is to be accessed by the user. The content of the framework is

structured, using both Learning Object and customised metadata schemas,

which allows the system to determine the best order in which to guide the

user through the various pages.

○ Recommendations to users

An additional benefit of using metadata to describe documents and creating

user profiles is that the system can use this information to provide

recommendations to users. This is done by comparing users' profiles with one

another to recommend resources that were accessed by groups of similar

users. Moreover, a user's personal profile can be compared to that of the

documents in the framework to recommended resources that match a user's

personal preferences.

 Online discussion forum

The online discussion forum allows researchers to enter into a discussion

regarding specific topics. Each topic is represented by a room in the forum which

exists out of a threaded discussion allowing users to both post new or reply to

existing comments. Users can browse the collection of discussion forums or they

can search the rooms to find answers to specific questions.

 Statement database

Another simple, yet effective, method for conveying ideas or comments is the

statement database. A statement can range from a one line comment made by a

user or a quote that can inspire new research ideas. Each statement is

accompanied by metadata which described properties including the original

source of the statement or quote, additional comments and also a URL providing

more detailed information.

 User management

The framework was designed to be accessed by various types of users each

having his own privileges. This is accomplished by a user management

component that allows an administrator to add, edit and remove users. Each user

is assigned a specific role within the framework which determines which actions

152

he/she can perform in each of the modules. For example, a worker user can

submit documents to a repository, however, only a moderator can accept those

documents so that they become visible to the public.

 5.2.5.2 Design specifications

The ability of the framework to be further enhanced by users played a vital part in the

design specifications. This was achieved by structuring the framework into various

modules which interact with one another. It is therefore possible to add or modify

existing modules to further extend the features and functionalities of the framework.

Each of the main components of the framework is represented by its own module which

is responsible for the configuration and implementation of its features. The base class,

which is implemented by each of the modules, provides various base functionalities that

maximises code re-use whilst also allowing for easy integration. The six main modules,

which are described in detail in chapter 3, are:

 Graphical User Interface

This module is responsible for rendering the content and links which are

generated by the various modules in the framework. An example of the

integration between the GUI and Users module is the ability to specify a specific

interface in a user's profile which will then be used by the GUI to render content

and links.

 Users

The users module is used to manage the collection of users as well as their

respective profiles. An administrator has various management options to, for

instance, register or edit members and also assign rights to users. User

authentication and authorisation is handled by the users module and is used by

the various modules to ensure security throughout the framework.

 Repository

The repository provides the framework with a digital library which allows users to

submit new documents to various repositories and also access existing

documents by using either the browsing or searching functionalities. Key to the

success of the repository is the use of its metadata classes which is also exposed

to the other modules allowing efficient exchange of information.

 Content

The content module provides the adaptive hypermedia capabilities of the

framework by allowing users to be presented by customised content and

153

navigation. This is done by using the user's profile, which is exposed by the users

module, in conjunction with the metadata, describing the content, to determine

what information should be displayed and how links should be altered.

 Forum

The online discussion forum provides users with a threaded discussion board.

Each of the topics are described using metadata which can be queried by the

user module to determine whether a specific room would be of interest to a

particular user. This is another example of how the interaction between the

various modules' components allows for easy integration of features.

 Statement

A statement is a single comment or quote which was made by a user of the

framework or any other person. Each statement is described using the metadata

classes which are exposed by the repository module. There also exists various

statement databases, each described by metadata, which can be queried by the

user module to determine whether it would be of interest to a particular user.

Another important component of the design is the methods for storing information used

throughout the framework. This is done by using a combination of XML, SQL and

serialised Java objects. Each module's configuration is stored in XML, allowing both

humans and the framework to make use of it. The relational database allows for

searching of information, such as document metadata. Lastly, serialised Java objects are

used to minimise the amount of time required to process large XML documents, which

are stored internally in an object and serialised for future use.

 5.2.5.3 Open source software

The last part of the research question deals with the use of open source software to

develop the framework. This was achieved by using a combination of open source

solutions which are freely available. The various technologies that were utilised include:

 MySQL

A relational database is used as the primary storage engine for the metadata

describing the various information objects contained within the framework.

MySQL [MySQL 2006] was chosen as the database server because of its

scalability, flexibility, speed and ease of use. The framework, can however, be

configured to use any relational database server that conforms to the SQL

standards.

 Perl

154

The installation of the framework consists of various Perl [perl.com 2006],

[perl.org 2006] scripts that are used to copy configuration and source files for the

new implementation. In addition to copying files, the scripts are also used to

change settings in the configuration files to allow the various modules to make

use of the new implementation's namespaces and directory structures.

 Java

The primary programming language that was used throughout the framework is

Java [Sun 2006]. Java was used because of its ability to work seamlessly on

various platforms such as Linux, Apple Macintosh and Microsoft Windows. The

framework's implementation possibilities and accessibility is greatly enhanced by

using a language that is so widely supported.

 Jakarta Tomcat

Jakarta Tomcat [Jakarta 2006]is a web server used to server the Java Server

Pages used throughout the framework. It was developed by the Apache Software

Foundation [Apache 2006] and is continuously updated to ensure better

functionality and performance.

 XML and XSL

Each module's configuration as well as the content of the framework is stored as

XML [xml.org 2006] [xml.com 2006] documents. XML allows for easy

configuration because of its ability to be customised for each situation and the

fact that it's understandable by both humans and the framework. Moreover, XML

is used to to represent the structure of the modules' output which is rendered as

HTML using XSL.

 5.3 Reflections
The iterative development model that was followed during the development and

implementations of the framework was the ADDIE model. It consisted of constantly

revising past efforts and reflecting on what needs to be changed to ensure a quality

framework. Following is a description of the iterative process that was followed, first

during the development stages, and then during the implementation phases.

 Development stages

As stated previously, the aim of the framework was for it to be modular, scalable,

flexible and customisable. It was therefore necessary to constantly revisit past

modules to determine whether they could be optimised for better integration

within the rest of the framework. An example of such revisit is the Metadata class

155

that was initially developed for the Repositories module. During the development

of the Content module, it became evident that metadata had to be used to

describe the various pages contained in the adaptive hypermedia engine. It was

therefore necessary to revisit the Metadata class and Repository module to

determine how these could be changed to allow the Content module to integrate

seamlessly with the Metadata class.

 Implementation phases

It was also required to revisit the framework during the various implementation

phases. This was because of the fact that each implementation required certain

customisations, such as additional features and custom metadata schemas. It

was therefore necessary to determine which existing modules could be used and

also how each could be customised to provide the new functionalities required by

the project. Unlike the development process, this was more interactive with

constant feedback from the project stakeholders in the form of functional as well

as usability changes that needed to be made. The feedback that was received

after each iteration was reviewed and the appropriate changes were made to

framework. In certain cases, the new functionalities and modules were added to

the original framework.

 5.3.1 Methodological reflection
The approach that was followed during the development of the framework as to first

determine a broad set of features and then developing a prototype which implemented

those requirements. During the various development stages, the details of each feature

were better defined, allowing for the framework to rapidly and constantly evolve. This

approach had certain advantages and disadvantages, viz.

 Disadvantages

The development process could not follow conventional methodologies, which

had the result that there were never clear objectives because of the constantly

changing user requirements. This resulted in modules being revised constantly to

include new features and integration, whilst still being compatible with existing

modules.

 Advantages

The addition and removal of functionalities were, at times, a simple process and

never involved complex decision making or motivation processes. This resulted in

the framework's constant evolution ensuring that it conforms to all of the user's

156

constantly changing needs. The modular architecture of the framework allowed

for easy customisation and integration of the various components. Also, the use

of XML for the configuration means that the alteration of metadata schemas is

easy which resulted in the compliance with each projects information needs.

Lastly, the three-tiered architecture allowed for the separation of business and

interface logic, which resulted in personalised presentation for individual users as

well as the customisation of the interface to suit a project's specific needs.

 5.3.2 Substantive reflection
This section will briefly discuss how the framework that was developed was influenced

by the literature survey and its findings. The user requirements called for an online

collaborative workspace to be developed for researchers and institutions. From the

literature survey, the various components required to provide such a framework were

deduced. These components, however, do not exists in an integrated framework

providing all of the functionalities required by an online collaborative workspace. The

motivation, therefore, for the development of this project was to provide a single

framework which integrated all of the components that were identified during the

literature survey. Moreover, attention was given to the customisation of the framework

to suit the needs of future projects. Lastly, the framework was developed using open

source software which was identified during the literature survey, to ensure accessibility

to researchers and institutions with limited financial resources.

 5.3.3 Scientific reflection
Any research study aims to benefit the research community by providing insights into

lessons that were learnt as well as recommendations. This study was performed to

determine the user requirements and design specifications of an online collaborative

workspace built on open source software. In the process of developing the framework,

the following four benefits, with regard to development strategies, were identified:

 Modularity and integration

The success of the framework in the various instances where it has been

implemented proves that it is possible to integrate the various components that

were identified during the literature survey. Also, the modular architecture of the

framework proved to be the best model to follow due to the success of the

customisation of each implementation with respect to its functionalities. Lastly,

the integration of the various modules' classes, such as the Repository module's

Metadata class, is a testament to the benefits that can be reaped from effective

157

code reuse.

 Three-tiered architecture

The three-tiered architecture that was used to build the system ensured that the

customisation or removal of any of the components did not disrupt the overall

framework's ability to function properly. This is because of the separation of the

database, processing and presentation layers of the framework. It was therefore

possible to make changes to, for instance, the interface without the need to alter

the underlying programming and database. This greatly enhanced the

framework's ability to be customised as well as reduced the amount of time and

effort needed for each such customisation.

 Iterative development approach

Another key to the success of the development and implementations of the

framework was the use of the ADDIE model to constantly reflect and revisit past

efforts during the various phases. One such an example is the constant re-

evaluation of the modules and their respective classes and how they could be

integrated to optimise code re-use and modularity. Moreover, the interactive and

iterative approach that was followed during the various implementations ensured

that the user requirements with respect to functionalities and usability were met.

 Open source software

The various programming languages, database servers, mark-up languages and

server software available were sufficient in the development of the framework.

This proves that the use of open source software has become a reality in the

development of sophisticated projects. It is therefore possible for institutions with

limited resources to obtain and develop frameworks that meet their needs.

 5.4 Recommendations
This section will provide information with regard to the policies and practice that were

followed during the development of this framework and how they could benefit similar

projects. Moreover, a list of future work that can further expand the framework is

provided.

 5.4.1 Policy and practice
Certain policies and practices were followed during the development of this framework.

This section will expand on the iterative development process, integration of

functionalities, modular design and interactive development of the framework.

158

 Integration of functionalities

This research project first set out to determine which components are required in

an online collaborative workspace. After obtaining a better understanding of the

various components needed to provide such a system, the next step was to

integrate the various components into a single framework. The motivation behind

integrating the various components into a single framework, was two-fold,

namely to determine whether such a system would benefit researchers and

institutions as well as whether development efforts could be minimised. By

working closely with researchers and performing usability resting during the

development phases it was determined that the integration of components

proved to benefit users in their research efforts. Moreover, with respect to

development, the benefits of integration became evident due to the successful

integration of the various components' classes, reducing development time and

increasing interoperability. One should therefore aim to integrate functionalities

in a framework where the opportunity exists that each component could benefit

from features that are provided by the rest of the system.

 Modularity

The framework was intended to be implemented in various research projects,

each with their own requirements. It was therefore decided from the start that a

modular approach was to be followed with respect to the development of the

framework. The framework comprises of both functional and supporting core

modules. Before development began, the various modules for each group were

identified and also how each module could be integrated to form a complete

framework. By making use of a modular framework, it was easy to add, modify

and remove modules to suit each implementing project's individual needs.

Another benefit of using a modular approach, was that certain functionalities

provided by the various modules' classes could be shared. By sharing these

common functionalities, the development time could be reduced whilst code

reuse was improved. For these reasons, any project which aims at providing

customisable features to its users should therefore aim at separating its

components into various modules to allow for the addition and modification of

modules if the need arises.

 Iterative development

During the development stages, the specifications were continuously revised due

to ever changing user requirements. The iterative development of the project

consisted of constantly revisiting past work and revising components in order to

159

ensure that all user requirements were met. Another example where an iterative

approach proved to be beneficial was with the various implementations of the

framework. Each implementation required that the current version of the

framework had to be revisited in order to determine which modules and

components could be adapted to meet the new user requirements. The

knowledge that was obtained after each implementation could then again be

used to further enhance the functionalities provided by the original framework.

Developers and project stakeholders should therefore follow an iterative

development approach in projects where the user requirements constantly

change and also in cases where a core framework is to be implemented in various

projects with specific needs.

 Interactive development

The development specifications of the project were constantly revised in order to

suit the ever changing user requirements. Close interaction with project

stakeholders is crucial in such an ever evolving project in order to ensure that the

user requirements were always understood and implemented. In addition to

meeting user requirements, another benefit of interactive development is that

the usability of the framework can also be continuously assessed ensuring the

efficiency, effectiveness and user satisfaction. One should therefore aim to work

closely with the various stakeholders in order to ensure that user and usability

requirements are met in a timely manner.

 5.4.2 Future work
The current core framework was developed based on the requirements of the original

projects as well as the specific customisations that were required by the various

implementations. From the literature survey, however, it can be seen that there are still

features that could be implemented to further enhance the features and usability of the

framework. Following is a list of four areas where future work on the framework could

focus.

 Synchronous communication

Currently the framework only supports asynchronous communication through, for

instance, digital libraries and discussion forums. This was sufficient for the

projects for which the framework was developed. However, it would be of great

benefit to future projects to also implement a collection of synchronous

communication channels. These channels could include an online chat

application, shared whiteboard and video conferencing functionalities.

160

 Installation module

The complexity of the framework's installation scripts make it very difficult for

ordinary users to easily implement a new instance. In order to make the

framework more accessible to ordinary users, a simple to use graphical

installation application could be developed to ease the installation process.

Ideally, this installation application would provide users with a list of module

which should be implemented, wizards to edit the configuration documents and

also a means to integrate customised modules in to the framework.

 Editor for adaptive content

The content for the adaptive hypermedia is stored in various XML documents

using a structure that defines the metadata, sections and links of each page.

These XML documents are complex to create and maintain manually. An editor

for the various pages within the framework would therefore greatly assist

moderators in creating content that could be adapted to meet each user's

personal profile. Such an editor would have an HTML editor which could be used

to create the actual content and then various wizards to create, for instance,

sections with adaptive properties such as stretch text.

 Plug and play metadata schemas

The framework's repositories support the use of both standard metadata

schemas, such as Dublin Core, and also custom schemas developed specifically

for the repository's subject matter. These metadata schemas are created

manually for each repository and stored in XML documents. A plug and play

metadata editor or wizard could be developed in order to assist users in the

creation of these metadata schemas. Such a wizard could provide users with a list

of existing metadata schemas from which a selection could be made, and then

also include an editor for the creation of new metadata schema.

 5.5 Final conclusions
In conclusion, many collaborative workspace that are currently used by researcher

institutions and individuals. From the literature survey it became evident that there is in

deed a lack of systems that meet all the user requirements of a truly online

collaborative workspace. This research study's purpose was therefore three-fold. Firstly,

all the user requirements of an online collaborative workspace were identified by

performing both a literature survey as well as informal interviews with research experts.

After establishing all the user requirements, the next step was to develop and

implement a framework that would meet all the requirements and also allow for future

161

enhancements. The final framework included modules supporting both static and

adaptive content, a digital library, online discussion forum, statement database and user

management. In addition to developing such a framework, another requirement was to

do so using open source software, making the framework accessible to research

institutions with limited resources.

The flexibility, scalability and conformance to user requirements of the framework were

proven by successfully implementing it in various research projects as well as

commercial web sites.

162

Bibliography
Anderson, William L.. 1997, Digital libraries: A brief introduction, SIGGROUP, vol. 18, no. 2, pp.5-6

Bailey, Hall, Millard, Weal, 2002, Towards Open Adaptive Hypermedia, In Proceedings of the

Second International Conference on Adaptive Hypermedia and Adaptive Web Based Systems,

Spain, Springer, pp. 36-46

Bao, Y., Zou, H., Zhang, J. 2005, Using PACT in an e-commerce recommendation system,

Proceedings of the 7th international conference on Electronic commerce, Xi'an, China, ACM

Press, pp. 466-470

Bobulous , 2004, Why you should use open source software, 2004. [Online] Available at:

http://www.bobulous.org.uk/misc/openVclosed.html

Boll, Susanne, 2003, MM4U - A framework for creating personalized multimedia content

Branschofskyh, M., Chudnov, D., 2002, DSpace: Durable Digital Documents, JCDL 2002, Portland,

Oregon, USA, ACM Press, pp. 372-373

Brody, Hajjem, Harnad, 2005, The Research-Impact Cycle

Brusilovsky, et al. 1998, Methods and Techniques of Adaptive Hypermedia, Adaptive Hypertext

and Hypermedia, vol. 6, no. 2, pp.1-43

Brusilovsky, P., Schwartz E., Weber, G. 1996, ELM-ART: An Intelligent Tutoring System on World

Wide Web, Proceedings of the Third International Conference on Intelligent Tutoring Systems,

London, UK, Springer-Verlag, pp. 261-269

Explore Open Source Alternatives, 2004. [Online] Available at:

http://cpr.ca.gov/report/cprrpt/issrec/stops/it/so10.htm

Carr, et al.. 2001, Conceptual linking: ontology-based open hypermedia, Proceedings of the 10th

international conference on World Wide Web, , ACM Press, pp. 334-342

Carr, L., Hall, W., De Roure, D.. 1999, The evolution of hypertext link services, ACM Computing

Surveys (CSUR), vol. 31, no. 4, pp.1-6

Budapest Open Access Initiative, 2002. [Online] Available at:

http://www.soros.org/openaccess/read.shtml

Cheverst K., et al. 2000, Using Context as a Crystal Ball: Rewards and Pitfalls, Proceedings of

Workshop on 'Situated Interaction in Ubiquitous Computing', vol. 7, no. 3, pp.17-26

Cheverst, K., Mitchell, K., Davies, N. 2002, The role of adaptive hypermedia in a context-aware

tourist GUIDE, Communications of the ACM, vol. 45, no. 5, pp.47-51

De Bra, P., et al.. 2003, AHA! The Adaptive Hypermedia Architecture, Proceedings of HT'03, , ACM

Press, pp. 81-85

De Bra, P., Houben, G., Wu, H. 1999, AHAM: a Dexter-based reference model for adaptive

hypermedia, Proceedings of the tenth ACM Conference on Hypertext and hypermedia : returning

to our diverse roots: returning to our diverse roots, Darmstadt, Germany, ACM Press, pp. 147-156

Debevc, M., Rajko S., Donlagic, D. 1994, Adaptive bar implementation and ergonomicst,

Informatica : Journal of Computing and Informatics, vol. 18, no. 3, pp.357-366

DeRose, S.J.. 1989, Expanding the Notion of Links, Proceedings of ACM Hypertext '89, Pittsburgh,

163

PA, ACM Press, pp. 249-257

Dommel, H. P. 2005, The challenges of ambient collaboration, Proceedings of the 2005

conference on Diversity in computing, New Mexico, USA, ACM Press, pp. 10-13

Dourish, P., Belotti, V. 1992, Awareness and coordination in shared workspaces, Proceedings of

the 1992 ACM conference on Computer-supported cooperative work, Ontario, Canada, ACM

Press, pp. 107-114

Geyer W., et al. 2003, Supporting activity-centric collaboration through peer-to-peer shared

objects, Proceedings of the 2003 international ACM SIGGROUP conference on Supporting group

work, Florida, USA, ACM Press, pp. 115-124

Advantages of open source software, 2000. [Online] Available at:

http://eu.conecta.it/paper/Advantages_open_source_soft.html

Gutteridge, C (2005). New Developments in EPrints. In: Proceedings of CERN workshop on

Innovations in Scholarly Communication (pp.). :

Hajjem, Hanrad, Gingras, 2005, Ten-Year Cross-Disciplinary Comparison of the Growth of Open

Access and How it Increases Research Citation Impact

Halasz, F., Schwartz, M. 1990, The Dexter Reference Model, Proceedings of the NIST Hypertext

Standardization Workshop, vol. , no. , pp.95-133

Halasz, F., Schwartz, M.. 1994, The Dexter hypertext reference model, Communications of the

ACM, vol. 37, no. 2, pp.30-39

Hall, W., Davis, H., Hutchings, G.. 1996, Rethinking Hypermedia: The Microcosm Approach.

Massachusetts, Kluwer Academic Publishers

Han, Eui-Hong, Karrypis, George. 2005, Feature-based recommendation system, Proceedings of

the 14th ACM international conference on Information and knowledge management, Germany,

ACM Press, pp. 446-452

Herlocker, J., Konstan, J., Riedl, J. 2000, Explaining collaborative filtering recommendations,

Proceedings of the 2000 ACM conference on Computer supported cooperative work,

Pennsylvanie, USA, ACM Press, pp. 241-250

James Y.L. Thong, Weiyin Hong, Kar Yan Tam. 2004, What leads to acceptance of digital

libraries?, Communications of the ACM, vol. 47, no. 11, pp.78-83

Kobsa, Koenemann, Pohl. 2001, Personalised hypermedia presentation techniquesfor improving

online customer relationships, , vol. 16, no. 2, pp.111-155

Kristofic, A., Bielikova, M. 2005, Improving adaptation in web-based educational hypermedia by

means of knowledge discovery, Proceedings of the sixteenth ACM conference on Hypertext and

hypermedia, Austria, ACM Press, pp. 184-192

The Open Archives Initiative Protocol for Metadata Harvesting, 2004. [Online] Available at:

http://www.openarchives.org/OAI/openarchivesprotocol.html

Why Digital Libraries, 1995. [Online] Available at:

http://www.ukoln.ac.uk/services/papers/follett/lesk/paper.html

Levy, David M.. 1995, Going digital: A look at assumptions underlying Digital Libraries,

Communicatins of the ACM, vol. 38, no. 4, pp.77-85

164

Miles-Board, T. Everything Integrated: A Framework for Associative Writing in the Web, 2004

Mobasher, et al. 2001, Effective personalization based on association rule discovery from web

usage data, Proceedings of the 3rd international workshop on Web information and data

management, Georgia, USA, ACM Press, pp. 9-15

Muller, M. J., et al. 2004, One-hundred days in an activity-centric collaboration environment

based on shared objects, Proceedings of the SIGCHI conference on Human factors in computing

systems, Vienna, Austria, ACM Press, pp. 375-382

Nielsen, Jacob. 1993, Usability Engineering. Massachusetts, USA, Academic Press

The Cathedral and the Bazaar, 2002. [Online] Available at:

http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/index.html

A Software Engineering approach to Libre Software, 2004. [Online] Available at:

http://www.opensourcejahrbuch.de/2004/pdfs/III-3-Robles.pdf

Schafer J., Konstan, J., Riedl, J, 2002, Meta-recommendation systems: user-controlled integration

of diverse recommendations, Proceedings of the eleventh international conference on

Information and knowledge management, Virginia, USA, ACM Press, pp. 43-51

Shneiderman, B., Plaisant, C.. 2005, Designing the user interface. USA, Pearson Education

Shreeves, Kirkham, Kaczmarek, Cole. 2003, Utility of an OAI Service Provider Search Portale,

Proceedings of the 3rd ACM/IEEE-CS joint conference on Digital libraries, , ACM, IEEE, pp. 306-308

Spellman, P., et al, 1997, Collaborative virtual workspace, Proceedings of the international ACM

SIGGROUP conference on Supporting group work: the integration challenge, Arizona, USA, ACM

Press, pp. 197-203

Strydom, H., Fouche, C.B., Delport, C.S.L.. 2002, Research at grass roots. , Van Schaik Publishers

Suchman, L. 1987, . , Cambridge University Press

Tang, J. C., Leifer, J. L. 1988, A framework for understanding the workspace activity of design

teams, Proceedings of the 1988 ACM conference on Computer-supported cooperative work,

Oregon, USA, ACM Press, pp. 244-249

Tansley, et. al.. 2003, The DSpace Institutional Digital Repository System: Current Functionality, ,

vol. , no. , pp.87-98

van den Akker, J. 1999, Design methodology and developmental research in education and

training. The Netherlands, Kluwer Academic Publishers

Wiederhold, Gio. 1995, Digital libraries, Value and Productivity, Communications of the ACM, vol.

38, no. 4, pp.85-97

Wiederhold, Gio. 1995, Digital libraries, Value and Productivity, Communications of the ACM, vol.

, no. , pp.85-97

Wilkinson, R., Lu, S., et al. 2000, Generating Personal Travel Guides from Discourse Plans,

Proceedings of the International Conference on Adaptive Hypermedia and Adaptive Web-based

Systems, Italy, , pp.

Witten, McNad, Boddie, Bainbridge, 2000, Greenstone: A Comprehensive Open-SourceDigital

Library Software System, Proceedings of the fifth ACM conference on Digital libraries, , ACM

Press, pp. 113-121

165

Web Developer's Virtual Library, 2006. [Online] Available at: http://www.wdvl.com

JavaScript.com (TM), 2006. [Online] Available at: http://www.javascript.com

XML From the Inside Out -- XML development, XML resources, XML specifications, 2006. [Online]

Available at: http://www.xml.com

XML.org, 2006. [Online] Available at: http://www.xml.org

Java Technology, 2006. [Online] Available at: http://java.sun.com

The Comprehensive Perl Archive Network, 2006. [Online] Available at: http://www.cpan.org

The Perl Directory, 2006. [Online] Available at: http://www.perl.org

The Source for Perl -- perl development, perl conferences, 2006. [Online] Available at:

http://www.perl.com

Three Tier Software Architectures, 2006. [Online] Available at:

http://www.sei.cmu.edu/str/descriptions/threetier_body.html

World Wide Web Consortium, 2006. [Online] Available at: http://www.w3.org

Sun Microsystems, 2006. [Online] Available at: www.sun.com

IBM, 2006. [Online] Available at: www.ibm.com

Bonsai Project Home Page, 2006. [Online] Available at: http://www.mozilla.org/projects/bonsai/

Thunderbird - Reclaim your inbox, 2006. [Online] Available at:

http://www.mozilla.org/products/thunderbird

Firefox - Rediscover the Web, 2006. [Online] Available at: http://www.mozilla.org/products/firefox

Slackware Linux, 2006. [Online] Available at: www.slackware.com

Debian Linux, 2006. [Online] Available at: www.debian.org

Red Hat Linux, 2006. [Online] Available at: www.redhat.com

Jakarta, 2006. [Online] Available at: jakarta.apache.org

Xerces, 2006. [Online] Available at: xml.apache.org

Mod_Perl, 2006. [Online] Available at: perl.apache.org

The Apache HTTP Server Project, 2006. [Online] Available at: http://httpd.apache.org

Home of the Mozilla Project2006

MySQL AB :: The world's most popular open source database, 2006. [Online] Available at:

http://www.mysql.com

The Linux Kernel Archives, 2006. [Online] Available at: http://www.kernel.org

Linux.org, 2006. [Online] Available at: http://www.linux.org

The Apache Software Foundation, 2006. [Online] Available at: http://www.apache.org

Gna!: Welcome, 2006. [Online] Available at: http://www.gna.org

Welcome to freshmeat.net, 2006. [Online] Available at: http://freshmeat.net

GNATS - GNU Project, 2006. [Online] Available at: http://www.gnu.org/software/gnats/

Home :: Bugzilla, 2006. [Online] Available at: http://www.bugzilla.org

Tinderbox, 2006. [Online] Available at: http://www.mozilla.org/tinderbox.html

CVS - Concurrent Versions System, 2006. [Online] Available at: http://www.nongnu.org/cvs/

SourceForge.net, 2006. [Online] Available at: http://www.sourceforge.net

IT Facts, 2004. [Online] Available at: http://blogs.zdnet.com/ITFacts/wp-

166

mobile.php?p=5906&more=1

Open Source - GNU Project - Free Software Foundation (FSF), 2006. [Online] Available at:

www.gnu.org/philosophy/free-software-for-freedom.html

A Brief History of Free/Open Source Software Movement, 2000. [Online] Available at:

http://www.openknowledge.org/writing/open-source/scb/brief-open-source-history.html

Open Source Initiative (OSI), 2006. [Online] Available at: www.osi.org

phpgroupware.org, 2006. [Online] Available at: http://www.phpgroupware.org

GUIDE: Introduction, 2006. [Online] Available at: www.guide.lancs.ac.uk/overview.html

Introducing DSpace: DSpace Federation, 2006. [Online] Available at: www.dpsace.org

Greenstone Digital Library Project, 2006. [Online] Available at: http://www.greenstone.org

WikiPedia, 2006. [Online] Available at: http://en.wikipedia.org

EPrints: Supporting open access, 2005. [Online] Available at: http://www.eprints.org

, 1998. [Online] Available at: http://www.dlib.org/metrics/public/papers/dig-lib-scope.html

167

Appendices

Appendix A

Content Configuration XML
 <subjects>

 <!--

 List of subjects describing the Content of the site.

 e.g.

 <subject id="$id" name="$name" role="DEFAULT|USER|WORKER|ADMIN|SUPER">

 <description>$description</description>

 <malcolm:themes>

 <theme name='$name' value='$float_value' />

 </malcolm:themes>

 <security>

 <action name="$action_name" role="DEFAULT|USER|WORKER|ADMIN|SUPER" />

 </security>

 </subject>

 !!!!NB: add a new entry to the dc:subject meta data field in */config/extra/metadata/fields/field[name =

'subject']

 -->

 <subject id="AH" name="Adaptive hypermedia" role="USER">

 <description></description>

 <malcolm:themes>

 <theme name='AH' value='100.0' />

 <theme name='AI' value='75.0' />

 <theme name='Datamining' value='60.0' />

 </malcolm:themes>

 <security>

168

 <action name="browse" role="USER" />

 <action name="read_article" role="USER" />

 <action name="submit" role="ADMIN" />

 <action name="edit_themes" role="ADMIN" />

 <action name="edit_requirements" role="ADMIN" />

 <action name="edit_links" role="ADMIN" />

 <action name="remove_article" role="ADMIN" />

 </security>

 </subject>

 <subject id="HCI" name="Human Computer Interaction" role="USER">

 <description></description>

 <malcolm:themes>

 <theme name='HCI' value='100.0' />

 <theme name='AH' value='50.0' />

 <theme name='AI' value='50.0' />

 </malcolm:themes>

 <security>

 <action name="browse" role="USER" />

 <action name="read_article" role="USER" />

 <action name="submit" role="ADMIN" />

 <action name="edit_themes" role="ADMIN" />

 <action name="edit_requirements" role="ADMIN" />

 <action name="edit_links" role="ADMIN" />

 <action name="remove_article" role="ADMIN" />

 </security>

 </subject>

 <subject id="AI" name="Artificial Intelligence" role="WORKER">

 <description>This is a description for the AI subject. You can read it if you like. I don't care.</description>

 <malcolm:themes>

169

 <theme name='HCI' value='25.0' />

 <theme name='AH' value='50.0' />

 <theme name='AI' value='100.0' />

 </malcolm:themes>

 <security>

 <action name="browse" role="USER" />

 <action name="read_article" role="ADMIN" />

 <action name="submit" role="ADMIN" />

 <action name="edit_themes" role="ADMIN" />

 <action name="edit_requirements" role="ADMIN" />

 <action name="edit_links" role="ADMIN" />

 <action name="remove_article" role="ADMIN" />

 </security>

 </subject>

 </subjects>

 <metadata>

 <!--

 Metadata describing an Artilce in the site

 -->

 <namespaces>

 <!--

 List of XML namespaces used by the Metadata scheme

 e.g.

 <namespace prefix="$prefix" uri="$uri_to_scheme" />

 -->

 <namespace prefix="dc" uri="http://purl.org/DC#" />

 <namespace prefix="lom" uri="http://purl.org/LOM#" />

170

 <namespace prefix="malcolm" uri="http://malcolm.xtracker.co.za/#" />

 </namespaces>

 <fields>

 <!--

 List of fields describing an Article

 e.g.

 <field>

 <name>$name_of_field</name>

 <description>$description_of_field</description>

 <type>TEXTBOX|LIST|TEXT</type>

 <label>$label_for_field</label>

 <sqlFieldName>$sql_field_name</sqlFieldName>

 <sqlCreateStatement>$sql_create_statement</sqlCreateStatement>

 <namespace>$namespace_prefix</namespace>

 <required>true|false</required>

 <orderBy>true|false</orderBy>

 <primary>true|false</primary>

 <values default="$default_value">

 <value>$textual_value</value>

 </values>

 <validator>

 <type>REQUIRED|REGEX|COMPARE</type>

 <fields>

 <field>$html_field_name</field>

 </fields>

 <expression match="yes|no">$regex</expression>

 <message>$error_message</message>

 </validator>

 </field>

 -->

171

 <field>

 <name>title</name>

 <description>The title of the document.</description>

 <type>TEXTBOX</type>

 <label>Title</label>

 <sqlFieldName>dc_title</sqlFieldName>

 <sqlCreateStatement>dc_title varchar(100)</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>true</required>

 <orderBy>true</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator>

 <type>REQUIRED</type>

 <fields>

 <field>dc:title</field>

 </fields>

 <expression />

 <message>Please enter a title.</message>

 </validator>

 </field>

 <field>

 <name>creator</name>

 <description>The creator of the document.</description>

 <type>TEXTBOX</type>

 <label>Creator</label>

 <sqlFieldName>dc_creator</sqlFieldName>

 <sqlCreateStatement>dc_creator varchar(100)</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>true</required>

 <orderBy>true</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator>

172

 <type>REQUIRED</type>

 <fields>

 <field>dc:creator</field>

 </fields>

 <expression />

 <message>Please enter a creator.</message>

 </validator>

 </field>

 <field>

 <name>subject</name>

 <description>The subject of the document.</description>

 <type>LIST</type>

 <label>Subject</label>

 <sqlFieldName>dc_subject</sqlFieldName>

 <sqlCreateStatement>dc_subject varchar(100)</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>true</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="">

 <value>-----</value>

 <value>Adaptive hypermedia [AH]</value>

 <value>Human Computer Interaction [HCI]</value>

 <value>Artificial Intelligence [AI]</value>

 </values>

 <validator>

 <type>REGEX</type>

 <fields>

 <field>dc:subject</field>

 </fields>

 <expression match="no">-----</expression>

 <message>Please select a valid subject.</message>

 </validator>

 </field>

173

 <field>

 <name>description</name>

 <description>The description of the document.</description>

 <type>TEXT</type>

 <label>Description</label>

 <sqlFieldName>dc_description</sqlFieldName>

 <sqlCreateStatement>dc_description blob</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>true</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator>

 <type>REQUIRED</type>

 <fields>

 <field>dc:description</field>

 </fields>

 <expression />

 <message>Please enter a description for the document.</message>

 </validator>

 </field>

 <field>

 <name>publisher</name>

 <description>The publisher of the document.</description>

 <type>TEXTBOX</type>

 <label>Publisher</label>

 <sqlFieldName>dc_publisher</sqlFieldName>

 <sqlCreateStatement>dc_publisher varchar(100)</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>false</required>

 <orderBy>true</orderBy>

 <primary>true</primary>

 <values default="" />

174

 <validator />

 </field>

 <field>

 <name>contributor</name>

 <description>The contributor of the document.</description>

 <type>TEXTBOX</type>

 <label>Contributor</label>

 <sqlFieldName>dc_contributor</sqlFieldName>

 <sqlCreateStatement>dc_contributor varchar(100)</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>date</name>

 <description>The date of the document.</description>

 <type>TEXTBOX</type>

 <label>Date</label>

 <sqlFieldName>dc_date</sqlFieldName>

 <sqlCreateStatement>dc_date DateTime</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>true</required>

 <orderBy>true</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator>

 <type>REGEX</type>

 <fields>

 <field>dc:date</field>

 </fields>

175

 <expression match="yes">\d\d\d\d-\d\d-\d\d</expression>

 <message>Please enter a date for the document, e.g. 2003-05-02.</message>

 </validator>

 </field>

 <field>

 <name>type</name>

 <description>The type of document.</description>

 <type>LIST</type>

 <label>Type</label>

 <sqlFieldName>dc_type</sqlFieldName>

 <sqlCreateStatement>dc_type varchar(32)</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>true</required>

 <orderBy>true</orderBy>

 <primary>true</primary>

 <values default="">

 <value>-----</value>

 <value>Site article</value>

 </values>

 <validator>

 <type>REGEX</type>

 <fields>

 <field>dc:type</field>

 </fields>

 <expression match="no">-----</expression>

 <message>Please select a valid type.</message>

 </validator>

 </field>

 <field>

 <name>format</name>

 <description>The format of document's content.</description>

 <type>LIST</type>

 <label>Format</label>

176

 <sqlFieldName>dc_format</sqlFieldName>

 <sqlCreateStatement>dc_format varchar(16)</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>true</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="">

 <value>-----</value>

 <value>text/xml</value>

 </values>

 <validator>

 <type>REGEX</type>

 <fields>

 <field>dc:format</field>

 </fields>

 <expression match="no">-----</expression>

 <message>Please select a valid format.</message>

 </validator>

 </field>

 <field>

 <name>identifier</name>

 <description>The identifier of the document.</description>

 <type>TEXTBOX</type>

 <label>Identifier</label>

 <sqlFieldName>dc_identifier</sqlFieldName>

 <sqlCreateStatement>dc_identifier varchar(16)</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator />

 </field>

177

 <field>

 <name>source</name>

 <description>The original source of the document.</description>

 <type>TEXTBOX</type>

 <label>Source</label>

 <sqlFieldName>dc_source</sqlFieldName>

 <sqlCreateStatement>dc_source blob</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>language</name>

 <description>The language of document's content.</description>

 <type>LIST</type>

 <label>Language</label>

 <sqlFieldName>dc_language</sqlFieldName>

 <sqlCreateStatement>dc_language varchar(5)</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>true</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="">

 <value>-----</value>

 <value>en-GB</value>

 <value>en-US</value>

 </values>

 <validator>

 <type>REGEX</type>

 <fields>

 <field>dc:language</field>

178

 </fields>

 <expression match="no">-----</expression>

 <message>Please select a valid language.</message>

 </validator>

 </field>

 <field>

 <name>coverage</name>

 <description>The coverage of the document.</description>

 <type>TEXTBOX</type>

 <label>Coverage</label>

 <sqlFieldName>dc_coverage</sqlFieldName>

 <sqlCreateStatement>dc_coverage blob</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>relation</name>

 <description>The relation of the document.</description>

 <type>TEXTBOX</type>

 <label>Relation</label>

 <sqlFieldName>dc_relation</sqlFieldName>

 <sqlCreateStatement>dc_relation blob</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator />

 </field>

179

 <field>

 <name>rights</name>

 <description>The rights of the document.</description>

 <type>TEXTBOX</type>

 <label>Rights</label>

 <sqlFieldName>dc_rights</sqlFieldName>

 <sqlCreateStatement>dc_rights blob</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>requirement</name>

 <description>The requirements of the article.</description>

 <type>TEXT</type>

 <label>Requirements</label>

 <sqlFieldName>lom_requirement</sqlFieldName>

 <sqlCreateStatement>lom_requirement varchar(255)</sqlCreateStatement>

 <namespace>lom</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>difficulty</name>

 <description>The difficulty of article's content.</description>

180

 <type>LIST</type>

 <label>Difficulty</label>

 <sqlFieldName>lom_difficulty</sqlFieldName>

 <sqlCreateStatement>lom_difficulty varchar(10)</sqlCreateStatement>

 <namespace>lom</namespace>

 <required>true</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="">

 <value>-----</value>

 <value>Easy</value>

 <value>Medium</value>

 <value>Hard</value>

 </values>

 <validator>

 <type>REGEX</type>

 <fields>

 <field>lom:difficulty</field>

 </fields>

 <expression match="no">-----</expression>

 <message>Please select a valid difficulty level.</message>

 </validator>

 </field>

 <field>

 <name>keyword</name>

 <description>The keywords of the article.</description>

 <type>TEXT</type>

 <label>Keywords</label>

 <sqlFieldName>lom_keyword</sqlFieldName>

 <sqlCreateStatement>lom_keyword blob</sqlCreateStatement>

 <namespace>lom</namespace>

 <required>true</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

181

 <values default="" />

 <validator>

 <type>REQUIRED</type>

 <fields>

 <field>lom:keyword</field>

 </fields>

 <expression />

 <message>Please enter keywords for the article.</message>

 </validator>

 </field>

 <field>

 <name>stretch</name>

 <description>Should this section stretch.</description>

 <type>LIST</type>

 <label>Stretch</label>

 <sqlFieldName>malcolm_stretch</sqlFieldName>

 <sqlCreateStatement>malcolm_stretch varchar(3)</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>true</required>

 <orderBy>false</orderBy>

 <primary>false</primary>

 <values default="">

 <value>-----</value>

 <value>Yes</value>

 <value>No</value>

 </values>

 <validator>

 <type>REGEX</type>

 <fields>

 <field>malcolm:stretch</field>

 </fields>

 <expression match="no">-----</expression>

 <message>Please indicate whether this section can stretch or not.</message>

182

 </validator>

 </field>

 <field>

 <name>clusters</name>

 <description>The clusters to which this Article belongs.</description>

 <type>TEXTBOX</type>

 <label>Clusters</label>

 <sqlFieldName>malcolm_clusters</sqlFieldName>

 <sqlCreateStatement>malcolm_clusters varchar(255) default ''</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator />

 </field>

 </fields>

 </metadata>

Page XML
 <databases>

 <!--

 List of Databases and their required user levels

 e.g.

 <database id="$id" name="$name" role="DEFAULT|USER|WORKER|ADMIN|SUPER">

 <description>$description_of_database</description>

 <malcolm:themes>

 <theme name='$name' value='$float_value' />

 </malcolm:themes>

 <security>

 <action name="$action" role="DEFAULT|USER|WORKER|ADMIN|SUPER" />

 </security>

 </database>

 -->

183

 <database id="Hype" name="Hype" role="USER">

 <description>A bunch of Hype statements.</description>

 <malcolm:themes>

 <theme name='AH' value='100.0' />

 <theme name='AI' value='75.0' />

 <theme name='Datamining' value='60.0' />

 </malcolm:themes>

 <security>

 <action name="browse" role="USER" />

 <action name="view_statement" role="USER" />

 <action name="create" role="WORKER" />

 <action name="remove" role="ADMIN" />

 <action name="accept" role="ADMIN" />

 </security>

 </database>

 <database id="os" name="Open source" role="WORKER">

 <description>Statements that were made about Open Source projects and ideas.</description>

 <malcolm:themes>

 <theme name='AH' value='100.0' />

 <theme name='AI' value='75.0' />

 <theme name='Datamining' value='60.0' />

 </malcolm:themes>

 <security>

 <action name="browse" role="USER" />

 <action name="view_statement" role="USER" />

 <action name="create" role="WORKER" />

 <action name="remove" role="ADMIN" />

 <action name="accept" role="ADMIN" />

 </security>

 </database>

 </databases>

 <database>

 <!--

 SQL describing the various tables in the Statements database.

 e.g.

184

 <sql>$sql_create_statement</sql>

 -->

 <sql>CREATE TABLE ${instance_name}_Statements (

 ${metadata_sql},

);

 </sql>

 </database>

 <metadata>

 <!--

 Metadata describing an Artilce in the site

 -->

 <namespaces>

 <!--

 List of XML namespaces used by the Metadata scheme

 e.g.

 <namespace prefix="$prefix" uri="$uri_to_scheme" />

 -->

 <namespace prefix="dc" uri="http://purl.org/DC#" />

 <namespace prefix="lom" uri="http://purl.org/LOM#" />

 <namespace prefix="malcolm" uri="http://malcolm.xtracker.co.za/#" />

 </namespaces>

 <fields>

 <!--

 List of fields describing a Document

 e.g.

 <field>

 <name>$name_of_field</name>

 <description>$description_of_field</description>

 <type>TEXTBOX|LIST|TEXT</type>

 <label>$label_for_field</label>

 <sqlFieldName>$sql_field_name</sqlFieldName>

 <sqlCreateStatement>$sql_create_statement</sqlCreateStatement>

 <namespace>$namespace_prefix</namespace>

 <required>true|false</required>

 <orderBy>true|false</orderBy>

185

 <primary>true|false</primary>

 <values default="$default_value">

 <value>$textual_value</value>

 </values>

 <validator>

 <type>REQUIRED|REGEX|COMPARE</type>

 <fields>

 <field>$html_field_name</field>

 </fields>

 <expression match="yes|no">$regex</expression>

 <message>$error_message</message>

 </validator>

 </field>

 -->

 <field>

 <name>statement</name>

 <description>The actual hype statement.</description>

 <type>TEXT</type>

 <label>Statement</label>

 <sqlFieldName>malcolm_statement</sqlFieldName>

 <sqlCreateStatement>malcolm_statement blob</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>true</required>

 <orderBy>true</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator>

 <type>REQUIRED</type>

 <fields>

 <field>malcolm:statement</field>

 </fields>

 <expression />

 <message>Please enter the hype statement.</message>

 </validator>

 </field>

186

 <field>

 <name>creator</name>

 <description>The person who made the statement.</description>

 <type>TEXTBOX</type>

 <label>Creator</label>

 <sqlFieldName>dc_creator</sqlFieldName>

 <sqlCreateStatement>dc_creator varchar(100)</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>true</required>

 <orderBy>true</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator>

 <type>REQUIRED</type>

 <fields>

 <field>dc:creator</field>

 </fields>

 <expression />

 <message>Please enter the person who made the statement.</message>

 </validator>

 </field>

 <field>

 <name>date</name>

 <description>The date of the document.</description>

 <type>TEXTBOX</type>

 <label>Date</label>

 <sqlFieldName>dc_date</sqlFieldName>

 <sqlCreateStatement>dc_date Date default now()</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>true</required>

 <orderBy>true</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator>

 <type>REGEX</type>

187

 <fields>

 <field>dc:date</field>

 </fields>

 <expression match="yes">\d\d\d\d-\d\d-\d\d</expression>

 <message>Please enter a date for the document, e.g. 2003-05-02.</message>

 </validator>

 </field>

 <field>

 <name>identifier</name>

 <description>The identifier of the document.</description>

 <type>TEXTBOX</type>

 <label>Identifier</label>

 <sqlFieldName>dc_identifier</sqlFieldName>

 <sqlCreateStatement>dc_identifier varchar(36)</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>false</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>source</name>

 <description>The original source of the document.</description>

 <type>TEXT</type>

 <label>Source</label>

 <sqlFieldName>dc_source</sqlFieldName>

 <sqlCreateStatement>dc_source blob</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>true</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator>

 <type>REQUIRED</type>

188

 <fields>

 <field>dc:source</field>

 </fields>

 <expression />

 <message>Please enter the original source.</message>

 </validator>

 </field>

 <field>

 <name>rights</name>

 <description>The rights of the document.</description>

 <type>TEXTBOX</type>

 <label>Rights</label>

 <sqlFieldName>dc_rights</sqlFieldName>

 <sqlCreateStatement>dc_rights blob</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>submittedBy</name>

 <description>The user who submitted the statement.</description>

 <type>TEXTBOX</type>

 <label>Submitted by</label>

 <sqlFieldName>malcolm_submittedBy</sqlFieldName>

 <sqlCreateStatement>malcolm_submittedBy varchar(16)</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>true</required>

 <orderBy>true</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator>

 <type>REQUIRED</type>

189

 <fields>

 <field>malcolm:submittedBy</field>

 </fields>

 <expression />

 <message>Please enter the your name.</message>

 </validator>

 </field>

 <field>

 <name>accepted</name>

 <description>Indicates whether the statement has been accepted.</description>

 <type>TEXTBOX</type>

 <label>Accepted</label>

 <sqlFieldName>malcolm_accepted</sqlFieldName>

 <sqlCreateStatement>malcolm_accepted tinyint(1) default 0</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>false</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>notes</name>

 <description>Some additional notes on the statement.</description>

 <type>TEXT</type>

 <label>Notes</label>

 <sqlFieldName>malcolm_notes</sqlFieldName>

 <sqlCreateStatement>malcolm_notes blob</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator />

 </field>

190

 <field>

 <name>database</name>

 <description>The database containing the statement.</description>

 <type>TEXT</type>

 <label>Database</label>

 <sqlFieldName>malcolm_database</sqlFieldName>

 <sqlCreateStatement>malcolm_database varchar(50)</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>false</primary>

 <values default="" />

 <validator />

 </field>

 </fields>

 </metadata>

Discussion Forum configuration XML
 <topics>

 <!--

 Topics available in the online discussion forum

 e.g.

 <topic id="$id" name="$name_of_topic" role="DEFAULT|USER|WORKER|ADMIN|SUPER">

 <description>$description_of_topic</description>

 <malcolm:themes>

 <theme name='$name' value='$float_value' />

 </malcolm:themes>

 e.g

 <action name="$action" role="DEFAULT|USER|WORKER|ADMIN|SUPER" />

 </topic>

 -->

 <topic id="General" name="General discussions" role="USER">

 <description>Here you can post messages that do not relate to any specific area of research.</description>

 <malcolm:themes />

 <security>

191

 <action name="view_message" role="USER" />

 <action name="reply" role="USER" />

 <action name="post" role="USER" />

 <action name="view_messages" role="USER" />

 <action name="view_replies" role="USER" />

 <action name="search" role="USER" />

 </security>

 </topic>

 <topic id="AH" name="Adaptive Hypermedia" role="WORKER">

 <description>This topic is for messages relating to Adaptive Hypermedia. For instance methods of

adaptation of content and presentation.</description>

 <malcolm:themes>

 <theme name='AH' value='100.0' />

 <theme name='AI' value='75.0' />

 <theme name='Datamining' value='60.0' />

 </malcolm:themes>

 <security>

 <action name="view_message" role="WORKER" />

 <action name="reply" role="WORKER" />

 <action name="post" role="WORKER" />

 <action name="view_messages" role="WORKER" />

 <action name="view_replies" role="WORKER" />

 <action name="search" role="WORKER" />

 </security>

 </topic>

 <topic id="AI" name="Artificial Intelligence" role="USER">

 <description>Discussion board for everything relating to Artificial Intelligence.</description>

 <malcolm:themes>

 <theme name='AI' value='100.0' />

 </malcolm:themes>

 <security>

 <action name="view_message" role="USER" />

 <action name="reply" role="USER" />

 <action name="post" role="USER" />

 <action name="view_messages" role="USER" />

192

 <action name="view_replies" role="USER" />

 <action name="search" role="USER" />

 </security>

 </topic>

 <topic id="Hype" name="Hype" role="USER">

 <description>Discussion board for everything relating to Hype statements.</description>

 <malcolm:themes />

 <security>

 <action name="view_message" role="USER" />

 <action name="reply" role="USER" />

 <action name="post" role="USER" />

 <action name="view_messages" role="USER" />

 <action name="view_replies" role="USER" />

 <action name="search" role="USER" />

 </security>

 </topic>

 </topics>

Repositories configuration XML
 <repository id="Library" title="Digital Library" role="DEFAULT" renderMetadata="true" renderContent="true"

visible="true">

 <description><![CDATA[

 This is the IKS Resource database. Enter the database.

]]>

 </description>

 <security default="DEFAULT">

 <action name="edit" role="ADMIN" />

 <action name="submit" role="ADMIN" />

 <action name="revise" role="ADMIN" />

 <action name="remove" role="ADMIN" />

 <action name="accept" role="ADMIN" />

 <action name="unlock" role="ADMIN" />

 <action name="create_directory" role="ADMIN" />

 <action name="remove_directory" role="ADMIN" />

 <action name="view_files" role="DEFAULT" />

193

 <action name="view_folders" role="DEFAULT" />

 <action name="view_file" role="DEFAULT" />

 <action name="search" role="DEFAULT" />

 </security>

 <metadata>

 <!--

 Metadata describing a Document in the site

 -->

 <namespaces>

 <!--

 List of XML namespaces used by the Metadata scheme

 e.g.

 <namespace prefix="$prefix" uri="$uri_to_scheme" />

 -->

 <namespace prefix="dc" uri="http://purl.org/DC#" />

 <namespace prefix="lom" uri="http://purl.org/LOM#" />

 <namespace prefix="malcolm" uri="http://malcolm.xtracker.co.za/#" />

 </namespaces>

 <fields>

 <!--

 List of fields describing a Document

 e.g.

 <field>

 <name>$name_of_field</name>

 <description>$description_of_field</description>

 <type>TEXTBOX|LIST|TEXT</type>

 <label>$label_for_field</label>

 <sqlFieldName>$sql_field_name</sqlFieldName>

 <sqlCreateStatement>$sql_create_statement</sqlCreateStatement>

 <namespace>$namespace_prefix</namespace>

 <required>true|false</required>

 <orderBy>true|false</orderBy>

 <primary>true|false</primary>

 <values default="$default_value">

 <value>$textual_value</value>

194

 </values>

 <validator>

 <type>REQUIRED|REGEX|COMPARE</type>

 <fields>

 <field>$html_field_name</field>

 </fields>

 <expression match="yes|no">$regex</expression>

 <message>$error_message</message>

 <script><![CDATA[function $name_click(field, value)

{ window.open("/jsp/modules/repository/scripts/projects.jsp?repository=$repository_name&field=" +field+ "&value="

+value, "_new", "width=750, height=500, status=no, toolbar=no"); }]]></script>

 </validator>

 </field>

 -->

 <field>

 <name>parent</name>

 <description>The parent folder of the document.</description>

 <type>TEXTBOX</type>

 <label>Parent folder</label>

 <sqlFieldName>malcolm_parent</sqlFieldName>

 <sqlCreateStatement>malcolm_parent varchar(36)</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>false</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>path</name>

 <description>The path on the server to the actual document.</description>

 <type>TEXTBOX</type>

 <label>Path</label>

 <sqlFieldName>malcolm_path</sqlFieldName>

 <sqlCreateStatement>malcolm_path varchar(255)</sqlCreateStatement>

 <namespace>malcolm</namespace>

195

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>false</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>submittedBy</name>

 <description>The username of the user who submitted the document.</description>

 <type>TEXTBOX</type>

 <label>Submitted by</label>

 <sqlFieldName>malcolm_submittedBy</sqlFieldName>

 <sqlCreateStatement>malcolm_submittedBy varchar(15)</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>true</required>

 <orderBy>true</orderBy>

 <primary>false</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>modifiedBy</name>

 <description>The username of the person who modified the document.</description>

 <type>TEXTBOX</type>

 <label>Modified by</label>

 <sqlFieldName>malcolm_modifiedBy</sqlFieldName>

 <sqlCreateStatement>malcolm_modifiedBy varchar(36)</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>false</primary>

 <values default="" />

 <validator />

 </field>

 <field>

196

 <name>locked</name>

 <description>Indicates whether the document is locked for editing.</description>

 <type>TEXTBOX</type>

 <label>Locked</label>

 <sqlFieldName>malcolm_locked</sqlFieldName>

 <sqlCreateStatement>malcolm_locked tinyint(1)</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>false</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>notifyList</name>

 <description>The list of Users to be notified when the document becomes unlocked.</description>

 <type>TEXTBOX</type>

 <label>Notify list</label>

 <sqlFieldName>malcolm_notifyList</sqlFieldName>

 <sqlCreateStatement>malcolm_notifyList varchar(255)</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>false</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>accepted</name>

 <description>Indicates whether the document has been accepted by a moderator.</description>

 <type>TEXTBOX</type>

 <label>Accepted</label>

 <sqlFieldName>malcolm_accepted</sqlFieldName>

 <sqlCreateStatement>malcolm_accepted tinyint(1)</sqlCreateStatement>

 <namespace>malcolm</namespace>

197

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>false</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>version</name>

 <description>The revision number of this document.</description>

 <type>TEXTBOX</type>

 <label>Version</label>

 <sqlFieldName>malcolm_version</sqlFieldName>

 <sqlCreateStatement>malcolm_version varchar(16) default 'Original'</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>true</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="Original" />

 <validator>

 <type>REGEX</type>

 <fields>

 <field>malcolm:version</field>

 </fields>

 <expression match="yes">^(?:Original|(?:\d+\.?)+)$</expression>

 <message>The version must either be Original or some numeric value, e.g. 1 or 1.1</message>

 </validator>

 </field>

 <field>

 <name>status</name>

 <description>The current status of the document.</description>

 <type>LIST</type>

 <label>Status</label>

 <sqlFieldName>malcolm_status</sqlFieldName>

 <sqlCreateStatement>malcolm_status varchar(16)</sqlCreateStatement>

 <namespace>malcolm</namespace>

198

 <required>true</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="">

 <value>-----</value>

 <value>Draft</value>

 <value>Under review</value>

 <value>Published</value>

 </values>

 <validator>

 <type>REGEX</type>

 <fields>

 <field>malcolm:status</field>

 </fields>

 <expression match="no">-----</expression>

 <message>Please select the current status of the document.</message>

 </validator>

 </field>

 <field>

 <name>visibility</name>

 <description>Should the document be visible outside of this research group.</description>

 <type>LIST</type>

 <label>Visibility</label>

 <sqlFieldName>malcolm_visibility</sqlFieldName>

 <sqlCreateStatement>malcolm_visibility enum('Private', 'Public') default

'Private'</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>true</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="Public">

 <value>-----</value>

 <value>Private</value>

 <value>Public</value>

 </values>

199

 <validator>

 <type>REGEX</type>

 <fields>

 <field>malcolm:visibility</field>

 </fields>

 <expression match="no">-----</expression>

 <message>Please select visibility of the document.</message>

 </validator>

 </field>

 <field>

 <name>instance</name>

 <description>The research project to which this document belongs.</description>

 <type>TEXTBOX</type>

 <label>Parent project</label>

 <sqlFieldName>malcolm_instance</sqlFieldName>

 <sqlCreateStatement>malcolm_instance varchar(16)</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>false</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>role</name>

 <description>The required User role to access this document.</description>

 <type>TEXTBOX</type>

 <label>Required role</label>

 <sqlFieldName>malcolm_role</sqlFieldName>

 <sqlCreateStatement>malcolm_role int</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>false</primary>

 <values default="" />

200

 <validator />

 </field>

 <field>

 <name>dateModified</name>

 <description>The date on which the document was modified.</description>

 <type>TEXTBOX</type>

 <label>Date modified</label>

 <sqlFieldName>malcolm_dateModified</sqlFieldName>

 <sqlCreateStatement>malcolm_dateModified varchar(10)</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>false</required>

 <orderBy>true</orderBy>

 <primary>false</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>title</name>

 <description>The name given to the resource by the CREATOR or PUBLISHER.</description>

 <type>TEXTBOX</type>

 <label>Title</label>

 <sqlFieldName>dc_title</sqlFieldName>

 <sqlCreateStatement>dc_title varchar(255)</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>true</required>

 <orderBy>true</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator>

 <type>REQUIRED</type>

 <fields>

 <field>dc:title</field>

 </fields>

 <expression />

 <message>Please enter a title.</message>

201

 </validator>

 </field>

 <field>

 <name>creator</name>

 <description>The person or organization primarily responsible for creating the intellectual content of

the resource. For example, authors in the case of written documents, artists, photographers, or illustrators in the case

of visual resources.</description>

 <type>TEXTBOX</type>

 <label>Creator</label>

 <sqlFieldName>dc_creator</sqlFieldName>

 <sqlCreateStatement>dc_creator varchar(100)</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>true</required>

 <orderBy>true</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator>

 <type>REGEX</type>

 <fields>

 <field>dc:creator</field>

 </fields>

 <expression match="yes">^\w+,\s*(?:\w+(?:\s\w+)*)*(\s(\w\.\s*)+)*$</expression>

 <message>Please enter a creator in the format Surname, Name or Surname, A.B.C.</message>

 </validator>

 </field>

 <field>

 <name>subject</name>

 <description>The topic of the resource. Typically, subject will be expressed as keywords or phrases

that describe the subject or content of the resource. The use of controlled vocabularies and formal classification

schemas is encouraged.</description>

 <type>LIST</type>

 <label>Subject</label>

 <sqlFieldName>dc_subject</sqlFieldName>

 <sqlCreateStatement>dc_subject varchar(100)</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>true</required>

202

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="">

 <value>-----</value>

 <value>E-business</value>

 <value>E-learning</value>

 <value>Portals</value>

 <value>Research issues</value>

 <value>Technical developments</value>

 </values>

 <validator>

 <type>REGEX</type>

 <fields>

 <field>dc:subject</field>

 </fields>

 <expression match="no">-----</expression>

 <message>Please select a valid subject.</message>

 </validator>

 </field>

 <field>

 <name>description</name>

 <description>A textual description of the content of the resource, including abstracts in the case of

document-like objects or content descriptions in the case of visual resources.</description>

 <type>TEXT</type>

 <label>Description</label>

 <sqlFieldName>dc_description</sqlFieldName>

 <sqlCreateStatement>dc_description blob</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>true</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator>

 <type>REQUIRED</type>

 <fields>

203

 <field>dc:description</field>

 </fields>

 <expression />

 <message>Please enter a description for the document.</message>

 </validator>

 </field>

 <field>

 <name>keywords</name>

 <description>Keywords describing the document.</description>

 <type>TEXTBOX</type>

 <label>Keywords</label>

 <sqlFieldName>malcolm_keywords</sqlFieldName>

 <sqlCreateStatement>malcolm_keywords varchar(255)</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>publisher</name>

 <description>The entity responsible for making the resource available in its present form, such as a

publishing house, a university department, or a corporate entity.</description>

 <type>TEXTBOX</type>

 <label>Publisher</label>

 <sqlFieldName>dc_publisher</sqlFieldName>

 <sqlCreateStatement>dc_publisher varchar(100)</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>false</required>

 <orderBy>true</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator />

 </field>

204

 <field>

 <name>contributor</name>

 <description>A person or organization not specified in a CREATOR element who has made significant

intellectual contributions to the resource but whose contribution is secondary to any person or organization specified in

a CREATOR element (for example, editor, transcriber, and illustrator).</description>

 <type>TEXTBOX</type>

 <label>Contributor</label>

 <sqlFieldName>dc_contributor</sqlFieldName>

 <sqlCreateStatement>dc_contributor varchar(100)</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>date</name>

 <description>The date the resource was made available in its present form. Recommended best

practice is an 8 digit number in the form YYYY-MM-DD as defined in http://www.w3.org/TR/NOTE-datetime, a profile of

ISO 8601. In this scheme, the date element 1994-11-05 corresponds to November 5, 1994. Many other schema are

possible, but if used, they should be identified in an unambiguous manner.</description>

 <type>TEXTBOX</type>

 <label>Date</label>

 <sqlFieldName>dc_date</sqlFieldName>

 <sqlCreateStatement>dc_date Date</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>true</required>

 <orderBy>true</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator>

 <type>REGEX</type>

 <fields>

 <field>dc:date</field>

 </fields>

 <expression match="yes">\d\d\d\d-\d\d-\d\d</expression>

205

 <message>Please enter a date for the document, e.g. 2003-05-02.</message>

 </validator>

]]></script>

 </field>

 <field>

 <name>type</name>

 <description>The category of the resource, such as home page, novel, poem, working paper,

technical report, essay, dictionary. For the sake of interoperability, TYPE should be selected from an enumerated list

that is under development in the workshop series at the time of publication of this document. See

http://sunsite.berkeley.edu/Metadata/types.html for current thinking on the application of this element.</description>

 <type>LIST</type>

 <label>Type</label>

 <sqlFieldName>dc_type</sqlFieldName>

 <sqlCreateStatement>dc_type varchar(32)</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>true</required>

 <orderBy>true</orderBy>

 <primary>true</primary>

 <values default="">

 <value>-----</value>

 <value>Conference paper</value>

 <value>Something else</value>

 </values>

 <validator>

 <type>REGEX</type>

 <fields>

 <field>dc:type</field>

 </fields>

 <expression match="no">-----</expression>

 <message>Please select a valid type.</message>

 </validator>

 </field>

 <field>

 <name>format</name>

 <description>The data format of the resource, used to identify the software and possibly hardware

that might be needed to display or operate the resource. For the sake of interoperability, FORMAT should be selected

from an enumerated list that is under development in the workshop series at the time of publication of this

206

document.</description>

 <type>LIST</type>

 <label>Format</label>

 <sqlFieldName>dc_format</sqlFieldName>

 <sqlCreateStatement>dc_format varchar(36)</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>true</required>

 <orderBy>false</orderBy>

 <primary>false</primary>

 <values default="">

 <value>-----</value>

 <value>application/msword</value>

 <value>application/pdf</value>

 <value>application/postscript</value>

 <value>application/x-gzip</value>

 <value>application/x-tar</value>

 <value>application/x-tcl</value>

 <value>application/x-tex</value>

 <value>application/xml</value>

 <value>application/zip</value>

 <value>audio/mpeg</value>

 <value>audio/x-wav</value>

 <value>image/bmp</value>

 <value>image/gif</value>

 <value>image/jpeg</value>

 <value>image/png</value>

 <value>image/tiff</value>

 <value>text/html</value>

 <value>text/plain</value>

 <value>video/mpeg</value>

 </values>

 <validator>

 <type>REGEX</type>

 <fields>

 <field>dc:format</field>

207

 </fields>

 <expression match="no">-----</expression>

 <message>Please select a valid format.</message>

 </validator>

 </field>

 <field>

 <name>identifier</name>

 <description>String or number used to uniquely identify the resource. Examples for networked

resources include URLs and URNs (when implemented). Other globally-unique identifiers,such as International Standard

Book Numbers (ISBN) or other formal names would also be candidates for this element in the case of off-line

resources.</description>

 <type>TEXTBOX</type>

 <label>Identifier</label>

 <sqlFieldName>dc_identifier</sqlFieldName>

 <sqlCreateStatement>dc_identifier varchar(36) PRIMARY KEY</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>false</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>source</name>

 <description>A string or number used to uniquely identify the work from which this resource was

derived, if applicable. For example, a PDF version of a novel might have a SOURCE element containing an ISBN number

for the physical book from which the PDF version was derived.</description>

 <type>TEXT</type>

 <label>Source</label>

 <sqlFieldName>dc_source</sqlFieldName>

 <sqlCreateStatement>dc_source blob</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator />

208

 </field>

 <field>

 <name>language</name>

 <description>Language(s) of the intellectual content of the resource. Where practical, the content of

this field should coincide with RFC 1766. See: ftp://ftp.isi.edu/in-notes/rfc1766.txt.</description>

 <type>LIST</type>

 <label>Language</label>

 <sqlFieldName>dc_language</sqlFieldName>

 <sqlCreateStatement>dc_language varchar(5)</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>true</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="">

 <value>-----</value>

 <value>en-GB</value>

 <value>en-US</value>

 </values>

 <validator>

 <type>REGEX</type>

 <fields>

 <field>dc:language</field>

 </fields>

 <expression match="no">-----</expression>

 <message>Please select a valid language.</message>

 </validator>

 </field>

 <field>

 <name>coverage</name>

 <description>The spatial and/or temporal characteristics of the resource. Formal specification of

COVERAGE is currently under development. Users and developers should understand that use of this element is

currently considered to be experimental.</description>

 <type>TEXTBOX</type>

 <label>Coverage</label>

 <sqlFieldName>dc_coverage</sqlFieldName>

 <sqlCreateStatement>dc_coverage blob</sqlCreateStatement>

209

 <namespace>dc</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator />

 </field>

 <field browse="true">

 <name>relation</name>

 <description>The relationship of this resource to other resources. The intent of this element is to

provide a means to express relationships among resources that have formal relationships to others, but exist as

discrete resources themselves. For example, images in a document, chapters in a book, or items in a collection. Formal

specification of RELATION is currently under development. Users and developers should understand that use of this

element is currently considered to be experimental.</description>

 <type>TEXTBOX</type>

 <label>Relation</label>

 <sqlFieldName>dc_relation</sqlFieldName>

 <sqlCreateStatement>dc_relation blob</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator />

 <script><![CDATA[function relation_click(field, value)

{ window.open("/jsp/modules/repository/scripts/relation.jsp?repository=Library&field=" +field+ "&value=" +value,

"_new", "width=750, height=500, status=no, toolbar=no"); }]]></script>

 </field>

 <field>

 <name>rights</name>

 <description>A link to a copyright notice, to a rights-management statement, or to a service that

would provide information about terms of access to the resource. Formal specification of RIGHTS is currently under

development. Users and developers should understand that use of this element is currently considered to be

experimental.</description>

 <type>TEXTBOX</type>

 <label>Rights</label>

 <sqlFieldName>dc_rights</sqlFieldName>

 <sqlCreateStatement>dc_rights blob</sqlCreateStatement>

210

 <namespace>dc</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator />

 </field>

 </fields>

 </metadata>

 </repository>

Statement Database configuration XML
 <databases>

 <!--

 List of Databases and their required user levels

 e.g.

 <database id="$id" name="$name" role="DEFAULT|USER|WORKER|ADMIN|SUPER">

 <description>$description_of_database</description>

 <malcolm:themes>

 <theme name='$name' value='$float_value' />

 </malcolm:themes>

 <security>

 <action name="$action" role="DEFAULT|USER|WORKER|ADMIN|SUPER" />

 </security>

 </database>

 -->

 <database id="Hype" name="Hype" role="USER">

 <description>A bunch of Hype statements.</description>

 <malcolm:themes>

 <theme name='AH' value='100.0' />

 <theme name='AI' value='75.0' />

 <theme name='Datamining' value='60.0' />

 </malcolm:themes>

 <security>

 <action name="browse" role="USER" />

211

 <action name="view_statement" role="USER" />

 <action name="create" role="WORKER" />

 <action name="remove" role="ADMIN" />

 <action name="accept" role="ADMIN" />

 </security>

 </database>

 <database id="os" name="Open source" role="WORKER">

 <description>Statements that were made about Open Source projects and ideas.</description>

 <malcolm:themes>

 <theme name='AH' value='100.0' />

 <theme name='AI' value='75.0' />

 <theme name='Datamining' value='60.0' />

 </malcolm:themes>

 <security>

 <action name="browse" role="USER" />

 <action name="view_statement" role="USER" />

 <action name="create" role="WORKER" />

 <action name="remove" role="ADMIN" />

 <action name="accept" role="ADMIN" />

 </security>

 </database>

 </databases>

 <database>

 <!--

 SQL describing the various tables in the Statements database.

 e.g.

 <sql>$sql_create_statement</sql>

 -->

 <sql>CREATE TABLE ${instance_name}_Statements (

 ${metadata_sql},

);

 </sql>

 </database>

 <metadata>

 <!--

212

 Metadata describing an Artilce in the site

 -->

 <namespaces>

 <!--

 List of XML namespaces used by the Metadata scheme

 e.g.

 <namespace prefix="$prefix" uri="$uri_to_scheme" />

 -->

 <namespace prefix="dc" uri="http://purl.org/DC#" />

 <namespace prefix="lom" uri="http://purl.org/LOM#" />

 <namespace prefix="malcolm" uri="http://malcolm.xtracker.co.za/#" />

 </namespaces>

 <fields>

 <!--

 List of fields describing a Document

 e.g.

 <field>

 <name>$name_of_field</name>

 <description>$description_of_field</description>

 <type>TEXTBOX|LIST|TEXT</type>

 <label>$label_for_field</label>

 <sqlFieldName>$sql_field_name</sqlFieldName>

 <sqlCreateStatement>$sql_create_statement</sqlCreateStatement>

 <namespace>$namespace_prefix</namespace>

 <required>true|false</required>

 <orderBy>true|false</orderBy>

 <primary>true|false</primary>

 <values default="$default_value">

 <value>$textual_value</value>

 </values>

 <validator>

 <type>REQUIRED|REGEX|COMPARE</type>

 <fields>

 <field>$html_field_name</field>

 </fields>

213

 <expression match="yes|no">$regex</expression>

 <message>$error_message</message>

 </validator>

 </field>

 -->

 <field>

 <name>statement</name>

 <description>The actual hype statement.</description>

 <type>TEXT</type>

 <label>Statement</label>

 <sqlFieldName>malcolm_statement</sqlFieldName>

 <sqlCreateStatement>malcolm_statement blob</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>true</required>

 <orderBy>true</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator>

 <type>REQUIRED</type>

 <fields>

 <field>malcolm:statement</field>

 </fields>

 <expression />

 <message>Please enter the hype statement.</message>

 </validator>

 </field>

 <field>

 <name>creator</name>

 <description>The person who made the statement.</description>

 <type>TEXTBOX</type>

 <label>Creator</label>

 <sqlFieldName>dc_creator</sqlFieldName>

 <sqlCreateStatement>dc_creator varchar(100)</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>true</required>

214

 <orderBy>true</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator>

 <type>REQUIRED</type>

 <fields>

 <field>dc:creator</field>

 </fields>

 <expression />

 <message>Please enter the person who made the statement.</message>

 </validator>

 </field>

 <field>

 <name>date</name>

 <description>The date of the document.</description>

 <type>TEXTBOX</type>

 <label>Date</label>

 <sqlFieldName>dc_date</sqlFieldName>

 <sqlCreateStatement>dc_date Date default now()</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>true</required>

 <orderBy>true</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator>

 <type>REGEX</type>

 <fields>

 <field>dc:date</field>

 </fields>

 <expression match="yes">\d\d\d\d-\d\d-\d\d</expression>

 <message>Please enter a date for the document, e.g. 2003-05-02.</message>

 </validator>

 </field>

 <field>

 <name>identifier</name>

215

 <description>The identifier of the document.</description>

 <type>TEXTBOX</type>

 <label>Identifier</label>

 <sqlFieldName>dc_identifier</sqlFieldName>

 <sqlCreateStatement>dc_identifier varchar(36)</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>false</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>source</name>

 <description>The original source of the document.</description>

 <type>TEXT</type>

 <label>Source</label>

 <sqlFieldName>dc_source</sqlFieldName>

 <sqlCreateStatement>dc_source blob</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>true</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator>

 <type>REQUIRED</type>

 <fields>

 <field>dc:source</field>

 </fields>

 <expression />

 <message>Please enter the original source.</message>

 </validator>

 </field>

 <field>

 <name>rights</name>

216

 <description>The rights of the document.</description>

 <type>TEXTBOX</type>

 <label>Rights</label>

 <sqlFieldName>dc_rights</sqlFieldName>

 <sqlCreateStatement>dc_rights blob</sqlCreateStatement>

 <namespace>dc</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>submittedBy</name>

 <description>The user who submitted the statement.</description>

 <type>TEXTBOX</type>

 <label>Submitted by</label>

 <sqlFieldName>malcolm_submittedBy</sqlFieldName>

 <sqlCreateStatement>malcolm_submittedBy varchar(16)</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>true</required>

 <orderBy>true</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator>

 <type>REQUIRED</type>

 <fields>

 <field>malcolm:submittedBy</field>

 </fields>

 <expression />

 <message>Please enter the your name.</message>

 </validator>

 </field>

 <field>

 <name>accepted</name>

217

 <description>Indicates whether the statement has been accepted.</description>

 <type>TEXTBOX</type>

 <label>Accepted</label>

 <sqlFieldName>malcolm_accepted</sqlFieldName>

 <sqlCreateStatement>malcolm_accepted tinyint(1) default 0</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>false</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>notes</name>

 <description>Some additional notes on the statement.</description>

 <type>TEXT</type>

 <label>Notes</label>

 <sqlFieldName>malcolm_notes</sqlFieldName>

 <sqlCreateStatement>malcolm_notes blob</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>false</required>

 <orderBy>false</orderBy>

 <primary>true</primary>

 <values default="" />

 <validator />

 </field>

 <field>

 <name>database</name>

 <description>The database containing the statement.</description>

 <type>TEXT</type>

 <label>Database</label>

 <sqlFieldName>malcolm_database</sqlFieldName>

 <sqlCreateStatement>malcolm_database varchar(50)</sqlCreateStatement>

 <namespace>malcolm</namespace>

 <required>false</required>

218

 <orderBy>false</orderBy>

 <primary>false</primary>

 <values default="" />

 <validator />

 </field>

 </fields>

 </metadata>

Interface XML & XSL
<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:malcolm="http://malcolm.xtracker.co.za"

 version="1.0">

 <xsl:output method="html" indent="yes" version="4" omit-xml-declaration="yes" standalone="yes"/>

 <xsl:template match="interface">

 <xsl:variable name="title" select="meta/field[@id = 'document.title']" />

 <xsl:variable name="identifier" select="meta/field[@id = 'document.identifier']" />

 <xsl:variable name="subject" select="meta/field[@id = 'document.subject']" />

 <xsl:variable name="action" select="meta/field[@id = 'malcolm.action']" />

 <html>

 <head>

 <title><xsl:value-of select="$title" /></title>

 <link rel="stylesheet" type="text/css" href="/styles/default.css" />

 <xsl:apply-templates select="meta" />

 <xsl:comment>

 <xsl:value-of select="components/component[@id = 'rdf']" disable-output-escaping='yes' />

 </xsl:comment>

 </head>

 <body>

 <xsl:apply-templates select="components">

 <xsl:with-param name="title" select="$title" />

 </xsl:apply-templates>

 </body>

 </html>

 </xsl:template>

219

 <xsl:template match="meta">

 <xsl:for-each select="field">

 <meta name="{@id}" content="{.}" />

 </xsl:for-each>

 </xsl:template>

 <xsl:template match="components">

 <xsl:param name="title" />

 <xsl:param name="identifier" />

 <xsl:param name="subject" />

 <xsl:param name="action" />

 <xsl:comment>User defined scripts</xsl:comment>

 <xsl:value-of select="component[@id = 'scripts']" disable-output-escaping='yes' />

 <table border='0' width='780' class="main">

 <tr>

 <td width='100%' align='center' class="navigation_top">

 <table border="0" width="100%">

 <tr>

 <xsl:variable name="navigation_top" select="component[@id = 'navigation.top']" />

 <xsl:for-each select="$navigation_top/links/link">

 <td><xsl:value-of select="." disable-output-escaping='yes' /></td>

 </xsl:for-each>

 </tr>

 </table>

 </td>

 </tr>

 <tr>

 <td width='100%' align='center'>

 <table width='100%' align='center' cellpadding='5px'>

 <tr>

 <td colspan='3' class="title">

 <xsl:value-of select="$title" />

 </td>

 </tr>

 <tr>

 <td width='17%' valign='top' class="navigation_left">

220

 <table border="0" class="navigation_left">

 <xsl:variable name="navigation_left_top" select="component[@id = 'navigation.left.top']" />

 <xsl:for-each select="$navigation_left_top/links/link">

 </xsl:for-each>

 </table>

 </td>

 <td width='83%' align='left' valign='top'>

 <xsl:if test="component[@id = 'navigation.right.top']">

 <xsl:variable name="navigation_right_top" select="component[@id = 'navigation.right.top']" />

 <table border='0' align='right' width='22%' class="navigation_right">

 </table>

 </xsl:if>

 <div class="content">

 <xsl:value-of select="component[@id = 'content.top']" disable-output-escaping='yes' />

 <xsl:if test="component[@id = 'content.middle']">

 <xsl:value-of select="component[@id = 'content.middle']" disable-output-escaping='yes' />

 </xsl:if>

 <xsl:if test="component[@id = 'content.bottom']">

 <xsl:value-of select="component[@id = 'content.bottom']" disable-output-escaping='yes' />

 </xsl:if>

 </div>

 </td>

 </tr>

 </table>

 </td>

 </tr>

 <tr>

 <td width='100%' align='center'>

 <xsl:choose>

 <xsl:when test="component[@id = 'footer']">

 <xsl:value-of select="component[@id = 'footer']" disable-output-escaping='yes' />

 </xsl:when>

 <xsl:otherwise>

 <table border='0' width='100%' cellpadding='0' cellspacing='0'>

 <tr>

221

 <td width='57%' align='right' class="footer">

 (c) 2003 Paul Bothma

 </td>

 <td align='right' class="footer">

 top of page

 </td>

 </tr>

 </table>

 </xsl:otherwise>

 </xsl:choose>

 </td>

 </tr>

 </table>

 </xsl:template>

</xsl:stylesheet>

222

	FRONT
	Title page
	Summary
	Table of Contents

	DISSERTATION
	1 Chapter 1
	 1.1 Research questions
	 1.2 Research methodology
	 1.2.1 Informal survey
	 1.2.2 Literature survey
	 1.2.3 Project development

	 1.3 Limitations
	 1.4 Chapter division
	 1.4.1 Chapter 1
	 1.4.2 Chapter 2
	 1.4.3 Chapter 3
	 1.4.4 Chapter 4
	 1.4.5 Chapter 5

	 1.5 Summary

	 2 Chapter 2 – Literature survey
	 2.1 Introduction
	 2.1.1 Digital library
	 2.1.1.1 Brief overview
	 2.1.1.2 Characteristics of a Digital Library
	 2.1.1.3 Advantages of a Digital Library
	 2.1.1.4 Open Archives Initiative
	 2.1.1.5 Current implementations
	 2.1.1.5.1 EPrints
	 2.1.1.5.2 Greenstone
	 2.1.1.5.3 DSpace

	 2.1.1.6 Summary findings

	 2.1.2 Adaptive hypermedia
	 2.1.2.1 Brief overview
	 2.1.2.2 User profiling/models
	 2.1.2.3 What can be adapted
	 2.1.2.3.1 Link level adaptation
	 2.1.2.3.2 Content level adaptation

	 2.1.2.4 Recommendation system
	 2.1.2.5 Adaptive hypermedia methodologies
	 2.1.2.5.1 Dexter model
	 2.1.2.5.2 AHAM

	 2.1.2.6 LinkBases and link services
	 2.1.2.7 Current implementations
	 2.1.2.7.1 The GUIDE system
	 2.1.2.7.2 ELM-ART

	 2.1.2.8 Summary findings

	 2.1.3 Collaborative Workspaces
	 2.1.3.1 Introduction
	 2.1.3.2 Characteristics of collaborative workspaces
	 2.1.3.2.1 Session vs. document centric design
	 2.1.3.2.2 Ad hoc vs. formal systems
	 2.1.3.2.3 Features of collaborative workspaces

	 2.1.3.3 Current implementations
	 2.1.3.3.1 phpGroupWare

	 2.1.3.4 Summary findings

	 2.2 Open Source Software
	 2.2.1 A brief history of free/open source software
	 2.2.2 The open source model
	 2.2.3 Open source development tools
	 2.2.4 Open source projects
	 2.2.4.1 The Apache Software Foundation
	 2.2.4.2 Linux
	 2.2.4.3 The Mozilla Foundation

	 2.2.5 Motivation for the use of open source software

	 2.3 Usability
	 2.4 Literature survey findings
	 2.4.1 Critical reflection on the literature
	 2.4.2 Open Source Software

	 2.5 Summary

	 3 Chapter 3 - Framework architecture and research methods
	 3.1 Introduction
	 3.2 Design principles
	 3.2.1 Modularity
	 3.2.2 Three-tiered architecture
	 3.2.3 Implemented technologies and software

	 3.3 Functional components
	 3.3.1 Content module
	 3.3.1.1 Overview
	 3.3.1.2 Classes
	 3.3.1.2.1 Module
	 3.3.1.2.2 Loader
	 3.3.1.2.3 Metadata
	 3.3.1.2.4 Link
	 3.3.1.2.5 Section
	 3.3.1.2.6 Page
	 3.3.1.2.7 Subject

	 3.3.1.3 Clustering
	 3.3.1.4 Integration of modules
	 3.3.1.4.1 Modules and components
	 3.3.1.4.2 Interface
	 3.3.1.4.3 Java Server Pages

	 3.3.1.5 Database
	 3.3.1.6 Adaptation
	 3.3.1.6.1 Adaptive presentation
	 3.3.1.6.2 Adaptive navigation

	 3.3.1.7 Recommendation system
	 3.3.1.7.1 Requirements and history
	 3.3.1.7.2 Personal preferences

	 3.3.1.8 Content Management
	 3.3.1.8.1 Content submission
	 3.3.1.8.2 Theme management
	 3.3.1.8.3 Link management
	 3.3.1.8.4 Page requirements

	 3.3.1.9 Configuration
	 3.3.1.9.1 Standard settings
	 3.3.1.9.2 Additional settings

	 3.3.2 Discussion forum
	 3.3.2.1 Overview
	 3.3.2.2 Classes
	 3.3.2.2.1 Module
	 3.3.2.2.2 Loader
	 3.3.2.2.3 DiscussionMessage
	 3.3.2.2.4 DiscussionTopic
	 3.3.2.2.5 Discussion

	 3.3.2.3 Integration
	 3.3.2.4 Database
	 3.3.2.5 XML & XSL
	 3.3.2.6 Functionalities
	 3.3.2.7 Forum management
	 3.3.2.8 Configuration
	 3.3.2.8.1 Standard settings
	 3.3.2.8.2 Additional settings

	 3.3.3 Repository and workspace
	 3.3.3.1 Overview
	 3.3.3.2 Classes
	 3.3.3.2.1 Module
	 3.3.3.2.2 Loader
	 3.3.3.2.3 MetadataField
	 3.3.3.2.4 Metadata
	 3.3.3.2.5 File
	 3.3.3.2.6 Hierarchy Explorer
	 3.3.3.2.7 Directory
	 3.3.3.2.8 DocumentSearch
	 3.3.3.2.9 Document
	 3.3.3.2.10 RepositoryInstance
	 3.3.3.2.11 Open Archives Initiative (OAI)

	 3.3.3.3 Integration
	 3.3.3.4 Hierarchy & Document storage
	 3.3.3.5 Presentation & Functionalities
	 3.3.3.5.1 Metadata
	 3.3.3.5.2 Document content
	 3.3.3.5.3 Available functionalities

	 3.3.3.6 Search
	 3.3.3.6.1 Search interfaces
	 3.3.3.6.1.1 Simple
	 3.3.3.6.1.2 Advanced
	 3.3.3.6.1.3 Full text

	 3.3.3.7 Database
	 3.3.3.8 Document management
	 3.3.3.8.1 Document submission
	 3.3.3.8.2 Editing, revision, accepting and removal of documents
	 3.3.3.8.3 Directory management

	 3.3.3.9 Configuration
	 3.3.3.9.1 Standard settings
	 3.3.3.9.2 Additional settings

	 3.3.4 Statement database
	 3.3.4.1 Overview
	 3.3.4.2 Classes
	 3.3.4.2.1 Module
	 3.3.4.2.2 Loader
	 3.3.4.2.3 Link
	 3.3.4.2.4 Metadata
	 3.3.4.2.5 Statement
	 3.3.4.2.6 StatementDatabase

	 3.3.4.3 Integration
	 3.3.4.4 Presentation & Functionalities
	 3.3.4.4.1 Browsing databases
	 3.3.4.4.2 Viewing statements

	 3.3.4.5 Database
	 3.3.4.6 Statement database management
	 3.3.4.7 Configuration
	 3.3.4.7.1 Standard settings
	 3.3.4.7.2 Additional settings

	 3.4 Supporting core modules
	 3.4.1 Graphical User Interface component
	 3.4.1.1 Overview
	 3.4.1.2 Classes
	 3.4.1.2.1 Loader
	 3.4.1.2.2 FieldValidator
	 3.4.1.2.3 Link
	 3.4.1.2.4 Expression
	 3.4.1.2.5 Interface
	 3.4.1.2.6 InterfaceComponent

	 3.4.1.3 XML & XSL
	 3.4.1.4 JSP template
	 3.4.1.5 Configuration
	 3.4.1.5.1 Standard settings
	 3.4.1.5.2 Additional settings

	 3.4.2 User component
	 3.4.2.1 Overview
	 3.4.2.2 Classes
	 3.4.2.2.1 Loader
	 3.4.2.2.2 ProfileEntry
	 3.4.2.2.3 Profile
	 3.4.2.2.4 User

	 3.4.2.3 Functionalities
	 3.4.2.3.1 My homepage
	 3.4.2.3.2 View profile
	 3.4.2.3.3 View recommendations
	 3.4.2.3.4 Create a new project
	 3.4.2.3.5 Manage users

	 3.4.2.4 User management
	 3.4.2.5 Database
	 3.4.2.6 Configuration
	 3.4.2.6.1 Standard settings
	 3.4.2.6.2 Additional settings

	 3.4.3 Plugins
	 3.4.3.1 Overview
	 3.4.3.2 Plugin chain
	 3.4.3.3 Examples
	 3.4.3.3.1 AlterMessage
	 3.4.3.3.2 NotifyAdministrator
	 3.4.3.3.3 AlterContent
	 3.4.3.3.4 NotifyOriginalSender

	 3.4.4 Security
	 3.4.4.1 Overview
	 3.4.4.2 Security model
	 3.4.4.2.1 Role-based security model
	 3.4.4.2.1.1 Default
	 3.4.4.2.1.2 User
	 3.4.4.2.1.3 Worker
	 3.4.4.2.1.4 Admin
	 3.4.4.2.1.5 Super

	 3.4.4.2.2 Authorization
	 3.4.4.2.3 Authentication

	 3.4.4.3 Navigation

	 3.5 Research methodology
	 3.5.1 Research approach
	 3.5.1.1 What is development research and why do we use it?
	 3.5.1.2 What are the most common attributes of development research?
	 3.5.1.3 Why can this project be seen as development research?

	 3.5.2 Research method
	 3.5.2.1 Sampling
	 3.5.2.2 Data collection
	 3.5.2.3 Interpretation
	 3.5.2.4 Limitations

	 3.6 Summary

	 4 Chapter 4 - Implementations
	 4.1 Introduction
	 4.2 Implementations
	 4.2.1 DISSAnet
	 4.2.1.1 Overview
	 4.2.1.2 Client requirements
	 4.2.1.3 Features and functionalities
	 4.2.1.4 Lessons learned

	 4.2.2 IKS
	 4.2.2.1 Overview
	 4.2.2.2 Client requirements
	 4.2.2.3 Implementation and customisations
	 4.2.2.4 Lessons learned

	 4.2.3 IFLA-KM
	 4.2.3.1 Overview
	 4.2.3.2 Client requirements
	 4.2.3.3 Implementation and customisations
	 4.2.3.4 Lessons learned

	 4.2.4 The Wellness Firm
	 4.2.4.1 Overview
	 4.2.4.2 Client requirements
	 4.2.4.3 Implementation and customisations
	 4.2.4.4 Lessons learned

	 4.3 Summary

	 5 Chapter 5 – Conclusions and recommendations
	 5.1 Introduction
	 5.2 Summary findings regarding research objectives
	 5.2.1 What are the main components of current online collaborative workspaces as reported in the literature?
	 5.2.2 What are the main design principles and functionalities of such a collaborative workspace and how can they be integrated in developing a modular open source framework?
	 5.2.3 To what extent can such a framework be customised for implementation in new or existing collaborative projects?
	 5.2.4 What are the usability requirements of such an online collaborative workspace and how should one go about to test the usability of such a framework?
	 5.2.5 What are the user requirements and design specifications of an online collaborative workspace developed in open source software?
	 5.2.5.1 User requirements
	 5.2.5.2 Design specifications
	 5.2.5.3 Open source software

	 5.3 Reflections
	 5.3.1 Methodological reflection
	 5.3.2 Substantive reflection
	 5.3.3 Scientific reflection

	 5.4 Recommendations
	 5.4.1 Policy and practice
	 5.4.2 Future work

	 5.5 Final conclusions

	BACK
	Appendix A
	Content Configuration XML
	Page XML
	Discussion Forum configuration XML
	Repositories configuration XML
	Statement Database configuration XML
	Interface XML & XSL

