
The development of the quaternion normal

distribution

by
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Abstract

In this dissertation an overview on the real representation of quaternions in distribution

theory is given. The density functions of the p-variate and matrix-variate quaternion nor-

mal distributions are derived from first principles, while that of the quaternion Wishart

distribution is derived from the real associated Wishart distribution via the character-

istic function. Applications of this theory in hypothesis testing is presented, and the

density function of Wilks’s statistic is derived for quaternion Wishart matrices.
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“Tomorrow will be the fifteenth birthday of the quaternions. They started

into life, or light, full grown, on the 16th of October, 1843, as I was walking

with Lady Hamilton to Dublin, and came up to Brougham Bridge. That

is to say, I then and there felt the galvanic circuit of thought closed, and

the sparks which fell from it were the fundamental equations between i, j,

k; exactly such as I have used them ever since. I pulled out, on the spot,

a pocketbook, which still exists, and made an entry, on which, at the very

moment, I felt that it might be worth my while to expand the labour of at

least ten (or it might be fifteen) years to come. But then it is fair to say

that this was because I felt a problem to have been at that moment solved,

an intellectual want relieved, which had haunted me for at least fifteen years

before.”

Kline (1972) [22] as cited in Rautenbach (1983) [28].

To Katryn, with love “The universe rings true wherever you fairly test it.” (C.S.

Lewis “Surprised by Joy”)
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Chapter 1

Introduction

On October 16, 1843, while walking with his wife past the Broome Bridge,

Hamilton made a breakthrough in his quest for extending complex numbers

with the concept of a system that contained one real and three imaginary

parts. In the following excerpt from a letter to his son, Hamilton describes

the moment of inspiration .

“. . . it is not too much to say that I felt at once the importance. An electric

circuit seemed to close; and a spark flashed forth, the herald of many long

years to come of definitely directed thought and work, by myself if spared,

and at all events on the part of others, if I should even be allowed to live

long enough distinctly to communicate the discovery. Nor could I resist the

impulse – unphilosophical as it may have been – to cut with a knife on a

stone of Brougham Bridge, as we passed it, the fundamental formula with

the symbols, i, j, k; namely, i2 = j2 = k2 = ijk = −1 which contains the

Solution to the problem . . .”

Hamilton’s excitement at the discovery prompted him to carve the critical

equation into a nearby bridge as insurance against the possibility that he might

die before he told someone else of his breakthrough. A plaque is now located

at Broome Bridge in Dublin to commemorate the event.

(This quotation along with the below photograph is excerpted from the book by Hanson

(2006) [16].)
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1.1. Motivation 2

Figure 1.1: Plaque located at Broome Bridge commemorating the discovery of the quaternions

by Sir William Rowan Hamilton on October 16, 1843.

1.1 Motivation

Although quaternions had been invented during the first half of the 19th century, they

only made their first appearance 132 years later in the statistical literature in an article

by Andersson (1975) [1].

Andersson employed an indirect approach in his development of the quaternion nor-

mal distribution by imposing conditions on its expected value and covariance. However,

both Rautenbach (1983) [28], and Teng and Fang (1997) [31], independently remarked

that certain aspects underlying the quaternion distribution theory are lost, or not stated

explicitly, when working with these invariant normal models.

Kabe (1976) [17], (1978) [18], (1984) [19], generalised the work done by Goodman

(1963) [10], and Khatri (1965) [21], from the complex to the hypercomplex space. For

a thorough discussion on the complex distribution theory, see the book by Gupta and

Nagar (2009) [14]. Kabe’s approach utilised the representation theory, and was further

studied by Rautenbach (1983) [28], and more recently by Teng and Fang (1997) [31].

Chapter 1. Introduction

 
 
 



1.2. Objectives 3

Distribution theory lies at the intersection of probability and statistics and is the

foundation from which all statistical theory and application originates. Enhancing our

knowledge of distribution theory therefore implies that the general body of knowledge of

statistics is improved. Starting from the foundation of the multivariate real normal dis-

tribution, it will be endeavoured to show how the representation theory method may be

expanded yielding the multivariate quaternion normal, matrix-variate quaternion nor-

mal, quaternion chi-squared and quaternion Wishart distributions. In each case, the

emphases will be on the relationship between the real and quaternionic space.

1.2 Objectives

• Present a thorough review on the literature on the quaternion distribution theory.

• Specifically focus on the role of the representation theory in quaternion statistics.

• Follow a systematic approach in building up the family of quaternion distributions,

starting with the multivariate normal distribution.

• Determine for which normal related quaternion distributions, that already appear

in the literature, equivalent derivations may be found, using the representation

theory approach.

• Investigate the role of the quaternion normal distribution in hypothesis testing.

1.3 Contributions

• The work of the main contributors to the quaternion distribution theory, utilising

the representation theory, is contrasted and presented as a whole.

• The work of Rautenbach (1983) [28] was previously unaccessible to the scholarly

community, and of which, some results are now made available in Appendix A.

• For the first time, the matrix-variate quaternion normal and quaternion Wishart

distributions are derived from first principles, i.e. from their real counterparts,

exposing the relations between their respective density and characteristic functions.

Chapter 1. Introduction

 
 
 



1.4. Dissertation Outline 4

• The role of the quaternion normal distribution in applications is illustrated.

1.4 Dissertation Outline

• In Chapter 2 a collection of some fundamental mathematical results are given

for use in later sections. Probability quantities, such as quaternion probability

vectors and matrices, density functions, moments and characteristic functions are

also defined.

• Chapter 3 is first devoted to a review on the derivation of the p-variate quaternion

normal distribution using the representation theory, and thereafter, the matrix-

variate quaternion normal distribution is derived by generalising this approach.

• The quaternion Wishart distribution, as discussed in Chapter 4, is not a new ad-

dition to the family of matrix-variate quaternion distributions, however, it will be

shown how it relates to its real counterpart. Kabe (1976) [17] derived the quater-

nion Wishart distribution by extending Sverdrup’s lemma to the Q generalized

Sverdrup’s lemma, while Teng and Fang (1997) [31] validated the results given

by Andersson (1975) [1] by deriving the characteristic function of the quaternion

Wishart distribution by applying a Fourier transformation. We also note that the

quaternion chi-squared distribution reduces to an associated real-valued form.

• Chapter 5 concludes by showing that a simple quaternion hypothesis may be

represented with an associated real hypothesis, and thereafter derive an expression

for the density function of Wilks’s statistic in the case of quaternion Wishart

matrices.

• Chapter 6 gives some conclusive remarks and a summary on the material covered

in this dissertation.

The following Appendices are found towards the end of this dissertation:

• Appendix A contains some useful mathematical results regarding the representa-

tion theory, complex numbers, quaternions, and algebraic results, including func-

tions and polynomials of quaternions.

Chapter 1. Introduction

 
 
 



1.4. Dissertation Outline 5

• Appendix B provides a list of the important acronyms used throughout this work,

as well as their associated definitions.

• Appendix C lists and defines the notational convensions and mathematical sym-

bols used in this work.

The Index, starting on page 115, contains a list of terms that may be used for reference

purposes.

Chapter 1. Introduction

 
 
 



Chapter 2

Quaternion Distribution Theory

A number of useful theorems and other general results that are found in the literature

will be discussed in this chapter, which form the basis for further discourse in subsequent

chapters.

Some basic mathematical results are presented in Section 2.1 which are required

before advancing to a discussion on quaternion probability quantities in Section 2.2.

Quaternion probability density functions of quaternion variables, vectors and matrices

are the objects under the viewing glass in Section 2.3 for which the respective quaternion

moments and characteristic functions are introduced in Section 2.4.

2.1 Mathematical preliminaries

Let R denote the field of real numbers, and Q the quaternion (Hamiltonion) division

algebra over R, respectively. Hence, every z ∈ Q can be expressed as

z = x1 + ix2 + jx3 + kx4,

where i, j, and k satisfy the following relations:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j,

and where x1, x2, x3 ∈ R. The conjugate of a quaternion element is defined in a similar

fashion to that of a complex number, and is given by:

z̄ = x1 − ix2 − jx3 − kx4

6

 
 
 



2.1. Mathematical preliminaries 7

Now let Mn×p(R) and Mn×p(Q) denote the set of all n × p matrices over R and Q,

respectively. In the case of square matrices, say p× p, this will be indecated by Mp(R)

and Mp(Q) instead. Similar to the scalar form above, any Z ∈Mn×p(Q) may be rewritten

as:

Z = [zij]n×p = X1 + iX2 + jX3 + kX4,

where zij ∈ Q, and X1, X2, X3, and X4 ∈ Mn×p(R). X1 is the real part of Z, and will

be denoted by Re Z. By setting n = 1, this reduces to the vector form in an obvious

way.

The transpose of a matrix Z
n×p

will be denoted as Z′ = Z
p×n

. The conjugate transpose

of Z is therefore given by

Z̄′ =
[
z̄′ij
]
p×n = X′1 − iX′2 − jX′3 − kX′4.

and it is said that Z is Hermitian if Z̄′ = Z.

The vec operator is frequently used in expressions involving matrices of quaternions,

see for instance Li and Xue (2009) [23], and is defined as

vec Z =
[
Z ′1, . . . , Z

′
p

]′ ∈Mnp×1(Q), (2.1.1)

where Zα ∈Mn×1(Q), α = 1, . . . , p are the columns of Z.

Throughout this work the representation theory will be used, and although quater-

nions may be represented by real matrices in various ways, see Teng and Fang (1997)

[31], the representation employed by Kabe (1976) [17] and (1984) [19], and Rautenbach

(1983) [28] will be preferred. For a detailed exposition on this topic, the reader is re-

ferred to Appendix A. Specifically suppose that z = x1 + ix2 + jx3 + kx4 ∈ Q may be

represented by z0 ∈M4(R), as

z0
4×4

=


x1 −x2 −x3 −x4

x2 x1 −x4 x3

x3 x4 x1 −x2

x4 −x3 x2 x1

 .
Now, if Z

n×p
∈ Mn×p(Q), i.e. the case for matrices with quaternion elements (or vectors

by setting n = 1), it follows that

Z
n×p

= [zst] ,

Chapter 2. Quaternion Distribution Theory

 
 
 



2.1. Mathematical preliminaries 8

where zst = x1st + ix2st + jx3st + kx4st ∈ Q, s = 1, . . . , n, and t = 1, . . . , p. By an

elementwise generalisation of the representation of the scalar, to the matrix (or vector)

form, it follows that

z0st
4×4

=


x1st −x2st −x3st −x4st

x2st x1st −x4st x3st

x3st x4st x1st −x2st

x4st −x3st x2st x1st

 .
in other words, Z

n×p
may be represented with the real matrix Z0

4n×4p
as:

Z0
4n×4p

= [z0st] .

By defining the mapping

f

(
Z0

4p×4p

)
= Z

p×p
∀Z0 ∈M4p(R),Z ∈ Q.

it follows from Rautenbach (1983) [28] that f is a faithful representation, as set out in

Theorem A.4.7. When Z0
4p×4p

∈M4p(R) and f(Z0) = Z ∈Mp(Q) then it will be indicated

as Z0 ' Z.

The trace operator is frequently used in the symplification of expressions, and al-

though the multiplication of quaternions are noncommutative, it may be formulated as

follows, see Andersson (1975) [1] and Zhang (1997) [33]. By setting Retr(Z) = tr(Re Z)

for Z ∈Mp(Q), it follows that

Retr(Z) =
1

2
tr(Z + Z̄′)

Retr(ZY) = Retr(YZ) ∀Z,Y ∈Mp(Q) (2.1.2)

Moreover, if Z = Z̄′ ∈ Mp(Q), i.e. a Hermitian matrix, and using Theorem A.5.11 then

this becomes

Retr(Z) = tr(Z) =

p∑
α=1

λα,

where λ1, . . . , λp are the eigenvalues of Z.

The stage is now set for the definition of some concepts specifically pertaining to the

development of the quaternion distribution theory.

Chapter 2. Quaternion Distribution Theory

 
 
 



2.2. Quaternion probability quantities 9

2.2 Quaternion probability quantities

In this section definitions for a quaternion probability variable, vector and matrix are

given, but first some foundational definitions such as random phenomenon, and an event

in a sample space, are presented for completeness’ sake. For further discussions on these

topics, the reader is referred to Rautenbach (1983) [28] and Bain and Engelhardt (1992)

[3].

Definition 2.2.1. A random phenomenon is an emperical phenomenon known to yield

a different outcome under a fixed set of circumstances, or conditions, whenever it is

observed, in such a way as to preserve statistical consistency.

Definition 2.2.2. A sample space, S is a collection of descriptions of all possible ob-

servable outcomes of a random phenomenon.

Definition 2.2.3. An event is a subset of the sample space S.

Definition 2.2.4. A quaternion probability variable, Z(·), is a quaternion valued func-

tion, which is defined on the elements of the sample space S, in such a way that

for every Borel set B(Q) of quaternions, denoted by B, in the range of Z(·), the set

{s ∈ S,Z(·) ∈ B}, is an event in S.

It is clear from Definition 2.2.4 that every value z attained by the quaternion prob-

ability variable Z is a quaternion, and is therefore of the form

z = x1 + ix2 + jx3 + kx4

where x1 is the real and x2, x3 and x4 are the imaginary components of z respectively.

x1, x2, x3 and x4 can now be regarded as the observed values of four real probability

variables, X1, X2, X3 and X4, for every possible observable z, respectively. Thus, the

quaternion probability variable Z may therefore be thought of as a quaternion linear

combination of four real probability variables. These four real probability variables, X1,

X2, X3 and X4 are now inspected more closely, which will lead to the definition of the

4-variate real probability vector Z0
4×1

= [X1, X2, X3, X4]′.

Chapter 2. Quaternion Distribution Theory

 
 
 



2.2. Quaternion probability quantities 10

Definition 2.2.5. Let

Z = X1 + iX2 + jX3 + kX4

be a quaternion probability variable.

1. The real probability variable X1 will be referred to as the real probability compo-

nent of Z.

2. The real probability variables X2, X3 and X4 will be referred to as the first, second

and third imaginary probability components of Z, respectively.

3. The 4-variate real probability vector Z0
4×1

= [X1, X2, X3, X4]′ will be referred to as

the associated real probability vector of Z. This implies that there is a 4-variate

real probability vector associated with every quaternion probability variable.

The idea of a quaternion probability variable is now extended to the more general

idea of a quaternion probability vector.

Definition 2.2.6. Let Z1, . . . , Zp be p quaternion probability variables. The vector

Z
p×1

= [Z1, . . . , Zp]
′ is called a quaternion probability vector with p variables.

From this definition, it is clear that every possible realisation of the vector z
p×1

is a

vector of p quaternions. z can now be written in the form

z = x1 + ix2 + jx3 + kx4

where x1, x2, x3 and x4 are p-variate quaternion vectors. x1, x2, x3 and x4 can once

again be viewed as observed values of the real probability vectors X1, X2, X3 and X4

respectively. The quaternion probability vector Z can therefore be viewed as a quaternion

linear combination of four real probability vectors, namely

Z = X1 + iX2 + jX3 + kX4.

These four real probability vectors X1, X2, X3 and X4 are now formally defined,

and their resultant 4p-variate real probability vector

Z0
4p×1

= [X ′1, X
′
2, X

′
3, X

′
4]
′
.

Chapter 2. Quaternion Distribution Theory

 
 
 



2.3. Quaternion probability density functions 11

Definition 2.2.7. Let

Z
p×1

= X1 + iX2 + jX3 + kX4

be a quaternion probability vector.

1. The real probability vector X1
p×1

will be referred to as the real probability component

of Z.

2. The real probability vectors X2
p×1

, X3
p×1

and X4
p×1

will be referred to as the first, second

and third imaginary probability components of Z.

3. The 4p-variate real probability vector

Z0
4p×1

= [X ′1, X
′
2, X

′
3, X

′
4]
′

will be referred to as the associated real probability vector of Z. A 4p-variate real

probability vector is therefore associated with each p-variate quaternion probability

vector.

2.3 Quaternion probability density functions

The probability density function (pdf) of a quaternion probability quantity is defined

to be algebraically equal to the real pdf of the corresponding associated probability

quantity. Probabilities in the case of quaternion probability variables and probability

vectors are therefore calculated by integrating the real pdf over the subspaces of R4 and

R4p respectively. Akin to the complex case, calculations of probabilities are carried out

within the realm of multivariate distribution theory.

Definition 2.3.1. Let

Z = X1 + iX2 + jX3 + kX4

be a quaternion probability variable with real associated probability vector

Z0
4×1

= [X1, X2, X3, X4]′ .

Chapter 2. Quaternion Distribution Theory

 
 
 



2.3. Quaternion probability density functions 12

A function fZ(z) of the quaternion variable z = x1 + ix2 + jx3 + kx4 is called the pdf of

Z if

fZ(z) = fZ0
(z0)

where fZ0
(z0) is the 4-variate pdf of Z0.

Remark 2.3.2. 1. It is clear that the pdf of a quaternion probability variable a real

valued function of a quaternion variable is. The pdf of fZ(z) therefore yields the

probability associated with a quaternion probability variable Z. Suppose that Z

varies over the quaternion region B with positive probability and let G1 be any

subset of B. Then it follows that

P [Z ∈ G1] =

∫
G1

fZ(z)dz.

Every probabilistic statement made regarding Z is in actual fact equivalent to that

made about Z0, where the associated region for G1 are given by

G01 ⊂ R4,

thus

P [Z ∈ G1] = P [Z0 ∈ G01]

which can be written as ∫
G1

fZ(z)dz =

∫
G01

fZ0
(z0)dz0. (2.3.1)

2. From the definition above it seems that the quaternion pdf has similar properties

as that of the real pdf, namely:

(a)
∫
B

fZ(z)dz = 1, and

(b) fZ(z) ≥ 0∀z.

The pdf of a quaternion probability vector is now defined in a similar fashion to that

of a quaternion probability variable.

Chapter 2. Quaternion Distribution Theory
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Definition 2.3.3. Let

Z
p×1

= X1 + iX2 + jX3 + kX4

be a quaternion probability vector with real associated probability vector given by

Z0
4p×1

= [X ′1, X
′
2, X

′
3, X

′
4]
′
.

A function fZ(z) of the p quaternion variables zs = x1s + ix2s + jx3s + kx4s, s = 1, . . . , p

is called the probability density function (pdf) of Z if

fZ(z) = fZ0
(z0)

where fZ0
(z0) is the 4p-variate real pdf of Z0

4p×1

.

All the remarks made in Remark 2.3.2 on fZ(z) also hold in the case for fZ(z).

Furthermore, it is also true that∫
G2

fZ(z)dz =

∫
G02

fZ0
(z0)dz0, (2.3.2)

where G2 is a subspace of some quaternion space and G02 is the associated subset of R4p.

Note, here it is required that the associated counterpart of Z
p×1

is given by Z0
4p×1

and

not necessarily by Z0
4p×4

as defined earlier. This is due to the derivation of the quaternion

normal distribution, which is discussed in Chapter 3.

The question now arises whether matrix-variate quaternion distributions can be de-

fined. It will be shown in Chapter 3 that the problem of finding the pdf of a quaternion

random matrix Z
n×p

reduces to a multivariate problem by using the vec operator as de-

fined in (2.1.1). Specifically, it will be shown that the pdf of Z is algebraically equivalent

to that of a 4pn-variate real variable vec Z0
4pn×1

, where Z0 is the real associated probability

matrix of Z. For this reason, all definitions in the current chapter dealing with quaternion

probability vectors apply equally well to quaternion probability matrices.

2.4 Quaternion moments and characteristic functions

In this section the moments of quaternion probability variables and vectors are defined.

Their characteristic functions, for which the forms relating to specific distributions will

be derived in the chapters that follow, are also derived.
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2.4.1 Moments

Suppose

Z = X1 + iX2 + jX3 + kX4

is a quaternion probability variable with pdf fZ(z) and that Z varies over the quaternion

space B with positive probability. Let

Z0
4×1

= [X1, X2, X3, X4]′

be its associated real probability vector with pdf fZ0
(z0). Let g(z) be any real or quater-

nion valued function of the quaternion variable z = x1 + ix2 + jx3 + kx4 and suppose

that

g(z) = g1(x1, x2, x3, x4) + ig2(x1, x2, x3, x4) + jg3(x1, x2, x3, x4) + kg4(x1, x2, x3, x4)

where g1(x1, x2, x3, x4), g2(x1, x2, x3, x4), g3(x1, x2, x3, x4) and g4(x1, x2, x3, x4) are real

functions of the real variables x1, x2, x3 and x4 respectively. From (2.3.1) it follows that∫
B

g(z)fZ(z)dz =

∫
B0

g1(x1, x2, x3, x4)fZ0
(z0)dz0

+ i

∫
B0

g2(x1, x2, x3, x4)fZ0
(z0)dz0

+ j

∫
B0

g3(x1, x2, x3, x4)fZ0
(z0)dz0

+ k

∫
B0

g4(x1, x2, x3, x4)fZ0
(z0)dz0 (2.4.1)

where the integrals on the right are integrated with respect to the variables x1, x2, x3

and x4 and over the region B0 ⊂ R4.

Similar results are obtained for functions of a quaternion vector z
p×1

= x1 + ix2 +

jx3 + kx4. If

g(z) = g1(x1, x2, x3, x4) + ig2(x1, x2, x3, x4) + jg3(x1, x2, x3, x4) + kg4(x1, x2, x3, x4)
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be a real or quaternion valued function of z
p×1

= x1+ix2+jx3+kx4 with g1(x1, x2, x3, x4),

g2(x1, x2, x3, x4), g3(x1, x2, x3, x4) and g4(x1, x2, x3, x4) real valued functions of x1, x2, x3

and x4 respectively. It follows from (2.3.2) that∫
B

g(z)fZ(z)dz =

∫
B0

g1(x1, x2, x3, x4)fZ0
(z0)dz0

+ i

∫
B0

g2(x1, x2, x3, x4)fZ0
(z0)dz0

+ j

∫
B0

g3(x1, x2, x3, x4)fZ0
(z0)dz0

+ k

∫
B0

g4(x1, x2, x3, x4)fZ0
(z0)dz0 (2.4.2)

where the integrals on the right are integrated with respect to the variables x1, x2, x3

and x4 and over the region B0 ⊂ R4p.

Definition 2.4.1. Suppose that Z = X1 + iX2 + jX3 + kX4 is a quaternion probability

variable, with pdf fZ(z), which varies over the quaternion region B and let g(Z) be a

real or quaternion valued function of Z. The expected value of g(Z) is defined as

E [g(Z)] =

∫
B

g(z)fZ(z)dz.

From (2.4.1) this expected value can now be calculated.

Remark 2.4.2. 1. From Definition 2.4.1 the following special cases follow:

(a) The expected value of Z is given by:

µ ≡E [Z]

=

∫
B

zfZ(z)dz

=

∫
B0

x1fZ0
(z0)dz0 + i

∫
B0

x2fZ0
(z0)dz0 + j

∫
B0

x3fZ0
(z0)dz0 + k

∫
B0

x4fZ0
(z0)dz0

∴ µ ≡E [Z]

=E [X1] + iE [X2] + jE [X3] + kE [X4]
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(b) Let g(Z) = [Z − E [Z]]
[
Z − E [Z]

]
then

σ2 ≡ var(Z)

=E [X1 − E [X1]]2 + E [X2 − E [X2]]2 + E [X3 − E [X3]]2 + E [X4 − E [X4]]2

= var(X1) + var(X2) + var(X3) + var(X4). (2.4.3)

2. It is therefore clear that σ2 ≡ var(Z) is a measure of the joint dispersion of the

components X1, X2, X3 and X4. Note however that

var(Z) = var(X1 + var(X2) + var(X3) + var(X4)

should not be attributed to independence among the respective components, but

rather to the special way in which the variance is defined in (2.4.3). In Chapter

3, however, quaternion normal variables are discussed, which are characterised by

independence of the components X1, X2, X3 and X4, such that

cov(X1, X2) =0, cov(X1, X3) =0, cov(X1, X4) =0

cov(X2, X3) =0, cov(X2, X4) =0, cov(X3, X4) =0.

for these probability variables. Hence, in this case it follows that

var(Z) = var(X1 + iX2 + jX3 + kX4)

= var(X1) + var(X2) + var(X3) + var(X4)

= var(X1 +X2 +X3 +X4).

The reason for this special definition of the variance will be discussed in the fol-

lowing chapter.

The covariance between two quaternion probability variables is now defined.

Definition 2.4.3. Let Z1 = X11 +iX12 +jX13 +kX14 and Z2 = X21 +iX22 +jX23 +kX24

be two quaternion probability variables. The covariance between Z1 and Z2 are defined

as

cov(Z1, Z2) = E [Z1 − E [Z1]]
[
Z2 − E [Z2]

]
(2.4.4)

where the expected value is calculated using (2.4.2) for the case p = 2.

Chapter 2. Quaternion Distribution Theory

 
 
 



2.4. Quaternion moments and characteristic functions 17

From Definition 2.4.3 it is clear that the covariance between Z1 and Z2 is a quaternion

quantity, namely

cov(Z1, Z2)

= cov(X11, X21) + cov(X12, X22) + cov(X13, X23) + cov(X14, X24)

+ i {cov(X12, X21)− cov(X11, X22)− cov(X13, X24) + cov(X14, X23)}

+ j {cov(X13, X21)− cov(X11, X23) + cov(X12, X24)− cov(X14, X22)}

+ k {cov(X14, X21)− cov(X11, X24)− cov(X12, X23) + cov(X13, X22)} . (2.4.5)

Furthermore, it follows that

cov(Z1, Z2) = cov(Z2, Z1). (2.4.6)

Definition 2.4.4. Suppose that

Z
p×1

=X1 + iX2 + jX3 + kX4

= [Z1, . . . , Zp]
′

is a quaternion probability vector.

1. The expected value of Z is the p component quaternion vector

µ
p×1

= [E [Z1] , . . . , E [Zp]]
′ (2.4.7)

with components equal to the expected values of Z1, . . . , Zp respectively.

2. The covariance matrix of Z is the quaternion Hermitian matrix

Σ
p×p

=


var(Z1) cov(Z1, Z2) . . . cov(Z1, Zp)

cov(Z2, Z1) var(Z2) . . . cov(Z2, Zp)
...

... . . .
...

cov(Zp, Z1) cov(Zp, Z2) . . . var(Zp)

 . (2.4.8)

Chapter 2. Quaternion Distribution Theory

 
 
 



2.4. Quaternion moments and characteristic functions 18

Remark 2.4.5. 1. From (2.4.7) it is clear that

µ
p×1

=


E [X11 + iX21 + jX31 + kX41]

...

E [X1p + iX2p + jX3p + kX4p]



=


E [X11]

...

E [X1p]

+ i


E [X21]

...

E [X2p]

+ j


E [X31]

...

E [X3p]

+ k


E [X41]

...

E [X4p]


=µ

X1
+ iµ

X2
+ jµ

X3
+ kµ

X4

with µ
X1
p×1

, µ
X2
p×1

, µ
X3
p×1

and µ
X4
p×1

the average vectors of X1, X2, X3 and X4 respectively.

2. From (2.4.8) it is clear that

Σ
p×p

= E
[
Z − µ

] [
Z − µ

]′
.

2.4.2 Characteristic functions

The characteristic functions of quaternion probability variables, vectors and matrices are

the object of the discussion in this subsection.

Definition 2.4.6. Suppose that Z = X1 + iX2 + jX3 + kX4 is a quaternion probability

variable. The characteristic function (cf) of Z is defined as

φZ(z) = E

[
exp

1

2
ι(Z̄t+ t̄Z)

]
(2.4.9)

where t = t1 + it2 + jt3 + kt4 is a quaternion number and ι the usual imaginary complex

root.

Remark 2.4.7. From (2.4.9) it follows that

φZ(t) =E [exp ι(X1t1 +X2t2 +X3t3 +X4t4)]

=φZ0
(t0)

where φZ0
(t0) the cf of the associated real probability variable, Z0

4×1

= [X1, X2, X3, X4]′

and and further is t0
4×1

= [t1, t2, t3, t4]′ ∈ M4×1(R). It is therefore clear that the cf of
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a quaternion probability variable is equivalent to the cf of a 4-variate real probability

vector.

Definition 2.4.8. Let Z
p×1

= X1 + iX2 + jX3 + kX4 be a quaternion probability vector.

The cf of Z is defined as

φZ(t) = E

[
exp

1

2
ι
(
Z̄
′
t+ t̄′Z

)]
, (2.4.10)

where t
p×1

= t1+it2+jt3+kt4 is a quaternion vector and ι is the usual imaginary complex

root.

Remark 2.4.9. 1. In a similar fashion as in the univariate case, it follows that

φZ(t) = E [exp ι (X ′1t1 +X ′2t2 +X ′3t3 +X ′4t4)]

such that

φZ(t) = φZ0
(t0).

φZ0
(t0) is the cf of the associated real probability vector, Z0

4p×1

= [X ′1, X
′
2, X

′
3, X

′
4]
′

and further is t0
4p×1

= [t′1, t
′
2, t
′
3, t
′
4]′ ∈M4p×1(Q). It is therefore clear that the cf of a

quaternion probability vector is equivalent to the cf of a 4p-variate real probability

vector.

2. It should be noted that the cf of the real probability component of a quaternion

probability quantity can be derived by using the particular cf in the quaternion

case by setting the imaginary components of t ∈ Mp×1(Q) to zero. From Remark

2.4.7 it follows that φZ(t) = φX1(t1) when t2 = 0, t3 = 0 and t4 = 0. Similarly,

from 1 above, it follows that φZ(t) reduces to φX1
(t1) when t2 = 0, t3 = 0 and

t4 = 0.

Definition 2.4.10. Let Z
n×p

= X1 +iX2 +jX3 +kX4 be a quaternion probability matrix.

The cf of Z is defined as

φZ(T) = E
[
exp

ι

2
tr
(
Z̄′T + T̄′Z

)]
, (2.4.11)

where T
n×p

= T1 + iT2 + jT3 + kT4 is a quaternion matrix and ι is the usual imaginary

complex root.
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Now, if V = Z̄′T + T̄′Z, say, then it follows that V̄′ = T̄′Z + Z̄′T = V implying that

V is Hermitian and hence, from (2.1.2), the cf may be written as

φZ(T) =E
[
exp

ι

2
Retr

(
Z̄′T + T̄′Z

)]
=E

[
exp

ι

2

[
Retr

(
Z̄′T

)
+ Retr

(
T̄′Z

)]]
=E

[
exp

ι

2

[
Retr

(
Z̄′T

)
+ Retr

(
Z̄′T

)]]
since the conjugate do not influence the real components

=E
[
exp ιRetr

(
Z̄′T

)]
(2.4.12)

An expression for the cf of Z
p×1

in terms of Retr can be derived in a similar fashion as in

(2.4.12) and is given by

φZ(t) = E
[
exp ιRetr

(
Z̄
′
t
)]
.

The nature of the problem will determine the form of the cf used in its derivation.

It now follows that

φZ(T) = E [exp ιRetr (X′1T1 + X′2T2 + X′3T3 + X′4T4)]

such that

φZ(T) = φZ0(T0). (2.4.13)

φZ0(T0) is the cf of the associated real probability matrix, Z0
n×4p

= [X′1,X
′
2,X

′
3,X

′
4] and

further is T0
n×4p

= [T′1,T
′
2,T

′
3,T

′
4] a real matrix. It is therefore clear that the cf of a

quaternion probability matrix is equivalent to the cf of a n× 4p-variate real probability

matrix.

2.5 Summary

The basic foundations for a discussion on quaternion distribution theory have now been

laid. In Section 2.2 the idea of random phenomenon, an event in a sample space were

defined, along with quaternion probability variables and vectors. In Section 2.3 the pdf of

a quaternion probability quantity was defined to be algebraically equal to the pdf of the

real associated probability quantity. Similar algebraic equivalence results were derived
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for moments and characteristic functions, together with their appropriate definitions, in

Section 2.4.

The quaternion normal distribution, which form the basis of a further investigation of

the quaternion distribution theory, is the topic under discussion in the following chapter.
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Chapter 3

The Quaternion Normal

Distribution

The p-variate quaternion normal distribution forms the basis from which the quaternion

distribution theory is further developed, and will be discussed in Section 3.1. The uni-

variate and bivariate quaternion normal distributions are presented as special cases of

the p-variate quaternion normal distribution. In Section 3.2 the matrix-variate quater-

nion normal distribution is derived using the real representation thereof. For each of

these cases the probability density functions as well as their corresponding characteristic

functions are derived, with special emphasis on the relationship between the quaternion

and associated real cases.

3.1 The p-variate quaternion normal distribution

In this section the approach of Kabe (1976) [17], (1978) [18], (1984) [19] and Rautenbach

(1983) [28] will be followed in deriving the p-variate quaternion normal distribution.

Although the results in this section are in general not new, it is shown how they relate

to those given by Teng and Fang (1997) [31], and with particular emphasis on the

quaternion and related real characteristic functions. It should be noted that Andersson

(1975) [1] first presented these results by using techniques from group theory, but these

are however beyond the scope of the current discussion.

22
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Definition 3.1.1. Let

Z
p×1

= [Z1, . . . , Zp]
′ =


X11 + iX21 + jX31 + kX41

X12 + iX22 + jX32 + kX42

...

X1p + iX2p + jX3p + kX4p


be a quaternion probability vector with real associated probability vector

Z0
4p×1

= [X11, . . . , X1p, X21, . . . , X2p, X31, . . . , X3p, X41, . . . , X4p]
′

=

[
X ′1
1×p

, X ′2
1×p

, X ′3
1×p

, X ′4
1×p

]′
.

Then, Z has a p-variate quaternion normal distribution if Z0 has a 4p-variate real normal

distribution.

The idea of describing the properties of a quaternion probability vector in terms of

the properties of its real associated probability vector, as discussed in Chapter 2, was

employed in the above definition. Teng and Fang (1997) [31] used a different matrix

structure for representing quaternions by matrices. They supposed that Z
p×1

= X1 +

iX2 + jX3 + kX4 may be represented by

Z00
4p×4

=



X1
p×1

X2
p×1

X3
p×1

X4
p×1

−X2
p×1

X1
p×1

−X4
p×1

X3
p×1

−X3
p×1

X4
p×1

X1
p×1

−X2
p×1

−X4
p×1

−X3
p×1

X2
p×1

X1
p×1


.

=

[
Y 1

4p×1

, Y 2
4p×1

, Y 3
4p×1

, Y 4
4p×1

]
.
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Thus the conjugate Z̄
p×1

= X1 − iX2 − jX3 − kX4 of Z
p×1

may be represented as

Z̄00
4p×4

=



X1
p×1

−X2
p×1

−X3
p×1

−X4
p×1

X2
p×1

X1
p×1

X4
p×1

−X3
p×1

X3
p×1

−X4
p×1

X1
p×1

X2
p×1

X4
p×1

X3
p×1

−X2
p×1

X1
p×1


.

=

[
Y ∗1

4p×1

, Y ∗2
4p×1

, Y ∗3
4p×1

, Y ∗4
4p×1

]
.

From this it is clear that Z0 = Y ∗1. Teng and Fang (1997) [31] showed that any of the Y s,

s = 1, 2, 3, 4 may be used to arive at the same form of the probability density function

for the p-variate quaternion normal distribution.

Kabe (1976) [17] investigated the case where Z0 has a very special 4p-variate real

normal distribution, namely:

µ
0
≡E [Z0]

=
[
µ′
X1
, µ′

X2
, µ′

X3
, µ′

X4

]′
= [E [X ′1] , E [X ′2] , E [X ′3] , E [X ′4]]

′

and

Σ0
4p×4p

= cov (Z0, Z
′
0)

=E

[(
Z0 − µ0

)(
Z0 − µ0

)′]

=
1

4


Σ1 −Σ2 −Σ3 −Σ4

Σ2 Σ1 −Σ4 Σ3

Σ3 Σ4 Σ1 −Σ2

Σ4 −Σ3 Σ2 Σ1

 (3.1.1)

where Σ1
p×p

is a real symmetric matrix, and Σ2
p×p

, Σ3
p×p

and Σ4
p×p

are real skew symmetric ma-

trices. This covariance structure of Z0 is the special property of the p-variate quaternion
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normal distribution and implies that:

Σ1
p×p

=


σ2

1 η12σ1σ2 . . . η1pσ1σp

η12σ1σ2 σ2
2 . . . η2pσ2σp

...
... . . .

...

η1pσ1σp η2pσ2σp . . . σ2
p

 where (3.1.2)

ηst =
σ1st

σsσt
, s, t = 1, . . . , p, s < t

Σ2
p×p

=


0 α12σ1σ2 α13σ1σ3 . . . α1pσ1σp

−α12σ1σ2 0 α23σ2σ3 . . . α2pσ2σp
...

...
...

...
...

−α1pσ1σp −α2pσ2σp −α3pσ3σp . . . 0

 where (3.1.3)

αst =
σ2st

σsσt
, s, t = 1, . . . , p, s < t

Σ3
p×p

=


0 β12σ1σ2 β13σ1σ3 . . . β1pσ1σp

−β12σ1σ2 0 β23σ2σ3 . . . β2pσ2σp
...

...
...

...
...

−β1pσ1σp −β2pσ2σp −β3pσ3σp . . . 0

 where (3.1.4)

βst =
σ3st

σsσt
, s, t = 1, . . . , p, s < t

Σ4
p×p

=


0 λ12σ1σ2 λ13σ1σ3 . . . λ1pσ1σp

−λ12σ1σ2 0 λ23σ2σ3 . . . λ2pσ2σp
...

...
...

...
...

−λ1pσ1σp −λ2pσ2σp −λ3pσ3σp . . . 0

 where (3.1.5)

λst =
σ4st

σsσt
, s, t = 1, . . . , p, s < t.

(3.1.6)

The relationships given in (3.1.2) – (3.1.5) are of utmost importance, since the p-variate

quaternion normal distribution are hereby defined. The expected value of

Z = X1 + iX2 + jX3 + kX4
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now follows from Remark 2.4.5 (1)

µ
p×1

=E [Z]

=µ
X1

+ iµ
X2

+ jµ
X3

+ kµ
X4

(3.1.7)

while the quaternion-Hermitian covariance matrix of Z follows from Remark 2.4.5 (2)

and (3.1.1) as

Σ
p×p

=E
[
Z − µ

] [
Z − µ

]′
=E

[(
X1 − µX1

)
+ i
(
X2 − µX2

)
+ j

(
X3 − µX3

)
+ k

(
X4 − µX4

)]
×
[(
X1 − µX1

)
− i
(
X2 − µX2

)
− j

(
X3 − µX3

)
− k

(
X4 − µX4

)]′
=E

[
X1 − µX1

] [
X1 − µX1

]′
− iE

[
X1 − µX1

] [
X2 − µX2

]′
− jE

[
X1 − µX1

] [
X3 − µX3

]′
− kE

[
X1 − µX1

] [
X4 − µX4

]′
+ iE

[
X2 − µX2

] [
X1 − µX1

]′
+ E

[
X2 − µX2

] [
X2 − µX2

]′
− kE

[
X2 − µX2

] [
X3 − µX3

]′
+ jE

[
X2 − µX2

] [
X4 − µX4

]′
+ jE

[
X3 − µX3

] [
X1 − µX1

]′
+ kE

[
X3 − µX3

] [
X2 − µX2

]′
+ E

[
X3 − µX3

] [
X3 − µX3

]′
− iE

[
X3 − µX3

] [
X4 − µX4

]′
+ kE

[
X4 − µX4

] [
X1 − µX1

]′
− jE

[
X4 − µX4

] [
X2 − µX2

]′
+ iE

[
X4 − µX4

] [
X3 − µX3

]′
+ E

[
X4 − µX4

] [
X4 − µX4

]′
=

1

4
Σ1 + i

1

4
Σ2 + j

1

4
Σ3 + k

1

4
Σ4

+ i
1

4
Σ2 +

1

4
Σ1 + k

1

4
Σ4 + j

1

4
Σ3

+ j
1

4
Σ3 + k

1

4
Σ4 +

1

4
Σ1 + i

1

4
Σ2

+ k
1

4
Σ4 + j

1

4
Σ3 + i

1

4
Σ2 +

1

4
Σ1

=Σ1 + iΣ2 + jΣ3 + kΣ4. (3.1.8)
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It is clear that:

cov (X1, X
′
1) = cov (X2, X

′
2)

= cov (X3, X
′
3)

= cov (X4, X
′
4)

=
1

4
Σ1, (3.1.9)

− cov (X1, X
′
2) = cov (X2, X

′
1)

=
1

4
Σ2, (3.1.10)

− cov (X1, X
′
3) = cov (X3, X

′
1)

=
1

4
Σ3, (3.1.11)

− cov (X1, X
′
4) = cov (X4, X

′
1)

=
1

4
Σ4. (3.1.12)

(See Rautenbach (1983) [28] for a detailed discussion along these lines.)

Returning to the Y s, s = 1, 2, 3, 4 defined by Teng and Fang (1997) [31], they showed

that 1
4

cov (Z,Z ′) ' cov (Y s, Y
′
s), s = 1, 2, 3, 4.

The pdf of Z0
4p×1

is given by

fZ0
(z0) =π−

1
2

(4p) {det (2Σ0)}−
1
2 exp

{
−1

2

(
z0 − µ0

)′
Σ−1

0

(
z0 − µ0

)}
for

z0 ∈ B0 =
{
z0 = [x11, . . . , x1p, x21, . . . , x2p, x31, . . . , x3p, x41, . . . , x4p]

′ ,

−∞ < x1s, x2s, x3s, x4s <∞, s = 1, . . . , p} .

In order to apply the representation theory as discussed in Chapter 2 and Appendix A,

i.e. by an elementwise expansion of the quaternion probability vector, the components

of the real associated probability vector now have to be arranged as follows:

Z∗0
4p×1

= [X11, X21, X31, X41, . . . , X1p, X2p, X3p, X4p]
′ .

The components of µ
0

and Σ0 are rearranged accordingly in forming µ∗
0

4p×1

and Σ∗0
4p×4p

Chapter 3. The Quaternion Normal Distribution

 
 
 



3.1. The p-variate quaternion normal distribution 28

respectively, and now yield the pdf of Z∗0 as

fZ∗0(z∗0) = (2π)−
1
2

(4p) {det Σ∗0}
− 1

2 exp

{
−1

2

(
z∗0 − µ∗0

)′
Σ∗0
−1
(
z∗0 − µ∗0

)}
(3.1.13)

for

z∗0 ∈ B∗0 =
{
z∗0 = [x11, x21, x31, x41, . . . , x1p, x2p, x3p, x4p]

′ ,

−∞ < x1s, x2s, x3s, x4s <∞, s = 1, . . . , p} .

Since fZ0
(z0) = fZ∗0(z∗0) for all z0 and corresponding z∗0, Z∗0 may be used as real associated

probability vector when deriving the pdf of Z.

The real covariance matrix Σ∗0
4p×4p

of Z∗0 = [X11, X21, X31, X41, . . . , X1p, X2p, X3p, X4p]
′

are given by (see Rautenbach (1983) [28])

Σ∗0
4p×4p

= [Σ∗0st] (3.1.14)

where Σ∗0st
4×4

is of the form

Σ∗0ss
4×4

=
1

4


σ2
s 0 0 0

0 σ2
s 0 0

0 0 σ2
s 0

0 0 0 σ2
s


for s = 1, . . . , p and

Σ∗0st
4×4

=
1

4


ηst −αst −βst −λst
αst ηst −λst βst

βst λst ηst −αst
λst −βst αst ηst

σsσt
for s, t = 1, . . . , p, s 6= t. This covariance structure is a key feature of the p-variate

quaternion normal distribution, since Σ∗0 is a matrix with elements similar to that given

in Definition A.5.1. Thus, it follows that Σ∗0 ∈M4p(R), more specifically 4Σ∗0 ∈M4p(R).

From Definition A.5.4 it follows that operations on M4p(R), with matrices of the form
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4Σ∗0, are isomorphic to operations on Mp(Q). Thus, Mp(Q) is a set of matrices of the

form

Σ
p×p

= [σst]

where

σst =

{
(ηst + iαst + jβst + kλst)σsσt, s 6= t

σts, s = t.
(3.1.15)

Hence, it follows that 4Σ∗0 ' Σ (see Remark A.5.6).

The pdf of Z
p×1

, where Z has a p-variate quaternion normal distribution is now derived.

Theorem 3.1.2. Let Z
p×1

be a quaternion probability vector that has a p-variate quater-

nion normal distribution, as given in Definition 3.1.1, with E [Z] ≡ µ and Σ ≡ [σst] as

given in (3.1.15). The pdf of Z
p×1
∼ QN(p;µ,Σ), is given by:

fZ(z) = 22pπ−2p (det Σ)−2 exp
{
−2
(
z − µ

)′
Σ−1

(
z − µ

)}
(3.1.16)

where

z ∈ B =
{
z = [z1, . . . , zp]

′ : zs = x1s + ix2s + jx3s + kx4s,

−∞ < x1s, x2s, x3s, x4s <∞, s = 1, . . . , p} .

(See Rautenbach (1983) [28].)

Proof. 1. From Definition 2.3.3 it follows that

fZ(z) = fZ∗0(z∗0)

where Z∗0 is the real associated probability vector of Z. The pdf of Z∗0 is given by

fZ∗0(z∗0) = 2−2pπ−2p {det Σ∗0}
− 1

2 exp

{
−1

2

(
z∗0 − µ∗0

)′
Σ∗0
−1
(
z∗0 − µ∗0

)}
for z∗0 ∈ B∗0 .

2. It now follows that 4Σ∗0 ' Σ. Since Σ∗0 is symmetric positive definite, it fur-

thermore follows from Corollary A.5.15 that Σ is a positive definite quaternion

Chapter 3. The Quaternion Normal Distribution

 
 
 



3.1. The p-variate quaternion normal distribution 30

Hermitian matrix, particularly that Σ is nonsingular (see Theorem A.5.9). From

Theorem A.5.12 it now follows that

det (4Σ∗0) = (det Σ)4

∴ det Σ∗0 =4−4p (det Σ)4 (3.1.17)

∴ (det Σ∗0)−
1
2 =42p (det Σ)−2 . (3.1.18)

3. From Theorem A.5.9 it also follows that

1

4
Σ∗0
−1 ' Σ−1 (3.1.19)

so that Theorem A.5.13 yields

2
(
z∗0 − µ∗0

)′ 1
4
Σ∗0
−1
(
z∗0 − µ∗0

)
= 2

(
z − µ

)′
Σ−1

(
z − µ

)
. (3.1.20)

4. From (3.1.18) and (3.1.20) together with the expression for fZ∗0(z∗0) it finally follows

that:

fZ(z) = 22pπ−2p (det Σ)−2 exp
{
−2
(
z − µ

)′
Σ−1

(
z − µ

)}
,

for z ∈ B.

Remark 3.1.3. 1. Let tr(·) be the trace onMp(Q). Rautenbach (1983) [28] argued that

the trace, as used by Kabe (1976) [17], (1978) [18], and (1984) [19], in simplifying

the exponent of fZ(z), is not allowed, because of the noncommutativity property

of quaternions, i.e.

tr(AB) 6= tr(BA).

However, from (2.1.2), and the fact that for a quaternion random vector Z
p×1

, it is

known that Z̄
′
Z ∈ R, and from Theorem A.5.13 it follows that

exp
{
Z̄
′
Σ−1Z

}
= exp

{
trRe

(
Z̄
′
Σ−1Z

)}
= exp

{
Retr

(
Z̄
′
Σ−1Z

)}
= exp

{
Retr

(
Σ−1ZZ̄

′
)}

. (3.1.21)
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2. It is important to note that this quaternion distribution is dependent on the as-

sumptions made in (3.1.2) through (3.1.5), regarding the covariance structure of

Z0. However, if any alternative arbitrary covariance structure was chosen for Z0, it

would not have been possible to derive the corresponding pdf. Thus, the assump-

tions made regarding the covariance structure of Z0 naturally yielded a simple form

of the derived pdf.

3. If a quaternion probability vector Z
p×1

has a p-variate quaternion normal distribu-

tion, with pdf given in (3.1.16), it will be denoted by

Z ∼ QN(p;µ,Σ),

where µ
p×1

and Σ
p×p

is the expected value and covariance matrix of Z respectively.

The univariate and bivariate quaternion normal distributions are now presented as

special cases of the p-variate quaternion normal distribution.

Example 3.1.4. The pdf of the univariate quaternion normal distribution is obtained

by setting p = 1 in (3.1.16), and is given by

fZ(z) =4π−2σ−4
1 exp

{
− 2

σ2
1

(z − µ) (z − µ)

}
(3.1.22)

for z ∈ B = {z = x1 + ix2 + jx3 + kx4,

−∞ < x1, x2, x3, x4 <∞} ,

σ2
1 ≡ var(Z) = var(X1) + var(X2) + var(X3) + var(X4)

and µ ≡E [Z] = E [X1] + iE [X2] + jE [X3] + kE [X4]

are the variance and expected value of the quaternion probability variable Z = X1 +

iX2 + jX3 + kX4 ∼ QN(µ, σ2
1), respectively. Note that

Σ∗0 =
1

4


σ2

1 0 0 0

0 σ2
1 0 0

0 0 σ2
1 0

0 0 0 σ2
1

 ' σ2
1.
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Example 3.1.5. The pdf of the bivariate quaternion normal distribution is obtained by

setting p = 2 in (3.1.16), and is given by

fZ(z) = 24π−4 (det Σ)−2 exp
{
−2
(
z − µ

)′
Σ−1

(
z − µ

)}
(3.1.23)

for

z ∈ B =
{
z = [z1, z2]′ ,

zs = x1s + ix2s + jx3s + kx4s

−∞ < x1s, x2s, x3s, x4s <∞, s = 1, 2} ,

and

Σ
2×2

=

[
σ2

1 (η12 + iα12 + jβ12 + kλ12)σ1σ2

(η12 − iα12 − jβ12 − kλ12)σ1σ2 σ2
2

]

and

µ
2×1

≡E [Z]

=E [X1] + iE [X2] + jE [X3] + kE [X4]

are the covariance matrix and expected value of the quaternion probability vector Z =

X1 + iX2 + jX3 + kX4 ∼ QN(2;µ,Σ), respectively. Note that

4Σ∗0 =




σ2

1 0 0 0

0 σ2
1 0 0

0 0 σ2
1 0

0 0 0 σ2
1



η12 −α12 −β12 −λ12

α12 η12 −λ12 β12

β12 λ12 η12 −α12

λ12 −β12 α12 η12

σ1σ2

σ1σ2


η12 α12 β12 λ12

−α12 η12 λ12 −β12

−β12 −λ12 η12 α12

−λ12 β12 −α12 η12



σ2

2 0 0 0

0 σ2
2 0 0

0 0 σ2
2 0

0 0 0 σ2
2




'

[
σ2

1 (η12 + iα12 + jβ12 + kλ12)σ1σ2

(η12 − iα12 − jβ12 − kλ12)σ1σ2 σ2
2

]
.
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Also note that (3.1.23) may be rewritten as

fZ1,Z2(z1, z2) (3.1.24)

=24π−4
[(

1−
(
η2

12 + α2
12 + β2

12 + λ2
12

))
σ2

1σ
2
2

]−2

× exp
{
−2
[
σ2

2 |z1 − µ1|2 − 2 Re ((z1 − µ1) ((η12 + iα12 + jβ12 + kλ12)σ1σ2) (z2 − µ2))

+σ2
1 |z2 − µ2|2

] [
σ2

1σ
2
2 −

(
η2

12 + α2
12 + β2

12 + λ2
12

)
σ2

1σ
2
2

]−1
}

where z1, z2 ∈ B and Re indicates that the real part of the expression is used. Further-

more,

|z1 − µ1|2 = (z1 − µ1) (z1 − µ1)

and

|z2 − µ2|2 = (z2 − µ2) (z2 − µ2) .

Now, let

ρ = η12 + iα12 + jβ12 + kλ12

be the quaternion correlation coefficient, then it follows that

Σ =

[
σ2

1 ρσ1σ2

ρ̄σ1σ2 σ2
2

]
.

(3.1.24) now becomes

fZ1,Z2(z1, z2) (3.1.25)

=24π−4
(
σ2

1σ
2
2(1− ρ̄ρ)

)−2

× exp
{
−2
[
σ2

2 |z1 − µ1|2 − 2 Re ((z1 − µ1)σ1σ2ρ(z2 − µ2)) + σ2
1 |z2 − µ2|2

]
×
[
σ2

1σ
2
2 (1− ρ̄ρ)

]−1
}

where z1, z2 ∈ B and where Re, |z1 − µ1|2 and |z2 − µ2|2 have similar meanings as in

(3.1.24).

The study thus far relied heavily on a covariance structure of the form:

Σ0 =
1

4


Σ1 −Σ2 −Σ3 −Σ4

Σ2 Σ1 −Σ4 Σ3

Σ3 Σ4 Σ1 −Σ2

Σ4 −Σ3 Σ2 Σ1
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which implied a quaternion normal pdf with exponent of the form(
z − µ

)′
Σ−1

(
z − µ

)
.

If a covariance structure of the form

Σ00 =
1

4


Σ1 Σ2 Σ3 Σ4

−Σ2 Σ1 −Σ4 Σ3

−Σ3 Σ4 Σ1 −Σ2

−Σ4 −Σ3 Σ2 Σ1


is used instead, it results in a exponent for the pdf of the p-variate quaternion normal

distribution in the form (
z − µ

)′
Σ−1

(
z − µ

)
.

Thus, the p-variate quaternion normal pdf can be written as

fZ(z) = 22pπ−2p (det Σ)−2 exp
{
−2
(
z − µ

)′
Σ−1

(
z − µ

)}
with Σ0 as associated covariance matrix or

fZ(z) = 22pπ−2p (det Σ)−2 exp
{
−2
(
z − µ

)′
Σ−1

(
z − µ

)}
with Σ00 as the associated covariance matrix, which is obtained by using the represen-

tation used by Teng and Fang (1997) [31] as discussed earlier.

The remainder of this section will focus on the cf of the p-variate quaternion normal

distribution.

Theorem 3.1.6. The cf of Z
p×1
∼ QN(p;µ,Σ), is given by:

φZ(t) = exp

{
ι

2

(
µ̄′t+ t̄′µ

)
− 1

8
t̄′Σt

}
(3.1.26)

for every quaternion vector t
p×1

and ι the usual imaginary complex root.

Proof. From (2.4.10) and (3.1.16) it follows that

φZ(t) =E
[
exp

ι

2

(
Z̄
′
t+ t̄′Z

)]
=

∫
B

22pπ−2p (det Σ)−2 exp
{ ι

2

(
z̄′t+ t̄′z

)
− 2

(
z − µ

)′
Σ−1

(
z − µ

)}
dz,
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where t
p×1

= t1 + it2 + jt3 + kt4 is a quaternion vector and

B =
{
z = [z1, . . . , zp]

′ : zs = x1s + ix2s + jx3s + kx4s;

−∞ < x1s, x2s, x3s, x4s <∞, s = 1, . . . , p}

is the region of variability for Z. The exponent in this expression may be written as

− 2
{
z̄′Σ−1z − z̄′Σ−1µ− µ̄′Σ−1z + µ̄′Σ−1µ− ι

4
z̄′t− ι

4
t̄′z
}

=− 2
{
z̄′Σ−1z −

(
µ̄′ +

ι

4
t̄′Σ
)

Σ−1z − z̄′Σ−1
(
µ+

ι

4
Σt
)

+ µ̄′Σ−1µ
}

=− 2

{(
z −

(
µ+

ι

4
Σt
))′

Σ−1
(
z −

(
µ+

ι

4
Σt
))

+ µ̄′Σ−1µ−
(
µ̄′ +

ι

4
t̄′Σ
)

Σ−1
(
µ+

ι

4
Σt
)}

=− 2

{(
z −

(
µ+

ι

4
Σt
))′

Σ−1
(
z −

(
µ+

ι

4
Σt
))

+ µ̄′Σ−1µ− µ̄′Σ−1µ− ι

4
t̄′µ− ι

4
µ̄′t+

1

16
t̄′Σt

}
=− 2

{(
z −

(
µ+

ι

4
Σt
))′

Σ−1
(
z −

(
µ+

ι

4
Σt
))}

+
ι

2

(
t̄′µ+ µ̄′t

)
− 1

8
t̄′Σt

From the above expression and from the definition of the p-variate quaternion normal

pdf it follows that

φZ(t) = exp

{
ι

2

(
t̄′µ+ µ̄′t

)
− 1

8
t̄′Σt

}∫
B

22pπ−2p (det Σ)−2

× exp

{
−2

[
z −

(
µ+

ι

4
Σt
)]′

Σ−1
[
z −

(
µ+

ι

4
Σt
)]}

dz

= exp

{
ι

2

(
t̄′µ+ µ̄′t

)
− 1

8
t̄′Σt

}
.

By setting v = µ̄′t + t̄′µ then v̄′ = t̄′µ + µ̄′t = v, i.e. v ∈ R, so that (3.1.26) may be

rewritten in the form

φZ(t) = exp

{
ιRe

(
µ̄′t
)
− 1

8
t̄′Σt

}
= exp

{
ιµ∗

0

′t∗0 −
1

2
t∗0
′Σ∗0t

∗
0

}
= φZ∗0(t∗0),

so that (2.4.13) holds in the multivariate case.

An additional result is now presented that is often required for application purposes.
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Theorem 3.1.7. Let Z ∼ QN
(
p;µ,Σ

)
then Y = C

(
Z − µ

)
∼ QN (p; 0, Ip) if C is

selected in such a way that CΣC̄′ = Ip and C is a symplectic matrix. (See Rautenbach

(1983) [28].)

Proof. Let C
p×p

be such that CΣC̄′ = Ip. The cf of Y is given by

φY (t) =E
[
exp

{ ι
2

(
Ȳ
′
t+ t̄′Y

)}]
= exp

{
− ι

2

(
µ̄′C̄′t+ t̄′Cµ

)}
E
[
exp

{ ι
2

(
Z̄
′
C̄′t+ t̄′CZ

)}]
= exp

{
− ι

2

(
µ̄′C̄′t+ t̄′Cµ

)}
× exp

{
ι

2

(
µ̄′C̄′t+ t̄′Cµ

)
− 1

8
t̄′CΣC̄′t

}
= exp

{
−1

8
t̄′t

}
from which the desired result follows.

3.2 The matrix-variate quaternion normal distribu-

tion

The matrix-variate quaternion normal distribution is now discussed by an expansion of

the results presented in the previous section. Once again the aim is to emphasise the

relationship between the real associated form and its resultant counterpart.
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Theorem 3.2.1. Let Zα
p×1

, α = 1, . . . , n be n probability vectors each having a p-variate

quaternion normal distribution, as given in Definition 3.1.1. Now, suppose that

Z
n×p

= [Zαβ] , α = 1, . . . , n, β = 1, . . . , p

=


Z11 . . . Z1p

...
. . .

...

Zn1 . . . Znp



=


Z ′1
1×p
...

Z ′n
1×p

 =

[
Z(1)
n×1

, . . . , Z(p)
n×1

]

i.e. the rows of Z are QN(p;µ
α
,Σ) distributed, α = 1, . . . , n with dependence structure

given by R
n×n

not necessarily equal to In. It may be assumed without loss of generality

that R is real-valued. Similarly, define

µ
n×p

= [µαβ] , α = 1, . . . , n, β = 1, . . . , p.

Then

vec Z
np×1

=


Z(1)
n×1

...

Z(p)
n×1

 ∼ QN (np; vecµ,Σ⊗R)

i.e. a matrix-variate quaternion normal distribution where

vecµ
np×1

=


µ

(1)
n×1

...

µ
(p)

n×1

 .

Proof. 1. In order to apply the methodology set out in Section 3.1, it is necessary to
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define the real associated probability vector of Z(β). First, observe that

Z(β)
n×1

=


Z1β

...

Znβ



=


X11β + iX21β + jX31β + kX41β

...

X1nβ + iX2nβ + jX3nβ + kX4nβ


=X(1β)

n×1

+ iX(2β)
n×1

+ jX(3β)
n×1

+ kX(4β)
n×1

with associated real counterpart given by

Z∗(0β)
n×4

=

[
X(1β)
n×1

, X(2β)
n×1

, X(3β)
n×1

, X(4β)
n×1

]
.

From this it now follows that

Z
n×p

=

[
Z(1)
n×1

, . . . , Z(p)
n×1

]

=

[
X(11)
n×1

+ iX(21)
n×1

+ jX(31)
n×1

+ kX(41)
n×1

, . . . , X(1p)
n×1

+ iX(2p)
n×1

+ jX(3p)
n×1

+ kX(4p)
n×1

]

from which the real associated matrix Z∗0
n×4p

of Z
n×p

immediately follows as

Z∗0
n×4p

= [Xγαβ] , γ = 1, . . . , 4, α = 1, . . . , n, β = 1, . . . , p

=

[
X(11)
n×1

, X(21)
n×1

, X(31)
n×1

, X(41)
n×1

, . . . , X(1p)
n×1

, X(2p)
n×1

, X(3p)
n×1

, X(4p)
n×1

]

=

[
Z∗(01)
n×4

, . . . , Z∗(0p)
n×4

]
.
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If the supposition is made that

vecZ∗(0β)
4n×1

=



X(1β)
n×1

X(2β)
n×1

X(3β)
n×1

X(4β)
n×1


,

then

vec Z∗0
4np×1

=

[
X ′(11)

1×n
, X ′(21)

1×n
, X ′(31)

1×n
, X ′(41)

1×n
, . . . , X ′(1p)

1×n
, X ′(2p)

1×n
, X ′(3p)

1×n
, X ′(4p)

1×n

]′

=


vecZ∗(01)

4n×1
...

vecZ∗(0p)
4n×1


'vec Z

np×1
.

In a similar fashion, it can be shown that

vecµ∗0
4np×1

' vecµ
np×1

.

2. The problem may now be rewritten in terms of n real associated probability vec-

tors as Z∗0α
4p×1

, α = 1, . . . , n each having a 4p-variate real normal distribution, as

given in (3.1.13). The real associated quantity vec Z∗0
4np×1

now has a density given by

N (vecµ∗0,Σ
∗
0 ⊗R), i.e. a real matrix-variate normal distribution, where R

n×n
de-

notes the dependence structure of the rows of Z∗0 and is equal to that of Z and

since R is real-valued.

3. Thus, the pdf of Z∗0 is given by:

fZ∗0

(
µ∗0
n×4p

, Σ∗0
4p×4p

, R
n×n

)
=(2π)−2np det(R)−2p det(Σ∗0)−

n
2 exp

{
−1

2
tr
[
Σ∗0
−1 (Z∗0 − µ∗0)′R−1 (Z∗0 − µ∗0)

]}
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and by the isomorphic relations already established above the pdf of Z follows as

fZ

(
µ
n×p

, Σ
p×p
, R
n×n

)
=

22np

π2np (det R)2p (det Σ)2n exp
{
−2 Retr

[
Σ−1

(
Z− µ

)′
R−1 (Z− µ)

]}
(3.2.1)

from which the desired result follows.

The relationship between the cf of the matrix-variate quaternion normal distribution

and that of its real associated matrix-variate normal distribution is now established.

Theorem 3.2.2. Let Z
n×p
∼ QN (n× p;µ,Σ⊗R) as defined in (3.2.1) above. The cf of

Z is given by

φZ(T) = exp Retr

{
ιµ̄′T− 1

8
ΣT̄′RT

}
, (3.2.2)

where T
n×p
∈Mn×p(Q) and where ι is the usual complex root.

Proof. From (2.4.12) and (3.2.1) it follows that

φZ(T) =E
[
exp ιRetr

(
Z̄′T

)]
=

∫
B

22np

π2np (det R)2p (det Σ)2n

× exp
{
−2 Retr

[
Σ−1

(
Z− µ

)′
R−1 (Z− µ)− ι

2
Z̄′T

]}
dZ (3.2.3)

where

B =
{
Z = [zst]

′ : zst = x1st + ix2st + jx3st + kx4st;

−∞ < x1st, x2st, x3st, x4st <∞, s = 1, . . . , n, t = 1, . . . , p}

is the region of variability for Z. The argument of Retr may be rewritten in the form

Σ−1
(
Z− µ

)′
R−1 (Z− µ)− ι

2
Z̄′T

=Σ−1
[
Z̄′R−1Z− Z̄′R−1µ− µ̄′R−1Z + µ̄′R−1µ− ι

2
ΣZ̄′T

]
=Σ−1

[
Z̄′R−1Z− Z̄′R−1

(
µ+

ι

4
RTΣ

)
−
(
µ̄′ +

ι

4
ΣT̄′R

)
R−1Z + µ̄′R−1µ

]
=Σ−1

[(
Z−

(
µ+

ι

4
RTΣ

))
R−1

(
Z−

(
µ+

ι

4
RTΣ

))]
+ Σ−1

[
µ̄′R−1µ−

(
µ+

ι

4
RTΣ

)′
R−1

(
µ+

ι

4
RTΣ

)]
.
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Noting the fact that Σ and R are Hermitian, that the conjugate of Retr is again Retr,and

that according to (2.1.2) the arguments of Retr may be rearranged, (3.2.3) reduces to

φZ(T) = exp Retr

{
−2Σ−1

[
µ̄′R−1µ−

(
µ+

ι

4
RTΣ

)′
R−1

(
µ+

ι

4
RTΣ

)]}
= exp Retr

{
−2Σ−1

[
µ̄′R−1µ−

(
µ̄′R−1 +

ι

4
ΣT̄′

)(
µ+

ι

4
RTΣ

)]}
= exp Retr

{
−2Σ−1

[
− ι

4
µ̄′TΣ− ι

4
ΣT̄′µ+

1

16
ΣT̄′RTΣ

]}
= exp Retr

{
ι

2
µ̄′T +

ι

2
T̄′µ− 1

8
T̄′RTΣ

}
= exp Retr

{
ιµ̄′T− 1

8
ΣT̄′RT

}
, as required.

Note that

φZ(T) = exp Retr

{
ιµ̄′T− 1

8
ΣT̄′RT

}
= exp tr

{
ιµ∗0
′T∗0 −

1

2
Σ∗0T

∗
0
′RT∗0

}
= φZ∗0

(T∗0)

satisfying (2.4.13).

3.3 Summary

In this chapter it was seen that the p-variate quaternion normal distribution and matrix-

variate quaternion normal distribution are respectively algebraically equivalent to a 4p-

variate real normal and n × 4p-matrix-variate real normal distribution. In the next

chapter the quadratic forms of these distributions will come to the fore.
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Chapter 4

The Quaternion χ2 and Quaternion

Wishart Distributions

After the foundation of the quaternion normal distribution is established, it is important

to investigate the distributions of various functions in which they may appear. The sums

of quadratic forms of quaternion normal variables yielding the quaternion chi-squared

and quaternion Wishart distributions are respectively discussed in Sections 4.1 and 4.2.

4.1 The quaternion χ2 distribution

What is the distribution of Z̄
′
Z, for Z

p×1
a p-variate quaternion normal distributed prob-

ability vector, from the real representation perspective? Rautenbach (1983, p 161) [28]

answered this question.

Theorem 4.1.1. Let Z
p×1
∼ QN(p; 0, Ip). If V = Z̄

′
Z, then W = 4V ∼ χ2

4p (chi-squared

with 4p degrees of freedom) distribution.
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Proof.

V =Z̄
′
Z

= [X11 − iX21 − jX31 − kX41, . . . , X1p − iX2p − jX3p − kX4p]

×


X11 − iX21 − jX31 − kX41

...

X1p − iX2p − jX3p − kX4p


=

1

4

[
p∑
s=1

(2X1s)
2 +

p∑
s=1

(2X2s)
2 +

p∑
s=1

(2X3s)
2 +

p∑
s=1

(2X4s)
2

]
.

The real associated vector of Z is

Z∗0
4p×1

= [X11, X21, X31, X41, . . . , X1p, X2p, X3p, X4p]
′

with Z∗0
4p×1

∼ N(4p; 0, 1
4
Ip). It now follows from a known result in real distribution theory

that
p∑
s=1

(2Xls)
2 ∼ χ2

p, l = 1, 2, 3, 4.

Therefore

W = 4V =
4∑
l=1

p∑
s=1

(2X1s)
2 ∼ χ2

4p

with pdf

fW (w) = 2−2p [Γ (2p)]−1w2p−1 exp

(
−1

2
w

)
, w > 0, (4.1.1)

where Γ(·) is the real gamma function.

The following result is often required in applications and inference problems.

Theorem 4.1.2. Let Z ∼ QN
(
p;µ,Σ

)
then 4

(
Z − µ

)′
Σ−1

(
Z − µ

)
∼ χ2

4p. (See Raut-

enbach (1983) [28].)

Proof. Let Y = C
(
Z − µ

)
where CΣC̄′ = Ip with C a symplectic matrix. From Theo-
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rem 3.1.7 it follows that Y ∼ QN (p; 0, Ip) so that

Ȳ
′
Y =

p∑
s=1

ȲsYs

=
1

4

p∑
s=1

(
4Y 2

s1 + 4Y 2
s2 + 4Y 2

s3 + 4Y 2
s4

)
where each Ysr ∼ N(0, 1

4
), r = 1, 2, 3, 4 so that 4Y 2

sr ∼ χ2
1, r = 1, 2, 3, 4. Thus it follows

that

4Ȳ
′
Y =4

(
Z − µ

)′
C̄′C

(
Z − µ

)
=4
(
Z − µ

)′
Σ−1

(
Z − µ

)
∼χ2

4p.

4.2 The quaternion Wishart distribution

Kabe (1976) [17], (1978) [18], and (1984) [19] derived the hypercomplex Wishart dis-

tribution directly from the hypercomplex normal distribution using the Q generalized

Sverdrup’s lemma. Teng and Fang (1997) [31] showed that the maximum likelihood esti-

mator Σ̂ of Σ followed a quaternion Wishart distribution. They used a Fourier transform

on the results given by Andersson (1975) [1] to yield explicit expressions for the proba-

bility density and characteristic functions of the quaternion Wishart distribution. The

non-central quaternion Wishart distribution was discussed by Kabe (1984) [19], while Li

and Xue (2010) [24] derived the singular quaternion Wishart distribution. More technical

results, specifically regarding Selberg-type squared matrices, gamma and beta integrals

are found in the paper by Gupta and Kabe (2008) [13].

Is it possible to find the density of the quaternion Wishart matrix from the real as-

sociated Wishart matrix? In this section, the quaternion Wishart distribution is derived

from the real matrix normal distribution associated with the quaternion matrix normal

distribution by which it is defined. Once again the emphasis is on the link between the

characteristic functions of the quaternion and real associated Wishart distributions.
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Theorem 4.2.1. Let Z
n×p
∼ QN (n× p; 0,Σ⊗ In). Then for n ≥ p, W = Z̄′Z is

said to have the quaternion Wishart distribution with n degrees of freedom, i.e. W ∼
QWp (Σ, n), with pdf given by

f(W) =
22np

QΓp(2n) (det Σ)2n exp
{
−2 Retr

(
Σ−1W

)}
det (W)2n−2p+1 , (4.2.1)

with W = W̄′ > 0 and where QΓp (·) is the quaternion multivariate gamma function, as

given in (A.6.1).

Proof. Let W∗
0

4p×4p

= Z∗0
′

4p×n
Z∗0
n×4p

where Z∗0
n×4p

∼ N (n× 4p; 0,Σ∗0 ⊗ In) is the real associated

matrix of Z as given in Theorem 3.2.1. Let T = (tls), l, s = 1, . . . , p where tls = t̄ls and

tls = t1ls + it2ls + jt3ls + kt4ls. From (2.4.13) it follows that

φW(T) =φW0(T0)

= det (I4p − 2ιΣ∗0T
∗
0)−

n
2 ,

where T∗0
4p×4p

is the real associated symmetric vector of T
p×p

. Let Y∗0 = (I4p − 2ιΣ∗0T
∗
0),

then Y∗0
′ = (I4p − 2ιT∗0Σ

∗
0) = Y∗0 and from Theorem A.5.7 Y is Hermitian. Therefore

φW(T) = det (Y)−2n

= det
(
Ip −

ι

2
ΣT

)−2n

Let S = −ιT, using (A.6.4) and the definition of the quaternion generalised hypergeo-

metric function of matrix argument as given in Lemma A.6.3, it follows that

det
(
Ip −

ι

2
ΣT

)−2n

= det

(
1

2
Σ

)−2n

det(S)−2n det
(
Ip + 2Σ−1S−1

)−2n

= det

(
1

2
Σ

)−2n

det (S)−2n
∞∑
k=0

∑
κ

(2n)κQCκ
(
−2Σ−

1
2 S−1Σ−

1
2

)
k!

Using the inverse Laplace transformation given in Lemma A.6.9 and (A.6.3), it follows
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that

f(W) =
22p(p−1)

(2πι)2p(p−1)+p
22np det (Σ)−2n

∞∑
k=0

∑
κ

(2n)κ
k!

×
∫

S−S0∈Φ

etr (WS) det (S)−2n QCκ
(
−2Σ−

1
2 S−1Σ−

1
2

)
dS

=22np det (Σ)−2n
∞∑
k=0

∑
κ

(2n)κ
k!QΓp(2n, κ)

det (W)2n−2(p−1)−1 QCκ
(
−2WΣ−1

)
=

22np

QΓp(2n)
det (Σ)−2n det (W)2n−2(p−1)−1

0QF 0

(
−2Σ−1W

)
from which the desired result follows.

Remark 4.2.2. From Kabe (1984) [19] it follows that W has the non-central quaternion

Wishart distribution with n degrees of freedom, i.e. W ∼ QWp(Σ, n,Ω) with pdf given

by

f(W) =
22np exp {−2 Retr (Ω)}

QΓp(2n) det (Σ)2n exp
{
−2 Retr

(
Σ−1W

)}
det (W)2n−2p+1

0QF1

(
2n, 4ΩΣ−1W

)
(4.2.2)

where W = W̄′ > 0 and where 0QF1(·) is the quaternion hypergeometric function with

a matrix argument, (see (A.6.2)).

4.3 Summary

In this chapter the quaternion chi-squared and quaternion Wishart distributions were

respectively derived using the results from the previous chapter, i.e. the real matrix and

multivariate normal distributions associated with their quaternion counterparts. The

final chapter will focus on some applications of the study thus far.
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Chapter 5

Applications Illustrating the Role of

the Quaternion Normal Distribution

in Hypothesis Testing

In this chapter two applications of quaternion normal related distributions are presented.

Section 5.1 investigates how a hypothesis of the form H01 : µ = 0, with Σ known, may

be tested while Section 5.2 focusses on the derivation of the probability density function

for Wilks’s statistic in the quaternion case.

5.1 Quaternion hypothesis testing

Suppose that Z
2×1

= X1 + iX2 + jX3 + kX4 ∼ QN
(
2;µ,Σ

)
where

µ
2×1

= [µ1, µ2]′ = µ
X1

+ iµ
X2

+ jµ
X3

+ kµ
X4

and

Σ
2×2

=

[
σ2

1 ξ11 + iξ12 + jξ13 + kξ14

ξ11 − iξ12 − jξ13 − kξ14 σ2
2

]
is a positive definite Hermitian matrix. How may the quaternion null hypothesis

H01 : µ = 0, Σ known

47
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based upon a random sample, Z1, . . . , Zn, against

Ha1 : µ 6= 0, Σ known,

be tested? In order to derive a test criterion for such a test, consider the following

likelihood function

L =

(
2

π

)4n [
σ2

1σ
2
2 −

(
ξ2

11 + ξ2
12 + ξ2

13 + ξ2
14

)]−2n

× exp

{
−2
(
σ2

1σ
2
2 −

(
ξ2

11 + ξ2
12 + ξ2

13 + ξ2
14

))−1

[
σ2

2

n∑
s=1

(z1s − µ1) (z1s − µ1)

−2 Re
n∑
s=1

(z1s − µ1) (ξ11 + iξ12 + jξ13 + kξ14) (z2s − µ2) + σ2
1

n∑
s=1

(z2s − µ2) (z2s − µ2)

)]}
.

The likelihood ratio criterion is given by

Λ∗ =
max
H01

L
(
µ,Σ

)
max
Ha1

L
(
µ,Σ

) .
Under H0 we have

max
H01

L
(
µ,Σ

)
(5.1.1)

=

(
2

π

)4n (
σ2

1σ
2
2 −

(
ξ2

11 + ξ2
12 + ξ2

13 + ξ2
14

))−2n

× exp
{
−2
(
σ2

1σ
2
2 −

(
ξ2

11 + ξ2
12 + ξ2

13 + ξ2
14

))−1

×

[
σ2

2

n∑
s=1

z̄1sz1s − 2 Re
n∑
s=1

z̄1s (ξ11 + iξ12 + jξ13 + kξ14) z2s + σ2
1

n∑
s=1

z̄2sz2s

]}

Rautenbach (1983) [28] Theorem 6.3.2 showed that the maximum likelihood estimate

of µ is given by

µ̂ =
1

n

n∑
s=1

zs = (avg z1, avg z2)′
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such that

max
Ha1

L
(
µ,Σ

)
=L

(
µ̂,Σ

)
=

(
2

π

)4n (
σ2

1σ
2
2 −

(
ξ2

11 + ξ2
12 + ξ2

13 + ξ2
14

))−2n
exp

{
−2
(
σ2

1σ
2
2 −

(
ξ2

11 + ξ2
12 + ξ2

13 + ξ2
14

))−1

×

[
σ2

2

n∑
s=1

(z1s − avg z1) (z1s − avg z1)

− 2 Re
n∑
s=1

(z1s − avg z1) (ξ11 + iξ12 + jξ13 + kξ14) (z2s − avg z2)

+σ2
1

n∑
s=1

(z2s − avg z2) (z2s − avg z2)

]}
(5.1.2)

From (5.1.1) and (5.1.2) it now follows that

Λ∗ = exp
{
−2n

(
σ2

1σ
2
2 −

(
ξ2

11 + ξ2
12 + ξ2

13 + ξ2
14

)−1 [
σ2

1 avg z̄1 avg z1

−2 Re avg z̄1 (ξ11 + iξ12 + jξ13 + kξ14) avg z2 + σ2
2 avg z̄2 avg z2

]}
= exp

{
−2n avg z̄′Σ−1 avg z

}
.

The null hypothesis, H01, is now rejected at the 100α% significance level, in favour of

Ha1, if

exp
{
−2n avg z̄′Σ−1 avg z

}
≤ λ∗α

where the constant λ∗α is such that P [Λ∗ ≤ λ∗α|H01] = α. Thus, H01 is rejected if

y = 4n avg z̄′Σ−1 avg z ≥ −2 lnλ∗α = λ′α.

UnderH01 avg z ∼ QN
(
2; 0, 1

n
Σ
)

and from Theorem 4.1.2 it follows that Y = 4n avg Z̄
′
Σ−1 avgZ ∼

χ2
8. Since P

[
y ≥ χ2

8,1−α
]

= α the null hypothesis is rejected if y ≥ χ2
8,1−α where χ2

8,1−α

is the 100 (1− α)th percentile of χ2
8.

An alternative approach in deriving a test criterion in this case involves the use of

the real associated probability vector of z. It is known that z∗0
8×1

∼ N
(

8;µ∗
0
,Σ∗0

)
, i.e.

a real multivariate normal distribution, where µ∗
0

8×1

= [µ11, µ21, µ31, µ41, µ12, µ22, µ23, µ24]′
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and

Σ∗0 =
1

4



σ2
1 0 0 0 ξ11 −ξ12 −ξ13 −ξ14

0 σ2
1 0 0 ξ12 ξ11 −ξ14 ξ13

0 0 σ2
1 0 ξ13 ξ14 ξ11 −ξ12

0 0 0 σ2
1 ξ14 −ξ13 ξ12 ξ11

ξ11 ξ12 ξ13 ξ14 σ2
2 0 0 0

−ξ12 ξ11 ξ14 −ξ13 0 σ2
2 0 0

−ξ13 −ξ14 ξ11 ξ12 0 0 σ2
2 0

−ξ14 ξ13 −ξ12 ξ11 0 0 0 σ2
2


.

The test criterion for testing H∗01 : µ∗
0

= 0, Σ∗0 known, against H∗a1 : µ∗
0
6= 0, Σ∗0 known,

based upon a random sample Z∗01, . . . , Z
∗
0n of Z∗0 is given by

Y0 = n
(
avgZ∗0

′Σ∗0
−1 avgZ∗0

)
∼ χ2

8

where avgZ∗0 = [avgX11, avgX21, avgX31, avgX41, avgX12, avgX22, avgX32, avgX42]′ such

that the null hypothesis is rejected if y0 ≥ χ2
8,1−α where χ2

8,1−α is the 100(1 − α)th per-

centile of χ2
8.

From the above discussion it is once again clear that two different approaches exist in

order to test H01 : µ = 0 against Ha1 : µ 6= 0 with Σ known. We may either conduct an

analysis using quaternion quantities directly with y or, by utilising the real associated

quantity, y0, as test criterion respectively. From this it is clear that the quaternion

hypothesis H01 : µ = 0 against Ha1 : µ 6= 0 may also be expressed in terms of real

quantities, i.e. H∗01 : µ∗
0

= 0 against H∗a1 : µ∗
0
6= 0.

5.2 Quaternion matrix-variate beta type I and Wilks’s

statistic

Let the rows of X
n1×p

and Y
n2×p

be independently QN(p; 0,Σ) and QN(p;µ,Σ) distributed,

respectively. From Theorem 3.2.1 we know that X ∼ QN(n1 × p,0,Σ ⊗ In1) and Y ∼
QN(n2 × p;µ,Σ ⊗ In2), and from Theorem 4.2.1 it furthermore follows that X′X ∼
QWp(Σ, n1) and Y′Y ∼ QWp(Σ, n2,Ω) (i.e. is the non-central quaternion Wishart
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distribution, see Kabe (1984) [19]), as was discussed in Remark 4.2.2 with Ω = Σ−1µµ̄′.

Wilks’s statistic

Λ =
det (X′X)

det (X′X + Y′Y)

can be used as a likelihood ratio criterion for testing whether the matrix mean µ is equal

to zero or not.

The solution of this problem depends on the derivation of the distribution of Λ, and

to this end, we consider the quaternion matrix-variate beta type I distribution.

Various references to the quaternion matrix-variate beta family of distributions are

available in the literature. Dumitriu and Koev (2008) [8], for instance, derived explicit

expressions for the distributions of the extreme eigenvalues of the quaternion Jacobi en-

semble, while Gupta and Kabe (2008) [13] and Dı́az-Garćıa and Gutiérrez Jáimez (2009)

[7] explored further properties of this family. Li and Xue (2010) [24] dealt with singular

quaternion matrix-variate beta distributions. In Theorems 5.2.1 and 5.2.2, that now

follow, the central and non-central quaternion matrix-variate beta type I distributions

are respectively discussed.

Theorem 5.2.1. Let A ∼ QWp (Σ, n1), (n1 ≥ p) and B ∼ QWp (Σ, n2), (n2 ≥ p) be

independent, then U = (A + B)−
1
2 A (A + B)−

1
2 is said to have the quaternion matrix-

variate beta type I distribution with n1 and n2 degrees of freedom, i.e. U ∼ QB1(m,n1, n2)

with pdf given by

f(U) =
det (U)2n1−2p+1 det (Ip −U)2n2−2p+1

QBp(2n1, 2n2)
, 0 < U = Ū′ < Ip,

where QBp(·) is given in Lemma A.6.2.

Proof. From (4.2.1) the joint pdf of A and B is given by

f(A,B) =
det
(

1
2
Σ
)−2n1−2n2

QΓp(2n1)QΓp(2n2)
det (A)2n1−2p+1 det (B)2n2−2p+1 exp

{
−2 Retr

(
Σ−1(A + B)

)}
.

Let V = A + B, then U = V−
1
2 AV−

1
2 whose Jacobian is given by J (A,B→ V,U) =
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det (V)2p−1 (see Lemma A.6.6). Therefore

f(U) =
det
(

1
2
Σ
)−2n1−2n2

QΓp(2n1)QΓp(2n2)

∫
V=V̄′>0

det
(
V

1
2 UV

1
2

)2n1−2p+1

det
(
V −V

1
2 UV

1
2

)2n2−2p+1

× exp
{
−2 Retr

(
Σ−1V

)}
det (V)2p−1 dV

=
det
(

1
2
Σ
)−2n1−2n2

QΓp(2n1)QΓp(2n2)
det (U)2n1−2p+1 det (Ip −U)2n2−2p+1

×
∫

V=V̄′>0

det (V)2n1+2n2−2p+1 exp
{
−2 Retr

(
Σ−1V

)}
dV

=
QΓp(2(n1 + n2))

QΓp(2n1)QΓp(2n2)
det (U)2n1−2p+1 det (Ip −U)2n2−2p+1 (see Lemma A.6.11).

Theorem 5.2.2. Let A ∼ QWp (Σ, n1), (n1 ≥ p) and B ∼ QWp (Σ, n2,Ω), (n2 ≥ p) be

independent, then

U =
(
Ip + B−

1
2 AB−

1
2

)− 1
2
B−

1
2 AB−

1
2

(
Ip + B−

1
2 AB−

1
2

)− 1
2
, (5.2.1)

or equivalently, U = (A + B)−
1
2 A (A + B)−

1
2 is said to have the non-central quaternion

matrix-variate beta type I distribution with n1 and n2 degrees of freedom, i.e. U ∼
QB1(p, n1, n2,Ω) with pdf given by

f(U) =
exp {Retr(−2Ω)} det (U)2n1−2p+1 det (Ip −U)2n2−2p+1

QBp(2n1, 2n2)

× 1QF1 (2(n1 + n2) , 2n2, 2Ω(Ip −U)), 0 < U = Ū′ < Ip,

where QBp(·) is defined in Lemma A.6.2, and n1 > (p− 1), n2 > (p− 1) and 1QF1 (·)
is the quaternion confluent hypergeometric function with a matrix argument (see Lemma

A.6.3).

Proof. From (4.2.1) and (4.2.2) the joint pdf of (A,B) is given by

K exp
{
−2 Retr

(
Σ−1 (A + B)

)}
det (A)2n1−2p+1 det (B)2n2−2p+1

× exp {Retr (−2Ω)} 0QF1

(
2n2; 4ΩΣ−1B

)
(5.2.2)
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where K−1 = QΓp (2n1) QΓp (2n2) det
(

1
2
Σ
)2n1+2n2 . The transformation

V = B−
1
2 AB−

1
2

has Jacobian (see Lemma A.6.6).

J (A,B→ V,B) = det (B)2p−1

By substituting this into (5.2.2), and by integrating over B the pdf of V is obtained as

f (V) =K exp {Retr (−2Ω)} det (V)2n1−2p+1

×
∫

B=B̄′>0

exp
{
−2 Retr

(
−Σ−1B

1
2 (Ip + V) B

1
2

)}
det (B)2(n1+n2)−2p+1

× 0QF1

(
2n2; 4ΩΣ−1B

)
dB. (5.2.3)

Now, making the transformation V → HVH̄′, where H
p×p

is symplectic, and by substi-

tuting this into (5.2.3) gives

f
(
HVH̄′

)
=K exp {Retr (−2Ω)} det

(
HVH̄′

)2n1−2p+1

×
∫

B=B̄′>0

det (B)2(n1+n2)−2p+1 exp
{
−2 Retr

(
−Σ−1B

1
2

(
Ip + HVH̄′

)
B

1
2

)}
× 0QF1

(
2n2; 4ΩΣ−1B

)
dB. (5.2.4)

Consider the symmetrised pdf , see Appendix A.7, of V, i.e.

fs (V) =

∫
O(p)

f
(
HVH̄′

)
dH,

where H ∈ O (p), dH is the normalised invariant measure on O (p) and

O (p) =
{
A ∈Mp (Q)

∣∣Ā′A = AĀ′ = Ip
}
.
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Hence, from (5.2.4), Lemma A.6.5 and Lemma A.6.10, it follows that

fs (V)

=K exp {Retr (−2Ω)} det (V)2n1−2p+1

×
∫

B=B̄′>0

det (B)2(n1+n2)−2p+1
0QF1

(
2n2; 4ΩΣ−1B

)
×
∫
O(p)

exp
{
−2 Retr

(
−Σ−1B

1
2

(
Ip + HVH̄′

)
B

1
2

)}
dHdB

=K exp {Retr (−2Ω)} det (V)2n1−2p+1

×
∫

B=B̄′>0

det (B)2(n1+n2)−2p+1
0QF1

(
2n2; 4ΩΣ−1B

)
×
∫
O(p)

exp
{
−2 Retr

(
Σ−

1
2 BΣ−

1
2 H (Ip + V) H̄′

)}
dHdB

=K exp {Retr (−2Ω)} det (V)2n1−2p+1

×
∫
O(p)

∫
B=B̄′>0

det (B)2(n1+n2)−2p+1
0QF1

(
2n2; 4ΩΣ−1B

)
× exp

{
−2 Retr

(
−Σ−

1
2 H (Ip + V) H̄′Σ−

1
2 B
)}

dBdH

=K exp {Retr (−2Ω)} det (V)2n1−2p+1 QΓp (2 (n1 + n2))

×
∫
O(p)

det
(

2Σ−
1
2 H (Ip + V) H̄′Σ−

1
2

)−2(n1+n2)

× 1QF1

(
2 (n1 + n2) ; 2n2; 2Σ

1
2 H (Ip + V)−1 H̄′Σ

1
2 ΩΣ−1

)
dH

= {QBp (2n1, 2n2)}−1 exp {Retr (−2Ω)} det (V)2n1−2p+1 det (Ip + V)−2(n1+n2)

×
∫
O(p)

1QF1

(
2 (n1 + n2) ; 2n2; 2Σ

1
2 ΩΣ−

1
2 H (Ip + V)−1 H̄′

)
dH. (5.2.5)

Since Ω = Σ−1µµ̄′, it follows from Lemma A.6.3 and Lemma A.6.4 that the integral in
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(5.2.5) can be rewritten as

∞∑
k=0

∑
κ

(2 (n1 + n2))κ
(2n2)κ

1

k!

∫
O(p)

QCκ
[
2Σ

1
2 Σ−1µµ̄′Σ−

1
2 H (Ip + V)−1 H̄′

]
dH

=
∞∑
k=0

∑
κ

(2 (n1 + n2))κ
(2n2)κ

1

k!

QCκ
(

2Σ−
1
2µµ̄′Σ−

1
2

)
QCκ

[
(Ip + V)−1]

QCκ (Ip)

=
∞∑
k=0

∑
κ

(2 (n1 + n2))κ
(2n2)κ

1

k!

∫
O(p)

QCκ
[
2ΩH (Ip + V)−1 H̄′

]
dH

=

∫
O(p)

1QF1

(
2 (n1 + n2) ; 2n2; 2ΩH (Ip + V)−1 H̄′

)
dH. (5.2.6)

Substituting (5.2.6) into (5.2.5) yields

fs (V) = {QBp (2n1, 2n2)}−1 exp {Retr (−2Ω)} det (V)2n1−2p+1

× det (Ip + V)−2(n1+n2)

×
∫
O(p)

1QF1

(
2 (n1 + n2) ; 2n2; 2ΩH (Ip + V)−1 H̄′

)
dH. (5.2.7)

Since fs (V) =
∫

O(p)

f
(
HVH̄′

)
dH it follows from (5.2.7) that

f
(
HVH̄′

)
= {QBp (2n1, 2n2)}−1 exp {Retr (−2Ω)} det

(
HVH̄′

)2n1−2p+1

× det
(
Ip + HVH̄′

)−2(n1+n2)

× 1QF1

(
2 (n1 + n2) ; 2n2; 2Ω

(
Ip + HVH̄′

)−1
)

dH.

The transformation HVH̄′ → V yields the pdf of V as

{QBp (2n1, 2n2)}−1 exp {Retr (−2Ω)} det (V)2n1−2p+1

× det (Ip + V)−2(n1+n2)
1QF1

(
2 (n1 + n2) ; 2n2; 2 (Ip + V)−1 Ω

)
. (5.2.8)

Consider the transformation in (5.2.1) written in terms of V, i.e.

U =
(
Ip + B−

1
2 AB−

1
2

)− 1
2
B−

1
2 AB−

1
2

(
Ip + B−

1
2 AB−

1
2

)− 1
2

= (Ip + V)−
1
2 V (Ip + V)−

1
2 .
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Since V commutes with any rationale function, it follows that

U = (Ip + V)−
1
2 V (Ip + V)−

1
2

= (Ip + V)−1 V

whose Jacobian is given by

J (V→ U) = det (Ip −U)−2(2p−1)

and V = U (Ip −U)−1. By substituting this into (5.2.8) yields

f (U) = {QBp (2n1, 2n2)}−1 exp {Retr (−2Ω)} det (Ip −U)−2(2p−1)

× det
(

(Ip −U)−
1
2 U (Ip −U)−

1
2

)2n1−2p+1

× det
(
Ip + (Ip −U)−

1
2 U (Ip −U)−

1
2

)−2(n1+n2)

× 1QF1

(
2 (n1 + n2) ; 2n2; 2

[
Ip + (Ip −U)−

1
2 U (Ip −U)−

1
2

]−1

Ω

)
= {QBp (2n1, 2n2)}−1 exp {Retr (−2Ω)} det (U)2n1−2p+1

× det (Ip −U)2n2−2p+1
1QF1 (2 (n1 + n2) ; 2n2; 2 (Ip −U) Ω) .

What is the corresponding density expression for Wilks’s statistic in the case of

quaternion Wishart matrices? Mehta (2004) [27] provides many useful results for quater-

nion random matrices, for instance, on p282 the pdf for the determinant of a n×n random

Hermitian matrix taken from the Gaussian unitary ensemble is calculated.

Let A
p×p

and B
p×p

be two independent quaternion Wishart matrices, i.e. A ∼ QWp (n1,Σ)

and B ∼ QWp (n2,Σ,Ω), and n1, n2 ≥ p. What is the exact expression for the density

function of

Λ =
det (A)

det (A + B)
= det (U)?

The present work proposes the distribution of Wilks’s statistic based on Meijer’s G-

function (see Mathai (1993) [25]) in a numerical feasible form. Since Λ is real according

to Theorem A.5.12 (also see Mehta (2004, p284) [27]), the result follows similarly as that

given in Bekker, Roux and Arashi (2010) [4].
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From Theorem 5.2.2 and Lemma A.6.3

E
[
det (U)h−1

]
=

exp {Retr(−2Ω)}
QBp(2n1, 2n2)

×
∫

0<U=Ū′<Ip

det (U)h+2n1−2p det (Ip −U)2n2−2p+1
1QF1 (2(n1 + n2); 2n2; 2Ω(Ip −U)) dU

=
exp {Retr(−2Ω)}

QBp(2n1, 2n2)

∞∑
k=0

∑
κ

(2(n1 + n2))κ
k! (2n2)κ

×
∫

0<U=Ū′<Ip

det (U)h+2n1−2p det (Ip −U)2n2−2p+1 QCκ (2Ω(Ip −U)) dU

Let T = (Ip−U), after applying Lemma A.6.12 to the above expression (using QΓp (a, κ) =

(a)κ QΓp (a)), and then simplifying, we obtain

E
[
det (U)h−1

]
=

exp {Retr(−2Ω)}
QΓp(2n1)

∞∑
k=0

∑
κ

QΓp(2(n1 + n2), κ)QΓp(2n1 + h− 1)

k!QΓp(2(n1 + n2) + h− 1, κ)
QCκ (2Ω)

From Lemma A.6.1 it follows that

QΓp (2n1 + h− 1) =πp(p−1)

p∏
α=1

Γ(2n1 + h− 1− 2(α− 1))

QΓp (2 (n1 + n2) + h− 1, κ) =πp(p−1)

p∏
α=1

Γ (2 (n1 + n2) + h− 1 + kα − 2(α− 1)) .

Therefore the pdf of Λ = det(U) is uniquely determined by the inverse Mellin transform

as given in Mathai (1993, Definition 1.8, p23) [25] (see Appendix A.8). Thus

fΛ (λ)

=
exp {Retr(−2Ω)}

QΓp(2n1)

∞∑
k=0

∑
κ

QCκ (2Ω)
QΓp(2(n1 + n2), κ)

k!
Gp,0
p,p

(
λ

∣∣∣∣∣ a1, . . . , ap

b1, . . . , bp

)

where aα = 2(n1 + n2 − α) + kα + 1, α = 1, . . . , p and bα = 2n1 − 2α + 1, α = 1, . . . , p,

and where G(·) denotes Meijer’s G-function as given in Appendix A.8.
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If Ω = 0, using Theorem 5.2.1 the distribution of Wilks’s statistic, under the null

hypothesis, is given by

fΛ (λ) =
QΓp(2(n1 + n2))

QΓp(2n1)
Gp,0
p,p

(
λ

∣∣∣∣∣ a1, . . . , ap

b1, . . . , bp

)

where aα = 2(n1 + n2 − α) + 1, α = 1, . . . , p and bα = 2n1 − 2α + 1, α = 1, . . . , p.

Remark 5.2.3. Hotelling’s T 2 statistic is given by T 2 = nY ′A−1Y where Y
p×1
∼ QN(p; 0,Σ)

and which is independently distributed of A
p×p
∼ QWp(Σ, n). From Theorem A.5.13 this

is equal to nY ∗0
′A−1

0 Y 0 where Y ∗0
4p×1

∼ N(4p; 0,Σ0) (from Definition 3.1.1) and which is

independently distributed of A0
4p×4p

∼ W4p(Σ0, n) (from Theorem 4.2.1). Once again, this

problem reduces to a problem in the real space, and familiar techniques and inference

procedures in the real distribution theory may be applied.

5.3 Summary

In this chapter we saw that a quaternion hypothesis reduces to a real hypothesis and

that one may either conduct the testing procedure by working with the quaternion

quantities directly, or conduct the testing procedure by working with the real associated

counterparts thereof; yielding similar results in either case.

In the final section the central and non-central quaternion matrix-variate beta type

I distributions were explored in order to assist in the derivation of the pdf for Wilks’s

statistic in the quaternion space.
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Chapter 6

Conclusions

This final chapter concludes with a summary of the objectives met in this work and

suggests possible avenues for future pursuits.

6.1 Summary of Conclusions

The contributions of several prominent researchers on quaternions in distribution theory

such as the papers of Kabe (1976) [17], (1978) [18] and (1984) [19], Rautenbach (1983)

[28], and Teng and Fang (1997) [31] were highlighted, all of whom made use of the

representation theory.

It was shown how the p-variate quaternion normal distribution, along with its real

associated counterpart, forms the basis from which the quaternion distribution theory

may be further explored. For the first time the quaternion Wishart distribution was

derived from the real associated Wishart via the characteristic function.

Finally, two applications were presented, illustrating the role of the quaternion normal

distribution in hypothesis testing.

6.2 Future Work

The fact that a quaternion pdf may be algebraically equivalent to its real associated pdf

poses interesting possibilities, specifically in the area of computation and simmulation.
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Rautenbach (1983) [28] devoted an entire chapter on hypothesis testing and inference

procedures in the quaternionic space. Many of these ideas may be expanded to the

matrix-variate cases, i.e. tests involving Wishart matrices.

There appear to be a gap in the literature regarding Bayesian analysis involving

quaternions. The real representation approach may in this case, shed an interesting

light on the relationships between quaternion prior and posterior density functions, and

may lead to new types of loss functions.

The possibilities in applications in quantum mechanics were covered in quite some

detail in Rautenbach (1983) [28], however many other areas, such as quantum finance

(see Baaquie (2004) [2]), and rotational problems within molecular modelling (see Karney

(2007) [20]), may benefit equally well from the subsequent development of the quaternion

distribution theory.

Hopefully this dissertation will stimulate further research in this area. . .
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Appendix A

Some Useful Mathematical Results

A.1 Introduction

In this Appendix some useful mathematical results are given that are assumed through-

out this work.

In Section A.2 the representation theory is discussed, i.e. the replacement of the ele-

ments of an abstract division algebra by matrices. In order to facilitate the construction

of a representation that maps division algebra elements into matrices, it is necessary to

know when sets of matrices vorm a devision algebra.

After the discussion of some fundemental mathematical concepts it is shown that the

complex (Section A.3), as well as the quaternion numbers (Section A.4), an associative

division algebra over the real number field form. This result is then used to show how

these numbers are represented by matrices with specific structures. Most of the results

in these sections are a summary of that given by Rautenbach (1983) [28].

The algebraic results given in Section A.5 as discussed in Rautenbach (1983) [28] and

are used in the derivation of the p-variate quaternion normal distribution.

Some mathematical functions and polynomials are given in Section A.6 that are

used in the derivation of additional results in the quaternion distribution theory, while

Sections A.7 and A.8 respectively discuss the symmetrised density function (as presented

by Greenacre (1973) [11]), and the Mellin transform along with Meijer’s G-function.
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A.2 Division algebra representation

Definition A.2.1. A ring is a set R with two binary operations, addition and multipli-

cation such that R is closed over them and satisfies:

1. (a+ b) + c = a+ (b+ c) ∀a, b, c ∈ R.

2. ∃0 ∈ R : a+ 0 = 0 + a = a ∀a ∈ R.

3. ∀a ∈ R∃ − a ∈ R : a+ (−a) = 0.

4. a+ b = b+ a ∀a, b ∈ R.

5. (ab)c = a(bc) ∀a, b, c ∈ R.

6. a(b+ c) = ab+ ac ∀a, b, c ∈ R.

7. (a+ b)c = ac+ bc ∀a, b, c ∈ R.

(See Rektorys (1969) [30] as cited in Rautenbach (1983) [28].)

Definition A.2.2. A ring R is called commutative if it satisfies:

ab = ba ∀R

(See Rektorys (1969) [30] as cited in Rautenbach (1983) [28].)

Definition A.2.3. if

∃ 1 ∈ R : a× 1 = 1× a = a ∀a ∈ R

then R is called a unit ring (or a ring with identity). (See Rektorys (1969) [30] as cited

in Rautenbach (1983) [28].)

Definition A.2.4. If

∃ a−1 ∈ R : aa−1 = a−1a = 1, 1, a ∈ R

(where 1 is the unit element defined in R), then R is called a division ring. Moreover, if

a division ring is commutative, it is called a field. (See Rektorys (1969) [30] as cited in

Rautenbach (1983) [28].)
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Definition A.2.5. Let S be a set and R a division ring. S is a collective operator

(scalar) of R if:

1. a+ b)α = aα + bα ∀α ∈ S, a, b ∈ R.

2. (ab)α = a(bα) = (aα)b ∀α ∈ S, a, b ∈ R.

(See Rautenbach (1983) [28].)

Definition A.2.6. A division algebra over the field P is a division ring R, with the field

P as ring operator. (See Rautenbach (1983) [28].)

Remark A.2.7. 1. The above mentioned definitions follow similarly in the case where

S is a set of scalars of R in such a way that the scalar multiplication is defined

from the left.

2. The set of real numbers R together with the usual operations of addition and

multiplication, and with scalar multiplication, forms a division algebra over the

field of real numbers.

3. The set of n×n matrices with real entries, Mn(R), forms a non-commutative divi-

sion ring, with the usual matrix addition and multiplication. This set furthermore

forms a division algebra over R.

Definition A.2.8. Let D and D∗ be two division algebras over R, the field of real

numbers. A function f : D → D∗ is then called a homomorphism if:

1. f(a+ b) = f(a) + f(b) ∀a, b ∈ R.

2. f(ab) = f(a)f(b) ∀a, b ∈ R.

3. f(aα) = f(a)α ∀α ∈ R, ∀a ∈ R.

(See van der Wearden (1950) [32] as cited in Rautenbach (1983) [28].)

Definition A.2.9. A Homomorphism f : D → D∗ is a monomorphism if:

f(a) 6= f(b) =⇒ a 6= b.

(See Rautenbach (1983) [28].)
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Definition A.2.10. A homomorphism f : D → D∗ is a epimorphism if:

∃ a∗ ∈ D∗∃! a ∈ D : f(a) = a∗.

(See Rautenbach (1983) [28].)

Definition A.2.11. A homomorphism f : D → D∗ which is both a monomorphism

and a epimorphism, is called an isomorphism. If there exists an isomorphism from D

unto D∗ then it is said that D and D∗ are isomorphic and is denoted by D ' D∗. (See

Rautenbach (1983) [28].)

Definition A.2.12. Let G be a arbitrary division algebra over a field of all real numbers

and Mn(R) a matrix division algebra over a field of real numbers. A homomorphism

f : G→Mn(R) is called a representation of G. (See Rautenbach (1983) [28].)

Definition A.2.13. A representation which is an isomorphism, is called a faithful rep-

resentation. (See Rautenbach (1983) [28].)

Remark A.2.14. Hence, a faithful representation of G replaces the elements of G with

n×n matrices, and the operations with matrix operations. It can therefore be thought of

as a type of function between a particular division algebra, and a matrix division algebra.

The main advantage of representations lie in the fact that operations with matrices can

easily be carried out. (See Rautenbach (1983) [28].)

A.3 Complex numbers

In this section it is shown that every complex number can be represented by a 2 × 2

matrix with a specific structure.

Definition A.3.1. The set C of complex numbers consists of elements of the form:

c = a+ ib

where a, b ∈ R and i2 = −1. a and b are called the real and imaginary parts, of the

complex number c, respectively. (See Rektorys (1969) [30] as cited in Rautenbach (1983)

[28].)
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Theorem A.3.2. Let

C = {a+ ib|a, b ∈ R}

and let the operations be defined as:

1. (a+ ib) + (c+ id) = (a+ c) + i(b+ d) ∀a, b, c, d ∈ R.

2. (a+ ib)(c+ id) = (ac− bd) + i(bc+ ad) ∀a, b, c, d ∈ R.

3. [(a+ ib) + (c+ id)]α = (a+ ib)α + (c+ id)α ∀a, b, c, d ∈ R, ∀α ∈ R.

4.

[(a+ ib)(c+ id)]α

=(a+ ib)[(c+ id)α]

=[(a+ ib)α](c+ id)

∀a, b, c, d ∈ R, ∀α ∈ R.

The set C together with these operations form a division algebra over the field of real

numbers. (See Rautenbach (1983) [28].)

Proof. Let a+ ib, c+ id, e+ if ∈ C, then it follows that:

1. (a+ ib) + (c+ id) = a+ c+ i(b+ d) ∈ C.

2. (a+ ib)(c+ id) = ac− bd+ i(bc+ ad) ∈ C.

3. [(a+ ib) + (c+ id)] + (e+ if) = (a+ ib) + [(c+ id) + (e+ if)].

4. ∃ 0 + i0 ∈ C : (a+ ib) + (0 + i0) = (0 + i0) + (a+ ib) = a+ ib.

5. ∀a+ ib ∈ C∃! − a+ i(−b) ∈ C : (a+ ib) + (−a+ i(−b)) = 0 + i0.

6. (a+ ib) + (c+ id) = (c+ id) + (a+ ib).

7. [(a+ ib)(c+ id)](e+ if) = (a+ ib)[(c+ id)(e+ if)].

8. (a+ ib)[(c+ id) + (e+ if)] = (a+ ib)(c+ id) + (a+ ib)(e+ if).
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9. [(a+ ib) + (c+ id)](e+ if) = (a+ ib)(e+ if) + (c+ id)(e+ if).

10. ∃! 1 + i0 ∈ C : (a+ ib)(1 + i0) = (1 + i0)(a+ ib) = (a+ ib) ∀a+ ib ∈ C.

11. ∀c = a+ ib ∈ C∃! a−ib
a2+b2

∈ C, such that:

(a+ ib)
(a− ib)
a2 + b2

=
(a− ib)
a2 + b2

(a+ ib)

=1 + i0,

where a− ib is called the conjugate and is denoted by c̄ = a− ib.

12. ∀α ∈ R it follows that:

[(a+ ib) + (c+ id)]α = (a+ ib)α + (c+ id)α

and

[(a+ ib)(c+ id)]α

=(a+ ib)[(c+ id)α]

=[(a+ ib)α](c+ id).

Theorem A.3.3. Let

M2(R) =

{[
a −b
b a

]
|a, b ∈ R

}
and let the following operations be defined:

1.

[
a −b
b a

]
+

[
c −d
d c

]
=

[
a+ c −b− d
b+ d a+ c

]
∀a, b, c, d ∈ R.

2.

[
a −b
b a

][
c −d
d c

]
=

[
ac− bd −bc− ad
bc+ ad ac− bd

]
∀a, b, c, d ∈ R.
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3.

{[
a −b
b a

]
+

[
c −d
d c

]}
α =

[
a −b
b a

]
α +

[
c −d
d c

]
α, ∀a, b, c, d ∈ R, α ∈

R.

4. {[
a −b
b a

][
c −d
d c

]}
α =

[
a −b
b a

]{[
c −d
d c

]
α

}

=

{[
a −b
b a

]
α

}[
c −d
d c

]
∀a, b, c, d ∈ R, α ∈ R.

The set M2(R) together with these operations form a division algebra over the field of

real numbers. (See Rautenbach (1983) [28].)

Proof. Let

[
a −b
b a

]
,

[
c −d
d : c

]
,

[
e −f
f e

]
∈M2(R), then it follows that:

1.

[
a −b
b a

]
+

[
c −d
d c

]
=

[
a+ c −b− d
b+ d a+ c

]
∈M2(R).

2.

[
a −b
b a

][
c −d
d c

]
=

[
ac− bd −bc− ad
bc+ ad ac− bd

]
∈M2(R).

3. {[
a −b
b a

]
+

[
c −d
d c

]}
+

[
e −f
f e

]

=

[
a −b
b a

]
+

{[
c −d
d c

]
+

[
e −f
f e

]}
.

4. The set M2(R) has a element

[
0 0

0 0

]
such that:

[
a −b
b a

]
+

[
0 0

0 0

]
=

[
0 0

0 0

]
+

[
a −b
b a

]
=

[
a −b
b a

]
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5. For each element

[
a −b
b a

]
∈ M2(R) there exists an element

[
−a b

−b −a

]
in

M2(R) such that:[
−a b

−b −a

]
+

[
a −b
b a

]
=

[
a −b
b a

]
+

[
−a b

−b −a

]
=

[
0 0

0 0

]

6. [
a −b
b a

]
+

[
c −d
d c

]
=

[
c −d
d c

]
+

[
a −b
b a

]

7. {[
a −b
b a

][
c −d
d c

]}[
e −f
f e

]

=

[
a −b
b a

]{[
c −d
d c

][
e −f
f e

]}

8. [
a −b
b a

]{[
c −d
d c

]
+

[
e −f
f e

]}

=

[
a −b
b a

][
c −d
d c

]
+

[
a −b
b a

][
e −f
f e

]

9. {[
a −b
b a

]
+

[
c −d
d c

]}[
e −f
f e

]

=

[
a −b
b a

][
e −f
f e

]
+

[
c −d
d c

][
e −f
f e

]
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10. The set M2(R) has an element

[
1 0

0 1

]
such that:

[
a −b
b a

][
1 0

0 1

]

=

[
1 0

0 1

][
a −b
b a

]

=

[
a −b
b a

]

11. For each

[
a −b
b a

]
∈ M2(R) there exists an element

[
a

a2+b2
b

a2+b2

−b
a2+b2

a
a2+b2

]
∈ M2(R)

such that:[
a −b
b a

][
a

a2+b2
b

a2+b2

−b
a2+b2

a
a2+b2

]
=

[
a

a2+b2
b

a2+b2

−b
a2+b2

a
a2+b2

][
a −b
b a

]
=

[
1 0

0 1

]

12. ∀α ∈ R it follows that:{[
a −b
b a

]
+

[
c −d
d c

]}
α =

[
aα −bα
bα aα

]
+

[
cα −dα
dα cα

]
and {[

a −b
b a

][
c −d
d c

]}
α

=

[
a −b
b a

][
cα −dα
dα cα

]

=

[
aα −bα
bα aα

][
c −d
d c

]

Remark A.3.4. In a similar fashion as in Theorem A.3.3 it can be shown that the set

M ′
2(R): {[

a b

−b a

]
|a, b ∈ R

}
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together with the operations:

1. [
a b

−b a

]
+

[
c d

−d c

]
=

[
a+ c b+ d

−b− d a+ c

]

2. [
a b

−b a

][
c d

−d c

]
=

[
ac− bd ad+ bc

−ad− bc ac− bd

]

3. {[
a b

−b a

]
+

[
c d

−d a

]}
α

=

[
a b

−b a

]
α +

[
c d

−d c

]
α

and {[
a b

−b a

][
c d

−d c

]}
α

=

[
a b

−b a

]{[
c d

−d c

]
α

}

=

{[
a b

−b a

]
α

}[
c d

−d c

]

also form a division algebra over the field of real numbers.

Definition A.3.5. Define a mapping f : C→M2(R) as:

f(a+ ib) =

[
a −b
b a

]
∀a+ bi ∈ C

Theorem A.3.6. f is a faithful representation. (See Rautenbach (1983) [28].)

Proof. 1. The mapping f : C→M2(R) is a homomorphism since:

Appendix A. Some Useful Mathematical Results

 
 
 



A.3. Complex numbers 75

(a)

f{(a+ ib) + (c+ id)} =f{(a+ c) + i(b+ d)}

=

[
a+ c −b− d
b+ d a+ c

]

=

[
a −b
b a

]
+

[
c −d
d c

]
=f(a+ ib) + f(c+ id).

(b)

f{(a+ ib)(c+ id)} =f{(ac− bd) + i(bc+ ad)}

=

[
ac− bd −bc− ad
bc+ ad ac− bd

]

=

[
a −b
b a

][
b −d
d b

]
=f(a+ ib)f(c+ id), and

(c)

f{(a+ ib)α}

=f(aα + ibα)

=

[
aα −bα
bα aα

]

=

[
a −b
b a

]
α

=f(a+ ib)α.

This proves that f is a homomorphism.

2. Furthermore f is a monomorphism since if

f(a+ id) 6= f(c+ id)
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then [
a −b
b a

]
6=

[
c −d
d c

]
.

3. Finally, it follows that for each

[
a −b
b a

]
∈ M2(R) there exists a a + ib ∈ (C)

such that:

f(a+ ib) =

[
a −b
b a

]
.

4. Thus it follows that the mapping f : C→M2(R) is an isomorphism.

5. It can therefore be concluded that f is a faithful representation.

Remark A.3.7. 1. Consequently, the representation f now substitutes the elements

of C with 2 × 2 matrices with a specific structure of the form

[
a −b
b a

]
and the

operations are substituted by matrix operations. From this it follows that:

0 + i→

[
0 −1

1 0

]

and

1 + i0→

[
1 0

0 1

]
which is called the base matrices of the complex numbers.

2. In a similar fashion as in Theorem A.3.6 it can be shown that a representation f ′

can be constructed such that f ′ : C → M2(R) is a faithful representation. Hence,

the representation f ′ now substitutes the elements of C with 2 × 2 matrices with

a specific structure, i.e. of the form

[
a b

−b a

]
.
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A.4 Quaternions

In this section, a similar approach is followed to that employed in Section A.3 in order to

show how the quaternions may be represented by 4×4 matrices with specific structures.

Definition A.4.1. The set Q of quaternions consists of elements of the form:

q = a1 + ia2 + ja3 + ka4

where a1, a2, a3, a4 ∈ R and:

i2 = j2 = k2 = −1

and

ij =k jk =i ki =j

ji =− k kj =− i ik =− j

(See Halberstam and Ingram (1967) [15] as cited in Rautenbach (1983) [28].)

Remark A.4.2. From Definition A.4.1 the following multiplication table can easily be

constructed:

Table A.1: Quaternion multiplication table illustrating the relationships between i, j and k.

1 i j k

1 1 i j k

i i −1 k −j
j j −k −1 i

k k j −i −1

Theorem A.4.3. Let

Q = {a1 + ia2 + ja3 + ka4|a1, a2, a3, a4 ∈ R}

and define the following operations:
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1.

(a1 + ia2 + ja3 + ka4) + (b1 + ib2 + jb3 + kb4)

=(a1 + b1) + i(a2 + b2) + j(a3 + b3) + k(a4 + b4)

2.

(a1 + ia2 + ja3 + ka4)(b1 + ib2 + jb3 + kb4)

=(a1b1 − a2b2 − a3b3 − a4b4) + i(a1b2 + a2b1 + a3b4 − a4b3)

+ j(a1b3 − a2b4 + a3b1 + a4b2) + k(a1b4 + a2b3 − a3b2 + a4b1)

3.

[(a1 + ia2 + ja3 + ka4) + (b1 + ib2 + jb3 + kb4)]α

=(a1 + ia2 + ja3 + ka4)α + (b1 + ib2 + jb3 + kb4)α

4.

[(a1 + ia2 + ja3 + ka4)(b1 + ib2 + jb3 + kb4)]α

=(a1 + ia2 + ja3 + ka4)[(b1 + ib2 + jb3 + kb4)α]

=[(a1 + ia2 + ja3 + ka4)α](b1 + ib2 + jb3 + kb4)

∀a1, a2, a3, a4, b1, b2, b3, b4 ∈ R and α ∈ R. The set Q together with these operations form

a division algebra over the field of real numbers. (See Rautenbach (1983) [28].)

Proof. Let a1 + ia2 + ja3 + ka4, b1 + ib2 + jb3 + kb4 and c1 + ic2 + jc3 + kc4 ∈ Q, then it

follows that:

1.

(a1 + ia2 + ja3 + ka4) + (b1 + ib2 + jb3 + kb4)

=(a1 + b1) + i(a2 + b2) + j(a3 + b3) + k(a4 + b4) ∈ Q.
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2.

(a1 + ia2 + ja3 + ka4)(b1 + ib2 + jb3 + kb4)

=(a1b1 − a2b2 − a3b3 − a4b4) + i(a1b2 + a2b1 + a3b4 − a4b3)

+ j(a1b3 − a2b4 + a3b1 + a4b2) + k(a1b4 + a2b3 − a3b2 + a4b1) ∈ Q.

3.

[(a1 + ia2 + ja3 + ka4) + (b1 + ib2 + jb3 + kb4)] + (c1 + ic2 + jc3 + kc4)

=(a1 + ia2 + ja3 + ka4) + [(b1 + ib2 + jb3 + kb4) + (c1 + ic2 + jc3 + kc4)].

4. The set Q has an element 0 + i0 + j0 + k0 such that:

(a1 + ia2 + ja3 + ka4) + (0 + i0 + j0 + k0)

=(0 + i0 + j0 + k0) + (a1 + ia2 + ja3 + ka4)

=(a1 + ia2 + ja3 + ka4).

5. For every a1 + ia2 + ja3 +ka4 ∈ Q there exists an element −a1 + i(−a2) + j(−a3) +

k(−a4) ∈ Q such that:

(a1 + ia2 + ja3 + ka4) + (−a1 + i(−a2) + j(−a3) + k(−a4))

=0 + i0 + j0 + k0.

6.

(a1 + ia2 + ja3 + ka4) + (b1 + ib2 + jb3 + kb4)

=(b1 + ib2 + jb3 + kb4) + (a1 + ia2 + ja3 + ka4).

7.

[(a1 + ia2 + ja3 + ka4)(b1 + ib2 + jb3 + kb4)](c1 + ic2 + jc3 + kc4)

=(a1 + ia2 + ja3 + ka4)[(b1 + ib2 + jb3 + kb4)(c1 + ic2 + jc3 + kc4)].
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8.

(a1 + ia2 + ja3 + ka4)[(b1 + ib2 + jb3 + kb4) + (c1 + ic2 + jc3 + kc4)]

=(a1 + ia2 + ja3 + ka4)(b1 + ib2 + jb3 + kb4)

+ (a1 + ia2 + ja3 + ka4)(c1 + ic2 + jc3 + kc4).

9.

[(a1 + ia2 + ja3 + ka4) + (b1 + ib2 + jb3 + kb4)](c1 + ic2 + jc3 + kc4)

=(a1 + ia2 + ja3 + ka4)(c1 + ic2 + jc3 + kc4)

+ (b1 + ib2 + jb3 + kb4)(c1 + ic2 + jc3 + kc4).

10. The set Q has an element 1 + i0 + j0 + k0 such that:

(a1 + ia2 + ja3 + ka4)(1 + i0 + j0 + k0)

=(1 + i0 + j0 + k0)(a1 + ia2 + ja3 + ka4)

=a1 + ia2 + ja3 + ka4 ∀a1 + ia2 + ja3 + ka4 ∈ Q.

11. For every q = a1 + ia2 + ja3 + ka4 ∈ Q there exists an element

a1 − ia2 − ja3 − ka4

a2
1 + a2

2 + a2
3 + a2

4

∈ Q

such that:

(a1 + ia2 + ja3 + ka4)
(a1 − ia2 − ja3 − ka4)

a2
1 + a2

2 + a2
3 + a2

4

=
(a1 − ia2 − ja3 − ka4)

a2
1 + a2

2 + a2
3 + a2

4

(a1 + ia2 + ja3 + ka4)

=1 + i0 + j0 + k0

where a1− ia2− ja3− ka4 is called the conjugate and is denoted by q̄ = a1− ia2−
ja3 − ka4.

12. For every α ∈ R it follows that:

[(a1 + ia2 + ja3 + ka4) + (b1 + ib2 + jb3 + kb4)]α

=(a1 + ia2 + ja3 + ka4)α + (b1 + ib2 + jb3 + kb4)α
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and

[(a1 + ia2 + ja3 + ka4)(b1 + ib2 + jb3 + kb4)]α

=(a1 + ia2 + ja3 + ka4)[(b1 + ib2 + jb3 + kb4)α]

=[(a1 + ia2 + ja3 + ka4)α](b1 + ib2 + jb3 + kb4).

Theorem A.4.4. Let

M4(R) =




a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

 |a1, a2, a3, a4 ∈ R


and define the following operations:

1. 
a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

+


b1 −b2 −b3 −b4

b2 b1 −b4 b3

b3 b4 b1 −b2

b4 −b3 b2 b1



=


a1 + b1 −a2 − b2 −a3 − b3 −a4 − b4

a2 + b2 a1 + b1 −a4 − b4 a3 + b3

a3 + b3 a4 + b4 a1 + b1 −a2 − b2

a4 + b4 −a3 − b3 a2 + b2 a1 + b1


2. 

a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1



b1 −b2 −b3 −b4

b2 b1 −b4 b3

b3 b4 b1 −b2

b4 −b3 b2 b1


=

 a1b1 − a2b2 − a3b3 − a4b4 −a1b2 − a2b1 − a3b4 + a4b3 −a1b3 + a2b4 − a3b1 − a4b2 −a1b4 − a2b3 + a3b2 − a4b1

a2b1 + a1b2 − a4b3 + a3b4 −a2b2 + a1b1 − a4b4 − a3b3 −a2b3 − a1b4 − a4b1 + a3b2 −a2b4 + a1b3 + a4b2 + a3b1

a3b1 + a4b2 + a1b3 − a2b4 −a3b2 + a4b1 + a1b4 + a2b3 −a3b3 − a4b4 + a1b1 − a2b2 −a3b4 + a4b3 − a1b2 − a2b1

a4b1 − a3b2 + a2b3 + a1b4 −a4b2 − a3b1 + a2b4 − a1b3 −a4b3 + a3b4 + a2b1 + a1b2 −a4b4 − a3b3 − a2b2 + a1b1
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3. 


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

+


b1 −b2 −b3 −b4

b2 b1 −b4 b3

b3 b4 b1 −b2

b4 −b3 b2 b1


α

=


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

α +


b1 −b2 −b3 −b4

b2 b1 −b4 b3

b3 b4 b1 −b2

b4 −b3 b2 b1

α

4. 


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1



b1 −b2 −b3 −b4

b2 b1 −b4 b3

b3 b4 b1 −b2

b4 −b3 b2 b1


α

=


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1





b1 −b2 −b3 −b4

b2 b1 −b4 b3

b3 b4 b1 −b2

b4 −b3 b2 b1

α


=




a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

α



b1 −b2 −b3 −b4

b2 b1 −b4 b3

b3 b4 b1 −b2

b4 −b3 b2 b1


∀a1, a2, a3, a4, b1, b2, b3, b4 ∈ R and α ∈ R. The set M4(R), together with these operations,

form a division algebra over the field of real numbers. (See Rautenbach (1983) [28].)

Proof. Let A =


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

, B =


b1 −b2 −b3 −b4

b2 b1 −b4 b3

b3 b4 b1 −b2

b4 −b3 b2 b1

 and
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C =


c1 −c2 −c3 −c4

c2 c1 −c4 c3

c3 c4 c1 −c2

c4 −c3 c2 c1

 ∈M4(R). Then it follows that:

1.

A + B

=


a1 + b1 −a2 − b2 −a3 − b3 −a4 − b4

a2 + b2 a1 + b1 −a4 − b4 a3 + b3

a3 + b3 a4 + b4 a1 + b1 −a2 − b2

a4 + b4 −a3 − b3 a2 + b2 a1 + b1

 ∈M4(R).

2.

AB

=

 a1b1 − a2b2 − a3b3 − a4b4 −a1b2 − a2b1 − a3b4 + a4b3 −a1b3 + a2b4 − a3b1 − a4b2 −a1b4 − a2b3 + a3b2 − a4b1

a2b1 + a1b2 − a4b3 + a3b4 −a2b2 + a1b1 − a4b4 − a3b3 −a2b3 − a1b4 − a4b1 + a3b2 −a2b4 + a1b3 + a4b2 + a3b1

a3b1 + a4b2 + a1b3 − a2b4 −a3b2 + a4b1 + a1b4 + a2b3 −a3b3 − a4b4 + a1b1 − a2b2 −a3b4 + a4b3 − a1b2 − a2b1

a4b1 − a3b2 + a2b3 + a1b4 −a4b2 − a3b1 + a2b4 − a1b3 −a4b3 + a3b4 + a2b1 + a1b2 −a4b4 − a3b3 − a2b2 + a1b1


∈M4(R).

3.

{A + B}+ C = A + {B + C} .
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4. The set M4(R) contains an element


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 such that:


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

+


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



=


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

+


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

 .

5. For every element


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

 ∈ M4(R) there exists an element in
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M4(R) namely


−a1 a2 a3 a4

−a2 −a1 a4 −a3

−a3 −a4 −a1 a2

−a4 a3 −a2 −a1

 such that:


−a1 a2 a3 a4

−a2 −a1 a4 −a3

−a3 −a4 −a1 a2

−a4 a3 −a2 −a1

+


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1



=


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

+


−a1 a2 a3 a4

−a2 −a1 a4 −a3

−a3 −a4 −a1 a2

−a4 a3 −a2 −a1



=


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

6.

A + B = B + A.

7.

{AB}C = A {BC} .

8.

A {B + C} = AB + AC.

9.

{A + B}C = AC + BC.
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10. The set M4(R) contains an element namely


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 such that:


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1



=


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

 .

11. For each


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

 ∈M4(R) there exists an element

1

(a2
1 + a2

2 + a2
3 + a2

4)


a1 a2 a3 a4

−a2 a1 a4 −a3

−a3 −a4 a1 a2

−a4 a3 −a2 a1

 ∈M4(R)
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such that:
a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

 1

(a2
1 + a2

2 + a2
3 + a2

4)


a1 a2 a3 a4

−a2 a1 a4 −a3

−a3 −a4 a1 a2

−a4 a3 −a2 a1



=
1

(a2
1 + a2

2 + a2
3 + a2

4)


a1 a2 a3 a4

−a2 a1 a4 −a3

−a3 −a4 a1 a2

−a4 a3 −a2 a1



a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1



=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .

12. ∀α ∈ R it follows that:

{A + B}α = Aα + Bα

and

{AB}α =A {Bα}

= {Aα}B.
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Remark A.4.5. In a similar fashion as in Theorem A.4.4 it can be shown that the sets

M1
4 (R) =




a1 a2 a3 a4

−a2 a1 −a4 a3

−a3 a4 a1 −a2

−a4 −a3 a2 a1

 |a1, a2, a3, a4 ∈ R



M2
4 (R) =




a1 −a2 −a3 a4

a2 a1 −a4 −a3

a3 a4 a1 a2

−a4 a3 −a2 a1

 |a1, a2, a3, a4 ∈ R



M3
4 (R) =




a1 −a2 a3 −a4

a2 a1 a4 a3

−a3 −a4 a1 a2

a4 −a3 −a2 a1

 |a1, a2, a3, a4 ∈ R



M4
4 (R) =




a1 a2 −a3 −a4

−a2 a1 a4 −a3

a3 −a4 a1 −a2

a4 a3 a2 a1

 |a1, a2, a3, a4 ∈ R


together with the appropriate addition, multiplication and scalar multiplication opera-

tors, all form division algebras over the field of real numbers. (See Rautenbach (1983)

[28].)

Definition A.4.6. Define a mapping f : Q→M4(R) as:

f(a1 + ia2 + ja3 + ka4) =


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

 , ∀a1 + ia2 + ja3 + ka4 ∈ Q.

(See Rautenbach (1983) [28].)

Theorem A.4.7. f is a faithful representation. (See Rautenbach (1983) [28].)

Proof. 1. The mapping f : Q→M4(R) is a homomorphism since:
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(a)

f {(a1 + ia2 + ja3 + ka4) + (b1 + ib2 + jb3 + kb4)}

=f {(a1 + b1) + i(a2 + b2) + j(a3 + b3) + k(a4 + b4)}

=


a1 + b1 −(a2 + b2) −(a3 + b3) −(a4 + b4)

a2 + b2 a1 + b1 −(a4 + b4) a3 + b3

a3 + b3 a4 + b4 a1 + b1 −(a2 + b2)

a4 + b4 −(a3 + b3) a2 + b2 a1 + b1



=


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

+


b1 −b2 −b3 −b4

b2 b1 −b4 b3

b3 b4 b1 −b2

b4 −b3 b2 b1


=f(a1 + ia2 + ja3 + ka4) + f(b1 + ib2 + jb3 + kb4).

(b)

f {(a1 + ia2 + ja3 + ka4)(b1 + ib2 + jb3 + kb4)}

=

[
a1b1 − a2b2 − a3b3 − a4b4 −a1b2 − a2b1 − a3b4 + a4b3 −a1b3 + a2b4 − a3b1 − a4b2 −a1b4 − a2b3 + a3b2 − a4b1
a2b1 + a1b2 − a4b3 + a3b4 −a2b2 + a1b1 − a4b4 − a3b3 −a2b3 − a1b4 − a4b1 + a3b2 −a2b4 + a1b3 + a4b2 + a3b1

a3b1 + a4b2 + a1b3 − a2b4 −a3b2 + a4b1 + a1b4 + a2b3 −a3b3 − a4b4 + a1b1 − a2b2 −a3b4 + a4b3 − a1b2 − a2b1
a4b1 − a3b2 + a2b3 + a1b4 −a4b2 − a3b1 + a2b4 − a1b3 −a4b3 + a3b4 + a2b1 + a1b2 −a4b4 − a3b3 − a2b2 + a1b1

]

=


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1



b1 −b2 −b3 −b4

b2 b1 −b4 b3

b3 b4 b1 −b2

b4 −b3 b2 b1


=f(a1 + ia2 + ja3 + ka4)f(b1 + ib2 + jb3 + kb4)
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(c)

f {(a1 + ia2 + ja3 + ka4)α}

=


a1α −a2α −a3α −a4α

a2α a1α −a4α a3α

a3α a4α a1α −a2α

a4α −a3α a2α a1α



=


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

α
=f(a1 + ia2 + ja3 + ka4)α.

2. f is a monomorphism since if

f(a1 + ia2 + ja3 + ka4) 6= f(b1 + ib2 + jb3 + kb4)

then it follows that
a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

 6=

b1 −b2 −b3 −b4

b2 b1 −b4 b3

b3 b4 b1 −b2

b4 −b3 b2 b1

 .

3. Finally, it follows that

∀


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

 ∈M4(R)

there exists a

(a1 + ia2 + ja3 + ka4) ∈ Q
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such that

f(a1 + ia2 + ja3 + ka4) =


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

 .
4. Thus it follows that the mapping f : Q→M4(R) is an isomorphism.

5. It can therefore be concluded that f is a faithful representation.

Remark A.4.8. 1. Consequently, the mapping f : Q→M4(R) now substitutes the ele-

ments of Q with 4×4 matrices with specific structures of the form


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

,

and the operations are substituted by matrix operations.

2. In a similar fashion as in Theorem A.4.7 it can be shown that the four structures

of M1
4 (R), M2

4 (R), M3
4 (R) and M4

4 (R, given in Remark A.4.5, may also be used to

construct faithful representations.

A.5 Algebraic results for quaternions

In this section some useful algebraic results are given to aid in the construction and

development of the quaternion distribution theory.

Definition A.5.1. Let

R
4×4st

=


a1st −a2st −a3st −a4st

a2st a1st −a4st a3st

a3st a4st a1st −a2st

a4st −a3st a2st a1st


and

qst = a1st + ia2st + ja3st + ka4st ∀a1st, a2st, a3st, a4st ∈ R
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Now define the real matrix R
4p×4p

and the quaternion matrix Q
p×p

respectively to be:

R
4p×4p

= [Rst]

and

Q
p×p

= [qst] .

Theorem A.5.2. Let

M4p(R) =

{
R

4p×4p
|Rst ∈M4(R), s, t = 1, . . . , p

}
and let the following operations be defined:

1. R1 + R2 ∈M4p(R) ∀R1,R2 ∈M4p(R).

2. R1R2 ∈M4p(R) ∀R1,R2 ∈M4p(R).

3. {R1 + R2}α = R1α + R2α ∀R1,R2 ∈M4p(R), α ∈ R.

4.

{R1R2}α =R1 {R2α}

= {R1α}R2 ∀R1,R2 ∈M4p(R), α ∈ R.

The set M4p(R) together with these operations form a division algebra over the field of

real numbers. (See Rautenbach (1983) [28].)

Proof. The proof is analogous to that given in Theorem A.4.4.

Theorem A.5.3. Let

Mp(Q) =

{
Q
p×p
|qst ∈ Q, s, t = 1, . . . , p

}
and let the following operations be defined:

1. Q1 + Q2 ∈Mp(Q) ∀Q1,Q2 ∈Mp(Q).

2. Q1Q2 ∈Mp(Q) ∀Q1,Q2 ∈Mp(Q).
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3. {Q1 + Q2}α = Q1α + Q2α ∀Q1,Q2 ∈Mp(Q), α ∈ R.

4.

{Q1Q2}α =Q1 {Q2α}

= {Q1α}Q2 ∀Q1,Q2 ∈Mp(Q), α ∈ R.

The set Mp(Q) together with these operations form a division algebra over the field of

real numbers. (See Rautenbach (1983) [28].)

Proof. The proof is analogous to that given in Theorem A.4.3.

Definition A.5.4. Define the mapping f : M4p(R)→Mp(Q) as:

f

(
R

4p×4p

)
= Q

p×p
∀R ∈M4p(R),Q ∈ Q.

Theorem A.5.5. f is a faithful representation. (See Rautenbach (1983) [28].)

Proof. The proof is analogous to that given in Theorem A.4.7.

Remark A.5.6. 1. If R
4p×4p

∈M4p(R) and f(R) = Q ∈Mp(Q) then it will be indicated

as

R ' Q.

2. A matrix is called a quaternion Hermitian matrix if:

Q̄′ = Q.

(See Rautenbach (1983) [28].)

Theorem A.5.7. Suppose R
4p×4p

∈ M4p(R), Q
p×p
∈ Mp(Q) and R ' Q. Then R is

symmetric if and only if Q is a quaternion Hermitian matrix. (See Rautenbach and

Roux (1983) [28].)

Proof. 1. First, suppose that R
4p×4p

is symmetric. It follows that:

R =R′

∴ [rst] =[rts]
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and so a1st = a1ts, a2st = −a2ts, a3st = −a3ts, and a4st = −a4ts. Therefore

qst =a1st + ia2st + ja3st + ka4st

=a1ts − ia2ts − ja3ts − ka4ts

=a1ts + ia2ts + ja3ts + ka4ts

=q̄st.

Thus it follows that:

Q = Q̄′.

2. Conversely, if Q = Q̄′ then it follows that:

qst = a1st + ia2st + ja3st + ka4st

and

q̄ts = a1ts − ia2ts − ja3ts − ka4ts

Consequently, it follows that a1st = a1ts, a2st = −a2ts, a3st = −a3ts, and a4st =

−a4ts. from which it finally follows that

R = R′.

Theorem A.5.8. Suppose R
4p×4p

∈ M4p(R), Q
p×p
∈ Mp(Q) and R ' Q. Then R is

orthogonal if and only if Q is symplectic. (See Rautenbach and Roux (1983) [28].)

Proof. 1. First, suppose that R
4p×4p

is orthogonal such that:

R′ = R−1,

thus

[rst]
′ =
[
rst
]
.

It consequently follows that:

a1st =ast1

a2st =− ast2
a3st =− ast3
a4st =− ast4
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such that [
qst
]

=
[
ast1 + iast2 + jast3 + kast4

]
= [a1ts − ia2ts − ja3ts − ka4ts]

= [q̄ts]

= [q̄′st]

∴ Q−1 =Q̄′,

i.e. Q is symplectic.

2. Conversely, suppose that Q
p×p

is symplectic. Then it follows in exactly the same

way, as shown above, that R is orthogonal.

Theorem A.5.9. Suppose R
4p×4p

∈ M4p(R), Q
p×p
∈ Mp(Q) and R ' Q. Then R is

nonsingular with inverse

R
4p×4p

−1 =
[
rst
]

=



ast1 −ast2 −ast3 −ast4
ast2 ast1 −ast4 ast3

ast3 ast4 ast1 −ast2
ast4 −ast3 ast2 ast1




if and only if Q is nonsingular with inverse

Q
p×p

−1 =
[
qst
]

=
[
ast1 + iast2 + jast3 + kast4

]
.

(See Rautenbach and Roux (1985) [29].)

Proof. 1. First, suppose that Q
p×p

is nonsingular with inverse

Q
p×p

−1 =
[
qst
]
∈Mp(Q)
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such that

QQ−1 = Ip.

Since there exists a faithful representation between Mp(Q) and M4p(R) in such a

way that there exists R−1 ∈M4p(R) it follows that

Q−1 ' R−1

and hence

RR−1 = I4p.

Thus, R is nonsingular with inverse

R
4p×4p

−1 =



ast1 −ast2 −ast3 −ast4
ast2 ast1 −ast4 ast3

ast3 ast4 ast1 −ast2
ast4 −ast3 ast2 ast1


 .

2. Conversely, suppose that R is nonsingular with inverse as defined above. In exactly

the same way as shown above, there exists a Q−1 such that

QQ−1 = Ip.

Theorem A.5.10. Let Q
p×p

with quaternion entries. If the p quaternion eigenvectors of

Q are all distinct, then there exists a matrix U
p×p

with quaternion entries such that

Q = UEλqU
−1

where

Eλq = diag
(
λq1 , . . . , λqp

)
with λqs (s = 1, . . . , p) the quaternion characteristic root of Q.

Proof. See Mehta (1967) [26] for a proof of this.
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Theorem A.5.11. Let Q
p×p

, with quaternion entries, be a Hermitian matrix. Then there

exists a symplectic matrix H such that:

Q =HDλH
−1

=HDλH̄
′

where

Dλ = diag (λ1, . . . , λp)

with

λs = λsR + i0 + j0 + k0, s = 1, . . . , p

the real characteristic roots of Q.

Proof. See Mehta (1967) [26] for a proof of this.

Theorem A.5.12. Suppose R
4p×4p

∈M4p(R), Q
p×p
∈Mp(Q) and R ' Q. If R is symmet-

ric, then

det R = (det Q)4 .

(See Rautenbach and Roux (1985) [29].)

Proof. From Theorem A.5.7 it follows that if R is symmetric, then Q is a quaternion

Hermitian. From Theorem A.5.11 it follows that there exists a symplectic matrix, H

such that

Q = HDλH̄
′

with Dλ a diagonal matrix with elements equal to the characteristic roots of Q. Now

suppose that M
4p×4p

∈ M4p(R) is an orthogonal matrix such that M ' H (see Theorem

A.5.8). Let RD
4p×4p

∈M4p(R) be such that RD ' Dλ. Then it follows that

Q =HDλH̄
′

'MRDM′

=R.
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The matrix RD is given by:

RD
4p×4p

=



λ1R 0 0 0 . . . . . . . . . . . . 0 0 0 0

0 λ1R 0 0 . . . . . . . . . . . . 0 0 0 0

0 0 λ1R 0 . . . . . . . . . . . . 0 0 0 0

0 0 0 λ1R . . . . . . . . . . . . 0 0 0 0
...

...
...

... . . . . . . . . . . . .
...

...
...

...
...

...
...

... . . . . . . . . . . . .
...

...
...

...
...

...
...

... . . . . . . . . . . . .
...

...
...

...
...

...
...

... . . . . . . . . . . . .
...

...
...

...

0 0 0 0 . . . . . . . . . . . . λpR 0 0 0

0 0 0 0 . . . . . . . . . . . . 0 λpR 0 0

0 0 0 0 . . . . . . . . . . . . 0 0 λpR 0

0 0 0 0 . . . . . . . . . . . . 0 0 0 λpR



.

It now follows that

det R = det (MRDM′)

= det RD, since M is orthogonal

=

p∏
s=1

det


λsR 0 0 0

0 λsR 0 0

0 0 λsR 0

0 0 0 λsR


=

p∏
s=1

(λs)
4 , λs = λsR + i0 + j0 + k0

= (det Dλ)
4

= (det Q)4 .

Theorem A.5.13. Let q
0

4p×1

= [b11, b21, b31, b41, . . . , b1p, b2p, b3p, b4p]
′ and q

p×1

= [q1, . . . , qp]
′

with qs = b1s + ib2s + jb3s + kb4s, s = 1, . . . , p. Suppose R
4p×4p

∈M4p(R), Q
p×p
∈Mp(Q) and
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R ' Q. Let R be symmetric, such that Q is quaternion Hermitian. It now follows that

q′
0
Rq

0
= q̄′Qq.

(See Rautenbach and Roux (1985) [29].)

Proof. It is clear that

q′
0
Rq

0
=

p∑
s,t=1

[bs1, bs2, bs3, bs4]


a1st −a2st −a3st −a4st

a2st a1st −a4st a3st

a3st a4st a1st −a2st

a4st −a3st a2st a1st



bt1

bt2

bt3

bt4


=

p∑
s,t=1

[a1st (bs1bt1 + bs2bt2 + bs3bt3 + bs4bt4)

+ a2st (bs2bt1 − bs1bt2 + bs4bt3 − bs3bt4)

+ a3st (bs3bt1 − bs4bt2 − bs1bt3 + bs2bt4)

+a4st (bs4bt1 + bs3bt2 − bs2bt3 − bs1bt4)] . (A.5.1)
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It also follows that

q̄′Qq =

p∑
s,t=1

q̄sqstqt

=

p∑
s,t=1

(bs1 − ibs2 − jbs3 − kbs4) (a1st + ia2st + ja3st + ka4st) (bt1 + ibt2 + jbt3 + kbt4)

=

p∑
s,t=1

[a1st (bs1bt1 + bs2bt2 + bs3bt3 + bs4bt4)

+ a2st (bs2bt1 − bs1bt2 + bs4bt3 − bs3bt4)

+ a3st (bs3bt1 − bs4bt2 − bs1bt3 + bs2bt4)

+a4st (bs4bt1 + bs3bt2 − bs2bt3 − bs1bt4)]

+ i

p∑
s,t=1

[a1st (−bs2bt1 + bs1bt2 + bs4bt3 − bs3bt4)

+ a2st (bs1bt1 + bs2bt2 − bs3bt3 − bs4bt4)

+ a3st (bs4bt1 + bs3bt2 + bs2bt3 + bs1bt4)

+a4st (−bs3bt1 + bs4bt2 − bs1bt3 + bs2bt4)]

+ j

p∑
s,t=1

[a1st (−bs3bt1 − bs4bt2 + bs1bt3 + bs2bt4)

+ a2st (−bs4bt1 + bs3bt2 + bs2bt3 − bs1bt4)

+ a3st (bs1bt1 − bs2bt2 + bs3bt3 − bs4bt4)

+a4st (bs2bt1 + bs1bt2 + bs4bt3 + bs3bt4)]

+ k

p∑
s,t=1

[a1st (−bs4bt1 + bs3bt2 − bs2bt3 + bs1bt4)

+ a2st (bs3bt1 + bs4bt2 + bs1bt3 + bs2bt4)

+ a3st (−bs2bt1 − bs1bt2 + bs4bt3 + bs3bt4)

+a4st (bs1bt1 + bs2bt2 − bs3bt3 + bs4bt4)] .
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Given that R is symmetric, it follows that

a1st =a1ts

a2st =− a2ts

a3st =− a3ts

a4st =− a4ts

from which it follows that

q̄′Qq =

p∑
s,t=1

[a1st (bs1bt1 + bs2bt2 + bs3bt3 + bs4bt4)

+ a2st (bs2bt1 − bs1bt2 + bs4bt3 − bs3bt4)

+ a3st (bs3bt1 − bs4bt2 − bs1bt3 + bs2bt4)

+a4st (bs4bt1 + bs3bt2 − bs2bt3 − bs1bt4)] . (A.5.2)

From (A.5.1) and (A.5.2) the required result follows.

Corollary A.5.14. Let R be a symmetric matrix with elements [Rst] where

Rst =


a1st a2st a3st a4st

−a2st a1st −a4st a3st

−a3st a4st a1st −a2st

−a4st −a3st a2st a1st


then it follows that

q′
0
Rq

0
= q′Qq̄.

(See Rautenbach (1983) [28].)

Proof. The proof is analygous to that given in Theorem A.5.13.

Corollary A.5.15. Suppose R
4p×4p

∈ M4p(R), Q
p×p
∈ Mp(Q) and R ' Q. Then R is

symmetric positive definite if and only if Q is a positive definite quaternion Hermitian

matrix. (See Rautenbach and Roux (1985) [29].)
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Proof. 1. First suppose that R is symmetric positive definite. Then it follows that

q′
0
Rq

0
> 0 ∀ q

0
4p×1

6= 0,

and hence it follows from Theorem A.5.13 that

q̄′Qq > 0 ∀ q
p×1

6= 0.

If R is symmetric⇒Q is quaternion Hermitian such that if R is symmetric positive

definite ⇒ Q is positive definite quaternion Hermitian.

2. The converse follows in a similar fashion.

Remark A.5.16. 1. Matrices of the form


a1 −a2 −a3 a4

a2 a1 −a4 −a3

a3 a4 a1 a2

−a4 a3 −a2 a1

,


a1 −a2 a3 −a4

a2 a1 a4 a3

−a3 −a4 a1 a2

a4 −a3 −a2 a1



and


a1 a2 −a3 −a4

−a2 a1 a4 −a3

a3 −a4 a1 −a2

a4 a3 a2 a1

 do not have the properties given in Theorem A.5.13

and Corollary A.5.14, however, all the other properties discussed in this section,

apply to them as well.

2. For the purposes of this discussion, the matrices that are most frequently used are:

(a)


a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

, and

(b)


a1 a2 a3 a4

−a2 a1 −a4 a3

−a3 a4 a1 −a2

−a4 −a3 a2 a1

.

Appendix A. Some Useful Mathematical Results

 
 
 



A.6. Functions and polynomials for quaternions 103

A.6 Functions and polynomials for quaternions

A number of scattered results that are frequently used are briefly presented below.

Lemma A.6.1. The quaternion multivariate gamma function is defined by

QΓp(a) =

∫
A=Ā′>0

det (A)a−2(p−1)−1 etr(−A)dA

=πp(p−1)

p∏
α=1

Γ (a− 2(α− 1)) , Re(a) > 2(p− 1), (A.6.1)

and QΓp(a, κ) = (a)κQΓp(a) is the quaternion generalised multivariate gamma function

of weight κ, where the quaternion generalized hypergeometric coefficient (a)κ is defined

by

(a)κ =

p∏
α=1

(a− 2(α− 1))kα

where (a)α = a(a + 1) · · · (a − 2α + 2), α = 1, 2, . . . with (a)0 = 1. (See Gross and

Richards, (1987) [12].)

Lemma A.6.2. The quaternion multivariate beta function is given by

QBp(a, b) =

∫
0<A=Ā′<Ip

det (A)a−2(p−1)−1 det (Ip −A)b−2(p−1)−1 dA

=
QΓp(a)QΓp(b)

QΓp(a+ b)
= QBp(b, a), Re(a, b) > 2(p− 1).

(See Kabe (1984, equations 58 and 59) [19].)

Lemma A.6.3. The quaternion generalized hypergeometric function with one matrix

argument is defined by

rQF s(a1, . . . , ar; b1, . . . , bs; A) =
∞∑
k=0

∑
κ

(a1)κ · · · (ar)κ
(b1)κ · · · (bs)κ

QCκ(A)

k!
, (A.6.2)

where aα, α = 1, . . . , r, bβ, β = 1, . . . , s are arbitrary quaternion numbers, A
p×p

is a

quaternion Hermitian matrix, QCκ(A) is the zonal polynomial of the quaternion Her-

mitian matrix A
p×p

corresponding to the partition κ = (k1, . . . , kp), k1 ≥ . . . ≥ kp ≥ 0,
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k1 + . . . + kp = k and
∑
κ

denotes summation over all partitions κ. Conditions for con-

vergence of the series are available in the literature, see Gross and Richards (1987) [12],

and Li and Xue (2009) [23].

From (A.6.2) the following special cases follow:

0QF 0(a; A) = etr(A) (A.6.3)

and

1QF 0(a; A) =
∞∑
k=0

∑
κ

(a)κQCκ(A)

k!
= det (Ip −A)−a , ‖A‖ < 1. (A.6.4)

For properties and further results on these functions, as well as their proofs the reader

is referred to Gross and Richards (1987) [12] and Li and Xue (2009) [23].

Lemma A.6.4. Let A,B ∈Mp(Q) be Hermitian matrices with A > 0, then∫
O(p)

QCκ
(
AHBH̄′

)
dH =

QCκ (A) QCκ (B)

QCκ (Ip)

where dH is the normalised Haar invariant measure on O (p) and

O (p) =
{
A ∈Mp (Q)

∣∣Ā′A = AĀ′ = Ip
}
.

(See Li and Xue (2009, Theorem 3.1) [23].)

Lemma A.6.5. Let X,A,B ∈ Mp(Q), where X is a Hermitian matrix and A,B > 0,

then ∫
O(p)

QCκ
(
A

1
2 BA

1
2 HXH̄′

)
dH =

∫
O(p)

QCκ
(
B

1
2 AB

1
2 HXH̄′

)
dH

where dH is the normalised Haar invariant measure on O (p) and

O (p) =
{
A ∈Mp (Q)

∣∣Ā′A = AĀ′ = Ip
}
.

(This is analogous to Ehlers, Bekker and Roux (2009, Lemma 5) [9].)
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Lemma A.6.6. Let X,Y ∈ Mp (Q) be positive definite Hermitian matrices, and let

Y = AXĀ′ + C, where A and C ∈Mp (Q) are constant matrices. Then

J (Y → X) = det
(
Ā′A

)2p−1

(See Dı́az-Garćıa (2009, equation (2.10)) [5].)

Lemma A.6.7. Let U ∈Mp (Q) be a positive definite, Hermitian matrix . If

V = (Ip −U)−
1
2 U (Ip −U)−

1
2 ,

then

J (V→ U) = det (Ip −U)−2(2p−1) .

Lemma A.6.8. If f(A) is a function of the positive definite quaternion matrix A
p×p

, the

Laplace transform of f(A) is defined to be

g(S) = L(f(A)) =

∫
A>0

etr(AS)f(A)dA

which is absolutely convergent for S ∈ Φ, the generalized right half-plane. (See Li and

Xue (2009) [23], Definition 3.2.)

The inverse Laplace transformation as used by Dı́az-Garćıa (2009) [5], equation (4.13)

is given below.

Lemma A.6.9. Let S,A,U ∈Mp(Q) be Hermitian matrices, and Re(a) > a0. Then

22p(p−1)

(2πι)2p(p−1)+p

∫
S−S0∈Φ

etr(AS) det (S)−a QCκ
(
US−1

)
dS

=
1

QΓp(a, κ)
det(A)a−2(p−1)−1QCκ (AU)

where the Hermitian matrix S0 ∈Mp(Q), and Φ is called the generalized right half-plane.

(See Dı́az-Garćıa (2009, equation (4.13)) [5].)

The Laplace transform of the hypergeometric function is presented below.

Appendix A. Some Useful Mathematical Results

 
 
 



A.7. The symmetrised density function 106

Lemma A.6.10. Assume r ≤ s, Re(a) > 2(p− 1) and B is a Hermitian matrix. Then∫
S=S̄′>0

etr (−SA) det (S)a−2p+1
rQFs (a1, . . . , ar; b1, . . . , bs; SB) dS

=QΓp (a) det (A)−a r+1QFs
(
a1, . . . , ar, a; b1, . . . , br; BA−1

)
.

When r < s, the integral above converges absolutely for all A ∈ Φ, and for r = s, the

integral converges absolutely for all Hermitian matrices A, such that
∥∥(Re A)−1

∥∥ < 1.

(See Dı́az-Garćıa (2009, equation (4.6)) [5].)

Lemma A.6.11. ∫
B=B̄′>0

etr (−AZ) det (A)a−2p+1 dA = QΓp (a) det (Z)−a .

(See Dı́az-Garćıa (2009, equation (3.17)) [5].)

Lemma A.6.12. Let A,U ∈ Mp(Q) be Hermitian matricesand Re(a, b) > 2(p − 1).

Then ∫
0<A=Ā′<Ip

det (A)a−2(p−1)−1 det (Ip −A)b−2(p−1)−1 QCκ(AU)dA

=
QΓp(a, κ)QΓp(b)

QΓp(a+ b, κ)
QCκ(U).

(See Dı́az-Garćıa (2009, equation (3.13).)

A.7 The symmetrised density function

The symmetrised density function was defined by Greenacre (1973) [11] and is adapted for

the quaternionic space below. This result is required frequently in applications involving

transformations of quaternion-valued variables, in obtaining exact expressions for pdf’s.

Definition A.7.1. The symmetrised function fs (A), of a given function f (A), is defined

as

fs (A) =

∫
O(p)

f
(
HAH̄′

)
dH, H ∈ O (p)
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where dH denotes the normalised Haar invariant measure on O (p), and

O (p) =
{
A ∈Mp (Q)

∣∣Ā′A = AĀ′ = Ip
}
.

Dı́az-Garćıa and Gutiérrez-Jáimez (2006) [6] proposed the inverse application of the

symmetrised pdf defined by Greenacre (1973) [11], i.e. if the symmetrised pdf of A is

given by Definition A.7.1 then the pdf of A can be obtained from f
(
HAH̄′

)
by making

the transformation HAH̄′ → A.

A.8 The Mellin transform and Meijer’s G-function

Definition A.8.1. If f (x) is a real-valued function which is single-valued almost every-

where for x ≥ 0, and if the integral

∞∫
0

xk−1 |f (x)| dx

converges for some value of k, then the Mellin transform of f (x) is defined as

Mf (s) =

∞∫
0

xs−1f (x) dx (A.8.1)

where Mf (s) is the Mellin transform of f with respect to the parameter s, and s is a

complex number. The inverse Mellin transform is given by the inverse integral

f (x) =
1

2πι

c+ι∞∫
c−ι∞

Mf (s)x−sds

where ι =
√
−1, and c is a real number in the strip of analyticity of Mf (s). For more

detail the reader is referred to Mathai (1993, Definition 1.8, pp 23) [25].

Definition A.8.2. Meijer’s G-function, with the parameters a1, . . . , ap and b1, . . . , bq is

defined as

Gm,n
p,q

(
z

∣∣∣∣∣ a1, . . . , ap

b1, . . . , bq

)
=

1

2πι

∫
L

g (s) z−sds
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where ι =
√
−1, L is a suitable contour, z 6= 0,

g (s) =

m∏
α=1

Γ (bα + s)
n∏

α=1

Γ (1− aα − s)
q∏

α=m+1

Γ (1− bα − s)
p∏

α=n+1

Γ (aα + s)

,

where m, n, p and q are integers with 0 ≤ n ≤ p and 0 ≤ m ≤ q. The param-

eters a1, . . . , ap and b1, . . . , bq are complex numbers such that no pole of Γ (bα + s),

α = 1, . . . ,m coincides with any pole of Γ (1− aβ − s), β = 1, . . . , n. The empty product

is interpreted as 1. For more detail, the reader is referred to Mathai (1993, Definition

2.1, pp 60) [25].

A.9 Summary

In this appendix it was seen how the elements of an abstract division algebra, in particular

the complex numbers and quaternions, may be replaced by matrices. General results that

are found in the literature on quaternions, when utilising this representation approach,

were given. Finally, this Appendix concluded with various functions and polynomials

that are required in the development of the quaternion distribution theory.
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Appendix B

Acronyms

This appendix contains a list of the most common acronyms and abbreviations used

throughout this work.m They are listed alphabetically and typeset in bold, with the

meaning of the acronym or abreviation alongside:

cf characteristic function

pdf probability density function
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Symbols

The following list of symbols and notational conventions are used throughout this work.
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C.1 Spaces and operators

R The set of all real numbers.

C The set of all complex numbers.

Q Set of all quaternions.

R Ring.

D Devision algebra.

P Field.

G Arbitrary division algebra.

B(Q) = B Borel set defined on the elements of Q.

B(R) = B0 Borel set defined on the elements of R.

R4 4-dimensional real space.

R4p 4p-dimensional real space.

Mn(R) Collection of n× n matrices with real entries.

Mn×p(R) Collection of n× p matrices with real entries.

Mn(Q) Collection of n× n matrices with quaternion entries.

Mn×p(Q) Collection of n× p matrices with quaternion entries.

R
n×p

= [rst] A n× p real matrix with rst as the stth element.

Q
n×p

= [qst] A n× p quaternion matrix with qst as the stth element.

A−1 The inverse of the real, complex or quaternion matrix A
p×p

.

A′ The transpose of the real, complex or quaternion matrix A
p×p

.

det (A) The determinant of the real, complex or quaternion matrix A
p×p

.

|det (A)| The absolute value of the determinant of the real, complex or quaternion matrix A
p×p

.

tr A The trace of the real, complex or quaternion matrix A
p×p

.

Retr A The trace of the real component of the real, complex or quaternion matrix A
p×p

.

ā The conjugate of a complex or quaternion number.

Ā Conjugate matrix.

' Isomorphic to.

i, j, k, ι Imaginary root of −1.

⊗ Kronecker product.

vec Vec operator.
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C.2 Vectors and matrices

Dλ Diagonal matrix with diagonal entries the characteristic roots of the

quaternion Hermitian matrix Q.

RD Diagonal matrix such that RD ' Dλ.

H̄′ = H−1 Symplectic matrix in the quaternion case.

C.3 Distributions and functions

QN(µ, σ2) Univariate quaternion normal distribution with mean µ and variance σ2.

QN(p;µ,Σ) Multivariate quaternion normal distribution with mean µ and

covariance matrix Σ.

QN (n× p;µ,Σ⊗R) Matrix-variate quaternion normal distribution with mean µ,

with Σ the covariance matrix of the columns, and R a real

covariance matrix of the rows.

χp Chi-squared distribution with p degrees of freedom.

QWp (Σ, n) The quaternion Wishart distribution, with n degrees

of freedom and covariance matrix Σ

QWp (Σ, n,Ω) The non-central quaternion Wishart distribution, with n degrees

of freedom, covariance matrix Σ and non-centrality parameter Ω.

QB1(p, n1, n2) The quaternion matrix-variate beta type I distribution

with n1 and n2 degrees of freedom

QB1(p, n1, n2,Ω) The non-central quaternion matrix-variate beta type I distribution

with n1 and n2 degrees of freedom and non-centrality parameter Ω.

Γ (·) The real gamma function.

QΓp (·) The quaternion multivariate gamma function.

QBp (·) The quaternion multivariate beta function.

rQFs (·) The quaternion generalised hypergeometric function.

QCκ(A) The zonal polynomial of the quaternion Hermitian matrix A.

Mf (·) The Mellin transform.

Gm,n
p,q (·) Meijer’s G-function.
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C.4 Variables and observations

Z A quaternion stochastic variable.

z A value of Z.

Z
p×1

= [Z1, . . . , Zp]
′ A quaternion stochastic vector (p-dimensional vector with

quaternions as elements.

z
p×1

= [z1, . . . , zp]
′ An observed value of z

p×1
.

X1, X2, X3, X4 Real stochastic variables.

x1, x2, x3, x4 Observed values of X1, X2, X3, X4.

X1
p×1

, X2
p×1

, X3
p×1

, X4
p×1

, Z0
4p×1

Real stochastic vectors (vectors with real stochastic variables).

x1
p×1

, x2
p×1

, x3
p×1

, x4
p×1

, z0
4p×1

Observed values of X1
p×1

, X2
p×1

, X3
p×1

, X4
p×1

, Z0
4p×1

.

Z0
4×1

Associated real variable values of Z.

Z∗0
4×1

Associated real variable values of Z (rearranged).

Z0
4p×1

Associated real variable values of Z.

Z∗0
4p×1

Associated real variable values of Z (rearranged).

Z
n×p

A quaternion stochastic matrix (n× p-dimensional matrix with

quaternions as elements.

Z∗0
n×4p

Associated real matrix of Z.

C.5 Average values

avgX The average value of X1, . . . , Xn, i.e. 1
n

n∑
s=1

Xs with avg x the observed value of avgX.

avgZ The average value of Z1, . . . , Zn, i.e. 1
n

n∑
s=1

Zs with avg z the observed value of avgZ.

avgZ The average value of Z1, . . . , Zn, i.e. 1
n

n∑
s=1

Zs with avg z the observed value of avgZ.

avgZ∗0 The average value of Z∗0 1, . . . , Z
∗
0n, i.e. 1

n

n∑
s=1

Z∗0 s with avg z∗0 the observed value of avgZ∗0 .

avgZ∗0 The average value of Z∗01, . . . , Z
∗
0n, i.e. 1

n

n∑
s=1

Z∗0s with avg z∗0 the observed value of avgZ∗0.
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