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Abstract

The Libor market model and its calibration to the South

African market

Kepler Vincent Klynsmith

Magister Scientiae

Department of Mathematics and Applied Mathematics

University of Pretoria

April 2011

Supervisor: Prof. Eben Maré

The South African interest rate market has mainly been focused on vanilla
interest rate products and hence can be seen as underdeveloped in this re-
gard when compared, for instance, to the associated equity market. Market
participants subscribe this aspect to a lack of demand and sophistication of
investors within the market. This is, however, expected to change given the in-
�ux of international banks into the South African market over the past couple
of years.

The current market methodology, for the pricing of vanilla interest rate
options in the South African market, is the standard Black model with some
mechanism to incorporate interest rate smiles. This mechanism is typically in
the form of the SABR model. The most signi�cant drawback of this approach
is the fact that it models each forward rate in isolation. Hence, there is no
way to incorporate the joint dynamics between di�erent forward rates and
consequently cannot be used for the pricing of exotic interest rate options.

In anticipation of these new market developments, we explore the possi-
bility of calibrating the LIBOR market model to the South African market.
This dissertation follows a bottom up approach and hence considers all as-
pects associated with such an implementation. The work mainly focuses on
the calibration to at-the-money interest rate options. A possible extension to
the SABR model, while remaining within the LMM framework, is considered
in the �nal chapter.
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Chapter 1

Introduction

The South African interest rate options market can be argued to be under-
developed when compared, on a liquidity basis, to some of the international
markets (or even the local equity market). Market participants consequently
focused on the pricing and risk management of vanilla interest rate derivatives,
as opposed to extending the range of available exotic products. The signi�cant
amount of time spent on these basic derivatives is a direct result of some of
the complexities associated with this market.

Yield curve construction, for example, focused on the selection of bench-
mark instruments and interpolation techniques for di�erent parts of the curve
(all while accounting for front o�ce system limitations). Another point within
this area was the recent widening of spreads between rates with di�erent cash
�ow frequencies. This was driven by the credit crunch which resulted in more
demand for payments with shorter time intervals (see papers by Piterbarg [45]
and Whittall [59]-[58] for discussions around some of the impacts of the credit
crisis on the pricing of derivatives). Unfortunately, as encountered frequently
within our market, there are no actively quoted instruments that can be used
to derive these basis spreads. Hence we are forced to try and obtain this infor-
mation from similar international markets. Alternatively, we can try to obtain
these from our local market through either regular price requests, or deduc-
ing these relationships from the current spreads between some of the JIBAR
instruments. All of which will be an estimation at best and consequently will
complicate processes such as price testing and value-at-risk calculations within
an investment bank.

Volatility surface construction was in turn focused on the incorporation of
the (mostly) unobservable interest rate smile. This is where models such as the
Stochastic Alpha Beta Rho (SABR) volatility model became popular, which
allowed the trader to incorporate the smile into the surface through the ma-
nipulation of only a few parameters. Such an approach would typically consist
of �nding parameters that most accurately re�ect the trader's view, as well
as, the limited amount of prices obtained from the market. The e�ective con-
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Chapter 1. Introduction 2

struction of bond option volatility surfaces was another heavily debated point
within this area. Points considered here relates to duration matching between
bonds and swaps and the conversion of yield volatility to the equivalent price
volatility.

The above mentioned points are already starting to emphasize some of
the aspects underlying our local interest rate options market, i.e. the possible
lack of data and its underdeveloped nature when compared with some of the
international markets (or even the local equity market). This should be kept
in mind when attempting to implement any interest rate model.

From the points made above, the question might arise as to why we then
even need to consider a di�erent interest rate model. At the moment, the
implemented option pricing methodologies (i.e. standard Black model with
some sort of smile adjustment) seem to be su�cient for the current demand.

I believe the answer to this question lies in a possible increase in the com-
plexity of interest rate products in the near future. Some market participants
subscribe the vanilla nature of our market to a lack of demand and sophistica-
tion of the available investors (and consequently the liquidity in the market).
This is, however, expected to change given the in�ux of international banks
into the South African market over the past couple of years. Familiar examples
of these are the 2005 Barclays Bank purchase in Absa of 53.96% and the 2008
ICB purchase in Standard Bank of 20%. Furthermore, we also witnessed a
possible 70% purchase in Nedbank by HSBC (although the purchase did not
go through in the end, it is evident that there is some signi�cant international
interest). As a result, we need to consider di�erent possible pricing techniques
that can cater for more complex interest rate derivatives.

The most signi�cant drawback of the current SABR approach (or the Black
model for ATM vanilla options) is the fact that it models each forward rate
in isolation. Hence, there is no mechanism to incorporate the joint dynamics
between di�erent forward rates and consequently cannot be used for the pric-
ing of exotic interest rate options (Rebonato [49]). Even simple interest rate
derivatives, such as Bermudan swaptions, will fall outside this framework.

An alternative to the current approach, would be to turn to di�erent pos-
sible short rate models. These, however, result in a number of di�erent limita-
tions. The �rst obvious limitation is that short rate models are based on the
assumption that the dynamics of the entire yield curve is only driven by the
instantaneous short rate. In the case of single-factor models we only have one
source of uncertainty implying perfectly correlated rates. In order to improve
correlation modeling we need to add additional factors to the model which
adds more complexity to the model. Furthermore, the instantaneous short
rate is not a directly observable market variable. This then complicates the
calibration and implementation of these models and hence reduces some of its
�nancial appeal (Hunt and Kennedy [33]).

In reply to the above mentioned arguments, we will mainly focus in this
thesis on the LIBOR market model with deterministic volatilities (will com-

 
 
 



Chapter 1. Introduction 3

ment later in this section on the extension to the SABR volatility model). The
speci�c choice of model relates to its ability to price exotic options in such a
way that is internally consistent with the Black framework (Rebonato [47]),
i.e. it will allow the pricing of exotic options in such a way that is internally
consistent with the current market methodology for ATM vanilla options. This
is an extremely important point, given the fact that exotic options traders will
typically look at hedging their positions with vanilla interest rate options (Re-
bonato [47]). As a result, we will regularly refer to this property during the
implementation of the di�erent calibration algorithms.

Another favourable aspect of this model relates to its �nancial appeal.
Instead of having a model that is based on unobservable rates, we have that
the state variables in the LIBOR market model are discretely compounded
forward rates (Rebonato [47]). These are market observable rates and are
assumed to be lognormally distributed (in the deterministic volatility setting
and under their associated T-forward measures (Björk [4])). Furthermore,
we have that the no-arbitrage evolution of the discrete forward rates can be
expressed purely as a function of the instantaneous covariance elements. These
conditions will be derived and presented in a later chapter.

Björk [4] mentions that these covariance elements should be determined
by the market, which then allows the pricing of derivatives under the market
implied measure. The question remains whether these covariance functions
could be uniquely determined. This will then imply a unique measure and
hence unique exotic prices. Rebonato [47] argues that this is in fact not possible
and hence the market for instantaneous covariances is incomplete.

The above mentioned property will have a signi�cant impact on the im-
plementation of the LIBOR market model. It will require that the user of the
model make some �nancially justi�able assumptions regarding the covariance
structure of the model (Rebonato [47]). Within this setup, we will consider
a number of di�erent types of instantaneous volatility speci�cations while as-
suming an exogenously given correlation matrix.

The volatility speci�cations will range from piecewise constant to para-
metric forms, each of which can be de�ned in a number of di�erent ways. In
particular, we will highlight the importance of time-homogeneous speci�ca-
tions (such as future implied hedging costs) and how they can be implemented
to ensure the exact pricing of market observable caplets.

The decision regarding the use of an exogenous correlation matrix is moti-
vated by the di�culty of obtaining reliable correlation information from market
traded instruments. We will, for instance, discuss why it is not possible to ob-
tain correlation estimates from vanilla swaption quotations. The exogenous
correlation matrix, will in turn be estimated from historical market data.

Irrespective of these complexities, it will be argued that it is more favourable
to express views in terms of these market traded quantities, as opposed to some
of the factors embedded in short rate models (Rebonato [47]).

Given the simplistic setting considered in this thesis (i.e. mainly based on
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the calibration to ATM vanilla options, with a possible stochastic volatility ex-
tension in the �nal chapter), we will be able to consider in detail the procedures
associated with the calibration of such a model. We will, for instance, provide
detailed market inputs as obtained from one of the South African investment
banks. Furthermore, we will consider how to obtain similar rates, given inputs
from data sources such as Bloomberg or Reuters. From this data, we will
then illustrate key concepts such as caplet stripping and curve bootstrapping
(taking into account di�erent interpolation techniques as well as the impact
of these techniques on the associated forward rates) procedures. This analysis
will allow us to highlight some important aspects speci�c to the South African
market, such as illiquidity, compounding frequencies etc. The historical esti-
mation of volatilities and correlations, from the above mentioned bootstrapped
forward rates, will also be explained and presented.

Given the above mentioned market inputs, we will then consider the cali-
bration of the model. We will start with the volatility portions of the instan-
taneous covariance functions. This will result in di�erent calibration routines
for the di�erent instantaneous volatility speci�cations. In particular, we will
analyze cases in which volatilities are not well de�ned, as well as consider im-
plied term structure evolutions for each of the di�erent speci�cations. We will
also use this opportunity to comment on a very simplistic stochastic volatility
scenario, as well as comment on the calibration to input swaption volatilities.

We will also consider the joint calibration of di�erent forward rates. These
applications will be based on the fact that we can separate the market observ-
able volatility component from the component used for correlation modeling
(Rebonato [47]). As a result, we will use the historically estimated correlation
matrix for the South African market (following relevant sanity checks, as well
as an appropriate correlation smoothing technique).

Calibration routines considered here, range from two rank reduction tech-
niques, to a set of di�erent cascade calibration techniques (based on the ex-
act calibration to a swaption volatility matrix, assuming piecewise constant
instantaneous volatilities). Following the implementation of the latter cali-
bration algorithm, we also compare the model implied caplet volatilities with
those obtained from market inputs (the importance of such an comparison is
also highlighted).

In theory there should be no additional calibration required in a purely for-
ward rate based implementation once the instantaneous volatility functions,
as well as, the exogenous correlation matrix are determined. However, such an
approach would then assume a dimensionality equal to the number of forward
rates under consideration (Rebonato [47]). This is not practical from an imple-
mentation perspective and hence the introduction of di�erent rank reduction
calibration techniques.

In the �nal chapter we will brie�y consider extending our approach to
incorporate observable interest rate smiles (stochastic volatility setting). The
focus in this chapter will be on the SABR model (although there are a number
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of alternative approaches). This choice was mainly motivated by the fact that
it is already implemented in the South African market for vanilla interest rate
options. Such an approach will then allow for the joint modeling of forward
rates, while at the same time producing vanilla option prices that are consistent
with the observed market prices (as opposed to modeling each forward rate in
isolation in the standard SABR model). This extension will be based on the
recent work by Rebonato [49] and Rebonato and White [52].

The above mentioned chapter, will mainly focus on some of the obtained
results as well as what these results imply. An in depth analysis of this model
as well as other possible extensions, require signi�cantly more work and can be
regarded as a research project on its own. Hence, this project will not attempt
to provide a complete description of these types of models, or even provide
proofs or implementations. Instead, this chapter is intended to serve as a brief
introduction into this �eld of research, and will be pursued outside this thesis
as an ongoing project.

Throughout the thesis, we will provide results for both the South African
and European markets. The latter set of inputs were mainly obtained from
textbook examples and were included to con�rm the correctness of our imple-
mentations.

The outline of the thesis is as follows. Chapter 2 will provide a brief
overview of some of the interest rate models currently available within the
literature. We will then move on to consider the required mathematical con-
cepts and techniques in Chapter 3. These tools will then be used in Chapter
4 to derive the necessary forward rate dynamics implied by the LIBOR Mar-
ket Model. Given these rates are fully speci�ed in terms of volatilities and
correlations, we will then move on to consider di�erent possible speci�cations
for these quantities in Chapters 5 and 6 respectively. Chapters 7 and 8 will
then be focused at obtaining the di�erent market inputs for the European
and South African markets. Following this, we will consider in Chapter 9 the
calibration of the volatility parameters to the data obtained in the previous
chapters. Chapter 10 will introduce algorithms that can be used to obtain
the joint dynamics of forward rates, while exactly recovering the prices of in-
put cap or swaption volatilities. One of the more recent LMM developments
are considered in Chapter 11, i.e. the extension of the LMM to the SABR
volatility model. Conclusions are presented in Chapter 12.

 
 
 



Chapter 2

Interest Rate Models Overview

The introduction of this thesis was mainly focused on practical aspects relating
to the South African market, with only a brief mention made to the di�erent
available interest rate models. This chapter will be used to expand on this
discussion through providing an overview of some of the interest rate models
typically encountered within the literature. The arguments presented will be
along the lines of the work by Rebonato [47] and hence will try and re�ect the
order as well as reasons for development.

2.1 Standard Market Models

The market methodology used for the pricing of vanilla ATM interest rate
caps/�oors, swaptions and bond options is based on the Black [5] framework.
Given the fact that these instruments (will only consider caps/�oors and swap-
tions in the thesis) form such an integral part of the LIBOR and swap market
models, we will take the time to discuss the pricing of these instruments as
well as state some useful properties and results relating to them. The pricing
of these instruments, as we move away from ATM, will be discussed at a later
stage.

2.1.1 The Black Framework

The methodology proposed by Fischer Black [5] presented the market with a
model to value options on commodity futures. This model assumed a lognor-
mally distributed futures contract as underlying to the option under consid-
eration. The interest rate market shortly followed and started pricing vanilla
ATM options through assuming lognormally distributed forward rates as un-
derlying variables.

We will present in the following sections the resulting formulas when ap-
plied to some of the di�erent vanilla ATM options. For now, it was only
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Chapter 2. Interest Rate Models Overview 7

presented for completeness and the reader is referred to Appendix A.6 for
more details.

2.1.2 Caps and Floors

An interest rate caplet can be de�ned as a call option on a single interest rate
while the equivalent �oorlet is de�ned as a put option on the same interest
rate (Götsch [22]). Hence, interest rate caplets can provide protection against
rising rates while interest rate �oorlets provides protection against falling rates
(Hull [32]). The interest rate under consideration resets at a prede�ned date
Ti against the prevailing �oating rate, or reference rate, on the day of reset.
Payments are however only made at Ti+1. We can present the payo� of a
caplet as given below

payo� = αTiTi+1max(LTiTi+1(Ti)−X, 0), (2.1.1)

where X is the strike price of the caplet under consideration, LTiTi+1(Ti) is the
value of the lognormally distributed forward rate at the time of reset (Götsch
[22]) and αTiTi+1 is the year fraction between time Ti and Ti+1.

A cap is a portfolio of N such options and hence the value of the cap
is simply given by the sum of the values of the underlying caplets. This is
due to the important fact that the payo� of each caplet is only dependent on
one forward rate at a time and hence independent of the correlation between
di�erent forward rates (Brigo and Mercurio [11]). Given the nature of a cap,
it can have a number of di�erent resets. The period between di�erent resets
can di�er according to the attached reference rate.

The market standard for pricing vanilla ATM caps/�oors is through using
the Black [5] model. The underlying variable used for caps/�oors is the lognor-
mally distributed forward reference rates. Using the results given in Appendix
A.6 we can obtain

ci = B(0, Ti+1)αTiTi+1 [LTiTi+1(0)N(d1)−XN(d2)], (2.1.2)

where

d1 =
ln
(
LTiTi+1

(0)

X

)
+ 1

2Tiσ
2
TiTi+1.caplet√

Tiσ2
TiTi+1.caplet

, (2.1.3)

d2 =
ln
(
LTiTi+1

(0)

X

)
− 1

2Tiσ
2
TiTi+1.caplet√

Tiσ2
TiTi+1.caplet

, (2.1.4)

and N(·) denotes the cumulative distribution function of the standard normal
distribution and σTiTi+1.caplet is the Black caplet volatility associated with the
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forward LTi,Ti+1(t). Hence, we can write the value of the associated cap as

c =
N−1∑
i=0

B(0, Ti+1)αTiTi+1 [LTiTi+1(0)N(d1)−XN(d2)]. (2.1.5)

Given the similarity in instruments we will only consider caplets and con-
sequently only caps.

2.1.3 Swaptions

An European Swaption gives the holder the right to enter into a swap at a
pre-determined date called the expiry date of the swaption (Hull [32]). The
underlying swap will start at the time of option expiry and end at a time called
the maturity of the underlying swap. A swaption is another form of protection
against raising or falling interest rates (depending if pay �xed or receive �xed
when enter into the underlying swap). Another point worth mentioning is that
swap rates can give more information regarding future rate expectations. The
�xed rate of a par swap is simply the average rate that is needed in order for
the value of the �oating side to equal the value of the �xed sided (see Hull
[32] for more details). Similarly, swaptions can give an indication of expected
forward average rates. Swaptions may be seen more attractive than swaps
given market circumstances and risk pro�le of the holder (factors such as costs
play a pivotal role) as you can still capitalize for instance on falling rates if the
underlying swap to the option is to pay �xed. Swaps, in general, are popular
instruments as they can, for example, �x costs relating to a set of future cash
�ows, facilitating better cash management practices.

Given the above information we can now de�ne the payo� functions of
a swaption. The swap rate of the underlying swap is �xed at the time of
option expiry. Following this �xing (and given it is favorable to exercise), we
will have a series of cash �ows that are e�ectively the di�erences between the
prevailing �xed rate and the rate that was agreed upon the issue of the option.
Hence, following Hull [32], we have a series of payo�s equal to (assuming we
are considering a payer swaption)

payo� = αTiTi+1max(SRn,N (Tn)−X, 0), (2.1.6)

where X is the strike price of the swaption and SRn,N (Tn) is the swap rate
at the option expiry Tn. The second subscript in the swap rate indicates the
maturity of the underlying swap, i.e. TN .

The market standard for pricing vanilla ATM swaptions is through using
the Black [5] model. The underlying variable in this case is the lognormally
distributed forward swap rate. Using the results given in Appendix A.6 we
can obtain

ci = αTiTi+1B(0, Ti+1)[SRn,N (0)N(d1)−XN(d2)], (2.1.7)
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where

d1 =
ln
(
SRn,N (0)

X

)
+ 1

2TnV
2
n,N√

TnV 2
n,N

, (2.1.8)

d2 =
ln
(
SRn,N (0)

X

)
− 1

2TnV
2
n,N√

TnV 2
n,N

. (2.1.9)

and Vn,N is the Black swaption volatility of the forward swap rate SRn,N (t).
Therefore, we can write the value of the swaption as

c =
N−1∑
i=n

αTiTi+1B(0, Ti+1)[SRn,N (0)N(d1)−XN(d2)]. (2.1.10)

2.1.4 Bond Options

Although we will not be considering bond options in the rest of the thesis, we
will brie�y discuss the modeling of these products. A European bond option
gives the holder the right to purchase a bond for a certain price, also called
the strike price, at a pre-determined time (Hull [32]). The central assumption
in this modeling framework is that the forward bond prices follow a lognormal
distribution. Hence, given the previous sections and the results in Appendix
A.6, one can easily extend the methodology to cover the instrument type under
consideration. The pricing results for a vanilla ATM European call option
expiring at time T , as given by Hull [32], is presented below

c = B(0, T )[FBN(d1)−XN(d2)], (2.1.11)

where

d1 =
ln
(
FB
X

)
+ 1

2Tnσ
2
T.bondopt√

Tnσ2
T.bondopt

, (2.1.12)

d2 =
ln
(
FB
X

)
− 1

2Tnσ
2
T.bondopt√

Tnσ2
T.bondopt

. (2.1.13)

and σT.bondopt
is the Black bond price volatility associated with the forward

bond price FB.

2.1.5 Limitations

There are numerous well documented constraints regarding this type of model-
ing. This section will only provide a brief description of some of the constraints
applicable to the concepts presented throughout this thesis.
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Rebonato [47], for instance, pointed out that there is no inherent mecha-
nism that can be used to incorporate views about the joint dynamics between
di�erent variables. Hull [32] on the other hand mentioned that this model does
not describe how interest rates evolve through time and hence cannot be used
for all instrument types (for example American options). Another signi�cant
constraint is the assumption of constant volatilities.

2.2 Short Rate Models

Short rate models assume that the dynamics of the entire yield curve is driven
by the instantaneous short rate (Rebonato [47]). The short rate is in turn
de�ned as the rate r at time t that applies to an in�nitesimally short period of
time (Hull [32]). In order to model the short rate we assume that its dynamics
is given by some SDE. There is a vast amount of papers on the di�erent
possible speci�cations, resulting in a relatively large and sometimes complex
(as the complexity of the SDE increases) research area.

This section intends to brie�y examine some of the properties of short
rate models and to present a few examples. Typical properties considered
in practice are for example (later sections will only consider a few of these)
implied distributions, positivity of rates, implied volatility structures (i.e. does
the model produce term structures compatible with the observed humped or
inverted ATM term structures), existence of analytical solutions (a�ne term
structure models important in this regard, see Du�e and Kan [20]), application
of di�erent numerical pricing techniques (for example tree construction, monte
carlo simulation or �nite di�erences), mean reversion of rates, required change
in parameters due to re-calibration, �tting to an exogenous yield curve and/or
a set of caplet volatilities, modeling of dependence between di�erent rates etc.
(see Brigo and Mercurio [11] for a more detailed discussion).

The discussion is however far from comprehensive and is only intended to
give the reader a better understanding of the evolution of interest rate models
from the Black [5] framework to the stochastic short rate models. This will
also help with understanding some of the links between these and the models
presented in the following sections and why new models such as the HJM [28]
and LMM were developed. We will start the discussion with single-factor short
rate models and will indicate at a later stage how these results can be extended
to multi-factor models.

The di�erent types of speci�cations can e�ectively be divided into two sub
categories, i.e. endogenous (or time-homogeneous) term structure models and
exogenous term structure models (number of di�erent sources stating this, see
for example Brigo and Mercurio [11], Björk [4], Rebonato [47] and Cairns [15]).
These two types will be discussed independently for the single-factor short rate
models.
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2.2.1 Modeling Framework

The economy under consideration, as given by Björk [4], can be expressed in
the following equations

dr = µ(t, r(t))dt+ σ(t, r(t))dWP (t), (2.2.1)

where WP is the Brownian motion under the objective probability measure.
The only exogenously given asset is the risk-free money account B with its
process given by

dB(t) = r(t)B(t)dt. (2.2.2)

Given the short rate dynamics we will, for example, be able to derive bond
price dynamics since we are assuming that the yield curve is driven by the
instantaneous short rate.

Market completeness plays a very important role in the modeling of interest
rate products. The arguments in this section will brie�y outline the work by
Björk [4].

As can be seen from Equations (2.2.1) and (2.2.2) we have only one ex-
ogenously given asset, i.e. the risk-free money account. However, interest rate
derivatives will be driven by the dynamics of the instantaneous short rate.
Hence, we will not be able to create a self-�nancing portfolio to replicate the
payo� of simple derivatives (excluding the risk-free asset).

Theorem A.4.1 then implies that the market is incomplete and that the
prices of derivatives, for example bonds, are not uniquely determined. Despite
the fact that bond prices are not uniquely determined, we are able to derive
conditions that should ensure arbitrage-free pricing. This is in fact given by
the market price of risk which is de�ned below (results taken from Björk [4])

λ(t) =
αT (t, r(t))− r(t)

σT (t, r(t))
, (2.2.3)

where αT (t) is the rate of return on the T -bond, r is the rate of return on the
risk-free asset and σT (t) is the volatility of the T -bond. Firstly note that this
condition, if satis�ed by all T -bonds (can be extended to other derivatives),
will result in arbitrage-free pricing for all of the bonds. Secondly, and probably
more importantly, is that these prices will be unique for a given market price
of risk. We can now re-write the short rate dynamics under the martingale
measure as

dr = (µ(t, r(t))− λ(t)σ(t, r(t)))dt+ σ(t, r(t))dW (t). (2.2.4)

Note from above that choosing a market price of risk is equivalent to choosing
a measure (Brigo and Mercurio [11]). Furthermore, only the drift of the short
rate dynamics changed when we switched between measures. This is in line
with Girsanov's theorem that will be discussed in Section 3.2.1.
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There are a number of papers proposing and examining di�erent short-
rate speci�cations. The market price of risk is implicitly stated in each of the
di�erent models (Brigo and Mercurio [11], Björk [4] and Rebonato [47]). The
market price of risk is then determined when we calibrate the model to market
data (Heath, Jarrow and Morton [28]). This will then provide us with the
martingale measure necessary for derivative pricing.

The results presented in this section focused on single-factor speci�cations.
These can easily be extended to multi-factor speci�cations. In this case we
will, for example, work with a market price of risk vector instead of the scalar
value used above. See for instance Björk [4] in this regard.

2.2.2 Endogenous Single-Factor Short Rate Models

Endogenous short rate speci�cations has the disadvantage that it cannot be
calibrated exactly to market yield curves (with the obvious exception of sim-
ple yield curve shapes). This is due to the fact that the models only have a
small number of parameters that can be used in the �tting process whereas
an exact match will require a much larger number of parameters. Rebonato
[47], however, mentions that this was originally welcomed by, for example,
the bond traders. The argument was that if the assumptions underlying the
model were accurate and �nancially justi�able, then the model could possi-
bly indicate future trading opportunities. However, this type of speci�cation
proved to be problematic for vanilla options traders as the model could not
accurately recover the prices of the underlying instruments and hence the as-
sociated hedging costs. A few of the endogenous models are presented in Table
2.1. For each of these models we can derive a number of di�erent properties

Model Short Rate Dynamics

Merton [38] dr = µdt+ σdW
Dothan [19] dr = µrdt+ σrdW
Vasi£ek [56] dr = α(µ− r)dt+ σdW
CIR [17] dr = α(µ− r)dt+ σ

√
rdW

Table 2.1: Endogenous short rate speci�cations.

indicating the quality of the model. In order to illustrate this, let us consider
these models in isolation.

The Merton [38] model is the simplest of the four and hence will be dis-
cussed in detail below. Brief mention will be made regarding the rest of the
models in order to keep the discussion as concise as possible.

The SDE associated with the Merton [38] model has a very simple form,
which allows one to obtain a solution for the short rate through virtual inspec-
tion. From above it is evident that the short rate will grow at a constant rate
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with some added noise (hence the model assumes a normally distributed short
rate). The fact that the drift term is constant and not mean reverting implies
that the short rate can explode. Furthermore, the dynamics allow for the short
rate to turn negative which is �nancially undesirable. The speci�cation can
be classi�ed as an a�ne term structure model. A�ne term structure models
are de�ned as interest rate models where the continuously compounded spot
rate is an a�ne function in the short rate (Brigo and Mercurio [11]). In this
case bond prices can be expressed in a simple exponential form. From the
resultant spot rate process it is clear that the spot rate yield curve is driven
by the instantaneous short rate. Given this property, we have that the level
of the yield curve can explode as well as turn negative. Another interesting
property is that the spot rate will approach −∞ as we increase the maturity
under consideration. This then directly implies that bond prices will explode
as the maturities of bonds increase. It can also be shown that instantaneous
forward rates tend to −∞ as we increase the maturity of these rates.

Dothan [19], on the other hand, proposed a model in which the short rate
is lognormally distributed. This property ensures that rates remain positive at
all times. This model does not provide an explicit mean reversion mechanism.
Brigo and Mercurio [11] however pointed out that a 0 mean reversion level
can be enforced through setting the drift parameter µ < 0 (due to fact that
rates are always positive under this speci�cation). The process is not a�ne.
Although analytical bond pricing solutions exist, these can be shown to be
complicated and di�cult to implement. There are no analytical formulas for
options on zero coupon bonds (Brigo and Mercurio [11]). Given lognormal
distribution, we have that rates can explode.

The Vasi£ek [56] model is similar to the Merton [38] model in the sense that
the short rate is assumed to be normally distributed. Hence properties relating
to simple analytical solutions, as well as the possibility of negative rates, are
also applicable to this model. One signi�cant di�erence appears in the drift of
the process. This model explicitly speci�es a mean reversion component which
then prevents rates from exploding. It can be seen from the SDE of this model
that the short rate will revert to the level µ at a reversion speed of α. This
is an a�ne term structure model and hence we have that the level of the spot
rate yield curve is driven by the instantaneous short rate.

CIR [17] proposed a model similar to the Vasi£ek [56] model. This model
however ensures positive interest rates while preserving the mean reversion be-
haviour (for certain choices of the parameters α, µ and σ). This speci�cation
also allows for analytical bond and option prices (although more complex).
Furthermore, this is an a�ne term structure model and hence similar proper-
ties to the Merton [38] and Vasi£ek [56] models hold in this regard.
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2.2.3 Exogenous Single-Factor Short Rate Models

Exogenous short rate speci�cations allow the model to be �tted exactly to
either the initial yield curve, initial volatility term structure or both. An
exact �t to the initial yield curve can be achieved through making the drift
parameters of the short rate dependent on time. Similarly, an exact �t to the
initial volatility term structure can be achieved through making the volatility
parameters dependent on time (Brigo and Mercurio [11]). These models can
consequently be termed as arbitrage free.

Rebonato [47] mentions that this is favorable for the vanilla options traders
since their hedges are correctly priced. A few of the exogenous models are
presented in Table 2.2.

Model Short Rate Dynamics

Ho-Lee [29] dr = θ(t)dt+ σdW
Hull-White [30] dr = (θ(t)− ar)dt+ σdW

Black, Derman and Toy [6] dlnr =
[
θ(t) + (σ

′
(t)/σ(t))

]
dt+ σ(t)dW

Black-Karasinski [7] dlnr = (θ(t)− a(t)lnr)dt+ σ(t)dW

Table 2.2: Exogenous short rate speci�cations.

For each of these models we can once again derive a number of di�erent
properties indicating the quality of the model. Let us proceed as before and
consider these models in isolation.

Ho-Lee [29] were the �rst to propose an exogenous term structure model.
This is similar to the Merton [38] model, with the drift parameter adjusted
to be time dependent. This then allows for an exact �t to the current term
structure of rates. Most of the properties of the Merton [38] model are also
applicable here. For instance, rates can explode and turn negative. This is
an a�ne term structure model with simple analytical solutions. There is no
mean reverting mechanism. The model is arbitrage free. The short rate in the
model is normally distributed.

Hull-White [30] proposed an extension of the Vasi£ek [56] model. This
then allowed for an exact �t to the initial term structure of interest rates while
ensuring mean reversion. The short rate is also normally distributed. This
implies simple analytical solutions, however rates can turn negative. This is
an a�ne term structure model. The model is arbitrage free.

The continuous time equivalent of the Black Derman and Toy [6] model, as
presented in Table 2.2, was obtained from the article by Hull and White [30].
Positive rates are ensured through assuming that the short rate is lognormally
distributed. This model allows for an exact �t to both the initial yield curve as
well as an exogenous set of volatilities. Rebonato [48] pointed out that mean
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reversion can only be obtained if the volatility of the short rate decays with
time. The model is arbitrage free.

Black-Karasinski [7], similar to the Black Derman and Toy [6] model, en-
sures positive rates through assuming that the short rate is lognormally dis-
tributed. This model allows for an exact �t to both the initial yield curve as
well as an exogenous set of volatilities (Rebonato [48]). Importantly, Rebonato
[48] pointed out that the evolution of the term structure of volatilities under
this speci�cation is much more time stationary than the evolution implied by
the Black Derman and Toy [6] model. The log of the short rate in this model is
mean reverting. The short rate itself is lognormally distributed. No analytical
formulas are available for zero coupon bonds or options on these instruments.
The model is more di�cult to calibrate than the rest of the models presented
in this section. The model is arbitrage free.

2.2.4 Multi-Factor Short-Rate Models

The models considered in the previous section only had a single source of un-
certainty. This, however, is somewhat limited since we have that the entire
yield curve is only driven by a single factor. Brigo and Mercurio [11] and
Rebonato [47] points out that this implies a correlation of 1 between di�erent
interest rates which is far from desirable if the payo� of a derivative is depen-
dent on the joint dynamics of a number of interest rates. Hence, in order to
obtain better correlation modeling we need to introduce more factors. This
requirement has lead to a number of papers examining the inclusion of extra
factors, some of which are complex and di�cult to implement. We will brie�y
examine some of these models in the rest of the section. Note that the math-
ematical results, for example the market price of risk, can easily be expanded
to the multi-factor case. This is fully illustrated in the text by Björk [4].

An important driver and explanation for the success of one-factor and
multi-factor models relates to the decomposing of interest rate movements into
a few key driving factors (Rebonato [47]). These factors can be determined
using a technique called principal component analysis (PCA).

Principal component analysis can be used to get a better idea of the factors
driving a multi-variate set of data. The process consists of �nding a set of
orthogonal (and hence independent) vectors that can be used to describe the
multi-dimensional space containing the original input data subject to certain
speci�c conditions.

Various research projects in the interest rate literature have shown that
the bulk of historical yield curve movements can be explained by the �rst
two or three components (Brigo and Mercurio [11]) and that these can, for
example, represent level, curvature and steepness (Litterman and Scheinkman
[36]). The Matlab functions for principal component analysis will be used
in this thesis (functions such as princomp and pcacov) and hence the exact
process of obtaining the principal components will not be presented here.
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Balduzzi, Das, Foresi and Sundaram [3] provides a nice summary of the dif-
ferent developed two-factor models. Below are some of the models mentioned
in the study. This is only a small subset of the available two-factor short
rate models and is intended to give the reader a feel of some of the possible
extensions.

In the model by Brennan and Schwartz [9] they introduce the long-term
interest rate as an additional factor. Schaefer and Schwartz [54], on the other
hand, introduced the spread between the long-term rate and the instantaneous
short-term rate. Several models were introduced in the literature to include an
in�ation linked component (see for example CIR [17]) while others included as
addition factors the mean level of the short-term rate Balduzzi, Bertola, and
Foresi [2] or the volatility of the short-term rate (Longsta� and Schwartz [37]).

Given the discussion regarding PCA we know that it might be useful to
increase the number of factors even further. Rebonato [48] also mentions
that it may require more factors to produce historically implied instantaneous
correlation structures.

An example of increasing the number of factors even further can be found in
the paper by Balduzzi, Das, Foresi and Sundaram [3]. The authors proposed
a three-factor a�ne term structure model. The three proposed factors are
the short-term rate of interest, the long-run mean of the short-rate and the
volatility of the short-term rate. They also show that the a�ne nature of
the model lead to relatively simple bond price solutions as well as a relatively
simple calibration of the model.

The addition of factors does in general lead to an increase in the complexity
of the model. Stability of the model should also be considered as we increase
the number of factors.

2.2.5 Limitations

The �rst obvious limitation is that short rate models are based on the as-
sumption that the dynamics of the entire yield curve is only driven by the
instantaneous short rate. In the case of single-factor models we only have one
source of uncertainty implying perfectly correlated rates. In order to improve
correlation modeling we need to add additional factors to the model which
adds more complexity to the model. Furthermore, the instantaneous short
rate is not a directly observable market variable and short rate modeling is
not consistent with the Black framework (in order for short rate modeling to
be consistent with the Black framework, we need short rate dynamics that will
imply lognormally distributed forward rates).

2.3 The Heath-Jarrow-Morton Framework

The paper by Heath, Jarrow and Morton [28] presented a framework for valuing
contingent claims under a stochastic term structure of interest rates. The
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processes modeled in the approach is the instantaneous forward rates. The key
result of the HJM framework is that the no-arbitrage evolution of the state
variables can be expressed purely as a function of the instantaneous volatilities
(Rebonato [47] and Heath, Jarrow and Morton [28]). This model does not
require an inversion of the yield term structure to eliminate the market prices
of risk and take as given an initial forward curve (Heath, Jarrow and Morton
[28]). Another important point mentioned in the paper by Heath, Jarrow and
Morton [28] is that all the existing arbitrage models can be obtained through
certain volatility speci�cations.

2.3.1 Modeling Framework

To get a better idea of the processes involved we will consider the work by
Björk [4]. Let us assume for every �xed T > 0, that the stochastic di�erential
equations of the instantaneous forward rates under the objective probability
measure P are given by

df(t, T ) = α(t, T )dt+ σ(t, T )dWP , (2.3.1)

f(0, T ) = f∗(0, T ), (2.3.2)

where f∗(0, T ) is the observed forward rate curve.
The required condition for arbitrage-free pricing is given by the following

α(t, T ) = σ(t, T )
∫ T

t
σ(t, s)′ ds− σ(t, T )λ(t), (2.3.3)

where
λ(t) = [λ1(t), . . . , λd(t)]′

is the market price of risk vector. Setting the local rate of return of bonds equal
the risk-free rate, we obtain the important HJM drift speci�cation under the
martingale measure

α(t, T ) = σ(t, T )
∫ T

t
σ(t, s)′ ds. (2.3.4)

This is a very important and useful result since it states that the drift
parameters are uniquely determined once the volatility structure is speci�ed
(Björk [4]). The other way of looking at it is that we can freely specify the
volatility structure, and will then be able to use Equation (2.3.4) to uniquely
specify the drift parameters. This �exibility can however create some issues in
the calibration of the model and will be discussed in the section on the LIBOR
and swap market models. Also note that Equation (2.3.4) is independent of
the market price of risk. This is in line with the comment at the start of the
section.
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2.3.2 Limitations

The short-rate process implied by the model is in general non-Markovian (see
discussions by Brigo and Mercurio [11], Hullhull and Rebonato [47]). This
has serious implications for tree-building procedures as it will result in non-
recombining latices. There are, however, studies showing conditions that will
allow for the trees to be re-combining (Brigo and Mercurio [11] and Carverhill
[16]). Hence, the preferred choice of implementation will be through making
use of Monte Carlo simulations. Another issue is that there are no observable
instantaneous forward rates in the market which in turn complicates the cali-
bration procedure (Rebonato [47]). Furthermore, a number of authors (see for
example Brace, Gatarek and Musiela [8]) mention that the instantaneous for-
ward rate processes explodes with positive probability in a lognormal setting.
Rebonato [47], however, mentions that this is highly unlikely in any practical
implementation.

2.4 LIBOR and Swap Market Models

One of the biggest disadvantages of short rate models and the framework pro-
posed by Heath, Jarrow and Morton [28] is that these models are expressed
in terms of rates which are not observable in the market. This then com-
plicates the calibration and implementation of the models and hence reduces
some of its �nancial appeal (Hunt and Kennedy [33]). The HJM framework
however showed signi�cant promise due to the fact that the model provided
the capability to model a large number of factors and the �exibility of the co-
variance structure (Götsch [22]). This �exibility in the choice of the covariance
structure can however lead to di�culties relating to calibration. This will be
discussed in more detail in the section on market completeness.

2.4.1 Modeling Framework

Various papers were written on these two models, however the literature often
refer to research articles by Brace, Gatarek and Musiela [8] and Miltersen,
Sandmann and Sondermann [39] as the basis papers relating to the LIBOR
market model whereas the article by Jamshidian [35] is seen as the basis paper
relating to the swap market model. The popularity of the models are mainly
due to its consistency with the Black [5] framework (Pelsser [44]). Before the
introduction of the market models the Black [5] pricing formulas for interest
rate derivatives were only justi�able through some inconsistent assumptions
(James and Webber [34]). The LIBOR market model is a discrete time equiv-
alent of the HJM framework.

The state variables in the LIBOR market model are discretely compounded
forward rates (Rebonato [47]). These are market observable rates and are
assumed to be lognormally distributed. Each of the forward rates can be
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modeled as a martingale under its associated T− forward measure (Björk
[4]). This allows the pricing of caplets and hence caps (can be generalized
to �oorlets and hence �oors) that is consistent with the Black [5] framework.
Note however that more than one forward rate cannot be martingales under
the same martingale measure (Brigo and Mercurio [11] and Björk [4]).

The state variables in the swap market model are in turn de�ned as dis-
cretely compounded forward swap rates (Rebonato [47]). Similar to the LIBOR
market model these are market observable rates and are assumed to be lognor-
mally distributed. Each of these rates can be modeled as a martingale under
the forward swap martingale measure (Björk [4]). This allows the pricing of
swaptions in a manner that is consistent with the Black [5] framework.

LIBOR and swap market models are however not compatible (mentioned
by a number of authors; see for example Brigo and Mercurio [11], Björk [4]
and Rebonato [47]). This can be seen through noting that a swap rate can
be expressed as a linear combination of forward rates with stochastic weights
(Rebonato [47]). Hence, the pricing of swaptions in the LIBOR market model
will not be consistent with the Black [5] framework (similar result can be
derived for the pricing of caps/�oors in the swap market model). This then
implies that one has to decide, based on the problem at hand, which one of
the models to work with. We will focus our attention on the LIBOR market
model. From above it is evident that this will imply simple calibration to
cap/�oor prices and we will have to use approximations for the calibration to
swaption prices (Brigo and Mercurio [11], Björk [4]).

2.4.2 Market Completeness

Rebonato [47] repeatedly points out the importance of market completeness
in the LIBOR market model framework and provides a very nice description
of the problem at hand. This is by far one of the better accounts available in
the literature and hence the arguments presented in this section will be based
along the same lines.

To start o� the discussion, note that it was previously mentioned that
the LIBOR market model is a discrete time equivalent of the HJM framework.
From Section 2.3.1 we know that the no-arbitrage conditions in the HJM frame-
work amounts to expressing the drift of the instantaneous forward purely as
a function of the instantaneous covariance elements. It will be shown later
in the text that the same can be done for the LIBOR market model. Björk
[4] mentions that these quantities should be determined by the market, which
then allows the pricing of derivatives under the market implied measure. The
question however remains if these volatility functions (will for now only focus
on volatilities) can be uniquely determined. This will then imply an unique
measure and hence unique exotic prices.

Rebonato [47] argues that this is in fact not possible and hence the market
for instantaneous volatilities is incomplete. Furthermore, he mentions that the
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market will only be complete if serial options are liquidly traded out to 30 years.
The reason for this will be discussed below, however before we can proceed we
need to de�ne the payo� of a serial option. This is given by Rebonato [47] as

Payo�Tpay = [LTreset,Treset+τ (Topt)−K]+τ, (2.4.1)

where Topt ≤ Tpay ≤ Treset, but Topt < Treset. This instrument then has the
important property that the expiry of the option, Topt, occurs before the reset
date Treset. The importance of these options are that di�erent volatility func-
tions of the forward rates will result in di�erent root-mean-square volatilities
up to time Topt. This is not the case with caplets. Hence, caplet prices cannot
be used to uniquely determine the actual shape of the instantaneous volatility
functions and hence the pricing of exotic options are not unique. Rebonato
[47] further mentions that swaptions might provide more information regarding
the volatility functions (ignoring that these two markets does not have to be
in line in the �rst place). Swaptions however depend on both volatilities and
correlations, which subsequently complicates the estimation of the required
forward rate volatility functions.

Above mentioned property will have a signi�cant impact on the implemen-
tation of the LIBOR market model. It will require that the user of the model
make some �nancially justi�able assumptions regarding the covariance struc-
ture of the model. The covariance structure will then ultimately re�ect the
market views of the user.

2.4.3 Limitations

Given the dimensionality of the model, as well as non re-combining lattices,
the user is typically forced to use Monte Carlo techniques for the pricing of
interest rate derivatives (with the exception of some of the vanilla interest
rate derivatives). Also, this model requires careful consideration regarding the
choice of the covariance functions (given the fact that the market in instanta-
neous volatilities is not complete). Extension of results to volatility smiles can
be complex (depending on the methodology).

 
 
 



Chapter 3

Mathematical Setup

This chapter will present some of the required mathematical results and def-
initions. These are intended to provide the reader with a broad overview of
the mathematical requirements associated with the setup of market models.
For more mathematical rigour the reader is referred to the source material
mentioned in the chapter.

It was stated in Chapter 2 that there are a number of papers written on the
LIBOR and swap market models (see for example Brace, Gatarek and Musiela
[8], Miltersen, Sandmann and Sondermann [39], Jamshidian [35] and Musiela
and Rutkowski [42]).

We will mainly consider the version as presented by Rebonato [47]. This
approach introduce bond prices in order to de�ne forward rates and assume
volatilities of forward LIBOR rates to be deterministic of nature. Hence, before
we can proceed, we need to introduce a set of bonds and the relationship
between bonds and market rates. This is given in the following section.

3.1 Financial Framework

As mentioned above, we will consider an economy consisting of N + 1 zero
coupon bonds (Rebonato [47]). The value at time t, of a bond expiring at
time Ti, will be given by B(t, Ti). We will assume the usual properties of
bonds within this economy (such as unit payo� at maturity and the fact that
the bond processes have to be strictly positive). The bond price dynamics will
not be explicitly de�ned in this thesis, we will focus more on the dynamics of
forward rates.

These bonds will then be used to de�ne a set of N spanning forward rates
(Brigo and Mercurio [11]). Spanning forward rates are in turn de�ned as
forward rates such that the expiry time of a forward rate corresponds with
the payment time of the forward rate preceding the one under consideration
(Rebonato [47]). In order to de�ne the forward LIBOR rates, we will consider
a set of dates Ω = {T0, . . . , TN} from which (Ti, Ti+1) indicates the expiry-
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maturity pair associated with the forward rate LTi,Ti+1(t) at time t (Brigo
and Mercurio [11]). Furthermore, the year fraction between dates Ti and Ti+1

will be indicated by αTiTi+1 . We are now in a position to de�ne the underlying
instruments to the market models, i.e. forward LIBOR and forward swap rates.

The LIBOR forward rate can be de�ned as the rate, at time t, for the time
period between Ti and Ti+1. This is formally presented in the de�nition below

De�nition 3.1.1 (Forward LIBOR/JIBAR Rate - Björk [4]) The
simple forward rate at time t, for the time period between Ti and Ti+1, is de�ned
as

LTiTi+1(t) = −B(t, Ti+1)−B(t, Ti)
αTiTi+1B(t, Ti+1)

.

The forward LIBOR rate however gets �xed at the time of reset at the pre-
vailing rate for the period under consideration (Hull [32]). This rate is called
the spot LIBOR rate and is presented in the de�nition below

De�nition 3.1.2 (Spot LIBOR/JIBAR Rate - Björk [4]) The simple
spot rate rate at time t, for the time period between Ti and Ti+1 , is de�ned as

LTiTi+1(Ti) = − B(Ti, Ti+1)− 1
αTiTi+1B(Ti, Ti+1)

.

The next �nancial quantity to de�ne is the forward swap rate. We will con-
sider par forward swaps (Pelsser [44]), i.e. swaps where the �oating side of
the swap equals the �xed side. The formula for the swap rate is presented
in the de�nition below (see Appendix B.1 and work by Gatarek, Bachert and
Maksymiuk [21]).

De�nition 3.1.3 (Forward Swap Rate - Gatarek, Bachert and
Maksymiuk [21]) The par swap rate at time t, for the swap starting at time
Ts and maturing at time TN , is de�ned as the �xed rate that will result in the
value of the �xed leg of the swap to equal the value of the �oating leg. The rate
is given as

SRs,N (t) =
B(t, Ts)−B(t, TN )∑N
i=s+1B(t, Ti)αTi−1Ti

.

It will be shown at a later stage that the forward swap rate can be expressed
as a linear combination of forward LIBOR rates (with stochastic weights, see
Rebonato [47] and Brigo and Mercurio [11]). This will be used to derive
an approximation for swaption volatility within the LIBOR market model
(number of sources using this approximation, see for example Rebonato [47],
Brigo and Mercurio [11] and Gatarek, Bachert and Maksymiuk [21]).
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3.2 Arbitrage-Free Pricing

The pricing of �nancial instruments can be described as the process of �nding
unique (if possible, otherwise prices under the martingale measure implied by
the market, see Björk [4]) and arbitrage-free prices for the derivative securities
under consideration. We will, however, only focus on arbitrage-free pricing;
uniqueness of prices will only be discussed in later chapters and will follow
arguments by Rebonato [47].

In order to obtain arbitrage-free prices, we will consider a technique known
as the martingale approach (see Björk [4], Rebonato [47], Brigo and Mercurio
[11] and Pelsser [44]). The technique is essentially based on measure trans-
formations to martingale measures and is described by Björk [4] as the most
general approach existing for arbitrage pricing.

3.2.1 De�nitions and Theorems

This section will provide a set of de�nitions and theorems necessary for the
martingale approach to arbitrage pricing. Please note that all of the results
presented in this section were taken almost directly from Björk [4] and Rebon-
ato [47]. Hence, below is intended to act as a short summary rather than an
original presentation.

Let us start this discussion by presenting a theorem that is at the center
of arbitrage pricing. Björk [4] describes it as the �rst fundamental theorem of
mathematical �nance. This will be used to de�ne certain conditions that will
prevent arbitrage opportunities and is presented in the theorem below.

Theorem 3.2.1 (First Fundamental Theorem - Björk [4]) Consider a
market model consisting of the asset price processes S0, S1, . . . , SN on the time
interval [0, T ]. The market model is free of arbitrage if and only if there exists
a martingale measure, i.e. a measure Q ∼ P such that the processes

S0(t)
S0(t)

,
S1(t)
S0(t)

, . . . ,
SN (t)
S0(t)

are (local) martingales under Q. The numeraire process S0 is assumed to be
strictly positive.

From above it is clear that there is a strong connection between absence of ar-
bitrage and martingales. Hence, the remainder of the section will be dedicated
to introducing and de�ning various aspects relating to these concepts.

Rebonato [47] mentions that the forward rate processes, depending on the
choice of numeraire and assuming absence of arbitrage, will be either martin-
gales or semi-martingales (see Theorem 3.2.1 and the next chapter). However,
given the �nancial requirement that these rates should be positive, we will
focus our attention on strictly positive martingales as well as strictly positive
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semi-martingales. Furthermore, the semi-martingale property allows us to de-
compose a forward rate process into previsible and surprise components. This
is formally stated in the theorem below.

Theorem 3.2.2 (Doob-Meyer Decomposition - Rebonato [47]) Each
element in the set of strictly positive semi-martingales can be uniquely de-
composed into the sum of a pure martingale component, referred to as the
innovation part, and a previsible process, called the predictable part.

Next, Rebonato [47] imposes the following condition on the innovation part of
the Doob-Meyer decomposition. This is presented below.

Condition 3.2.1 (Innovation Restriction - Rebonato [47]) As far as
the martingale component of the Doob-Meyer decomposition is concerned, we
will restrict our attention to innovations that are Wiener processes.

The derivation of forward rate processes will be shown in the next chapter
to be dependent on movements between di�erent measures. Rebonato [47]
mentions that these should be restricted to special sets of measures in order to
preserve the properties presented in this section. These are presented below.

De�nition 3.2.1 (Equivalent Measures - Rebonato [47]) Two
measures Q and P are said to be be equivalent (indicated by Q ∼ P ) if they
share the same null set.

De�nition 3.2.2 (Equivalent Martingale Measures - Rebonato [47])
A measure Q, equivalent to P , is said to be an equivalent martingale measure
if the process X is a martingale with respect to both Q and P .

The de�nitions and condition presented thus far constitutes the fundamental
modeling choices as given by Rebonato [47]. Both Björk [4] and Rebonato [47]
then go on to introduce useful tools that will be used in the derivation of the
arbitrage-free forward rate processes.

The �rst theorem will provide us with an expression for the SDE of an
martingale. This is presented in the theorem below.

Theorem 3.2.3 (Martingale Representation - Rebonato [47]) Let M
be a strictly positive martingale with respect to the �ltration generated by a
Q−Wiener process, WQ be a standard Wiener process under Q and γ(t) (not
necessarily deterministic) be a real valued previsible process integrable with re-
spect to WQ. Then, given some technical conditions, it is aways possible to
represent M in the form

dM(t) = M(t)γ(t)dWQ(t). (3.2.1)
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Using the results presented in this section, we are now in a position to present
a very useful pricing formula. Let us consider a T−claim X, under the chosen
martingale measure Q (note that this measure will only be unique if the market
is complete). The price of this claim is given in the theorem below.

Theorem 3.2.4 (Martingale Pricing Formula- Björk [4]) If absence of
arbitrage is assumed, then the value of X is given by the formula

Π(t;X) = S0(t)EQ
[

X

S0(T )

∣∣∣∣Ft] , (3.2.2)

where Q is a martingale measure for [S0, S1, . . . , SN ], with S0 as the numeraire.

The results presented thus far have illustrated that there is a clear link between
arbitrage pricing and di�erent measures. In particular, we know that if we
assume or enforce the no-arbitrage condition, then there exists an equivalent
martingale measure (Björk [4]). This measure can then in turn be used to price
derivatives according to Equation (3.2.2). There is however no indication as to
what impact this transformation will have on the processes of the underlying
assets. This is presented in the theorem below (taken directly from Björk [4]).

Theorem 3.2.5 (Girsanov's Theorem - Björk [4]) Let WP be a
d-dimensional standard P−Wiener process on (Ω,F , P,F) and let ϕ be any
d-dimensional adapted column vector process. Choose a �xed T and de�ne the
process L on [0, T ] by

dLt = ϕ′tLtdW
p
t ,

L0 = 1,

i.e.
Lt = e

∫ t
0 ϕ
′
s dW

P
s − 1

2

∫ t
0 ‖ϕs‖2 ds.

Assume that
EP [LT ] = 1,

and de�ne the new probability measure Q on FT by

LT =
dQ

dP
, on FT .

Then
dWP

t = ϕtdt+ dWQ
t ,

where WQ is a Q−Wiener process.

This theorem provides us with the tool necessary to move between measures. A
well known property of above result (can be seen through looking at the spec-
i�cation of dWP

t ) is that the change in measure will only a�ect the drift part
of a stochastic processes. The following sections will derive useful techniques
stemming from the results in this section.
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3.3 Basic Change of Numeraire Concepts

The arguments presented below are extremely important to illustrate how the
results derived up till now can be applied in a pricing framework. Due to its
importance, and the part that it will play in following sections and chapters,
the theory will once again closely follow the work of Björk [4] in an attempt
to keep the discussion as accurate as possible. Therefore, please note that the
aim of this section is to highlight an already derived result, and not to present
a new framework. Björk [4] illustrates the use of the change of numeraire
technique in the following setting.

Assume that we are interested in changing a martingale measure from a
measure with numeraire S0 to a measure with numeraire S1. The associated
martingale measures are indicated by Q0 and Q1 respectively. We know from
Girsanov's Theorem 3.2.5 that this is possible through a suitable speci�cation
of the Girsanov kernel ϕt. However, the obvious question remains, i.e. how do
we go about determining the value of this variable? Björk [4] suggests, that
since we assume arbitrage free pricing, we know from Theorem 3.2.4 that the
price processes (under the two di�erent martingale measures) of an arbitrary
T−claim X will be given by

Π(0;X) = S0(0)E0

[
X

S0(T )

]
, (3.3.1)

and

Π(0;X) = S1(0)E1

[
X

S1(T )

]
. (3.3.2)

Note that the two price processes given above are expressed in expected values.
This is promising considering the fact that it can be shown (outside the scope
of this thesis) that expected values under two di�erent probability measures are
linked via a function called the Radon-Nikodym derivative (Björk [4]). Taking
this into account and assuming some technicalities, Björk [4] then obtains the
following result

S0(0)E0

[
X

S0(T )

]
= S1(0)E0

[
X

S1(T )
· L1

0(T )
]
, (3.3.3)

where L1
0(T ) represents the Radon-Nikodym derivative. From Equation (3.3.3)

we then have that the likelihood process is given by

L1
0(t) =

S0(0)
S1(0)

· S1(t)
S0(t)

, 0 ≤ t ≤ T. (3.3.4)

Girsanov's Theorem 3.2.5 indicate that we will be able to derive the Girsanov
kernel ϕt once we have the dynamics of the likelihood process. Björk [4] men-
tions that the likelihood process is a nonnegative martingale under the measure
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Q0 with an initial value of 1.0 (see also Appendix A.3). Hence, through the
use of Itô it is easy to determine that

dL1
0(t) = {σ1(t)− σ0(t)}L1

0(t)dW 0(t).

Thus, the Girsanov kernel ϕ1
0(t) for the transition from Q0 to Q1 is given by

the volatility di�erence
ϕ1

0(t) = σ1(t)− σ0(t). (3.3.5)

3.4 Change of Numeraire Technique

The previous section illustrated some of the change of numeraire concepts and
showed how the value of the Girsanov kernel ϕ1

0(t) can be obtained. The work
presented so far on this subject mainly followed arguments by Björk [4]. We
still need to extend this technique to show exactly what impact a change of
numeraire will have on a process in the economy under consideration. This
impact and a useful change of numeraire technique will be derived below. The
technique will show what the new drift of a T− claim X should be following
a change in measure. From this we will for example be able to calculate
no-arbitrage drifts of forward LIBOR rates in the following chapter. The
derivation of this result will be based on the work Brigo and Mercurio [11].
Brigo and Mercurio [11] refer to this result as the change of numeraire toolkit
in their book.

Let us assume as in the previous section that we have two numeraires S0

and S1. We will present the same dynamics for these assets as those given by
Brigo and Mercurio [11]. Hence, these assets are assumed to evolve under Q0

according to
dS0(t) = (. . .)dt+ σ0CdW

0(t),

dS1(t) = (. . .)dt+ σ1CdW
0(t),

where both σ0 and σ1 are 1 × n−vectors (can be dependent on S0 and S1

respectively), W 0(t) is an n−dimensional driftless (under Q0) standard Brow-
nian Motion and the n×n matrix C is introduced to model correlation among
the vector Wiener processes (CdW is equivalent to an n−dimensional Brow-
nian motion with instantaneous correlation matrix ρ = CC ′ - see Brigo and
Mercurio [11] and Appendix A.5).

The reason for this type of correlation modeling, i.e. explicitly showing the
matrix C, was chosen to illustrate the importance of the �nal result of this
section. It will be shown that the formula representing the change in drift,
when move from one measure to another, will not contain the matrix C. This
will then enable us to easily apply the same formula to uncorrelated processes.

Next, Brigo and Mercurio [11] introduce a T−claim X into the model
which will allow us to examine the dynamics of a derivative under di�erent
possible measures. In order to do this, let us �rstly consider the dynamics of
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the derivative under the measure associated with the numeraire asset S0 (note
that this measure will be indicated by Q0). This is presented below.

The dynamics of the T−claim X under Q0 is given by

dX(t) = µ0
Xdt+ σXCdW

0(t), (3.4.1)

where W 0 is a n−dimensional standard Brownian motion under Q0. Assume
that we are interested in expressing the dynamics of X under the measure
associated with a new numeraire S1. The dynamics will then be

dX(t) = µ1
Xdt+ σXCdW

1(t), (3.4.2)

where W 1 is a n−dimensional standard Brownian motion under Q1.
Given the inclusion of the matrix C, it is easy to see that the Girsanov

kernel, given by Equation (3.3.5), needs to be adjusted to

ϕ1
0(t) =

S0(t)
S1(t)

[
σ
S1/S0

t C
]′
. (3.4.3)

The Girsanov kernel presented above was calculated through directly deter-
mining the dynamics of the likelihood process. Alternatively, we can calculate
this variable through applying the main result Girsanov's Theorem 3.2.5. This
is brie�y explained below.

Changing the measure from Q0 to Q1 will, according to Girsanov's Theo-
rem 3.2.5, imply a change in drift of the process of X(t). Furthermore, from
Equations (3.4.1)-(3.4.2), we have that the drift of the process will change from
µ0
X to µ1

X . This change in drift can be determined through applying Girsanov's
Theorem 3.2.5 as follows.

dX(t) = µ0
Xdt+ σXCdW

0(t),
= µ0

Xdt+ σXC{dW 1(t) + (σXC)−1
[
µ1
X − µ0

X

]
dt},

= µ1
Xdt+ σXCdW

1(t).

From above, we have that the Girsanov kernel is also given by

ϕ1
0(t) = (σXC)−1

[
µ1
X − µ0

X

]
. (3.4.4)

Setting Equation (3.4.3) equal to Equation (3.4.4) and solving for µ1
X , we

obtain the following result

µ1
X = µ0

X +
S0(t)
S1(t)

σXρ
(
σ
S1/S0

t

)′
.

The result presented above was derived for the general case in which no as-
sumptions were made regarding the volatilities and drifts of the various pro-
cesses.
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We will now consider a speci�c case that will be used repeatedly in the
next chapter. Let us assume that the volatilities of the numeraires and the
process X(t) are level proportional, i.e.

σ0 = v0(t)S0(t),
σ1 = v1(t)S1(t),
σX = vX(t)X(t),

where the v's are deterministic 1×n vectors of time. Next, let us assume that
the drift of X(t) under Q0 is given by

µ0
X = m0

XX(t),

where m0
X is not necessarily a deterministic function of time. Then, using the

results derived in this section, we have that m1
X is given by

m1
Xdt = m0

Xdt− (dlnX(t))(dln(S0(t)/S1(t))).

Note the importance of the last equation, i.e. not only does it provide us
with the change in drift but is also independent of the terms ρ and C. This
in turn implies that we can use this formula for both correlated as well as
uncorrelated Wiener processes. Furthermore, it is worth mentioning that we
did not restrict ourselves to the case in which the derivative is denominated
in a speci�c numeraire, i.e. we did not restrict ourselves to drift-less processes.
This is a necessary property for the next chapter and will be used frequently
in the derivation of all forward LIBOR processes under a single measure. This
technique is formally presented in the theorem below.

Theorem 3.4.1 (Change of Numeraire Technique - Brigo and
Mercurio [11]) Assume that the two numeraires S0 and S1 evolve under Q0

according to
dS0(t) = (. . .)dt+ σ0CdW

0(t),

dS1(t) = (. . .)dt+ σ1CdW
0(t),

where both σ0 and σ1 are 1 × n−vectors (can be dependent on S0 and S1

respectively), W 0(t) is an n−dimensional driftless (under Q0) standard Brow-
nian Motion and the n× n matrix C is introduced to model correlation among
the vector Wiener processes (CdW is equivalent to an n−dimensional Brow-
nian motion with instantaneous correlation matrix ρ = CC ′ ). Similarly, the
dynamics of the T−claim X under Q0 is given by

dX(t) = µ0
Xdt+ σXCdW

0(t).

Now suppose that we are interested in expressing the dynamics of X under the
measure associated with a new numeraire S1. The dynamics will then be

dX(t) = µ1
Xdt+ σXCdW

1(t),
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where W 1 is a n−dimensional standard Brownian motion under Q1. We then
have the following change-in-drift result

µ1
X = µ0

X +
S0(t)
S1(t)

σXρ
(
σ
S1/S0

t

)′
. (3.4.5)

Assume that the volatilities of the numeraires and the process X(t) are level
proportional, i.e.

σ0 = v0(t)S0(t),
σ1 = v1(t)S1(t),
σX = vX(t)X(t),

where the v's are deterministic 1 × n vectors of time. Next, assume that the
drift of X(t) under Q0 is given by

µ0
X = m0

XX(t),

where m0
X is not necessarily a deterministic function of time. Then we have

that m1
X is given by

m1
X dt = m0

X dt− (dlnX(t))(dln(S0(t)/S1(t))). (3.4.6)

 
 
 



Chapter 4

Forward Rate Dynamics

In order to price derivatives in the LIBOR and swap market models we need
to know the dynamics of the underlying instruments. It was mentioned in
Chapter 2 that we will use forward LIBOR rates as underlying instruments for
the LIBOR market model and forward swap rates as underlying instruments
for the swap market model. This chapter will mainly focus on the derivation of
arbitrage-free processes for the LIBOR market model, however we will present
a short section on the swap market model. The derivation of the di�erent
forward rate dynamics will be based on the change of numeraire technique
presented in the previous chapter.

The sections in this chapter will be labeled and hence discussed according
to the work by Götsch [22]. This provides a nice transition of ideas from the
models that are linked to the Black [5] framework to the more general cases
where we have to model several forward rates under the same measure.

4.1 Forward LIBOR Rate Process as a Martingale

Let us start the section by deriving some useful formulas with respect to for-
ward LIBOR rates. According to De�nition 3.1.1 the simple forward LIBOR
rate at time t, for the time period between Ti and Ti+1 , is de�ned as

LTiTi+1(t) = −B(t, Ti+1)−B(t, Ti)
αTiTi+1B(t, Ti+1)

. (4.1.1)

From Equation (4.1.1) we can derive the following two results (Götsch [22])

B(t, Ti) = (1 + αTiTi+1LTiTi+1(t))B(t, Ti+1), (4.1.2)

αTiTi+1LTiTi+1(t) =
B(t, Ti)−B(t, Ti+1)

B(t, Ti+1)
. (4.1.3)

Notice from Equation (4.1.3) that αTiTi+1LTiTi+1(t) expresses the market ob-
servable asset B(t, Ti) − B(t, Ti+1) in terms of the market observable asset
B(t, Ti+1). If we assume that the market is arbitrage free and that the bond

31
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B(t, Ti+1) is a valid numeraire (framework proposed by Rebonato [47] assumes
that bond prices are strictly positive semi-martingales), then we have from
Theorem 3.2.1 that αTiTi+1LTiTi+1(t) is a martingale under the martingale
measure associated with the numeraire B(t, Ti+1) (Götsch [22] and Pelsser
[44]). This measure is called the T−forward measure (Björk [4] and Hull[32])
and will be indicated with Qi+1.

Since, αTiTi+1 is a constant, we have that LTiTi+1(t) is a martingale under
Qi+1 (Götsch [22] and Pelsser [44]). Hence, we can model LTiTi+1(t) according
to a driftless and strictly positive process under the measure Qi+1 (Pelsser
[44]). This is presented below

dLTiTi+1(t) = σTiTi+1(t)LTiTi+1(t) dW i+1(t), (4.1.4)

where W i+1(t) (assumed to be scalar for now) represents the Wiener process
under the probability measure Qi+1. The volatility σTiTi+1(t) of LTiTi+1(t) is
assumed to be a deterministic function of time (Rebonato [47]).

From above it is evident that LTiTi+1(t) is a lognormal variable. This
will consequently allow us to model each forward LIBOR rate as a lognormal
variable under the associated forward measures. Hence, each caplet/�oorlet
can be priced in a manner which is consistent with the Black [5] framework
(Brigo and Mercurio [11] and Rebonato [47]). Furthermore, the results can
easily be extended to caps/�oors since the underlying caplets/�oorlets are
independent variables. Rebonato [47] points out that this is a very favourable
property for exotic traders. The model they use to value their exotic trades
can now correctly recover the prices of some of the underlying instruments.
This type of setting will then also imply simpler calibration strategies.

To conclude the section we present the relationship between the LMM and
Black caplet volatilities

Tiσ
2
TiTi+1.caplet =

∫ Ti

0
σ2
TiTi+1

(t)dt, (4.1.5)

where σTiTi+1.caplet represents the Black caplet volatility. The proof of this
result can be found in Appendix B.2.

The setting presented thus far is rather simplistic. In later sections we
will consider the modeling of di�erent forward LIBOR rates under the same
measure. This will allow us to price derivatives that are dependent on more
than one LIBOR rate at any given time (Götsch [22]). The framework will also
be extended to the case where we have several driving factors which might be
correlated.

4.2 Forward Swap Rate Process as a Martingale

We will now consider the market model that uses as underlying the forward
swap rate. Similar to the previous section we will start the discussion through
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presenting the formula used to calculate the forward swap rate.
According to De�nition 3.1.3 we have that the swap rate at time t, for the

swap starting at time Ts and maturing at time TN , can be expressed as

SRs,N (t) =
B(t, Ts)−B(t, TN )∑N
i=s+1B(t, Ti)αTi−1Ti

. (4.2.1)

Note from above that the numeraire in this case is a combination of market
observable assets and will be indicated by

As,N (t) =
N∑

i=s+1

B(t, Ti)αTi−1Ti . (4.2.2)

Similar to the previous section we have from Equation (4.2.1) that SRs,N (t)
expresses the market observable asset B(t, Ts)−B(t, TN ) in terms of the market
observable asset As,N (t). If we assume that the market is arbitrage free and
that the variable As,N (t) is a valid numeraire, then we have from Theorem
3.2.1 that SRs,N (t) is a martingale under the martingale measure associated
with the numeraire As,N (t) (Hull [32]). This measure is called the forward
swap measure (Brigo and Mercurio [11] and Hull[32]) and will be indicated
with Qs,N . Hence we can model SRs,N (t) according to a driftless and strictly
positive process under the measure Qs,N (Brigo and Mercurio [11]). This is
presented below

dSRs,N (t) = σs,N (t)SRs,N (t) dW s,N (t), (4.2.3)

where W s,N (t) (assumed to be scalar for now) represents the Wiener process
under the probability measure Qs,N . The volatility σs,N (t) of SRs,N (t) is
assumed to be a deterministic function of time (Rebonato [47]). We can now
present the same �ndings as in the previous section.

From above it is evident that variable SRs,N (t) has a lognormal distribu-
tion. This will consequently allow us to model each forward swap rate as a
lognormal variable under the associated forward swap measure. Hence, each
swaption can be priced in a manner which is consistent with the Black [5]
framework (Brigo and Mercurio [11] and Rebonato [47]).

The relationship between the LMM and Black swaption volatilities is pre-
sented below

TnV
2
n,N =

∫ Tn

0
σ2
n,N (t)dt, (4.2.4)

where Vn,N represents the Black swaption volatility. The proof of this result
can be found in Appendix B.3.

It is important to point out that the two models introduced thus far are
not compatible (Brigo and Mercurio [11] and Rebonato [47]). This can for
example be seen trough noting that forward LIBOR rates and forward swap
rates cannot be martingales under the same measure. The rest of the thesis will
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however only focus on the LIBOR market model and hence the swap market
model was only included for completeness.

If we only want to model interest rate derivatives within the LIBOR market
model framework, then we need to introduce a mechanism for modeling the
joint dynamics of several forward rates. This is due to the fact that the payo�
of some derivatives, like interest rate swaptions, are dependent on more than
one forward rate at the same time. This extension of the LIBOR market model
will be discussed in the following sections.

4.3 Forward LIBOR Rates under the Forward

Measure

In this section we will derive the drifts of forward LIBOR rates under di�erent
forward measures. We will still assume that the process of the LIBOR rate
under consideration is driven by a scalar Wiener process. We will extend this
in a later section to several Wiener processes that may be correlated. Note
that the spot measure, i.e. the measure associated the zero coupon bond with
maturity equal to the reset date, will not be considered here (Götsch [22]).

Recall from the previous section that the the dynamics of the forward rate
LTiTi+1(t) under the measure Qi+1 is given by

dLTiTi+1(t) = σTiTi+1(t)LTiTi+1(t) dW i+1(t),

where the Wiener processW i+1(t) is assumed to be a scalar function. Suppose
now that we are interested in changing the numeraire to the zero coupon bond
with maturity Ti (Götsch [22]). We know from Girsanov's Theorem 3.2.5 that
this will result in a change in drift of the process given above. In order to
determine the exact change, we will use the change in numeraire technique
derived in the previous chapter (Brigo and Mercurio [11]). The argument
presented below will follow the work by Götsch [22].

From Equation (3.4.6) we have that

mi
L dt = −d lnLTiTi+1(t) d ln

(
B(t, Ti+1)
B(t, Ti)

)
,

= d lnLTiTi+1(t) d ln(1 + αTiTi+1LTiTi+1(t)),

since, from Equation (4.1.2), we have that

ln

(
B(t, Ti+1)
B(t, Ti)

)
= −ln(1 + αTiTi+1LTiTi+1(t)).

Furthermore, through the use of Itô we get that

d lnLTiTi+1(t) = (· · · )dt+ σTiTi+1(t) dW i(t),
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and

d ln(1 + αTiTi+1LTiTi+1(t)) = (· · · )dt+
αTiTi+1σTiTi+1(t)LTiTi+1(t)

1 + αTiTi+1LTiTi+1(t)
dW i(t).

Hence, according to Equation (3.4.6), we have that

mi
L =

αTiTi+1σTiTi+1(t)LTiTi+1(t)
1 + αTiTi+1LTiTi+1(t)

σTiTi+1(t).

Given above, and the assumption that forward LIBOR rates are lognormally
distributed under the associated forward measure, we have that

dLTiTi+1(t) =
αTiTi+1σTiTi+1(t)LTiTi+1(t)

1 + αTiTi+1LTiTi+1(t)
σTiTi+1(t)LTiTi+1dt

+ σTiTi+1(t)LTiTi+1(t) dW i(t).

Using above technique repeatedly, the process for LTiTi+1(t) under Qm+1,
where m+ 1 < i+ 1, will be given by

dLTiTi+1(t) =
i∑

j=m+1

αTjTj+1σTjTj+1(t)LTjTj+1(t)
1 + αTjTj+1LTjTj+1(t)

σTiTi+1(t)LTiTi+1dt

+ σTiTi+1(t)LTiTi+1(t) dWm+1(t).

To show the application of above methodology for the case where we change
the numeraire to zero coupon bonds with longer maturities than i + 1, the
process for LTiTi+1(t) under Qi+2 is taken (Götsch [22]).

From Equation (3.4.6) we have that

mi+2
L dt = −d lnLTiTi+1(t) d ln(1 + αTi+1Ti+2LTi+1Ti+2(t)),

since, from Equation (4.1.2), we have that

ln

(
B(t, Ti+1)
B(t, Ti+2)

)
= ln(1 + αTi+1Ti+2LTi+1Ti+2(t)).

If we now follow the same procedure as previously, then we obtain the
dynamics for LTiTi+1(t) under QN+1, where N + 1 > i+ 1, as

dLTiTi+1(t) = −
N∑

j=i+1

αTjTj+1σTjTj+1(t)LTjTj+1(t)
1 + αTjTj+1LTjTj+1(t)

σTiTi+1(t)LTiTi+1dt

+ σTiTi+1(t)LTiTi+1(t) dWN+1(t).

Above results are summarized in the following theorem. The format of the
theorem is the same as that of Brigo and Mercurio [11].
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Theorem 4.3.1 (Forward LIBOR Dynamics Assuming A Scalar
Wiener Process - Brigo and Mercurio [11]) Given above assumptions,
we obtain that the dynamics of LTiTi+1(t) under the forward measure Tk+1 in
the three cases k+ 1 < i+ 1, k+ 1 = i+ 1 and k+ 1 > i+ 1 are, respectively,

k + 1 < i+ 1, t ≤ Tk+1 :

dLTiTi+1(t) =
i∑

j=k+1

αTjTj+1σTjTj+1(t)LTjTj+1(t)
1 + αTjTj+1LTjTj+1(t)

σTiTi+1(t)LTiTi+1dt

+ σTiTi+1(t)LTiTi+1(t) dW k+1(t),

k + 1 = i+ 1, t ≤ Ti :

dLTiTi+1(t) = σTiTi+1(t)LTiTi+1(t) dW k+1(t),

k + 1 > i+ 1, t ≤ Ti :

dLTiTi+1(t) = −
k∑

j=i+1

αTjTj+1σTjTj+1(t)LTjTj+1(t)
1 + αTjTj+1LTjTj+1(t)

σTiTi+1(t)LTiTi+1dt

+ σTiTi+1(t)LTiTi+1(t) dW k+1(t),

where, as explained before, W k+1(t) (assumed to be scalar for now) represents
the Wiener process under the probability measure Qk+1.

From the above we can note that LTiTi+1(t) is a martingale only with the
numeraire k + 1 = i + 1 (Götsch [22]). Under numeraires with k + 1 6= i + 1
the LIBOR rate has a drift, which depends on forward LIBOR rates (Brigo
and Mercurio [11]).

4.4 Extension to Several Factors

The dynamics of forward rates derived above, can only be used to price deriva-
tives whose payo�s can be decomposed into a set of independent payo�s which
in turn is only dependent on a single forward rate (Götsch [22]). If however,
the payo� depends on several forward rates at the same time, then the corre-
lation between di�erent forward rates a�ects the payo� and must therefore be
considered (Brigo and Mercurio [11], Götsch [22] and Rebonato [47]).

We will consider two methods that can be used to model several factors.
These will be similar to those discussed by Rebonato [47]. The �rst approach
will model forward rates using n orthogonal Wiener processes. This approach
will lead to a covariance matrix that is entirely expressed in terms of the
volatility vectors. The second approach will use a similar methodology to that
used in Section 3.4, i.e. we will introduce matrices that will allow the explicit
modeling of correlation among di�erent forward rates. These approaches are
presented below.

 
 
 



Chapter 4. Forward Rate Dynamics 37

4.4.1 Uncorrelated Factors

We will �rstly consider the case in which we have n orthogonal Wiener pro-
cesses (Götsch [22]). The dynamics of LTiTi+1(t) under Qi+1 is then given
by

dLTiTi+1(t) = σTiTi+1(t)LTiTi+1(t) dW i+1(t),

where W i+1(t) is the n× 1 vector

W i+1(t) =

 W i+1
1 (t)
...

W i+1
n (t)

 ,
and σTiTi+1(t) the 1× n vector

σTiTi+1(t) = [σTiTi+1,1(t), . . . , σTiTi+1,n(t)].

The elements of the vector σTiTi+1(t) contains the sensitivities of the forward
rate LTiTi+1(t) towards the di�erent orthogonal Wiener processes. It can be
seen that the covariance matrix between the di�erent forward rates is given by
(Rebonato [47])

Σ = σσ
′
. (4.4.1)

Consider, as in the previous section, the case where the numeraire is changed
to the zero coupon bond with maturity Ti. Then we have from Equation (3.4.6)
that

mi
L dt = d lnLTiTi+1(t) d ln(1 + αTiTi+1LTiTi+1(t)),

=
αTiTi+1LTiTi+1(t)

1 + αTiTi+1LTiTi+1(t)
σTiTi+1(t)(dW i)(dW i)′σTiTi+1(t)′,

=
αTiTi+1LTiTi+1(t)

1 + αTiTi+1LTiTi+1(t)
σTiTi+1(t)D[1]σTiTi+1(t)′ dt,

where D[1] denotes the diagonal matrix
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 .
Hence, we have that

mi
L =

αTiTi+1LTiTi+1(t)
∑n

q=1 σTiTi+1,q(t)σTiTi+1,q(t)
1 + αTiTi+1LTiTi+1(t)

.
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Given above, and the assumption that forward LIBOR rates are lognormally
distributed under the associated forward measure, we have that

dLTiTi+1(t) =
αTiTi+1LTiTi+1(t)

∑n
q=1 σTiTi+1,q(t)σTiTi+1,q(t)

1 + αTiTi+1LTiTi+1(t)
LTiTi+1(t)dt

+ σTiTi+1(t)LTiTi+1(t) dW i(t).

Using above technique repeatedly, the process for LTiTi+1(t) under Qk+1, where
k + 1 < i+ 1, will be given by

dLTiTi+1(t) =
i∑

j=k+1

αTjTj+1LTjTj+1(t)
∑n

q=1 σTjTj+1,q(t)σTiTi+1,q(t)
1 + αTjTj+1LTjTj+1(t)

LTiTi+1(t)dt

+ σTiTi+1(t)LTiTi+1(t) dW k+1(t).

Following similar arguments we can derive the dynamics of LTiTi+1(t) for the
case where k+ 1 > i+ 1. The results are summarized in the following theorem
(Brigo and Mercurio [11]).

Theorem 4.4.1 (Forward LIBOR Dynamics Assuming Uncorrelated
Wiener Processes - Brigo and Mercurio [11]) Given above assumptions,
we obtain that the dynamics of LTiTi+1(t) under the forward measure Tk+1 in
the three cases k+ 1 < i+ 1, k+ 1 = i+ 1 and k+ 1 > i+ 1 are, respectively,

k + 1 < i+ 1, t ≤ Tk+1 :

dLTiTi+1(t) =
i∑

j=k+1

αTjTj+1LTjTj+1(t)
∑n

q=1 σTjTj+1,q(t)σTiTi+1,q(t)
1 + αTjTj+1LTjTj+1(t)

LTiTi+1(t)dt

+ σTiTi+1(t)LTiTi+1(t) dW k+1(t),

k + 1 = i+ 1, t ≤ Ti :

dLTiTi+1(t) = σTiTi+1(t)LTiTi+1(t) dW k+1(t),

k + 1 > i+ 1, t ≤ Ti :

dLTiTi+1(t) =

−
i∑

j=k+1

αTjTj+1LTjTj+1(t)
∑n

q=1 σTjTj+1,q(t)σTiTi+1,q(t)
1 + αTjTj+1LTjTj+1(t)

LTiTi+1(t)dt

+ σTiTi+1(t)LTiTi+1(t) dW k+1(t),

whereW k+1(t) represents the uncorrelated Wiener process under the probability
measure Qk+1.
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4.4.2 Correlated Factors

Now consider the case in which we have n correlated Wiener processes. The
dynamics of LTiTi+1(t) under Qi+1 is then given by

dLTiTi+1(t) = σTiTi+1(t)LTiTi+1(t) dW i+1
TiTi+1

(t),

where the scalar W i+1
TiTi+1

(t) = CTiTi+1W
i+1(t). The vector W i+1(t) is de�ned

as a n× 1 vector of uncorrelated Wiener processes and is given by

W
i+1(t) =

 W
i+1
1 (t)
...

W
i+1
n (t)

 .
Note that the volatility σTiTi+1(t) in this setting is assumed to be a determin-
istic scalar process.

It is worth mentioning again that the n×n matrix C was included to model
correlation among the di�erent forward rates. The correlation matrix in this
setting will be given by (see Rebonato [47] and Section A.5))

ρ = CC ′. (4.4.2)

Consider the case where the numeraire is changed to the zero coupon bond
with maturity Ti. Then we have from Equation (3.4.6) that

mi
L dt = d lnLTiTi+1(t) d ln(1 + αTiTi+1LTiTi+1(t)),

=
αTiTi+1LTiTi+1(t)

1 + αTiTi+1LTiTi+1(t)
σTiTi+1(t)(dW i

TiTi+1
)(dW i

TiTi+1
)′σTiTi+1(t),

=
αTiTi+1LTiTi+1(t)

1 + αTiTi+1LTiTi+1(t)
σTiTi+1(t)ρL(i,i+1);L(i,i+1)σTiTi+1(t) dt,

where ρL(i,i+1);L(i,i+1) is the instantaneous correlation between LTiTi+1(t) and
LTiTi+1(t). Hence, we have that

mi
L =

ρL(i,i+1);L(i,i+1)αTiTi+1LTiTi+1(t)σTiTi+1(t)
1 + αTiTi+1LTiTi+1(t)

σTiTi+1(t).

Given above, and the assumption that forward LIBOR rates are lognormally
distributed under the associated forward measure, we have that

dLTiTi+1(t) =
ρL(i,i+1);L(i,i+1)αTiTi+1LTiTi+1(t)σTiTi+1(t)

1 + αTiTi+1LTiTi+1(t)
σTiTi+1(t)LTiTi+1(t)dt

+ σTiTi+1(t)LTiTi+1(t) dW i(t).
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Using above technique repeatedly, the process for LTiTi+1(t) under Qk+1, where
k + 1 < i+ 1, will be given by

dLTiTi+1(t) =
i∑

j=k+1

ρL(i,i+1);L(j,j+1)αTjTj+1LTjTj+1(t)σTjTj+1(t)
1 + αTjTj+1LTjTj+1(t)

σTiTi+1(t)LTiTi+1(t)dt

σTiTi+1(t)LTiTi+1(t) dW k+1(t).

Following similar arguments we can derive the dynamics of LTiTi+1(t) for the
case where k+ 1 > i+ 1. The results are summarized in the following theorem
(Brigo and Mercurio [11]).

Theorem 4.4.2 (Forward LIBOR Dynamics Assuming Correlated
Wiener Processes - Brigo and Mercurio [11]) Given above assumptions,
we obtain that the dynamics of LTiTi+1(t) under the forward measure Tk+1 in
the three cases k+ 1 < i+ 1, k+ 1 = i+ 1 and k+ 1 > i+ 1 are, respectively,

k + 1 < i+ 1, t ≤ Tk+1 :

dLTiTi+1(t) =
i∑

j=k+1

ρL(i,i+1);L(j,j+1)αTjTj+1LTjTj+1(t)σTjTj+1(t)
1 + αTjTj+1LTjTj+1(t)

σTiTi+1(t)LTiTi+1(t)dt

+ σTiTi+1(t)LTiTi+1(t) dW k+1(t),

k + 1 = i+ 1, t ≤ Ti :

dLTiTi+1(t) = σTiTi+1(t)LTiTi+1(t) dW k+1(t),

k + 1 > i+ 1, t ≤ Ti :

dLTiTi+1(t) =

−
i∑

j=k+1

ρL(i,i+1);L(j,j+1)αTjTj+1LTjTj+1(t)σTjTj+1(t)
1 + αTjTj+1LTjTj+1(t)

σTiTi+1(t)LTiTi+1(t)dt

+ σTiTi+1(t)LTiTi+1(t) dW k+1(t),

where W k+1(t) represents the correlated Wiener process under the probability
measure Qk+1.

 
 
 



Chapter 5

Volatility Modeling

The previous chapter showed that the dynamics of forward LIBOR rates are
expressed in terms of the instantaneous volatility and correlation functions.
From this it is evident that these two functions play an important role in the
LIBOR market model. This chapter will consider di�erent possible volatility
speci�cations that can be grouped into two main categories, namely piecewise-
constant and parametric.

Rebonato [47] points out that the market for instantaneous volatilities is
incomplete (discussed in Section 2.4.2). This implies that we cannot imply
unique volatility functions from the market and hence are forced to make
certain assumptions regarding these functions. These assumptions will in turn
have a signi�cant impact on the valuation of exotic interest rate options (as
well as the valuation of swaptions within the LMM framework) and hence
it is important to make sure that the assumptions are �nancially plausible
(Rebonato [47]).

In order to examine the properties of some of the volatility speci�cations,
we need to de�ne a concept called the term structure of volatilities and what
it implies if the volatility speci�cation is said to be time-homogeneous.

5.1 The Term Structure of Volatilities

The de�nition of the term structure of volatilities is as given by Brigo and
Mercurio [11]. Let us consider the economy de�ned in Section 3.1, i.e. we have
a set of times Ω = {T0, . . . , TM} representing adjacent expiry-maturity pairs
for a family of spanning forward rates.

Brigo and Mercurio [11] then de�nes the term structure of volatilities at
time Tj as a graph of expiry times Th−1 against average volatilities V (Tj , Th−1)
of the forward rates LTh−1Th

(t) up to that expiry time itself. In other words,
we have that the term structure of volatilities at time t = Tj is the graph of
the points

{(Tj+1, V (Tj , Tj+1)), (Tj+2, V (Tj , Tj+2)), . . . , (TM−1, V (Tj , TM−1))},
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where for h > j + 1

V 2(Tj , Th−1) =
1

αTjTh−1

∫ Th−1

Tj

σ2
Th−1Th

(t) dt. (5.1.1)

The �rst obvious property of the term structure of volatilities, as de�ned above,
is that di�erent instantaneous volatility functions will imply di�erent evolu-
tions of the term structure of volatilities (Brigo and Mercurio [11]).

Secondly, note that the term structure of volatilities today is given by a
graph consisting of forward rate expiries vs. market observable Black volatil-
ities (Brigo and Mercurio [11] and Rebonato [47]). The Black volatilities are
the caplet volatilities obtained from market quotations.

5.2 Time-Homogeneous Volatilities

Brigo and Mercurio [11] and Rebonato [47] de�nes the evolution of the term
structure of volatilities as time-homogeneous if certain key characteristics of
the current term structure is re�ected in future term structures (in a strictly
theoretical sense we would expect the term structure to remain exactly the
same). These key characteristics can for example be the humped shape ob-
servable in caplet volatilities or the property that long term volatilities are
lower than short term volatilities (depending on the current term structure).
In general, if the term structure of volatilities is said to be time-homogeneous
of nature, then we expect the bulk of the change to be in the level of volatilities.

These authors independently pointed out the importance of time-
homogeneous volatilities. They mention that it is observable from market
data that the shape of the term structure of volatilities can remain the same
for signi�cant time periods. Furthermore, Rebonato [47] mentions that the
model can be extended to incorporate random changes in the term structure
(will however not be considered in this thesis). Given above description and
Equation (5.1.1), we have that the term structure of volatilities will be time-
homogeneous if the instantaneous volatilities satisfy the following (Rebonato
[47]) ∫ Th−1

Tj

σ2
Th−1Th

(t) dt =
∫ Th−1+τ

Tj+τ
σ2
Th−1+τTh+τ (t) dt. (5.2.1)

It can easily be shown that this equation will be satis�ed when the instanta-
neous volatility functions depend on the time to maturity of a speci�c forward
rate (Rebonato [47]), i.e. if

σTh−1Th
(t) = σ(Th−1 − t). (5.2.2)

This is an important property and will be used frequently in the speci�cation of
time-homogeneous volatility functions. Recall that we mentioned earlier that
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today's term structure of volatilities are given by the market caplet volatilities.
Rebonato [47] points out that it is not always possible to �nd instantaneous
volatility functions of the form given by Equation (5.2.2) that are consistent
with today's caplet prices (and hence with today's market implied term struc-
ture of volatilities).

It is however possible to show that, given a volatility speci�cation according
to Equation (5.2.2), we will always be able to recover today's caplet prices if
Tiσ

2
TiTi+1.caplet

is a strictly increasing function of Ti (Rebonato [47]). If these
quantities are not strictly increasing, then the market imply a change in the
shape of the term structure of volatilities.

The calibration di�culties discussed above relates to fact that we are trying
to impose a certain �nancial criteria on the term structure of volatilities (i.e.
a strictly time-homogeneous evolution). Without this assumption we will be
able to recover caplet prices, however the evolution of the term structure might
then be �nancially implausible.

It will be shown at a later stage that given the case where Tiσ
2
TiTi+1.caplet

is
not a strictly increasing function of Ti, we can adjust the volatility speci�cation
in Equation (5.2.2) to ensure both the exact pricing of caplets as well as a time-
homogeneous term structure (at least approximately). The calibration of such
a structure will consist of two steps, one where we enforce time-homogeneity
as best as possible and the next where we make the adjustments necessary for
the correct pricing of today's caplets (Rebonato [47]).

We will now introduce di�erent volatility speci�cations. It was mentioned
earlier that the di�erent volatility speci�cations will be divided into piecewise
constant and parametric volatility structures. We will �rstly consider piecewise
constant volatilities as given by Brigo and Mercurio [11].

5.3 Piecewise Constant Volatility Structure

This section will de�ne di�erent types of piecewise constant volatility struc-
tures as given by Brigo and Mercurio [11]. Some of these speci�cations will
then be used in later chapters where we calibrate the LIBOR market model
to market data. These structures are also known as non-parametric volatility
speci�cations (Gatarek, Bachert and Maksymiuk [21]).

5.3.1 General Structure

The most general piecewise constant volatility structure is presented in Table
5.1. Given the nature of this speci�cation, we are not able to deduce any
qualitative properties for the de�ned volatility functions. This is due to the
fact that there exist an in�nity of ways in which we can exactly recover today's
term structure (Rebonato [47]). It is however important to notice the following
properties of the structure at hand. Firstly, let us consider the expiry-maturity
structure of the volatility functions. Each forward rate is assumed to be alive
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in the time periods preceding its reset date. Following the reset date, the
rate is �xed and hence the volatilities in these time periods are marked as
�Dead�. Secondly, it is evident that the integral in Equation (5.1.1) can now
be replaced with a summation over the piecewise constant parts. Thirdly, as
time approaches the reset date of the nearest forward rate, we will loose both
the �rst row as well as the �rst column of the volatility matrix. This property
can be used to determine if a volatility speci�cation is time-homogeneous.

Time: t ∈ (0, T0] (T0, T1] (T1, T2] . . . (TM−2, TM−1]
LT0T1(t) σ1,1 Dead Dead . . . Dead

LT1T2(t) σ2,1 σ2,2 Dead . . . Dead
... . . . . . . . . . . . . . . .

LTM−1TM
(t) σM,1 σM,2 σM,3 . . . σM,M

Table 5.1: Piecewise constant volatility matrix for the most general instantaneous
volatility speci�cation.

As mentioned earlier, the structure speci�ed in Table 5.1 is very general.
We will now consider a series of assumptions that can be made on the entries
of Table 5.1. This will in turn generate new volatility speci�cations which are
a subset of the general speci�cation. The details of these assumptions, as well
as the implied properties, are presented below.

5.3.2 Dependence on Time to Maturity

The �rst assumption made by Brigo and Mercurio [11] on the entries of Table
5.1 is that the volatilities only depend on the time to maturity of the forward
rate under consideration. This will result in the volatility matrix given in
Table 5.2. Notice that this speci�cation satis�es Equation (5.2.2) and hence we

Time: t ∈ (0, T0] (T0, T1] (T1, T2] . . . (TM−2, TM−1]
LT0T1(t) η1 Dead Dead . . . Dead

LT1T2(t) η2 η1 Dead . . . Dead
... . . . . . . . . . . . . . . .

LTM−1TM
(t) ηM ηM−1 ηM−2 . . . η1

Table 5.2: Piecewise constant volatility matrix where instantaneous volatilities de-
pend on the time-to-maturity of the forward rate.

have that the term structure of volatilities will evolve in a time-homogeneous
manner. This can also be seen through observing that the resulting volatility
matrix, following a reset in the nearest expiry forward rate, is e�ectively the
same as the original volatility matrix (Brigo and Mercurio [11]). The only
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di�erence between the two matrices is that the new matrix will contain one
less forward rate (assuming we do not introduce a new forward rate). This
change is observed in the tail of the term structure (Brigo and Mercurio [11]).

Recall from the previous section that it will not always be possible to �t this
structure to a market caplet term structure. We will only be able to use this
in the case where the quantities Tiσ

2
TiTi+1.caplet

is a strictly increasing function
of Ti. When this is not the case the procedure will produce imaginary forward
rate volatilities (Rebonato [47]). This will be illustrated in later calibration
examples.

5.3.3 Dependence on Maturity

The second assumption made by Brigo and Mercurio [11] on the entries of
Table 5.1 is that the volatilities only depend on the maturity of the considered
forward rate. This will result in the volatility matrix given in Table 5.3.

Time: t ∈ (0, T0] (T0, T1] (T1, T2] . . . (TM−2, TM−1]
LT0T1(t) s1 Dead Dead . . . Dead

LT1T2(t) s2 s2 Dead . . . Dead
... . . . . . . . . . . . . . . .

LTM−1TM
(t) sM sM sM . . . sM

Table 5.3: Piecewise constant volatility matrix where instantaneous volatilities de-
pend on the maturity of the forward rate.

This volatility speci�cation does not result in a time-homogeneous evolu-
tion of the term structure. We can see this through removing the �rst row
and column and noticing that the resulting matrix is di�erent from the �rst.
The structure can however be �tted to any initial term structure. This advan-
tage is, however, overshadowed by its lack of �nancial plausibility and hence
is unlikely to be implemented in practice (Rebonato [47]).

5.3.4 Separable Volatilities

The volatility speci�cations presented thus far only consisted of single factors.
The �nal two assumptions made by Brigo and Mercurio [11] on the entries of
Table 5.1 are intended to extend the range of de�ned factors.

These speci�cations are derived from volatility speci�cations with factors
representing dependence on time and time to maturity. The only di�erence
is the addition of the parameters indicated with Φ. When applying Equation
(5.1.1) to these structures, it is easy to see that the Φ parameters can be taken
outside of the summation. This is one of the properties that renders these as
separable structures.
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Given above, these structures then allow for the exact recovery of market
observable caplet prices. This can be achieved through expressing the Φ's in
terms of the Ψ's and the market caplet volatilities. The parameters Ψ, together
with the instantaneous correlation of forward rates, can then be used in the
calibration to swaption prices (Brigo and Mercurio [11] and Rebonato [47]).
Furthermore, note that the second formulation consists of a time-homogeneous
component (i.e. the Ψ parameters). It was shown by both Brigo and Mercurio
[11] and Rebonato [47] that the parameters Φ need to be as constant as possible
(across maturities) in order to allow a time-homogeneous evolution of the term
structure of volatilities.

Time: t ∈ (0, T0] (T0, T1] (T1, T2] . . . (TM−2, TM−1]
LT0T1(t) Φ1Ψ1 Dead Dead . . . Dead

LT1T2(t) Φ2Ψ1 Φ2Ψ2 Dead . . . Dead
... . . . . . . . . . . . . . . .

LTM−1TM
(t) ΦMΨ1 ΦMΨ2 ΦMΨ3 . . . ΦMΨM

Table 5.4: Piecewise constant volatility matrix where instantaneous volatilities can
be separated into forward rate speci�c and time dependent components.

Time: t ∈ (0, T0] (T0, T1] (T1, T2] . . . (TM−2, TM−1]
LT0T1(t) Φ1ψ1 Dead Dead . . . Dead

LT1T2(t) Φ2ψ2 Φ2ψ1 Dead . . . Dead
... . . . . . . . . . . . . . . .

LTM−1TM
(t) ΦMψM . . . . . . . . . ΦMψ1

Table 5.5: Piecewise constant volatility matrix where instantaneous volatilities can
be separated into forward rate speci�c and time-to-maturity components.

The �ve tables conclude the piecewise constant models for instantaneous
volatilities as presented by Brigo and Mercurio [11]. We will illustrate in later
chapters how these can be applied to market data. The fact that these are
piecewise constant does reduce some of the computational requirements as the
integrals in Equation (5.1.1) can simply be replaced with summations. Next
we will consider di�erent parametric forms as given by Rebonato [47].

5.4 Parametric Volatility Structure

Parametric volatility structures di�er from piecewise constant structures in
the sense that we introduce continuous functions, dependent on only a few
parameters, for the instantaneous volatilities of forward rates. One of the
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more detailed accounts of parametric volatility speci�cations can be found in
the book by Rebonato [47]; hence the material in this section will mainly follow
the arguments of the author. Later chapters relating to the calibration of the
model will then show how we can apply these functional forms to real market
data. Practical examples are given in the work by Brigo and Mercurio [11]
and Gatarek, Bachert and Maksymiuk [21].

5.4.1 General Structure

Rebonato [47] starts his study through introducing di�erent possible volatility
structures for instantaneous forward rates. These structures are expressed as
products of di�erent functions (the functions are chosen to represent di�erent
key dependencies). The exact speci�cation of these functions will be presented
and discussed at a later stage.

Given above discussion, we will divert slightly from Rebonato [47] and
�rstly introduce two classes of volatility functions. The �rst class consists
of only a single function, dependent on either time, time to maturity or the
maturity of the forward rate. These basic functions are presented below.

σTk−1Tk
(t) = g(t), (5.4.1)

σTk−1Tk
(t) = f(Tk−1), (5.4.2)

σTk−1Tk
(t) = h(Tk−1 − t). (5.4.3)

The second class consists of di�erent possible combinations of the functions de-
�ned above. This class is necessary since these volatility functions, when used
in isolation, have some undesirable properties (we will discuss these properties
in the rest of the section). Hence, through carefully using structures dependent
on a combination of these functions, we will be able to create more accurate
and robust volatility speci�cations.

We will, for the purpose of the discussion, subdivide the second class into
two more categories. These categories were determined on the basis of the
required computational e�ort when calibrating to the market. The �rst part
will allow us to separate the di�erent components during integration and is
given by

σTk−1Tk
(t) = g(t)f(Tk−1), (5.4.4)

σTk−1Tk
(t) = h(Tk−1 − t)f(Tk−1). (5.4.5)

As can be seen from above, this is possible since only one of the functions
are dependent on time. With the rest of the functions this will not be the
case, and hence we will have more complex integrals when calibrating to the
market (Rebonato [47] suggest piecewise constant approximations for some of
the function in the integral in order to simplify calculations). The functions
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are presented below.

σTk−1Tk
(t) = h(Tk−1 − t)g(t), (5.4.6)

σTk−1Tk
(t) = h(Tk−1 − t)g(t)f(Tk−1). (5.4.7)

The rest of the chapter will consider the implied properties of the term struc-
ture given di�erent speci�cations. We will also introduce some of the para-
metric forms that can be used for the functions de�ned above.

5.4.2 Dependence on Time

These are de�ned as instantaneous volatilities which are only dependent on
time. The structure is given by Equation (5.4.1) as

σTk−1Tk
(t) = g(t),

for some purely time dependent function g(t). This then implies that all active
forward rates will have the same volatility at a speci�c point in time. Due to the
fact that volatilities can change at each time step, we have that the volatility
structure is not time-homogeneous. Furthermore, Rebonato [47] mentions that
this structure is only consistent with certain term structures of volatilities.

5.4.3 Dependence on Maturity

This type of volatility speci�cation assigns volatilities to forward rates accord-
ing to their maturity dates. The structure is given by Equation (5.4.2) as

σTk−1Tk
(t) = f(Tk−1),

for some real valued function f . Similar to its piecewise constant counter-
part, we have that any term structure can be recovered exactly, however the
term structure of volatilities will not evolve in a time-homogeneous manner.
Furthermore, Rebonato [47] points out that this speci�cation implies that the
volatility of forward rates remain the same throughout the duration of its life.
This is a �nancially undesirable property.

5.4.4 Dependence on Time to Maturity

The structure is given by Equation (5.4.3) as

σTk−1Tk
(t) = h(Tk−1 − t),

for some real valued function h. This function is in the form of Equation
(5.2.2) and hence we know that it will ensure a time-homogeneous evolution
of the term structure. It was however mentioned earlier that we will only be
able to get an exact �t to the current structure if Tiσ

2
TiTi+1.caplet

is a strictly
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increasing function of Ti. Note that above speci�cation is expressed in terms
of a general function h, i.e. no structural assumptions were made, and hence
the piecewise constant approach by Brigo and Mercurio [11] (de�ned in Table
5.2) and the functional approach by Rebonato [47] are still relatively in line.

This is due to the fact that both processes are still essentially non-
parametric (the function h is de�ned as an arbitrary function from the universe
of functions dependent on the time to maturity of a forward rate). As soon
as we assign a speci�c parametric form to the function h, then the approaches
between Brigo and Mercurio [11] and Rebonato [47] start to di�er more sig-
ni�cantly. The approach by Rebonato [47], although still time-homogeneous,
will not be guaranteed of an exact �t to the initial term structure (Rebonato
[47]).

5.4.5 Separable Volatilities

The general functional de�nitions are given by Equations (5.4.4) - (5.4.5) as

σTk−1Tk
(t) = g(t)f(Tk−1),

σTk−1Tk
(t) = h(Tk−1 − t)f(Tk−1),

where the functions h(Tk−1 − t), g(t) and f(Tk−1) are as de�ned in the pre-
vious sections. The piecewise equivalents of these structures were discussed
in Section 5.3.4 and hence we will only highlight a couple of important facts.
Firstly, only the latter speci�cation can result in a time-homogeneous evolu-
tion of the term structure of volatilities (Brigo and Mercurio [11] and Rebonato
[47]). Secondly, in order for this to be the case, the forward rate dependent
components need to be approximately constant (Brigo and Mercurio [11] and
Rebonato [47]). This will then imply a calibration strategy in which we �t the
time-homogeneous function to the initial term structure (explained in Section
5.4.4 that this will not always be exact even if Tiσ

2
TiTi+1.caplet

is a strictly in-
creasing function of Ti). The forward rate component can then be used as a
�nal correction. This is di�erent to the calibration strategy that can be used
for the �rst structure.

5.4.6 Multi-Time Dependence

The remaining functional forms are expressed in terms of more than one func-
tion with some sort of time dependence. These are given by Equations (5.4.6)
- (5.4.7) as

σTk−1Tk
(t) = h(Tk−1 − t)g(t),

σTk−1Tk
(t) = h(Tk−1 − t)g(t)f(Tk−1),

where the functions h(Tk−1−t), g(t) and f(Tk−1) are as de�ned in the previous
sections. Although more complex than the previous speci�cations, Rebonato
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[47] points out that these speci�cations are very useful for calibration purposes.
Furthermore, he explains how these structures can be calibrated in two and
three steps respectively, with each step �nancially plausible. The calibration
of these structures will be discussed in more detail at a later stage.

5.4.7 Specifying the Di�erent Functions

This section will specify the functions h(Tk−1 − t), g(t) and f(Tk−1).
In the calibration algorithms that will be considered, we will require that

the function f(Tk−1) should be as constant as possible (a brief description was
given in Section 5.4.5).

Next, Rebonato [47] suggests the following parametric form for the time-
homogeneous function h(Tk−1 − t)

h(Tk−1 − t) = [a+ b(Tk−1 − t)]exp[−c(Tk−1 − t)] + d. (5.4.8)

Figure 5.1 displays some of the attainable shapes for di�erent sets of parame-
ters.

Figure 5.1: Rebonato's time-homogeneous instantaneous volatility function for dif-
ferent sets of parameters.

In theory, there are a number of di�erent functions that one can use to
describe this portion of the instantaneous volatility function. Rebonato [47]
motivated the above choice as follows:

Firstly, this function can be shown to be compatible with a number of
di�erent term structure shapes. In particular, the function can produce in-
stantaneous volatility functions that are compatible with normal (humped)
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and stressed market conditions (monotonically decreasing). Secondly, its pa-
rameters lend themselves to easy interpretations. Finally, it allows for an easy
analytical solution of Equation (4.1.5), which in turn simpli�es calibration
procedures.

Note that the following conditions must be satis�ed at the end of a cali-
bration process

a+ d > 0, (5.4.9)

d > 0, (5.4.10)

c > 0. (5.4.11)

The �rst two properties ensure positive volatilities as time to maturity ap-
proaches zero and in�nity. The third condition is necessary to prevent volatil-
ities from exploding.

The �nal parametric form that we will consider, relates to the purely time
dependent component. Rebonato [47] suggests the following form for the func-
tion g(t)

g(t) =

[
n∑
i=1

εisin

(
tπi

Mat
+ εi+1

)]
exp(−εn+1t). (5.4.12)

Figure 5.2 displays some of the attainable shapes for di�erent sets of parame-
ters.

Figure 5.2: Rebonato's time dependent instantaneous volatility function for di�erent
sets of parameters.

Within this speci�cation, it is recommended to keep n relatively low (Re-
bonato [47]). Furthermore, note that �Mat� indicates the longest caplet matu-
rity. The choice of this functional form can brie�y be motivated as follows:
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This function will typically be used to explain the di�erences (or residu-
als) between the market observable term structure of volatilities and the term
structure obtained through �tting the time homogeneous component. As a
result, Rebonato [47] suggested a function that is a linear combination of a
small number of sine waves and a multiplicative exponentially decaying term.

This structure also allows for a number of �nancially plausible shapes. For
instance, we can choose the parameters to re�ect decaying volatility as time
passes (as we exit the credit crisis) or to display an increase of volatility in the
near future followed by a steady decline (expected monetary policy decisions
in short to medium term).

The functional form however exposes the model to negative forward rate
volatilities (not discussed in book by Rebonato [47] even though the results
obtained by the author implied negative volatilities). This is due to the oscillat-
ing nature of the function. Hence, although this might improve the calibration
to a given input term structure (integrating the square of this function), we
can expect this property to have a signi�cant impact on the pricing of more
complex derivatives. Alternatively, we can use the absolute of this function for
pricing purposes. This will result in the same calibration error, however will
ensure positive volatilities at all time steps.

5.5 Swap Rate Volatilities

It was already mentioned that the LIBOR and swap market models are not
compatible. This then considerably increases the computational requirements
when valuing vanilla swaptions. As a result we are left with calibration routines
that will involve Monte Carlo simulations which are far from optimal.

Various authors however introduced possible analytical approximations for
swaption prices within the LIBOR market model framework (see work by Brigo
and Mercurio [11] for more details). This thesis will make use of the Rebonato
[47] approximation formula for swaption volatilities. In order to get an idea
of how this formula was derived, notice that we can write the swap rate given
by Equation (4.2.1) as a linear combination of forward rates (with stochastic
weights). This fact is used by various authors, see for example Brigo and
Mercurio [11], Gatarek, Bachert and Maksymiuk [21] and Rebonato [47] and
is given below for a swap starting at time s and ending at time N .

SRs,N (t) =
N∑

i=s+1

wi(t)LTi−1Ti(t), (5.5.1)

where

wi(t) =
αTi−1TiB(t, Ti)∑N

k=s+1 αTk−1Tk
B(t, Tk)

. (5.5.2)

Through the use of above equations and assuming that all forward rates and
weights wi are �xed at their current values (these assumptions are not made

 
 
 



Chapter 5. Volatility Modeling 53

all at once but at di�erent parts of the derivation), Rebonato [47] obtained
the following volatility approximation formula (Brigo and Mercurio [11] and
Rebonato [47]):

V 2
s,NTs =

N∑
i,j=s+1

wiwj

∫ Ts

0
σTiTi+1(t)σTjTj+1(t)ρL(i,i+1);L(j,j+1) dt, (5.5.3)

where

wi =
wi(0)LTi−1Ti(0)

SRs,N (0)
. (5.5.4)

Hence, we have that the swap rate volatilities are expressed as a linear com-
binations of the forward rate terminal covariances (terminal covariance terms
will be discussed in the next chapter). One important point to note from the
above equation is that swaption volatilities will be dependent on the shape of
the instantaneous volatility functions of forward rates (Rebonato [47]). This
is not the case with caplets.

Gatarek, Bachert and Maksymiuk [21] refer to this approach as the linear
pricing approach within the LIBOR market model framework and represent
the weights de�ned in Equation (5.5.4) in the following equivalent form

Ris,N (0) =
B(0, Ti−1)−B(0, Ti)
B(0, Ts)−B(0, TN )

. (5.5.5)

 
 
 



Chapter 6

Correlation Modeling

This chapter will focus on the modeling of instantaneous correlations. Rebon-
ato [47] mentions that the modeling of instantaneous correlation functions is
more di�cult than that of instantaneous volatilities. This is mainly due to
the fact that no vanilla instruments are determined purely by the correlation
between forward rates. Rebonato [47] further points out that even swaptions,
which are the only vanilla instruments dependent on correlation, are deter-
mined by a combination of instantaneous volatilities and correlations (this
was shown at the end of the previous chapter).

The structure of the chapter will be similar to the previous one. We start
with some key de�nitions and requirements and then move on to introduce
and explain some of the di�erent correlation structures.

6.1 Terminal Correlation

Terminal correlations can be de�ned as the correlation between di�erent for-
ward rates at some future time T1 (Brigo and Mercurio [11]). Brigo and Mer-
curio [11] points out that the calculation of terminal correlations in the LIBOR
market model consists of solving the following equation

cov(LTi−1Ti(T1), LTj−1Tj (T1))√
var(LTi−1Ti(T1))var(LTj−1Tj (T1))

, (6.1.1)

where the forward rates are speci�ed according to Proposition 4.4.2 and the
covariance and variance terms are calculated under the appropriate measure.
This type of calculation will de�nitely require Monte Carlo simulations and
hence will be computationally intensive. Fortunately, as with the swaption
volatilities there are some approximations available. Brigo and Mercurio [11]
shows that given similar assumptions to those used in the calculation of swap-
tion volatilities, we can obtain the T1 terminal correlation between the forward

54
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rates LT1T2 and LT2T3 as

Corr(LT1T2(T1), LT2T3(T1)) =

∫ T1

0 σT1T2(t)σT2T3(t)ρL(1,2);L(2,3) dt√∫ T1

0 σT1T2(t)2 dt
√∫ T1

0 σT2T3(t)2 dt
. (6.1.2)

This then clearly shows a link between terminal correlations and the swaption
volatilities provided at the end of the previous chapter. Note however that both
instantaneous volatilities, as well as instantaneous correlations, will a�ect the
terminal correlations (Rebonato [47]).

6.2 Required Correlation Properties

Before we can proceed to de�ning di�erent possible correlation structures, we
need to specify what properties these structures should adhere to. This will be
divided into two sub-categories, i.e. mathematical and �nancial requirements.

6.2.1 Mathematical Requirements

From a mathematical point of view we know that the following properties
should hold (Rebonato [47])

� ρi,i = 1 for all i

� −1 ≤ ρi,j ≤ 1 for all i, j combinations

� The correlation matrix should be symmetric

� The correlation matrix should be positive de�nite

6.2.2 Financial Requirements

Above requirements are however not enough to ensure a correct correlation
matrix. Brigo and Mercurio [11] and Rebonato [47] make mention of some of
the numerical studies done in the literature, illustrating some of the possible
features. A short summary of their results, for an instantaneous correlation
matrix ρ, is presented below.

� We can expect mainly positive correlations

� Correlation surfaces can show a change in convexity as the maturity of
forward rates increase

� The closer the maturities between two forward rates the higher the cor-
relation between these rates, i.e. two short-term rates should be more
correlated than a short-term rate and one expiring in say twenty years.

 
 
 



Chapter 6. Correlation Modeling 56

� Correlation should be an increasing function of the tenor of adjacent
rates, i.e. long-term rates should for example be more correlated than
short-term rates.

� It would be favourable if the choice of the instantaneous correlation func-
tion result in a time-homogeneous behaviour.

A full rank N ×N instantaneous correlation matrix has N(N − 1)/2 elements
that need to be estimated (Götsch [22]). This can result in complex practical
implementation if the set of data consists of a large number of forward rates.
We will consider two approaches to reduce the number of required calculations
as mentioned by Brigo and Mercurio [11] and Götsch [22]. The �rst approach
considers a full rank correlation matrix, but then through the use of a para-
metric function, reduces the number of elements that we should estimate to the
number of parameters. The second approach reduces the number of elements
through reducing the rank of the correlation matrix. The structure of the rest
of the chapter will mainly follow that of Götsch [22].

6.3 Full Rank with Reduced Number of Parameters

As mentioned above, this type of speci�cation �rstly considers a full rank
correlation matrix and then reduces the number of elements to be estimated
through the use of a parametric function. There are a number of di�erent
parametric functions available in the literature.

Firstly, we will consider the parametric function as proposed by Schoen-
makers and Co�ey. Details are given below.

6.3.1 Schoenmakers and Co�ey

They start by considering a �nite sequence of positive real numbers (Brigo and
Mercurio [11])

1 = c1 < c2 < . . . < cN , (6.3.1)

where
c1
c2
<
c2
c3
< . . . <

cN−1

cN
. (6.3.2)

They then assume that the correlation between between LTi−1Ti and LTj−1Tj

is equal to

ρi,j(c) =
ci
cj
, i ≤ j, i, j = 1, . . . , N. (6.3.3)

Brigo and Mercurio [11] mention that the resulting correlation matrix is full
rank, symmetric and positive de�nite. This approach can be presented in
Table 6.1 below (Götsch [22])

Note that Equations (6.3.1)-(6.3.3) have some signi�cant implications.
Firstly, the elements will range from 0 to 1 and hence the speci�cation will
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LT1T2 LT2T3 LT3T4 LT4T5

LT1T2 1 c1
c2

c1
c3

c1
c4

LT2T3
c1
c2

1 c2
c3

c2
c4

LT3T4
c1
c3

c2
c3

1 c3
c4

LT4T5
c1
c4

c2
c4

c3
c4

1

Table 6.1: Schoenmakers and Co�ey model implied correlation matrix.

result in positive correlations as required at the start of the chapter. Secondly,
we have that the closer the maturities between two forward rates the higher
the correlation between these rates. This can be seen from (Götsch [22])

c1
c2
>
c1
c3
>
c1
c4

and
c2
c3
>
c2
c4
.

Thirdly, we have that correlation is an increasing function of the tenor of
adjacent rates. See for example (Götsch [22])

c1
c2
<
c2
c3
<
c3
c4

and
c1
c3
<
c2
c4
.

Furthermore, we have that the number of parameters are equal to N instead
of N(N − 1)/2. Rebonato [47] mentions that it is due to this fact that the
approach is called semi-parametric.

Schoenmakers and Co�ey mentions that it is always possible to characterize
above elements with a �nite sequence of nonnegative numbers ∆2, . . . ,∆N as
(Brigo and Mercurio [11])

ci = exp

 i∑
j=2

j∆j +
N∑

j=i+1

(i− 1)∆j

 . (6.3.4)

From above equation, one can formulate di�erent parameterizations through
di�erent assumptions regarding the ∆ parameters. As an example, we will
consider the two parameter case in which all the ∆'s are set to zero except the
last two (Brigo and Mercurio [11] and Rebonato [47]). This is presented by
the following equation

ρi,j = exp

[
−|i− j|
N − 1

(
−lnρ∞ + η

N − 1− i− j
N − 2

)]
,
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where
η = ∆N−1(N − 1)(N − 2)/2.

There are a number of di�erent assumptions proposed by Schoenmakers and
Co�ey that can for example lead to speci�cations involving more parameters.
We will however restrict our attention to the simple two parameter case pre-
sented above.

Rebonato [47] mentions that one of the biggest advantages of the di�erent
Schoenmakers and Co�ey parameterizations is the fact that the correlation
matrix will always be positive de�nite. This is a very favourable property
during the calibration phase (do not need to ensure at each step of calibration
algorithm that the resulting matrix will be positive de�nite).

6.3.2 Rebonato's Parametric Forms

Rebonato [47] speci�es three di�erent time-homogeneous parametric forms.
These will be discussed below. Note however that unlike the speci�cations by
Schoenmakers and Co�ey, these will not guarantee positive de�nite correlation
matrices and hence this condition needs to be checked during the calibration
of the model.

The �rst parametric speci�cation proposed by Rebonato [47] is given by

ρi,j(t) = ρ∞ + (1− ρ∞)exp[−β|Ti − Tj |]. (6.3.5)

Rebonato [47] mentions that this speci�cation is desirable from a numerical
point of view due to the fact that it is independent of time. This speci�cation
however has the disadvantage that correlations are only dependent on the
di�erence in expiry times between two di�erent forward rates. Hence, two
short-term rates will have the same correlation as two long-term rates given
the di�erence in expiry times of the two sets are the same. This is �nancially
undesirable as long-term rates are typically more correlated than short-term
rates (Brigo and Mercurio [11]). This speci�cation also does not allow for a
change in convexity (Rebonato [47]).

The second parametric speci�cation proposed by Rebonato [47] is given by

ρi,j(t) = ρ∞ + (1− ρ∞)exp[−β|(Ti − t)γ − (Tj − t)γ |]. (6.3.6)

Rebonato [47] showed that this speci�cation allows for all of the required prop-
erties mentioned in Section 6.2.2 (obviously depending on the choice of γ, as
it can be shown that for γ = 1 we get the �rst speci�cation). The biggest
drawback of this approach, as mentioned earlier, is that it does not guarantee
a positive de�nite correlation matrix.

The third parametric speci�cation proposed by Rebonato [47] is given by

ρi,j(t) = ρ∞ + (1− ρ∞)exp[−β|Ti − Tj |+ αmax(Ti, Tj)]. (6.3.7)
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This approach can then be shown to have the same time independence as
the �rst approach, while maintaining some of the �nancial properties of the
second approach (Rebonato [47]). Similar to the previous speci�cation, this
parametric form does not guarantee a positive de�nite correlation matrix.

The application of these parametric forms, to the South African market, is
presented in Section 10.5.1.

6.4 Reduced-Rank Speci�cations

It was previously mentioned that a full rank correlation matrix has N(N−1)/2
elements that we need to estimate during the calibration of the model. We
then considered introducing parametric forms in order to reduce the number
of variables to the number of parameters. This section will consider a method
in which we reduce the rank of the correlation matrix. This will then auto-
matically reduce the number of elements we need to estimate. The theory
presented in this section will mainly follow the work by Brigo and Mercurio
[11] and Götsch [22].

6.4.1 General Concept

Consider anN×N correlation matrix ρ. We want to examine di�erent methods
of determining am−rankN×mmatrix B such that the new correlation matrix
ρB will have a rank m which is smaller than N (Brigo and Mercurio [11]). The
new correlation matrix will then be presented by

ρB = BB′. (6.4.1)

This matrix B is then in line with Section A.5 and can be used to create a
new correlated Wiener process given independent random shocks.

6.4.2 Di�erent Speci�cations

This section will consider some of the di�erent possible reduced rank method-
ologies. The �rst approach will be based on an angle formulation, while the
other approach will focus more on the eigenvalues and eigenvectors of the
original matrix.

6.4.2.1 Rebonato's Angles Formulation

We will �rstly consider the speci�cation as suggested by Rebonato [47]. Re-
bonato [47] suggested that each of the entries in B are given as a certain
combination of angles, resulting in ones on the diagonal of the instantaneous
correlation matrix. Furthermore, Brigo and Mercurio [11] mention that the
resulting correlation matrix will be positive semi de�nte as well as symmet-
ric. This section will consider a two- and three-factor model. Rebonato [47]
mentions that this should be su�cient for most practical applications.
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The speci�cation of the matrix B for a two-factor model is presented below
(Rebonato [47])

bi,1 = sin θi,
bi,2 = cos θi.

From above and some trigonometric identities we obtain that the correlations
in the two-factor model are given by

ρi,j = cos(θi − θj). (6.4.2)

Notice that even within this reduced rank speci�cation there are still a number
of parameters that we need to estimate. Brigo and Mercurio [11] mention that
this can be reduced further through introducing a sub-parameterization for
the θ parameters. They however caution against this type of approach when
calibrating to a large swaption matrix. Rebonato [47] presents the following
sub-parameterization example

θi = a+ bTi (6.4.3)

and mentions that such a sub-parameterization will always lead to the same
correlation for equally spaced forward rates (irrespective of the expiries of the
individual forward rates). In order to eliminate this we need to consider non-
linear parametric forms.

Next, let us consider a three-factor model. The speci�cation of the matrix
B is presented below (Rebonato [47])

bi,1 = cos θi sinφi,
bi,2 = sin θi sinφi,
bi,3 = cosφi.

From above and some trigonometric identities we obtain that the correlations
in the three-factor model are given by

ρi,j = cos(φi − φj)− sinφi sinφj [1− cos(θi − θj)]. (6.4.4)

Rebonato [47] points out that this speci�cation is not, unlike the two-factor
model, purely dependent on a di�erence between two angles. Hence, we will
no longer be forced to use non-linear sub-parameterizations.

Note that the above approach is typically used when we try and imply
correlations from a market swaption matrix. Brigo and Mercurio [11] mention
that the above approach can also be used when we want to reduce the rank of
an exogenously given correlation matrix (proposed by Rebonato and Jaeckel
[50]). They describe the approach as follows.
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Firstly, decide on an angle formulation (examples of two- and three-factor
models are presented above). Then �nd the angle parameters that will mini-
mize the following function

N∑
i,j=1

(ρi,j − ρi,j(θ))2, (6.4.5)

where ρi,j indicate the exogenously given correlation matrix. It is important
to note that we have no constraints due to the fact that the resulting matrix
will always be symmetric, positive semide�nite and have ones on the diagonal
(Brigo and Mercurio [11] and Rebonato [47]).

6.4.2.2 Using Eigenvalues and Eigenvectors

Given the fact that we are reducing the rank of the correlation matrix, it is
natural to expect some methodology that is aimed at retaining only the most
important driving factors. This approach will be discussed below. Before we
proceed, consider the following mathematical results as given by Brigo and
Mercurio [11].

From the properties of correlation matrices, we know that the correlation
matrix ρ should be symmetric and positive de�nite. Then, according to Burden
and Faires [14], we can decompose the matrix into the following form

ρ = PHP ′,

where P is a real orthogonal matrix such that P ′P = PP ′ = IN . The matrix
H is a diagonal matrix of the positive eigenvalues of ρ. The columns of P are
in turn the associated eigenvectors of ρ. Brigo and Mercurio [11] then show
that if we de�ne the matrix Λ such that

H = ΛΛ′,

then we can decompose the correlation matrix ρ as

ρ = AA′,

where
A = PΛ.

This immediately results in the following rank reduction methodology. Firstly,
start by decomposing the exogenously given correlation matrix into its eigen-
values and eigenvectors. We can then set up a matrix B similar to matrix A
in which we only use the most signi�cant eigenvectors and eigenvalues (hence
approach also called zeroing of smallest eigenvalues). From this we can then
obtain the intermediate matrix ρinterm according to Equation (6.4.1) as

ρinterm = BB′. (6.4.6)
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Finally, Brigo and Mercurio [11] mention that in order to ensure ones on the
diagonal, we have to scale the correlation entries as given below

ρBi,j =
ρintermi,j√

ρintermi,i ρintermj,j

. (6.4.7)

This will provide us with them−rank approximation ρBi,j of the matrix ρ (Brigo
and Mercurio [11]).

6.5 Exogenous Correlation Matrix

This section will consider the estimation of a correlation matrix using historical
data. As pointed out in the literature, these matrices might display some
unwanted properties due to issues with the statistical estimation (Brigo and
Mercurio [11]). Brigo and Mercurio [11] and Rebonato [47] recommend the
�tting of a parametric form onto the historical matrix in order to smooth out
some of the noise.

In order to illustrate this process, we will assume that we have a set of
market forward rates (either obtained directly or derived from a set of zero
coupon bonds). Note that interpolation might a�ect the end results.

We will consider the historical estimation technique as given by Götsch
[22]. Firstly, the approach assumes that the log-returns of the forward rates
are normally distributed. Next, in order to calculate sample correlations, we
need to calculate sample means and sample covariances. Hence, we have that

µ̂i =
1
x

x−1∑
k=0

ln

[
LTiTi+1(tk+1)
LTiTi+1(tk)

]
,

V̂i,j =
1
x

x−1∑
k=0

[(
ln

(
LTiTi+1(tk+1)
LTiTi+1(tk)

)
− µi

)(
ln

(
LTjTj+1(tk+1)
LTjTj+1(tk)

)
− µj

)]
,

where x is the number of observed log-returns for each rate. Hence, we can
now write the estimated correlation element as

ρ̂i,j =
V̂i,j√

V̂i,i

√
V̂j,j

. (6.5.1)

Brigo and Mercurio [11] mention that the results should remain relatively the
same when its sample size or its time positioning is changed. The fact that the
results should remain relatively the same given a di�erent time positioning is
in line with the time-homogeneous requirement of Rebonato [47]. We can now
use this matrix either directly in the calibration process, or �t it to a plausible
parametric form.
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This methodology was applied to the South African market in Section 8.5.
Within this section, we explain some of the practical di�culties associated
with such an approach. The resultant correlation matrix was then used in
di�erent calibration algorithms in Chapter 10.

 
 
 



Chapter 7

European Market Data

This chapter will consider the inputs to the LIBOR Market Model under con-
sideration. We will start the discussion by presenting some of the existing
examples available in the literature from which we will discuss key concepts
such as caplet volatility stripping from quoted cap volatilities. These argu-
ments will then be extended to the South African market in the next chapter.

The data given in this chapter is presented in the book by Gatarek, Bachert
and Maksymiuk [21]. Apart from the actual bootstrapping of the discount
factors, they present a very detailed account of the steps necessary to bootstrap
caplet volatilities from quoted cap volatilities. This chapter will present these
ideas and replicate the results.

7.1 Actual Market Inputs

The data set considered by Gatarek, Bachert and Maksymiuk [21] represents
market prices as on 21 January 2005 and consists of discount factors, at-the-
money (ATM) cap volatilities and ATM swaption volatilities. All rates are
denominated in EUR. This thesis will mainly consider the calibration to ATM
cap and swaption volatilities, with an extension to the SABR model in Chapter
11. The reader is referred to the work by Brigo and Mercurio [11], Björk [4]
and Rebonato [47] for further possible extensions of the model beyond these
approaches.

7.1.1 Discount Factors

The discount factors are assumed to be bootstrapped from underlying bench-
mark rates and was not illustrated by the authors. The resulting values are
presented in Table 7.1. A detailed description of a typical bootstrap procedure
will be presented for the South African market.
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7.1.2 Cap Volatilities

The cap data set, as presented by Gatarek, Bachert and Maksymiuk [21],
consists of ATM cap volatilities with expiries from 1Y out to 20Y and is given
in Table 7.1.

Tenor Ti Date Discount Cap volatility
factor B(0, Ti) σT0Ti.cap

t = 0 2005/01/21 1.0000000 N/A
T0 2005/01/25 0.9997685 N/A
TSN 2005/01/26 0.9997107 N/A
TSW 2005/02/01 0.9993636 N/A
T2W 2005/02/08 0.9989588 N/A
T1M 2005/02/25 0.9979767 N/A
T2M 2005/03/25 0.9963442 N/A
T3M 2005/04/25 0.9945224 N/A
T6M 2005/07/25 0.9890361 N/A
T9M 2005/10/25 0.9832707 N/A
T1Y 2006/01/25 0.9772395 0.1641
T2Y 2007/01/25 0.9507588 0.2137
T3Y 2008/01/25 0.9217704 0.2235
T4Y 2009/01/26 0.8908955 0.2188
T5Y 2010/01/25 0.8589736 0.2127
T6Y 2011/01/25 0.8262486 0.2068
T7Y 2012/01/25 0.7928704 0.2012
T8Y 2013/01/25 0.7595743 0.1958
T9Y 2014/01/27 0.7261153 0.1905
T10Y 2015/01/26 0.6942849 0.1859
T12Y 2017/01/25 0.6348348 0.1806
T15Y 2020/01/27 0.5521957 0.1699
T20Y 2025/01/27 0.4345583 0.1567

Table 7.1: Discount factors and ATM cap volatilities obtained from the European
market for business date 2005/01/21 (Gatarek, Bachert and Maksymiuk [21]).

This set of data is a typical example of what one can expect to observe in
the market and highlights the important fact that it is not always possible to
obtain volatilities for all possible caplets. Instead, one will typically observe a
number of cap volatilities (which may be limited as well - for example no short
term cap volatilities as illustrated in the market presented above) from which
you will have to deduce the underlying caplet volatilities.

Market quoted cap volatilities are typically termed �at volatilities. These
can be explained as the volatility that will yield the cap price when applied to
each of the underlying caplets (Hull [32]). This concept is essential for caplet
stripping and will be discussed in the following section.

It is useful to consider the shape of the cap volatility structure and hence is
presented in Figure 7.1. From the �gure, it is evident that the input volatilities
exhibit a humped shape with the peak in the 3Y area. Rebonato [47] describes
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Figure 7.1: ATM cap volatilities obtained from the European market for business
date 2005/01/21 (Gatarek, Bachert and Maksymiuk [21]).

this as a shape associated with normal market conditions as opposed to extreme
market volatility. Under such conditions, one would experience less unexpected
monetary actions and hence lower volatilities at the very short end of the curve.
Rebonato [47] then explains that the longer term volatilities are less sensitive to
the daily arrival of economic news (as long as result in non-structural changes).
This then explains the lower volatilities associated with the longer end of the
curve. The highest volatilities under normal market conditions are recorded in
the intermediate maturities. This area of the curve usually represents market
expectations regarding monetary rate decisions and have been shown to be
very volatile throughout time.

7.1.3 Swaption Volatilities

The next set of market data that we will consider is the set of ATM swaption
volatilities which can typically be used to determine the correlation between
di�erent forward rates (later chapters will discuss the di�culties associated
with such an approach). This is due to the fact that the payo� of swaptions
are dependent on several forward rates at a time and hence dependent on
the joint dynamics of forward rates. Rebonato [47] advocates the use of cap
prices for volatility calibration and the use of swaption prices for correlation
modeling. This is partly based on the observation that the implied volatility
term structure of forward rates tend to exhibit the same qualitative features
when calibrated to either the swaption or cap market.

The ATM swaption volatilities are represented in Table 7.2. The rows of the
table represent the option expiries while the columns represent the underlying
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swap maturities. Within this context, the start date of the underlying swap
always coincides with the expiry date of the option. Hence, if the option expiry
and underlying maturity are both equal to 1Y , then this represents an option
to enter into a one year swap in one year's time.

Option Expiry/Underlying Maturity
1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

1Y 0.2270 0.2300 0.2210 0.2090 0.1960 0.1860 0.1760 0.1690 0.1630 0.1590
2Y 0.2240 0.2150 0.2050 0.1940 0.1830 0.1740 0.1670 0.1620 0.1580 0.1540
3Y 0.2090 0.2010 0.1900 0.1800 0.1700 0.1630 0.1580 0.1550 0.1520 0.1500
4Y 0.1950 0.1870 0.1770 0.1680 0.1600 0.1550 0.1510 0.1480 0.1470 0.1450
5Y 0.1820 0.1740 0.1650 0.1580 0.1510 0.1480 0.1450 0.1430 0.1420 0.1400
6Y 0.1746 0.1674 0.1590 0.1524 0.1462 0.1436 0.1410 0.1394 0.1384 0.1368
7Y 0.1672 0.1608 0.1530 0.1468 0.1414 0.1392 0.1370 0.1358 0.1348 0.1336
8Y 0.1598 0.1542 0.1470 0.1412 0.1366 0.1348 0.1330 0.1322 0.1312 0.1304
9Y 0.1524 0.1476 0.1410 0.1356 0.1318 0.1304 0.1290 0.1286 0.1276 0.1272
10Y 0.1450 0.1410 0.1350 0.1300 0.1270 0.1260 0.1250 0.1250 0.1240 0.1240

Table 7.2: ATM swaption volatilities obtained from the European market for busi-
ness date 2005/01/21 (Gatarek, Bachert and Maksymiuk [21]).

The swaption volatilities are given by the surface in Figure 7.2 (contours
were included to illustrate the smoothness of the curve beyond the initial peak).

Figure 7.2: ATM swaption volatilities obtained from the European market for busi-
ness date 2005/01/21 (Gatarek, Bachert and Maksymiuk [21]).
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7.1.4 Historical Correlations

The authors Gatarek, Bachert and Maksymiuk [21] also presented calculated
historical correlations. The estimations were performed on a historical Reuters
data set containing observed rates from 29 October 1999 to 20 January 2005.
Their results are presented below.

3-6M 6-9M 9M-1Y 1-2Y 2-3Y 3-4Y 4-5Y 5-6Y 6-7Y 7-8Y 8-9Y 9-10Y
3M-6M 1 0.128 0.214 0.159 0.223 0.2 0.155 0.082 0.046 0.02 0.074 -0.008
6M-9M 0.128 1 -0.072 0.179 0.199 0.2 0.215 0.065 0.062 0.056 0.069 -0.025
9M-1Y 0.214 -0.072 1 -0.016 0.202 0.164 0.126 0.05 0.041 0.115 0.023 -0.004
1Y-2Y 0.159 0.179 -0.016 1 0.513 0.379 0.354 0.259 0.134 0.124 0.155 -0.005
2Y-3Y 0.223 0.199 0.202 0.513 1 0.208 0.194 0.168 0.128 0.204 0.059 0.002
3Y-4Y 0.2 0.2 0.164 0.379 0.208 1 0.149 0.142 0.164 0.072 0.11 0.013
4Y-5Y 0.155 0.215 0.126 0.354 0.194 0.149 1 -0.176 0.133 0.019 0.161 -0.01
5Y-6Y 0.082 0.065 0.05 0.259 0.168 0.142 -0.176 1 -0.121 0.26 0.055 0.007
6Y-7Y 0.046 0.062 0.041 0.134 0.128 0.164 0.133 -0.121 1 -0.128 0.062 0.015
7Y-8Y 0.02 0.056 0.115 0.124 0.204 0.072 0.019 0.26 -0.128 1 -0.359 -0.011
8Y-9Y 0.074 0.069 0.023 0.155 0.059 0.11 0.161 0.055 0.062 -0.359 1 -0.709
9Y-10Y -0.008 -0.025 -0.004 -0.005 0.002 0.013 -0.01 0.007 0.015 -0.011 -0.709 1

Table 7.3: Historical forward rate correlations, based on observed rates from the
European market, for the time period 1999/10/29 - 2005/01/20 (Gatarek, Bachert
and Maksymiuk [21]).

Figure 7.3: Historical forward rate correlations, based on observed rates from the
European market, for the time period 1999/10/29 - 2005/01/20 (Gatarek, Bachert
and Maksymiuk [21]).
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From above it appears that there is a considerable amount of noise within
the estimated correlations. Firstly, note that there is a number of negative
correlations, which according to Brigo and Mercurio [11] and Rebonato [47] is
a �nancially undesirable property. Secondly, due to the erratic movements in
correlations, it is hard to get a feel of what the matrix is implying. This in
turn can create di�culties when we try and calibrate the model.

In order to consider the implied properties of the given correlation matrix
in more detail, we will examine the �rst three rows of the correlation matrix
in isolation. These are presented in Figure 7.4 below.

Figure 7.4: Graphical representation of the �rst three rows of Table 7.3.

From Figure 7.4 it is evident that the correlation surface experiences a
change in convexity as the reset times of the forward rates increase (Rebon-
ato [47]). This observation can play an important part in the determination
of an appropriate parametric form used in the modeling of correlations. Fur-
thermore, the correlations are decreasing functions of reset time. The latter
property implies, for example, that a short and long term rate are less corre-
lated than two short term rates. This is a �nancially desirable property.

We can also infer from the above graph that correlations seem to approach
a negative level as the reset time increases. This is an undesirable property.

It should, however, be noted that some of the undesirable features men-
tioned above can be due to the use of unevenly spaced forward rates. The data
set consists of three monthly forward rates up and till one year and yearly for-
ward rates further out. The impact of this will be considered in the section
relating to the South African market.
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7.2 Caplet Stripping

Consider the quoted ATM cap volatilities presented in Table 7.1. In order
to determine the dynamics of forward LIBOR rates in the LMM,we need a
methodology for stripping caplet volatilities from the quoted cap volatilities.
The �rst obvious question arising when we attempt to determine caplet volatil-
ities, is the question of what strikes we should use for the quoted caps (Gatarek,
Bachert and Maksymiuk [21]).

Firstly, we know that a Ti−1 caplet is said to be ATM when its strike
price X = Xi is equal to the current value of the underlying forward rate.
As mentioned in Section 2.1.2, a cap is a collection of caplets with a common
strike X. Each caplet would however be ATM for a di�erent strike Xi. We
can select a single rate that takes into account all the forward rates of the
underlying caplets. This rate is called the forward swap rate and will be used
in the determination of strikes for ATM caps in the next section (Gatarek,
Bachert and Maksymiuk [21]).

7.2.1 ATM Strikes for Caps

A forward swap rate is per de�nition the rate of the �xed leg of an interest
rate swap that will ensure that the present value of the �xed leg will be equal
to the present value of the �oating leg of the swap. Consider an interest rate
swap that starts at Ts and ends at TN . Then, according to Equation (4.2.1),
we have that forward swap rate is given by (proof provided in Appendix B.1)

SRs,N (T0) =
B(T0, Ts)−B(T0, TN )∑N
i=s+1B(T0, Ti)αTi−1Ti

.

The forward swap rate SRs,N (T0), as given above, will be used to determine
strikes for ATM caps. The concept of calculating forward swap rates is illus-
trated in the following example as given by Gatarek, Bachert and Maksymiuk
[21].

The example will be aimed at replicating some of the results obtained by
the authors and examining the calculations in more detail. This will then be
extended in the following chapter to the South African market.

Example 7.2.1 In this example, we will compute the ATM strikes of a series
of caps maturing from one year up to 20 years. We will assume that ATM
cap options starts at date T0 and have 3-monthly resets. Resets occur at the
start of each period and payments at the end. Rates reset against the 3-month
LIBOR rate. Given that caps start at T0, we will need to adjust the discount
factors in Table 7.1 to re�ect discount factors up to time T0 instead of time
t = 0. This is a simple calculation and is given by the following equation

B(T0, Ti) = B(0, Ti)/B(0, T0). (7.2.1)
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The table below illustrates the process of computing ATM strikes for caps
with maturities from 1 year up to 20 years

Time Date Year Disc Spot Year Cum Sum Di�erence Forward

Ti fraction factor Rate fraction
∑i

j=6M of DF swap rate

act/360 (DF) *DF αTj−1Tj B(T0, T3M ) (ATM cap
αTi−1Ti B(T0, Ti) αTi−1Ti B(T0, Tj) −B(T0, Ti) strike)

∗B(T0, Ti) SR3M,i(T0)
3M 2005/04/25 0.2500 0.9948
6M 2005/07/25 0.2528 0.9893 0.2501 0.2501 0.0055 2.194%
9M 2005/10/25 0.2556 0.9835 0.2513 0.5014 0.0113 2.245%
1Y 2006/01/25 0.2556 0.9775 0.0227 0.2498 0.7512 0.0173 2.301%
1Y 3M 2006/04/25 0.2500 0.9713 0.0233 0.2428 0.9940 0.0235 2.361%
1Y 6M 2006/07/25 0.2528 0.9648 0.0239 0.2439 1.2379 0.0299 2.419%
1Y 9M 2006/10/25 0.2556 0.9580 0.0245 0.2448 1.4827 0.0367 2.478%
2Y 2007/01/25 0.2556 0.9510 0.0251 0.2430 1.7258 0.0438 2.536%
2Y 3M 2007/04/25 0.2500 0.9441 0.0256 0.2360 1.9618 0.0507 2.583%
2Y 6M 2007/07/25 0.2528 0.9369 0.0261 0.2368 2.1986 0.0578 2.629%
2Y 9M 2007/10/25 0.2556 0.9295 0.0266 0.2376 2.4362 0.0652 2.677%
3Y 2008/01/25 0.2556 0.9220 0.0271 0.2356 2.6718 0.0728 2.724%
3Y 3M 2008/04/25 0.2528 0.9145 0.0275 0.2312 2.9030 0.0802 2.764%
3Y 6M 2008/07/25 0.2528 0.9069 0.0279 0.2293 3.1322 0.0878 2.804%
3Y 9M 2008/10/27 0.2611 0.8989 0.0284 0.2347 3.3669 0.0958 2.845%
4Y 2009/01/26 0.2528 0.8911 0.0288 0.2253 3.5922 0.1037 2.885%
4Y 3M 2009/04/27 0.2528 0.8833 0.0292 0.2233 3.8155 0.1115 2.922%
4Y 6M 2009/07/27 0.2528 0.8753 0.0296 0.2213 4.0367 0.1194 2.958%
4Y 9M 2009/10/26 0.2528 0.8673 0.0300 0.2192 4.2559 0.1275 2.995%
5Y 2010/01/25 0.2528 0.8592 0.0304 0.2172 4.4731 0.1356 3.031%
5Y 3M 2010/04/26 0.2528 0.8511 0.0307 0.2151 4.6883 0.1436 3.064%
5Y 6M 2010/07/26 0.2528 0.8430 0.0311 0.2131 4.9014 0.1518 3.096%
5Y 9M 2010/10/25 0.2528 0.8348 0.0315 0.2110 5.1124 0.1600 3.129%
6Y 2011/01/25 0.2556 0.8264 0.0318 0.2112 5.3236 0.1683 3.162%
7Y 2012/01/25 0.2556 0.7931 0.0332 0.2027 6.1404 0.2017 3.285%
8Y 2013/01/25 0.2556 0.7598 0.0344 0.1942 6.9255 0.2350 3.393%
9Y 2014/01/27 0.2611 0.7263 0.0356 0.1896 7.6788 0.2685 3.496%
10Y 2015/01/26 0.2528 0.6944 0.0366 0.1755 8.3930 0.3003 3.578%
11Y 2016/01/25 0.2528 0.6646 0.0373 0.1680 9.0763 0.3302 3.638%
12Y 2017/01/25 0.2556 0.6350 0.0380 0.1623 9.7331 0.3598 3.696%
13Y 2018/01/25 0.2556 0.6069 0.0386 0.1551 10.3590 0.3879 3.744%
14Y 2019/01/25 0.2556 0.5794 0.0392 0.1481 10.9569 0.4154 3.791%
15Y 2020/01/27 0.2611 0.5523 0.0398 0.1442 11.5302 0.4424 3.837%
16Y 2021/01/25 0.2528 0.5275 0.0402 0.1333 12.0729 0.4673 3.871%
17Y 2022/01/25 0.2556 0.5032 0.0406 0.1286 12.5923 0.4915 3.903%
18Y 2023/01/25 0.2556 0.4797 0.0410 0.1226 13.0875 0.5150 3.935%
19Y 2024/01/25 0.2556 0.4569 0.0415 0.1168 13.5594 0.5378 3.967%
20Y 2025/01/27 0.2611 0.4347 0.0419 0.1135 14.0122 0.5601 3.997%

Table 7.4: Computing ATM strikes for caps from the European market data of
2005/01/21 (Gatarek, Bachert and Maksymiuk [21]).

The table is mostly in the same format as given by Gatarek, Bachert and
Maksymiuk [21], however all values were physically replicated which resulted
in small rounding di�erences. An extra column was included to illustrate the
intermediate spot rate values necessary for the calculation of unknown discount
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factors. Below we will consider some simple examples illustrating the di�erent
techniques used.

Firstly note that time T0, as speci�ed in Table 7.1, is 2005/01/25. The
calculations are as follows:

Ti = 3M

Year Fraction = DaysBetween(2005/04/25,2005/01/25)/360
= 90/360
= 0.25000.

Disc Factor = B(0, T3M )/B(0, T0)
= 0.9945224/0.9997685
= 0.9947527.

Ti = 6M

Year Fraction = DaysBetween(2005/07/25,2005/04/25)/360
= 91/360
= 0.25278.

Disc Factor = B(0, T6M )/B(0, T0)
= 0.9890361/0.9997685
= 0.9892651.

Year Fraction × DF = 0.25278× 0.9892651
= 0.2500642.

Cumulative Sum = Year Fraction × DF

= 0.2500642.
Di�erence of DF = B(T0, T3M )−B(T0, T6M )

= 0.9947527− 0.9892651
= 0.0054876.

Forward Swap Rate = (Di�erence of DF)/(Cumulative Sum)
= 0.0054876/0.2500642
= 2.19%.

Also note that Table 7.4 contains discount factors for periods other than those
given as inputs in Table 7.1. These discount factors were obtained through
using linear interpolation between the associated spot rates. We will brie�y
illustrate this process below:

Let us consider the calculation of the discount factor for maturity T1Y 3M .
From Table 7.4 we have that

B(T0, T1Y ) = 0.9774658
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and
B(T0, T2Y ) = 0.9509789.

Using these discount factors we can calculate the following spot rates (used
annual compounding and day count convention of act/360)

z(T0, T1Y ) = 0.0227343

z(T0, T2Y ) = 0.0250972.

Applying linear interpolation to above zero rates yield

z(T0, T1Y 3M ) = 0.0233170.

Finally, we can convert above rate to the discount factor

B(T0, T1Y 3M ) = 0.9712885

which, given rounding, is equivalent to the value given in Table 7.4.
This concludes the calculation of ATM strikes for the quoted caps. We

will now consider the calculation of caplet volatilities given the quoted cap
volatilities.

7.2.2 Stripping Caplet Volatilities from Cap Quotes

Before we proceed, let us consider how quoted cap volatilities should be in-
terpreted. We will follow arguments given by Brigo and Mercurio [11] and
Gatarek, Bachert and Maksymiuk [21]. We know from Section 2.1.2 that the
price of a cap is equal to the sum of the prices of the underlying caplets. The
market quoted cap volatility is the average volatility, that when applied to
all underlying caplets, will give you the market price of the cap (Hull [32]).
Hence, for a cap starting at T0 with quarterly resets starting at T3M , we have
that

CapMKT (T0, Tj , X, σT0Tj .cap) =
j−1∑
i=3M

CplBlack(T0, Ti, Ti+1, X, σT0Tj .cap).

Brigo and Mercurio [11] point out that this formula results in some inconsis-
tencies as a Ti maturity caplet will have di�erent volatilities when determined
from di�erent caps. In order to eliminate these inconsistencies, we need to
have

j−1∑
i=3M

CplBlack(T0, Ti, Ti+1, X, σT0Tj .cap)

=
j−1∑
i=3M

CplBlack(T0, Ti, Ti+1, X, σTiTi+1.caplet). (7.2.2)

Given the preliminary calculations, we can now move on to consider the strip-
ping methodology as presented by Gatarek, Bachert and Maksymiuk [21].
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Example 7.2.2

Firstly, notice that the volatility data given in Table 7.1 only starts at T = 1Y .
This then implies some di�culties in the use of Equation (7.2.2) since we do
not have cap volatilities for each of the periods prior to one year. In order
to facilitate the caplet stripping procedure, Gatarek, Bachert and Maksymiuk
[21] points out that it is common practice to assume constant volatilities for the
caps with expiries less than a year (given these volatilities are not observable
in the market). This is given by the equation below

σT0T6M .cap = σT0T9M .cap = σT0T1Y .cap.

The cap maturing at t = T6M consists of only one caplet, i.e. the caplet
spanning the time period T3M − T6M , and hence we have that the volatility
of this caplet is equal to the volatility of the cap. Next we can consider the
calculation of the volatility of the caplet spanning the time period T6M −T9M .
We know that the cap with maturity t = T9M consists of both the T3M − T6M

and T6M − T9M caplets. Using Equation (7.2.2), we obtain

CplBlack(T0, T3M , T6M , X, σT0T9M .cap)

+CplBlack(T0, T6M , T9M , X, σT0T9M .cap)

=CplBlack(T0, T3M , T6M , X, σT3MT6M .caplet)

CplBlack(T0, T6M , T9M , X, σT6MT9M .caplet).

Given that σT0T9M .cap and σT3MT6M .caplet equals 0.1641, we have that

σT6MT9M .caplet = 0.1641.

Similarly, we can obtain the volatility of the caplet spanning the time period
T9M − T1Y as

σT9MT1Y .caplet = 0.1641.

In order to calculate caplet volatilities for broken periods above 1 year, we
�rstly need to obtain cap volatilities for these periods as only cap volatilities
for full years are taken directly from the market. This is done through using
linear interpolation. For example, consider the following (Gatarek, Bachert
and Maksymiuk [21] assumed quarterly year fractions of exactly 0.25, this can
be changed to ACT/360)

σT0T1y3M .cap

=0.25× (σT0T2y .cap − σT0T1y .cap) + σT0T1y .cap

=0.25× (0.2137− 0.1641) + 0.1641
=0.1765
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and

σT0T1y6M .cap

=0.5× (σT0T2y .cap − σT0T1y .cap) + σT0T1y .cap

=0.5× (0.2137− 0.1641) + 0.1641
=0.1889.

Similar calculations show that

σT0T1y9M .cap = 0.2013.

Given these cap volatilities, we can calculate the volatilities σT1Y T1Y 3M .caplet,
σT1Y 3MT1Y 6M .caplet and σT1Y 6MT1Y 9M .caplet using Equation (7.2.2).

We will now illustrate the calculation of the volatility σT1Y T1Y 3M .caplet. The
terms of Equation (7.2.2) where obtained as follows:

Using cap volatility

CplBlack(T0, T3M , T6M , X, σT0T1Y 3M .cap) = 0.00005756

CplBlack(T0, T6M , T9M , X, σT0T1Y 3M .cap) = 0.00021627

CplBlack(T0, T9M , T1Y , X, σT0T1Y 3M .cap) = 0.00043742

CplBlack(T0, T1Y , T1Y 3M , X, σT0T1Y 3M .cap) = 0.00068103.

Using caplet volatility

CplBlack(T0, T3M , T6M , X, σT3MT6M .caplet) = 0.00004782

CplBlack(T0, T6M , T9M , X, σT6MT9M .caplet) = 0.00019635

CplBlack(T0, T9M , T1Y , X, σT9MT1Y .caplet) = 0.00041210,

where X, according to Table 7.4, is equal to 2.361%. Subtracting the sum of
the caplet prices derived using caplet volatilities from the sum of the caplet
prices derived using the cap volatility, we obtain

CplBlack(T0, T1Y , T1Y 3M , X, σT1Y T1Y 3M .caplet) = 0.00073601.

The �nal step in the calculation is to use a numeric algorithm to obtain the
volatility for which above equation will hold. This was obtained as

σT1Y T1Y 3M .caplet = 0.2015.

Repeating above process, produced the following results

σT1Y 3MT1Y 6M .caplet = 0.2189,
σT1Y 6MT1Y 9M .caplet = 0.2365,
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and

σT1Y 9MT2Y .caplet = 0.2550.

The complete set of results, as given in the book by Gatarek, Bachert and
Maksymiuk [21], is given in the table below.

Tenor Ti Cap Volatility Caplet Volatility Time Homogeneity Test
σT0Ti.cap σTi−1Ti.caplet σ2

Ti−1Ti.capletαT0Ti−1

6M 0.1641 0.1641 0.0067
9M 0.1641 0.1641 0.0135
1Y 0.1641 0.1641 0.0204
1Y 3M 0.1765 0.2015 0.0412
1Y 6M 0.1889 0.2189 0.0606
1Y 9M 0.2013 0.2365 0.0849
2Y 0.2137 0.2550 0.1153
2Y 3M 0.2162 0.2213 0.0993
2Y 6M 0.2186 0.2255 0.1159
2Y 9M 0.2211 0.2298 0.1336
3Y 0.2235 0.2342 0.1528
3Y 3M 0.2223 0.2098 0.1339
3Y 6M 0.2212 0.2084 0.1431
3Y 9M 0.2200 0.2073 0.1524
4Y 0.2188 0.2055 0.1608
5Y 0.2127 0.1938 0.1811
6Y 0.2068 0.1859 0.2014
7Y 0.2012 0.1781 0.2171
8Y 0.1958 0.1700 0.2272
9Y 0.1905 0.1621 0.2331
10Y 0.1859 0.1569 0.2437
11Y 0.1833 0.1650 0.2969
12Y 0.1806 0.1602 0.3058
13Y 0.1770 0.1450 0.2720
14Y 0.1735 0.1380 0.2655
15Y 0.1699 0.1316 0.2592
16Y 0.1673 0.1352 0.2922
17Y 0.1646 0.1300 0.2871
18Y 0.1620 0.1243 0.2780
19Y 0.1593 0.1184 0.2664
20Y 0.1567 0.1133 0.2571

Table 7.5: ATM caplet volatilities obtained from European cap volatilities for busi-
ness date 2005/01/21 (Gatarek, Bachert and Maksymiuk [21]).

Consider the caplet volatility structure as given in Table 7.5. This implies
a similar humped shape as the one presented in Figure 7.1 for cap volatilities.
The biggest di�erence is however in the variability of caplet volatilities vs. that
of the associated cap volatilities. Gatarek, Bachert and Maksymiuk [21] points
out that this is simply due to the fact that cap volatilities are representative
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of average caplet volatilities. The caplet volatility structure is presented in the
�gure below.

Figure 7.5: ATM caplet volatilities obtained from European cap volatilities for
business date 2005/01/21 (Gatarek, Bachert and Maksymiuk [21]).

Next, let us consider the last column of Table 7.5. This is presented in the
�gure below.

Figure 7.6: Time homogeneity test derived from European ATM caplet volatilities
for business date 2005/01/21 (Gatarek, Bachert and Maksymiuk [21]).
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As discussed in Chapter 5, it will always be possible to recover today's
caplet prices for a volatility speci�cation according to Equation (5.2.2) if
Tiσ

2
TiTi+1.caplet

is a strictly increasing function of Ti.
From Figure 7.6 it is clearly evident that this is not the case. The impact

of this characteristic on the calibration of the model will be considered in a
later chapter.

 
 
 



Chapter 8

South African Market Data

This chapter will move on to consider how we can obtain similar inputs from the
South African market. Topics covered, will range from di�erent data sources
to the bootstrapping of curves and volatilities. This will illustrate why some
of the modeling assumptions made in the previous chapters are applicable to
the South African market.

8.1 Actual Market Inputs

The purpose of this chapter is largely to illustrate how we can apply the
techniques derived in the previous chapters to the South African market. Given
this motivation, I have decided to follow a slightly di�erent approach in the
sourcing of the relevant market data. Instead of taking market data from
Reuters (or similar sources) as illustrated by Gatarek, Bachert and Maksymiuk
[21], this chapter will rather be based on the market data of a certain South
African investment bank. This will not only allow the analysis of the real
life market views and assumptions made by SA traders, but will also help
to eliminate the noise associated with illiquid prices. It is important to note
that these prices are submitted to price testing processes on a weekly basis
and hence can be assumed to be a relatively accurate re�ection of the data
available on sources such as Reuters and Bloomberg.

Although we will be using actual trader inputs for calculation purposes,
it will be illustrated how similar market data can be obtained from trading
sources such as Reuters or Bloomberg.

8.1.1 Benchmark Rates

Benchmark rates will be de�ned as the benchmark instruments used as input
variables in the construction of an interest rate yield curve. These rates are
typically JIBAR rates, FRAs and swaps depending on the type of yield curve
and the market under consideration. The yield curve to be considered in this

79

 
 
 



Chapter 8. South African Market Data 80

section will consist of a 3M JIBAR rate, 3 monthly FRAs and interest rate
swaps exchanging �xed cash �ows for �oating cash �ows linked to 3M JIBAR.
Consequently, this curve is typically referred to as a three-month ZAR interest
rate curve. Similar curves can be constructed to more accurately price and
risk manage instruments that have resets occurring at time intervals other
than three-months.

The available data set ranges from 2005/01/03 until 2009/12/31, with the
data for 2009/12/31 presented in the table below.

No. Benchmark Instrument Rate

1 JIBAR 3M 7.229
2 FRA 3x6 7.090
3 FRA 6x9 7.110
4 FRA 9x12 7.280
5 FRA 12x15 7.510
6 FRA 15x18 7.860
7 FRA 18x21 8.822
8 FRA 21x24 8.620
9 IRS 3Y 8.035
10 IRS 4Y 8.342
11 IRS 5Y 8.520
12 IRS 6Y 8.637
13 IRS 7Y 8.712
14 IRS 8Y 8.760
15 IRS 9Y 8.790
16 IRS 10Y 8.787
17 IRS 12Y 8.737
18 IRS 15Y 8.567
19 IRS 20Y 8.297
20 IRS 25Y 8.057
21 IRS 30Y 7.837

Table 8.1: Benchmark instruments obtained from a South African investment bank
for business date 2009/12/31.

It is worth mentioning how to interpret some of these rates. All rates
de�ned above are typically given using simple compounding convention.

The Johannesburg Interbank Agreed Rate (JIBAR) is a daily reference
rate based on interest rates at which banks borrow unsecured funds from other
banks in the South African interbank market. This rate is determined through
taking an average of a series of quotes following the elimination of certain
outliers. These rates are available for di�erent time periods, for example one-
month, three-month, six-month, nine-month and twelve-month (Gumbo [23]).

The FRAs in turn are de�ned as forward rates for a speci�c three month
time period, whereas swap rates are de�ned as the �xed rates that will ensure
swaps to price back to zero.
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In order to understand these market variables and how they behave under
di�erent market circumstances, we will consider graphs of these rates for dif-
ferent interest rate cycles. An interest rate cycle will in turn be de�ned as the
di�erent time periods relating to the hiking or cutting of interest rates based
on economic variables and the mandate of the Reserve Bank of South Africa.
These time periods can be seen through looking at the history of the repo
rate, de�ned as the rate at which banks can borrow money from the Reserve
Bank. The repo rate, for various historical dates, is presented in the table
below (Reserve Bank website [53]).

Date Repo Rate Change (in bps)

1999/11/25 12.00
2000/01/14 11.75 -25
2000/10/17 12.00 25
2001/06/15 11.00 -100
2001/09/05 10.00 -100
2001/09/21 9.50 -50
2002/01/16 10.50 100
2002/03/15 11.50 100
2002/06/14 12.50 100
2002/09/13 13.50 100
2003/06/13 12.00 -150
2003/08/15 11.00 -100
2003/09/11 10.00 -100
2003/10/17 8.50 -150
2003/12/12 8.00 -50
2004/08/13 7.50 -50
2005/04/14 7.00 -50
2006/06/08 7.50 50
2006/08/03 8.00 50
2006/10/13 8.50 50
2006/12/08 9.00 50
2007/06/08 9.50 50
2007/08/17 10.00 50
2007/10/12 10.50 50
2007/12/07 11.00 50
2008/04/11 11.50 50
2008/06/13 12.00 50
2008/12/12 11.50 -50
2009/02/06 10.50 -100
2009/03/25 9.50 -100
2009/05/04 8.50 -100
2009/05/29 7.50 -100
2009/08/14 7.00 -50

Table 8.2: South African repo rate history for the time period 1999/11/25 -
2009/12/31.

Hence, we can observe �ve interest rate cycles (three cutting and two hiking
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cycles). These are presented in Figure 8.1 below.

Figure 8.1: South African repo rate for the period 1999/11/25 - 2009/12/31.

Given the history we have at our disposal, we will analyze the move-
ments present in the time periods 2005/01/03 - 2008/06/13 and 2008/06/14 -
2009/12/31.

The �rst time period relates to a rate hiking cycle. The benchmark rates
associated with this cycle is presented in the �gure below.

Figure 8.2: Benchmark rates obtained from a South African investment bank for
the time period 2005/01/03 - 2008/06/13. This relates to a rate hiking cycle.
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Figure 8.2 displays a clear increase in the level of benchmark rates, as well
as an inversion in benchmark rates. By the latter we mean that short term
rates appear to rise at a faster pace than longer term rates (also known as
a bear inversion). This is re�ective of expected rate hikes in the short term
followed by lower rates in the longer term. Lower long term rates typically
re�ect the expectation that the monetary policy was successfully implemented
(for example in�ation within target range). Another point to note is that the
change in level and shape (i.e. inversion of rates) started to appear roughly
between Jan-06 and Nov-06 (see Figure 8.2). According to Table 8.2, this is
exactly the time period in which we experienced the �rst hike of the new cycle.

The second time period relates to a rate cutting cycle. The benchmark
rates associated with this cycle is presented in the �gure below.

Figure 8.3: Benchmark rates obtained from a South African investment bank for
the time period 2008/06/14 - 2009/12/31. This relates to a rate cutting cycle.

In contrast to the previous curve, Figure 8.3 is characterized by a decrease
in the level of benchmark rates, while exhibiting a steepening of rates. This
is known as a bull steepener (i.e. short term rates appear to be falling faster
than longer term rates).

These two cycles represent some of the key interest rate movements ob-
servable in the market. Principal component analysis of these benchmarks are
shown in the graphs below and are in line with the comments made above.

Figure 8.4 represents the �rst three vectors obtained from a principal com-
ponent analysis on the data of cycle 1. The �rst two components, in order of
importance, represent a parallel upward shift in rates as well as an inversion
in rates (bear inversion).
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Figure 8.4: Results obtained from PCA when applied to the data presented in
Figure 8.2. This relates to a rate hiking cycle.

Figure 8.5: Results obtained from PCA when applied to the data presented in
Figure 8.3. This relates to a rate cutting cycle.

Figure 8.5 in turn represents the �rst three vectors resulting from a prin-
cipal component analysis on the data of cycle 2. The �rst two components, in
order of importance, represent a parallel downward shift in rates as well as a
steepening in rates (bull steepening).

Above benchmark rates can independently be sourced from Bloomberg
or Reuters. Figure 8.6 illustrates the di�erent JIBAR quotes available on
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Bloomberg.1 This con�rms the observation made by Gumbo [23], i.e. JIBAR
rates are typically quoted for the time periods one-month, three-month, six-
month, nine-month and twelve-month.

Figure 8.6: Example of extracting South African JIBAR rates from Bloomberg.

Next, Figure 8.7 shows the FRA quotations available on Bloomberg. Note
from below that there are several FRAs available in the market. This thesis
will, however, only consider the FRAs with forward time periods of three
months. This is due to the fact that we will mainly focus on the modeling of
three-monthly forward rates.

Similar results can be obtained for the other forward rates (and through
using the associated x-month JIBAR rate and swaps with resetting intervals
of x-months). It will also be shown at a later stage how we can convert
three-month volatilities to di�erent tenors which will consequently add some
�exibility to the model.

Figure 8.8 presents the swap rates as quoted on Bloomberg. Similar to
the rates illustrated in the previous �gures, we have a number of quotations
available in the market.

These screen prints illustrate how the data used in this section is typically
presented in the market. For each of these quotes, it is possible to obtain
historical data for a user speci�ed time interval. It is, however, important to
con�rm what the day count conventions and compounding methodologies are
before the data is used. This will be made more clear in later sections when
we need to calculate forward rates and forward rate volatilities.

1In order to obtain the data from Bloomberg, one needs to use the command WCV ZAR
<GO>. Once this command is entered, the user will be presented with a number of ZAR
interest rate quotes.
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Figure 8.7: Example of extracting South African FRA rates from Bloomberg.

Figure 8.8: Example of extracting South African swap rates from Bloomberg.

8.1.2 Cap and Caplet Volatilities

This section will present the ATM cap and caplet volatilities as obtained from
one of the South African investment banks. The volatilities changed from a
mixture of caplet (in short term) and cap volatilities (longer term) to a set
consisting of only caplet volatilities from 0 to 10.25 years (driven by changes
in business processes and trader views). The caplet volatilities, for business
date 2009/12/31, is presented in Table 8.3.
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The calculation of the time homogeneity factors, as presented in the table
below, was based on the assumptions that T0 =2009/12/31 and that the three-
monthly time periods are given by equal fractions of 0.25.

Tenor Ti Caplet Volatility Time Homogeneity Test
σTi−1Ti.caplet σ2

Ti−1Ti.capletαT0Ti−1

6M 0.12518 0.00392
9M 0.13991 0.00979
1Y 0.15458 0.01792
1Y 3M 0.16334 0.02668
1Y 6M 0.16497 0.03402
1Y 9M 0.16657 0.04162
2Y 0.16786 0.04931
2Y 3M 0.17250 0.05951
2Y 6M 0.16773 0.06330
2Y 9M 0.16299 0.06641
3Y 0.15850 0.06909
3Y 3M 0.15747 0.07439
3Y 6M 0.15416 0.07724
3Y 9M 0.15031 0.07908
4Y 0.14625 0.08021
4Y 3M 0.14731 0.08680
4Y 6M 0.14408 0.08823
4Y 9M 0.14084 0.08926
5Y 0.13752 0.08983
5Y 3M 0.13702 0.09387
5Y 6M 0.13575 0.09675
5Y 9M 0.13447 0.09945
6Y 0.13311 0.10188
6Y 3M 0.13422 0.10809
6Y 6M 0.13305 0.11064
6Y 9M 0.13193 0.11314
7Y 0.13070 0.11531
7Y 3M 0.13150 0.12105
7Y 6M 0.13045 0.12337
7Y 9M 0.12939 0.12556
8Y 0.12834 0.12765
8Y 3M 0.12878 0.13267
8Y 6M 0.12776 0.13466
8Y 9M 0.12663 0.13630
9Y 0.12576 0.13839
9Y 3M 0.12778 0.14695
9Y 6M 0.12687 0.14889
9Y 9M 0.12605 0.15094
10Y 0.12495 0.15222
10Y 3M 0.12677 0.16071

Table 8.3: ATM caplet volatilities obtained from a South African investment bank,
for business date 2009/12/31, following a caplet stripping procedure.

The caplet volatility structure, as given in Table 8.3, clearly implies a

 
 
 



Chapter 8. South African Market Data 88

humped shape with the peak in the 2Y region. This is similar to the behaviour
of volatilities in the European market and is presented in Figure 8.9 below.

Figure 8.9: ATM caplet volatilities obtained from a South African investment bank,
for business date 2009/12/31, following a caplet stripping procedure.

Next, we will consider the time homogeneity test. This is presented in
Figure 8.10 below.

Figure 8.10: Time homogeneity test derived from South African ATM caplet volatil-
ities for business date 2009/12/31.
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From the �gure above and Table 8.3, it is evident that this function is
strictly increasing and hence we can expect the shape of term structure of
volatilities to remain the same over time.

Before we proceed any further, it is worth repeating some of the proper-
ties associated with the volatility behaviour presented in Figure 8.9. It was
mentioned earlier that this type of behaviour is typically observed under nor-
mal market conditions (Rebonato [47]). This represents uncertainty in the
medium term which typically relates to expected monetary rate decisions. The
lower volatilities observed in the short- and longer term maturities re�ect the
low probabilities associated with unexpected monetary rate decisions (in the
short-term) and economic news that may result in structural changes (in the
longer-term, such as a change in in�ation targeting). Historical analysis pre-
sented later in the chapter will also consider the other end of this spectrum,
i.e. volatility behaviour in more volatile time periods.

The above examples speci�cally relate to business date 2009/12/31. The
available set of volatilities only consists of weekly volatilities from 2009/05/06
to 2009/12/31. No historical caplet volatilities could be obtained from either
Bloomberg or Reuters.

The granularity of the available volatilities di�er through time (re�ecting
changes in business processes etc.) and can be divided into two periods. The
volatilities for the last three months in the data set consists of three monthly
caplet volatilities up to 10Y as illustrated in Table 8.3. This level of granularity
is not available in the market and was obtained through a caplet volatility
stripping procedure.

The volatility data of the �rst �ve months consists of caplet volatilities up
to two years and cap volatilities for time periods 3Y , 4Y , 5Y and 10Y . In
order to illustrate the above, we will consider the volatility data for business
date 2009/08/12. This is presented in Table 8.4 below.

Tenor Ti Cap Volatility Caplet Volatility
σT0Ti.cap σTi−1Ti.caplet

6M 0.20303
9M 0.20692
1Y 0.20765
1Y 3M 0.20605
1Y 6M 0.20562
1Y 9M 0.20475
2Y 0.20128
3Y 0.20229
4Y 0.19502
5Y 0.18734
10Y 0.17608

Table 8.4: ATM cap and caplet volatilities obtained from a South African investment
bank for business date 2009/08/12.
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It will be illustrated later in the chapter how we can obtain three-monthly
caplet volatilities, from the quotes given above, using a caplet stripping algo-
rithm. This analysis will, however, be preceded with the bootstrapping of rates
from the input benchmark rates. This part is necessary for the calculation of
discount factors (and consequently the ATM swap strikes).

To conclude this section, we will take a look at the volatility data avail-
able on Bloomberg. Figure 8.11 illustrates the di�erent available cap/caplet
quotes.2

Figure 8.11: Example of extracting South African ATM cap and caplet volatilities
from Bloomberg.

This thesis is mainly aimed at calibrating to ATM cap and caplet volatili-
ties, hence the �Struck as� �eld should be chosen to re�ect ATM options. Also
note that the volatilities used in this setup are Black or lognormal volatilities.
The user has the option of making this choice (see Figure 8.11). If it is only
possible to obtain normal volatilities (hence not Black or lognormal), then we
need to �nd a way to convert these volatilities to Black volatilities. The paper
by Hagan [25] provides a relationship between the two types of volatilities.

8.1.3 Swaption Volatilities

This section will consider the set of available ATM swaption volatilities. Simi-
lar to the cap and caplet volatilities, the data set will consist of weekly spaced
ATM swaption volatilities (obtained from one of the SA investment banks)

2In order to obtain the data from Bloomberg, we can use the same command WCV ZAR
<GO>. Once this command is entered, the user can select the required volatilities from the
list presented.
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from 2009/05/06 to 2009/12/31. The volatilities for business date 2009/12/31
is presented in the table below.

Option Expiry/Underlying Maturity
1Y 2Y 3Y 4Y 5Y 10Y 15Y 20Y

1M 0.14000 0.14250 0.14000 0.14000 0.13750 0.14000 0.14750 0.15750
3M 0.15500 0.15500 0.15000 0.14750 0.14500 0.14500 0.15250 0.16250
6M 0.16000 0.15750 0.15250 0.15000 0.14750 0.14500 0.15250 0.16250
1Y 0.17250 0.16000 0.16000 0.15750 0.15500 0.16000 0.16750 0.17750
2Y 0.15500 0.14250 0.14750 0.14500 0.14750 0.15750 0.16500 0.17500
5Y 0.14250 0.13000 0.13500 0.13250 0.13500 0.16250 0.17000 0.18000
10Y 0.14250 0.14000 0.15500 0.15750 0.16500 0.21500 0.22250 0.23250

Table 8.5: ATM swaption volatilities obtained from a South African investment
bank for business date 2009/12/31.

The rows of the table above represent the option expiries while the columns
represent the underlying swap maturities. Within this context, the start date
of the underlying swap always coincides with the expiry date of the option.
Table 8.5 is graphically presented in the �gure below.

Figure 8.12: ATM Swaption volatilities obtained from a South African investment
bank for business date 2009/12/31.

It was mentioned previously that these can and will be used to determine
the correlation between di�erent forward rates given the fact that a swap rate
is dependent on several forward rates. Rebonato [47] advocates the use of cap
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prices for volatility calibration and the use of swaption prices for correlation
modeling. This is partly based on the observation that the implied volatility
term structure of forward rates tend to exhibit the same qualitative features
when calibrated to either the swaption or cap market (although there will be
di�erences in the actual level of the implied volatilities).

Please note that the available volatility data is somewhat limited. More
data points can be added to increase the accuracy of estimated correlations
(given of course that the extra points do not create noise due to illiquidity or
even overlapping terms). Due to the di�culties associated with the sourcing
of accurate historical swaption volatilities, we will base future calculations on
the data set introduced in this section.

Some of the available swaption volatilities, as given by Bloomberg, are
presented in the �gure below.3

Figure 8.13: Example of extracting South African ATM swaption volatilities from
Bloomberg.

One important aspect of swaption quotations is the resetting periods of
the underlying swaps. This determines what type of forwards (for example
monthly, three-monthly, semi-annual, etc.) are needed in order to determine
the value of the swap at any point in time. In the data presented until thus far,
we assumed three-monthly caplet volatilities which indirectly implies the use
of three-monthly forward rates. Should the resetting periods of the underlying
swaps not be equal to three-months, then we will have to adjust the three-
monthly caplet volatilities in order to calibrate to both markets simultaneously
(see Brigo and Mercurio [11] and Gatarek, Bachert and Maksymiuk [21]). This

3Once again the command WCV ZAR <GO> can be used.
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will have a signi�cant impact on the calibration of the model to market inputs.
The exact methodology, that can be used for the above mentioned conversion,
will be illustrated in a later chapter.

Another point worth mentioning is the actual liquidity of some of these
option trades. Although caps and swaptions are vanilla option trades, discus-
sions with an option trader revealed that the actual number of prices shown
in the market on a daily basis are fairly limited. This remark then con�rms
the numerous statements made by Rebonato [47] regarding volatility and cor-
relation modeling within the LIBOR market model. The author mentioned
that we should strive to obtain volatility and correlation parameterizations
that best �t market volatilities, while re�ecting trader views (the �re�ection of
trader views� is essentially needed to complete the market).

8.2 Curve Bootstrapping

The work by Gatarek, Bachert and Maksymiuk [21] provide the reader with
the necessary discount factors needed for calibration purposes, with no real
detail given as to what assumptions were made in the bootstrapping of these
rates (given in Table 7.1).

This section will consider the bootstrapping of rates from the benchmark
instruments provided in Section 8.1.1. This process is an important part in the
calibration of the model and will result in the necessary discount factors and
ATM strikes. Another important aspect of this process, is that we will be able
to derive three-monthly (or any other term, we however focus on three-monthly
forward rates) forward rates from the benchmark rates. This is important given
the fact that the LIBOR market model actually consists of the modeling of
forward rates. From these rates, we will then be able to deduce historical
volatilities and correlations which will be used at a later stage.

The benchmark instruments that we will use are presented in Table 8.1
and consist of a 3M JIBAR rate, 3 monthly FRAs and interest rate swaps
exchanging �xed cash �ows for �oating cash �ows linked to 3M JIBAR. Con-
sequently, this curve is typically referred to as a three-month ZAR interest rate
curve. As mentioned earlier, we can construct similar curves to better price
and risk instruments that have resets occurring at time intervals other than
three-months.

Assuming a 0-day settlement procedure, we have that the �rst part of the
curve is automatically obtained, i.e. we have the 0-3M rate equal to the 3M
JIBAR rate, and then we have three-monthly forward rates thereafter out until
2-years.

In order to obtain three-monthly forward rates for the 2Y to 3Y time
period, we will need to introduce the 3-year swap rate to the current set of
equations. Firstly, recall that the 3Y par swap rate can be de�ned as the �xed
rate such that the present value of the �oating leg of the swap will equal the
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present value of the �xed leg of the swap. This then implies that the 3Y swap
rate contains some information regarding the unknown forward rates for the
time period under consideration. The valuation of a 3Y swap is presented in
Table 8.6.

Cum Forw Rate Swap Comp DF Proj PV Proj PV Spot Rate Spot Rate
YF (Simple) Rate Fact Float Float Fixed Fixed (Simple) (Annual)

0.25 0.07229 0.08035 1.01807 0.98225 0.01807 0.01775 0.02009 0.01973 0.07229 0.07427
0.50 0.07090 0.08035 1.03612 0.96514 0.01773 0.01711 0.02009 0.01939 0.07224 0.07354
0.75 0.07110 0.08035 1.05453 0.94829 0.01778 0.01686 0.02009 0.01905 0.07271 0.07337
1.00 0.07280 0.08035 1.07373 0.93134 0.01820 0.01695 0.02009 0.01871 0.07373 0.07373
1.25 0.07510 0.08035 1.09389 0.91417 0.01878 0.01716 0.02009 0.01836 0.07511 0.07443
1.50 0.07860 0.08035 1.11538 0.89655 0.01965 0.01762 0.02009 0.01801 0.07692 0.07551
1.75 0.08220 0.08035 1.13830 0.87850 0.02055 0.01805 0.02009 0.01765 0.07903 0.07683
2.00 0.08620 0.08035 1.16283 0.85997 0.02155 0.01853 0.02009 0.01727 0.08142 0.07835
2.25 0.08035 0.02009
2.50 0.08035 0.02009
2.75 0.08035 0.02009
3.00 0.08035 0.02009

Table 8.6: Cash Flows of a 3Y IRS using rates for business date 2009/12/31.

The �rst column of Table 8.6 indicates the cumulative year fractions. Note
that equal time intervals of 0.25 (given rates reset every three months) were
assumed in order to simplify historical calculations. Testing of this assumption
for a particular working day showed a maximum impact of less than one basis
point. Furthermore, the forward (simple compounding) and swap rates were
taken directly from Table 8.1. The calculations of the rest of the entries in the
second row of Table 8.6 are presented below.

The compounding factor (Comp Fact) was de�ned as the factor needed to
grow one Rand from time today until the end of the period indicated by the
cumulative year fraction (Cum YF) column. Hence, we have for Cum YF= 0.5
that

Comp Fact(0.5) = Comp Fact(0.25)× [1 + Forw Rate(0.5)× 0.25]
= 1.01807× [1 + 0.0709× 0.25]
= 1.03612.

The factors calculated above are typically used in the calculation of dis-
count factors. The process of obtaining a discount factor for Cum YF= 0.5 is
illustrated below

DF(0.5) = 1/Comp Fact(0.5)
= 1/1.03612
= 0.96514.
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Next, we need to calculate the present values of the projected cash �ows
(where we have available forward rates) using the results obtained above.

PV Float(0.5) = Proj Float(0.5)×DF(0.5)
= 0.0709× 0.25× 0.96514
= 0.01711,

PV Fixed(0.5) = Proj Fixed(0.5)×DF(0.5)
= 0.08035× 0.25× 0.96514
= 0.01939.

Under normal market circumstances, where all forward rates are available,
these calculations should be su�cient to determine present values for each of
the underlying cash �ows. Table 8.6, however, illustrates the fact that we have
four unknown rates compared with the one condition that the present value
of the �xed leg of the swap (consisting of a number of individual cash �ows)
should equal the present value of the �oat leg of the swap. Hence, in order
to solve for the four unknown forward rates, we will have to introduce some
assumptions given the fact that there are an in�nite number of solutions that
will ensure that the swap prices back to zero. In curve construction, these
assumptions are typically in the form of di�erent interpolation techniques.

In order to simplify calculations we will focus our attention on linear inter-
polation. Hagan and West [27] mention that the interpolation can be applied
to di�erent types of rates, for example discount factors and spot rates. We
will only consider linear interpolation on spot interest rates. The front o�ce
system used by the investment bank introduced earlier in this chapter also
perform interpolations on spot interest rates as opposed to discount factors.
Furthermore, this front o�ce system performs all of its curve calculations in
the annual compounding space, even if its inputs are quoted in simple terms.
Hence, before we can proceed any further, we need to have a look at the
calculation of the spot rates presented in Table 8.6.

Spot RateS(0.5) = (Comp Fact(0.5)− 1)/Cum YF(0.5)
= (1.03612− 1)/0.5
= 0.07224.

This rate can then be annualized for calculation purposes (in order to keep
in line with front o�ce system).

The examples given above explain the calculation of the elements of Table
8.6. In order to extend the table over the remaining few time periods, we
will need to follow the process as presented by Hagan and West [27]. The
�rst step of the process is to choose an arbitrary annual spot interest rate
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for Cum YF= 3. Next, apply linear interpolation between Cum YF= 2 and
Cum YF= 3 to obtain annual spot rates for the unknown time periods. From
these estimates we will be able to work backwards through the table to obtain
present values for both the swap legs.

Once this is done, we need to apply a root �nding routine to solve for the
3Y annual spot interest rate such that the swap prices back to zero. The goal
seek functionality in excel was used to obtain the results presented in the table
below.

Cum Forw Rate Swap Comp DF Proj PV Proj PV Spot Rate Spot Rate
YF (Simple) Rate Fact Float Float Fixed Fixed (Simple) (Annual)

0.25 0.07229 0.08035 1.01807 0.98225 0.01807 0.01775 0.02009 0.01973 0.07229 0.07427
0.50 0.07090 0.08035 1.03612 0.96514 0.01773 0.01711 0.02009 0.01939 0.07224 0.07354
0.75 0.07110 0.08035 1.05453 0.94829 0.01778 0.01686 0.02009 0.01905 0.07271 0.07337
1.00 0.07280 0.08035 1.07373 0.93134 0.01820 0.01695 0.02009 0.01871 0.07373 0.07373
1.25 0.07510 0.08035 1.09389 0.91417 0.01878 0.01716 0.02009 0.01836 0.07511 0.07443
1.50 0.07860 0.08035 1.11538 0.89655 0.01965 0.01762 0.02009 0.01801 0.07692 0.07551
1.75 0.08220 0.08035 1.13830 0.87850 0.02055 0.01805 0.02009 0.01765 0.07903 0.07683
2.00 0.08620 0.08035 1.16283 0.85997 0.02155 0.01853 0.02009 0.01727 0.08142 0.07835
2.25 0.08686 0.08035 1.18808 0.84169 0.02172 0.01828 0.02009 0.01691 0.08359 0.07961
2.50 0.08923 0.08035 1.21459 0.82332 0.02231 0.01837 0.02009 0.01654 0.08583 0.08087
2.75 0.09160 0.08035 1.24240 0.80489 0.02290 0.01843 0.02009 0.01617 0.08815 0.08212
3.00 0.09396 0.08035 1.27159 0.78642 0.02349 0.01847 0.02009 0.01580 0.09053 0.08338

Table 8.7: Cash Flows of a 3Y IRS using known and bootstrapped rates for business
date 2009/12/31.

Similarly, the results for the 4Y swap quotation are presented below.

Cum Forw Rate Swap Comp DF Proj PV Proj PV Spot Rate Spot Rate
YF (Simple) Rate Fact Float Float Fixed Fixed (Simple) (Annual)

0.25 0.07229 0.08342 1.01807 0.98225 0.01807 0.01775 0.02086 0.02049 0.07229 0.07427
0.50 0.07090 0.08342 1.03612 0.96514 0.01773 0.01711 0.02086 0.02013 0.07224 0.07354
0.75 0.07110 0.08342 1.05453 0.94829 0.01778 0.01686 0.02086 0.01978 0.07271 0.07337
1.00 0.07280 0.08342 1.07373 0.93134 0.01820 0.01695 0.02086 0.01942 0.07373 0.07373
1.25 0.07510 0.08342 1.09389 0.91417 0.01878 0.01716 0.02086 0.01907 0.07511 0.07443
1.50 0.07860 0.08342 1.11538 0.89655 0.01965 0.01762 0.02086 0.01870 0.07692 0.07551
1.75 0.08220 0.08342 1.13830 0.87850 0.02055 0.01805 0.02086 0.01832 0.07903 0.07683
2.00 0.08620 0.08342 1.16283 0.85997 0.02155 0.01853 0.02086 0.01794 0.08142 0.07835
2.25 0.08686 0.08342 1.18808 0.84169 0.02172 0.01828 0.02086 0.01755 0.08359 0.07961
2.50 0.08923 0.08342 1.21459 0.82332 0.02231 0.01837 0.02086 0.01717 0.08583 0.08087
2.75 0.09160 0.08342 1.24240 0.80489 0.02290 0.01843 0.02086 0.01679 0.08815 0.08212
3.00 0.09396 0.08342 1.27159 0.78642 0.02349 0.01847 0.02086 0.01640 0.09053 0.08338
3.25 0.09194 0.08342 1.30081 0.76875 0.02298 0.01767 0.02086 0.01603 0.09256 0.08428
3.50 0.09363 0.08342 1.33126 0.75117 0.02341 0.01758 0.02086 0.01567 0.09465 0.08519
3.75 0.09532 0.08342 1.36298 0.73368 0.02383 0.01748 0.02086 0.01530 0.09680 0.08609
4.00 0.09701 0.08342 1.39604 0.71631 0.02425 0.01737 0.02086 0.01494 0.09901 0.08699

Table 8.8: Cash Flows of a 4Y IRS using known and bootstrapped rates for business
date 2009/12/31.

Through applying above procedure to the remainder of the benchmark
instruments in Table 8.1, we obtain the following
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Cum Spot Rate Forw Rate Spot Rate Forw Rate
YF (Simple) (Simple) (Annual) (Annual)

0.25 0.07229 0.07229 0.07427 0.07427
0.50 0.07224 0.07090 0.07354 0.07281
0.75 0.07271 0.07110 0.07337 0.07302
1.00 0.07373 0.07280 0.07373 0.07481
1.25 0.07511 0.07510 0.07443 0.07724
1.50 0.07692 0.07860 0.07551 0.08095
1.75 0.07903 0.08220 0.07683 0.08477
2.00 0.08142 0.08620 0.07835 0.08903
2.25 0.08359 0.08686 0.07961 0.08973
2.50 0.08583 0.08923 0.08087 0.09226
2.75 0.08815 0.09160 0.08212 0.09479
3.00 0.09053 0.09396 0.08338 0.09733
3.25 0.09256 0.09194 0.08428 0.09515
3.50 0.09465 0.09363 0.08519 0.09697
3.75 0.09680 0.09532 0.08609 0.09878
4.00 0.09901 0.09701 0.08699 0.10059
4.25 0.10080 0.09269 0.08751 0.09596
4.50 0.10263 0.09367 0.08804 0.09702
4.75 0.10451 0.09466 0.08856 0.09807
5.00 0.10644 0.09564 0.08909 0.09913
5.25 0.10817 0.09317 0.08944 0.09647
5.50 0.10994 0.09382 0.08979 0.09718
5.75 0.11175 0.09448 0.09014 0.09788
6.00 0.11361 0.09513 0.09049 0.09858
6.25 0.11530 0.09278 0.09071 0.09606
6.50 0.11704 0.09319 0.09094 0.09650
6.75 0.11881 0.09361 0.09116 0.09695
7.00 0.12061 0.09403 0.09138 0.09739
7.25 0.12231 0.09212 0.09152 0.09535
7.50 0.12405 0.09238 0.09165 0.09563
7.75 0.12581 0.09263 0.09179 0.09590
8.00 0.12762 0.09289 0.09193 0.09617
8.25 0.12934 0.09138 0.09201 0.09456
8.50 0.13110 0.09153 0.09209 0.09472
8.75 0.13290 0.09168 0.09217 0.09488
9.00 0.13472 0.09183 0.09225 0.09504
9.25 0.13632 0.08760 0.09220 0.09052
9.50 0.13794 0.08751 0.09215 0.09043
9.75 0.13958 0.08743 0.09211 0.09033
10.00 0.14125 0.08734 0.09206 0.09024

Table 8.9: Bootstrapped spot and forward rates for business date 2009/12/31.

It is worth brie�y discussing the e�ect of linear interpolation on the boot-
strapped rates. Hagan and West [27] points out that the interpolation method
used in the bootstrapping process plays an integral part in the procedure as a
whole. Consequently, we can expect di�erent interest rate behaviours for dif-
ferent interpolation methods used. Some of the key factors in�uenced by the
type of interpolation method are, for example, the stability of forward rates
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and the distribution of risk between di�erent input variables. To illustrate
this concept, consider the graph of the three-monthly forward rates (annual
compounding) presented in Table 8.9.

Figure 8.14: Bootstrapped forward rates for business date 2009/12/31 using linear
interpolation.

Switching the interpolation to Hermite, we obtain the graph below.

Figure 8.15: Bootstrapped forward rates for business date 2009/12/31 using Her-
mite interpolation.
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The e�ect of linear interpolation between di�erent tenors are clearly visible
in the above graphs, i.e. non-smooth forward rates (even though a similar plot
of the annual spot rates given in Table 8.9 would yield a smooth curve).

The latter interpolation method (results obtained from front o�ce trading
system) clearly results in smoother forward rates. One drawback of Hermite
interpolation is that the risk is not localized, i.e. a bump in one of the bench-
mark instruments may in�uence a number of bootstrapped rates. In practice
there are, however, a number of factors to consider before deciding on the in-
terpolation method. The reader is referred to the article by Hagan and West
[27] for more details.

In order to brie�y analyze the historical behaviour of three-monthly forward
rates, we will consider the historical forward rates over the same interest rate
cycles de�ned in Section 8.1. The required forward rates were obtained through
applying the same bootstrapping techniques to the historical set of benchmark
rates. The resultant rates are presented below.

The three-monthly forward rates (using linear interpolation), for the rate
hiking cycle between 2005/01/03 and 2008/06/13, are presented in the graph
below (benchmark equivalent presented in Figure 8.2).

Figure 8.16: Historical forward rates bootstrapped from South African benchmark
instruments for the time period 2005/01/03 - 2008/06/13. This relates to a rate
hiking cycle.

From above it is evident that the forward rates behave similar to the un-
derlying benchmark instruments in a rate hiking cycle, i.e. a net increase in
the level of rates while exhibiting an inverting behaviour over time.

Next, let us consider the behaviour of the three-monthly forward rates
under a rate cutting cycle (benchmark equivalent presented in Figure 8.3).
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Figure 8.17: Historical forward rates bootstrapped from South African benchmark
instruments for the time period 2008/06/14 - 2009/12/31. This relates to a rate
cutting cycle.

This time period was de�ned earlier as the historical days between 2008/06/14
and 2009/12/31. Similar to the previous case, the rates in Figure 8.17 exhibit
properties that are in line with those of the underlying benchmark rates, i.e. a
net decrease in the level of rates while exhibiting a steepening behaviour over
time.

This concludes the section on the bootstrapping of interest rates from his-
torical benchmark rates. The history of the three-monthly interest rates in
this section will be used at a later stage to estimate both historical volatilities
as well as historical correlations between forward rates.

8.3 Caplet Stripping

Caplet stripping was considered in detail in Section 7.2, hence this section will
only brie�y touch on some of the required calculations necessary for such a
procedure and then present the results obtained when applied to the South
African market.

Section 8.1.2 provided the reader with a clear description of the cap and
caplet data available in the market as well as the data obtained from a South
African investment bank. Furthermore, we stated that actual trader inputs
will be used in this project as opposed to data obtained from the market. This
will allow us to examine the historical views of a particular set of traders which
may be more informative than analyzing the data from the market as a whole.
The accuracy of this particular set of data is ensured through regular price
testing practices within the investment bank under consideration.
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It was mentioned earlier that the granularity of the available volatilities
di�er through time and can consequently be divided into two periods.

The volatilities for the last three months in the data set consists of three
monthly caplet volatilities out to 10Y as illustrated in Table 8.3. This level of
granularity was obtained through a caplet volatility stripping procedure.

In contrast to above, the volatility data of the �rst �ve months consists
of caplet volatilities out to two years and cap volatilities for time periods 3Y ,
4Y , 5Y and 10Y . An example of this was presented in Table 8.4. The lack of
granularity in this data set will require the use of a caplet stripping procedure.

8.3.1 ATM Strikes for Caps

One of the key elements in a caplet stripping algorithm is the calculation of
the strikes associated with the quoted volatilities. Given that we only consider
ATM volatilities, we need to calculate the ATM strikes of caps. It was mo-
tivated in Section 7.2 that these strikes can be represented by forward swap
rates.

Note that these are forward rates and hence should not be confused with
the ATM swap rates used as inputs to the bootstrapping procedure. Given
we consider caps made up of three-monthly caplets, we need the swap rates
starting in three-months time.

The forward swap rates were calculated for each of the historical days from
the bootstrapped forward rates. In order to avoid repetition, the calculation
of these rates will be assumed to be the same as given in Section 7.2.1.

8.3.2 Stripping Caplet Volatilities from Cap Quotes

Section 7.2.2 illustrated how we can bootstrap caplet volatilities from cap
quotes. Applying these same techniques to the South African market data
resulted in Figure 8.18.

We can draw some interesting conclusions from Figure 8.18. Firstly, note
the decrease in the level of volatilities. This is in line with greater uncertainty
in the market during the start of 2009 which was driven by the global credit
crisis of 2007/2008 (numerous papers were written with regards to the sub
prime crisis, see for instance Alfaro and Kanczuk [1] and Gwinner and Sanders
[24] for extentions to emerging markets).

Secondly, it is important to note the di�erent shapes of the volatility term
structure. This is important given the fact that we need to decide on di�er-
ent parametric volatility structures in the calibration process (given we use a
parametric calibration algorithm). Figure 8.18 clearly con�rms the comments
made by Rebonato [47] regarding volatility behaviour under di�erent market
circumstances.

Volatility behaviour in periods of uncertainty represents an inverted struc-
ture (as can be seen for the �rst couple of months). Rebonato [47] attributes
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Figure 8.18: Historical market implied ATM caplet volatilities, calculated through
applying the caplet stripping algorithm of Section 7.2.2 to the set of cap and caplet
volatilities obtained from a South African investment bank.

the high volatility at the short-end of the curve to a constant analysis of ex-
pected forward rates.

At the opposite side of the spectrum, we have that volatilities in periods
of less uncertainty typically represents a humped term structure. Rebonato
[47] points out that under normal market conditions, we have that volatilities
in the short-medium term are in�uenced by the arrival of �nancial news (such
as in�ation prints etc. and the impact on the interest rate cycle). Short- and
long-term rates are typically more stable under these market conditions.

8.4 Historical Volatilities

The previous section looked at how we can imply forward rate volatilities
from market quotations. These implied volatilities, along with the assumed
lognormal property of forward rates, can then be used to determine market
expectations of future interest rates (see for example the article by the Bank
of Montreal [43]).

In order to examine the realized volatility of forward rates, we need to
perform some sort of calculation on historical forward rates. There are a
number of di�erent calculations available in the literature, for example equally
weighted, exponentially weighted, ARCH and GARCH processes etc. We will
focus our attentions on the equally weighted technique.

Rebonato [47] refers to a historical analysis performed by Dodds [18] in
which the author used constant-maturity three-month forward rates. We will
try and replicate the results in this section.
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The term constant-maturity, is found throughout the literature when sourc-
ing information regarding the historical estimation of volatilities (or correla-
tions) within the LMM framework. This is due to the model assumptions made
regarding the underlying variables and should not be confused with market ob-
servable constant time-to-maturities (Brigo and Mercurio [11]).

Before we can proceed to the calculation of historical volatilities, we �rst
need to calculate the constant maturity forward rates. Given the de�nition of
the LMM, we need to obtain historical data of rates that start out as a speci�c
forward rate and approach the 3M JIBAR rate as it approaches maturity (or
reset time). This is needed, since the pricing of an option will need to re�ect
such behaviour as opposed to the behaviour of constant time-to-maturity for-
ward rates observable in the market (in order to accurately re�ect the cost of
hedging). The following procedure was followed:

� Set the forward rate under consideration equal to the 3M JIBAR rate
for t equal to today

� For each subsequent day in the historical data set, calculate this 3-month
rate as we move away from today

� Repeat this process until the start of the respective forward rates are
reached, i.e. 91 days for a 3× 6 FRA, 182 days for a 6× 9 FRA etc.

� Calculate the log returns of the rates obtained in the previous steps

� Calculate the volatilities of these returns (see Section 6.5) and scale these
to annual volatilities through using the factor

√
252 (assuming 252 work-

ing days in a year) as proposed by Hull [32]

� Repeat above procedure for di�erent historical starting points in order
to get a feel of the distribution of calculated volatilities

There are a number of calculations involved in above procedure. These will be
brie�y described in this section.

The bootstrapping procedure described in Section 8.2, yielded spot rates
with maturities (stated in year fractions) of 0.25, 0.5, . . . , 10. This immediately
poses a problem for calculating forward rates as we start moving away from
today. This is due to the fact that the rate with maturity 3M from today,
is a forward rate as we start to move away from today. Hence, we need to
interpolate spot rates between the rates obtained through the bootstrapping
procedure. This was done through using linear interpolation and the introduc-
tion of an overnight point to anchor the interpolations at t = 0 (actually an
1-day point, however assumed to be 0-day in order to simplify calculations).
This rate is observable in the market and was taken from the same set of trader
inputs.
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In order to illustrate this procedure, let us consider the calculation of the
rates used in the volatility estimation of the 3×6 forward rate. The spot rates
obtained from the bootstrapping procedure (simple compounding) as well as
the overnight point (assumed to be 0-day), are presented in Table 8.10.

Spot Rate Tenor
0 0.25 0.5

2009/12/31 0.06659 0.07229 0.07224
2009/12/30 0.06690 0.07229 0.07224

...
...

...
...

2009/08/21 0.06662 0.07121 0.07016

Table 8.10: An extract of the South African spot rate data used in the historical
calculation of a constant maturity 3× 6 forward rate.

The forward rates Forw Rate(0). . . Forw Rate(91), are then calculated as illus-
trated below.

Forw Rate(0) = Spot Rate(0.25)

= 0.07229.

Next, we need to calculate the rate over the exact same time period, one day
into the history. In order to do this we need to interpolate two spot rates that
will be used in the calculation of the forward rate with expiry 0.25 years from
2009/12/31. This can be obtained as follows at t =2009/12/30.

Spot Rate(0+1d) = Spot Rate(0)

+ (Spot Rate(0.25)− Spot Rate(0))×
1

365

0.25

= 0.06690 + (0.07229− 0.06690)×
1

365

0.25
= 0.06696.

Similarly, we can calculate Spot Rate(0.25+1d) as

Spot Rate(0.25+1d) = Spot Rate(0.25)

+ (Spot Rate(0.5)− Spot Rate(0.25))×
1

365

0.25

= 0.07229 + (0.07224− 0.07229)×
1

365

0.25
= 0.07229.
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From these rates we can calculate the next forward rate in our vector as

Forw Rate(1) =

[
1 + Spot Rate(0.25+1d)× (0.25 + 1

365)
1 + Spot Rate(0+1d)× (0 + 1

365)
− 1

]
× 1

0.25

=

[
1 + 0.07229× (0.25 + 1

365)
1 + 0.06696× (0 + 1

365)
− 1

]
× 1

0.25

= 0.07233.

Repeating above procedure, it is evident that the calculated forwards should
approach the 3× 6 forward rate at 2009/08/21. These forward rates are pre-
sented in the table below.

Day Rate Day Rate Day Rate

2009/12/31 0.07229 2009/11/16 0.07166 2009/10/02 0.07083
2009/12/30 0.07233 2009/11/13 0.07189 2009/10/01 0.07092
2009/12/29 0.07238 2009/11/12 0.07196 2009/09/30 0.07095
2009/12/28 0.07242 2009/11/11 0.07186 2009/09/29 0.07070
2009/12/24 0.07247 2009/11/10 0.07193 2009/09/28 0.07073
2009/12/23 0.07251 2009/11/09 0.07186 2009/09/25 0.07070
2009/12/22 0.07255 2009/11/06 0.07199 2009/09/23 0.07014
2009/12/21 0.07258 2009/11/05 0.07244 2009/09/22 0.06999
2009/12/18 0.07263 2009/11/04 0.07245 2009/09/21 0.06905
2009/12/17 0.07266 2009/11/03 0.07247 2009/09/18 0.06909
2009/12/15 0.07271 2009/11/02 0.07259 2009/09/17 0.06901
2009/12/14 0.07273 2009/10/30 0.07287 2009/09/16 0.06932
2009/12/11 0.07277 2009/10/29 0.07319 2009/09/15 0.06923
2009/12/10 0.07278 2009/10/28 0.07360 2009/09/14 0.06926
2009/12/09 0.07281 2009/10/27 0.07366 2009/09/11 0.06927
2009/12/08 0.07283 2009/10/26 0.07372 2009/09/10 0.06925
2009/12/07 0.07285 2009/10/23 0.07315 2009/09/09 0.06898
2009/12/04 0.07289 2009/10/22 0.07289 2009/09/08 0.06898
2009/12/03 0.07284 2009/10/21 0.07234 2009/09/07 0.06907
2009/12/02 0.07286 2009/10/20 0.07228 2009/09/04 0.06925
2009/12/01 0.07284 2009/10/19 0.07217 2009/09/03 0.06942
2009/11/30 0.07284 2009/10/16 0.07206 2009/09/02 0.06969
2009/11/27 0.07284 2009/10/15 0.07204 2009/09/01 0.06972
2009/11/26 0.07238 2009/10/14 0.07200 2009/08/31 0.06939
2009/11/25 0.07225 2009/10/13 0.07184 2009/08/28 0.06896
2009/11/24 0.07200 2009/10/12 0.07186 2009/08/27 0.06868
2009/11/23 0.07203 2009/10/09 0.07194 2009/08/26 0.06849
2009/11/20 0.07210 2009/10/08 0.07144 2009/08/25 0.06821
2009/11/19 0.07206 2009/10/07 0.07149 2009/08/24 0.06802
2009/11/18 0.07203 2009/10/06 0.07098 2009/08/21 0.06792
2009/11/17 0.07198 2009/10/05 0.07086

Table 8.11: Historical evolution of a constant maturity 3 × 6 forward rate in the
South African market.
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The data in Table 8.11 is graphically presented in Figure 8.19 below. From
this graph we can see a clear decrease in volatility as we approach the more
deterministic 3-month JIBAR rate (left-hand side of graph). This is in contrast
with the model assumption of constant volatilities.

Figure 8.19: Historical evolution of a constant maturity 3 × 6 forward rate in the
South African market.

Calculating the volatility of the log of returns of above rates will yield a
realized (actual) volatility for the latest 3 × 6 forward rate. Note, however,
that these volatilities only provide us a history of realized volatilities of cer-
tain forward rates and may be di�erent from market expectations or implied
volatilities. One point clearly visible in above calculation, is that we are esti-
mating the volatility of a forward rate starting today and expiring 3-months
from today with a volatility of a rate starting 3-months ago and expiring today.
This indicates that although we have an indication of the realized volatilities
for a certain 3-month forward rate, our volatility estimation is more weighted
towards today's 3-month JIBAR rate than towards today's 3×6 forward rate.

Irrespective of above arguments it is important to analyze historical real-
ized volatilities and how these compare with the market or implied volatilities.

The procedure discussed in this section was applied to 10 forward rates,
ranging from 3× 6 to 30× 33, and across 300 historical days. The calculation
was capped at 9 forward rates in order to allow the inclusion of more historical
days (which are necessary to get a feel for the distribution of the volatilities).
The results of this analysis are presented in Figures 8.20 - 8.21 below.

From Figure 8.20 we can draw some relationships between the market im-
plied and historical volatilities. Note, for example, the clearly visible �humped�
shape of the term structure and how the peak of the volatilities approach
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Figure 8.20: Historical implied ATM caplet volatilities calculated from boot-
strapped forward rates, with the �rst historical date towards the reader.

Figure 8.21: Historical implied ATM caplet volatilities calculated from boot-
strapped forward rates, with the last historical date towards the reader.

shorter tenors as we move into a more volatile period. Furthermore, there
is a clear change in the level of volatilities as we move through the di�erent
historical days. The peak in volatilities for 2009/12/31 however appears to
be in the 1Y region vs. 2Y for the market obtained volatilities. This di�er-
ence can partly be due to the lag in data used for this calculation (peak in
implied volatilities where observable in shorter tenors up until 3-months prior
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to 2009/12/31).
Figure 8.21 was obtained through rotating Figure 8.20 by 180 degrees.

Notice the slightly increased volatilities at the front end of the graph. This
type of behaviour is unexpected since we always expected either a �humped�
or decreasing shape. Looking at the actual data, it appears as though this
type of behaviour starts on 2009/02/05. Comparing this with Table 8.2, we
can see that this is just after the series of 100bp cuts in the Repo rate.

Following above arguments and the ease of obtaining implied volatilities
from the market, it is always advisable to rather use the latter in the pricing
of options. The study presented in this section does however con�rm some of
the properties observable in implied volatilities. Furthermore, these volatilities
provide more insight regarding the actual riskiness associated with each of the
forward rates.

8.5 Historical Correlations

We will now move on to consider the calculation of historical correlations
between di�erent forward rates. Similar to the previous section we need to
base our calculations on constant maturity forward rates. The calculation
method used in this section is a slight variation from the method used in the
previous section. The procedure followed is explained below.

� Set the forward rates under consideration equal to the rates that these
variables will approach as we reach the �rst reset date (i.e. the reset date
of the forward with the shortest expiry date). For example, if we assume
that we start at t equal to today and we want to calculate the realized
correlation between the 3× 6 and 6× 9 forward rates, then we will need
to set these variables equal to the 3M JIBAR and 3× 6 rate for t equal
to today.

� For each subsequent day in the historical data set, calculate these forward
rates as we move away from today

� Repeat this process until the start of the respective forward rates are
reached (note that these will all start on the same day). This will equate
to 91 days if the �rst reset date equates to 3-months from inception, 182
days if 6-months from inception etc.

� Calculate the log returns of the rates obtained in the previous steps

� Calculate the correlations between these returns (see Section 6.5)

� Repeat above procedure for di�erent historical starting points

There are some issues regarding the estimation of historical correlations that
we need to consider before moving on to the actual results. Firstly, Rebonato
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[47] pointed out that market segmentation might create some noise within
the correlation estimates. This is due to the fact that we are using FRA and
JIBAR rates to construct the short end of the curve while using par swap rates
to construct the longer end. Rebonato [47] mentions that there are typically
di�erent market participants in these markets which may result in di�erent
interest rate behaviours.

Secondly, we used linear interpolation in our bootstrapping procedure. It
was illustrated in Figures 8.14 and 8.15 that this can have a signi�cant impact
on the smoothness of forward rates. Hence, we can expect this to result in some
noise as we move into the swap space (short term forwards were bootstrapped
exactly without the use of interpolation - ignoring the calculation of historical
constant maturity forward rates).

Thirdly, we need to decide on an adequate historical period used in the
calculation process. The assumption made in this section was that we will set
this period equal to the time to expiry of the shortest forward rate (did not
make sense to use less data and cannot move past the start of the �rst forward).
This period can then be extended through using longer dated forward rates.

In order to illustrate the results, let us �rstly consider the correlations be-
tween the short term rates (as with the historical volatility calculations). This
then eliminates di�culties obtained with market segmentation (ignoring the
3M JIBAR point) as well as interpolation within the bootstrapping procedure.
The results are presented in the table below.

3M-6M 6M-9M 9M-12M 12M-15M 15M-18M 18M-21M 21M-24M
3M-6M 1.0000 0.7008 0.6411 0.5489 0.5148 0.5184 0.5202
6M-9M 0.7008 1.0000 0.9435 0.8722 0.8290 0.8189 0.8116
9M-12M 0.6411 0.9435 1.0000 0.9691 0.9364 0.9271 0.9145
12M-15M 0.5489 0.8722 0.9691 1.0000 0.9868 0.9787 0.9704
15M-18M 0.5148 0.8290 0.9364 0.9868 1.0000 0.9965 0.9895
18M-21M 0.5184 0.8189 0.9271 0.9787 0.9965 1.0000 0.9944
21M-24M 0.5202 0.8116 0.9145 0.9704 0.9895 0.9944 1.0000

Table 8.12: Forward rate correlations between short term forward rates for business
date 2009/12/31. These were obtained using historically calculated constant maturity
forwards from the South African market.

From Table 8.12 it is clearly visible that the obtained correlation matrix ad-
heres to most of the requirements stipulated in Sections 6.2.1-6.2.2. In partic-
ular note that all correlations are positive, correlations decrease as we move
from the diagonal downwards (one or two exceptions, disappears when using
longer history) and that longer term rates are more correlated than shorter
term rates. This matrix is presented in Figure 8.22 below.

Notice from the �gure the smoothness of the correlation surface. This is
in line with the comments made at the start of the section.
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Figure 8.22: Forward rate correlations between short term forward rates for business
date 2009/12/31. These were obtained using historically calculated constant maturity
forwards from the South African market.

Moving the correlation calculations to start just after the series of 100bp
cuts in the Repo rate (as discussed in the previous section), resulted in sig-
ni�cantly higher correlations for the �rst two forward rates. This once again
illustrates that the shorter term forwards are much more sensitive to interest
rate decisions than the longer term rates.

Next, let us consider extending this calculation until the �rst swap rate
(i.e. 3Y swap). The resultant correlation surface is presented in Figure 8.23
below.

The introduction of the 3Y IRS clearly added some noise to the surface.
As explained earlier, this can be due to both market segmentation as well as
linear interpolation during the bootstrapping routine. Similar to the previous
results, the matrix did display most of the properties in Sections 6.2.1-6.2.2.
Furthermore, extending the history used from 91 to 365 days, did reduce some
of the noise.

Finally, calculating the forward rates over a spectrum of 30 forward rates
resulted in the Figure 8.24.

This �gure was obtained using 365 days of history for each of the forward
rates. Also, note that the correlation surface includes all forward rates from
1Y out to 8.5 years. This surface does exhibit more noise than the others.

Finally, given the di�culties associated with the estimation of an exogenous
correlation surface, we will �t a parametric form to this matrix before we
attempt any calibration procedures.
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Figure 8.23: Forward rate correlations between forward rates out until 3Y . These
were obtained using historically calculated constant maturity forwards from the South
African market. Results presented for business date 2009/12/31.

Figure 8.24: Forward rate correlations between some of the longer term forward
rates. These were obtained using historically calculated constant maturity forwards
from the South African market. Results presented for business date 2009/12/31.

 
 
 



Chapter 9

Volatility Calibration

This chapter will mainly focus on the calibration of volatility parameters to
market data. Similar to the speci�cations provided in Chapter 5, we will di-
vide this chapter into two main categories, i.e. parametric and non-parametric
speci�cations.

The non-parametric calibration will mainly follow the work by Brigo and
Mercurio [11] and Gatarek, Bachert and Maksymiuk [21] and will illustrate the
ease at which we can calibrate this type of speci�cation to a given set of market
data. This ease of calibration may however result in �nancially implausible
results and hence should be applied with care. Irrespective of the shortcomings
of this approach, it is useful to illustrate some of the possible issues that may
be encountered while calibrating the model.

Rebonato [47] in contrast favours parametric calibration techniques. This
is mainly motivated by the possibility to enforce certain �nancial properties
on the resulting volatilities and hence restricts the degrees of freedom inherent
in the process.

The above mentioned techniques will be applied to both the European
(as given by Gatarek, Bachert and Maksymiuk [21]) as well as South African
market and the results will be presented.

9.1 Non-Parametric Volatility Calibration

We will �rstly consider the non-parametric calibration of volatilities as given
in the work by Brigo and Mercurio [11] and Gatarek, Bachert and Maksymiuk
[21]. Using Table 5.1 we can re-write Equation (4.1.5) as

σ2
Ti−1Ti.caplet

=
1

Ti−1

∫ Ti−1

0
σ2
Ti−1Ti

(t)dt (9.1.1)

=
1

Ti−1

i∑
j=1

αTj−2Tj−1σ
2
ij . (9.1.2)
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This is the most general volatility speci�cation of Tables 5.1-5.5 and will be
used to derive similar results for the rest of the volatility speci�cations.

9.1.1 Volatilities Depending on Time to Maturity

Let us now consider volatilities that are dependent on the time to maturity of
the forward rate under consideration. Using Table 5.2, we can write Equation
(9.1.2) as follows

σ2
Ti−1Ti.caplet

=
1

Ti−1

i∑
j=1

αTj−2Tj−1η
2
i−j+1. (9.1.3)

This equation allows for a very simplistic calibration algorithm. In order to
illustrate this, let us consider a couple of di�erent calibration scenarios.

Firstly, let us consider the calibration to the shortest dated caplet, i.e. set
i = 1. Applying Equation (9.1.3), we obtain

σ2
T0T1.caplet

=
1
T0
α0T0η

2
1 (9.1.4)

and hence we have that

η2
1 =

1
α0T0

T0σ
2
T0T1.caplet

. (9.1.5)

Next, let us consider the calibration to the second caplet quote, i.e. set
i = 2. Applying Equation (9.1.3), we obtain

σ2
T1T2.caplet

=
1
T1

(
α0T0η

2
2 + αT0T1η

2
1

)
(9.1.6)

and hence we have that

η2
2 =

1
α0T0

(
T1σ

2
T1T2.caplet

− αT0T1η
2
1

)
. (9.1.7)

Extending the results to the rest of the caplets follow a similar procedure
and hence not presented. The ease of calibration for this particular model is
impressive. Note however that the resulting volatility from Equation (9.1.7)
can be imaginary if

T1σ
2
T1T2.caplet

<
αT0T1

α0T0

T0σ
2
T0T1.caplet

, (9.1.8)

which, assuming equally spaced time intervals, equates to requiring that the
quantity Ti−1σ

2
Ti−1Ti.caplet

is a strictly increasing function of i. This ties back
to comments made in Section 5.2, i.e. we need this condition to hold in order
to �t a time homogeneous model to a given set of market data.
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9.1.2 Volatilities Depending on Maturity

We will now consider the case where the instantaneous volatilities are assumed
to be dependent on the time to maturity of the considered forward rate. Using
Table 5.3, we can write Equation (9.1.2) as follows

σ2
Ti−1Ti.caplet

= s2i . (9.1.9)

This speci�cation ensures an exact �t to any set of caplet volatilities, which is in
contrast with the speci�cation considered in the previous section. Furthermore,
as pointed out by Brigo and Mercurio [11], we have that this is not a time-
homogeneous volatility speci�cation (except for �at term structures) given that
the term structure changes following each reset.

This concludes the piecewise constant structures that will be considered in
this chapter. The next chapter will extend above discussions to the separable
cases presented by Tables 5.4 and 5.5. These structures will be used for the
simultaneous calibration to cap and swaption prices given the extra degrees of
freedom.

9.2 Parametric Volatility Calibration

This section will consider some of the parametric volatility calibrations as
presented in the text by Rebonato [47]. As mentioned earlier, this method
is preferred over its non-parametric counterparts mainly due to the ability to
enforce certain �nancial properties on the resulting model implied volatilities.

The most important property that we will enforce during the calibration
process is the principle of time-homogeneous term structures, i.e. we expect
the term structure of volatilities at any future date to look the same as the
structure implied by the market today (this is time-homogeneity in its strictest
form, if we relax this condition slightly then we would require that certain key
properties are at least preserved at future time instances).

Note that we mentioned in Section 5.2 that we can obtain a time-homogeneous
function h(Tk−1 − t) that will �t a given market term structure exactly given
Tiσ

2
TiTi+1.caplet

is a strictly increasing function of Ti. Rebonato [47] however
makes the very important observation that, although there exist such a func-
tion h, this will not hold for all functions h. Hence, if we specify h by Equation
(5.4.8), then there exists a possibility that the we will not be able to price back
exactly to all the given inputs. In order to price back exactly, we will need
to introduce an additional component that is dependent on the forward rate
under consideration.

Although time-homogeneity is a very desirable property (mainly due to
di�culty for trader to express views on future term structures), there might be
cases where a trader has a strong view that the shape of the term structure will
change at a certain future instance. In order to incorporate this possible change
in our deterministic volatility setup, Rebonato [47] suggests a simultaneous
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calibration to both term structures (current as well as future expected term
structure).

The various di�erent parametric speci�cations were de�ned in Chapter 5.
We will however only consider some of these in order to illustrate some of the
key calibrating principles.

9.2.1 Separable Volatility Speci�cation

The �rst speci�cation was introduced by Rebonato [47] in order to allow for
exact �tting to given market caplet prices while ensuring a time homogeneous
evolution of the term structure. This speci�cation is given by Equation (5.4.5)
and is presented below

σTk−1Tk
(t) = h(Tk−1 − t)f(Tk−1).

The calibration algorithm �rstly �ts the time homogeneous part, i.e. the
function h, as closely as possible to the given term structure. This will ensure
that most of the explanatory burden is placed on this component. In order to
achieve this, we need solve for the set of parameters of the function h that will
result in a minimum for the objective function

χ2 =
n∑
j=1

η2
j , (9.2.1)

where

η2
j =

[
σ2
Tj−1Tj .caplet

Tj−1 −
∫ Tj−1

0
h(Tj−1 − t)2 dt

]2

. (9.2.2)

The remainder of the calibration will then consist of determining the for-
ward rate speci�c components, i.e. the function f , that will ensure the exact
pricing of the input caplet prices. Given this function is independent of time,
we know that we can move it outside the integral when integrating over time.
Hence, we have from Equations (4.1.5) and (5.4.5)

f(Tj−1)2 =
σ2
Tj−1Tj .caplet

Tj−1∫ Tj−1

0 h(Tj−1 − t)2 dt
. (9.2.3)

Note that the second part of the calibration algorithm is necessary even if
Tiσ

2
TiTi+1.caplet

is a strictly increasing function of Ti (due to function parame-
terization as discussed above). Furthermore, this will allow the exact pricing
of caplet prices for the cases in which Tiσ

2
TiTi+1.caplet

is not a strictly increasing
function of Ti. Rebonato [47] points out that although the model recovers
the caplet prices exactly, there is a risk that the resulting function f might
distort the time homogeneous behaviour obtained in the previous step. This
then implies that f should be as close to unity as possible.
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If the function obtained in the second step is not constantly close to unity,
then the procedure failed to calibrate the proposed time homogeneous be-
haviour to the set of market data.

9.2.2 Multi-Time Dependence Volatility Speci�cation

It was mentioned in the previous section that there might be cases in which
the forward rate volatility component can be signi�cantly di�erent from unity.
This then implies a rejection in the time homogeneous assumption given the
two components are working against each other. There is, however, a way in
which we can preserve the time homogeneous property while recovering the
exact caplet prices (or at least to a better degree than the previous approach).
This improvement is obtained through the introduction of a time dependent
function to the volatility speci�cation. The parametric form is given by Equa-
tion (5.4.7) and presented below

σTk−1Tk
(t) = h(Tk−1 − t)g(t)f(Tk−1).

Similar to the process described in the previous section, Rebonato [47] pro-
posed a three-step procedure to calibrate the speci�cation presented above.

The �rst step is to �t the time homogeneous component. This is given by
Equations (9.2.1) and (9.2.2). The next step consists of explaining as much as
possible of the remaining di�erences using the time dependent function g(t).
In order to achieve this, we need to solve for the set of parameters of the
function g that will result in a minimum for the objective function

χ2 =
n∑
j=1

η2
j , (9.2.4)

where

η2
j =

[
σ2
Tj−1Tj .caplet

Tj−1 −
∫ Tj−1

0
(h(Tj−1 − t)g(t))2 dt

]2

. (9.2.5)

The remainder of the calibration will then consist of determining the forward
rate speci�c components, i.e. the function f , that will ensure the exact pricing
of the input caplet prices. Following the same arguments, we can obtain

f(Tj−1)2 =
σ2
Tj−1Tj .caplet

Tj−1∫ Tj−1

0 (h(Tj−1 − t)g(t))2 dt
. (9.2.6)

Although this procedure should lead to a smoother function f , we still need
to check this property in the calibration process in order to ensure that a time
homogeneity term structure is enforced.
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9.3 European Market Results

This section will consider the application of above techniques to the European
market data set. Similar arguments and results were presented by Gatarek,
Bachert and Maksymiuk [21]. These arguments will then be extended to the
South African market in the following section.

9.3.1 Volatilities Depending on Time to Maturity

We will start the discussion with the �rst non-parametric volatility speci�ca-
tion, i.e. the case where we assume that the volatilities are only dependent on
time to maturity. The examples below will illustrate the ease with which we
can obtain the necessary model calibration to the data presented in Table 7.5
(assuming equal time intervals of 0.25).

Example 9.3.1
Let us consider the calculation of the �rst parameter of Table 5.2. The formula
for this parameter was derived in Section 9.1.1 and is given by Equation (9.1.5).
Applying this to the market data presented in Table 7.5 results in the following

η1 = sqrt

(
1

α0T3M

T3Mσ
2
T3MT6M .caplet

)
= σT3MT6M .caplet

= 0.1641.

Example 9.3.2
Next, let us consider the calculation of the instantaneous volatility η2. Using
Equation (9.1.7) and Table 7.5, we can write

η2 = sqrt

(
1

α0T3M

(
T6Mσ

2
T6MT9M .caplet − αT3MT6M

η2
1

))
= sqrt

(
1

0.25
(
0.5× 0.16412 − 0.25× 0.16412

))
= 0.1641.

Example 9.3.3
Similarly, we can calculate the instantaneous volatility η3 as illustrated below

η3 = sqrt

(
1

α0T3M

(
T9Mσ

2
T9MT1Y .caplet − αT3MT6M

η2
2 − αT6MT9M

η2
1

))
= sqrt

(
1

0.25
(
0.5× 0.16412 − 0.25× 0.16412

))
= 0.1641.
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Given the simplicity of the calculations, there is no need to present more
examples relating to the calculation of the parameters of Table 5.2. Extending
this approach to the rest of the parameters consists of determining ηi through
the use of Equation (9.1.3) and the given set of market data.

The more important aspect to consider in this section is the behaviour
of the calculated forward rate volatilities. Given the variance plot in Figure
7.6, we know from previous discussions that it might not be possible to en-
force the time-homogeneous volatility structure onto the given set of market
data. Furthermore, from this �gure it is evident that this type of unfavourable
behaviour will start around the 2Y area.

The full set of results is given in the Table 9.1 below (same format as
Table 5.2). Note the errors returned by the process from time 2Y . This is

(0, T3M ] (T3M , T6M ] (T6M , T9M ] . . . (T19.75Y , T20Y ]
LT3MT6M

(t) 0.1641 Dead Dead . . . Dead

LT6MT9M
(t) 0.1641 0.1641 Dead . . . Dead

LT9MT1Y
(t) 0.1641 0.1641 0.1641 . . . Dead

LT1Y T1.25Y
(t) 0.2856 0.1641 0.1641 . . . Dead

LT1.25Y T1.5Y
(t) 0.2778 0.2856 0.1641 . . . Dead

LT1.5Y T1.75Y
(t) 0.3101 0.2778 0.2856 . . . Dead

LT1.75Y T2Y
(t) 0.3458 0.3101 0.2778 . . . Dead

LT2Y T2.25Y
(t) error! 0.3458 0.3101 . . . Dead

... . . . . . . . . . . . . . . .

LT19.75Y T20Y
(t) error! error! error! . . . 0.1641

Table 9.1: Piecewise constant volatilities obtained from European market data when
instantaneous volatilities depend on the time-to-maturity of the forward rate. Results
presented for business date 2005/01/21.

in line with the comments made earlier and hence illustrates the need for the
variance function to be strictly increasing. It is important to mention some
properties regarding the evolution of the term structure of volatilities under
this speci�cation. From Table 9.1 and De�nition 5.1 it is evident that, ignoring
the shortening of the tail, the term structure evolves in a time-homogeneous
manner (Brigo and Mercurio [11]). From a �nancial point of view, it can be
argued that this is more appealing than a deformation at the short-end of the
structure.

9.3.2 Volatilities Depending on Maturity

The calibration of volatilities under this speci�cation was discussed in Section
9.1.2. Furthermore, it was shown that the entire calibration process is given
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by Equation (9.1.9). This then implies that any term structure can be �tted
exactly to any given set of market data.

The results from calibrating the model to the market data given in Table
7.5 is presented below (same format as Table 5.3). Brigo and Mercurio [11]

(0, T3M ] (T3M , T6M ] (T6M , T9M ] . . . (T19.75Y , T20Y ]
LT3MT6M

(t) 0.1641 Dead Dead . . . Dead

LT6MT9M
(t) 0.1641 0.1641 Dead . . . Dead

LT9MT1Y
(t) 0.1641 0.1641 0.1641 . . . Dead

LT1Y T1.25Y
(t) 0.2015 0.2015 0.2015 . . . Dead

LT1.25Y T1.5Y
(t) 0.2189 0.2189 0.2189 . . . Dead

LT1.5Y T1.75Y
(t) 0.2365 0.2365 0.2365 . . . Dead

LT1.75Y T2Y
(t) 0.2550 0.2550 0.2550 . . . Dead

LT2Y T2.25Y
(t) 0.2213 0.2213 0.2213 . . . Dead

... . . . . . . . . . . . . . . .

LT19.75Y T20Y
(t) 0.1133 0.1133 0.1133 . . . 0.1133

Table 9.2: Piecewise constant volatilities obtained from European market data when
instantaneous volatilities depend on the maturity of the forward rate. Results pre-
sented for business date 2005/01/21.

mentions that this speci�cation is less desirable given that the head of the
term structure falls away as we move through time. Hence, even though we
are guaranteed of an exact �t, we have that the disadvantage associated with
the evolution of the term structure far outweighs the ease of calibration.

9.3.3 Separable Volatility Speci�cation

The previous two volatility speci�cations can be classi�ed as piecewise constant
non-parametric volatility speci�cations. We will now move on to parametric
speci�cations as proposed by Rebonato [47]. The calibration strategy that will
be used was described in detail in Section 9.2.1.

In order to illustrate the calibration process, we will consider the results
obtained at each of the di�erent steps. The �rst step of the calibration consists
of minimizing Equation (9.2.2). This then immediately requires the modeler
to choose a speci�c parametric form for the time homogeneous function h.
We will use the parametric form given by Equation (5.4.8) (recommended by
Rebonato [47]). Details regarding this calculation is brie�y discussed below.

The minimization of this function was performed in Matlab using the func-
tion lsqnonlin (function for nonlinear least-squares problems). In order to
ensure a �more� global solution, the process employed 50 di�erent starting
points generated randomly from a uniform distribution. The reader is referred
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to texts by Rardin [46] and Snyman [55] for more information regarding dif-
ferent optimization routines and the reason for using multiple starting points.
Integration was performed numerically using the Matlab de�ned function quad
(see text by Burden and Faires [14] for more information regarding numerical
integration). This was used, irrespective of the available analytical solution,
in order to allow more complex volatility speci�cations. The Matlab code for
this calculation is provided in Section C.1.1.1.

Let us now consider the results obtained from this �rst step of the cali-
bration process. The reported minimum of the objective function is 0.001596.
The parameters of the function h resulting in this minimum is given as

a = −0.047580,
b = 0.471041,
c = 1.044462,
d = 0.112314.

In order to illustrate the accuracy of this �rst �t, we will consider the graph
of the model implied volatility term structure against the market input term
structure. This is presented in Figure 9.1 below.

Figure 9.1: Term structure of volatilities obtained through �tting Rebonato's time
homogeneous function to the set of European ATM caplet volatilities. Results pre-
sented for business date 2005/01/21.

The results presented in this section are slightly better than those obtained
by Gatarek, Bachert and Maksymiuk [21]. This di�erence is expected to be
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due to the year fractions used in their algorithm. The authors started these
at 0.5 as opposed to the �rst reset time, i.e. 0.25.

Note from above the complexity associated with the �t. It is impossible
to get an exact �t to the caplet term structure given the erratic volatility
behaviour and the smoothness of function h. In order to achieve this we will
need to introduce forward rate speci�c components. These are de�ned as the
function f in Equation (9.2.3) and are presented in the �gure below.

Figure 9.2: Implied forward rate speci�c components following the �tting of Re-
bonato's time homogeneous function to the set of European ATM caplet volatilities.
Results presented for business date 2005/01/21.

Apart from the �rst scaling factor in Figure 9.2, the factors appear to
be reasonably close to one (comparing to results obtained by Rebonato [47]
in similar studies). It is also evident from the previous two �gures that the
biggest scaling factors are needed in the short end. This is in line with the
erratic caplet behaviour in this area.

Next, let us consider the evolution of term structure over time as implied
by the model. This is important given the fact that this implies future hedg-
ing costs (and consequently the price of the derivative under consideration).
Hence, it is essential that this evolution should be in line with trader expecta-
tions (given the market incompleteness).

In order to obtain a graph re�ecting the evolution of the term structure
of volatilities, it was assumed that the scaling factors in Figure 9.2 tend to
1 as maturities increase. Furthermore, the term structure of volatilities was
calculated at each of the di�erent reset times, i.e. in fractions of 0.25. This
is presented in Figure 9.3 below (the Matlab code used for this calculation is
presented in Section C.1.1.1)
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Figure 9.3: Model implied term structure evolution following the two step �tting
methodology outlined in this section. Results presented for the European market and
were obtained through calibrating to the market term structure of 2005/01/21.

Note from above the evolution of the term structure as we move through
time. In its strictest sense, it can probably be argued that there is some change
in the term structure as time progresses. These changes are, however, short
lived and mainly concentrated in the short term (in line with what predicted by
scaling factors in Figure 9.2). There is however a much stronger case for time
homogeneity. This can for example be seen by noting that the general shape
of the term structure is obtained across the bulk of the di�erent time steps
(even in short-term we maintain a humped shape). This con�rms the success
the calibration methodology in ensuring a time homogeneous evolution while
pricing back exactly to the given set of caplet prices. The obtained results are
very promising given the complexities associated with the input volatilities,
i.e. variances not strictly increasing.

9.3.4 Multi-Time Dependence Volatility Speci�cation

We will now consider the calibration using the three-step approach as proposed
by Rebonato [47]. The �rst step of this process consist of the �tting of a time
homogeneous function to the set of caplet volatilities. This process was already
performed in the previous section and the results presented. According to the
arguments presented in Section 9.2.2, we will need to �x the parameters of the
time homogeneous function at these values.

The next step is then to add a time dependent component in order to ex-
plain as much as possible of the remaining di�erences. This was done through
specifying the function g according to (5.4.12) with n set equal to 4.
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Note however that due to the oscillating nature of the function g, we were
forced to change the numerical integration function to quadgk. Equation (9.2.5)
was consequently minimized using the code provided in Section C.1.1.2. Sim-
ilarly to the previous section, the algorithm employed multiple starting points
in order to get closer to a global minimum. This was set to 100, although this
appeared to be over conservative.

The addition of a time dependent component resulted in a better �t be-
tween market and implied volatilities. The minimum of the objective function
consequently reduced further to 0.001231. The parameters of the function g
resulting in this minimum is given as

ε1 = −1.283060,
ε2 = 0.428639,
ε3 = −0.364465,
ε4 = −0.254697,
ε5 = 1.715605,
ε6 = −0.031785.

In order to illustrate the accuracy of the �t, we will once again consider graphs
of the di�erent results. The �rst �gure displays the model implied volatilities
against the market input term structure. This is presented in Figure 9.4 below.

Figure 9.4: Term structure of volatilities obtained when adding an additional time
dependent function to the instantaneous volatility speci�cation. Results presented
for the European market and were obtained through calibrating to the market term
structure of 2005/01/21.
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The results presented in the �gure above illustrates a general improvement
in the �t of the volatilities. This came at the price of a less accurate ap-
proximation for the �rst caplet volatility. Note however the oscillating nature
of the new speci�cation. From this it is clearly evident that the inclusion of
such a time dependent component can signi�cantly increase the accuracy of
the calibration. Although we paid a price in the very short end (will fall away
after �rst reset), it should be noted that the input volatilities are not that
well behaved. Comparing these volatilities with those used by Rebonato [47],
it is clear that these almost represent a worst case scenario. In practice it is
advisable to try and use smoother input volatilities for calibration purposes.

In order to achieve the exact pricing of market caplets, we will once again
need to introduce forward rate speci�c components. These are de�ned as the
function f in Equation (9.2.6) and are presented in the �gure below.

Figure 9.5: Implied forward rate speci�c components following the introduction of
a time dependent component into the instantaneous volatility speci�cation. Results
presented for the European market and were obtained through calibrating to the
market term structure of 2005/01/21.

The �gure above con�rm some of the previous comments, i.e. improvements
across most of the expiries and a signi�cant reduction in the accuracy at the
very short end. The implied term structure evolution is very similar to the
one given in Figure 9.3 and hence not presented again. This was expected
given the results displayed in the previous two �gures. Although not optimal,
this is mainly due to the signi�cant amount of noise experienced in the short
end of the term structure (this type of behaviour limits the explanatory power
of the additional parameters). The evolution of the term structure under
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this speci�cation will not be included in this section. This will however be
considered in the section relating to the South African market.

9.4 South African Market Results

This section will move on to consider the results obtained when similar cali-
bration algorithms are applied to the South African market. The calibration
process is however signi�cantly dependent on accurate market data. The pro-
cess of obtaining reasonable market data can essentially be classi�ed as a �eld
on its own (investment banks typically have entire teams to manage this pro-
cess). Some of the steps involved in such a process was discussed in Chapter
8.

9.4.1 Volatilities Depending on Time to Maturity

We will once again start the discussion with the �rst non-parametric volatility
speci�cation, i.e. the case where we assume that the volatilities are only depen-
dent on time to maturity. The required calibration can be obtained through
applying the techniques discussed in Section 9.1.1 to the set of market data
given in Table 8.3. The full set of results for the parameters of Table 5.2 is
given below.

Variable Value Variable Value Variable Value Variable Value

η1 0.1252 η11 0.1034 η21 0.1072 η31 0.0914
η2 0.1532 η12 0.1457 η22 0.1040 η32 0.1417
η3 0.1804 η13 0.1067 η23 0.0986 η33 0.0892
η4 0.1872 η14 0.0858 η24 0.1576 η34 0.0809
η5 0.1713 η15 0.0673 η25 0.1010 η35 0.0914
η6 0.1743 η16 0.1624 η26 0.0999 η36 0.1851
η7 0.1754 η17 0.0755 η27 0.0932 η37 0.0881
η8 0.2020 η18 0.0644 η28 0.1515 η38 0.0906
η9 0.1231 η19 0.0477 η29 0.0965 η39 0.0716
η10 0.1116 η20 0.1271 η30 0.0936 η40 0.1842

Table 9.3: Parameters of Table 5.2 as obtained from South African market data.
Results presented for business date 2009/12/31.

Above given results can then be summarized into a similar format as the
results given in Section 9.3.1. This is presented in Table 9.4 below.

One signi�cant di�erence between the results presented in this section vs.
those presented in Section 9.3.1 is the fact that all the parameters are well
de�ned (i.e. no square roots of negative values encountered). This is due to
the strictly increasing nature of the function Tiσ

2
TiTi+1.caplet

(concept explained
in Section 9.1.1). Within this speci�c example, we achieved exact re-pricing
of market caplets as well as a time homogeneous term structure of volatilities.

 
 
 



Chapter 9. Volatility Calibration 126

(0, T3M ] (T3M , T6M ] (T6M , T9M ] . . . (T10Y , T10.25Y ]
LT3MT6M

(t) 0.1252 Dead Dead . . . Dead

LT6MT9M
(t) 0.1532 0.1252 Dead . . . Dead

LT9MT1Y
(t) 0.1804 0.1532 0.1252 . . . Dead

LT1Y T1.25Y
(t) 0.1872 0.1804 0.1532 . . . Dead

LT1.25Y T1.5Y
(t) 0.1713 0.1872 0.1804 . . . Dead

LT1.5Y T1.75Y
(t) 0.1743 0.1713 0.1872 . . . Dead

LT1.75Y T2Y
(t) 0.1754 0.1743 0.1713 . . . Dead

LT2Y T2.25Y
(t) 0.2020 0.1754 0.1743 . . . Dead

... . . . . . . . . . . . . . . .

LT10Y T10.25Y
(t) 0.1842 0.0716 0.0906 . . . 0.1252

Table 9.4: Piecewise constant volatilities obtained from South African market data
when instantaneous volatilities depend on the time-to-maturity of the forward rate.
Results presented for business date 2009/12/31.

These results were however only achievable due to well behaved input
volatilities. This type of dependency poses a risk for practical implementa-
tions and hence renders the approach as unattractive.

The evolution of the term structure, under this speci�cation, is presented
in the �gure below

Figure 9.6: Model implied term structure evolution for piecewise constant volatilities
dependent on the time-to-maturity of a forward rate. Results presented for the South
African market and were obtained through calibrating to the market term structure
of 2009/12/31.

This �gure clearly illustrates the shortening of the tail of the term structure
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as we move through time. It was mentioned earlier that this is a far more
attractive property than when the head of the the term structure is a�ected
(discussed in next section).

Given the simplicity of the calibration techniques we were able to perform
the calculations in Excel. The Matlab code in Section C.1.2.1 illustrates the
calculation of the term structure as we move through time (the reader can also
reference this code to get the full set of results for techniques applied in this
section).

9.4.2 Volatilities Depending on Maturity

This is the speci�cation with the most straight forward calibration algorithm.
Furthermore, it was shown that this speci�cation always result in an exact �t to
the current term structure. The entire calibration process is given by Equation
(9.1.9). This process was discussed in Section 9.1.2 and results presented for
the European market in Section 9.3.2. We will now extend the application the
set of market data presented in Table 8.3.

The parameters can be read directly from Table 8.3, i.e. each row of Table
5.3 is given by the volatility of the associated forward rate. The results for
this calibration is thus given by the table below.

(0, T3M ] (T3M , T6M ] (T6M , T9M ] . . . (T10Y , T10.25Y ]
LT3MT6M

(t) 0.1252 Dead Dead . . . Dead

LT6MT9M
(t) 0.1399 0.1399 Dead . . . Dead

LT9MT1Y
(t) 0.1546 0.1546 0.1546 . . . Dead

LT1Y T1.25Y
(t) 0.1633 0.1633 0.1633 . . . Dead

LT1.25Y T1.5Y
(t) 0.1650 0.1650 0.1650 . . . Dead

LT1.5Y T1.75Y
(t) 0.1666 0.1666 0.1666 . . . Dead

LT1.75Y T2Y
(t) 0.1679 0.1679 0.1679 . . . Dead

LT2Y T2.25Y
(t) 0.1725 0.1725 0.1725 . . . Dead

... . . . . . . . . . . . . . . .

LT10Y T10.25Y
(t) 0.1268 0.1268 0.1268 . . . 0.1268

Table 9.5: Piecewise constant volatilities obtained from South African market data
when instantaneous volatilities depend on the maturity of the forward rate. Results
presented for business date 2009/12/31.

Irrespective of the ease at which we performed the calibration, we still have
one signi�cant shortcoming, i.e. the term structure does not evolve in a time
homogeneous manner. This can easily be seen through having a look at the
results presented in Table 9.5.

Notice, for instance, the change in the volatility of the nearest expiry for-
ward rate as we move through time. This clearly illustrates the deformation in
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the short end of the term structure. Hence, prices of interest rate derivatives
(dependent on dynamics) may not adequately take into account the humped
nature of the input volatilities (as this will clearly fall o� as we move through
time). The concepts discussed above are presented in Figure 9.7 below.

Figure 9.7: Model implied term structure evolution for piecewise constant volatil-
ities dependent on the maturity of a forward rate. Results presented for the South
African market and were obtained through calibrating to the market term structure
of 2009/12/31.

These two sections conclude the examples relating to non parametric spec-
i�cations.

9.4.3 Separable Volatility Speci�cation

Let us now turn our attention to the parametric volatility speci�cations as pro-
posed by Rebonato [47]. It was illustrated in section 9.3.3 how this technique
was applied to the European market. This section will consider the calibration
of this speci�cation to the South African market.

Similar to the European market we will discuss the process in di�erent
steps. The �rst step of this calibration procedure consists of �tting the time
homogeneous function 5.4.8 to the set of caplet volatilities given in Table 8.3.
This is equivalent to minimizing Equation (9.2.2) where h is the function de-
�ned above. Results were obtained with ease in the European market through
the use of a simple unconstrained minimization routine. Attempting the same
unconstrained minimization routine in the South African market however re-
sulted in mathematical as well as �nancial inconsistencies. This can largely be
explained by the noise inherent in the volatility data which is clearly visible
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in Figure 8.9. The inconsistencies as well as alternative solutions implemented
are brie�y discussed below.

One of the �rst problems encountered was the violation of some of the
constraints given by Equations (5.4.9)-(5.4.11). A nonlinear constrained min-
imization routine was then employed (used the Matlab function fmincon).

Although this resolved the issue, the solution was still not optimal from
a �nancial point of view. Rebonato [47] points out that the sum of the pa-
rameters a and d of function h should at least be approximately equal to the
volatility of the shortest maturity caplet. This is due to the fact that the func-
tion approaches the quantity a+d in the limit as time to maturity approaches
zero. As a consequence this value was limited at 0.08, for the purpose of the
example, however this should typically be determined by the trader.

Another important point to consider (as pointed out by Rebonato [47]),
is the location of the hump in forward rate volatilities (note referring here
to the actual forward rate volatilities and not Black volatilities). This was
limited to the 1y area. These assumptions can typically be avoided (as with
the European market) if the input volatilities are su�ciently smooth.

A �nal note on the �rst step is that the algorithm used the analytical for-
mula, as given by Rebonato [47], for integrating the square of the instantaneous
volatilities. This was used in order to speed up the required calculations. This
formula is presented in the equation below.

∫
σ2
Ti−1Ti

(t) dt =
1

4c3
(8ac2d exp[c(t− Ti)] + 4c3d2t

− 8bcd exp[c(t− Ti)](c(t− Ti)− 1)
+ exp[c(2t− 2Ti)]{2a2c2 + 2abc(1 + c(2Ti− 2t))
+ b2(1 + 2c2(t− Ti)2 + c(2Ti− 2t))}).

The Matlab code used for the calibration is included in Section C.1.2.2.
Similar to Section 9.3.3, the code made use of several randomly generated
starting points in an attempt to �nd a global minimum. Results obtained
through this calibration process are presented below.

The reported minimum of the objective function is 0.000320. This was
obtained at the following parameter values of the function h

a = −0.025783,
b = 0.279814,
c = 1.237841,
d = 0.105783.

Notice from above the following important points. Firstly, we have that
all of the constraints in Equations (5.4.9)-(5.4.11) are satis�ed. Next, we have
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that the value of h as time to maturity approaches 0 is given by

lim
(T−t)→0

h = a+ d

= 0.08.

Finally, it can easily be seen from Equation (5.4.8) that the maximum of h is
given at

location of max =
b− ca
cb

= 0.90.

In order to get a better feel of this we can consider a plot of the input
data vs. the model implied values. Given the �t was performed in the variance
space, we will use this graph in order to get an idea of the inherent residuals
(only considered volatility plots for the European market in order to try and
avoid repetition). This is presented in the �gure below.

Figure 9.8: Variances obtained through �tting Rebonato's time homogeneous func-
tion to the set of South African ATM caplet volatilities. Results presented for business
date 2009/12/31.

In statistics there are, however, a number of di�erent methods that can be
used to assist with this analysis. One alternative, would be to consider the
sum of squared errors. This was already presented and amounted to 0.000320.
Although useful, this can be a rather limited statistic as it does not provide
any detail regarding the distribution of the errors.
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Figure 9.8 above indicates some signi�cant residuals. The impact of these
on the associated volatility plot is depicted below.

Figure 9.9: Term structure of volatilities obtained through �tting Rebonato's time
homogeneous function to the set of South African ATM caplet volatilities. Results
presented for business date 2009/12/31.

In order to achieve an exact �t to the input term structure we will need to
introduce the forward rate speci�c components presented below.

Figure 9.10: Implied forward rate speci�c components following the �tting of Re-
bonato's time homogeneous function to the set of South African ATM caplet volatil-
ities. Results presented for 2009/12/31.
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These are de�ned as the function f in Equation (9.2.3). The shortcomings
of this �rst attempt is clearly visible in the above graphs. It can however be
shown that the goodness of �t will increase as we relax some of the assumptions
made (for example regarding short-term volatilities and location of hump).
This is indicative of the noise present in the input data.

Irrespective of these results, we should keep in mind the intended purpose
of this �rst step, i.e. to try and explain as much as possible of the volatility
behaviour through the use of a time-homogeneous function. The accuracy of
this �t will consequently be improved as we move on to the following step of
the calibration process.

The forward rate components in the �gure above are relatively close to one,
however it is clearly evident that there is still some room for improvement (ex-
pect these components to be randomly distributed around 1 in a more accurate
�t). Furthermore, these components appear to be slightly more volatile than
those obtained in the European market. The biggest risk associated with the
introduction of forward rate components is the possibility that these factors
might disturb the time-homogeneous evolution of forward rates. Hence, we
need to consider the evolution of the term structure over time to determine if
the �t is �nancially justi�able or not. This is presented in Figure 9.11.

Figure 9.11: Model implied term structure evolution following the two step �tting
methodology outlined in this section. Results presented for the South African market
and were obtained through calibrating to the market term structure of 2009/12/31.

In order to obtain this graph it was assumed that the scaling factors in
Figure 9.10 tend to 1 as maturities increase. Furthermore, the term structure
of volatilities was calculated at each of the di�erent reset times, i.e. in fractions
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of 0.25. The Matlab code used for this calculation is presented in Section
C.1.2.2.

This evolution clearly exhibits more changes as we move through time when
compared with the results obtained from the European market. However, we
still preserve the main volatility characteristics.

Another interesting comparison can be made through comparing the evolu-
tion just obtained with the one obtained in the non-parametric case, i.e. Figure
9.6 (note that Figure 9.11 should also represent a shortening in the tail of the
term structure as we move through time, the example however assumed that
the forward rate components approach 1). The term structures in the non-
parametric case remain exactly the same as opposed to the slight changes in
the parametric term structures. This is due to the introduction of the forward
rate components.

9.4.4 Multi-Time Dependence Volatility Speci�cation

Similar to Section 9.3.4 we will now consider the three-step approach as pro-
posed by Rebonato [47]. This procedure is discussed in detail in Section 9.2.2.
The �rst step was already performed in the previous section from which it was
evident that there is a need for additional parameters in order to help explain
market term structure.

These extra parameters will be obtained through including a time depen-
dent function g in the instantaneous volatility speci�cation and hence obtaining
a new objective function 9.2.5. This function is de�ned in Equation (5.4.12).
Furthermore, we will follow the parameterization of the European market and
set n equal to 4. The results obtained for the optimization, using 2000 di�erent
starting points (increase due to more noise in input data), are presented and
discussed below (Matlab code given in Section C.1.2.3).

The addition of a time dependent component resulted a better �t between
market and implied volatilities. The minimum of the objective function re-
duced to 0.000080. The parameters of the function g resulting in this minimum
is given as

ε1 = −4.92206,
ε2 = −3.482772,
ε3 = −1.493793,
ε4 = 0.366691,
ε5 = −0.828297,
ε6 = 0.167607.

Let us now consider the accuracy of this �t through considering the same
graphs as in the previous section. The �rst �gure below illustrates the model
implied variances against the market input variances.
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Figure 9.12: Variances obtained when adding an additional time dependent func-
tion to the instantaneous volatility speci�cation. Results presented for business date
2009/12/31.

From above it is evident that the time dependent function provided the
required �exibility. Note the way in which the new speci�cation follows the
curves in the market variances (re�ective of the oscillating nature of the time
dependent function). This behaviour resulted in much smaller residuals.

The associated volatility term structure is presented in Figure 9.13 below.

Figure 9.13: Term structure of volatilities obtained when adding an additional time
dependent function to the instantaneous volatility speci�cation. Results presented
for the South African market and were obtained through calibrating to the market
term structure as observed on 2009/12/31.
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The volatility plot con�rms the results seen in the variance space, i.e. a
signi�cant increase in the accuracy of the model. The �nal two graphs that
we will consider, are presented below

Figure 9.14: Implied forward rate speci�c components following the introduction of
a time dependent component into the instantaneous volatility speci�cation. Results
presented for the South African market and were obtained through calibrating to the
market term structure of 2009/12/31.

Figure 9.15: Model implied term structure evolution following the introduction of
a time dependent component into the instantaneous volatility speci�cation. Results
presented for the South African market and were obtained through calibrating to the
market term structure of 2009/12/31.
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Figure 9.14 represents the corrections required to price back exactly to
market inputs and are de�ned as the function f in Equation (9.2.6).

This �gure clearly illustrates the accuracy of the �t. This can be seen
from the random distribution of the residuals around 1 and the fact that the
residuals mainly range between 0.98 and 1.02. The introduction of the time de-
pendent component was clearly bene�cial and explained most of the remaining
variance irrespective of the noise inherent in the input data.

Finally, consider the model implied evolution of the term structure of
volatilities, as given in Figure 9.15. This represents the behaviour of all
three factors inherent in the instantaneous volatility speci�cation as we move
through time. The Matlab code for this calculation is given in Section C.1.2.3

The evolution appears to be su�ciently well behaved. Furthermore, the
preservation of the humped structure remains in tact as we move through
time. Hence, despite the noise inherent in input data, we still managed to
obtain satisfactory results. Note that no assumptions were made regarding
forward rate speci�c components as we move through time, hence the resulting
evolution will illustrate a shortening in the tail of the term structure.

 
 
 



Chapter 10

Joint Calibration

The previous chapter dealt with the estimation of volatility parameters from
market data. This fully described the calibration procedure for simple in-
struments such as caps or �oors. Unfortunately, some products may depend
on several forward rates at a time or even on both forward and swap rates.
Hence, we will need to extend our techniques to incorporate co-movements be-
tween di�erent market variables. This will be achieved through the inclusion
of correlations into our calibration procedures.

Correlation is one of the more di�cult concepts to incorporate into a model.
This is largely due to the di�culty of obtaining accurate estimates from mar-
ket prices. Previous chapters illustrated the ease with which volatilities can
be obtained from observable vanilla prices. Market data restrictions renders
this approach implausible when attempting to obtain similar market data for
correlation calculations. European swaptions, for example, is one of the traded
products that may actually contain information regarding the correlations be-
tween di�erent forward rates. However, when considering the swaption volatil-
ity approximation formula it is evident that the shape of the instantaneous
volatility functions also play a signi�cant role in the pricing of swaptions, re-
sulting in di�erent implied correlations for di�erent instantaneous volatility
functions (Rebonato [47]). Hence, in order to imply correlations from market
data we would typically need actively traded correlation derivatives. To my
knowledge, these are not currently available in the South African market and
hence we are forced to obtain correlations from historical rate movements as
well as trader estimates.

Alternatively, Rebonato [47] mentioned that actively traded serial options
would be able to complete the instantaneous volatility market (serial options
were discussed in Section 2.4.2). Once these functions are determined, we
would then be able to imply correlations through taking views regarding the
price congruence between the di�erent markets. Restrictions in liquidity how-
ever renders this approach implausible.

Given these points, we will consider calibration algorithms in which we
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obtain volatility parameters from market data and correlation parameters
through market analysis. These will range from the joint calibration of for-
ward rates, i.e. same state variables, to the joint calibration of cap and swap-
tion prices. Each of these techniques are based on a certain set of assumptions,
driven by market incompleteness, and it is important to consider these in detail
before deciding on which approach to implement.

10.1 Preliminary Calculations and De�nitions

There are some �nal calculations that we need to perform in order to transform
our market data into a format that can be used in our calibration algorithms.

The �rst required calculation relates to correlations. The historical estima-
tion of correlations were presented in Section 8.5. From the results obtained
it was clear that the estimated correlation matrix contained some noise which
can have a negative impact on the calibration procedure. Furthermore, this
is a historical estimate and hence will not re�ect market views of future ex-
pected correlations. Given this, and the general complexity of obtaining such
a matrix, it is hence recommended to rather use this as an estimation tool as
opposed to a direct input. As a consequence, we will consider an approach
that can be used to obtain exogenous correlation inputs given a historically
estimated correlation matrix and trader expectations.

The second calculation can be used to convert caplet and swaption volatil-
ities to the same payment frequency. This type of calculation is not required
within the South African market and hence was merely presented for com-
pleteness purposes. Each of the above mentioned points will be discussed in
the following sections and possible solutions will be proposed.

10.1.1 Correlation Smoothing

The objective is to �t some functional correlation structure to the estimated
correlation matrix. These types of functional forms were discussed in Section
6.3 and represent speci�cations with full rank and a reduced number of pa-
rameters. Fitting such a structure typically consists of the minimization of
some penalty function representing the di�erences between the exogenous cor-
relation matrix and the functional form for a particular choice of parameters.
Alternatively, Brigo and Mercurio [11] proposed a method in which the pa-
rameters can be obtained through inspection. Brigo and Mercurio [11] called
this technique the pivot matrix approach given the fact that some of the key
elements of the correlation matrix are exactly obtained during the �tting pro-
cedure. This is achieved through inverting the parametric forms in order to
express the parameters in terms of these key elements (pivots).

The current chapter will however make use of the former approach in which
we �t a speci�c parametric form to the historically estimated correlation ma-
trix. We will use the parametric forms given by Equations (6.3.5)-(6.3.6), i.e.
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ρi,j(t) = ρ∞ + (1− ρ∞)exp[−β|Ti − Tj |]

and
ρi,j(t) = ρ∞ + (1− ρ∞)exp[−β|(Ti − t)γ − (Tj − t)γ |].

Given the particular choice of correlation function, it is important to ensure
that the long term level as well as the correlation matrix itself is well de�ned.

Another important point to consider is the impact of the smoothing on
the associated eigenvectors and eigenvalues. From a �nancial point of view we
would prefer these to remain relatively the same. Note that this is purely a
�nancial requirement. For pricing purposes it is the actual correlations that
matters as opposed to the implied eigenvectors and eigenvalues (Rebonato
[47]).

The trader can alternatively try and obtain di�erent correlation matrices
for di�erent sets of parameters should she feel that these are not a correct
representation of the current market. It is however recommended to use some
parametric form in the estimation process given the di�culty of obtaining
market indications of these quantities.

10.1.2 Volatility Conversions

When performing a joint calibration between complementary instruments, one
can encounter a scenario where the payment frequencies of observed cap/�oor
prices are di�erent to the payment frequency of observed swaption prices. This
type of discrepancy is only visible in some of the foreign markets and does not
currently a�ect our local market. It is, however, important to brie�y consider
a technique that can be used to align the di�erent payment conventions. This
conversion will take place in the volatility space and is discussed below.

Suppose, for instance, we have a scenario in which the cap frequency is
semi-annual, whereas the swaption frequency is annual. The approach will
then start through expressing annual forward rates in terms of semi-annual
forward rates. Given these expressions, we can then derive the appropriate
annual volatilities through using Taylor expansions. As an example, consider
an approximation derived by Brigo and Mercurio [11] for the three time in-
stants 0 < T1 < T2 < T3, all six months spaced.

V 2
T1,T3

=
2∑

i,j=1

uiujσTiTi+1.capletσTjTj+1.capletρL(i,i+1);L(j,j+1),

where

ui(t) =
1

LT1,T3(t)

(
LTiTi+1(t)

2
+
LT1T2(t)LT2T3(t)

4

)
.

Within our example, VT1,T3 represents the resultant Black swaption volatility
of the forward swap rate SRT1,T3(t).
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10.1.3 Forward Rate Dynamics

Before we proceed to the next sections, it is important to point out that we
will be working with forward rates as de�ned in Section 4.4.2. Hence, we have
that the dynamics of the forward rate expiring at time Ti under the measure
QT is given by

dLTiTi+1(t) = . . . dt+ σTiTi+1(t)LTiTi+1(t)CTiTi+1dW (t), (10.1.1)

where the vector W (t) is de�ned as a n × 1 vector of uncorrelated Wieners.
The row vector CTiTi+1 was included in order to model correlation between
di�erent forwards. This speci�cation, as recommended by Rebonato [47], then
allows the market observable volatility component to be separated from the
component used for correlation modeling. This will be at the center of some
of our calibration techniques. In closing, we will present this formulation in
vector form as

dL

L
= . . . dt+ σCdW, (10.1.2)

where σ is the diagonal matrix containing volatilities of the di�erent forward
rates, i.e.

σ =


σT1T1 0 . . . 0

0 σT2T2 . . . 0
...

...
. . .

...
0 0 . . . σTnTn

 , (10.1.3)

and the matrix C is chosen such that (see Sections 4.4.2 and A.5 for more
details)

ρ = CC ′.

10.2 Calibrating to Caplet Prices and Exogenous

Forward Rate Correlation Matrix

This approach will typically be used when the exotic product will be hedged
using caplets. Within this setup, the trader would want to recover the prices
of hedging instruments exactly, while obtaining a best possible �t to the ex-
ogenous correlation matrix. The �rst question that might arise is why do we
even have to use a calibration procedure in this setup when the volatility pa-
rameters are already determined. Rebonato [47] points out that this is mainly
when we want to reduce the dimensionality of the problem.

This then immediately takes us to the second part of Chapter 6, i.e. reduced
rank correlation speci�cations. We will show how the concepts, discussed
in Sections 6.4.2.1 and 6.4.2.2, can be used in creating di�erent calibration
routines.
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The routines described in the following sections are both based on the
forward rate dynamics given by Equation (10.1.2). As a result, we have that
the incorporation of correlations are independent of the volatility calibration.
Hence, we will assume volatility parameters derived in the previous chapter
and will mainly focus on determining the matrix C.

10.2.1 Hull and White PCA Approach

The approach suggested by Hull and White [31] makes use of the property
that a correlation matrix can be decomposed into eigenvalues and eigenvectors
using the relationships as discussed in Section 6.4.2.2. As a result, we can
obtain the following simple expression for the matrix C should we want to
retain as many factors as forward rates

C = PΛ, (10.2.1)

where the matrix P is the resultant eigenvector matrix and the matrix Λ is a
diagonal matrix containing the square root of the respective eigenvalues.

It is however seldom practical to work with a model in which the number
of factors are equal the number of forward rates. Hull and White [31] sug-
gested that we only retain the most signi�cant eigenvectors. These can be
determined through using the following formula to obtain the signi�cance of
each eigenvector

PercExpl =
hi∑n
j=1 hi

, (10.2.2)

where hi represents the i'th eigenvalue and n represents the number of eigen-
values. The user can then construct a new matrix C through using the chosen
eigenvectors and eigenvalues.

Note however the following important point. We are reducing the rank
of the problem and hence the resulting matrix C will not have unit rows as
required in Section A.5. As a result, we will have to apply a �nal scaling
in order to preserve this property. This is easily achieved through using the
following relationship

cnewij =
cintermij√∑n

j=1

(
cintermij

)2
, (10.2.3)

where the matrix C interm represents the unscaled matrix consisting out of the
chosen eigenvectors and values.

The main advantage of this approach is that we can easily obtain forward
rate dynamics that are consistent with PCA and hence this approach has a
very nice �nancial appeal. Furthermore, the calibration to volatilities and
correlations are independently performed.
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10.2.2 Rebonato's Approach

The algorithm described in the previous section lacks one property, i.e. the
approach can result in correlation matrices that are di�erent from the original
input matrix. This can result in signi�cant pricing implications. Rebonato
[47] proposed a methodology in which the matrix C is chosen in such a way as
to most accurately re�ect the input correlation matrix.

The approach is based on the angular formulation presented in Section
6.4.2.1. Within this approach, we have that the matrix C should be de�ned as

cik(t) = cos θik(t)
k−1∏
j=1

sin θij(t), k = 1, . . . , s− 1, (10.2.4)

cik(t) =
k−1∏
j=1

sin θij(t), k = s. (10.2.5)

Above parameterization will automatically ensure unit rows for the matrix
C. Given this property, we will have a calibration routine that is only con-
cerned with �nding the set of angles that minimizes the di�erences between the
model and input correlation matrices. Consequently, the procedure collapses
into an unconstrained minimization problem. The associated penalty function
is given by the following equation (Rebonato [47])

χ2 =
N∑

j,k=1

(
ρinputj,k − ρmodel

j,k

)
, (10.2.6)

where N represents the number of forward rates. Following the calibration
procedure it is then advisable to compare the principle components of the new
matrix with that of the original matrix.

10.3 Calibrating to Swaption Prices and Exogenous

Forward Rate Correlation Matrix

This section presents some of the calibration procedures that can be used in
order to incorporate swaption prices in the LMM framework. In all of the
procedures we will use an exogenously given correlation matrix. Brigo and
Mercurio [11] also considered the alternative formulation, i.e. calibrating to
swaption prices using the �rst separable structure presented in Section 5.4.5.
This allowed for the calibration to swaption prices through solving for the op-
timal correlations as well as the time-to-maturity components of the volatility
speci�cation. The authors however obtained unsatisfactory results and instead
recommended an approach where the volatility speci�cation is more general
and in which the correlations are exogenously given. This is in line with the
comments made by Rebonato [47] regarding the insensitivity of swaption prices
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to instantaneous correlations, as well as the possible lack of price congruence
between the two di�erent markets.

10.3.1 Cascade Calibration

Cascade Calibration was originally developed by Brigo and Mercurio [11], [10]
and is designed to provide an exact calibration to swaption prices given the
volatility speci�cation in Table 5.1 and an exogenous correlation matrix. This
approach is based on inverting Rebonato's swaption formula given in Equation
(5.5.3). Adjusting this formula to incorporate the volatility structure presented
in Table 5.1, we obtain

V 2
α,β ≈

β∑
i,j=α+1

wi(0)wj(0)Li(0)Lj(0)ρi,j
TαSR2

α,β(0)

α∑
h=0

τh−1,hσi,h+1σj,h+1, (10.3.1)

where

wi(t) =
τi−1,iB(t, Ti)∑N

i=s+1 τk−1,kB(t, Tk)
. (10.3.2)

Notice a slightly shortened notation and a change in weights. These changes
were made in order to simplify upcoming equations as well as to align with
the work of the developers.

We will start by considering the �rst version of this approach, i.e. the
calibration to the upper triangle of the swaption input matrix. An example
of such a matrix is presented in the table below (as previous, rows represent
expiries whereas columns represent underlying maturities), with T0 = 1y.

1y 2y 3y 4y 5y 6y 7y
1y V0,1 V0,2 V0,3 V0,4 V0,5 V0,6 V0,7

2y V1,2 V1,3 V1,4 V1,5 V1,6 V1,7

3y V2,3 V2,4 V2,5 V2,6 V2,7

4y V3,4 V3,5 V3,6 V3,7

5y V4,5 V4,6 V4,7

6y V5,6 V5,7

7y V6,7

Using Equation (10.3.1), we can now derive a one-to-one relationship between
swaption volatilities given above and the associated forward rate volatilities
presented in Table 5.1.

An important observation to make from the tables presented is that each
swaption, as we move from left to right, is dependent on one (and only one)
more forward rate. Hence, as we move from left to right in the swaption matrix,
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it will be possible to invert Equation (10.3.1) in such a way as to obtain the
volatility of the newly included forward rate. Similarly, as we move from top
to bottom within the swaption matrix, we have a scenario where the swaption
is dependent on one (and only one) more section of the instantaneous volatility
function, i.e. one more column in the forward rate volatility matrix. Following
each of these steps, it will be possible to solve for the missing instantaneous
volatility using an elementary second order polynomial. Note, however, that
the approach requires the user to �rstly determine all the possible instanta-
neous volatilities for a given row (using left to right approach) before moving
on to the next row (and then again proceeding from left to right as before).
This can be seen more clearly through considering speci�c examples. The
reader is referred to Brigo and Mercurio [11] for more details.

From the previous discussion, it is clear that the calibration algorithm will
amount to solving σβ,α+1 at each step. This value can be explicitly obtained
from Equation (10.3.1) as follows

TαSR
2
α,β(0)V 2

α,β ≈
β∑

i,j=α+1

wi(0)wj(0)Li(0)Lj(0)ρi,j
α∑
h=0

τh−1,hσi,h+1σj,h+1

=
β−1∑

i,j=α+1

wi(0)wj(0)Li(0)Lj(0)ρi,j
α∑
h=0

τh−1,hσi,h+1σj,h+1

+ wβ(0)2Lβ(0)2
α∑
h=0

τh−1,hσ
2
β,h+1

+ 2
β−1∑
j=α+1

wβ(0)wj(0)Lβ(0)Lj(0)ρβ,j
α∑
h=0

τh−1,hσβ,h+1σj,h+1

=
β−1∑

i,j=α+1

wi(0)wj(0)Li(0)Lj(0)ρi,j
α∑
h=0

τh−1,hσi,h+1σj,h+1

+ 2
β−1∑
j=α+1

wβ(0)wj(0)Lβ(0)Lj(0)ρβ,j
α−1∑
h=0

τh−1,hσβ,h+1σj,h+1

+ 2
β−1∑
j=α+1

wβ(0)wj(0)Lβ(0)Lj(0)ρβ,jτα−1,ασj,α+1σβ,α+1

+ wβ(0)2Lβ(0)2
α−1∑
h=0

τh−1,hσ
2
β,h+1

+ wβ(0)2Lβ(0)2τα−1,ασ
2
β,α+1.
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Notice that the last and third last expressions are the only ones containing the
variable σβ,α+1. These can consequently be grouped into the following simple
quadratic equation

Aα,βσ
2
β,α+1 +Bα,βσβ,α+1 + Cα,β = 0, (10.3.3)

where the coe�cients of the quadratic equation are de�ned as below

Aα,β = wβ(0)2Lβ(0)2τα−1,α,

Bα,β = 2
β−1∑
j=α+1

wβ(0)wj(0)Lβ(0)Lj(0)ρβ,jτα−1,ασj,α+1,

Cα,β =
β−1∑

i,j=α+1

wi(0)wj(0)Li(0)Lj(0)ρi,j
α∑
h=0

τh−1,hσi,h+1σj,h+1

+ 2
β−1∑
j=α+1

wβ(0)wj(0)Lβ(0)Lj(0)ρβ,j
α−1∑
h=0

τh−1,hσβ,h+1σj,h+1

+ wβ(0)2Lβ(0)2
α−1∑
h=0

τh−1,hσ
2
β,h+1

− TαSR
2
α,β(0)V 2

α,β.

This concludes the �rst part of this section. Brigo and Mercurio [11] summa-
rized this approach in the following algorithm.

Algorithm 10.3.1 (Cascade Calibration Algorithm (CCA) - Brigo
and Mercurio [11]) The calibration to the upper triangle of a swaption ma-
trix can be achieved through the steps described below.

1. Select the number s of rows in the swaption matrix that are of interest
for the calibration

2. Set α = 0

3. Set β = α+ 1

4. Solve Equation (10.3.3) in σβ,α+1. Since both Aα,β and Bα,β are strictly
positive, if we assume positive instantaneous correlations, then Equation
(10.3.3) has at most one positive solution, namely

σβ,α+1 =
−Bα,β +

√
B2
α,β − 4Aα,βCα,β

2Aα,β

if and only if Cα,β < 0.
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5. Increase β by one. If β ≤ s, then go back to point 4, otherwise increase
α by one.

6. If α < s go back to 3, otherwise stop.

The algorithm just presented can only be used to calibrate to the upper triangle
of the swaption matrix. As a result, we will only be able to obtain the upper
half of the forward rate volatilities displayed in Table 5.1. In order to illustrate
the concept, we will present, as an example, the forward rate volatilities that
can be determined through Algorithm 10.3.1 when applied to the example 7×7
swaption matrix given earlier in this section. This is given in the table below.

(0, 1y] (1y, 2y] (2y, 3y] (3y, 4y] (4y, 5y] (5y, 6y] (6y, 7y]
L1(t) σ1,1 Dead Dead Dead Dead Dead Dead

L2(t) σ2,1 σ2,2 Dead Dead Dead Dead Dead

L3(t) σ3,1 σ3,2 σ3,3 Dead Dead Dead Dead

L4(t) σ4,1 σ4,2 σ4,3 σ4,4 Dead Dead Dead

L5(t) σ5,1 σ5,2 σ5,3 σ5,4 σ5,5 Dead Dead

L6(t) σ6,1 σ6,2 σ6,3 σ6,4 σ6,5 σ6,6 Dead

L7(t) σ7,1 σ7,2 σ7,3 σ7,4 σ7,5 σ7,6 σ7,7

Brigo and Morini [12] and Morini [40] did however propose an extension of
this technique that can be used to calibrate to the remainder of the swaption
volatilities, i.e. those presented in bold in the matrix below

1y 2y 3y 4y 5y 6y 7y
1y V0,1 V0,2 V0,3 V0,4 V0,5 V0,6 V0,7

2y V1,2 V1,3 V1,4 V1,5 V1,6 V1,7 V1,8

3y V2,3 V2,4 V2,5 V2,6 V2,7 V2,8 V2,9

4y V3,4 V3,5 V3,6 V3,7 V3,8 V3,9 V3,10

5y V4,5 V4,6 V4,7 V4,8 V4,9 V4,10 V4,11

6y V5,6 V5,7 V5,8 V5,9 V5,10 V5,11 V5,12

7y V6,7 V6,8 V6,9 V6,10 V6,11 V6,12 V6,13

This will then also enable us to determine the remainder of the forward rate
volatilities and hence complete the calibration. Extending this approach to the
rest of the matrix is however not an automatic process. Multiple unknowns are
encountered every time the last column of the swaption matrix is reached (with
exception of the �rst). As a result, they suggested setting all the unknowns in
these scenarios equal to the same value which will then allow us to determine
the volatilities presented in bold in the matrix below.
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(0, 1y] (1y, 2y] (2y, 3y] (3y, 4y] (4y, 5y] (5y, 6y] (6y, 7y]
L1(t) σ1,1 Dead Dead Dead Dead Dead Dead

L2(t) σ2,1 σ2,2 Dead Dead Dead Dead Dead

L3(t) σ3,1 σ3,2 σ3,3 Dead Dead Dead Dead

L4(t) σ4,1 σ4,2 σ4,3 σ4,4 Dead Dead Dead

L5(t) σ5,1 σ5,2 σ5,3 σ5,4 σ5,5 Dead Dead

L6(t) σ6,1 σ6,2 σ6,3 σ6,4 σ6,5 σ6,6 Dead

L7(t) σ7,1 σ7,2 σ7,3 σ7,4 σ7,5 σ7,6 σ7,7

L8(t) σ8,1 σ8,2 σ8,3 σ8,4 σ8,5 σ8,6 σ8,7

L9(t) σ9,1 σ9,2 σ9,3 σ9,4 σ9,5 σ9,6 σ9,7

L10(t) σ10,1 σ10,2 σ10,3 σ10,4 σ10,5 σ10,6 σ10,7

L11(t) σ11,1 σ11,2 σ11,3 σ11,4 σ11,5 σ11,6 σ11,7

L12(t) σ12,1 σ12,2 σ12,3 σ12,4 σ12,5 σ12,6 σ12,7

L13(t) σ13,1 σ13,2 σ13,3 σ13,4 σ13,5 σ13,6 σ13,7

This technique was labeled by the authors as the �equal multiple unknowns�
assumption. The assumption can easily be incorporated into the previously
derived results and can be expressed mathematically as

σβ,α+1 = σβ,α = . . . = σβ,1 for β = s+ α.

From the above equation, we can derive the following expression for σβ,α+1 in
the case where β = s+ α

TαSR
2
α,β(0)V 2

α,β ≈

=
β−1∑

i,j=α+1

wi(0)wj(0)Li(0)Lj(0)ρi,j
α∑
h=0

τh−1,hσi,h+1σj,h+1

+ 2
β−1∑
j=α+1

wβ(0)wj(0)Lβ(0)Lj(0)ρβ,j
α−1∑
h=0

τh−1,hσj,h+1σβ,α+1

+ 2
β−1∑
j=α+1

wβ(0)wj(0)Lβ(0)Lj(0)ρβ,jτα−1,ασj,α+1σβ,α+1

+ wβ(0)2Lβ(0)2
α−1∑
h=0

τh−1,hσ
2
β,α+1

+ wβ(0)2Lβ(0)2τα−1,ασ
2
β,α+1.

Above expressions can then be grouped into the following quadratic equation

A∗α,βσ
2
β,α+1 +B∗α,βσβ,α+1 + C∗α,β = 0, (10.3.4)

 
 
 



Chapter 10. Joint Calibration 148

where the coe�cients of the quadratic equation are de�ned as below

A∗α,β = wβ(0)2Lβ(0)2τα−1,α + wβ(0)2Lβ(0)2
α−1∑
h=0

τh−1,h,

B∗α,β = 2
β−1∑
j=α+1

wβ(0)wj(0)Lβ(0)Lj(0)ρβ,jτα−1,ασj,α+1

+ 2
β−1∑
j=α+1

wβ(0)wj(0)Lβ(0)Lj(0)ρβ,j
α−1∑
h=0

τh−1,hσj,h+1,

C∗α,β =
β−1∑

i,j=α+1

wi(0)wj(0)Li(0)Lj(0)ρi,j
α∑
h=0

τh−1,hσi,h+1σj,h+1

− TαSR
2
α,β(0)V 2

α,β.

This concludes the second part of this section. Brigo and Mercurio [11] sum-
marized this approach in the following algorithm.

Algorithm 10.3.2 (Rectangular Cascade Calibration Algorithm (RCCA)
- Brigo and Mercurio [11]) The calibration to the entire swaption matrix
can be achieved through extending Algorithm 10.3.1 using the two steps pre-
sented below.

1. At point 5 replace the condition β ≤ s with (β − α) ≤ s.

2. Point 4 should be changed to reference Equation (10.3.4) every time the
last column of the swaption matrix is reached (with exception of the �rst),
i.e. when β = s+ α

The rest of the algorithm remains unchanged.

The algorithms introduced in this section provided us with tools that can
be used to recover market swaption prices exactly given an exogenous cor-
relation matrix. Unfortunately, given its non-parametric and unconstrained
principles, it is clear that the instantaneous volatilities are expected to take
up the slack in order to obtain correct swaption pricing. Brigo and Mercurio
[11] mentioned that this can lead to negative or even imaginary values for the
calibrated instantaneous volatilities. The authors contributed these errors to
irregularity and illiquidity in the input swaption matrix. It was found that
these can be eliminated through the use of suitable data manipulating tech-
niques (whether smoothing, interpolating missing entries or rank reduction
etc.). However, these manipulations can be problem speci�c and hence does
not provide a robust solution that can be used across di�erent types of market
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inputs. Furthermore, these types of adjustments will go against the main prin-
ciple underlying these methods, i.e. the exact pricing to market swaption prices
given an exogenous correlation matrix. As a result, Brigo and Morini [13] and
Morini [41] developed a robust extension of the previous algorithms which is
solely dependent on the input market data and does not require any data ma-
nipulation (at least in most of the cases). This method will be considered in
the last part of this section.

The new proposed methodology makes use of endogenous interpolation
based only on pure market data. This allows the calibration to swaption
matrices that may contain missing rows, for example the swaption matrix pre-
sented for the South African market in Table 8.5. In order to achieve this
the algorithm �rstly make assumptions regarding volatilities that are entirely
undetermined due to the missing swaptions data, i.e. volatilities that are not
contained in any of the preceding or following market observable swaptions.
Typical assumptions made are those presented in Tables 5.2-5.3, i.e. depen-
dence on either time-to-maturity or maturity of the forward rate under con-
sideration. Following this assumption, the usual �equal multiple unknowns�
assumption is employed when moving to the next observable swaption price.

The concepts described above will be illustrated through the use of some
examples. Let us revisit the upper triangle swaption matrix presented earlier in
this section. Using Equation (10.3.3), we can obtain the following dependence
structure for the �rst three swaptions in the matrix (format similar to that
given by Brigo and Mercurio [11])

1y 2y 3y 4y
1y V0,1 V0,2 V0,3 V0,4

σ1,1 σ1,1σ2,1 σ1,1σ2,1σ3,1 σ1,1σ2,1σ3,1σ4,1

2y V1,2 V1,3 V1,4

σ2,1 σ2,1σ3,1 σ2,1σ3,1σ4,1

σ2,2 σ2,2σ3,2 σ2,2σ3,2σ4,2

3y V2,3 V2,4

σ3,1 σ3,1σ4,1

σ3,2 σ3,2σ4,2

σ3,3 σ3,3σ4,3

4y V3,4

σ4,1

σ4,2

σ4,3

σ4,4

Note the following from above matrix. If the swaption quotations relating
to row 2 were missing, then we would be faced with the scenario that the
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entry σ2,2 does not appear in any rows preceding or following the second one.
Hence, only row 2 can be used to determine this entry. This then forces the
assumption relating to time-to-maturity or maturity of the associated forward.
All of the other unknowns in row 2 does appear in the following row and hence
can be determined using the �equal multiple unknowns� assumption.

This concludes the �nal part of this section. Brigo and Mercurio [11]
summarized this approach in the following algorithm.

Algorithm 10.3.3 (Rectangular Cascade Calibration with Endogenous
Interpolation Algorithm (RCCAEI) - Brigo and Mercurio [11]) With
reference to Equations (10.3.3) and (10.3.4), we must follow the steps:

1. Select the number s of rows in the swaption matrix that are of interest
for the calibration, including those non quoted. The �nal row must be
available from the market. Then de�ne K as the set of missing maturi-
ties.

2. Set α = 0;

3. a) If a ∈ K, de�ne m as the �rst market quoted maturity higher than
α. Then set

σj,m+1 = σj,m = · · · = σj,α+1 =: σj for all j: m+ 1 ≤ j < s+ α,
(10.3.5)

that is we assume that all the involved forward rates have constant
volatility in the period. Set γ = α and then α = m.

b) If α /∈ K, set γ = α.

Set β = α+ 1

4. a) If γ ∈ K, solve in σβ Equation (10.3.3) after adjusting to take into
account Constraint (10.3.5).

b) If γ /∈ K, solve in σβ,α+1 Equation (10.3.3).

5. Increase β by 1. If β < s + γ go back to point 4. If s + γ ≤ β ≤ s + α,
set

σβ,α+1 = σβ,α = · · · = σβ,1

and solve in σβ,α+1 Equation (10.3.4). Increase α by 1.

6. If α < s, go back to point 3, otherwise stop.

10.4 European Market Results

This section will only consider the application of the cascade calibration algo-
rithms to the set of European data as given by Brigo and Mercurio [11]. The
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aim is to highlight some of their results and to illustrate that the implemented
algorithms provide answers consistent with that of the authors. Furthermore,
it will provide useful insight into the dependence of these algorithms on the
granularity of the input volatilities.

10.4.1 Market Data

Let us �rstly consider the data as given by the authors. The initial forward
curve is given by

Reset Rate

0 0.046900
1y 0.050114
2y 0.055973
3y 0.058387
4y 0.060027
5y 0.061315
6y 0.062779
7y 0.062747
8y 0.062926
9y 0.062286
10y 0.063009
11y 0.063554
12y 0.064257
13y 0.064784
14y 0.065312
15y 0.063976
16y 0.062997
17y 0.06184
18y 0.060682
19y 0.05936

Table 10.1: Forward rates obtained from the European market for business date
2000/05/16 (Brigo and Mercurio [11]).

This set of forwards includes the spot rate, i.e. the rate reset occurs today.
This is necessary for the calculation of discount factors used in the cascade
calibration algorithm. The procedures required to obtain such a curve were
described in detail in previous chapters.

Next, we will introduce the set of swaption prices. These are presented in
the table below.

The authors mentioned that they could not obtain quotations for swap-
tion maturities of 6, 8 and 9 years, and hence replaced these with linear in-
terpolation (expressed in bold, necessary for the �rst two cascade calibration
algorithms).

The �nal set of data that we need in order to implement the cascade cali-
bration algorithms, is the exogenous correlation matrix. These were de�ned in
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1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

1y 0.1800 0.1670 0.1540 0.1450 0.1380 0.1340 0.1300 0.1260 0.1240 0.1220
2y 0.1810 0.1620 0.1450 0.1350 0.1270 0.1230 0.1200 0.1170 0.1150 0.1130
3y 0.1780 0.1550 0.1370 0.1250 0.1170 0.1140 0.1110 0.1080 0.1060 0.1040
4y 0.1670 0.1430 0.1260 0.1150 0.1080 0.1050 0.1030 0.1000 0.0980 0.0960
5y 0.1540 0.1320 0.1180 0.1090 0.1040 0.1040 0.0990 0.0960 0.0940 0.0920
6y 0.1470 0.1265 0.1125 0.1035 0.0980 0.0975 0.0940 0.0915 0.0900 0.0885

7y 0.1400 0.1210 0.1070 0.0980 0.0920 0.0910 0.0890 0.0870 0.0860 0.0850
8y 0.1367 0.1173 0.1033 0.0947 0.0890 0.0880 0.0860 0.0843 0.0833 0.0823

9y 0.1333 0.1137 0.0997 0.0913 0.0860 0.0850 0.0830 0.0817 0.0807 0.0797

10y 0.1300 0.1100 0.0960 0.0880 0.0830 0.0820 0.0800 0.0790 0.0780 0.0770

Table 10.2: ATM swaption volatilities obtained from the European market for
business date 2000/05/16 (Brigo and Mercurio [11]).

terms of a Rebonato rank-two correlation structure, with corresponding angles
given by

Reset Angle

1y 0.0147
2y 0.0643
3y 0.1032
4y 0.1502
5y 0.1969
6y 0.2239
7y 0.2771
8y 0.2950
9y 0.3630
10y 0.3810
11y 0.4217
12y 0.4836
13y 0.5204
14y 0.5418
15y 0.5791
16y 0.6496
17y 0.6679
18y 0.7126
19y 0.7659

Table 10.3: Angles associated with a Rebonato rank-two correlation structure. Re-
sults presented for business date 2000/05/16 (Brigo and Mercurio [11]).

10.4.2 Cascade Calibration

We will now move on to brie�y consider some of the results when implement-
ing the algorithms presented in Section 10.3.1. The �rst set of results that we
will consider is that obtained through applying Algorithm 10.3.1, i.e. the cali-
bration to the upper half of the swaption volatilities presented in the previous
section.
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The volatilities obtained from implementing this algorithm were found to
be exactly the same as those given by Brigo and Mercurio [11] when replacing
the missing swaption volatilities with manually interpolated values (as opposed
to the rounded values given in the work by the authors). The resultant forward
rate volatilities are presented in the table below.

0.1800 - - - - - - - - -
0.1548 0.2039 - - - - - - - -
0.1285 0.1559 0.2329 - - - - - - -
0.1178 0.1042 0.1656 0.2437 - - - - - -
0.1091 0.0988 0.0973 0.1606 0.2483 - - - - -
0.1131 0.0734 0.0781 0.1009 0.1618 0.2627 - - - -
0.1040 0.0984 0.0502 0.0737 0.1128 0.1633 0.2633 - - -
0.0940 0.1052 0.0938 0.0319 0.0864 0.0969 0.1684 0.2731 - -
0.1065 0.0790 0.0857 0.0822 0.0684 0.0536 0.0921 0.1763 0.2848 -
0.1013 0.0916 0.0579 0.1030 0.1514 -0.0316 0.0389 0.0845 0.1634 0.2777

Table 10.4: Forward rate volatilities obtained through applying the CCA technique
to the European market data presented in this section. Results obtained for business
date 2000/05/16.

Extending the calculations to the rest of the swaption matrix we can obtain
the remainder of the forward rate volatilities. This can be achieved through
making use of Algorithm 10.3.2. The results of such an implementation is
presented in the table below.

0.1800 - - - - - - - - -
0.1548 0.2039 - - - - - - - -
0.1285 0.1559 0.2329 - - - - - - -
0.1178 0.1042 0.1656 0.2437 - - - - - -
0.1091 0.0988 0.0973 0.1606 0.2483 - - - - -
0.1131 0.0734 0.0781 0.1009 0.1618 0.2627 - - - -
0.1040 0.0984 0.0502 0.0737 0.1128 0.1633 0.2633 - - -
0.0940 0.1052 0.0938 0.0319 0.0864 0.0969 0.1684 0.2731 - -
0.1065 0.0790 0.0857 0.0822 0.0684 0.0536 0.0921 0.1763 0.2848 -
0.1013 0.0916 0.0579 0.1030 0.1514 -0.0316 0.0389 0.0845 0.1634 0.2777
0.0916 0.0916 0.0787 0.0431 0.0299 0.2088 -0.0383 0.0746 0.0948 0.1854
0.0827 0.0827 0.0827 0.0709 0.0488 0.0624 0.1561 -0.0103 0.0731 0.0911
0.0744 0.0744 0.0744 0.0744 0.0801 0.0576 0.0941 0.1231 -0.0159 0.0610
0.0704 0.0704 0.0704 0.0704 0.0704 0.1009 0.0507 0.0817 0.1203 -0.0210
0.0725 0.0725 0.0725 0.0725 0.0725 0.0725 0.1002 0.0432 0.0619 0.1179
0.0753 0.0753 0.0753 0.0753 0.0753 0.0753 0.0753 0.0736 0.0551 0.0329
0.0719 0.0719 0.0719 0.0719 0.0719 0.0719 0.0719 0.0719 0.0708 0.0702
0.0690 0.0690 0.0690 0.0690 0.0690 0.0690 0.0690 0.0690 0.0690 0.0680
0.0663 0.0663 0.0663 0.0663 0.0663 0.0663 0.0663 0.0663 0.0663 0.0663

Table 10.5: Forward rate volatilities obtained through applying the RCCA technique
to the European market data presented in this section. Results obtained for business
date 2000/05/16.
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Note the negative entries in the above given tables. Brigo and Mercurio
[11] mentioned that these negative values can be removed through using di�er-
ent input correlation structures or di�erent methods of interpolating missing
swaption volatilities. Irrespectively, it was mentioned that these type of so-
lutions can be problem speci�c and hence does not provide a robust solution
that can be used across di�erent types of market inputs. Consequently, we will
rather focus our attention in the remainder of the section on the more robust
methodology given by algorithm 10.3.3. The results obtained, following the
implementation of this algorithm, is presented in the table below.

0.1800 - - - - - - - - -
0.1548 0.2039 - - - - - - - -
0.1285 0.1559 0.2329 - - - - - - -
0.1178 0.1042 0.1656 0.2437 - - - - - -
0.1091 0.0988 0.0973 0.1606 0.2483 - - - - -
0.1131 0.0734 0.0781 0.1009 0.1618 0.2483 - - - -
0.1040 0.0984 0.0502 0.0737 0.1128 0.2191 0.2191 - - -
0.0940 0.1052 0.0938 0.0319 0.0864 0.1373 0.1373 0.2191 - -
0.1065 0.0790 0.0857 0.0822 0.0684 0.0754 0.0754 0.1373 0.2191 -
0.1013 0.0916 0.0579 0.1030 0.1514 0.0132 0.0132 0.1942 0.1942 0.1942
0.0916 0.0916 0.0787 0.0431 0.0299 0.0610 0.0610 0.1351 0.1351 0.1351
0.0827 0.0827 0.0827 0.0709 0.0488 0.1132 0.1132 0.0577 0.0577 0.0577
0.0744 0.0744 0.0744 0.0744 0.0801 0.0775 0.0775 0.0451 0.0451 0.0451
0.0704 0.0704 0.0704 0.0704 0.0704 0.0725 0.0725 0.0454 0.0454 0.0454
0.0774 0.0774 0.0774 0.0774 0.0774 0.0774 0.0774 0.0771 0.0771 0.0771
0.0752 0.0752 0.0752 0.0752 0.0752 0.0752 0.0752 0.0492 0.0492 0.0492
0.0711 0.0711 0.0711 0.0711 0.0711 0.0711 0.0711 0.0711 0.0711 0.0711
0.0685 0.0685 0.0685 0.0685 0.0685 0.0685 0.0685 0.0685 0.0685 0.0685
0.0660 0.0660 0.0660 0.0660 0.0660 0.0660 0.0660 0.0660 0.0660 0.0660

Table 10.6: Forward rate volatilities obtained through applying the RCCAEI tech-
nique to the European market data presented in this section. Results obtained for
business date 2000/05/16.

This calibration algorithm resulted in only real and positive volatilities,
illustrating the e�ectiveness of the approach. This is however not the only
criteria that should be used in evaluating the accuracy of the approach. We
will, similar to Brigo and Mercurio [11], consider the evolution of the term
structure of volatilities, model implied caplet volatilities relative to market
observable caplet volatilities and model implied swaption volatilities.

The evolution of the term structure of volatilities is presented in Figure
10.1 below. Please note that the lines showing the drop from the last volatility
to the start of the y−axis can be ignored. The program used for plotting this
�gure unfortunately did not allow for the exclusion of these points. Irrespective
of this, we can still get a good idea of the evolution of the term structure of
volatilities as implied by the empirically e�cient cascade calibration algorithm.
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This evolution depicted in the �gure is the same as the results displayed by
Brigo and Mercurio [11].

Figure 10.1: Term structure evolution as implied by the RCCAEI technique. Re-
sults presented for the European market and were obtained through calibrating to
the market term structure of 2000/05/16.

The �gure shows an initial slightly humped term structure. This then
changes to a more inverted shape as we move through time (Brigo and Mercurio
[11] pointed out that this can be due to the �rst column of the swaption
matrix displaying volatilities that are higher than the rest). Also, note that
the volatilities in the short end are expected to increase to just below 25%,
which is considerably higher than the implied term structure at time zero.

Another fact to point out is that this evolution can be expected to be sen-
sitive to the input correlation matrix. The authors, for example, showed that
the evolution can be expected to be more smooth and well behaved when corre-
lation structures of lower rank are used. Furthermore, alternative endogenous
interpolation techniques might be used to try and improve the results.

The next �gure that we will consider, is a graph depicting the market
observable caplet structure on 16 May 2000 against the model implied caplet
structure. This is presented in the Figure 10.2 below.

From Figure 10.2, it is evident that the cascade calibration algorithm im-
plies lower caplet prices than the market (with some noise in the long end,
would prefer this to be smoother for pricing and hedging purposes). This will
change with di�erent input correlations. This observation is also in line with
�ndings by Rebonato [47] and points to the fact that the two markets might
not be in line. Hence, it is very dangerous to implement calibration strate-
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Figure 10.2: Term structure of volatilities as implied by the RCCAEI technique.
Results presented for the European market and were obtained through calibrating to
the market term structure as observed on 2000/05/16.

gies in which we assume a perfect congruence between caplet and swaption
markets. Hence, the exclusion of such techniques from this thesis.

As a �nal result, we will present the model implied swaption prices for the
missing rows of the input swaption matrix. These are expressed in bold in the
matrix below.

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

1y 0.1800 0.1670 0.1540 0.1450 0.1380 0.1340 0.1300 0.1260 0.1240 0.1220
2y 0.1810 0.1620 0.1450 0.1350 0.1270 0.1230 0.1200 0.1170 0.1150 0.1130
3y 0.1780 0.1550 0.1370 0.1250 0.1170 0.1140 0.1110 0.1080 0.1060 0.1040
4y 0.1670 0.1430 0.1260 0.1150 0.1080 0.1050 0.1030 0.1000 0.0980 0.0960
5y 0.1540 0.1320 0.1180 0.1090 0.1040 0.1040 0.0990 0.0960 0.0940 0.0920
6y 0.1428 0.1322 0.1197 0.1099 0.1042 0.0983 0.0960 0.0937 0.0914 0.0902

7y 0.1400 0.1210 0.1070 0.0980 0.0920 0.0910 0.0890 0.0870 0.0860 0.0850
8y 0.1240 0.1067 0.1037 0.0978 0.0937 0.0898 0.0867 0.0855 0.0841 0.0829

9y 0.1128 0.1144 0.1050 0.0965 0.0904 0.0862 0.0849 0.0830 0.0818 0.0807

10y 0.1300 0.1100 0.0960 0.0880 0.0830 0.0820 0.0800 0.0790 0.0780 0.0770

Table 10.7: ATM swaption volatilities implied by the RCCAEI approach for the
missing rows of Table 10.2. Results presented for business date 2000/05/16.

These can then be presented to the trader for further validation. Brigo and
Mercurio [11] mentioned that these volatilities displayed most of the required
properties. Notice, however, some noise in the �rst two columns. This is driven
by the forward rate volatilities determined outside of the model.

The Matlab code used in obtaining these results is presented in Section
C.2.1.1.
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10.5 South African Market Results

Applying the calibration techniques discussed in this chapter to the South
African market is slightly more complicated than the algorithms presented
for volatility calibration. This section will examine and discuss some of these
complexities.

10.5.1 Correlation Smoothing

Before we present the results for the correlation smoothing technique, it is
important to consider the eigenvectors of the correlation matrix that resulted
in Figure 8.24. These are presented in Figure 10.3.

Figure 10.3: Eigenvectors of the historical correlation matrix presented in Figure
8.24. This correlation matrix was obtained using historically calculated constant
maturity forwards from the South African market. Results presented for business
date 2009/12/31.

This is very promising. We managed to obtain sensible principal com-
ponents even with all the associated di�culties relating to the estimation of
historical correlations. These three vectors will then account for 92% of all
forward rate movements, should we decide to use this matrix as a direct input
to the forward rate dynamics.

We will now move on to consider the �tting of the second parametric
form onto the historically estimated correlation matrix as discussed in Sec-
tion 10.1.1. This is the more �exible parametric form of the two and allow for
di�erent correlations depending on the expiries of the forward rates.
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The �tting procedure was performed using a simple unconstrained mini-
mization routine with initial starting point x0 = [0.1; 0.1; 0.1]. This approach
surprisingly resulted in a positive de�nite correlation matrix (which is not
explicitly catered for in the parametric function) as well as a long term cor-
relation level that is greater than zero. Although these results displayed the
correct mathematical properties, it cannot be guaranteed that this will always
be the case. The user should therefore always perform a check following the
minimization routine or instead make use of a constrained minimization rou-
tine (which will a�ect performance). The results of the minimization routine
are presented below.

fval = 1.5027,
ρ∞ = 0.1297,
β = 10.4549,
γ = 0.0580.

From above, we have that the sum of the squared di�erences between the in-
put and model correlation matrices amounts to 1.5027. This �gure can further
be reduced through making use of di�erent optimization routines, exploring
di�erent starting points or even the use of a di�erent parametric function. The
resulting correlation surface is presented in the �gure below.

Figure 10.4: Correlation surface obtained when �tting Equation (6.3.6) to the his-
torically estimated correlation surface given by Figure 8.24.

Note that the historically estimated correlation matrix only consisted of
forward rates from 1y. This choice was made to include more historical points
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in the correlation estimation procedure. Hence, we are left with a similarly
spaced model implied correlation matrix. The implementations of this chap-
ter will however require a full correlation matrix, i.e. a matrix starting at the
3m expiry. In order to obtain this, we will assume an endogenous interpo-
lation technique (with the idea stemming from the technique used in Algo-
rithm 10.3.3) which consists of estimating the short term correlations using
the parameters obtained from the minimization routine (as opposed to using
parameters that were obtained through calibrating to the entire correlation
matrix).

The surface presented in Figure 10.4 is remarkably similar to the one pre-
sented in Figure 8.24. The interpolated values were found to compare well with
the �rst row of Table 8.12, with bigger di�erences observed for the rest of the
rows. This was to be expected, given the di�erence in estimation techniques.
Alternatively, we can consider a global �t to the two historical data sets.

The correct approach will depend on the problem under consideration.
There is one �nal check that we need to perform before making conclusions re-
garding the accuracy of the correlations. We need to be sure that the smoothed
correlation matrix did not a�ect the eigenvectors in a �nancially undesirable
way. These are presented in Figure 10.5 below.

Figure 10.5: Eigenvectors of the correlation surface presented in Figure 10.4.

The most obvious change appears to be in the third eigenvector. Such a
change is expected to have a minor �nancial implication since it is approx-
imately a scalar multiple of the previously obtained third component. Irre-
spective of this, the example clearly states some of the risks associated with
correlation smoothing. Furthermore, note that the explanatory power of these
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components now reduced to 88%. This drop was found to be driven by the
endogenous interpolation and not due to the smoothing.

In an attempt to remove the e�ect of the endogenous interpolation, we
will follow the same procedure for the �rst parametric form given in Section
10.1.1. This is the simplest of the parametric functions and assume forward
rates with the same di�erence in expiries to have the same correlations. Hence,
the short term correlations are directly implied from the longer term forwards,
i.e. those for which we do have estimates. The �tting procedure was performed
using a simple unconstrained minimization routine with initial starting point
x0 = [0.1; 0.1]. The results of the minimization routine are presented below.

fval = 6.6428,
ρ∞ = 0.2844,
β = 0.2194.

The reduction in the quality of the �t is visible through considering the increase
in the fval value. This is clearly due to a loss in �exibility. Irrespective of this,
we will show that this surface still has some promising features. The associated
correlation surface, as implied by this parametric form, is given in Figure 10.6
below.

Figure 10.6: Correlation surface obtained when �tting Equation (6.3.5) to the his-
torically estimated correlation surface given by Figure 8.24.

The eigenvectors associated with this parametric form is presented in the
�gure below.
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Figure 10.7: Eigenvectors of the correlation surface presented in Figure 10.6.

Once again we obtained �nancially desirable eigenvectors. Furthermore,
the net explanatory power of these vectors amount to 90%, which is a slight
increase from the previous parametric form. This increase can be seen to be
driven by both, the elimination of the endogenous interpolation, as well as the
change in the properties of the parametric form.

The di�erences between the two parametric forms are presented below.

Figure 10.8: Di�erence in correlations implied by the two parametric correlation
surfaces presented in this section.
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From Figure 10.8, it is evident that the main di�erences are in the short
end of the surface. Hence, the �exible form allows for the front forward rates
to be less correlated with the remaining part of the curve (Rebonato [47]).
This then ties back to the results presented in Table 8.12, indicating that
these results may actually be a much better re�ection of true correlations than
initially thought. Hence, it may be worth while to consider a global �t to the
historically estimated correlation matrix. This alternative will not be explored
in this thesis.

10.5.2 Hull and White PCA Approach

This approach is very simple to implement. As discussed in Section 10.2.1 this
is independent of the volatility calibration routine, hence we can assume the
results of the previous chapter for this portion of the covariance elements. This
section will in particular focus on the correlation component. The approach
discussed can be extended to any input correlation surface. As a result, we will
provide results for both parametric forms discussed in the previous section.

The important point to consider when implementing this approach, is how
the model implied correlation matrix compare with the input correlation ma-
trix. Big di�erences can result in substantial price di�erences for exotic prod-
ucts. This is irrespective of the �nancial requirement that the associated eigen-
vectors should resemble certain movements in forward rates (which are ensured
by construction).

The trader is hence left with a decision of how many factors to include in
the model. An exact match to any input correlation matrix can be obtained
through retaining as many factors as forward rates. However, this will increase
the complexity associated with the implementation of such a model.

These concepts are illustrated in the Table 10.8 below. The results were
obtained through implementing the technique as discussed in Section 10.2.1.

From Table 10.8, it is clear that retaining all factors in the calibration
process, results in an exact match to the correlations given by both of the
parametric forms discussed in the previous section. This will then allow the
pricing of interest rate derivatives that are exactly in line with market cap
prices, as well as the input correlation matrix.

It is also clear that the simple parametric form, given by Equation (6.3.5),
requires less factors to obtain a certain level of accuracy, when compared to the
more complex parametric form given by Equation (6.3.6). In particular, the
two parametric forms require 8 and 9 factors respectively in order to ensure a
SSE below one.

The Matlab code used in obtaining these results is presented in Section
C.2.2.1.
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Parametric Form 6.3.5 Parametric Form 6.3.6
Factors SSE PercExpl SSE PercExpl

1 119.92823 0.71262 164.69991 0.68895
2 23.88608 0.84766 34.35219 0.82180
3 8.29204 0.90189 11.89556 0.87964
4 4.06408 0.92824 5.75012 0.91055
5 2.33962 0.94398 3.29640 0.93013
6 1.50528 0.95426 2.11850 0.94346
7 1.03547 0.96158 1.44651 0.95319
8 0.74947 0.96703 1.02700 0.96057
9 0.56149 0.97128 0.75375 0.96637
10 0.43242 0.97469 0.56647 0.97105
11 0.33968 0.97750 0.43296 0.97489
12 0.27118 0.97986 0.33553 0.97811
13 0.21907 0.98188 0.26274 0.98084
14 0.17869 0.98364 0.20715 0.98318
15 0.14676 0.98519 0.16426 0.98521
16 0.12119 0.98657 0.13071 0.98698
17 0.10047 0.98782 0.10416 0.98854
18 0.08308 0.98895 0.08299 0.98993
19 0.06865 0.98999 0.06600 0.99116
20 0.05658 0.99095 0.05231 0.99226
21 0.04641 0.99185 0.04123 0.99326
22 0.03783 0.99269 0.03226 0.99416
23 0.03054 0.99348 0.02501 0.99497
24 0.02437 0.99423 0.01912 0.99571
25 0.01912 0.99495 0.01440 0.99638
26 0.01470 0.99564 0.01062 0.99699
27 0.01098 0.99631 0.00759 0.99755
28 0.00788 0.99695 0.00521 0.99806
29 0.00535 0.99758 0.00337 0.99853
30 0.00333 0.99820 0.00199 0.99895
31 0.00178 0.99880 0.00100 0.99934
32 0.00068 0.99940 0.00035 0.99969
33 0.00000 1.00000 0.00000 1.00000

Table 10.8: HW correlation �tting results when applied to the South African market.
Results presented for business date 2009/12/31.

10.5.3 Rebonato's Approach

In contrast to the previous approach, this methodology is based on an un-
constrained minimization routine with the objective function representing the
di�erences between the input and model implied correlations. It is hence ex-
pected to require fewer factors in order to ensure the levels of accuracy given
by the Hull and White approach. This section will investigate the impact of
the minimization routine on the required number of factors.

Applying the techniques discussed in Section 10.2.2, we obtained the results
given in Table 10.9.

These were obtained using a simple unconstrained minimization routine
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Parametric Form 6.3.5 Parametric Form 6.3.6
Factors Resulting SSE Resulting SSE

2 21 18.21124 0.52209 25.10427 0.99136
3 22 4.98499 0.67150 7.49053 0.84814
4 23 2.10393 1.09102 3.16269 0.94371
5 24 1.67289 0.80979 2.08686 0.84162
6 25 1.47227 0.68983 1.20799 0.70774
7 26 1.00496 0.64900 1.25166 1.00807
8 27 0.93810 0.65704 1.22648 0.92205
9 28 0.49119 0.65884 0.87260 1.08829
10 29 0.64461 0.67001 0.89835 0.99713
11 30 0.86993 0.97389 0.89436 1.26849
12 31 0.75674 0.58837 0.98115 0.76049
13 32 0.74575 0.59666 0.70485 0.91472
14 33 0.92827 0.65863 1.03604 0.86343
15 0.64966 0.95153
16 0.72071 0.84035
17 0.79128 1.00380
18 0.72682 0.81629
19 0.78296 0.94895
20 0.58681 0.86532

Table 10.9: Rebonato correlation �tting results when applied to the South African
market. Results presented for business date 2009/12/31.

with three di�erent starting points. The process was found to be very time
consuming, especially as we increase the number of factors. The results show
an initial improvement over the Hull and White approach when the number
of factors are low. However, this advantage seems to reduce quickly as we
increase the required accuracy. Note from above that the same number of
factors are required in order to ensure a SSE of below one. Also, note that
the results does not appear to converge as we increase the number of factors.
This is in contrast with the previous approach and is believed to be due to
an insu�cient optimization routine. Hence, it is evident that this approach is
slightly more complicated to implement. Irrespective of these points, we still
have that this approach can be very attractive when a small number of factors
are required (consider for example the case in which two or three factors are
retained).

Although not presented here (given we are working with the resultant SSE
numbers), it is always necessary to examine and present the resultant correla-
tion surfaces to the trader before making a choice regarding the actual method
to use.

The Matlab code for this approach is given in Section C.2.2.2.

 
 
 



Chapter 10. Joint Calibration 165

10.5.4 Cascade Calibration

The cascade calibration algorithms, introduced in Section 10.3.1 and imple-
mented for the European market in Section 10.4.2, provided a nice way of
obtaining forward rate volatilities given exogenous forward rate correlations
and a set of swaption prices. In particular, it seemed like Algorithm 10.3.3
might be very useful, especially in the South African market were swaption
volatilities are not that readily available.

This point requires some further discussion. Let us consider the required
market inputs to these algorithms more closely. Each of these methodologies
require input swaption volatilities with expiry and maturity increments set
equal to the underlying reset frequency. For instance, in the examples relating
to the European market, we had an underlying resetting frequency of one year.
As a result, we needed swaption expiries and underlying swap maturities of 1y
up to 10y. Algorithm 10.3.3 then catered for instances in which we had some
missing swaption expiries.

In the South African market, on the other hand, we have that caps and
swaptions are based on 3-monthly interest rates. This then implies that we
will need signi�cantly more available swaption prices in order to implement
the di�erent cascade calibration algorithms. A typical set of available swap-
tion prices is given in Table 8.5. This clearly illustrates the magnitude of the
missing volatilities, i.e. we are not only missing a number of expiries, but also
a number of underlying maturities. Note that Algorithm 10.3.3 does not cater
for the latter part of the missing data by construction (i.e. using the endoge-
nous interpolation technique) and hence will require even more simplifying
assumptions.

The only way in which these algorithms can then be implemented in
the South African market is through �rst interpolating the missing swaption
volatilities (at least all of the missing maturities and then obtain the miss-
ing expiries through endogenous interpolation). However, we know that the
outcome of the calibration algorithm will be signi�cantly in�uenced by these
assumptions, which will present us with the problem of �nding an interpola-
tion algorithm that most closely re�ect the unobservable swaption volatilities
(assuming such an algorithm exists). Hence, it is strongly recommended to
�rst try and extend Table 8.5 as much as possible, which in practice can be a
tedious task and must be weighted up against the advantages of implementing
such an approach.

Given the issues discussed above, as well as the detailed implementation
in Section 10.4.2, we will not pursue this problem any further.
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Extending the LMM to the

SABR Model

The results obtained thus far have mainly focused around the deterministic
volatility case. This allowed us to calibrate to the at-the-money term structure
of instantaneous volatilities while enforcing some �nancial requirements.

Inherent in this approach is a constant volatility graph as we move across
strikes for any particular expiry. This is, however, not optimal given the fact
that market observable option prices tend to exhibit di�erent implied volatil-
ities for di�erent strikes. Therefore it is essential that we consider possible
adjustments of the model that can be used to incorporate this type of be-
haviour.

It was mentioned earlier in the project that the SABR model is a popular
way in which to incorporate interest rate smiles. This approach is already
being used in South Africa and from my understanding it is market standard
internationally. The most signi�cant drawback of this approach is the fact that
it models each forward rate in isolation. Hence, there is no way to incorporate
the joint dynamics between di�erent forward rates and consequently cannot
be used for the pricing of exotic interest rate options.

As a result, we will consider some of the recent work done by Rebonato [49]
and Rebonato and White [52] in which they present extensions of the LIBOR
Market Model that are compatible with the SABR implied option prices. Such
an approach will then allow for the joint modeling of forward rates, while at
the same time producing vanilla option prices that are consistent with the
observed market prices.

Please note that this chapter will deviate slightly from the notation used
throughout the thesis. This approach was followed in order to align the pre-
sented equations with those of the original authors. This allows for a simpler
communication of the concepts to be discussed.
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11.1 The SABR Volatility Model

The Stochastic Alpha Beta Rho (SABR) model, developed by Hagan et al. [26],
is a stochastic volatility model that can be used to recover the dynamics of the
volatility smile. Since its development, this approach has become the market
standard internationally for the pricing of vanilla interest rate caps/�oors and
swaptions. This model speci�es the following dynamics for the forward LIBOR
rate.

dfTt = αTt
(
fTt
)βT

SABR dzTt , (11.1.1)

dαTt = νTαTt dw
T
t , (11.1.2)

E
[
dzTt dw

T
t

]
= ρTdt, (11.1.3)

where, as indicated above, the parameters βSABR, ν and ρ are expiry depen-
dent. In order to ease the notation, we will omit this dependence in future
equations. A brief discussion around the di�erent parameters is presented
below.

Hagan et al. [26] mentioned that it is typically di�cult to obtain β through
direct calibration to smile data, given the fact that the correlation parameter
ρ a�ect the volatility curve in a similar way. Hence, this parameter is usually
determined outside the model. Three popular and intuitive choices are β = 1
for stochastic lognormal, β = 0 for stochastic normal and β = 0.5 for stochastic
CIR. Alternatively, this parameter can be estimated from historical data.

Once this choice is made, we then have that α controls the level of the
overall height of the curve, ρ controls the amount of skew and ν controls the
degree of smile.

The main result of the article by Hagan et al. [26] is an analytical formula
that can be used to obtain Black implied volatilities, given the above set of
parameters. This is presented below.

σK,f =
α

(fK)(1−β)/2
{

1 + (1−β)2

24 log2f/K + (1−β)4

1920 log4f/K + . . .
} · ( z

x(z)

)

·
{

1 +
[

(1− β)2

24
α2

(fK)1−β
+

1
4

ρβνα

(fK)(1−β)/2
+

2− 3ρ2

24
ν2

]
T + . . . , (11.1.4)

where
z =

v

α
(fK)(1−β)/2logf/K, (11.1.5)

and

x(z) = log

{√
1− 2ρz + z2 + z − ρ

1− ρ

}
. (11.1.6)
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Note that the formula given above can be problematic for ATM options
when implemented directly into a programming language. This is due to the
fact that some of the terms need to be calculated in the limit as f approaches
K. Hence, Hagan et al. [26] obtained the following formula for ATM implied
volatilities.

σ(f, f) =
α

f (1−β)

{
1 +

[
(1− β)2

24
α2

f (2−2β)
+

1
4
ρβαν

f (1−β)
+

2− 3ρ2

24
ν2

]
T + . . . .

(11.1.7)
Hagan et al. [26] mentioned that it might be more convenient to work with

the ATM volatilities as opposed to the α parameters. These parameters can
then be obtained through inverting Equation (11.1.7).

West [57], for instance, showed that such an inversion amounts to �nding
the appropriate root of the polynomial given below.

(1− β)2T
24f (2−2β)

α3+
ρβνT

4f (1−β)
α2+

(
1 +

2− 3ρ2

24
ν2T

)
α−σ(f, f)f (1−β) = 0 (11.1.8)

These are the main SABR concepts required for this chapter and hence
concludes the extent to which this model will be analyzed. We will be more
concerned with the calibration of the LMM to the SABR parameters. Conse-
quently, we will assume these parameters as given (following the approaches
of Rebonato [49] and Rebonato and White [52]). Similar to the market data
presented in the previous chapters, these parameters were obtained from one
of the South African investment banks and hence are re�ective of actual trader
views.

11.2 Caplet Volatility Data

Previous chapters speci�cally described some of the at-the-money term struc-
tures of instantaneous volatilities. It was mentioned that these di�er from
normal and stressed market conditions. Normal market conditions typically
represents a humped term structure, whereas stressed conditions represents a
decreasing level of volatilities as the tenor of the option increase.

We will now move on to consider similar graphs that will depict the ob-
served interest rate smiles for the European and South African caplet markets.
These are SABR implied surfaces and hence re�ect traders views. Note that
the European caplets used in this chapter resets every six months, while the
South African market caplets resets every three months.

The smile surface for the European caplet market on 2009/12/31 is given
in the Figure 11.1 below.

This graph already highlights some of the important points associated with
observed option prices. Notice for instance the at-the-money term structure,
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Figure 11.1: European caplet volatility surface obtained from a South African
investment bank for business date 2009/12/31.

i.e. the volatilities across various terms when the strike is at the forward. This
is re�ective of an ATM term structure observable during periods of market
stress, i.e. inverting (very slight hump at the short end of the curve).

Secondly, this graph exhibits a variation in volatilities as we move across
di�erent strikes. For this speci�c example, the graph is more in line with a skew
type behaviour, i.e. higher volatilities for lower strikes. In particular, notice
the high volatilities for strikes that are −1.5% from the current forward. This
is in line with the market circumstances at the time, i.e. high level of volatilities
and low rates (this also ties back to the inverted ATM shape).

Finally, note that the degree of smile/skew can di�er as we move across
di�erent expiries.

We will now move on to consider a case that is re�ective of normal market
circumstances. This is presented in Figure 11.2 below, with data taken from
2007/05/30.

This graph displays the typical humped shape term structure for ATM
volatilities. Furthermore, note the hockey stick type pro�le at the very short
end. The rest of the arguments can be extrapolated from the previous �gure.

In order to extend the results to the South African market, we present a
similar graph for business date 2009/12/31 in Figure 11.3 below.

This surface has a much more pronounced smile than the European market.
Furthermore, in contrast with the equivalent graph from the European market,
we have that the ATM term structure is humped. Similarly, we will now
consider a graph from a stressed period which was taken from business date
2009/02/25. This is given in Figure 11.4.

It is interesting to note that the two markets represents di�erent term
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Figure 11.2: European caplet volatility surface obtained from a South African
investment bank for business date 2007/05/30.

Figure 11.3: South African caplet volatility surface obtained from a South African
investment bank for business date 2009/12/31.

structure behaviours at the same point in time. This is probably re�ective of
the credit crisis creating more volatility in the European market than in some
of the emerging markets. However, all the �gures presented in this section
illustrated the important point that volatilities tend to di�er for various strikes.
The reasons for this type of behaviour are typically in the form of supply and
demand, as well as, market behaviour in periods of severe stress.
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Figure 11.4: South African caplet volatility surface obtained from a South African
investment bank for business date 2009/02/25.

11.3 Extending the LMM to SABR Caplet Prices

The �rst part of this chapter will be concerned with methods that can be
used to extend the LMM to the SABR caplet prices. This is based on the
work by Rebonato [49] and Rebonato and White [52]. In order to move on to
the di�erent calibration strategies, we �rstly need to consider the underlying
mathematical framework. This is brie�y discussed below.

The associated LMM forward rate dynamics, under the terminal measure
QT , is de�ned as

dfTt = sTt (fTt )β
T
LMMdzTt , (11.3.1)

sTt = kTt g
T
t , (11.3.2)

dkTt = kTt µ
T
t dt+ kTt h

T
t dw

T
t , (11.3.3)

E
[
dzTt dw

T
t

]
= rTdt, (11.3.4)

where gTt = g(T − t) and hTt = h(T − t) are the time-homogeneous parametric
functions given by Equation (5.4.8). Also note that the correction factors given
by kTt are now assumed to be stochastic (recall that these were determined by
Equation (9.2.3) in the deterministic case).

This speci�c choice of dynamics was mainly driven by �nancial require-
ments. The volatility component, for instance, were decomposed into the
previously used separable structure which allowed for exact caplet pricing in
the deterministic setting. The only di�erence now is that we allowed for the
correction factors kTt to be stochastic, with the vol of vol given by a time
homogeneous function hTt = h(T − t).
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The authors calculated the drift term of kTt for a variety of di�erent nu-
meraires and always found it to be very small and of minimal numerical sig-
ni�cance. Hence, setting µTt = 0, we can obtain an expression for kTt as

kTt = kT0 exp

[∫ t

0

{
−1

2
h2(T − s) ds+ h(T − s)dws

}]
. (11.3.5)

Both of the approaches that will be considered below, start with the fol-
lowing simple choices:

r = ρ, (11.3.6)

βSABR = βLMM . (11.3.7)

Hence, we are only left with task of �nding the parameters for the time-
homogeneous functions gTt and hTt .

11.3.1 Rebonato's Proposed Extension

Rebonato [49] originally proposed a simplistic way of obtaining the parameters
of the functions gTt and hTt . This is brie�y discussed below.

The �rst step of this approach is very similar to the technique discussed
in Section 9.2.1. In theory, we should not be able to apply the same approach
given the fact that the stochastic variable αTt does not have a single root-mean-
squared value. Rebonato [49] suggests we rather approximate this quantity
with the expectation at time 0 of αTt , i.e. α

T
0 (approach derived through a

heuristic argument that the deterministic portion of the volatility component
should re�ect current market data).

The calibration procedure then follows the process outlined in Section 9.2.1,
i.e. we need to solve for the set of parameters of the function g that will result
in a minimum for the objective function

χ2 =
n∑
j=1

η2
j , (11.3.8)

where

η2
j =

[(
α
Tj

0

)2
Tj −

∫ Tj

0

(
g
Tj

t

)2
dt

]2

. (11.3.9)

The initial values of k
Tj

t are then chosen as the factors required for an exact �t

to the quantities
(
α
Tj

0

)2
Tj . As discussed in Section 9.2.1, we need these to be

close to one in order for the calibration to be regarded as successful. Rebonato
et al. [51] importantly pointed out that this will allow for a volatility function
that is a stochastic perturbation of a deterministic function. Hence, on average,
we will obtain a behaviour that is re�ective of our �nancial assumptions (for
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example a time-homogeneous volatility function that can either be humped or
inverted).

Rebonato [49] suggested a similar way of obtaining the parameters of hTt ,
i.e. we need solve for the set of parameters of the function h that will result in
a minimum for the objective function

χ2 =
n∑
j=1

η2
j , (11.3.10)

where

η2
j =

[(
νTj
)2
Tj −

∫ Tj

0

(
h
Tj

t

)2
dt

]2

. (11.3.11)

Following the latter minimization, we also need to ensure that the model im-
plied correction factors are close to one. Note that the vector νTj are assumed
to be externally given.

11.3.2 Rebonato and White Proposed Extension

Rebonato and White [52] pointed out that the previous methodology is strictly
only correct in the limit as the volatility of volatility approaches zero, i.e. as
the forward rate processes approach a deterministic state (only in this case
will the terminal distributions of the two models be the same). Furthermore,
note that the previous methodology calibrated the volatility and volatility of
volatility functions independently.

Rebonato [49] and Rebonato and White [52] mentioned that this is not
correct. The authors hence proposed an alternative methodology that depends
on when the volatility and volatility of volatility are large or small.

This approximation was obtained through approximating SABR and LMM
call prices in a stochastic volatility setting (with some simplifying assumptions)
and then solving for the SABR-LMM parameters that will result in the same
prices (up to certain degree of accuracy).

The �rst relationship obtained between the di�erent parameters is sur-
prisingly exactly the same as the one implied by Equation (11.3.9). This is
presented below. (

α
Tj

0

)2
Tj =

(
k
Tj

0

)2
∫ Tj

0
g(t)2dt. (11.3.12)

From this we can approximate the parameters of g as well as the initial values

of k
Tj

t using the approach described in the previous section.
The other relationship obtained between the di�erent parameters depend

on the interactions between the volatility and volatility of volatility functions.
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This is presented below.(
α
Tj

0

) (
νTj
)2
T 2
j

2
(
k
Tj

0

)2 =
∫ Tj

0

(
g
Tj

t

)2 (
ĥ
Tj

t

)2
tdt, (11.3.13)

where ĥ
Tj

t is de�ned as the RMS value of h
Tj

t .

Using the parameters obtained for the functions g and k
Tj

0 in the �rst step,
we then need to solve for the parameters of the function h that will result in
a minimum for the objective function

χ2 =
n∑
j=1

η2
j , (11.3.14)

where

η2
j =


(
α
Tj

0

) (
νTj
)2
T 2
j

2
(
k
Tj

0

)2 −
∫ Tj

0

(
g
Tj

t

)2 (
ĥ
Tj

t

)2
tdt


2

. (11.3.15)

11.4 Extending the LMM to SABR Swaption Prices

Rebonato and White [52] also developed an analytical approximation for the
implied swaption prices given the previously obtained SABR-LMM parame-
ters. The authors mentioned that this approximation can then be used for
the calibration to the swaption matrix as well as for studies relating to the
congruence between the two markets.

The previous section provided approximations for the parameters of the
forward rates in the SABR-LMM approach when �tted to individual caplet
prices. In order to price swaptions (or any other product that is dependent on
a number of forward rates at a time), we need to de�ne the various correla-
tions embedded within these dynamics. As a result, we will extend Equations
(11.3.1)-(11.3.4) to the equations presented below

dfTi
t = sTi

t (fTi
t )β

Ti
LMMdzTi

t , (11.4.1)

sTi
t = kTi

t g
Ti
t , (11.4.2)

dkTi
t = kTi

t µ
Ti
t dt+ kTi

t h
Ti
t dw

Ti
t , (11.4.3)

E
[
dzTi
t dz

Tj

t

]
= ρi,jdt, (11.4.4)

E
[
dwTi

t dw
Tj

t

]
= θi,jdt, (11.4.5)

E
[
dwTi

t dz
Tj

t

]
= φi,jdt. (11.4.6)
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This then illustrates that the model will be fully speci�ed once all the cor-
relations are determined. Note that the elements on the diagonal of φ can
be obtained from the techniques discussed in the previous section. The rest
of the correlations can be determined outside of the model using some of the
concepts described (at length) throughout this thesis.

The approximation of swaption prices, mentioned at the start of the section,
will be obtained through approximating the SABR swaption parameters. From
these parameters, we will then be able to obtain the approximate swaption
implied volatilities using the Hagan et al. [26] formula.

Hence, let us explicitly state the SABR forward swap rate process. From
Equations (11.1.1)-(11.1.3), we have that the dynamics of SRαβt is given by

dSRt = (SRt)
B ΣtdZt, (11.4.7)

dΣt = ΣtV dZ
′
t, (11.4.8)

E
[
dZtdZ

′
t

]
= Φdt. (11.4.9)

The following section will then be concerned with obtaining approximations
for Σ0, Φ, B and V as a function of the LMM-SABR parameters.

11.4.1 Rebonato and White Proposed Extension

The authors start by deriving an approximation of Σt using the same �freezing
of weights� techniques originally proposed for swap rate volatilities in a LMM
setup. This approximation is presented below.

Σt =

√√√√ nj∑
k,m=1

W 0
kW

0
ms

Tk
t s

Tm
t ρk,m, (11.4.10)

where

W t
k = wk

(
fkt
)βk

(SRt)
B
. (11.4.11)

Note the similarity between the values wk, de�ned above, and the forward rate
weights de�ned in Equation (5.5.2).

Rebonato and White [52] then followed the same approach as in Section
11.3.2 to obtain approximations for the parameters Σ0 and V . These are given
as

Σ0 =

√√√√ 1
T

∑
i,j

(
ρijW 0

i W
0
j k

i
0k
j
0

∫ T

0
gigj dt

)
, (11.4.12)

V =
1

Σ0T

√√√√2
∑
i,j

(
ρijθi,jW 0

i W
0
j k

i
0k
j
0

∫ T

0
gigj ĥij(t)2t dt

)
, (11.4.13)
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where T indicates the swaption expiry while Ti indicates the expiry of the
forward rate under consideration.

The only remaining sets of parameters are then the correlation between
the swap rate and its volatility, Φ, and the swap rate exponents B.

The correlation parameter approximation derived in the reference paper is
given by

Φ =
∑
i,j

Ωijφij , (11.4.14)

where

Ωij =
2ρijφijW 0

i W
0
j k

i
0k
j
0

∫ T
0 gigj ĥ(t)2t dt

(V Σ0T )2
. (11.4.15)

As a �nal step, Rebonato and White [52] then approximate the parameters
B with

B =
∑
1,nj

wkBk. (11.4.16)

They motivate that the quality of this approximation will typically range be-
tween exact (for the normal case) to relatively good (in the lognormal case).

The approximations presented in this section can then be used to obtain
the implied swaption SABR parameters given the associated SABR-LMM pa-
rameters. Such an approximation can be very useful in practice. It can for
instance be used to check the congruence between the two markets or for iden-
tifying possible trading opportunities. However, in general, it is very important
to be able to analyze the prices of one set of state variables given the prices of
another.

Alternatively, we can also use these approximations to �t the forward rate
parameters in such a way as to minimize the di�erences between the SABR
swaption parameters observable in the market and the SABR swaption param-
eters implied by the model. This is similar to some of the concepts discussed in
the previous chapters. The di�culty of implementing such an approach would
be the number of free parameters caused by the large amount of correlations.
We should always be able to obtain SABR parameters to a pre-de�ned degree
of accuracy, however this can be at the price of realistic and �nancially accept-
able correlations. Another approach would be to �rst solve for the parameters
of the time-homogeneous functions that will provide SABR parameters as close
as possible to their market values given a set of exogenous correlations. We
should then just ensure that the solution is as time-homogeneous as possible
(forward rate components close to one).
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Conclusion

It was mentioned, at the start of this document, that the current market
methodology for the pricing of vanilla interest rate options in the South African
market, is the standard Black model with some sort of smile adjustment (which
appears to be in the form of the SABR model). The most signi�cant drawback
of this approach is the fact that it models each forward rate in isolation.
Therefore, there is no way to incorporate the joint dynamics between di�erent
forward rates and consequently cannot be used for the pricing of exotic interest
rate options (Rebonato [49]). Even simple interest rate derivatives, such as
Bermudan swaptions, will fall outside this framework.

It was mentioned that one alternative to the current approach would be
to turn to di�erent possible short rate models. As a result, we considered a
number of di�erent short rate models in Chapter 2. These, however, resulted
in a number of di�erent limitations. The �rst obvious limitation is that short
rate models are based on the assumption that the dynamics of the entire yield
curve is only driven by the instantaneous short rate. In the case of single-factor
models, we only have one source of uncertainty implying perfectly correlated
rates. In order to improve correlation modeling we need to add additional
factors to the model, which consequently add more complexity to the model.
Furthermore, the instantaneous short rate is not a directly observable market
variable. This then complicates the calibration and implementation of these
models and hence reduces some of its �nancial appeal (Hunt and Kennedy
[33]).

We then turned our attention to the LIBOR market model with deter-
ministic volatilities (will comment later in this section on the extension to
the SABR volatility model). This choice was mainly motivated by some of
the properties associated with this model. For instance, it allows us to price
exotic options in such a way that is internally consistent with the Black frame-
work (Rebonato [47]); i.e., it will allow the pricing of exotic options in such
a way that is internally consistent with the current market methodology for
ATM vanilla options. This was argued to be an extremely important point,
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given the fact that exotic options traders will typically look at hedging their
positions with vanilla interest rate options. Hence, it is imperative to have a
model that implies the correct prices of these hedging instruments.

Another favourable aspect of this model relates to its �nancial appeal.
Instead of having a model that is based on unobservable rates, we have that
the state variables in the LIBOR market model are discretely compounded
forward rates (Rebonato [47]). These are market observable rates and are
assumed to be lognormally distributed (in the deterministic volatility setting
and under their associated T-forward measures (Björk [4])). This then allows
for the pricing of caplets and hence caps (can be generalized to �oorlets and
hence �oors) that is consistent with the Black [5] framework.

We also introduced the swap market model. The state variables in this
model were de�ned as discretely compounded forward swap rates (Rebonato
[47]). Similar to the LIBOR market model, these are market observable rates
and are assumed to be lognormally distributed (in the deterministic volatility
setting and under their associated swap rate measures (Björk [4])). This then
allows for the pricing of swaptions in a manner that is consistent with the
Black [5] framework.

At this point in the project we started referring to some of the important
concepts emphasized throughout the thesis. One of these are, that the LIBOR
and swap market models are not compatible (mentioned by a number of au-
thors; see for example Brigo and Mercurio [11], Björk [4] and Rebonato [47]).
This can be seen through noting that a swap rate can be expressed as a linear
combination of forward rates with stochastic weights (Rebonato [47]). Hence,
the pricing of swaptions in the LIBOR market model will not be consistent
with the Black [5] framework (similar result can be derived for the pricing of
caps/�oors in the swap market model). This then implies that one has to de-
cide, based on the problem at hand, which one of the models to work with. We
focused our attention on the LIBOR market model. From above it is evident
that this will imply simple calibration to cap/�oor prices and we will have to
use approximations for the calibration to swaption prices (Brigo and Mercurio
[11], Björk [4]).

This then also pointed to the fact that di�erent forward rates cannot be
martingales under the same measure. Hence, we needed to introduce a mech-
anism for modeling the the joint dynamics of several forward rates. This is
due to the fact that the payo� of some derivatives, like interest rate swaptions
(or more exotic options), are dependent on more than one forward rate at the
same time. Hence, we introduced the concept of no-arbitrage dynamics under
di�erent forward measures. In particular, these were obtained for a number of
di�erent possible scenarios. This analysis started with a scalar Wiener process
and gradually extended the derivations to several factors, where the Wiener
processes were assumed to be correlated.

The forward rate dynamics, as described above, were found to be expressed
entirely in terms of its associated instantaneous covariance elements. Within
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this setup, we then know that the calibration of this model will be based on
the determination of these elements. Björk [4] mentioned that these quantities
should be determined by the market, which will then allow for the pricing of
derivatives under the market implied measure. The question, however, remains
if these covariance functions can be uniquely determined. This will then imply
an unique measure and hence unique exotic prices. Rebonato [47] argued
that this is not possible and hence the market for instantaneous covariances is
incomplete.

This then implied that the user of the model will have to make some
�nancially justi�able assumptions regarding the covariance structure of the
model (Rebonato [47]). Hence, we introduced two chapters relating to the
modeling of instantaneous volatilities and correlations. Within these chapters,
we investigated various types of modeling choices, and motivated the use of
the di�erent types of speci�cations. In general, we favoured approaches that
allowed for a time-homogeneous evolution in the term structure of volatilities.
Forward rate speci�c or time dependent components were also introduced in
order to allow for the exact pricing of market observable ATM options.

The reason for opting for time-homogeneous volatility speci�cations, was
based on on the view that the term structure of volatilities should remain
approximately the same as we move through time (in a deterministic volatility
setting, will later consider the extension to the stochastic volatility setting).
Alternatively, it was also mentioned that it is possible to calibrate to two
di�erent term structures. In this scenario, the one term structure will then
represent the current term structure of volatilities, whereas the other term
structure will re�ect some future scenario (Rebonato [47]). In this setup, we
can then assign di�erent weights to the di�erent term structures to re�ect the
order of importance. Such an approach was not implemented in this thesis,
however is in essence a very simplistic example of extending the LMM to a
stochastic volatility setting.

Such discussions then started to highlight some of the limitations embed-
ded in our current approach. Given the fact that future volatilities and conse-
quently future term structures re�ect future hedging costs, we should have an
approach that can re�ect the correct future expected behaviour (Rebonato and
White [51]). Irrespective of this, we have that our current simplistic model al-
ready identi�ed some of the possible desirable features that an accurate model
should have. The next point, would be to include di�erent volatilities as we
move across di�erent strikes. This will be discussed later in this section.

Turning our attention now to correlations, it was motivated that we will
focus our attention on historically estimated correlation matrices. From this,
we can then perform the necessary rank reduction procedures (in order to
simplify Monte Carlo simulations) and/or �t an appropriate parametric form
if the input data contained a considerable amount of noise.

The decision to work with exogenously given correlation matrices, was
motivated by the di�culty of obtaining accurate correlation estimates from
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market inputs. Rebonato [47] mentioned that this task is very complex, even
within a liquid interest rate market. European swaptions, for example, is one
of the traded products that may actually contain information regarding the
correlations between di�erent forward rates. However, when considering the
swaption volatility approximation formula it is evident that the shape of the
instantaneous volatility functions also play a signi�cant role in the pricing of
swaptions, resulting in di�erent implied correlations for di�erent instantaneous
volatility functions (Rebonato [47]). Hence, in order to imply correlations from
market data we would typically need actively traded correlation derivatives.
To my knowledge, these are not currently available in the South African market
and hence we are forced to obtain correlations from historical rate movements
as well as trader estimates.

Alternatively, Rebonato [47] mentioned that actively traded serial options
would be able to complete the instantaneous volatility market (serial options
were discussed in Section 2.4.2). Once these functions are determined, we
would then be able to imply correlations through taking views regarding the
price congruence between the di�erent markets. Restrictions in liquidity how-
ever renders this approach implausible.

At this point, most of the theoretical concepts relating to the deterministic
volatility LMM were de�ned and discussed. Next, we moved on to consider
if we actually have the required data inputs in the South African market to
implement such an approach. Within this context, we considered market in-
puts as obtained from one of the South African investment banks. This type
of approach not only allowed for the analysis of the real life market views and
assumptions as made by SA traders, but also helped to eliminate the noise
associated with illiquid prices (these prices are submitted to price testing pro-
cesses on a weekly basis and hence can be assumed to be a relatively accurate
re�ection of the data available on sources such as Reuters and Bloomberg).
Although we mainly considered actual trader inputs, it was also illustrated
how to obtain similar market data from trading sources such as Reuters or
Bloomberg.

Following the sourcing of the relevant market data, we also considered key
procedures required to transform the obtained market data into the required
format. These included curve bootstrapping (for which we brie�y discussed
the e�ect of di�erent interpolation techniques), as well as, a caplet stripping
procedure. From these we were able to obtain the required caplet volatilities
from market cap volatilities. The curve bootstrapping methodology was then
used on the historical data set in order to obtain historical forward rates. These
were then in turn used for the historical estimation of implied caplet volatilities,
as well as, the correlations between di�erent constant maturity forward rates
(note that we calculated the correlations for constant maturity forwards, this is
due to the model assumptions regarding the underlying variables and should
not be confused with market observable constant time-to-maturities (Brigo
and Mercurio [11])).
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The historical caplet volatilities were provided for pure analysis purposes
and were not used in any calibration routines. This, however, allowed us to
draw some interesting relationships between the market implied and historical
volatilities. Both term structures, for instance, re�ected a �humped� shape for
normal time periods, vs. an inverted shape during more volatile periods. The
most signi�cant di�erence between the two di�erent term structures, related
to the timing di�erence at any point in time, i.e. the historical estimation is
always backward looking, whereas the market implied volatilities are forward
looking.

Similarly, we obtained �nancially desirable historical correlations. The
estimates did display some noise, which was expected to be due to linear
interpolation and market segmentation. It was then argued that we should
�rst �t a parametric form to this matrix before using in practical applications
(given this matrix is broadly in line with trader expectations).

With these market inputs to our disposal, we then moved to the actual
calibration of the model. The analysis started with the volatility portions of
the instantaneous covariance functions. We illustrated in which cases some of
the piecewise constant volatility speci�cations resulted in imaginary volatili-
ties (was only found in the European market, for the case where instantaneous
volatilities depend on the time-to-maturity of the forward rate under consider-
ation). This scenario was explained and we did consider available techniques
to identify such scenarios. The remainder of the volatility speci�cations were
implemented successfully, and allowed for the exact pricing of the input caplet
volatilities in all scenarios. Note that we only considered the calibration to
caplet prices. These results can easily be extended to an input swaption ma-
trix, given an exogenous correlation matrix and Rebonato's [47] approximate
swaption volatility formula. Following each of the calibration procedures, we
considered the market implied term structures. These were found to be time-
homogeneous (with small noise for parametric functions due to the used for-
ward rate speci�c components, as well as, the time dependent functions) for
most of the volatility speci�cations (only exception relates to the piecewise
constant volatility speci�cation where volatilities depend on the maturity of
the forward rate). We also illustrated that the accuracy of parametric volatil-
ity functions were signi�cantly improved when we included time dependent
components.

Next, we moved on to the joint calibration of di�erent forward rates. These
applications were based on the fact that we can separate the market observable
volatility component from the component used for correlation modeling (Re-
bonato [47]). As a result, we required exogenously given correlation matrices.
For the European market, we used the correlation matrix as provided by Brigo
and Mercurio [11]. On the other hand, we used the historically estimated cor-
relation matrix (described earlier) as the exogenous correlation matrix for the
South African market.

Before using this historically estimated correlation matrix, we �rstly ex-
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amined its implied eigenvectors. These implied sensible principal components,
even with all the associated di�culties relating to the estimation of histori-
cal correlations. These factors were in line with movements observable in a
rate hiking scenario. This analysis was performed in order to ensure that the
evolution of forward rates will be in line with market expectations. Next, we
�tted di�erent parametric forms to this matrix in order to smooth out some
of the noise inherent in this matrix. Following the smoothing process, we still
obtained sensible principal components, irrespective of the parametric form.
We also used this opportunity, to examine some of the di�erences implied by
the two parametric forms. The main di�erences between the two parametric
forms, for this particular example, were found to be in the short end of the
curve. This was due to the fact that the more �exible form allowed for the
front forward rates to be less correlated with the remaining part of the curve
(as opposed to the simpler form where correlations are only dependent on the
di�erence in expiry times between two di�erent forward rates).

Regarding the actual calibration routines, we considered three di�erent
approaches. Two of the approaches were based on rank reduction techniques,
while the other was based on the calibration to a swaption volatility matrix,
assuming piecewise constant instantaneous volatilities.

The two rank reduction techniques were easily applied within the South
African market. We assumed in this calibration, the results obtained from the
calibration to caplet volatilities. The remainder of the calibration algorithm
then consisted of incorporating the exogenously given matrix into the forward
rate dynamics. As discussed earlier in the thesis, no additional calibration is
required (within this particular forward rate based setup where we have already
determined the instantaneous volatility functions and assume an exogenously
given correlation matrix) if we are not concerned with the dimensionality of the
forward rate dynamics (Rebonato [47]). However, for practical applications,
we need to consider ways in which to reduce the associated dimensionality.

The �rst method used here, was the Hull and White [31] approach which
only retains certain eigenvectors of the correlation matrix (depending on the
desired accuracy). The important point to consider when implementing this
approach, is how the model implied correlation matrix compare with the input
correlation matrix. Big di�erences can result in substantial price di�erences
for exotic products. This is irrespective of the �nancial requirement that the
associated eigenvectors should resemble certain movements in forward rates
(which are ensured by construction). It was also illustrated that the simple
parametric form required less factors to obtain a certain level of accuracy, when
compared to the more complex parametric form. The results of this approach
were obtained with minimal computational time.

The other rank reduction technique we considered, was based on Rebon-
ato's [47] angular formulation. This approach focus on the speci�cation of
forward rate dynamics, that most accurately re�ect the input correlation ma-
trix. In contrast to the previous approach, this methodology is based on an

 
 
 



Chapter 12. Conclusion 183

unconstrained minimization routine with the objective function representing
the di�erences between the input and model implied correlations. It is hence
expected to require fewer factors in order to ensure the levels of accuracy given
by the Hull and White approach. This process was, however, found to be very
time consuming, especially as we increase the number of factors. The results
show an initial improvement over the Hull and White approach when the num-
ber of factors are low. However, this advantage seemed to reduce quickly as
we increase the required accuracy.

The �nal joint calibration technique that we considered, as mentioned
above, was based on the calibration to a swaption volatility matrix, assum-
ing piecewise constant instantaneous volatilities. This type of calibration was
introduced by Brigo and Mercurio [11], which resulted in a series of di�erent
cascade calibration algorithms. Each calibration algorithm, was developed to
improve on the previous one. We implemented these calibration algorithms to
the European market and matched the results of the authors.

In particular, it seemed like the �nal algorithm proposed by the authors
might be very useful, especially in the South African market were swaption
volatilities are not that readily available. Upon further analysis, it was found
that each of these methodologies require input swaption volatilities with ex-
piry and maturity increments set equal to the underlying reset frequency. For
instance, in the examples relating to the European market, we had an under-
lying resetting frequency of one year. As a result, we needed swaption expiries
and underlying swap maturities of 1y up to 10y. The �nal algorithm then
catered for instances in which we had some missing swaption expiries.

In the South African market, on the other hand, we have that caps and
swaptions are based on 3-monthly interest rates. This then implies that we
will need signi�cantly more available swaption prices in order to implement
the di�erent cascade calibration algorithms. Through examining the market
available swaption volatility matrix, it was found that we are not only missing
a number of expiries, but also a number of underlying maturities. The �nal
algorithm proposed by Brigo and Mercurio [11] does not cater for the latter
part of the missing data by construction and hence will require even more
simplifying assumptions.

The only way in which these algorithms can then be implemented in
the South African market is through �rst interpolating the missing swaption
volatilities (at least all of the missing maturities and then obtain the miss-
ing expiries through endogenous interpolation). However, we know that the
outcome of the calibration algorithm will be signi�cantly in�uenced by these
assumptions, which will present us with the problem of �nding an interpola-
tion algorithm that most closely re�ect the unobservable swaption volatilities
(assuming such an algorithm exists). Hence, it was strongly recommended to
�rst try and extend the input swaption matrix as much as possible, which in
practice can be a tedious task and must be weighted up against the advantages
of implementing such an approach. Given these issues, as well as the detailed
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implementation for the European market data, we did not pursue this problem
any further.

In the �nal chapter of this thesis, we brie�y considered extending our ap-
proach to incorporate observable interest rate smiles (stochastic volatility set-
ting). This then provided us with the �nal required adjustment, to ensure
that the model implied hedging costs are more in line with that realized in the
market.

The focus in this chapter was based on the SABR model (although there
are a number of alternative approaches). This choice was mainly motivated by
the fact that it is already implemented in the South African market for vanilla
interest rate options. Such an approach then allowed for the joint modeling
of forward rates, while at the same time producing vanilla option prices that
are consistent with the observed market prices (as opposed to modeling each
forward rate in isolation in the standard SABR model). This extension was
based on the recent work by Rebonato [49] and Rebonato and White [52].

This chapter was, however, less detailed than the rest of the thesis. We
only brie�y highlighted some of the authors' obtained results as well as what
these results imply. An in depth analysis of this model, as well as, other
possible extensions require signi�cantly more work and can be regarded as a
research project on its own. Hence, this project did not attempt to provide
a complete description of these types of models, or even provide proofs or
implementations. Instead, this chapter was intended to rather serve as a brief
introduction into this �eld of research, and will be pursued outside this thesis
as an ongoing project.
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Theorems and De�nitions

This chapter provides some useful theorems and de�nitions, as given by Björk
[4], that can be used to supplement the change-of-numeraire ideas and concepts
presented in Chapter 3.

A.1 The Radon-Nikodym Theorem

Absence of arbitrage is closely connected to the existence of certain abso-
lutely continuous measure transformations. The basic mathematical tool is
the Radon-Nikodym Theorem (Björk [4]). This is presented below

Theorem A.1.1 (The Radon-Nikodym Theorem - Björk [4]) Consider
the measure space (X,F , µ), where we assume that µ is �nite, i.e. µ(X) <∞.
Assume that there exists a measure ν on (X,F) such that ν << µ on F . Then
there exists a nonnegative function f : X → R such that

f is F −measureable,∫
X
f(x) dµ(x) <∞,

ν(A) =
∫
A
f(x) dµ(x), for all A ∈ F .

The function f is called the Radon-Nikodym derivative of ν w.r.t. µ. It is
uniquely determined µ-a.e. and we write

f(x) =
dν(x)
dµ(x)

.
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A.2 Equivalent Probability Measures

The following theorem presents a useful result known as the Abstract Bayes'
Formula. This result explains how conditional expected values under a proba-
bility measure, say Q, is related to the condition expected values under another
measure, say P .

Theorem A.2.1 (Bayes' Theorem - Björk [4]) Assume that X is a ran-
dom variable on (Ω,F , P ), and let Q be another probability measure on (Ω,F)
with Radon-Nikodym derivative

L =
dQ

dP
on F .

Assume that X ∈ L1(Ω,F , Q) and that G is a sigma-algebra with G ⊆ F . Then

EQ[X|G] =
EP [L ·X|G]
EP [L|G]

, P-a.s.

A.3 Likelihood Processes

Lastly, we will introduce the concept of a likelihood process. This is given in
the theorem below.

Theorem A.3.1 (Likelihood Process - Björk [4]) Consider a �ltered prob-
ability space (Ω,F , P,F) on a compact interval [0, T ]. Suppose that LT is some
nonnegative integrable random variable in FT . We can then de�ne a new mea-
sure Q on FT by setting

dQ = LTdP, on FT ,

and if
EP [LT ] = 1,

the measure will also be a probability measure.
From its de�nition, LT will be the Radon-Nikodym derivative of Q w.r.t.

P on FT so Q << P on FT . Hence we will also have Q << P on Ft for
all t ≤ T and thus, by the Radon-Nikodym Theorem (A.1.1), there will exist a
random process Lt; 0 ≤ t ≤ T de�ned by

Lt =
dQ

dP
, on Ft.

The L process is de�ned as the likelihood process for the measure transformation
from P to Q and is a (P,F) martingale.
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A.4 The Martingale Approach to Arbitrage Theory

The martingale approach to �nancial derivatives is de�ned by Björk [4] as the
most general approach for arbitrage pricing. Furthermore, this approach is
also very e�cient from a computational point of view.

Some of the arbitrage pricing concepts were already introduced in Section
3.2.1. This section will present theorems relating to market completeness and
the impact of this on the price of a derivative.

Theorem A.4.1 (Market Completeness - Björk [4]) A T-claim X can
be replicated, alternatively it is reachable or hedgeable, if there exists a self-
�nancing portfolio h such that

V h(T ) = X,P − a.s.

In this case we say that h is a hedge against X. Alternatively, h is called a
replicating or hedging portfolio. If every contingent claim is reachable we say
that the market is complete.

Theorem A.4.2 (Second Fundamental Theorem - Björk [4]) Assuming
absence of arbitrage, the market is complete if and only if the martingale mea-
sure Q is unique.

This then translates into the theorem presented below.

Theorem A.4.3 (Uniqueness of a Derivative Price - Björk [4]) Di�erent
choices of Q will generically give rise to di�erent price processes for a �xed
claim X. However, if X is attainable then all choices of Q will produce the
same price process, which then is given by

Π(t;X) = V (t;h),

where h is the hedging portfolio. Di�erent choices of hedging portfolios (if such
exist) will produce the same price process.

A.5 Correlated Wiener Processes

We will consider how to de�ne correlated Wiener processes. The arguments
presented below were taken from the book by Björk [4]. In order to do this con-
sider d independent standard (i.e. unit variance) Wiener processesW 1, . . . ,W d.
Furthermore, let a (deterministic and constant) matrix

C =


c11 c12 . . . c1d
c21 c22 . . . c2d
...

...
. . .

...
cn1 cn2 . . . cnd


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be given, and consider the n−dimensional process W, de�ned by

W = CW,

where

W =

 W1
...
Wn

 .
If we now assume that the rows of C have unit length, then it is evident that
each of the elements of W are standard (i.e. unit variance) Wiener processes.
Hence, we obtain the following

ρijdt = Cov[dWi, dWj ]
= E[dWi · dWj ]

= E

[
d∑

k=1

cikdW k ·
d∑
l=1

cjldW l

]

However, since W 1, . . . ,WN are assumed to be independent standard Wiener
processes, we have that

ρijdt =
∑
kl

cikcjlE[dW k · dW l]

= CiC
′
jdt,

i.e.
ρ = CC ′.

A.6 Black's Model for European Options

Black's model for the pricing of European style options is given by Hull [32]
below. This model is based on the model by Fischer Black [5] for valuing
options on commodity futures. In this model, the underlying is assumed to be
the forward price of an instrument as opposed to the spot price.

Theorem A.6.1 (Black's Model - Hull [32]) Assume that the value of the
underlying variable (to the forward contract) is given by V . The �rst case we
will consider is the pricing of a European call option. In order to do this we
need to de�ne the following variables:
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T : Time to maturity of the option

F : Forward price of V for a contract with maturity T

F0 : Value of F at time zero

K : Strike of the option

P (t, T ) : Price at time t of a zero-coupon bond paying one monetary unit at time T

VT : Value of V at time T

σ : Volatility of F

We have that the expected payo� of at time T is given by

E(VT )N(d1)−KN(d2)

where E(VT ) is the expected value of VT and

d1 =
ln[E(VT )/K] + σ2T/2

σ
√
T

d2 =
ln[E(VT )/K]− σ2T/2

σ
√
T

= d1 − σ
√
T .

Given E(VT ) = F0, we have that the value of the option is

c = P (0, T )[F0N(d1)−KN(d2)]

where

d1 =
ln[F0/K] + σ2T/2

σ
√
T

d2 =
ln[F0/K]− σ2T/2

σ
√
T

= d1 − σ
√
T .

The value of the corresponding put option is given by

p = P (0, T )[KN(−d2)− F0N(−d1)].

 
 
 



Appendix B

Derived Results

B.1 Forward Swap Rates

A forward swap rate is per de�nition the rate of the �xed leg of an interest rate
swap that will ensure that the present value of the �xed leg will be equal to
the present value of the �oating leg of the swap. The derivation of this result,
as presented below, follows the same arguments as given by Gatarek, Bachert
and Maksymiuk [21].

Consider an interest rate swap that starts at Ts and ends at TN . Then we
have that the present value of the �oating leg of the swap is given by

PV (Floating Leg) =
N∑

i=s+1

B(T0, Ti)LTi−1Ti(T0)αTi−1Ti ,

and similarly the present value of the �xed leg of the swap is given by

PV (Fixed Leg) =
N∑

i=s+1

B(T0, Ti)SRs,N (T0)αTi−1Ti .

Now we can determine the swap rate through equating the present value of
the �xed leg to the present value of the �oating leg, i.e.

N∑
i=s+1

B(T0, Ti)LTi−1Ti(T0)αTi−1Ti =
N∑

i=s+1

B(T0, Ti)SRs,T (T0)αTi−1Ti ,

or

SRs,N (T0) =
∑N

i=s+1B(T0, Ti)LTi−1Ti(T0)αTi−1Ti∑N
i=s+1B(T0, Ti)αTi−1Ti

.
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Using Equation (4.1.3) we can write above expression as

SRs,N (T0) =
∑N

i=s+1(B(T0, Ti−1)−B(T0, Ti))∑N
i=s+1B(T0, Ti)αTi−1Ti

=
B(T0, Ts)−B(T0, TN )∑N
i=s+1B(T0, Ti)αTi−1Ti

.

The forward swap rate SRs,N (T0) will be used to determine strikes for ATM
caps.

B.2 Recovering Black's Formula for Caplets in the

LMM

This section will follow the work presented by Björk [4] and Götsch [22].
In the LMM we assume that the dynamics of LTiTi+1(t) under Qi+1 is given

by
dLTiTi+1(t) = σTiTi+1(t)LTiTi+1(t)dW i+1(t).

Firstly we will derive the distributional properties of LTiTi+1(t) as done in
Götsch [22]. Using the Taylor expansion, we can obtain the dynamics of
lnLTiTi+1(t) as given below

dlnLTiTi+1(t) =
1

LTiTi+1(t)
dLTiTi+1(t)− 1

2
1

(LTiTi+1(t))2
(dLTiTi+1(t))2

= σTiTi+1(t)dW i+1(t)− 1
2
σ2
TiTi+1

(t)dt

Integrating both sides yields

LTiTi+1(T ) = LTiTi+1(0)exp
{
−1

2

∫ T

0
σ2
TiTi+1

(t)dt+
∫ T

0
σTiTi+1(t)dW i+1(t)

}
.

The expression in the exponent is normally distributed, with the following
properties

E

[
−1

2

∫ T

0
σ2
TiTi+1

(t)dt+
∫ T

0
σTiTi+1(t)dW i+1(t)

]
= −1

2

∫ T

0
σ2
TiTi+1

(t)dt,

and

V ar

[
−1

2

∫ T

0
σ2
TiTi+1

(t)dt+
∫ T

0
σTiTi+1(t)dW i+1(t)

]
=
∫ T

0
σ2
TiTi+1

(t)dt.

Hence, we have that LTiTi+1(T ) is log normally distributed. The next part of
the derivation will follow arguments given in Björk [4]. Consider the payo� of
a caplet as given below

payo� = αTiTi+1(LTiTi+1(Ti)−X)+
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or
payo� = αTiTi+1(LTiTi+1(Ti)−X).I{LTiTi+1(Ti) ≥ X}

where

I{LTiTi+1(Ti) ≥ X} =

{
1 if LTiTi+1(Ti) ≥ X,

0 if LTiTi+1(Ti) < X.

We know that the price of above claim is given by its discounted expected
value. In order to derive an arbitrage-free price we can use Theorem 3.2.4 and
obtain the following under the T i+1 forward measure

CplLMM

= B(0, Ti+1)Ei+1[αTiTi+1(LTiTi+1(Ti)−X).I{LTiTi+1(Ti) ≥ X}]
= B(0, Ti+1)αTiTi+1(Ei+1[LTiTi+1(Ti).I{LTiTi+1(Ti) ≥ X}]
− Ei+1[X.I{LTiTi+1(Ti) ≥ X}])

Firstly, consider the expectation

Ei+1[X.I{LTiTi+1(Ti) ≥ X}].

We can calculate this as given below

Ei+1[X.I{LTiTi+1(Ti) ≥ X}]
=XP i+1[LTiTi+1(Ti) ≥ X]

=XP i+1

Z ≤ ln
(
LTiTi+1

(0)

X

)
− 1

2

∫ Ti

0 σ2
TiTi+1

(t)dt√∫ Ti

0 σ2
TiTi+1

(t)dt

 ,
where Z is a standard normally distributed random variable. LetN(x) indicate
the cumulative probability distribution function for a standardized normal
distribution. Then we can write above expectation as

Ei+1[X.I{LTiTi+1(Ti) ≥ X] = XN(d2),

where

d2 =
ln
(
LTiTi+1

(0)

X

)
− 1

2

∫ Ti

0 σ2
TiTi+1

(t)dt√∫ Ti

0 σ2
TiTi+1

(t)dt
.

Now, let us consider the expression

B(0, Ti+1)Ei+1[LTiTi+1(Ti).I{LTiTi+1(Ti) ≥ X}].

In order to calculate the above expression, we will change the numeraire from
B(t, Ti+1) to B(t, Ti)−B(t, Ti+1). Using Proposition 3.2.4, we have that

B(0, Ti+1)Ei+1[LTiTi+1(Ti).I{LTiTi+1(Ti) ≥ X}]

=
1

αTiTi+1

(B(0, Ti)−B(0, Ti+1))E∗[I{LTiTi+1(Ti) ≥ X}]

=B(0, Ti+1)LTiTi+1(0)E∗[I{LTiTi+1(Ti) ≥ X}],
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since we know that

αTiTi+1LTiTi+1(t) =
B(t, Ti)−B(t, Ti+1)

B(t, Ti+1)
.

Note that the expectation E∗ relates to the martingale measure under which
the process 1/LTiTi+1(Ti) is a martingale. Using Taylor, we can obtain the
dynamics of 1/LTiTi+1(Ti) as

d
1

LTiTi+1(Ti)
= − 1

(LTiTi+1(Ti))2
dL+

1
(LTiTi+1(Ti))3

(dL)2

= − 1
LTiTi+1(Ti)

σTiTi+1(t)dW ∗(t).

Similarly to the start of the section, we can express 1/LTiTi+1(Ti) as

1
LTiTi+1(T )

=
1

LTiTi+1(0)
exp

{
−1

2

∫ T

0
σ2
TiTi+1

(t)dt−
∫ T

0
σTiTi+1(t)dW ∗(t)

}
Finally, we can write

B(0, Ti+1)LTiTi+1(0)E∗[I{LTiTi+1(Ti) ≥ X}]
=B(0, Ti+1)LTiTi+1(0)P ∗[LTiTi+1(Ti) ≥ X]

=B(0, Ti+1)LTiTi+1(0)P ∗
[

1
LTiTi+1(Ti)

≤ 1
X

]

=B(0, Ti+1)LTiTi+1(0)P ∗

Z ≤ ln
(
LTiTi+1

(0)

X

)
+ 1

2

∫ Ti

0 σ2
TiTi+1

(t)dt√∫ Ti

0 σ2
TiTi+1

(t)dt


=B(0, Ti+1)LTiTi+1(0)N(d1),

where

d1 =
ln
(
LTiTi+1

(0)

X

)
+ 1

2

∫ Ti

0 σ2
TiTi+1

(t)dt√∫ Ti

0 σ2
TiTi+1

(t)dt
.

Hence, we have that

CplLMM = B(0, Ti+1)αTiTi+1 [LTiTi+1(0)N(d1)−XN(d2)],

which is very similar as that given by Black's formula (see Section A.6). The
only di�erence is in the calculation of d1,2. The term d1,2 in Black's formula
is given by

d1,2 =
ln
(
LTiTi+1

(0)

X

)
± 1

2Tiσ
2
TiTi+1.caplet√

Tiσ2
TiTi+1.caplet

,
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while it is given by the LMM as

d1,2 =
ln
(
LTiTi+1

(0)

X

)
± 1

2

∫ Ti

0 σ2
TiTi+1

(t)dt√∫ Ti

0 σ2
TiTi+1

(t)dt
.

Comparing the last two expressions gives us a relationship between the Black
and LMM caplet volatility:

Tiσ
2
TiTi+1.caplet =

∫ Ti

0
σ2
TiTi+1

(t)dt.

B.3 Recovering Black's Formula for Swaptions in

the Swap-Rate-Based LMM

This section brie�y discuss a di�erent approach to deriving the volatility rela-
tionship between the Black and market model.

Firstly, instead of choosing a forward bond price as numeraire (see Section
B.2), we will choose the associated annuity An,N as the numeraire (it can be
seen that this is a combination of traded assets). This will then imply that the
swap rate will be a martingale under this measure (called the forward swap
measure) and hence we can write that

dSRn,N (t) = σn,N (t)SRn,N (t)dWn,N (t).

Applying Taylor expansions and integrating on both sides of the equation (as
illustrated in B.2) one can obtain the following

SRn,N (T ) = SRn,N (0)exp
{
−1

2

∫ T

0
σ2
n,N (t)dt+

∫ T

0
σn,N (t)dWn,N (t)

}
.

The expression in the exponent is normally distributed, with the following
properties

E

[
−1

2

∫ T

0
σ2
n,N (t)dt+

∫ T

0
σn,N (t)dWn,N (t)

]
= −1

2

∫ T

0
σ2
n,N (t)dt,

and

V ar

[
−1

2

∫ T

0
σ2
n,N (t)dt+

∫ T

0
σn,N (t)dWn,N (t)

]
=
∫ T

0
σ2
n,N (t)dt.

Consider a swaption in which gives the holder the right to pay a �xed rate X,
then the payo� consists of a series of cash �ows equal to (see Hull [32])

payo� = αTiTi+1(SRn,N (Tn)−X)+.
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The value of this payo� can then easily be calculated from �rst principles. The
results are given below

αTiTi+1B(0, Ti+1)[SRn,N (0)N(d1)−XN(d2)],

where

d1,2 =
ln
(
SRn,N (0)

X

)
± 1

2

∫ Tn

0 σ2
n,N (t)dt√∫ Tn

0 σ2
n,N (t)dt

.

If we once again compare with the Black equivalent

d1,2 =
ln
(
SRn,N (0)

X

)
± 1

2TnV
2
n,N√

TnV 2
n,N

,

then we can deduce that

TnV
2
n,N =

∫ Tn

0
σ2
n,N (t)dt.
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Matlab Code

This chapter will provide the Matlab code used in applications throughout this
thesis. The code is presented in order to allow the reader to replicate some of
the results and hence to allow a better understanding of the actual calculations
needed in the implementation of the model.

C.1 Volatility Calibration

Volatility calibration was discussed in Chapter 9. It was shown that some of
the calibration algorithms require minimization routines (and may even require
numerical integration). Instead of creating the required routines, this thesis
used some of the routines available in Matlab.

Similar to the rest of the thesis, we will present the code separately for
the European and South African Markets. The actual code for each of these
markets are presented in the sections below.

C.1.1 Calibrating to European Market Data

The market data used for this calibration is contained in the code below. The
data was taken from the text by Gatarek, Bachert and Maksymiuk [21] and is
presented in Chapter 7.

C.1.1.1 Separable Volatility Speci�cation

The code used in this calibration routine consists of two user de�ned functions.
The �rst function (or procedure in this speci�c case), minimizes an user de-
�ned function �PARTimeHomEUR� through using the Matlab de�ned function
lsqnonlin (function for nonlinear least-squares problems). Furthermore, this
�rst procedure was constructed such that this process starts the minimization
process at a number of di�erent starting points (speci�ed according to user,
results presented in this thesis used 50 di�erent starting points). This gener-
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ally allows for better results, especially if the objective function is complex of
nature. This function is presented in the Matlab code below.

function x = LoopPARTimeHomEUR(n)

%increase number of function evaluations

options = optimset('MaxFunEvals',10000);

%choose initial point

x0 = [0.1;0.1;0.1;0.1];

%empty upper and lower bounds

lb=[];ub=[];

%perform first optimazation

[vect,fval] = lsqnonlin(@PARTimeHomEUR,x0,lb,ub,options);

fval %show intermediate results

for i=1:n

i %included to show where in process

%generate random starting points from

%Uniform distrubution, allows for a

%better aproximation of the global

%minimum

x0=unifrnd(-1,1,4,1);

[vect2,fval2] = lsqnonlin(@PARTimeHomEUR,x0,lb,ub,options);

fval2 %show intermediate results

%at each step of the procedure we need to check if the new

%starting point resulted in a lower function value

if fval2 < fval

vect = vect2;

fval = fval2;

end

end

vect %show optimal vector

x=fval;

end

The procedure presented above repeatedly references the function �PARTime-
HomEUR�. This function in turn represents the �tting of a time-homogeneous
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function to a set of market given volatilities. The Matlab code for this function
is given below.

function x = PARTimeHomEUR(x0)

%define input variables

v1 = x0(1,1);

v2 = x0(2,1);

v3 = x0(3,1);

v4 = x0(4,1);

YearFrac = [0;0.25;0.5028;0.7583;1.0139;1.2639;1.5167;1.7722;

2.0278;2.2778;2.5306;2.7861;3.0417;3.2944;3.5472;

3.8083;4.0611;4.3139;4.5667;4.8194;5.0722;5.3250;

5.5778;5.8306;6.0861;6.3361;6.5889;6.8444;7.1000;

7.3528;7.6056;7.8611;8.1167;8.3667;8.6194;8.8750;

9.1361;9.3806;9.6333;9.8944;10.1472];

CaplVol = [0.1641;0.1641;0.1641;0.2015;0.2189;0.2365;0.2550;

0.2212;0.2255;0.2298;0.2341;0.2097;0.2083;0.2077;

0.2051;0.2007;0.1982;0.1959;0.1938;0.1925;0.1902;

0.1879;0.1859;0.1844;0.1824;0.1804;0.1781;0.1766;

0.1743;0.1724;0.1700;0.1677;0.1657;0.1637;0.1622;

0.1623;0.1612;0.1599;0.1570];

%declare variables to be used in calculations

IntVol = zeros(39,1);

ResVol = zeros(39,1);

C = zeros(39,1);

B = zeros(39,1);

mtrx = zeros(39,39);

for i = 1:39

sum2 = 0;

Ti = YearFrac(i+1,1);

for j = 1:i

Tj = YearFrac(j+1,1);

Tprev = YearFrac(j,1);

mtrx(i,j) =

quad(@(t)RebTH(t,v1,v2,v3,v4,Ti),Tprev,Tj);

sum2 = sum2 + mtrx(i,j);

end

IntVol(i,1) = sum2;

B(i,1) =

sqrt((YearFrac(i+1,1)*CaplVol(i,1)^2)/IntVol(i,1));

end
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sum = 0;

for i = 1:39

ResVol(i,1) = YearFrac(i+1,1)*CaplVol(i,1)^2

- IntVol(i,1);

sum = sum + (YearFrac(i+1,1)*CaplVol(i,1)^2

- IntVol(i,1))^2;

C(i,1) = sqrt(IntVol(i,1)/YearFrac(i+1,1));

end

x = ResVol;

C; %can be used for vol graph

B; %factors needed for exact pricing of market caps

end

Note the de�nition of the vector B in the code presented above. This provides
the scaling factors necessary to price back exactly to the given set of caplet
prices. Furthermore, the vector C provides the model implied caplet volatilities
which can be used to compare to the market given data. The code for the
function �RebTH� is presented below (time-homogeneous function proposed
by Rebonato [47]).

function y = RebTH(t,v1,v2,v3,v4,Ti)

y = (v1+(v2+v3*((Ti-t))).*exp(-v4*((Ti-t)))).^2;

end

A signi�cant amount of emphasis is placed on the calibration of the model while
ensuring a time homogeneous evolution of the term structure of volatilities.
Following the calibration process, it is important to consider the evolution of
the term structure as predicted by the model. In order to perform this analysis,
we can run the code given below.

function x = PARTermStructEvolEUR()

%define input variables

YearFrac = [0;0.25;0.5028;0.7583;1.0139;1.2639;1.5167;1.7722;

2.0278;2.2778;2.5306;2.7861;3.0417;3.2944;3.5472;

3.8083;4.0611;4.3139;4.5667;4.8194;5.0722;5.3250;

5.5778;5.8306;6.0861;6.3361;6.5889;6.8444;7.1000;

7.3528;7.6056;7.8611;8.1167;8.3667;8.6194;8.8750;

9.1361;9.3806;9.6333;9.8944;10.1472];

%set parameters of the time-homogeneous function equal to the
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%values obtained from the minimization step

x0 = [0.112313592812041;-0.047580086207463;0.471041078023537;

1.044461507040869];

v1 = x0(1,1);

v2 = x0(2,1);

v3 = x0(3,1);

v4 = x0(4,1);

%set the forward rate function equal to the constant values

%obtained from the minimization step

B = [1.328395061;0.989406727;0.844746596;0.949471864;

0.983095912;1.036196499;1.106831117;0.960950532;

0.986836244;1.017429591;1.051602673;0.957323067;

0.967058399;0.980967328;0.98600271;0.981295579;

0.98519002;0.989454161;0.994060022;1.002147283;

1.00436107;1.005823979;1.008167147;1.012693546;

1.013560992;1.013904699;1.012020248;1.0140724;

1.010833759;1.009337779;1.004452614;0.999599303;

0.995837872;0.991697402;0.99024625;0.998402896;

0.998429587;0.997125657;0.985670182;1;1;1;1;1;1;

1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;

1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1];

%declare variable to be used in calculations

volEvol=zeros(39,39);

for k=1:39

for i = 1:39

sum2 = 0;

Ti = YearFrac(i+1,1);

for j = 1:i

Tj = YearFrac(j+1,1);

Tprev = YearFrac(j,1);

sum2 = sum2 +

quad(@(t)RebTH(t,v1,v2,v3,v4,Ti),Tprev,Tj)

*(B(i+k-1,1)^2);

end

volEvol(i,k) = sqrt(sum2/YearFrac(i+1,1));

end

end

x = volEvol;

end
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C.1.1.2 Multi-Time Dependence Volatility Speci�cation

This section will extend the code presented in the previous case through the
inclusion of a time dependent component in the function �PARTimeHomEUR�.
The motivation for this extension was discussed in Section 9.2.2. Calibrating
the model under this speci�cation will require a two step approach and is
brie�y discussed below.

The �rst part of the calibration strategy under this methodology is still
to �t a time-homogeneous function to the given market data using the code
presented in Section C.1.1.1. This will result in an optimal set of parameters
for the time-homogeneous function �RebTH�.

The second part of the calibration will introduce a purely time dependent
function while �xing the parameters of the function �RebTH� at the values
obtained in the previous step. Given the speci�cation of the time depen-
dent function, we will use the numerical integration function (Matlab de�ned)
quadgk as opposed to quad. This new function is more e�cient for oscillatory
integrands.

The code for the second part of the calibration is presented below (results
presented in this thesis used 100 di�erent starting points).

function x = LoopPARTimeHomEURStep2(n)

%increase number of function evaluations

options = optimset('MaxFunEvals',10000);

%choose initial point

x0 = [0.1;0.1;0.1;0.1;0.1;0.1];

%empty upper and lower bounds

lb=[];ub=[];

%perform first optimazation

[vect,fval] = lsqnonlin(@PARTimeHomEURStep2,x0,lb,ub,options);

fval %show intermediate results

for i=1:n

i %included to show where in process

%generate random starting points from

%Uniform distribution

x0=unifrnd(-1,1,6,1);

[vect2,fval2] =

lsqnonlin(@PARTimeHomEURStep2,x0,lb,ub,options);

fval2 %show intermediate results
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%assignment statement

if fval2 < fval

vect = vect2;

fval = fval2;

end

end

vect %show optimal vector

x=fval;

end

This code is almost similar to the code presented in Section C.1.1.1. The only
di�erence is the inclusion of two additional parameters. Next, let us consider
the speci�cation of the function �PARTimeHomEURStep2�. This is presented
in the code below.

function x = PARTimeHomEURStep2(e0)

%define input variables

e1 = e0(1,1);

e2 = e0(2,1);

e3 = e0(3,1);

e4 = e0(4,1);

e5 = e0(5,1);

e12 = e0(6,1);

YearFrac = [0;0.25;0.5028;0.7583;1.0139;1.2639;1.5167;1.7722;

2.0278;2.2778;2.5306;2.7861;3.0417;3.2944;3.5472;

3.8083;4.0611;4.3139;4.5667;4.8194;5.0722;5.3250;

5.5778;5.8306;6.0861;6.3361;6.5889;6.8444;7.1000;

7.3528;7.6056;7.8611;8.1167;8.3667;8.6194;8.8750;

9.1361;9.3806;9.6333;9.8944;10.1472];

CaplVol = [0.1641;0.1641;0.1641;0.2015;0.2189;0.2365;0.2550;

0.2212;0.2255;0.2298;0.2341;0.2097;0.2083;0.2077;

0.2051;0.2007;0.1982;0.1959;0.1938;0.1925;0.1902;

0.1879;0.1859;0.1844;0.1824;0.1804;0.1781;0.1766;

0.1743;0.1724;0.1700;0.1677;0.1657;0.1637;0.1622;

0.1623;0.1612;0.1599;0.1570];

%set parameters of the time-homogeneous function equal to the

%values obtained from the previous step

x0 = [0.112313592812041;-0.047580086207463;0.471041078023537;
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1.044461507040869];

v1 = x0(1,1);

v2 = x0(2,1);

v3 = x0(3,1);

v4 = x0(4,1);

%declare variables to be used in calculations

IntVol = zeros(39,1);

ResVol = zeros(39,1);

C = zeros(39,1);

B = zeros(39,1);

mtrx = zeros(39,39);

for i = 1:39

sum2 = 0;

Ti = YearFrac(i+1,1);

for j = 1:i

Tj = YearFrac(j+1,1);

Tprev = YearFrac(j,1);

mtrx(i,j) = quadgk(@(t)RebTHTD(t,v1,v2,v3,v4,

e1,e2,e3,e4,e5,e12,Ti),Tprev,Tj);

sum2 = sum2 + mtrx(i,j);

end

IntVol(i,1) = sum2;

B(i,1) =

sqrt((YearFrac(i+1,1)*CaplVol(i,1)^2)/IntVol(i,1));

end

sum = 0;

for i = 1:39

ResVol(i,1) = YearFrac(i+1,1)*CaplVol(i,1)^2

- IntVol(i,1);

sum = sum + (YearFrac(i+1,1)*CaplVol(i,1)^2

- IntVol(i,1))^2;

C(i,1) = sqrt(IntVol(i,1)/YearFrac(i+1,1));

end

x = ResVol;

C; %can be used for vol graph

B; %factors needed for exact pricing of market caps

end

From the previous section we know that the vector B contains the scaling
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factors necessary to price back exactly to the given set of caplet prices. Sim-
ilarly, the vector C provides the model implied caplet volatilities which can
be used to compare to the market given data. The only remaining part is the
speci�cation of the function �RebTHTD�. This is presented below.

function y = RebTHTD(t,v1,v2,v3,v4,e1,e2,e3,e4,e5,e12,Ti)

y = ((v1+(v2+v3*((Ti-t))).*exp(-v4*((Ti-t)))).*((e1*

sin(t*pi/10.1472+e2)+e2*sin(2*t*pi/10.1472+e3)+e3*

sin(3*t*pi/10.1472+e4)+e4*sin(4*t*pi/10.1472+e5)).

*exp(-e12*t))).^2;

end

It is worth making a short comment regarding the integrand de�ned in the
code above. Instead of using a piecewise constant approach, the code above
de�nes the integrand as a product of the time-homogeneous and time depen-
dent parts. An alternative would be to de�ne the time-homogeneous part
outside the integral given this was determined in the �rst step. This approach
is however less accurate and is not advised given the simplicity of the more
accurate approach.

C.1.2 Calibrating to South African Market Data

The market data used for this calibration is contained in the code below. It
was explained in detail in Chapter 8 how one can obtain a similar set from
data sources such as Bloomberg.

C.1.2.1 Volatilities Depending on Time to Maturity

The actual calibration of the model under this speci�cation was performed
in Excel (due to the simplicity of the calculations) and hence we will not
present the code for this calculation. The reader is referred to the detailed
examples on the European market and the explanation in Section 9.1.1 for
more information. This section will only provide the Matlab code that can be
used to obtain the evolution of the term structure as we move through time
(and consequently will contain the set of results as obtained in the calibration
process).

function x = PARTermStructEvolSAMethod1()

%define input variables

YearFrac = [0;0.25;0.5;0.75;1;1.25;1.5;1.75;2;2.25;2.5;2.75;

3;3.25;3.5; 3.75;4;4.25;4.5;4.75;5;5.25;5.5;5.75;

6;6.25;6.5;6.75;7;7.25;7.5;7.75;8;8.25;8.5;8.75;

9;9.25;9.5;9.75;10];
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%the eta vector represent results of calibration

eta = [0.1251800000;0.1532304924;0.1803754778;0.1871761021;

0.1713349996;0.1743498922;0.1754008774;0.2020176794;

0.1230860516;0.1116119389;0.1033796353;0.1456600865;

0.1067115833;0.0857576387;0.0673245282;0.1623817727;

0.0754984185;0.0643623492;0.0477174685;0.1271469638;

0.1072366752;0.1040128228;0.0985508929;0.1576069266;

0.1009819830;0.0999304003;0.0931857425;0.1515116167;

0.0965187676;0.0935643655;0.0913928914;0.1417441540;

0.0891580170;0.0809256066;0.0913776855;0.1850756775;

0.0880548857;0.0906366907;0.0715590840;0.1842219273];

%declare variables to be used in calculations

forwMatrx=zeros(40,40);

volEvol=zeros(40,40);

%create matrix containing volatilities of forward rates

for i = 1:40

for j = 1:i

forwMatrx(i, j) = eta(i-j+1,1);

end

end

%calculate evolution of term structure

for k=1:40

for i = k:40

sum2 = 0;

Ti = YearFrac(i-k+1+1,1);

for j = k:40

sum2 = sum2 + forwMatrx(i,j)^2*0.25;

end

volEvol(i-k+1,k) = sqrt(sum2/Ti);

end

end

x = volEvol;

end

C.1.2.2 Separable Volatility Speci�cation

The code presented below is very similar to that presented in Section C.1.1.1.
There are small di�erences with respect to the optimization routines (con-
strained vs. unconstrained used in the previous sections) and integration (use
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an analytical formula as opposed to numerical integration). The core dynamics
however remained relatively the same.

function [Fval,Fvect] = LoopPARTimeHomSA(n)

%increase number of function evaluations

options = optimset('MaxFunEvals',10000);

%choose initial point

x0 = [0.1;0.1;0.1;0.1];

%specify different constraints

A=[-1,-1,0,0;-1,0,0,0;0,0,0,-1];

b=[-0.08;-0.00001;-0.00001];

Aeq = [];beq = [];lb = []; ub = [];

%perform first optimization

[vect,fval] = fmincon(@PARTimeHomSA,x0,A,b,Aeq,beq,lb,ub,

@nonLinConSA,options);

fval %show intermediate results

for i=1:n

iter = i %included to show where in process

bestEst = fval %included to show best value obtained

%thus far

%generate random starting points from Uniform

%distribution, allows for a better approximation

%of the global minimum. Points generated adhere

%to constraints defined above

x0(1,1) = unifrnd(0,2,1,1);

x0(4,1) = unifrnd(0,2,1,1);

x0(3,1) = unifrnd(-1,1,1,1);

x0(2,1) = unifrnd(-3,3,1,1);

while (x0(1,1)+x0(2,1)) < 0

x0(2,1) = unifrnd(-3,3,1,1);

end

[vect2,fval2] = fmincon(@PARTimeHomSA,x0,A,b,Aeq,beq,lb,

ub,@nonLinConSA,options);

fval2 %show intermediate results

%at each step of the procedure we need to check if the
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%new starting point resulted in a lower function value

if fval2 < fval

vect = vect2;

fval = fval2;

end

end

Fval=fval; %returns optimal value

Fvect = vect; %returns optimal vector

end

Nonlinear constraints are de�ned through the function �nonLinConSA�. The
problem at hand only require nonlinear inequality constraints (instead of re-
stricting functions of the parameters, for example location of hump, to a
speci�c value, i.e. equality constraints, the algorithm restricts it to a certain
range). This is de�ned in the function below.

function [c,ceq] = nonLinConSA(x)

%define input variables

a=x(2,1);

b=x(3,1);

c=x(4,1);

d=x(1,1);

%define nonlinear inequality and equality constraints

c=abs(1-(b-c*a)/(c*b))-0.1;

ceq = [];

end

The de�nition of the function that needs to be minimized, i.e. �PARTime-
HomSA� is given in the Matlab code below.

function x = PARTimeHomSA(x0)

%define input variables

v1 = x0(1,1);

v2 = x0(2,1);

v3 = x0(3,1);

v4 = x0(4,1);

YearFrac = [0;0.25;0.50;0.75;1.00;1.25;1.50;1.75;2.00;2.25;2.50;

2.75;3.00;3.25;3.50;3.75;4.00;4.25;4.50;4.75;5.00;

5.25;5.50;5.75;6.00;6.25;6.50;6.75;7.00;7.25;7.50;
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7.75;8.00;8.25;8.50;8.75;9.00;9.25;9.50;9.75;10.00];

CaplVol = [0.12518;0.13991;0.15458;0.16334;0.16497;0.16657;

0.16786;0.17250;0.16773;0.16299;0.15850;0.15747;

0.15416;0.15031;0.14625;0.14731;0.14408;0.14084;

0.13752;0.13702;0.13575;0.13447;0.13311;0.13422;

0.13305;0.13193;0.13070;0.13150;0.13045;0.12939;

0.12834;0.12878;0.12776;0.12663;0.12576;0.12778;

0.12687;0.12605;0.12495;0.12677];

%declare variables to be used in calculations

ResVol = zeros(40,1);

C = zeros(40,1);

B = zeros(40,1);

MktVaR = zeros(40,1);

ModelVaR = zeros(40,1);

for i = 1:40

Ti = YearFrac(i+1,1);

sum2 = (THAnalInt(v2,v3,v4,v1,Ti,Ti)

- THAnalInt(v2,v3,v4,v1,0,Ti));

B(i,1) = sqrt((YearFrac(i+1,1)*CaplVol(i,1)^2)/sum2);

ResVol(i,1) = YearFrac(i+1,1)*CaplVol(i,1)^2 - sum2;

C(i,1) = sqrt(sum2/YearFrac(i+1,1));

MktVaR(i,1) = YearFrac(i+1,1)*CaplVol(i,1)^2;

ModelVaR(i,1) = sum2;

end

C; %can be used for vol graph

B; %factors needed for exact pricing of market caps

MktVaR; %market variances

ModelVaR; %model variances

x=transpose(ResVol)*ResVol;

end

The function �THAnalInt� represents the analytical integration of the square
of the instantaneous volatilities. This considerably reduced the required com-
putational time and hence was preferred above the numerical integration tech-
nique of the previous section. The Matlab code for this function is presented
below.

function y = THAnalInt(a,b,c,d,t,Ti)

y = (1/(4*c^3))*(4*a*c^2*d*(2*exp(c*(t-Ti)))+4*c^3*d^2*t

- 2*4*b*c*d*exp(c*(t-Ti))*(c*(t-Ti)-1)+exp(c*(2*t-2*Ti))

 
 
 



Appendix C. Matlab Code 209

*(2*a^2*c^2+2*a*b*c*(1+c*(2*Ti-2*t))+b^2*(1+2*c^2*(t-Ti)^2

+c*(2*Ti-2*t))));

end

As described throughout this thesis, it is important to consider the term
structure evolution of volatilities following the calibration process. The Matlab
code below provide the necessary calculations involved in this process.

function x = PARTermStructEvolSA()

%define input variables

YearFrac = [0;0.25;0.50;0.75;1.00;1.25;1.50;1.75;2.00;2.25;

2.50;2.75;3.00;3.25;3.50;3.75;4.00;4.25;4.50;

4.75;5.00;5.25;5.50;5.75;6.00;6.25;6.50;6.75;

7.00;7.25;7.50;7.75;8.00;8.25;8.50;8.75;9.00;

9.25;9.50;9.75;10.00];

%set parameters of the time-homogeneous function equal to the

%values obtained from the minimization step

x0=[0.105782518615748;-0.025782518615748;0.279813875241565;

1.237840675388569];

v1 = x0(1,1);

v2 = x0(2,1);

v3 = x0(3,1);

v4 = x0(4,1);

%set the forward rate function equal to the constant values

%obtained from the minimization step

B = [1.103991272082396;1.031033788176418;1.033465682536949;

1.036254830550857;1.019722331048633;1.019511728636313;

1.027596142734424;1.062797384699251;1.044006225102150;

1.027157730888388;1.012482991628495;1.020090257534752;

1.012745317336438;1.001117275705254;0.987108252095278;

1.007002990839056;0.996932604579362;0.985771672368137;

0.973037137107645;0.979472887485776;0.979795526714303;

0.979407274845969;0.977822748771328;0.993944059298312;

0.992779869103672;0.991487194390559;0.988894615068184;

1.001311105037045;0.999323134590358;0.996877471034461;

0.994152553836903;1.002696183078788;0.999618645261241;

0.995384702699757;0.992922600750649;1.013128336907268;

1.009963032110269;1.007293753340009;1.002174131141280;

1.020348694196970;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;

1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;
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1;1;1;1;1;1;1;1;1;1];

%declare variable to be used in calculations

volEvol=zeros(40,40);

for k=1:40

for i = 1:40

Ti = YearFrac(i+1,1);

sum2 = (THNumInt(v2,v3,v4,v1,Ti,Ti)

- THNumInt(v2,v3,v4,v1,0,Ti))*(B(i+k-1,1)^2);

volEvol(i,k) = sqrt(sum2/YearFrac(i+1,1));

end

end

x = volEvol;

end

C.1.2.3 Multi-Time Dependence Volatility Speci�cation

This section will present the code used for the third step of the calibration
process when applied to the South African market. Most of the procedures
are very similar to that given for the European market and hence the reader
is referred to the discussions in Section C.1.1.2 for more details.

The code used specifying the minimization routines are given below (results
presented used 2000 di�erent starting points). Note that this step did not need
to enforce any constraints and hence the code was changed back to make use
of the unconstrained optimization routine.

function [Fval,Fvect] = LoopPARTimeHomSAStep2(n)

%increase number of function evaluations

options = optimset('MaxFunEvals',10000);

%choose initial point

x0 = [0.1;0.1;0.1;0.1;0.1;0.1];

%specify empty constraints

lb = []; ub = [];

%perform first optimization

[vect,fval] = lsqnonlin(@PARTimeHomSAStep2,x0,lb,ub,options);

fval %show intermediate results

for i=1:n
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iter = i %included to show where in process

bestEst = fval %included to show best value optained thus

%far

%generate random starting points from Uniform distribution,

%allows for a better approximation of the global minimum.

x0=unifrnd(-2,2,6,1);

%perform optimization at new point

[vect2,fval2] =

lsqnonlin(@PARTimeHomSAStep2,x0,lb,ub,options);

fval2 %show intermediate results

%at each step of the procedure we need to check if the new

%starting point resulted in a lower function value

if fval2 < fval

vect = vect2;

fval = fval2;

end

end

Fval=fval; %returns optimal value

Fvect = vect; %returns optimal vector

end

The function �PARTimeHomSAStep2� is de�ned below. Integration was
switched back to numerical given the complexity of the integrand. This did
however reduce the calculation speed considerably. Furthermore, note that
the function �RebTHTD� was already de�ned in Section C.1.1.1 and hence
not presented again.

function x = PARTimeHomSAStep2(e0)

%define input variables

e1 = e0(1,1);

e2 = e0(2,1);

e3 = e0(3,1);

e4 = e0(4,1);

e5 = e0(5,1);

e6 = e0(6,1);

YearFrac = [0;0.25;0.50;0.75;1.00;1.25;1.50;1.75;2.00;2.25;2.50;

2.75;3.00;3.25;3.50;3.75;4.00;4.25;4.50;4.75;5.00;
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5.25;5.50;5.75;6.00;6.25;6.50;6.75;7.00;7.25;7.50;

7.75;8.00;8.25;8.50;8.75;9.00;9.25;9.50;9.75;10.00];

CaplVol = [0.12518;0.13991;0.15458;0.16334;0.16497;0.16657;

0.16786;0.17250;0.16773;0.16299;0.15850;0.15747;

0.15416;0.15031;0.14625;0.14731;0.14408;0.14084;

0.13752;0.13702;0.13575;0.13447;0.13311;0.13422;

0.13305;0.13193;0.13070;0.13150;0.13045;0.12939;

0.12834;0.12878;0.12776;0.12663;0.12576;0.12778;

0.12687;0.12605;0.12495;0.12677];

%set parameters of the time-homogeneous function equal to the

%values obtained from the previous step

x0 = [0.105782518615748;-0.025782518615748;0.279813875241565;

1.237840675388569];

v1 = x0(1,1);

v2 = x0(2,1);

v3 = x0(3,1);

v4 = x0(4,1);

%declare variables to be used in calculations

ResVol = zeros(40,1);

C = zeros(40,1);

B = zeros(40,1);

MktVaR = zeros(40,1);

ModelVaR = zeros(40,1);

for i = 1:40

Ti = YearFrac(i+1,1);

sum2 =

quadgk(@(t)RebTHTD(t,v1,v2,v3,v4,e1,e2,e3,e4,e5,e6,Ti),0,Ti);

B(i,1) = sqrt((YearFrac(i+1,1)*CaplVol(i,1)^2)/sum2);

ResVol(i,1) = YearFrac(i+1,1)*CaplVol(i,1)^2 - sum2;

C(i,1) = sqrt(sum2/YearFrac(i+1,1));

MktVaR(i,1) = YearFrac(i+1,1)*CaplVol(i,1)^2;

ModelVaR(i,1) = sum2;

end

C; %can be used for vol graph

B; %factors needed for exact pricing of market caps

MktVaR; %market variances

ModelVaR; %model variances

x=ResVol;

end
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Below is the code used for obtaining the evolution of the term structure
of volatilities as we move through time. Note that no assumptions were made
regarding forward rate speci�c components as we move through time, hence the
resulting evolution will illustrate a shortening in the tail of the term structure.

function x = PARTermStructEvolSAStep2()

%define input variables

YearFrac = [0;0.25;0.50;0.75;1.00;1.25;1.50;1.75;2.00;2.25;

2.50;2.75;3.00;3.25;3.50;3.75;4.00;4.25;4.50;

4.75;5.00;5.25;5.50;5.75;6.00;6.25;6.50;6.75;

7.00;7.25;7.50;7.75;8.00;8.25;8.50;8.75;9.00;

9.25;9.50;9.75;10.00];

%set parameters of the time-homogeneous and time-dependent

%functions equal to the values obtained from the minimization

%steps

x0=[0.105782518615748;-0.025782518615748;0.279813875241565;

1.237840675388569];

v1 = x0(1,1);

v2 = x0(2,1);

v3 = x0(3,1);

v4 = x0(4,1);

e0=[-4.922059515904149;-3.482772209499539;-1.493793256839924;

0.366691267054780;-0.828297473387842;0.167607455829285];

e1 = e0(1,1);

e2 = e0(2,1);

e3 = e0(3,1);

e4 = e0(4,1);

e5 = e0(5,1);

e12 = e0(6,1);

%set the forward rate function equal to the constant values

%obtained from the minimization step

B=[1.073020559346012;0.997439292708948;0.997097970633483;

0.998547732452972;0.982550709502084;0.983224898840092;

0.992699065052335;1.029160485161995;1.014040784530846;

1.001346240957347;0.991282228185541;1.003590014078435;

1.001669754783236;0.995719240504868;0.987324476241737;

1.012650204189403;1.007365161595972;1.000061646342033;

0.990032855392082;0.998309712840622;0.999156905781757;

0.998155509041908;0.995003773627218;1.009165217479395;
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1.005363119112331;1.001349902785679;0.996191997385803;

1.006461794099936;1.002646497862292;0.998789847260976;

0.994984408258803;1.002633180413091;0.998666484017373;

0.993396076307753;0.989625935679350;1.008102268195251;

1.003042088619024;0.998428208821044;0.991667086147701;

1.008650999053897];

%declare variable to be used in calculations

volEvol=zeros(40,40);

for k=1:40

Tprev = YearFrac(k,1);

for i = 1:40-k+1

sum2 = 0;

Ti = YearFrac(i+1+k-1,1);

sum2 = quadgk(@(t)RebTHTD(t,v1,v2,v3,v4,e1,e2,e3,

e4,e5,e12,Ti),Tprev,Ti)*(B(i+k-1,1)^2);

volEvol(i,k) = sqrt(sum2/YearFrac(i+1,1));

end

end

x = volEvol;

end

C.2 Joint Calibration

Joint calibration was discussed in Chapter 10. The calibration routines of some
of these techniques will be presented in this section.

C.2.1 Calibrating to European Market Data

We only considered the di�erent cascade calibration algorithms for the Euro-
pean market. The aim was to obtain results that matched the results of the
authors of the techniques.

C.2.1.1 Cascade Calibration

The �rst code that we will present relates to the implementation of Algo-
rithm 10.3.1. This allows for the calibration to the upper half of the swaption
volatility matrix. The code is presented below.

function x= EURCCA(NbrRows)
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%NbrRows indicates the number of rows in the swaption matrix

%that are of interest for the calibration

%define the input swaption matrix

V=[0.18,0.167,0.154,0.145,0.138,0.134,0.13,0.126,0.124,0.122;

0.181,0.162,0.145,0.135,0.127,0.123,0.12,0.117,0.115,0.113;

0.178,0.155,0.137,0.125,0.117,0.114,0.111,0.108,0.106,0.104;

0.167,0.143,0.126,0.115,0.108,0.105,0.103,0.1,0.098,0.096;

0.154,0.132,0.118,0.109,0.104,0.104,0.099,0.096,0.094,0.092;

0.147,0.1265,0.1125,0.1035,0.098,0.0975,0.094,0.0915,0.09,

0.0885;0.14,0.121,0.107,0.098,0.092,0.091,0.089,0.087,0.086,

0.085;0.1367,0.1173,0.1033,0.0947,0.089,0.088,0.086,0.0843,

0.0833,0.0823;0.1333,0.1137,0.0997,0.0913,0.086,0.085,0.083,

0.0817,0.0807,0.0797;0.13,0.11,0.096,0.088,0.083,0.082,0.08,

0.079,0.078,0.077];

%forward rates including first spot rate

FwdCrve = [0.0469;0.050114;0.055973;0.058387;0.060027;0.061315;

0.062779;0.062747;0.062926;0.062286;0.063009;0.063554;

0.064257;0.064784;0.065312;0.063976;0.062997;0.06184;

0.060682;0.05936];

%forward rates excluding first spot rate

F = [0.050114;0.055973;0.058387;0.060027;0.061315;0.062779;

0.062747;0.062926;0.062286;0.063009;0.063554;0.064257;

0.064784;0.065312;0.063976;0.062997;0.06184;0.060682;

0.05936];

%create set of discount factors - created from annual rates

%hence year fractions set to one - 1st disc factor associated

%with spot rate

for i = 1:20

P(1,i) = (prod(1+FwdCrve(1:i),1))^-1;

end

%create different weights

for i = 1:10 %maturity

for j = 1:10 %lenght

for k = (i+1):(i+j)

w(i,j,k-1)=P(1,k)/(P(1,i+1:i+j)*ones(i+j-i,1));

end

S(i,j) = (P(1,i)-P(1,i+j))/(P(1,i+1:i+j)

*ones(i+j-i,1));

end

end
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%create input correlation matrix

theta = [0.0147;0.0643;0.1032;0.1502;0.1969;0.2239;0.2771;

0.2950;0.3630;0.3810;0.4217;0.4836;0.5204;0.5418;

0.5791;0.6496;0.6679;0.7126;0.7659];

n=2;

for i=1:19

for k=1:n-1

B(i,k)=cos(theta(i,k))*prod(sin(theta(i,1:k-1)),2);

end

B(i,n)=prod(sin(theta(i,1:n-1)),2);

end

rho=B*transpose(B);

%initialize forward rate volatilities

sigma=zeros(10,10);

for alpha = 0:NbrRows-1

for beta = alpha+1:NbrRows

s1=0;s2=0;s3=0;s4=0;

for i = alpha + 1:beta-1

for j = alpha + 1:beta-1

for h = 0:alpha

s1 = s1+w(alpha+1,beta-alpha,i)

*w(alpha+1,beta-alpha,j)*F(i,1)*F(j,1)

*rho(i,j)*sigma(i,h+1)*sigma(j,h+1);

end

end

for h = 0:alpha-1

s2 = s2 + 2*(w(alpha+1,beta-alpha,beta)

*w(alpha+1,beta-alpha,i)*F(beta,1)

*F(i,1)*rho(beta,i)*sigma(beta,h+1)

*sigma(i,h+1));

end

s4 = s4 + (w(alpha+1,beta-alpha,beta)

*w(alpha+1,beta-alpha,i)*F(beta,1)*F(i,1)

*rho(beta,i)*sigma(i,alpha+1));

end

for h = 0:alpha-1
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s3 = s3 + w(alpha+1,beta-alpha,beta)^2

*F(beta,1)^2*sigma(beta,h+1)^2;

end

A=w(alpha+1,beta-alpha,beta)^2*F(beta,1)^2;

B=2*s4;

C=s1+s2+s3-(alpha+1)*S(alpha+1,beta-alpha)^2

*V(alpha+1,beta-alpha)^2;

sigma(beta,alpha+1)=(-B+sqrt(B^2-4*A*C))/(2*A);

end

end

x=sigma;

end

Next, we will present the code relating to the implementation of Algorithm
10.3.2. This allows for the calibration to the entire swaption volatility matrix.
The code is presented below.

function x= EURRCCA(NbrRows)

%NbrRows indicates the number of rows in the swaption matrix

%that are of interest for the calibration

%define the input swaption matrix

V=[0.18,0.167,0.154,0.145,0.138,0.134,0.13,0.126,0.124,0.122;

0.181,0.162,0.145,0.135,0.127,0.123,0.12,0.117,0.115,0.113;

0.178,0.155,0.137,0.125,0.117,0.114,0.111,0.108,0.106,0.104;

0.167,0.143,0.126,0.115,0.108,0.105,0.103,0.1,0.098,0.096;

0.154,0.132,0.118,0.109,0.104,0.104,0.099,0.096,0.094,0.092;

0.147,0.1265,0.1125,0.1035,0.098,0.0975,0.094,0.0915,0.09,

0.0885;0.14,0.121,0.107,0.098,0.092,0.091,0.089,0.087,0.086,

0.085;0.1367,0.1173,0.1033,0.0947,0.089,0.088,0.086,0.0843,

0.0833,0.0823;0.1333,0.1137,0.0997,0.0913,0.086,0.085,0.083,

0.0817,0.0807,0.0797;0.13,0.11,0.096,0.088,0.083,0.082,0.08,

0.079,0.078,0.077];

%forward rates including first spot rate

FwdCrve = [0.0469;0.050114;0.055973;0.058387;0.060027;0.061315;

0.062779;0.062747;0.062926;0.062286;0.063009;0.063554;
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0.064257;0.064784;0.065312;0.063976;0.062997;0.06184;

0.060682;0.05936];

%forward rates excluding first spot rate

F = [0.050114;0.055973;0.058387;0.060027;0.061315;0.062779;

0.062747;0.062926;0.062286;0.063009;0.063554;0.064257;

0.064784;0.065312;0.063976;0.062997;0.06184;0.060682;

0.05936];

%create set of discount factors - created from annual rates

%hence year fractions set to one - 1st disc factor associated

%with spot rate

for i = 1:20

P(1,i) = (prod(1+FwdCrve(1:i),1))^-1;

end

%create different weights

for i = 1:10 %maturity

for j = 1:10 %lenght

for k = (i+1):(i+j)

w(i,j,k-1)=P(1,k)/(P(1,i+1:i+j)*ones(i+j-i,1));

end

S(i,j) = (P(1,i)-P(1,i+j))/(P(1,i+1:i+j)

*ones(i+j-i,1));

end

end

%create input correlation matrix

theta = [0.0147;0.0643;0.1032;0.1502;0.1969;0.2239;0.2771;

0.2950;0.3630;0.3810;0.4217;0.4836;0.5204;0.5418;

0.5791;0.6496;0.6679;0.7126;0.7659];

n=2;

for i=1:19

for k=1:n-1

B(i,k)=cos(theta(i,k))*prod(sin(theta(i,1:k-1)),2);

end

B(i,n)=prod(sin(theta(i,1:n-1)),2);

end

rho=B*transpose(B);

%initialize forward rate volatilities

sigma=zeros(19,10);

 
 
 



Appendix C. Matlab Code 219

for alpha = 0:NbrRows-1

for beta = alpha+1:NbrRows+alpha%ss%s

if beta < NbrRows+alpha || alpha == 0

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Start of normal CCA approach%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

s1=0;s2=0;s3=0;s4=0;

for i = alpha + 1:beta-1

for j = alpha + 1:beta-1

for h = 0:alpha

s1 = s1+w(alpha+1,beta-alpha,i)

*w(alpha+1,beta-alpha,j)*F(i,1)

*F(j,1)*rho(i,j)*sigma(i,h+1)

*sigma(j,h+1);

end

end

for h = 0:alpha-1

s2 = s2 +

2*(w(alpha+1,beta-alpha,beta)

*w(alpha+1,beta-alpha,i)*F(beta,1)

*F(i,1)*rho(beta,i)

*sigma(beta,h+1)*sigma(i,h+1));

end

s4 = s4 + (w(alpha+1,beta-alpha,beta)

*w(alpha+1,beta-alpha,i)*F(beta,1)

*F(i,1)*rho(beta,i)*sigma(i,alpha+1));

end

for h = 0:alpha-1

s3 = s3 + w(alpha+1,beta-alpha,beta)^2

*F(beta,1)^2*sigma(beta,h+1)^2;

end

A=w(alpha+1,beta-alpha,beta)^2*F(beta,1)^2;

B=2*s4;

C=s1+s2+s3-(alpha+1)

*S(alpha+1,beta-alpha)^2

*V(alpha+1,beta-alpha)^2;

sigma(beta,alpha+1)=(-B+sqrt(B^2-4*A*C))
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/(2*A);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%End of normal CCA approach%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

else if beta == NbrRows+alpha

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Second Part of Calculation%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

s1=0;s2=0;s3=0;s4=0;

for i = alpha + 1:beta-1

for j = alpha + 1:beta-1

for h = 0:alpha

s1 = s1+w(alpha+1,beta-alpha,i)

*w(alpha+1,beta-alpha,j)*F(i,1)

*F(j,1)*rho(i,j)*sigma(i,h+1)

*sigma(j,h+1);

end

end

for h = 0:alpha-1

s2 = s2 +

2*(w(alpha+1,beta-alpha,beta)

*w(alpha+1,beta-alpha,i)*F(beta,1)

*F(i,1)*rho(beta,i)*sigma(i,h+1));

end

s4 = s4 + (w(alpha+1,beta-alpha,beta)

*w(alpha+1,beta-alpha,i)*F(beta,1)

*F(i,1)*rho(beta,i)*sigma(i,alpha+1));

end

for h = 0:alpha-1

s3 = s3 +w(alpha+1,beta-alpha,beta)^2

*F(beta,1)^2;

end

AA=w(alpha+1,beta-alpha,beta)^2

*F(beta,1)^2+s3;

BB=2*s4+s2;

CC=s1-(alpha+1)*S(alpha+1,beta-alpha)^2

*V(alpha+1,beta-alpha)^2;

 
 
 



Appendix C. Matlab Code 221

sigma(beta,alpha+1)=(-BB+sqrt(BB^2-4*AA*CC))

/(2*AA);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%End of Second Part of Calculation%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for l = 1:alpha

sigma(beta,l)=sigma(beta,alpha+1);

end

end

end

end

end

x=sigma;

end

Both of the previous two algorithms required the �lling of missing swaption
data through using some exogenous interpolation technique. The last piece
of code that will be presented in this section relates to the implementation
of Algorithm 10.3.3. This enables the calibration to an incomplete set of
swaptions data through the use of an endogenous interpolation technique. The
code for this implementation is presented below.

function x= EURRCCAEI(NbrRows)

%NbrRows indicates the number of rows in the swaption matrix

%that are of interest for the calibration

%define the input swaption matrix

V=[0.18,0.167,0.154,0.145,0.138,0.134,0.13,0.126,0.124,0.122;

0.181,0.162,0.145,0.135,0.127,0.123,0.12,0.117,0.115,0.113;

0.178,0.155,0.137,0.125,0.117,0.114,0.111,0.108,0.106,0.104;

0.167,0.143,0.126,0.115,0.108,0.105,0.103,0.1,0.098,0.096;

0.154,0.132,0.118,0.109,0.104,0.104,0.099,0.096,0.094,0.092;

0.147,0.1265,0.1125,0.1035,0.098,0.0975,0.094,0.0915,0.09,

0.0885;0.14,0.121,0.107,0.098,0.092,0.091,0.089,0.087,0.086,

0.085;0.1367,0.1173,0.1033,0.0947,0.089,0.088,0.086,0.0843,

0.0833,0.0823;0.1333,0.1137,0.0997,0.0913,0.086,0.085,0.083,

0.0817,0.0807,0.0797;0.13,0.11,0.096,0.088,0.083,0.082,0.08,

0.079,0.078,0.077];
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%define set of missing rows

K=ones(10,1);

K(6,1)=0;K(8,1)=0;K(9,1)=0;

%forward rates including first spot rate

FwdCrve = [0.0469;0.050114;0.055973;0.058387;0.060027;0.061315;

0.062779;0.062747;0.062926;0.062286;0.063009;0.063554;

0.064257;0.064784;0.065312;0.063976;0.062997;0.06184;

0.060682;0.05936];

%forward rates excluding first spot rate

F = [0.050114;0.055973;0.058387;0.060027;0.061315;0.062779;

0.062747;0.062926;0.062286;0.063009;0.063554;0.064257;

0.064784;0.065312;0.063976;0.062997;0.06184;0.060682;

0.05936];

%create set of discount factors - created from annual rates

%hence year fractions set to one - 1st disc factor associated

%with spot rate

for i = 1:20

P(1,i) = (prod(1+FwdCrve(1:i),1))^-1;

end

%create different weights

for i = 1:10 %maturity

for j = 1:10 %lenght

for k = (i+1):(i+j)

w(i,j,k-1)=P(1,k)/(P(1,i+1:i+j)*ones(i+j-i,1));

end

S(i,j) = (P(1,i)-P(1,i+j))/(P(1,i+1:i+j)

*ones(i+j-i,1));

end

end

%create input correlation matrix

theta = [0.0147;0.0643;0.1032;0.1502;0.1969;0.2239;0.2771;

0.2950;0.3630;0.3810;0.4217;0.4836;0.5204;0.5418;

0.5791;0.6496;0.6679;0.7126;0.7659];

n=2;

for i=1:19

for k=1:n-1

B(i,k)=cos(theta(i,k))*prod(sin(theta(i,1:k-1)),2);

end

B(i,n)=prod(sin(theta(i,1:n-1)),2);
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end

rho=B*transpose(B);

%initialize forward rate volatilities

sigma=zeros(19,10);

sigmaj = zeros(19,1);

testtt=0;

alpha = 0;

while testtt == 0;

alpha;

if K(alpha+1,1)==1

for beta = alpha+1:NbrRows+alpha%ss%s

if beta < NbrRows+alpha || alpha == 0

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Start of normal CCA approach%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

s1=0;s2=0;s3=0;s4=0;

for i = alpha + 1:beta-1

for j = alpha + 1:beta-1

for h = 0:alpha

s1 = s1+w(alpha+1,beta-alpha,i)

*w(alpha+1,beta-alpha,j)*F(i,1)

*F(j,1)*rho(i,j)*sigma(i,h+1)

*sigma(j,h+1);

end

end

for h = 0:alpha-1

s2 = s2 +

2*(w(alpha+1,beta-alpha,beta)

*w(alpha+1,beta-alpha,i)*F(beta,1)

*F(i,1)*rho(beta,i)*sigma(beta,h+1)

*sigma(i,h+1));

end

s4 = s4 + (w(alpha+1,beta-alpha,beta)

*w(alpha+1,beta-alpha,i)*F(beta,1)

*F(i,1)*rho(beta,i)

*sigma(i,alpha+1));

end

for h = 0:alpha-1

 
 
 



Appendix C. Matlab Code 224

s3 = s3 +w(alpha+1,beta-alpha,beta)^2

*F(beta,1)^2*sigma(beta,h+1)^2;

end

A=w(alpha+1,beta-alpha,beta)^2

*F(beta,1)^2;

B=2*s4;

C=s1+s2+s3-(alpha+1)

*S(alpha+1,beta-alpha)^2

*V(alpha+1,beta-alpha)^2;

sigma(beta,alpha+1)=(-B+sqrt(B^2-4*A*C))

/(2*A);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%End of normal CCA approach%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

else if beta == NbrRows+alpha

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Second Part of Calculation%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

s1=0;s2=0;s3=0;s4=0;

for i = alpha + 1:beta-1

for j = alpha + 1:beta-1

for h = 0:alpha

s1 = s1+w(alpha+1,beta-alpha,i)

*w(alpha+1,beta-alpha,j)*F(i,1)

*F(j,1)*rho(i,j)*sigma(i,h+1)

*sigma(j,h+1);

end

end

for h = 0:alpha-1

s2 = s2 +

2*(w(alpha+1,beta-alpha,beta)

*w(alpha+1,beta-alpha,i)*F(beta,1)

*F(i,1)*rho(beta,i)*sigma(i,h+1));

end

s4 = s4 + (w(alpha+1,beta-alpha,beta)

*w(alpha+1,beta-alpha,i)*F(beta,1)

*F(i,1)*rho(beta,i)*sigma(i,alpha+1));

end

for h = 0:alpha-1

s3 = s3 +w(alpha+1,beta-alpha,beta)^2

*F(beta,1)^2;
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end

AA=w(alpha+1,beta-alpha,beta)^2

*F(beta,1)^2+s3;

BB=2*s4+s2;

CC=s1-(alpha+1)*S(alpha+1,beta-alpha)^2

*V(alpha+1,beta-alpha)^2;

sigma(beta,alpha+1)=(-BB+sqrt(BB^2-4*AA*CC))

/(2*AA);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%End of Second Part of Calculation%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for l = 1:alpha

sigma(beta,l)=sigma(beta,alpha+1);

end

end

end

end

end

if K(alpha+1,1)==0

m=find(K(alpha+1:10),1,'first')+alpha-1;

gmma=alpha;

alpha=m;

for beta = alpha+1:NbrRows+gmma-1%ss%s

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Start CCA for missing entries%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

s1=0;s2=0;s3=0;s4=0;s11=0;s22=0;s33=0;

for i = alpha + 1:beta-1

for j = alpha + 1:beta-1

for h = 0:gmma-1

s1 = s1+w(alpha+1,beta-alpha,i)

*w(alpha+1,beta-alpha,j)*F(i,1)

*F(j,1)*rho(i,j)*sigma(i,h+1)

*sigma(j,h+1);

end

for h = gmma:alpha

s11 = s11+w(alpha+1,beta-alpha,i)

*w(alpha+1,beta-alpha,j)*F(i,1)

*F(j,1)*rho(i,j)*sigmaj(i)

*sigmaj(j,1);

end
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end

for h = 0:gmma-1

s2 = s2 +2*(w(alpha+1,beta-alpha,beta)

*w(alpha+1,beta-alpha,i)*F(beta,1)

*F(i,1)*rho(beta,i)*sigma(beta,h+1)

*sigma(i,h+1));

end

for h = gmma:alpha-1

s22 = s22 +

2*(w(alpha+1,beta-alpha,beta)

*w(alpha+1,beta-alpha,i)*F(beta,1)

*F(i,1)*rho(beta,i)*1*sigmaj(i,1));

end

s4 = s4 + (w(alpha+1,beta-alpha,beta)

*w(alpha+1,beta-alpha,i)*F(beta,1)

*F(i,1)*rho(beta,i)*sigmaj(i,1));

end

for h = 0:gmma-1

s3 = s3+w(alpha+1,beta-alpha,beta)^2

*F(beta,1)^2*sigma(beta,h+1)^2;

end

for h = gmma:alpha-1

s33 = s33+w(alpha+1,beta-alpha,beta)^2

*F(beta,1)^2*1;

end

A=w(alpha+1,beta-alpha,beta)^2*F(beta,1)^2

+s33;

B=2*s4+s22;

C=s1+s11+s2+s3-(alpha+1)

*S(alpha+1,beta-alpha)^2

*V(alpha+1,beta-alpha)^2;

sigmaj(beta,1)=(-B+sqrt(B^2-4*A*C))

/(2*A);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%End CCA for missing entries%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for j = gmma+1:alpha+1

sigma(beta,j)=sigmaj(beta,1);

end

end

for beta = NbrRows+gmma:NbrRows+alpha%ss%s

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Second Part of Calculation%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

s1=0;s2=0;s3=0;s4=0;

for i = alpha + 1:beta-1

for j = alpha + 1:beta-1

for h = 0:alpha

s1 = s1+w(alpha+1,beta-alpha,i)

*w(alpha+1,beta-alpha,j)*F(i,1)

*F(j,1)*rho(i,j)*sigma(i,h+1)

*sigma(j,h+1);

end

end

for h = 0:alpha-1

s2 = s2 +

2*(w(alpha+1,beta-alpha,beta)

*w(alpha+1,beta-alpha,i)*F(beta,1)

*F(i,1)*rho(beta,i)*sigma(i,h+1));

end

s4 = s4 + (w(alpha+1,beta-alpha,beta)

*w(alpha+1,beta-alpha,i)*F(beta,1)

*F(i,1)*rho(beta,i)*sigma(i,alpha+1));

end

for h = 0:alpha-1

s3 = s3 + w(alpha+1,beta-alpha,beta)^2

*F(beta,1)^2;

end

AA=w(alpha+1,beta-alpha,beta)^2*F(beta,1)^2

+s3;

BB=2*s4+s2;

CC=s1-(alpha+1)*S(alpha+1,beta-alpha)^2

*V(alpha+1,beta-alpha)^2;

sigma(beta,alpha+1)=(-BB+sqrt(BB^2-4*AA*CC))

/(2*AA);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%End of Second Part of Calculation%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for l = 1:alpha

sigma(beta,l)=sigma(beta,alpha+1);

end

end

end

alpha = alpha + 1;
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if alpha <= NbrRows-1

testtt = 0;

else

testtt = 1;

end

end

sigma(6,6)=sigma(5,5);sigma(8,8)=sigma(7,7);

sigma(9,8)=sigma(8,7);sigma(9,9)=sigma(8,8);

%calculate swaption volatilities given forward rate

%volatilities

Vmod=zeros(10,10);

for alpha = 0:NbrRows-1

for beta=alpha+1:NbrRows+alpha

sumMod=0;

for i = alpha+1:beta

for j = alpha+1:beta

for h=0:alpha

sumMod = sumMod +

((w(alpha+1,beta-alpha,i)

*w(alpha+1,beta-alpha,j)*F(i,1)*F(j,1)

*rho(i,j))/((alpha+1)

*S(alpha+1,beta-alpha)^2))

*(sigma(i,h+1)*sigma(j,h+1));

end

end

end

Vmod(alpha+1,beta-alpha)=sqrt(sumMod);

end

end

x=sigma;%Vmod;

end

Notice that the code presented above can be adjusted in the last line to
return the model implied swaption prices. This can be used as a measure
of accuracy. Another important point to consider when implementing these
algorithms, is the model implied evolution of the term structure of volatilities.
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This can be obtained through running the following Matlab code.

function x = TermStructEvolEURRCCAEI()

%define input variables

YearFrac = [0;1;2;3;4;5;6;7;8;9;10;11;

12;13;14;15;16;17;18;19;20];

%declare variables to be used in calculations

volEvol=zeros(10,10);

%create matrix containing volatilities of forward rates

forwMatrx= EURRCCAEI(10);

%calculate evolution of term structure

for k=1:10

for i = k:10

sum2 = 0;

Ti = YearFrac(i-k+1+1,1);

for j = k:10

sum2 = sum2 + forwMatrx(i,j)^2*1;

end

volEvol(i,k) = sqrt(sum2/Ti);

end

end

x = volEvol;

end

C.2.2 Calibrating to South African Market Data

Given the number of historical correlations, we will not present the code used
in the smoothing of the correlation surfaces. This can be provided on direct
request. Consequently we will assume the parameters as given in order to keep
the code as concise as possible. These parameters were obtained using a simple
unconstrained minimization routine in Matlab.

C.2.2.1 Hull and White PCA Approach

The following code was used in obtaining the results presented in Section
10.5.2.

function x=HWFitResults(SimpleOrComplex)

%SimpleOrComplex indicates which parametric form to use. Set to 1
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%for Rebonato's first parametric form and set to 0 for Rebonato's

%second parametric form

ResVect = zeros(33,3);

for i=1:33

[x,y]=HWFitAndMeas(i,SimpleOrComplex);

ResVect(i,1) = i;

ResVect(i,2) = x;

ResVect(i,3) = y;

end

x=ResVect;

end

The function HWFitAndMeas is de�ned by

function [x,y]=HWFitAndMeas(n,SimpleOrComplex)

%n represents the number of factors

%SimpleOrComplex indicates which parametric form to use. Set to 1

%for Rebonato's first parametric form and set to 0 for Rebonato's

%second parametric form

CorrRebFit = CorrFitRes(SimpleOrComplex);

[EigVec,EigVal]=eig(CorrRebFit);

DLTA=sqrt(diag(sum(EigVal(:,33-n+1:33),1),0));

C=EigVec(:,33-n+1:33)*DLTA;

temp1 = sqrt(diag(C*transpose(C)));

temp2 = zeros(33,n);

for j=1:n

temp2(:,j)=temp1;

end

Cnew=C./temp2;

CorrHW=Cnew*transpose(Cnew);

diffHWRebFit=0;

for i = 1:33

for j = 1:33

diffHWRebFit=diffHWRebFit+

(CorrRebFit(i,j)-CorrHW(i,j))^2;

end

end

x=diffHWRebFit; %SSE

y=sum(sum(EigVal(:,33-n+1:33),2),1)/33; %perc explained
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end

The function CorrFitRes will be used throughout this section and is de�ned
as

function x=CorrFitRes(SimpleOrComplex)

%Simple relates to Rebonato's 1st parametric form

%Complex relates to Rebonato's 2nd parametric form

%create set of expiries

tenr = [0.25:0.25:8.25];

if SimpleOrComplex==0

x0 = [0.1297;10.4549;0.0580];

pinf = x0(1,1);

bta = x0(2,1);

gmma = x0(3,1);

else if SimpleOrComplex==1

x0=[0.2844;0.2194];

pinf = x0(1,1);

bta = x0(2,1);

end

end

modelCorr = zeros(size(tenr,2),size(tenr,2));

for i = 1:size(tenr,2)

for j = 1:size(tenr,2)

if SimpleOrComplex==0

modelCorr(i,j) = ((pinf + (1-pinf)*

exp(-bta*abs(tenr(1,i)^gmma-tenr(1,j)^gmma))));

else if SimpleOrComplex==1

modelCorr(i,j) = ((pinf + (1-pinf)*

exp(-bta*abs(tenr(1,i)-tenr(1,j)))));

end

end

end

end

x=modelCorr;
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C.2.2.2 Rebonato's Approach

The following code was used in obtaining the results presented in Section
10.5.3.

function xF=RebAngleFitResults()

global n

ResVect = zeros(32,2);

%number of factors to include in calculation

for l=2:33

n=l;

x0=normrnd(0,1,33,n-1);

[x,fval] = fminunc(@RebAngleFitAndMeas,x0);

for i=1:2

x0=normrnd(0,1,33,n-1);

[xL,fvalL] = fminunc(@RebAngleFitAndMeas,x0);

if fvalL < fval

fval = fvalL;

x = xL;

end

end

%xV = x ;

yV = fval;

ResVect(l-1,1) = l;

ResVect(l-1,2) = yV;

end

xF=ResVect;

clear n

end

The function RebAngleFitAndMeas is de�ned by

function x=RebAngleFitAndMeas(parSet)
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global n

%Simple relates to Rebonato's 1st parametric form

%Complex relates to Rebonato's 2nd parametric form

SimpleOrComplex = 1;

InputCorr = CorrFitRes(SimpleOrComplex);

B = zeros(33,n);

for i = 1:33

for k=1:n-1

B(i,k) = cos(parSet(i,k))*prod(sin(parSet(i,1:k-1)),2);

end

B(i,n) = prod(sin(parSet(i,1:n-1)),2);

end

modelCorr = B*transpose(B);

som = 0;

for i = 1:33

for j = 1:33

som = som + (InputCorr(i,j)-modelCorr(i,j))^2;

end

end

x=som;

end
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