

Functional and structural characterization of the unique bifunctional enzyme complex involved in regulation of polyamine metabolism in *Plasmodium falciparum*

by

Lyn-Marié Birkholtz

Submitted in partial fulfilment of the requirements of the degree

Philosophiae Doctor

Department of Biochemistry School of Biological Sciences Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria

Oct 2002

© University of Pretoria

I wish to express my sincere gratitude to the following people:

- Prof. AI Louw, Department of Biochemistry, University of Pretoria, as supervisor of this project, for his guidance and encouragement, helpful suggestions and insightful ideas, moral support and willingness to allow discussions on many a subject;
- Prof. RD Walter, Department of Biochemistry, Berhard Nocht Institute of Tropical Medicine, Hamburg, Germany, Co-supervisor, who opened his research project and allowed collaborative studies between our groups. Without his generosity, guidance and insight, this project would not have been possible.
- Prof. AWH Neitz, Head of Department, Biochemistry, University of Pretoria, for always allowing time for valuable discussions;
- Dr. Fourie Joubert for introducing me to the field of bioinformatics, and his never-ending patience with a biologist trying to understand the world of informatics; Dr. Ben Mans, for always being available for numerous helpful discussions;
- Dr. Carsten Wrenger, for his support and help during research visits to Germany and to the students and technical assistants in Hamburg, for making an outsider feel like part of the team.
- Renate Filter, for the nucleotide sequencing facility at the University of Pretoria.
- Prof. C Sibley, Department of Genetics, University of Washington, Seattle, USA, for opening her home to me and being a continual inspiration;
- Dr. Athur Baca, University of Washington, Seattle, USA, for his gift of the pRIG plasmid before publication.

i

- My fellow students and friends, for helping me retain a balanced outlook on life during the course of the degree;
- My parents and family, for always being interested in my studies, for their continual love and support and for never letting me forget the most important things in life;
- My husband, Franz Birkholtz, for his endless love, patience and understanding, encouragement and unfailing support and belief in me. Without you, my life would not have turned out as it did. Forever and always;
- The Andrew F. Mellon Foundation for the Mellon Foundation Postgraduate Mentoring Fellowship. This Fellowship opened the world to me, both in terms of science but also on a personal level. The financial assistance contributed to lasting connections that was made with leading scientists that enabled this research to be performed and will allow its continuation.
- The German Academic Exchange Service (DAAD) for an International Scholarship for a short-term research visit to Germany, enabling continuation of collaborative work.
- The National Research Foundation and the University of Pretoria for financial assistance.
- God, for allowing me to try and understand some of the numerous mysteries of life.

TABLE OF CONTENTS

	PAGE
Acknowledgements	i
Table of Contents	iii
List of Figures	vii
List of Tables	x
Abbreviations	xi
	. 1
CHAPTER 1: Literature Overview	1
1.1 Malaria: The disease	3
1.2 The etiologic agents of malaria	3
1.2.1 Life cycle of the human malaria parasites	4
1.2.2 Ultrastructure of the erytrocytic stages of P. falciparum	6
1.3 Pathogenic basis and clinical features of malaria	8
1.4 Global control strategies of malaria	9
1.4.1 Chemotherapy and -prophylaxis	9
1.4.2 Strategies for vector control	12
1.4.3 Malaria vaccines	13
1.5 Biochemistry and metabolic pathways of <i>Plasmodium</i>	16
1.6 Polyamine metabolism	20
1.6.1 Polyamine metabolism in the parasitic protozoa	23
1.6.2 Polyamine metabolism as an antiprotozoal target	25
1.7 Research objectives	28
CHAPTER 2: Molecular genetic analyses of <i>P. falciparum</i> S-adenosylmethionine decarboxylase (<i>Adometdc</i>), ornithine decarboxylase (<i>Odc</i>) and the bifunctional	30
Adometac/Uac genes	20
2.1 Introduction 2.1.1 Genetic analyses of <i>Diagnodia</i>	30
2.1.1 Other analyses of <i>Fulsmoulu</i> 2.1.2 Molecular characteristics of the Adometics and Ode cones	30
2.1.2 The molecular characterisation of genes and their mRNAs	32
PADT I. Identification of Adomatic and Ode cDNAs with DACE	37
2 2 Materials and methods	37
2.2.1 In vitro cultivation of malaria narasites	37
2.2.2 Nucleic acid isolation from <i>P</i> falcinarum cultures	37
2.2.3 Nucleic acid quantification	39
2.2.4 Primer design	39
2.2.5 3'-RACE of Odc and Adometic cDNAs	40
2.2.6.5'-RACE of <i>P</i> falcingrum Odc cDNA	41
2.2.7 Agarose gel electrophoresis of PCR products	42
2.2.8 Purification of agarose-electrophoresed DNA fragments	42
2.2.9 Cloning protocols	43
2.2.10 A/T cloning strategies	45
2.2.11 Automated nucleotide sequencing	46
2.2.12 Northern blot analyses of <i>P. falciparum</i> total RNA with Odc-specific probe	47
2.3 Results	49
2.3.1 Primer design	49
2.3.2 3'-RACE of the P. falciparum Odc and Adometdc cDNA from the uncloned cDNA	52

library	
2.3.3 5'-RACE of Odc cDNA	55
2.3.4 Northern blot analyses of P. falciparum total RNA with Odc-specific probe	56
PART II: Molecular genetics of the full-length PfAdometdc/Odc	57
2.4 Materials and methods	57
2.4.1 Long-distance PCR of the full-length bifunctional PfAdometdc/Odc	57
2.4.2 In silico nucleotide sequence analyses of the PfAdometdc/Odc gene	58
2.5 Results	58
2.5.1 Amplification of the full-length cDNA of the bifunctional PfAdometdc/Odc	58
2.5.2 Analyses of the nucleotide sequence of the full-length PfAdometdc/Odc gene	59
2.5 Discussion	62
2.5.1 Design of Adometac and Odc-specific degenerate primers for 3'-RACE	62
2.5.2 Identification of the Odc and Adometdc cDNAs with 3'-RACE	63
2.5.3 Analyses of the mRNA transcript of Odc	63
2.5.4 5'-RACE of Adometac and Odc	64
2.5.5 Amplification of the full-length PfAdometdc/Odc	64
2.5.6 Genomic structure of PfAdometdc/Odc gene and structure of the single transcript	65
CHAPTER 3: Recombinant expression and characterisation of monofunctional AdoMetDC and ODC as well as bifunctional PfAdoMetDC/ODC of <i>P. falciparum</i>	68
3.1 Introduction	68
3.1.1 Ornithine decarboxylase	68
3.1.2 S-Adenosylmethionine decarboxylase	70
3.1.3 AdoMetDC and ODC in <i>P. falciparum</i>	73
3.1.4 Recombinant protein expression and analyses	74
3.2 Materials and methods	76
3.2.1 Recombinant expression of His-Tag fusion proteins	/0
3.2.2 Recombinant expression of Strep-Tag fusion proteins	79
3.2.3 Size-exclusion HPLC of the monotunctional ODC	/9
PfAdoMetDC/ODC	80
3.2.5 Quantitation of proteins	80
3.2.6 SDS-PAGE of proteins	80
3.2.7 AdoMetDC and ODC enzyme activity assays	81
3.2.8 In silico analyses of the predicted amino acid sequence of PfAdoMetDC/ODC	82
3.3 Results	83
3.3.1 Directional cloning strategy of individual ODC and AdoMetDC domains	83
3.3.2 Expression strategy of monofunctional AdoMetDC and ODC as well as bifunctional PfAdoMetDC/ODC	83
3.3.3 Recombinant expression of monofunctional AdoMetDC and ODC domains	84
3.3.4 Determination of the oligomeric state of the monofunctional AdoMetDC and ODC	87
3.3.5 Expression and purification of the bifunctional PfAdoMetDC/ODC	89
3.3.6 Decarboxylase activities of the monofunctional and bifunctional proteins	91
3.3.7 Analyses of the deduced amino acid sequence of the bifunctional PfAdoMetDC/ODC	92
3.4 Discussion	99
3.4.1 Heterologous expression of the decarboxylase proteins	99
3.4.2 Multimeric states of the monofunctional and bifunctional proteins	100
3.4.3 Decarboxylase activities of the monofunctional and bifunctional proteins	101
3 4 4 Sequence analyses of the deduced amino acid sequence of PfA doMetDC/ODC	102

bifunctional PfAdoMetDC/ODC	107	
4.1 Introduction	107	
4.2 Materials and methods		
4.2.1 Amino acid sequence and structural analyses	110	
4.2.2 Deletion mutagenesis	110	
4.2.3 Nucleotide sequencing of the various mutants	111	
4.2.4 Recombinant expression and purification of wild-type and mutant proteins	112	
4.2.5 Protein-protein interaction determinations	112	
4.2.6 Enzyme assays	113	
4.3 Results	114	
4.3.1 Explanations for the bifunctional nature of PfAdoMetDC/ODC	. 114	
4.3.2 Parasite-specific regions in PfAdoMetDC/ODC	115	
4.3.3 Sequence and structure analyses of the parasite-specific regions	117	
4.3.4 Deletion mutagenesis of parasite-specific regions in PfAdoMetDC/ODC	118	
4.3.5 Effect of deletion mutagenesis on the decarboxylase activities	120	
4.3.6 Deletion mutagenesis in the monofunctional AdoMetDC and ODC	121	
4.3.7 Oligomeric state of deletion mutant forms of PfAdoMetDC/ODC	122	
4.3.8 Complex forming ability of deletion mutants of monofunctional proteins	123	
4.4 Discussion	125	
4.4.1 Explanations for the bifunctional nature of PfAdoMetDC/ODC	125	
4.4.2 Defining the parasite-specific inserts in PfAdoMetDC/ODC	126	
4.4.3 Structural properties of the parasite-specific inserts	127	
4.4.4 Involvement of the parasite-specific inserts in the decarboxylase activities	128	
4.4.5 Characterisation of the physical association between the domains	129	
CHAPTER 5: Comparative properties of a homology model of the ODC component of PfAdoMetDC/ODC	132	
5.1 Introduction	132	
5.2 Materials and methods	137	
5.2 Materials and methods 5.2.1 <i>In silico</i> analyses of predicted structural motifs in PfODC	137 137	
5.2 Materials and methods 5.2.1 <i>In silico</i> analyses of predicted structural motifs in PfODC 5.2.2 Comparative modelling of monomeric PfODC	137 137 138	
 5.2 Materials and methods 5.2.1 <i>In silico</i> analyses of predicted structural motifs in PfODC 5.2.2 Comparative modelling of monomeric PfODC 5.2.3 Dimerisation of PfODC 	137 137 138 139	
 5.2 Materials and methods 5.2.1 <i>In silico</i> analyses of predicted structural motifs in PfODC 5.2.2 Comparative modelling of monomeric PfODC 5.2.3 Dimerisation of PfODC 5.2.4 Docking of ligands into the active site of dimeric PfODC 	137 137 138 139 139	
 5.2 Materials and methods 5.2.1 <i>In silico</i> analyses of predicted structural motifs in PfODC 5.2.2 Comparative modelling of monomeric PfODC 5.2.3 Dimerisation of PfODC 5.2.4 Docking of ligands into the active site of dimeric PfODC 5.2.5 Limited proteolysis studies 	137 137 138 139 139 140	
 5.2 Materials and methods 5.2.1 <i>In silico</i> analyses of predicted structural motifs in PfODC 5.2.2 Comparative modelling of monomeric PfODC 5.2.3 Dimerisation of PfODC 5.2.4 Docking of ligands into the active site of dimeric PfODC 5.2.5 Limited proteolysis studies 5.3 Results 	137 137 138 139 139 140 140	
 5.2 Materials and methods 5.2.1 <i>In silico</i> analyses of predicted structural motifs in PfODC 5.2.2 Comparative modelling of monomeric PfODC 5.2.3 Dimerisation of PfODC 5.2.4 Docking of ligands into the active site of dimeric PfODC 5.2.5 Limited proteolysis studies 5.3 Results 5.3.1 Structural classification of PfODC 	137 137 138 139 139 140 140 104	
 5.2 Materials and methods 5.2.1 <i>In silico</i> analyses of predicted structural motifs in PfODC 5.2.2 Comparative modelling of monomeric PfODC 5.2.3 Dimerisation of PfODC 5.2.4 Docking of ligands into the active site of dimeric PfODC 5.2.5 Limited proteolysis studies 5.3 Results 5.3.1 Structural classification of PfODC 5.3.2 Modelling monomeric PfODC 	137 137 138 139 139 140 140 104 104	
 5.2 Materials and methods 5.2.1 <i>In silico</i> analyses of predicted structural motifs in PfODC 5.2.2 Comparative modelling of monomeric PfODC 5.2.3 Dimerisation of PfODC 5.2.4 Docking of ligands into the active site of dimeric PfODC 5.2.5 Limited proteolysis studies 5.3 Results 5.3.1 Structural classification of PfODC 5.3.2 Modelling monomeric PfODC 5.3.3 Evaluation of the PfODC model quality and accuracy 	137 137 138 139 139 140 140 140 104 141 142	
 5.2 Materials and methods 5.2.1 <i>In silico</i> analyses of predicted structural motifs in PfODC 5.2.2 Comparative modelling of monomeric PfODC 5.2.3 Dimerisation of PfODC 5.2.4 Docking of ligands into the active site of dimeric PfODC 5.2.5 Limited proteolysis studies 5.3 Results 5.3.1 Structural classification of PfODC 5.3.2 Modelling monomeric PfODC 5.3.3 Evaluation of the PfODC model quality and accuracy 5.3.4 Characterisation of monomeric PfODC 	137 137 138 139 139 140 140 104 141 142 145	
 5.2 Materials and methods 5.2.1 <i>In silico</i> analyses of predicted structural motifs in PfODC 5.2.2 Comparative modelling of monomeric PfODC 5.2.3 Dimerisation of PfODC 5.2.4 Docking of ligands into the active site of dimeric PfODC 5.2.5 Limited proteolysis studies 5.3 Results 5.3.1 Structural classification of PfODC 5.3.2 Modelling monomeric PfODC 5.3.3 Evaluation of the PfODC model quality and accuracy 5.3.4 Characterisation of monomeric PfODC 5.3.5 Characterisation of dimeric PfODC 	137 137 138 139 139 140 140 140 104 141 142 145 146	
 5.2 Materials and methods 5.2.1 <i>In silico</i> analyses of predicted structural motifs in PfODC 5.2.2 Comparative modelling of monomeric PfODC 5.2.3 Dimerisation of PfODC 5.2.4 Docking of ligands into the active site of dimeric PfODC 5.2.5 Limited proteolysis studies 5.3 Results 5.3.1 Structural classification of PfODC 5.3.2 Modelling monomeric PfODC 5.3.3 Evaluation of the PfODC model quality and accuracy 5.3.4 Characterisation of monomeric PfODC 5.3.5 Characterisation of dimeric PfODC 5.3.6 Active site pocket of dimeric PfODC 	137 137 138 139 139 140 140 104 141 142 145 146 147	
 5.2 Materials and methods 5.2.1 <i>In silico</i> analyses of predicted structural motifs in PfODC 5.2.2 Comparative modelling of monomeric PfODC 5.2.3 Dimerisation of PfODC 5.2.4 Docking of ligands into the active site of dimeric PfODC 5.2.5 Limited proteolysis studies 5.3 Results 5.3.1 Structural classification of PfODC 5.3.2 Modelling monomeric PfODC 5.3.3 Evaluation of the PfODC model quality and accuracy 5.3.4 Characterisation of monomeric PfODC 5.3.5 Characterisation of dimeric PfODC 5.3.6 Active site pocket of dimeric PfODC 5.3.7 Analysis of the molecular surface of PfODC 	137 137 138 139 139 140 140 140 141 142 145 145 146 147 149	
 5.2 Materials and methods 5.2.1 <i>In silico</i> analyses of predicted structural motifs in PfODC 5.2.2 Comparative modelling of monomeric PfODC 5.2.3 Dimerisation of PfODC 5.2.4 Docking of ligands into the active site of dimeric PfODC 5.2.5 Limited proteolysis studies 5.3 Results 5.3.1 Structural classification of PfODC 5.3.2 Modelling monomeric PfODC 5.3.3 Evaluation of the PfODC model quality and accuracy 5.3.4 Characterisation of monomeric PfODC 5.3.5 Characterisation of dimeric PfODC 5.3.6 Active site pocket of dimeric PfODC 5.3.7 Analysis of the molecular surface of PfODC 5.3.8 Binding pocket of antizyme in PfODC 	137 137 138 139 139 140 140 140 140 144 141 142 145 146 147 149 150	
 5.2 Materials and methods 5.2.1 <i>In silico</i> analyses of predicted structural motifs in PfODC 5.2.2 Comparative modelling of monomeric PfODC 5.2.3 Dimerisation of PfODC 5.2.4 Docking of ligands into the active site of dimeric PfODC 5.2.5 Limited proteolysis studies 5.3 Results 5.3.1 Structural classification of PfODC 5.3.2 Modelling monomeric PfODC 5.3.3 Evaluation of the PfODC model quality and accuracy 5.3.4 Characterisation of monomeric PfODC 5.3.5 Characterisation of dimeric PfODC 5.3.6 Active site pocket of dimeric PfODC 5.3.7 Analysis of the molecular surface of PfODC 5.3.8 Binding pocket of antizyme in PfODC 5.3.9 Validation of the three-dimensional model with limited proteolysis 	137 137 138 139 139 140 140 140 140 141 142 145 146 147 149 150 151	
 5.2 Materials and methods 5.2.1 <i>In silico</i> analyses of predicted structural motifs in PfODC 5.2.2 Comparative modelling of monomeric PfODC 5.2.3 Dimerisation of PfODC 5.2.4 Docking of ligands into the active site of dimeric PfODC 5.2.5 Limited proteolysis studies 5.3 Results 5.3.1 Structural classification of PfODC 5.3.2 Modelling monomeric PfODC 5.3.3 Evaluation of the PfODC model quality and accuracy 5.3.4 Characterisation of monomeric PfODC 5.3.5 Characterisation of dimeric PfODC 5.3.6 Active site pocket of dimeric PfODC 5.3.7 Analysis of the molecular surface of PfODC 5.3.8 Binding pocket of antizyme in PfODC 5.3.9 Validation of the three-dimensional model with limited proteolysis 	137 137 138 139 139 140 140 140 140 141 142 145 146 147 149 150 151 153	
 5.2 Materials and methods 5.2.1 <i>In silico</i> analyses of predicted structural motifs in PfODC 5.2.2 Comparative modelling of monomeric PfODC 5.2.3 Dimerisation of PfODC 5.2.4 Docking of ligands into the active site of dimeric PfODC 5.2.5 Limited proteolysis studies 5.3 Results 5.3.1 Structural classification of PfODC 5.3.2 Modelling monomeric PfODC 5.3.3 Evaluation of the PfODC model quality and accuracy 5.3.4 Characterisation of monomeric PfODC 5.3.5 Characterisation of dimeric PfODC 5.3.6 Active site pocket of dimeric PfODC 5.3.7 Analysis of the molecular surface of PfODC 5.3.8 Binding pocket of antizyme in PfODC 5.3.9 Validation of the three-dimensional model with limited proteolysis 5.4 Discussion 5.4.1 Structural classification of PfODC 	137 137 138 139 139 140 140 140 140 104 141 142 145 146 147 149 150 151 153 153	
 5.2 Materials and methods 5.2.1 <i>In silico</i> analyses of predicted structural motifs in PfODC 5.2.2 Comparative modelling of monomeric PfODC 5.2.3 Dimerisation of PfODC 5.4 Docking of ligands into the active site of dimeric PfODC 5.2.5 Limited proteolysis studies 5.3 Results 5.3.1 Structural classification of PfODC 5.3.2 Modelling monomeric PfODC 5.3.3 Evaluation of the PfODC model quality and accuracy 5.3.4 Characterisation of monomeric PfODC 5.3.5 Characterisation of dimeric PfODC 5.3.6 Active site pocket of dimeric PfODC 5.3.7 Analysis of the molecular surface of PfODC 5.3.8 Binding pocket of antizyme in PfODC 5.3.9 Validation of the three-dimensional model with limited proteolysis 5.4 Discussion 5.4.1 Structural classification of PfODC 5.4.2 Comparative modelling of PfODC 	137 138 139 139 140 140 140 104 141 142 145 146 147 149 150 151 153 153 154	
 5.2 Materials and methods 5.2.1 <i>In silico</i> analyses of predicted structural motifs in PfODC 5.2.2 Comparative modelling of monomeric PfODC 5.2.3 Dimerisation of PfODC 5.2.4 Docking of ligands into the active site of dimeric PfODC 5.2.5 Limited proteolysis studies 5.3 Results 5.3.1 Structural classification of PfODC 5.3.2 Modelling monomeric PfODC 5.3.3 Evaluation of the PfODC model quality and accuracy 5.3.4 Characterisation of monomeric PfODC 5.3.5 Characterisation of dimeric PfODC 5.3.6 Active site pocket of dimeric PfODC 5.3.7 Analysis of the molecular surface of PfODC 5.3.9 Validation of the three-dimensional model with limited proteolysis 5.4 Discussion 5.4.1 Structural classification of PfODC 5.4.2 Comparative modelling of PfODC 5.4.3 Structural modelling of PfODC 5.4.3 Structural modelling of PfODC 	137 138 139 139 140 140 140 141 142 145 146 147 149 150 151 153 153 154 155	
 5.2 Materials and methods 5.2.1 <i>In silico</i> analyses of predicted structural motifs in PfODC 5.2.2 Comparative modelling of monomeric PfODC 5.2.3 Dimerisation of PfODC 5.2.4 Docking of ligands into the active site of dimeric PfODC 5.2.5 Limited proteolysis studies 5.3 Results 5.3.1 Structural classification of PfODC 5.3.2 Modelling monomeric PfODC 5.3.3 Evaluation of the PfODC model quality and accuracy 5.3.4 Characterisation of monomeric PfODC 5.3.5 Characterisation of monomeric PfODC 5.3.6 Active site pocket of dimeric PfODC 5.3.8 Binding pocket of antizyme in PfODC 5.3.9 Validation of the three-dimensional model with limited proteolysis 5.4 Discussion 5.4.1 Structural classification of PfODC 5.4.2 Comparative modelling of PfODC 5.4.3 Structural modelling of parasite-specific inserts in PfODC 5.4.4 Structural properties of active dimeric PfODC 	137 137 138 139 140 140 140 140 141 142 145 146 147 149 150 151 153 153 154 155 157	
 5.2 Materials and methods 5.2.1 <i>In silico</i> analyses of predicted structural motifs in PfODC 5.2.2 Comparative modelling of monomeric PfODC 5.2.3 Dimerisation of PfODC 5.2.4 Docking of ligands into the active site of dimeric PfODC 5.2.5 Limited proteolysis studies 5.3 Results 5.3.1 Structural classification of PfODC 5.3.2 Modelling monomeric PfODC 5.3.3 Evaluation of the PfODC model quality and accuracy 5.3.4 Characterisation of monomeric PfODC 5.3.5 Characterisation of dimeric PfODC 5.3.6 Active site pocket of dimeric PfODC 5.3.7 Analysis of the molecular surface of PfODC 5.3.8 Binding pocket of antizyme in PfODC 5.3.9 Validation of the three-dimensional model with limited proteolysis 5.4 Discussion 5.4.1 Structural classification of PfODC 5.4.3 Structural modelling of PfODC 5.4.3 Structural modelling of PfODC 5.4.3 Structural properties of active dimeric PfODC 5.4.5 Potential role of antizyme in regulation of PfODC 	137 137 138 139 140 140 140 141 142 145 146 147 149 150 151 153 153 154 155 157 158	

CHAPTER 6: Structure-based ligand binding and discovery of novel inhibitors against PFODC	160
6.1 Introduction	166
6.2 Materials and Methods	166
6.2.1 Docking of known inhibitors into the active site of dimeric PfODC	166
6.2.2 Discovery of novel ligands for PfODC	167
6 3 Results	168
6.3.1 Docking of known inhibitors in the active site of PfODC	168
6.3.2 Discovery of novel ligands for PfODC	171
6 4 Discussion	175
6.4.1 Structural evaluations for the inhibition of PRODC with known inhibitors	175
6.4.2 Identification of novel compounds that selectively bind PfODC	176
CHAPTER 7: Concluding Discussion	180
Summary	1 94
Opsomming	196
References	198
Appendix I	2 19

÷

LIST OF FIGURES

 Figure 1.1: Malaria distribution and problem areas. Figure 1.2: Bi-phasic life cycle of the <i>Plasmodium</i> parasite. Figure 1.3: Three-dimensional representations of the ultrastructure of the different erythrocytic stages of <i>P. falciparum</i>. Figure 1.4: Schematic representation of the interaction at the cytoadhesive interface between a <i>P. falciparum</i> infected erythrocyte and the host vascular endothelium. Figure 1.5: Overview of the current antimalarial drugs. Figure 1.5: Overview of the current antimalarial drugs. Figure 1.6: Global comparison of metabolomes. Figure 1.7: Structures of the most important polyamines. Figure 1.8: Polyamine metabolism in parasitic protozoa. Figure 2.1: RACE protocols with double strand adaptor-ligated cDNA and suppression PCR. Figure 2.2: Partial multiple-alignment of ODC (A) and AdoMetDC (B) amino acid sequences from different organisms. Figure 2.3: Schematic representation of the full-length <i>Adometalc</i> and <i>Odc</i> cDNAs. Figure 2.4: AACE DC for <i>Odc</i> cDNA with degenerate primer GSPL. Sigure 2.5: Amplification of the full-length <i>Odc</i> eDNA with 3'-RACE. Figure 2.5: Araptification of the full-length <i>Odc</i> eDNA with 3'-RACE. Figure 2.5: AraCE of the <i>Ode</i> cDNA with degenerate primer Sanded1. Figure 2.5: AraMCE Of the <i>Ode</i> cDNA with degenerate primer Sanded1. Figure 2.1: Nalyses of the transcript of the bifunctional <i>P/Adometa/cOde</i>. Figure 2.1: Nalyses of the charl-length <i>Odc</i> appeific probe and quality analyses. Figure 2.1: Analyses of the transcript of the bifunctional <i>P/Adometa/cOde</i>. Figure 2.1: Analyses of the transcript of the bifunctional <i>P/Adometa/cOde</i>. Figure 2.1: Analyses of the transcript of the bifunctional <i>P/Adometa/cOde</i>. Figure 3.1: Prodiced promotore area (250 b) for <i></i>		PAGE
 Figure 1.2: Bi-phasic life cycle of the <i>Plasmodium</i> parasite. Figure 1.2: Bi-phasic life cycle of the <i>Plasmodium</i> parasite. Figure 1.3: Three-dimensional representations of the ultrastructure of the different crythrocytic stages of <i>P</i>, <i>falciparum</i> infected crythrocyte and the host vascular endothelium. Figure 1.4: Schematic representation of the interaction at the cytoadhesive interface between a <i>P</i>. <i>falciparum</i> infected crythrocyte and the host vascular endothelium. Figure 1.5: Overview of the current antimalarial drugs. Figure 1.6: Global comparison of metabolomes. Figure 1.7: Structures of the most important polyamines. Figure 1.8: General pathway for the biosynthesis of the polyamines in pro- and cukaryotes and its inkage to the urea cycle, tricarboxylic acid cycle and methionine and adenine salvage pathways. Figure 2.1: RACE protocols with double strand adaptor-ligated cDNA and suppression PCR. Figure 2.2: Bartial multiple-alignment of ODC (A) and AdoMetDC (B) amino acid sequences from different organisms. Figure 2.3: Achematic representation of the gene-specific primers used for amplification and nucleotide sequencing of the full-length <i>Adometide</i> and <i>Odc</i> cDNAs. Figure 2.4: 3' - RACE PCR of the <i>Odc</i> cDNA with 3'-RACE. Figure 2.5: Amplification of the full-length <i>Odc</i> cDNA with 3'-RACE. Figure 2.8: Synthesis of a DIG-labelled <i>Odc</i>-specific probe and quality analyses. Figure 2.1: Analyses of the transcript of the bifunctional <i>PfAdometalcOdc</i>. Figure 2.1: Analyses of the transcript of the bifunctional <i>PfAdometalcOdc</i>. Figure 2.1: Analyses of the transcript of the bifunctional <i>PfAdometalcOdc</i>. Figure 2.1: Analyses of the transcript of the bifunctional <i>PfAdometalcOdc</i>. Figure 2.1: Analyses of the transcript of the bifunctional <i>PfAdometalcOdc</i>.	Figure 1.1. Malaria distribution and problem areas	2
 Figure 13: Three-dimensional representations of the ultrastructure of the different crythrocytic stages of <i>P</i>, falciparum. Figure 14: Schematic representation of the interaction at the cytoadhesive interface between a <i>P</i>. falciparum infected crythrocyte and the host vascular endothelium. Figure 14: Schematic representation of the interaction at the cytoadhesive interface between a <i>P</i>. falciparum infected crythrocyte and the host vascular endothelium. Figure 13: Structures of the most important polyamines. Figure 11: Structures of the most important polyamines. Figure 11: Schematic representation of the polyamines in pro- and cukaryotes and its linkage to the urea cycle, tricarboxylic acid cycle and methionine and adenine salvage pathways. Figure 21: RACE protocols with double strand adaptor-ligated cDNA and suppression PCR. Figure 22: Partial multiple-alignment of ODC (A) and AdoMetDC (B) amino acid sequences from different organisms. Figure 2.3: Schematic representation of the gene-specific primers used for amplification and nucleotide sequencing of the full-length <i>Adometida</i> and <i>Ode</i> cDNAs. Figure 2.5: Amplification of the full-length <i>Ode</i> cDNA with 3reACE. Figure 2.6: ArACE of the <i>Ode</i> cDNA with degenerate primer Samdcd1. Figure 2.7: 5'-RACE of the <i>Ode</i> cDNA with degenerate primer Samdcd1. Figure 2.9: Northern blot analyses of the transcript of the bifunctional <i>P/Adometide/Ode</i>. Figure 2.1: Analyses of chromosome 10 of <i>P</i>. <i>falciparum</i> containing the full-length ORE. Figure 2.1: Analyses of chromosome 10 of <i>P</i>. <i>falciparum</i> containing the full-length ORF for the bifunctional <i>P/Adometide/Ode</i>. Figure 2.1: Analyses of chromosome 10 of <i>P</i>. <i>falciparum</i> containing the full-length ORF for the bifunctional <i>P/Adometide/Ode</i>. Figure 3.1: Proposed mechanism for the conversion of ornithi	Figure 1.2: Bi-nhasic life cycle of the <i>Plasmodium</i> parasite	4
 stages of <i>P. faciparum</i>. Figure 1.4: Schematic representation of the interaction at the cytoadhesive interface between a <i>P. falciparum</i> interdet erythocyte and the host vascular endothelium. Figure 1.5: Overview of the current antimalarial drugs. Figure 1.5: Overview of the current antimalarial drugs. Figure 1.5: Structures of the most important polyamines. Figure 1.7: Structures of the most important polyamines. Figure 1.7: Structures of the most important polyamines. Figure 1.8: General pathway for the biosynthesis of the polyamines in pro- and eukaryotes and its inkage to the urea cycle, tricarboxylic acid cycle and methionine and adenine salvage pathways. Figure 2.1: RACE protocols with double strand adaptor-ligated cDNA and suppression PCR. Figure 2.2: Patial multiple-alignment of ODC (A) and AdoMetDC (B) amino acid sequences from different organisms. Figure 2.2: AradE of the <i>Odc</i> cDNA with degenerate primer GSP1. Figure 2.3: Schematic representation of the gene-specific primers used for amplification and mulciple of the full-length <i>Adometica</i> and <i>Odc</i> cDNA. Figure 2.4: 3'-RACE of the <i>Odc</i> cDNA with degenerate primer GSP1. Figure 2.4: 3'-RACE of the <i>Odc</i> cDNA with degenerate primer Samdcd1. Figure 2.4: Synthesis of a DIG-labelled <i>Odc</i>-specific probe and quality analyses. Figure 2.1: Analyses of the transcript of the bifunctional <i>P/Adometic/Odc</i>. Figure 2.1: Analyses of the full-length <i>bifunctional P/Adometic/Odc</i>. Figure 2.1: Analyses of chromosome 10 of <i>P. falciparum</i> motaning the full-length ORF for the bifunctional <i>P/Adometic/Odc</i>. Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by <i>T. brucei</i> ODC. Figure 3.2: Proposed reaction mechanism for the conversion of ornithine (Orn) to putrescine by <i>T. brucei</i>	Figure 1.3: Three-dimensional representations of the ultrastructure of the different erythrocytic	5
 Figure 1.4: Schematic representation of the interaction at the cytoadhesive interface between a <i>P. folciparum</i> infected erythrocyte and the host vascular endothelium. Figure 1.5: Overview of the current antimalarial drugs. Figure 1.5: Toructures of the most important polyamines. Figure 1.8: General pathway for the biosynthesis of the polyamines in pro- and eukaryotes and its linkage to the urea cycle, tricarboxylic acid cycle and methionine and adenine salvage pathways. Figure 1.9: Polyamine metabolism in parasitic protozoa. Figure 2.1: RACE protocols with double strand adaptor-ligated cDNA and suppression PCR. Figure 2.3: Schematic representation of the gene-specific primers used for amplification and nucleotide sequencing of the full-length Adometod and Odc cDNAs. Figure 2.4: 3'-RACE PCR of the Odc cDNA with degenerate primer GSP1. Figure 2.5: Amplification of the full-length Odc cDNA with 3'-RACE. Figure 2.6: 3'-RACE of the Admetod cDNA with 3'-RACE. Figure 2.7: 5'-RACE of the Admetod cDNA with 3'-RACE. Figure 2.8: Synthesis of a DIG-labelled Odc-specific probe and quality analyses. Figure 2.1: Analyses of chromosome 10 of P. <i>falciparum</i> containing the full-length ORF for the bifunctional <i>PfAdometa/Odc</i>. Figure 2.1: Analyses of chromosome 10 of P. <i>Pfalciparum</i> containing the full-length ORF for the <i>bifunctional PfAdometa/Odc</i>. Figure 2.1: Scondary structure prediction of the -2600 bp 5'-UTR of the bifunctional <i>PfAdometa/Odc</i>. Figure 3.2: Proposed mechanism for the econversion of onrithine (Orn) to putrescine by <i>T. brucei</i> of AdMetDC (Ad) and the decarboxylation of AdoMetDC/ODC. Figure 3.3: Schematic representation of the cultoral pfAdometa/Odc. Figure 2.1: Prodicted promoter area (250 bp) for <i>PfAdometa/Odc</i>. Figure 2.1: Prodicted promoter area (250 bp) for <i></i>	stages of P. falciparum.	5
 Figure 1.5: Overview of the current antimalarial drugs. Figure 1.5: Overview of the current antimalarial drugs. Figure 1.6: Global comparison of metabolomes. Figure 1.7: Structures of the most important polyamines. Figure 1.8: General pathway for the biosynthesis of the polyamines in pro- and cukaryotes and its linkage to the urea cycle, tricarboxylic acid cycle and methionine and adenine salvage pathways. Figure 1.9: Polyamine metabolism in parasitic protozoa. Figure 2.1: RACE protocols with double strand adaptor-ligated cDNA and suppression PCR. Figure 2.2: Partial multiple-alignment of ODC (A) and AdoMetDC (B) amino acid sequences from different organisms. Figure 2.3: Schematic representation of the gene-specific primers used for amplification and mulcitotie sequencing of the full-length Adometdc and Ode cDNAs. Figure 2.5: Amplification of the full-length Ode cDNA with 3'-RACE. Figure 2.7: 5'-RACE of the Ode cDNA with degenerate primer Samdcll. Figure 2.1: Nark Adometde ODA with degenerate primer Samdcll. Figure 2.1: Nark Adometed Ode specific probe and quality analyses. Figure 2.1: Analyses of chromosome 10 of P. <i>falciparum</i> containing the full-length ORF for the Ode. Figure 2.1: Analyses of chromosome 10 of P. <i>falciparum</i> containing the full-length ORF for the Ode. Figure 2.1: Analyses of chromosome 10 of P. <i>falciparum</i> containing the full-length ORF for the Ode. Figure 2.1: Scoendary structure prediction of the c-2600 bp 5'-UTR of the bifunctional <i>P/Adometde/Ode</i>. Figure 3.1: Schematic representation of the chorosomal organisation and general structures of the <i>P/Adometde/Ode</i> (G). Figure 3.2: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by <i>T. brucei</i> ODC. Figure 3.3: Schematic organisation of the choronsotrate of the <i></i>	Figure 1.4: Schematic representation of the interaction at the cytoadhesive interface between a <i>P. falciparum</i> infected erythrocyte and the host vascular endothelium.	8
Figure 1.6: Global comparison of metabolomes. 17 Figure 1.7: Structures of the most important polyamines. 21 Figure 1.7: Structures of the most important polyamines. 21 Figure 1.7: Structures of the most important polyamines. 22 Figure 1.9: Polyamine metabolism in parasitic protozoa. 24 Figure 2.1: RACE protocols with double strand adaptor-ligated cDNA and suppression PCR. 36 Figure 2.2: Partial multiple-alignment of ODC (A) and AdoMetDC (B) amino acid sequences from different organisms. 51 Figure 2.3: Schematic representation of the gene-specific primers used for amplification and mucleotide sequencing of the full-length Adometac and Odc cDNAs. 53 Figure 2.4: 3' -RACE PCR of the Odc cDNA with degenerate primer GSP1. 53 Figure 2.5: AnDE of the Odc cDNA with degenerate primer Samdcd1. 54 Figure 2.9: Northern blot analyses of the transcript of the bifunctional P/Adometa/Odc 57 Figure 2.1: Analyses of chromosome 10 of P. falciparum containing the full-length ORC CDNA 59 Figure 2.1: Prodicted promoter area (250 bp) for P/Adometa/C/Odc. 61 Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by 7. brucei ODC. 70 Figure 3.1: Scomdary structure precision of the chlometol: ODC from P. falciparum. 74 Figure 3.1: Proposed mechanism for the	Figure 1.5: Overview of the current antimalarial drugs.	10
Figure 1.7: Structures of the most important polyamines. 11 Figure 1.8: General pathway for the biosynthesis of the polyamines in pro- and eukaryotes and its linkage to the urea cycle, tricarboxylic acid cycle and methionine and adenine salvage pathways. 22 Figure 1.9: Polyamine metabolism in parasitic protozoa. 24 Figure 2.1: RACE protocols with double strand adaptor-ligated cDNA and suppression PCR. 36 Figure 2.2: Partial multiple-alignment of ODC (A) and AdoMetDC (B) amino acid sequences from different organisms. 51 Figure 2.3: Schematic representation of the gene-specific primers used for amplification and nucleotid sequencing of the full-length Adometac and Odc cDNAs. 51 Figure 2.4: 3' -RACE of the Adometac CDNA with degenerate primer GSP1. 53 Figure 2.5: Amplification of the full-length Odc cDNA with 3'-RACE. 53 Figure 2.6: Synthesis of a DIG-labelled Odc-specific probe and quality analyses. 56 Figure 2.9: Northern blot analyses of the transcript of the bifunctional P/Adometdc/Odc. 59 Figure 2.1: Analyses of chromosome 10 of P. falciparum containing the full-length OGR for the bifunctional P/Adometdc/Odc. 61 Figure 2.1: Schematic representation of the chromosomal organisation and general structures of the P/Adometdc/Odc. 62 Figure 2.1: Analyses of chromosome 10 of P. falciparum containing the full-length ORF for the bifunctional P/Adometdc/Odc. 61 Fi	Figure 1.6: Global comparison of metabolomes.	17
Figure 1.8: General pathway for the biosynthesis of the polyamines in pro- and cukaryotes and its linkage to the urea cycle, tricarboxylic acid cycle and methionine and adenine salvage pathways. 22 Figure 1.9: Polyamine metabolism in parasitic protozoa. 24 Figure 2.1: RACE protocols with double strand adaptor-ligated cDNA and suppression PCR. 36 Figure 2.2: Partial multiple-alignment of ODC (A) and AdoMetDC (B) amino acid sequences from different organisms. 50 Figure 2.3: Schematic representation of the gene-specific primers used for amplification and nucleotide sequencing of the full-length Adometac and Odc cDNAs. 51 Figure 2.6: 3' RACE of the Odc cDNA with degenerate primer GSP1. 53 Figure 2.7: 5' -RACE of the Odc cDNA with degenerate primer GSP1. 54 Figure 2.8: Synthesis of a DIG-labelled Odc-specific probe and quality analyses. 56 Figure 2.1: Analyses of chromosome 10 of P. falciparum containing the full-length Odc CDC. 57 Figure 2.1: Secondary structure prediction of the chromosomal organisation and general structures of the P/AdometoC/Odc. 61 Figure 2.1: Secondary structure prediction of the chromosomal organisation and general structures of the P/AdometoC/Odc. 62 Figure 2.1: Secondary structure prediction of the chromosomal organisation and general structures of the P/AdometoC/Odc (red). 62 Figure 3.1: Proposed mechanism for the conversion of oronithine (Orn) to putrescine by T. brucei ODC.	Figure 1.7: Structures of the most important polyamines.	21
linkage to the urea cycle, tricarboxylic acid cycle and methionine and adenine salvage pathways. 24 Figure 1.9: Polyamine metabolism in parasitic protozoa. 24 Figure 2.1: RACE protocols with double strand adaptor-ligated cDNA and suppression PCR. 36 Figure 2.2: Partial multiple-alignment of ODC (A) and AdoMetDC (B) amino acid sequences from different organisms. 50 Figure 2.3: Schematic representation of the gene-specific primers used for amplification and nucleotide sequencing of the full-length Adometac and Odc cDNAs. 51 Figure 2.4: 3' -RACE PCR of the Odc cDNA with degenerate primer Sanded1. 53 Figure 2.5: Amplification of the full-length Odc cDNA with 3'-RACE. 53 Figure 2.7: 5' -RACE of the Adometac ONA with degenerate primer Sanded1. 54 Figure 2.1: Suthesis of a DIG-labelled Odc-specific probe and quality analyses. 56 Figure 2.1: Analyses of the transcript of the bifunctional P/Adometac/Odc. 59 Figure 2.1: Analyses of chromosome 10 of P. falciparum containing the full-length ORF for the bifunctional P/Adometac/Odc. 61 Figure 2.1: Predicted promoter area (250 bp) for P/Adometac/Odc. 61 Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by T. brucei ODC. 70 Figure 3.2: Proposed reaction mechanism for the autocatalytic intramolecular activation of AdOMetDC (A) and the decarboxylation of AdOMetDC/ODC from P. falciparum.	Figure 1.8: General pathway for the biosynthesis of the polyamines in pro- and eukaryotes and its	22
Figure 1.9: Polyamine metabolism in parasitic protozoa. 24 Figure 2.1: RACE protocols with double strand adaptor-ligated cDNA and suppression PCR. 36 Figure 2.2: Partial multiple-alignment of ODC (A) and AdoMetDC (B) amino acid sequences from different organisms. 50 Figure 2.3: Schematic representation of the gene-specific primers used for amplification and nucleotide sequencing of the full-length Adometac and Odc cDNAs. 53 Figure 2.4: 3'-RACE PCR of the Odc cDNA with degenerate primer GSP1. 53 Figure 2.6: 3'-RACE of the Odc cDNA with degenerate primer Samdol1. 54 Figure 2.7: 5'-RACE of the Odc cDNA on the amplified, uncloned cDNA library and nested PCR strategy. 56 Figure 2.9: Northern blot analyses of the transcript of the bifunctional <i>PfAdometaC/Odc</i> . 59 Figure 2.10: Amplification of the full-length Odc (red). 57 Figure 2.11: Analyses of chromosome 10 of <i>P. falciparum</i> containing the full-length ORF for the bifunctional <i>PfAdometaC/Odc</i> . 59 Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by <i>T. brucei</i> ODC. 60 Figure 3.1: Proposed mechanism for the conversion of anofunctional AdoMetDC ODC. 70 Figure 3.1: Proposed mechanism for the conversion of AdoMetDC/ODC. 70 Figure 3.1: Proposed reaction of the bifunctional AdoMetDC or ODC. 71 Figure 3.2: Proposed reaction of the cl	linkage to the urea cycle, tricarboxylic acid cycle and methionine and adenine salvage pathways.	
Figure 2.1: RACE protocols with double strand adaptor-ligated cDNA and suppression PCR. 366 Figure 2.2: Partial multiple-alignment of ODC (A) and AdoMetDC (B) amino acid sequences from different organisms. 500 Figure 2.3: Schematic representation of the gene-specific primers used for amplification and nucleotide sequencing of the full-length Adometdc and Odc cDNAs. 51 Figure 2.4: 3' -RACE PCR of the Odc cDNA with degenerate primer GSP1. 53 Figure 2.5: Amplification of the full-length Odc cDNA with 3'-RACE. 53 Figure 2.7: 5' -RACE of the Adometdc cDNA with degenerate primer Samdod1. 54 Figure 2.9: Northern blot analyses of the transcript of the bifunctional P/Adometdc/Odc. 55 Figure 2.9: Northern blot analyses of the full-length bifunctional P/Adometdc/Odc. 57 Figure 2.11: Analyses of chromosome 10 of P. falciparum containing the full-length ORF for the bifunctional P/Adometdc/Odc. 61 Figure 2.12: Predicted promoter area (250 bp) for P/Adometdc/Odc. 61 Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by T. brucei ODC. 70 Figure 3.2: Proposed reaction mechanism for the autocatalytic intramolecular activation of AdoMetDC (A) and the decarboxylation of AdoMetDC/ODC. 72 Figure 3.1: Proposed mechanism for the cloning strategy for expression of monofunctional AdoMetDC and ODC or bifunctional PAdoMetDC/ODC. 72 Figure 3.2: Schemati	Figure 1.9: Polyamine metabolism in parasitic protozoa.	24
 Figure 2.2: Partial multiple-alignment of ODC (A) and AdoMetDC (B) amino acid sequences from different organisms. Figure 2.3: Schematic representation of the gene-specific primers used for amplification and nucleotide sequencing of the full-length Adometdc and Odc cDNAs. Figure 2.4: 3' - RACE PCR of the Odc cDNA with degenerate primer GSP1. Sigure 2.5: Amplification of the full-length Odc cDNA with 3'-RACE. Figure 2.6: 3'-RACE of the Odc cDNA on the amplified, uncloned cDNA library and nested PCR strategy. Figure 2.6: Northern blot analyses of the transcript of the bifunctional PfAdometdc/Odc. Figure 2.10: Amplification of the full-length bifunctional PfAdometdc/Odc. Figure 2.11: Analyses of chromosome 10 of P. falciparum containing the full-length ORF for the bifunctional PfAdometdc/Odc. Figure 2.12: Predicted promoter area (250 bp) for PfAdometdc/Odc. Figure 2.13: Secondary structure prediction of the chromosomal organisation and general structures of the PfAdometdc/Odc gene and its corresponding mRNA Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by T. brucei ODC. Figure 3.3: Schematic organisation of the bifunctional AdoMetDC ODC from P. falciparum. Figure 3.4: Schematic representation of the cloning strategy for expression of monofunctional AdoMetDC Condometod/ODC. Figure 3.5: His-tag fusion protein expression of monofunctional AdoMetDC Condometod/ODC. Figure 3.6: Expression HPLC of the monofunctional AdoMetDC CODC. Figure 3.7: Size-exclusion HPLC of the monofunctional AdoMetDC/ODC. Figure 3.8: SE-FPLC curve for separation of the conductional AdoMetDC/ODC. Figure 3.1: Schematic representation of the conductional PfAdometdc/Odc. Figure 3.3: Schematic representation of the bifunctional AdoMetDC/ODC. Figure 3.4: SE-FPL	Figure 2.1: RACE protocols with double strand adaptor-ligated cDNA and suppression PCR.	36
from different organisms. Figure 2.3: Schematic representation of the gene-specific primers used for amplification and mucleotide sequencing of the full-length Adometac and Odc cDNAs. Figure 2.4: 3' - RACE PCR of the Odc cDNA with degenerate primer GSP1. Figure 2.5: Amplification of the full-length Odc cDNA with 3'-RACE. Figure 2.6: 3'-RACE of the Odc cDNA on the amplified, uncloned cDNA library and nested PCR strategy. Figure 2.8: Synthesis of a DIG-labelled Odc-specific probe and quality analyses. Figure 2.9: Northern blot analyses of the transcript of the bifunctional P/Adometdc/Odc. Figure 2.1: Amplification of the full-length bifunctional P/Adometdc/Odc. Figure 2.1: Amplification of the full-length bifunctional P/Adometdc/Odc. Figure 2.1: Amplification of the full-length bifunctional P/Adometdc/Odc. Figure 2.1: Amplyses of chromosome 10 of P. falciparum containing the full-length ORF for the bifunctional P/Adometdc/Odc (red). Figure 2.1: Secondary structure prediction of the ~2600 bp 5'-UTR of the bifunctional P/AdoMetDC/ODC. Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by T. brucei ODC. Figure 3.2: Proposed reaction mechanism for the autocatalytic intramolecular activation of AdoMetDC (A) and the decarboxylation of AdoMetD(C)ODC from P. falciparum. Figure 3.3: Schematic organisation of the bifunctional AdoMetDC or ODC. Figure 3.5: His-tag fusion protein expression of monofunctional AdoMetDC or ODC. Figure 3.5: Size-exclusion HPLC of the monofunctional AdoMetDC or ODC. Figure 3.7: Size-exclusion HPLC of the monofunctional AdoMetDC. Figure 3.8: SE-FPLC curve for separation of the onfunctional AdoMetDC. Figure 3.8: SE-FPLC purification of the bifunctional AdoMetDC. Figure 3.1: Size-exclusion HPLC of the monofunctional AdoMetDC. Figure 3.1: Size-exclusion	Figure 2.2: Partial multiple-alignment of ODC (A) and AdoMetDC (B) amino acid sequences	50
 Figure 2.3: Schematic representation of the gene-specific primers used for amplification and nucleotide sequencing of the full-length Adometale and Ode cDNAs. Figure 2.4: 3' - RACE PCR of the Ode cDNA with degenerate primer GSP1. Figure 2.5: Amplification of the full-length Ode cDNA with 3'-RACE. Figure 2.7: 5' - RACE of the Ode cDNA on the amplified, uncloned cDNA library and nested PCR strategy. Figure 2.8: Synthesis of a DIG-labelled Ode-specific probe and quality analyses. Figure 2.9: Northern blot analyses of the transcript of the bifunctional P/Adometac/Ode. Figure 2.10: Amplification of the full-length bifunctional P/Adometac/Ode. Figure 2.11: Analyses of chromosome 10 of P. falciparum containing the full-length ORF for the bifunctional P/Adometac/Ode. Figure 2.12: Predicted promoter area (250 bp) for P/Adometac/Ode. Figure 2.13: Secondary structure prediction of the chromosomal organisation and general structures of the P/Adometac/Ode gene and its corresponding mRNA Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by T. brucei ODC. Figure 3.2: Schematic regresentation of the autocatalytic intramolecular activation of AdoMetDC and ODC or bifunctional PAdoMetDC/ODC from P. falciparum. Figure 3.5: His-tag fusion protein expression of monofunctional AdoMetDC or ODC. Figure 3.5: His-tag fusion protein expression of monofunctional AdoMetDC CODC. Figure 3.8: SP-FPLC curve for separation of the monofunctional AdoMetDC. Figure 3.8: SP-FPLC purification of the emonofunctional AdoMetDC. Figure 3.1: Schematic representation of the monofunctional AdoMetDC. Figure 3.5: SIS-FAGE for the recombinantly expressed bifunctional AdoMetDC. Figure 3.6: Size-exclusion HPLC of the monofunctional AdoMetDC. Figure 3.7: Size-exclusion HPLC of	from different organisms.	
nucleotide sequencing of the full-length Adometdc and Odc cDNAs. Figure 2.4: 3' - RACE PCR of the Odc cDNA with degenerate primer GSP1. 53 Figure 2.5: Amplification of the full-length Odc cDNA with 3'-RACE. 53 Figure 2.6: 3'-RACE of the Odc cDNA with degenerate primer Samdcd1. 54 Figure 2.7: 5' -RACE of the Odc cDNA on the amplified, uncloned cDNA library and nested PCR strategy. 56 Figure 2.8: Synthesis of a DIG-labelled Odc-specific probe and quality analyses. 56 Figure 2.10: Amplification of the full-length bifunctional <i>PfAdometdc/Odc</i> 57 Figure 2.10: Amplification of the full-length bifunctional <i>PfAdometdc/Odc</i> . 59 Figure 2.11: Analyses of chromosome 10 of <i>P. falciparum</i> containing the full-length ORF for the bifunctional <i>PfAdometdc/Odc</i> (red). 61 Figure 2.12: Predicted promoter area (250 bp) for <i>PfAdometdc/Odc</i> . 61 Figure 3.1: Sceondary structure prediction of the chromosomal organisation and general structures of the <i>PfAdometdc/Odc</i> gene and its corresponding mRNA 70 Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by <i>T. brucei</i> ODC. 71 Figure 3.2: Proposed mechanism for the cloning strategy for expression of monofunctional <i>AdoMetDC</i> (A) and the decarboxylation of AdoMet (B). 72 Figure 3.5: His-tag fusion protein expression of monofunctional AdoMetDC or ODC. 74 Figure 3.7: Size-exclusion HPLC of the monofunctional AdoMetDC or ODC. 74 Figure 3.7: Size-exclusion HPLC of the monofunctional AdoMetDC. 55 Figure 3.7: Size-exclusion HPLC of the monofunctional AdoMetDC. 50 Figure 3.8: SE-FPLC curve for separation of the ofmonofunctional AdoMetDC. 50 Figure 3.1: SDS-PAGE of the recombinantly expressed bifunctional PfAdoMetDC/ODC. 70 Figure 3.1: Size-exclusion HPLC of the monofunctional AdoMetDC. 50 Figure 3.1: Size-exclusion HPLC of the monofunctional AdoMetDC. 50 Figure 3.1: Size-exclusion HPLC of the monofunctional AdoMetDC. 50 Figure 3.1: Size-trepLC purification of the bifunctional PfAdoMetDC/ODC. 50 Figure 3.1: Schematic representation of th	Figure 2.3: Schematic representation of the gene-specific primers used for amplification and	51
 Figure 2.4: 3' -RACE PCR of the Odc cDNA with degenerate primer GSP1. Figure 2.5: Amplification of the full-length Odc cDNA with 3'-RACE. Figure 2.5: Amplification of the full-length Odc cDNA with 3'-RACE. Figure 2.7: 5' -RACE of the Adometac CDNA with degenerate primer Samdcd1. Figure 2.7: 5' -RACE of the Odc cDNA on the amplified, uncloned cDNA library and nested PCR strategy. Figure 2.8: Synthesis of a DIG-labelled Odc-specific probe and quality analyses. Figure 2.9: Northern blot analyses of the transcript of the bifunctional P/Adometac/Odc. Figure 2.10: Amplification of the full-length bifunctional P/Adometac/Odc. Figure 2.11: Analyses of chromosome 10 of P. falciparum containing the full-length ORF for the bifunctional P/Adometac/Odc (red). Figure 2.12: Predicted promoter area (250 bp) for P/Adometac/Odc. Figure 2.13: Secondary structure prediction of the ~2600 bp 5'-UTR of the bifunctional P/Adometac/Odc Gene and its corresponding mRNA Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by T. brucei ODC. Figure 3.2: Proposed reaction mechanism for the autocatalytic intramolecular activation of AdOMetDC (ODC from P. falciparum. Figure 3.4: Schematic representation of the bifunctional AdoMetDC/ODC from P. falciparum. Figure 3.5: His-tag fusion protein expression of monofunctional AdoMetDC or ODC. Figure 3.6: Expression of monofunctional AdoMetDC or ODC. Figure 3.7: Size-exclusion HPLC of the monofunctional AdoMetDC. Figure 3.8: SE-FPLC curve for separation of the monofunctional AdoMetDC. Figure 3.10: SL-FPLC purification of the bifunctional PfAdoMetDC/ODC. Figure 3.10: SL-FPLC purification of the bifunctional PfAdoMetDC/ODC. Figure 3.2: SDS-PAGE of the recombinantly expressed bifunctional AdoMetDC. Figure 3.10: SL-FPLC purification of the bifunctional PfAdoMetDC/ODC. Figur	nucleotide sequencing of the full-length Adometac and Odc cDNAs.	
Figure 2.5: Amplification of the full-length Odc cDNA with 3'-RACE. 53 Figure 2.6: 3'-RACE of the Adometic cDNA with degenerate primer Samdcd1. 54 Figure 2.7: 5'-RACE of the Odc cDNA on the amplified, uncloned cDNA library and nested PCR strategy. 55 Figure 2.8: Synthesis of a DIG-labelled Odc-specific probe and quality analyses. 56 Figure 2.9: Northern blot analyses of the transcript of the bifunctional PfAdometdc/Odc. 59 Figure 2.10: Amplification of the full-length bifunctional PfAdometdc/Odc. 59 Figure 2.12: Predicted promoter area (250 bp) for PfAdometdc/Odc. 61 Figure 2.13: Secondary structure prediction of the chromosomal organisation and general structures of the PfAdometdc/Odc gene and its corresponding mRNA 67 Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by T. brucei ODC. 70 Figure 3.2: Proposed reaction mechanism for the autocatalytic intramolecular activation of AdOMetDC ADC or ODC. 85 Figure 3.4: Schematic representation of the cloning strategy for expression of monofunctional AdOMetDC/ODC from P. falciparum. 74 Figure 3.5: His-tag fusion protein expression of monofunctional AdOMetDC on ODC. 85 Figure 3.7: Size-exclusion HPLC of the monofunctional AdOMetDC. 89 Figure 3.8: SE-FPLC curve for separation of the onofunctional AdOMetDC. 89 Figure 3.1: Schematic re	Figure 2.4: 3' -RACE PCR of the Odc cDNA with degenerate primer GSP1.	53
Figure 2.6: 3'-RACE of the Adometac cDNA with degenerate primer Samdcd1. 54 Figure 2.7: 5' -RACE of the Odc cDNA on the amplified, uncloned cDNA library and nested PCR strategy. 55 Figure 2.8: Synthesis of a DIG-labelled Odc-specific probe and quality analyses. 56 Figure 2.10: Amplification of the full-length bifunctional PfAdometac/Odc. 59 Figure 2.11: Analyses of chromosome 10 of P. falciparum containing the full-length ORF for the bifunctional PfAdometac/Odc. 61 Figure 2.12: Predicted promoter area (250 bp) for PfAdometac/Odc. 61 Figure 2.13: Secondary structure prediction of the chromosomal organisation and general structures of the PfAdometac/Odc gene and its corresponding mRNA 67 Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by T. brucei ODC. 70 Figure 3.4: Schematic representation of the cloning strategy for expression of monofunctional AdoMetDC (ODC and ODC or bifunctional PfAdOmetac/Odc term. 74 Figure 3.4: Schematic representation of the cloning strategy for expression of monofunctional AdoMetDC or ODC. 72 Figure 3.4: Schematic representation of the cloning strategy for expression of monofunctional AdoMetDC or ODC. 85 Figure 3.4: Schematic representation of the cloning strategy for expression of monofunctional AdOMetDC or ODC. 85 Figure 3.5: His-tag fusion protein expression of monofunctional AdOMetDC or ODC. 85 <	Figure 2.5: Amplification of the full-length Odc cDNA with 3'-RACE.	53
Figure 2.7: 5' -RACE of the Odc CDNA on the amplified, uncloned cDNA library and nested PCR strategy. 55 Figure 2.8: Synthesis of a DIG-labelled Odc-specific probe and quality analyses. 56 Figure 2.9: Northern blot analyses of the transcript of the bifunctional P/Adometdc/Odc 57 Figure 2.10: Amplification of the full-length bifunctional P/Adometdc/Odc. 59 Figure 2.11: Analyses of chromosome 10 of P. falciparum containing the full-length ORF for the bifunctional P/Adometdc/Odc (red). 61 Figure 2.13: Secondary structure prediction of the ~2600 bp 5'-UTR of the bifunctional P/AdoMetDC/ODC. 61 Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by T. brucei ODC. 70 Figure 3.2: Proposed mechanism for the conversion of AdoMet (B). 71 Figure 3.3: Schematic representation of the bifunctional AdoMetDC/ODC from P. falciparum. 74 Figure 3.4: Schematic representation of the cloning strategy for expression of monofunctional AdoMetDC (A) and the decarboxylation of AdoMetDC/ODC. 72 Figure 3.4: Schematic representation of the cloning strategy for expression of monofunctional AdoMetDC or ODC. 85 Figure 3.6: Expression of monofunctional AdoMetDC and ODC or bifunctional PfAdoMetDC/ODC. 85 Figure 3.7: Size-exclusion HPLC of the monofunctional AdoMetDC. 89 Figure 3.9: SDS-PAGE of the recombinantly expressed bifunctional PfAdoMetDC/ODC.	Figure 2.6: 3'-RACE of the <i>Adometic</i> cDNA with degenerate primer Samdcd1	54
strategy. Figure 2.8: Synthesis of a DIG-labelled Odc-specific probe and quality analyses. 56 Figure 2.9: Northern blot analyses of the transcript of the bifunctional P/Adometdc/Odc. 57 Figure 2.10: Amplification of the full-length bifunctional P/Adometdc/Odc. 59 Figure 2.11: Analyses of chromosome 10 of P. falciparum containing the full-length ORF for the bifunctional P/Adometdc/Odc (red). 61 Figure 2.12: Predicted promoter area (250 bp) for P/Adometdc/Odc. 61 Figure 2.13: Secondary structure prediction of the -2600 bp 5'-UTR of the bifunctional P/Adometdc/Odc (red). 61 Figure 2.14: Schematic representation of the chromosomal organisation and general structures of the PfAdometdc/Odc gene and its corresponding mRNA 67 Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by T. brucei ODC. 70 Figure 3.2: Proposed reaction mechanism for the autocatalytic intramolecular activation of AdoMetDC (A) and the decarboxylation of AdoMetDC/ODC from P. falciparum. 74 Figure 3.4: Schematic organisation of the bifunctional AdoMetDC/ODC. 85 Figure 3.5: His-tag fusion protein expression of monofunctional AdoMetDC or ODC. 85 Figure 3.6: Expression of monofunctional AdoMetDC and ODC as Strep-tag proteins. 86 Figure 3.7: Size-exclusion HPLC of the monofunctional ODC purified with affinity chromatography. 89 Figure 3.9: SDS-PAGE of	Figure 2.7: 5' -RACE of the Odc cDNA on the amplified uncloned cDNA library and nested PCR.	55
Figure 2.8: Synthesis of a DIG-labelled Odc-specific probe and quality analyses. 566 Figure 2.9: Northern blot analyses of the transcript of the bifunctional PfAdometdc/Odc. 577 Figure 2.10: Amplification of the full-length bifunctional PfAdometdc/Odc. 599 Figure 2.11: Analyses of chromosome 10 of P. falciparum containing the full-length ORF for the bifunctional PfAdometdc/Odc. 611 Figure 2.12: Predicted promoter area (250 bp) for PfAdometdc/Odc. 611 Figure 2.13: Secondary structure prediction of the ~2600 bp 5'-UTR of the bifunctional PfAdoMetDC/ODC. 612 Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by T. brucei ODC. 700 Figure 3.1: Proposed mechanism for the autocatalytic intramolecular activation of AdoMetDC (A) and the decarboxylation of AdoMetDC/ODC from P. falciparum. 74 Figure 3.3: Schematic representation of the bifunctional AdoMetDC/ODC from P. falciparum. 74 Figure 3.5: His-tag fusion protein expression of monofunctional AdoMetDC/ODC. 85 Figure 3.6: Expression of monofunctional AdoMetDC and ODC purified with affinity chromatography. 86 Figure 3.9: SDS-PAGE of the recombinantly expressed bifunctional PfAdoMetDC/ODC. 89 Figure 3.11: Schematic representation of the bifunctional AdoMetDC. 89 Figure 3.12: Multiple alignment of the bifunctional PfAdoMetDC/ODC. 85 Figu	strategy	
Figure 2.9: Northern blot analyses of the transcript of the bifunctional <i>PfAdometdc/Odc</i> . 57 Figure 2.10: Amplification of the full-length bifunctional <i>PfAdometdc/Odc</i> . 59 Figure 2.11: Analyses of chromosome 10 of <i>P. falciparum</i> containing the full-length ORF for the bifunctional <i>PfAdometdc/Odc</i> . 61 Figure 2.12: Predicted promoter area (250 bp) for <i>PfAdometdc/Odc</i> . 61 Figure 2.13: Secondary structure prediction of the ~2600 bp 5'-UTR of the bifunctional <i>PfAdoMetDC/ODC</i> . 62 Figure 3.1: Schematic representation of the chromosomal organisation and general structures of the <i>PfAdometdc/Odc</i> gene and its corresponding mRNA 70 Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by <i>T. brucei</i> ODC. 71 Figure 3.2: Proposed reaction mechanism for the autocatalytic intramolecular activation of AdOMetDC (A) and the decarboxylation of AdOMet (B). 72 Figure 3.4: Schematic representation of the bifunctional <i>PfAdoMetDC/ODC</i> . 73 Figure 3.5: Schematic organisation of the bifunctional AdOMetDC/ODC. 74 Figure 3.6: Expression of monofunctional <i>PfAdoMetDC and ODC</i> or bifunctional <i>AdoMetDC and ODC</i> or ODC. 85 Figure 3.7: Size-exclusion HPLC of the monofunctional AdOMetDC or ODC. 85 Figure 3.6: Expression of monofunctional AdOMetDC and ODC purified with affinity chromatography. 88 Figure 3.8: SE-FPLC curve for separation of the monofunctio	Figure 2.8: Synthesis of a DIG-labelled Odc-specific probe and quality analyses.	56
Figure 2.10: Amplification of the full-length bifunctional <i>PfAdometdc/Odc.</i> 59 Figure 2.11: Analyses of chromosome 10 of <i>P. falciparum</i> containing the full-length ORF for the bifunctional <i>PfAdometdc/Odc.</i> 61 Figure 2.12: Predicted promoter area (250 bp) for <i>PfAdometdc/Odc.</i> 61 Figure 2.13: Secondary structure prediction of the ~2600 bp 5'-UTR of the bifunctional <i>PfAdometdc/Odc.</i> 61 Figure 2.14: Schematic representation of the chromosomal organisation and general structures of the <i>PfAdometdc/Odc</i> gene and its corresponding mRNA 67 Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by <i>T. brucei</i> ODC. 70 Figure 3.2: Proposed reaction mechanism for the autocatalytic intramolecular activation of AdoMetDC (A) and the decarboxylation of AdoMet (B). 74 Figure 3.3: Schematic representation of the cloning strategy for expression of monofunctional AdoMetDC and ODC or bifunctional PfAdoMetDC/ODC. 75 Figure 3.5: His-tag fusion protein expression of monofunctional AdoMetDC or ODC. 85 Figure 3.7: Size-exclusion HPLC of the monofunctional ODC purified with affinity chromatography. 89 Figure 3.9: SDS-PAGE of the recombinantly expressed bifunctional PfAdoMetDC/ODC. 90 Figure 3.11: Schematic representation of the active forms of the monofunctional AdoMetDC and ODC or the bifunctional PfAdoMetDC/ODC. 89 Figure 3.6: Expression of monofunctional AdoMetDC and ODC as Strep-tag proteins. <td>Figure 2.9: Northern blot analyses of the transcript of the bifunctional <i>PfAdometdc/Odc</i></td> <td>57</td>	Figure 2.9: Northern blot analyses of the transcript of the bifunctional <i>PfAdometdc/Odc</i>	57
Figure 2.11: Analyses of chromosome 10 of <i>P. falciparum</i> containing the full-length ORF for the bifunctional <i>PfAdometdc/Odc</i> (red). 61 Figure 2.12: Predicted promoter area (250 bp) for <i>PfAdometdc/Odc</i> . 61 Figure 2.13: Secondary structure prediction of the ~2600 bp 5'-UTR of the bifunctional <i>PfAdoMetDC/ODC</i> . 61 Figure 2.14: Schematic representation of the chromosomal organisation and general structures of the <i>PfAdometdc/Odc</i> gene and its corresponding mRNA 67 Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by <i>T. brucei</i> ODC. 70 Figure 3.2: Proposed reaction mechanism for the autocatalytic intramolecular activation of AdoMetDC (A) and the decarboxylation of AdoMet (B). 72 Figure 3.3: Schematic representation of the cloning strategy for expression of monofunctional AdoMetDC and ODC or bifunctional PfAdoMetDC/ODC. 74 Figure 3.5: His-tag fusion protein expression of monofunctional AdoMetDC or ODC. 85 Figure 3.6: Expression of monofunctional AdoMetDC and ODC as Strep-tag proteins. 86 Figure 3.7: Size-exclusion HPLC of the monofunctional AdoMetDC. 89 Figure 3.9: SDS-PAGE of the recombinantly expressed bifunctional PfAdoMetDC/ODC. 80 Figure 3.11: Schematic representation of the bifunctional PfAdoMetDC/ODC. 80 Figure 3.11: Schematic representation of the bifunctional AdoMetDC on ODC. 80 Figure 3.6: Expression of monofunction	Figure 2.10; Amplification of the full-length bifunctional <i>PfAdometdc/Odc</i> .	59
bifunctional PfAdometdc/Odc (red). 61 Figure 2.12: Predicted promoter area (250 bp) for PfAdometdc/Odc. 61 Figure 2.13: Secondary structure prediction of the ~2600 bp 5'-UTR of the bifunctional PfAdoMetDC/ODC. 62 Figure 2.14: Schematic representation of the chromosomal organisation and general structures of the PfAdometdc/Odc gene and its corresponding mRNA 67 Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by T. brucei ODC. 70 Figure 3.2: Proposed reaction mechanism for the autocatalytic intramolecular activation of AdoMetDC (A) and the decarboxylation of AdoMet (B). 72 Figure 3.3: Schematic representation of the bifunctional AdoMetDC/ODC from P. falciparum. 74 Figure 3.4: Schematic representation of the cloning strategy for expression of monofunctional 84 74 AdoMetDC and ODC or bifunctional PfAdoMetDC/ODC. 85 Figure 3.5: His-tag fusion protein expression of monofunctional AdoMetDC or ODC. 85 Figure 3.7: Size-exclusion HPLC of the monofunctional ODC purified with affinity chromatography. 86 Figure 3.10: SE-FPLC curve for separation of the bifunctional PfAdoMetDC/ODC. 90 Figure 3.11: Schematic representation of the bifunctional PfAdoMetDC/ODC. 90 Figure 3.10: SE-FPLC purification of the bifunctional PfAdoMetDC/ODC. 90 Figure 3.10: SE-FPLC purification of the bifunctional Pf	Figure 2.11: Analyses of chromosome 10 of <i>P. falciparum</i> containing the full-length ORF for the	61
Figure 2.12: Predicted promoter area (250 bp) for <i>PfAdometdc/Odc</i> . 61 Figure 2.13: Secondary structure prediction of the ~2600 bp 5'-UTR of the bifunctional <i>PfAdoMetDC/ODC</i> . 62 Figure 2.14: Schematic representation of the chromosomal organisation and general structures of the <i>PfAdometdc/Odc</i> gene and its corresponding mRNA 67 Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by <i>T. brucei</i> ODC. 70 Figure 3.2: Proposed reaction mechanism for the autocatalytic intramolecular activation of AdoMetDC (A) and the decarboxylation of AdoMet (B). 72 Figure 3.3: Schematic organisation of the bifunctional PfAdoMetDC/ODC. 74 Figure 3.4: Schematic representation of the cloning strategy for expression of monofunctional AdoMetDC and ODC or bifunctional PfAdoMetDC/ODC. 85 Figure 3.5: His-tag fusion protein expression of monofunctional AdoMetDC or ODC. 85 Figure 3.6: Expression of monofunctional AdoMetDC and ODC as Strep-tag proteins. 86 Figure 3.7: Size-exclusion HPLC of the monofunctional AdoMetDC. 89 Figure 3.9: SDS-PAGE of the recombinantly expressed bifunctional PfAdoMetDC/ODC. 90 Figure 3.11: Schematic representation of the bifunctional PfAdoMetDC/ODC. 90 Figure 3.2: Troposed reaction mechanism for the active forms of the monofunctional AdoMetDC and ODC or the bifunctional PfAdoMetDC/ODC. 90 Figure 3.10: SE-FPLC curve for separatio	bifunctional PfAdometdc/Odc (red).	
Figure 2.13: Secondary structure prediction of the ~2600 bp 5'-UTR of the bifunctional 62 PfAdoMetDC/ODC. Figure 2.14: Schematic representation of the chromosomal organisation and general structures of the PfAdometdc/Odc gene and its corresponding mRNA 67 Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by T. brucei 70 ODC. 71 70 Figure 3.2: Proposed reaction mechanism for the autocatalytic intramolecular activation of AdoMetDC (A) and the decarboxylation of AdoMet(B). 72 Figure 3.3: Schematic organisation of the bifunctional AdoMetDC/ODC from P. falciparum. 74 Figure 3.4: Schematic representation of the cloning strategy for expression of monofunctional AdoMetDC or ODC. 85 Figure 3.5: His-tag fusion protein expression of monofunctional AdoMetDC or ODC. 85 Figure 3.6: Expression of monofunctional AdoMetDC and ODC as Strep-tag proteins. 86 Figure 3.7: Size-exclusion HPLC of the monofunctional ODC purified with affinity chromatography. 89 Figure 3.10: SE-FPLC curve for separation of the bifunctional PfAdoMetDC/ODC. 90 Figure 3.11: Schematic representation of the bifunctional PfAdoMetDC/ODC. 90 Figure 3.12: Multiple alignment of the bifunctional PfAdoMetDC/ODC. 91 ODC or the bifunctional PfAdoMetDC/ODC. 91 Figure 3.12: Multiple alignment of the bifu	Figure 2.12: Predicted promoter area (250 bp) for PfAdometdc/Odc.	61
Figure 2.14: Schematic representation of the chromosomal organisation and general structures of the <i>PfAdometdc/Odc</i> gene and its corresponding mRNA 67 Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by <i>T. brucei</i> ODC. 70 Figure 3.2: Proposed reaction mechanism for the autocatalytic intramolecular activation of AdoMetDC (A) and the decarboxylation of AdoMet (B). 72 Figure 3.3: Schematic organisation of the bifunctional AdoMetDC/ODC from <i>P. falciparum</i> . 74 Figure 3.4: Schematic representation of the cloning strategy for expression of monofunctional AdoMetDC and ODC or bifunctional PfAdoMetDC/ODC. 85 Figure 3.5: His-tag fusion protein expression of monofunctional AdoMetDC or ODC. 85 Figure 3.6: Expression of monofunctional AdoMetDC and ODC as Strep-tag proteins. 86 Figure 3.8: SE-FPLC curve for separation of the monofunctional AdoMetDC. 89 Figure 3.9: SDS-PAGE of the recombinantly expressed bifunctional PfAdoMetDC/ODC. 90 Figure 3.10: SE-FPLC purification of the active forms of the monofunctional AdoMetDC and ODC and ODC or the bifunctional PfAdoMetDC/ODC. 90 Figure 3.1: Schematic representation of the active forms of the monofunctional AdoMetDC and ODC and ODC and ODC or the bifunctional PfAdoMetDC/ODC. 90 Figure 3.10: SE-FPLC purification of the bifunctional PfAdoMetDC/ODC. 90 Figure 3.11: Schematic representation of the bifunctional PfAdoMetDC/ODC. 90<	Figure 2.13: Secondary structure prediction of the ~2600 bp 5'-UTR of the bifunctional <i>PfAdoMetDC/ODC</i> .	62
Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by <i>T. brucei</i> 70 ODC. Figure 3.2: Proposed reaction mechanism for the autocatalytic intramolecular activation of AdoMetDC (A) and the decarboxylation of AdoMet (B). 72 Figure 3.3: Schematic organisation of the bifunctional AdoMetDC/ODC from <i>P. falciparum</i> . 74 Figure 3.4: Schematic representation of the cloning strategy for expression of monofunctional AdoMetDC and ODC or bifunctional PfAdoMetDC/ODC. 85 Figure 3.6: Expression of monofunctional AdoMetDC and ODC as Strep-tag proteins. 86 Figure 3.7: Size-exclusion HPLC of the monofunctional ODC purified with affinity chromatography. 89 Figure 3.9: SDS-PAGE of the recombinantly expressed bifunctional PfAdoMetDC/ODC. 90 Figure 3.11: Schematic representation of the bifunctional PfAdoMetDC/ODC. 90 Figure 3.12: Multiple alignment of the bifunctional PfAdoMetDC/ODC amino acid sequence with 94	Figure 2.14: Schematic representation of the chromosomal organisation and general structures of the <i>PfAdometdc/Odc</i> gene and its corresponding mRNA	67
Figure 3.2: Proposed reaction mechanism for the autocatalytic intramolecular activation of AdoMetDC (A) and the decarboxylation of AdoMet (B). 72 Figure 3.3: Schematic organisation of the bifunctional AdoMetDC/ODC from <i>P. falciparum</i> . 74 Figure 3.4: Schematic representation of the cloning strategy for expression of monofunctional AdoMetDC and ODC or bifunctional PfAdoMetDC/ODC. 84 Figure 3.5: His-tag fusion protein expression of monofunctional AdoMetDC and ODC as Strep-tag proteins. 86 Figure 3.6: Expression of monofunctional AdoMetDC and ODC as Strep-tag proteins. 86 Figure 3.7: Size-exclusion HPLC of the monofunctional ODC purified with affinity chromatography. 89 Figure 3.9: SDS-PAGE of the recombinantly expressed bifunctional PfAdoMetDC/ODC. 90 Figure 3.10: SE-FPLC purification of the bifunctional PfAdoMetDC/ODC. 90 Figure 3.11: Schematic representation of the active forms of the monofunctional AdoMetDC and 91 91 ODC or the bifunctional PfAdoMetDC/ODC. 90 Figure 3.12: Multiple alignment of the bifunctional PfAdoMetDC/ODC amino acid sequence with 94	Figure 3.1: Proposed mechanism for the conversion of ornithine (Orn) to putrescine by <i>T. brucei</i> ODC.	70
AdoMetDC (A) and the decarboxylation of AdoMet (B). Figure 3.3: Schematic organisation of the bifunctional AdoMetDC/ODC from <i>P. falciparum</i> . 74 Figure 3.4: Schematic representation of the cloning strategy for expression of monofunctional AdoMetDC and ODC or bifunctional PfAdoMetDC/ODC. 84 Figure 3.5: His-tag fusion protein expression of monofunctional AdoMetDC or ODC. 85 Figure 3.6: Expression of monofunctional AdoMetDC and ODC as Strep-tag proteins. 86 Figure 3.7: Size-exclusion HPLC of the monofunctional ODC purified with affinity chromatography. 89 Figure 3.8: SE-FPLC curve for separation of the monofunctional PfAdoMetDC/ODC. 90 Figure 3.10: SE-FPLC purification of the bifunctional PfAdoMetDC/ODC. 90 Figure 3.11: Schematic representation of the active forms of the monofunctional AdoMetDC and ODC or the bifunctional PfAdoMetDC/ODC. 91 ODC or the bifunctional PfAdoMetDC/ODC. 91 Figure 3.12: Multiple alignment of the bifunctional PfAdoMetDC/ODC amino acid sequence with 94	Figure 3.2: Proposed reaction mechanism for the autocatalytic intramolecular activation of	72
Figure 3.3: Schematic organisation of the bifunctional AdoMetDC/ODC from <i>P. falciparum</i> . 74 Figure 3.4: Schematic representation of the cloning strategy for expression of monofunctional 84 AdoMetDC and ODC or bifunctional PfAdoMetDC/ODC. 85 Figure 3.5: His-tag fusion protein expression of monofunctional AdoMetDC or ODC. 85 Figure 3.6: Expression of monofunctional AdoMetDC and ODC as Strep-tag proteins. 86 Figure 3.7: Size-exclusion HPLC of the monofunctional ODC purified with affinity chromatography. 88 Figure 3.8: SE-FPLC curve for separation of the monofunctional AdoMetDC. 89 Figure 3.10: SE-FPLC purification of the bifunctional PfAdoMetDC/ODC. 90 Figure 3.11: Schematic representation of the active forms of the monofunctional AdoMetDC and ODC or the bifunctional PfAdoMetDC/ODC. 91 ODC or the bifunctional PfAdoMetDC/ODC. 91 Figure 3.12: Multiple alignment of the bifunctional PfAdoMetDC/ODC amino acid sequence with 94	AdoMetDC (A) and the decarboxylation of AdoMet (B).	
Figure 3.4: Schematic representation of the cloning strategy for expression of monofunctional 84 AdoMetDC and ODC or bifunctional PfAdoMetDC/ODC. 85 Figure 3.5: His-tag fusion protein expression of monofunctional AdoMetDC or ODC. 85 Figure 3.6: Expression of monofunctional AdoMetDC and ODC as Strep-tag proteins. 86 Figure 3.7: Size-exclusion HPLC of the monofunctional ODC purified with affinity 88 chromatography. 89 Figure 3.8: SE-FPLC curve for separation of the monofunctional AdoMetDC. 90 Figure 3.10: SE-FPLC purification of the bifunctional PfAdoMetDC/ODC. 90 Figure 3.11: Schematic representation of the active forms of the monofunctional AdoMetDC and ODC or the bifunctional PfAdoMetDC/ODC. 91 ODC or the bifunctional PfAdoMetDC/ODC. 91 Figure 3.12: Multiple alignment of the bifunctional PfAdoMetDC/ODC amino acid sequence with 94	Figure 3.3: Schematic organisation of the bifunctional AdoMetDC/ODC from <i>P. falciparum</i> .	74
Figure 3.5: His-tag fusion protein expression of monofunctional AdoMetDC or ODC. 85 Figure 3.6: Expression of monofunctional AdoMetDC and ODC as Strep-tag proteins. 86 Figure 3.7: Size-exclusion HPLC of the monofunctional ODC purified with affinity 88 chromatography. 89 Figure 3.8: SE-FPLC curve for separation of the monofunctional AdoMetDC. 89 Figure 3.9: SDS-PAGE of the recombinantly expressed bifunctional PfAdoMetDC/ODC. 90 Figure 3.10: SE-FPLC purification of the bifunctional PfAdoMetDC/ODC. 90 Figure 3.11: Schematic representation of the active forms of the monofunctional AdoMetDC and ODC or the bifunctional PfAdoMetDC/ODC. 91 Figure 3.12: Multiple alignment of the bifunctional PfAdoMetDC/ODC amino acid sequence with 94	Figure 3.4: Schematic representation of the cloning strategy for expression of monofunctional AdoMetDC and ODC or bifunctional PfAdoMetDC/ODC.	84
Figure 3.6: Expression of monofunctional AdoMetDC and ODC as Strep-tag proteins. 86 Figure 3.7: Size-exclusion HPLC of the monofunctional ODC purified with affinity 88 chromatography. 89 Figure 3.9: SDS-PAGE of the recombinantly expressed bifunctional PfAdoMetDC/ODC. 90 Figure 3.10: SE-FPLC purification of the bifunctional PfAdoMetDC/ODC. 90 Figure 3.11: Schematic representation of the active forms of the monofunctional AdoMetDC and ODC or the bifunctional PfAdoMetDC/ODC. 91 Figure 3.12: Multiple alignment of the bifunctional PfAdoMetDC/ODC amino acid sequence with 94	Figure 3.5: His-tag fusion protein expression of monofunctional AdoMetDC or ODC.	85
Figure 3.7: Size-exclusion HPLC of the monofunctional ODC purified with affinity 88 chromatography. Figure 3.8: SE-FPLC curve for separation of the monofunctional AdoMetDC. 89 Figure 3.9: SDS-PAGE of the recombinantly expressed bifunctional PfAdoMetDC/ODC. 90 Figure 3.10: SE-FPLC purification of the bifunctional PfAdoMetDC/ODC. 90 Figure 3.11: Schematic representation of the active forms of the monofunctional AdoMetDC and ODC or the bifunctional PfAdoMetDC/ODC. 91 Figure 3.12: Multiple alignment of the bifunctional PfAdoMetDC/ODC amino acid sequence with 94	Figure 3.6: Expression of monofunctional AdoMetDC and ODC as Strep-tag proteins.	86
 chromatography. Figure 3.8: SE-FPLC curve for separation of the monofunctional AdoMetDC. Figure 3.9: SDS-PAGE of the recombinantly expressed bifunctional PfAdoMetDC/ODC. Figure 3.10: SE-FPLC purification of the bifunctional PfAdoMetDC/ODC. Figure 3.11: Schematic representation of the active forms of the monofunctional AdoMetDC and ODC or the bifunctional PfAdoMetDC/ODC. Figure 3.12: Multiple alignment of the bifunctional PfAdoMetDC/ODC amino acid sequence with 	Figure 3.7: Size-exclusion HPLC of the monofunctional ODC purified with affinity	88
Figure 3.8: SE-FPLC curve for separation of the monofunctional AdoMetDC.89Figure 3.9: SDS-PAGE of the recombinantly expressed bifunctional PfAdoMetDC/ODC.90Figure 3.10: SE-FPLC purification of the bifunctional PfAdoMetDC/ODC.90Figure 3.11: Schematic representation of the active forms of the monofunctional AdoMetDC and ODC or the bifunctional PfAdoMetDC/ODC.91Figure 3.12: Multiple alignment of the bifunctional PfAdoMetDC/ODC amino acid sequence with94	chromatography.	
Figure 3.9: SDS-PAGE of the recombinantly expressed bifunctional PfAdoMetDC/ODC.90Figure 3.10: SE-FPLC purification of the bifunctional PfAdoMetDC/ODC.90Figure 3.11: Schematic representation of the active forms of the monofunctional AdoMetDC and ODC or the bifunctional PfAdoMetDC/ODC.91Figure 3.12: Multiple alignment of the bifunctional PfAdoMetDC/ODC amino acid sequence with94	Figure 3.8: SE-FPLC curve for separation of the monofunctional AdoMetDC.	89
Figure 3.10: SE-FPLC purification of the bifunctional PfAdoMetDC/ODC. 90 Figure 3.11: Schematic representation of the active forms of the monofunctional AdoMetDC and 91 ODC or the bifunctional PfAdoMetDC/ODC. 91 Figure 3.12: Multiple alignment of the bifunctional PfAdoMetDC/ODC amino acid sequence with 94	Figure 3.9: SDS-PAGE of the recombinantly expressed bifunctional PfAdoMetDC/ODC.	90
Figure 3.11: Schematic representation of the active forms of the monofunctional AdoMetDC and 91 ODC or the bifunctional PfAdoMetDC/ODC. 91 Figure 3.12: Multiple alignment of the bifunctional PfAdoMetDC/ODC amino acid sequence with 94	Figure 3.10: SE-FPLC purification of the bifunctional PfAdoMetDC/ODC.	90
Figure 3.12: Multiple alignment of the bifunctional PfAdoMetDC/ODC amino acid sequence with 94	Figure 3.11: Schematic representation of the active forms of the monofunctional AdoMetDC and ODC or the bifunctional PfAdoMetDC/ODC	91
	Figure 3.12: Multiple alignment of the bifunctional PfAdoMetDC/ODC amino acid sequence with	94

homologues of the monofunctional AdoMetDC and ODC from other organisms. Figure 3.13: Secondary structure prediction of the PfAdoMetDC/ODC amino acid sequence. Figure 3.14: Hydrophobicity plot of the deduced PfAdoMetDC/ODC amino acid sequence. Figure 3.15: Multiple sequence alignment of the deduced amino acid sequence of the bifunctional AdoMetDC/ODC from three <i>Plasmodium</i> species.	96 97 98
Figure 4.1: Interaction assay between the wild type bifunctional PfAdoMetDC/ODC and	114
Figure 4.2: Multiple-alignment of the amino acid sequences of the bifunctional PfAdoMetDC/ODC indicating the parasite-specific areas	116
Figure 4.3: Sequence and secondary structure analyses of the parasite-specific inserts in the bifunctional PfAdoMetDC/ODC.	118
Figure 4.4: Schematic representation of the strategy used for deletion of the parasite-specific inserts and hinge region in the bifunctional PfAdoMetDC/ODC.	. 119
Figure 4.5: SDS-PAGE analysis of the wild-type PfAdoMetDC/ODC and the individual deletion mutants.	120
Figure 4.6: Activity analyses of wild type and mutated bifunctional PfAdoMetDC/ODC.	120
Figure 4.7: Schematic representation of the deletion mutagenesis strategy of the parasite-specific inserts in the monofunctional PfAdoMetDC and PfODC.	121
Figure 4.8: Specific activities of deletion mutants of the individual monofunctional PfAdoMetDC and PfODC domains.	122
Figure 4.9: Complex forming abilities of deletion mutants of PfAdoMetDC/ODC.	123
Figure 4.10: Protein-protein interactions between the separately expressed wild type AdoMetDC and ODC domains.	124
Figure 4.11: Intermolecular interaction between the wild-type and mutant forms of the monofunctional AdoMetDC and ODC.	124
Figure 5.1: Comparative homology modelling due to the evolutionary precept that protein families have both similar sequences and 3D structures.	133
Figure 5.2: Steps in comparative protein structure modelling.	135
Figure 5.3: Crystal structures of mammalian AdoMetDC and protozoal ODC.	136
Figure 5.4: Sequence alignment of P. falciparum ODC (PfODC) and the template used for	142
homology modelling, <i>T. brucei</i> ODC (TbODC, PDB: 1QU4) obtained with SIM [®] using default parameters.	
Figure 5.5: Ramachandran plot for the model of PfODC produced by PROCHECK.	143
Figure 5.6: PROCHECK analyses of the main-chain and side chain parameters of the final PfODC model.	144
Figure 5.7: Ribbon diagram of the homology model for the PfODC monomer (A) and in (B) compared with the human enzyme.	145
Figure 5.8: Proposed dimeric form of PfODC. The two monomers are indicated in shades of blue and the dimer is viewed from the bottom (A) and side (B).	146
Figure 5.9: Interactions at the ODC dimer interface.	147
Figure 5.10: Active site residues of the PfODC indicating the interactions with PLP and ornithine.	148
Figure 5.11: Molecular surface potentials of the monomeric PfODC (A) and human ODC (B) structures.	150
Figure 5.12: Electrostatic surface potentials for ODCs from <i>P. falciparum</i> (A), <i>H. sapiens</i> (B) and <i>T. brucei</i> (C) comparing potential antizyme binding elements.	151
Figure 5.13: Nickpred prediction of proteolysis sites of dimeric PfODC.	152
Figure 5.14: SDS-PAGE analyses of recombinantly expressed PfODC digested with either proteinase K (A) or trypsin (B).	153
Figure 6.1: Structures of the natural substrates and reversible and irreversible inhibitors of ODC.	161
Figure 0.2. Proposed mechanism of inactivation of ODC with DFMO.	162
Figure 0.5: Structural similarities between spermidine, MGBG and adenosylmethionine.	163
Figure 6.5: Interactions between the compater (DI D) and compatibles in history DEMO in the active	100
site pocket of PrODC.	109

Figure 6.6: Ligplot analyses of the interactions between two competitive inhibitors and PfODC. (A) CGP52622A and (B) CGP54169A	170
Figure 6.7: Interactions between the top scoring novel ligand and PfODC.	173
Figure 7.1: Schematic representation of the structural arrangement of the bifunctional PfAdoMetDC/ODC.	189
Figure A.1: Multiple-alignment of the genomic (gDNA) and cDNA sequences of <i>PfAdometdc/Odc</i> ORF.	219

LIST OF TABLES

	PAGE
Table 1.1: Synopsis of the candidate <i>Plasmodium</i> antigens for malaria vaccine development	15
Table 1.2: Summary of the major metabolic target proteins in P. falciparum	20
Table 2.1: Summary of the characteristics of the various primers used in PCR	52
Table 3.1: Properties of ODCs form various sources	69
Table 3.2: Primers used in the cloning of the ODC and AdoMetDC domains for expression of the proteins in the pET-15b His-tag expression system	83
Table 3.3: Decarboxylase specific activities of monofunctional AdoMetDC and ODC and bifunctional PfAdoMetDC/ODC.	91
Table 4.1: Mutagenic mega-primer oligonucleotides used for deletion mutagenesis of parasite- specific regions in PfAdoMetDC/ODC.	119
Table 4.2: Hybrid complex formation abilities of mutant forms of the monofunctional AdoMetDC and ODC	125
Table 5.1: Summary of WHAT IF quality assessment data	144
Table 5.2: Active site residues involved in interactions with ornithine as substrate and PLP as co-factor.	149
Table 6.1: Summary of the identified novel ligands for PfODC	172
Table 6.2: Summary of the comparative ligands of the human ODC	174

ABBREVIATIONS

3D	Three-dimensional
Α	Adenosine
ACD	Available chemicals directory
AdoMet	S-adenosylmethionine
AdoMetDC	S-adenosylmethionine decarboxylase
AMA	Apical membrane antigen
AMP	Adenosine monophosphate
ATP	Adenosine triphosphate
AzBE	Antizyme binding element
bp	Base pair
BCBD	N ¹ N ⁴ -bis(7-chloroquinoline-4-yl)butane-1,4-diamine
BLAST	Basic local alignment search tool
BSA	Bovine serum albumin
С	Cytosine
cAMP	Cyclic adenosine monophosphate
CARP	Clustered Asp rich protein
CCD	Charge coupled devise
cDNA	Complementary DNA
CSD	Cambridge structure database
CS	Circumsporozoïte
C-terminal	Carboxy terminal
dAdoMet	Decarboxylated S-adenosylmethionine
dNTP	Deoxyribonucleotide triphosphate
DD-Poly-T	Differential display poly-T primer
DDT	Dichlorodiphenyltrichloro ethane
ddUTP	Dideoxyuridine triphosphate
DEPC	Diethyl pyrocarbonate
DHFR	Dihydrofolate reductase
DHODH	Dihydroorotate dehydrogenase
DHPS	Dihydropteroate synthetase
DIG	Digoxigenin
DMF	Dimethylformamide
DMFO	DL-a-difluoromethyl ornithine
DMSO	Dimethylsulphoxide
DNA	Deoxyribonucleic acid
DNAse	Deoxyribonuclease
dNTP	Deoxynucleotide triphosphate
ds	Double-stranded
DTT	Dithiotreitol
dUTP	Deoxyuridine triphosphate
EBA	Erythrocyte binding protein
EDTA	Ethanol diamine tetra-acetic acid
EtBr	Ethidium Bromide
FP	Ferriprotoporphyrin IX

G	Guanidine
G6-PD	Glucose-6-phosphate dehydrogenase
GM-CSF	Granulocyte macronhage colony stimulating factor
GPI	Glycophosphatidyl inositol
GPASD	Graphical concentration and analyses of structural properties
CSD	Companical representation and analyses of structural properties
CTT	Gene specific primer
GIP	Guanidine triphosphate
HABA	4-hydroxy azobenzene-2-carboxylic acid
HGPRT	Hypoxanthine-guanosine phosphoribosyltransferase
HIV	Human immunodeficiency virus
HRP	Histidine rich protein or horseradish peroxidase
HSP	Heat shock protein
	•
Ι	Inosine
ICAM	Intracellular adhesion molecule
IFN	Interferon
Π	Interleykin
	Immobilized metal offinity chrometography
	Isopropyi-D-galactoside
IOBWR	International Union for Biochemistry and Molecular Biology
KD	Kilobase/kilobasepairs
LB	Luria Berthani
LDH	Lactate dehydrogenase
LD-PCR	Long-distance PCR
MAOPA	5'-[(3aminooxypropyl)methylamino]-5'-deoxyadenosine
MDR	Multi-drug resistance
MGBG	Methylglyoxal bis(guanylhydrazone)
MHC	Major histocompatibility complex
MI	Match index
monn-DFB	1-methyl-3-oxo-3-phenyl difluoridoborate
MOPS	Mornholinopropanegulphonic acid
mPNA	Mersenger DNA
MSA	Merozoïto surface enticon
MBA	Merozoite surface antigen
NIDT	Nitrohlus tetrarolium ablasida
NODI	Nitrodiue tetrazonum chioride
NCBI	National Center for Biotechnology Information
NCI	National Cancer Institute (USA)
N1-NTA	Nickel-nitrolotriacteric acid
NMR	Nuclear magnetic resonance
NO	Nitric oxide
NOS	Nitric oxide synthase
nt	Nucleotide
N-terminal	Amino terminal
OAT	Ornithine aminotransferase
OD	Optical density
	F

1

ODC	Ornithine decarboxylase
ORF	Open reading frame
PASS	Prediction of the biological activity spectra of substances
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
PDB	Protein databank
PEG	Poly_ethylene glycol
PfA doMetDC	101y-curyione grycor
Induncuo	dependence
Dfort	ablere mine existence transmenter
	Chloroquine resistance transporter
PIEMP DID DOD	P. jaiciparium-infected erythrocyte membrane protein
PIK-PSD	Protein information resource-protein sequence database
PLP	Pyridoxal 5'-phosphate
PMSF	Phenylmethylsulfonyl fluoride
PPMP	dl-threo-1-phenyl-2-palmitoylamino-3-morpho-1-propanol
PPP	Pentose phosphate pathway
PPPK	Dihydroxymethylpterin pyrophosphokinase
PVM	Parasitophorous vacuolar membrane
	-
RACE	Rapid amplification of cDNA ends
RAP1	Rhoptry-associated protein
RMSD	Root mean square deviation
RNA	Ribonucleic acid
RNAse	Ribonuclease
RR-MAP	Methylacetylenicnutrescine
RT	Reverse transcription
RT_PCP	Reverse transcription
	Reverse transcription FCR
SCOP	Structural algorification of protoing
SUC	Sodium Dodewil Sulphoto
SDS DACE	SDS Delyagerilemide gel electrophonesie
SDS-FAGE	SDS-Polyaci ylamide gel electrophoresis
SE-FFLC	Size-exclusion fast protein liquid chromatography
SE-HPLC	Size-exclusion high-pressure liquid chromatography
SMAKI	Simple modular architecture research tool
STARP	Sporozoite Thr and Asp rich protein
_	
Т	Thymidine
t _{1/2}	Half-life
T _m	Melting temperature
TAE	Tris-acetate EDTA
TBS	Tris buffered sodium
TE	Tris EDTA buffer
TEMED	N,N,N',N'-tetramethylethylenediamine
TIM	Triosephosphate isomerase
TMAC	Trimethylammonium chloride
TNF a	Tumor necrosis factor α
TS	Thymidylate synthetase
TVM	Tubovesicular membrane network
	A GOO TOOIQUI AIIOIIUI AIIO IIGLWUIK
ITTR	Untranslated region
IIV	I Iltravialet
N/ T	

- VCAM Vascular cell adhesion molecule
- WHO World Health Organisation
- X-gal 5-bromo-4-chloro-indolyl-β-D-galactoside