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Abstract

The negative selection algorithm developed by Forrest et al. was inspired by the manner
in which T-cell lymphocytes mature within the thymus before being released into the
blood system. The resultant T-cell lymphocytes, which are then released into the blood,
exhibit an interesting characteristic: they are only activated by non-self cells that invade
the human body. The work presented in this thesis examines the current body of research
on the negative selection theory and introduces a new affinity threshold function, called
the feature-detection rule. The feature-detection rule utilises the inter-relationship
between both adjacent and non-adjacent features within a particular problem domain to
determine if an artificial lymphocyte is activated by a particular antigen. The performance
of the feature-detection rule is contrasted with traditional affinity-matching functions
currently employed within negative selection theory, most notably the r-chunks rule
(which subsumes the r -contiguous bits rule) and the hamming-distance rule. The
performance will be characterised by considering the detection rate, false-alarm rate,
degree of generalisation and degree of overfitting. The thesis will show that the feature-
detection rule is superior to the r -chunks rule and the hamming-distance rule, in that the
feature-detection rule requires a much smaller number of detectors to achieve greater
detection rates and less false-alarm rates. The thesis additionally refutes that the way in
which permutation masks are currently applied within negative selection theory is
incorrect and counterproductive, while placing the feature-detection rule within the
spectrum of affinity-matching functions currently employed by artificial immune-system
(AIS) researchers.
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Chapter 1
Introduction

“Begin at the beginning,' the King said, very gravely, ‘and go on till you come to the end:

then stop.”

- Lewis Carrol

In the 18th century, Edward Jenner performed an experiment that would revolutionise the
way in which humanity would view disease. An urban legend existed that milk maids
who had developed cowpox from contact with cows’ udders were immune to smallpox.
Unlike others, Jenner did not simply dismiss the urban legend, but, instead, embraced it
and proved it to be scientifically true. Unbeknown to Jenner, cowpox also provided a
reliable defence mechanism against other deadly diseases, such as poliomyelitis, measles
and neonatal tetanus [24]. The scientific marvel witnessed by the world on 8 May 1980,
when, during the 33rd Assembly of the World Health Organization, smallpox was
declared to have been eradicated, was due to the astonishing way in which the natural
immune system (NIS) functions. The NIS is able to generalise and develop effective
defence mechanisms against a harmless agent that is structurally similar to a deadly
pathogen (a concept often exploited by vaccines). Furthermore, the NIS continually
learns and fine-tunes its response to a particular pathogen throughout the lifetime of an

individual.

The resilience and learning capability of the NIS has inspired many researchers to study
how the NIS works, in an attempt to emulate certain facets of the NIS within computer
systems with a view into solving very complex problems faced on a daily basis. Hence
the computational intelligence field, called artificial immune systems (AlSs), was born.
There are many different models within AIS theory (see Figure 4), each model having

advantages and disadvantages associated therewith.
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The work presented in this thesis focuses on the negative selection algorithm (NSA), a
particular domain of AIS, inspired by the negative selection process occurring within the
NIS (refer to section 2.4.2) and improves on the NSA by introducing an affinity-matching
function (refer to Figure 7 for a description of affinity-matching functions), called the
feature-detection rule. The main premise of the feature-detection rule is to pre-process an

antigen by extracting k features from the antigen

before presenting the antigen to an artificial lymphocyte (ALC)/detector. The thesis
presents a detailed overview of negative selection theory, in addition to the most popular
AIS algorithms to date, by means of an extensive background study. The purpose of the
background study is to empower the reader with enough knowledge to critically evaluate
NSAs and to show how and why the feature detection rule is an improvement on the set

of traditional affinity-matching functions used within NSA implementations.

1.1 Motivation

The original NSA, developed by Forrest et al. [33], is a conceptually simple algorithm
and has been adopted widely by the general AIS community. A major advantage of the
NSA is that it is conceptually simple and allows a variety of different affinity-matching
functions to be employed. The most popular affinity-matching functions currently used
by AIS researchers (within the context of the NSA) have limited foresight in that they
merely consider relationships between adjacent attributes of an antigen vector and an
artificial lymphocyte (ALC)/detector vector to determine whether the ALC is activated by
a particular antigen. Furthermore, these affinity-matching functions are also renowned for
inducing undetectable strings or holes within a particular problem domain owing to the
mechanics drawn upon by these affinity-matching functions.

The work presented in this thesis:

= Discusses a new affinity-matching function, which learns the relationship
between both adjacent and non-adjacent attributes of an antigen vector and an
ALC/detector to determine whether the ALC/detector is activated by the antigen.
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Shows how the new affinity-matching function does not induce holes and
exhibits superior detection rates and false-alarm rates.

Examines the schism between views on permutation masks currently existing
within AIS literature (some researchers state that permutation masks are a vital
mechanism to reduce holes induced by detectors, whereas other researchers

disagree).

1.2 Objectives

The primary objectives of this thesis can be summarised as follows:

to provide a detailed overview of AlS research, the key focus being on the NSA
of Forrest et al.;

to introduce a new affinity-matching function, which is shown to improve the
detection rate offered by the NSA, for data sets exhibiting a relationship between

both adjacent and non-adjacent attributes;

to compare the new affinity-matching function, the feature-detection rule, to a

number of other popular affinity-matching functions;

to suggest an alternative way to implement permutation masks within NSAs,
thereby reinstating the importance of permutation masks;

to develop a mechanism to estimate the overfitting and generalisation
capabilities of the NSA under different affinity-matching functions (note that the
term affinity-matching function and detection rule are used interchangeably in
this thesis); and

to place the feature-detection rule within a framework comprising of the r-

contiguous bits rule, the r-chunks rule and the feature-detection rule.

1.3 Methodology

The thesis presents an extensive literature study of negative selection theory in order to

characterise the methodologies used by AlS researchers to:
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= create a set of metrics that can be used to measure the relative success or failure

of the application of a particular NSA within a problem domain;

= understand the effect of different affinity-matching functions used within NSAs

in order to reason about their effectiveness; and

= mathematically and empirically compare the new affinity-matching function to a
number of different affinity-matching functions.

The thesis discusses overfitting and generalisation within artificial immune systems in
general and produces two algorithms that can be used to measure the overfitting and
generalisation exhibited by a particular instance of an AIS algorithm on a particular data
set (refer to sections 3.5.2 and 3.6.3 for a discussion of overfitting and generalisation).

The thesis’s new affinity-matching function, the feature-detection rule, is discussed and
analysed, both mathematically and empirically, on several data sets. The performance of
the feature-detection rule is compared to the r-chunks rule and the hamming-distance rule
(refer to section 3.4.2 for a general discussion of matching rules).

1.4 Contribution
The work presented in this thesis has the following contributions:

= A new affinity-matching function, the feature-detection rule, which uses the
relationship between both adjacent and non-adjacent attributes of an antigen

vector in order to determine whether an ALC/detector is activated by the antigen.

= A more effective way to apply permutation masks to NSAs in order to realise the
full benefits originally intended by applying permutation masks.

= A means to estimate the current generalisation and overfitting exhibited by a

particular detection rule.

1.5 Thesis Outline

The remainder of the thesis is organised as follows:
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Chapter 2 presents an overview of the natural immune system. It is vital to have a good
understanding of the natural immune system in order to reason about and appreciate

artificial immune systems.

Chapter 3 discusses the fundamentals of artificial immune systems (AlSs) by providing a
taxonomy of different AIS classes, in addition to explaining the key concepts on which
all AIS algorithm classes are based.

Chapter 4 provides a detailed overview of negative selection theory, the most popular
negative selection algorithms to date and the methodologies often used to reason about

negative selection algorithms.

Chapter 5 discusses the foundations of the feature-detection rule from both a conceptual
and mathematical perspective.

Chapter 6 empirically compares the feature-detection rule to the hamming-distance rule
and the r-chunks rule (with and without a permutation mask) under a number of different
data sets, with the complexity of the problem domain differing across each data set.

Chapter 7 summarises the work presented by the thesis and outlines additional future
directions that can be undertaken to extend the feature-detection rule introduced in this
thesis.



Chapter 2
The Natural Immune System

“If you can't explain it simply, you don't understand it well enough.”

- Albert Einstein

The natural immune system (NIS) has evolved over millions of years and comprises
various facets, which act in tandem to protect the body. One of the most remarkable
aspects of the NIS is that it has both a genetic (germ-line) and an adaptive (somatic)
component. The innate immune system is genetically based: that is, it does not require a
previous encounter with an antigen in order to be able to recognise it, and it does not
develop a memory. The adaptive immune system, however, is capable of adapting and
fine-tuning its response to an encountered antigen and does develop a memory [8, 1, 62].
Immunologists generally subscribe to different schools of thought about both the
functional and the organisational behaviour of lymphocytes within the immune system.
Immunologists have produced several theories governing the behaviour of immune
systems, the most notable being the classical view, the danger-theory view and the
network-theory view [26]:

= The classical view of the NIS, defined by Burnet [9], postulates that the main
function of the NIS is to successfully discriminate between self (cells occurring
naturally within the body) and non-self (foreign cells/antigens). It should be
noted that immunologists do not fully comprehend how this self/non-self
discrimination is accomplished; they believe that the body learns to distinguish
the difference between self and non-self very early in life [3].

= The immune network theory, introduced by Jerne [51, 52] and explored further
by Perelson [71], postulates that the immune system is an intricate network of
cells that recognise one another even in the absence of antigens. Immune

network theory hypothesises a viewpoint on actions performed by lymphocytes,
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pre-immune repertoire selection, tolerance and self/non-self discrimination and

immunological memory.

= The danger-theory, introduced by Matzinger [3, 60, 61], concludes that the
immune system actually discriminates “some self from some non-self”. For
example, why does the immune system not react to ingested food residing in the
gut? Although each view differs on how the NIS successfully responds to
antigen, each view is firmly grounded on concepts established within the

classical view of the immune system.

This chapter provides a brief overview of the constituents comprising the NIS, from the
classical viewpoint of the NIS, and the mechanisms that it employs to eliminate unwanted
pathogens from the human body. The key objective of this chapter is to provide the
reader with a broad overview of what is currently known about the NIS by following a
bottom-up approach starting with fluid systems in section 2.1.

2.1 Fluid Systems

Constituents of the immune system are housed primarily in the body’s two primary
entwined fluid systems, namely, the blood system and the lymph system [8, 1]. This
section provides a brief overview of the blood and lymph system.

2.1.1 Blood System

An average human being of 70 kg has roughly 5 litres of blood, which is 7 percent of the
body’s total weight. Blood is composed of 52 to 62 percent liquid plasma, which is 91.5
percent water and 38 to 48 percent cells. Blood is manufactured, by means of a process
called haematopoiesis, by stem cells situated predominantly in the bone marrow. These
stem cells produce haemocytoblasts, which differentiate into three types of blood cell:
erythrocytes (red blood cells), leukocytes (white blood cells) and thrombocytes (platelets)
[8, 1].
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Leukocytes play a predominant role within the NIS and are categorised as being

either granulocytes or agranulocytes (containing no granules).

Granulocytes are composed of neutrophils (55 to 70 percent), eosinophils (1 to 3

percent), and basophils (0.5 to 1.0 percent).

Eosinophils are weak phagocytes, believed to remove toxic substances from the
blood [1].

Basophils are very similar to large mast cells and are possibly transported to
tissues where they become mast cells and release heparin, a substance that
prevents blood coagulation [1].

Neutrophils are short-lived cells responsible for the bulk of the immune response
by ingesting antigens. Neutrophils, being short lived, have a half-life of four to
ten hours when not activated and are subject to immediate death upon ingesting

an antigen.

Agranulocytes are lymphocytes — comprising T-cells and B-cells — and monocytes [8, 1]:

Lymphocytes circulate throughout the blood and lymph systems and reside in the
lymphoid glands [8, 1]. Lymphocytes and their functions are discussed further in

section 2.3.

Monocytes develop from myelomonocytic stem cells in the bone marrow. They
are released into the blood, where they circulate for several days before

migrating into tissues, where they mature into macrophages.

The blood system is illustrated in Figure 1.

2.1.2 Lymph System

Lymph is a clear, transparent and colourless fluid, containing no red blood cells which

envelopes and protects organs. Lymph flows through lymphatic vessels from the

interstitial fluid up to either the thoracic duct or the right lymph duct. Ducts terminate in

the subclavian veins, where the lymph is mixed into blood. The right lymph duct drains

the right side of the thorax, neck, and head, whereas the thoracic duct drains the rest of
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the body. Lymph transports lipids and lipid-soluble vitamins, which are absorbed via the
gastrointestinal tract.
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Figure 1. Blood system (this image was taken from [8])

Since there is no active pump in the lymph system, backpressure is not produced.
Lymphatic vessels have one-way valves, that prevent backflow and are similar to veins.
These valves contain additional small bean-shaped lymph nodes, which filter the
lymphatic fluid. Antigens are usually presented to the immune system at the lymph nodes
[8, 1].

The human lymphoid system comprises primary and secondary organs:
= Primary organs include bone marrow (in the hollow centre of the bones)
and the thymus gland (located behind the breastbone above the heart).
= Secondary organs are located near possible pathogen portals, for example,
adenoids, tonsils, spleen (located at the upper left of the abdomen), lymph

nodes (along the lymphatic vessels, with large concentrations in the neck,
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armpits and abdomen), Peyer’s patches (within the intestines) and the
appendix [8].

The structure of the lymph system is illustrated in its entirety in Figure 2.

Immunity is achieved as a result of the mechanisms employed by the immune system to

protect the body against re-infection from a previously encountered antigen.

The NIS provides two different levels of immunity, namely, innate immunity and

adaptive immunity. Adaptive and innate immunity are described in more detail in the
following subsections.
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Figure 2. Overview of the human lymphoid system (this image was taken from [62])
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2.2 Innate Immunity

The innate immune system is genetically based and, as such, is referred to as non-specific
immunity. It requires no previous encounter with an antigen in order to be able to
recognise it and does not develop a memory [62]. It is non-specific, and all antigens are
attacked with an equal probability [8].

Innate immunity incorporates physical barriers such as skin (also referred to as mucosal
immunity), cellular components, that is, the phagocytic system, natural killer cells and
soluble components comprising proteins, neutrophils, dendritic cells, cytokines and
symbiotic microbes, such as normal flora [62]. The innate immune system uses receptors
encoded in an individual’s germ-line to identify an antigen i.e. the innate immune system
is different from one individual to another. The receptors can be found on cells such as
macrophages (a phagocyte) , neutrophils, natural killer cells in addition to roaming freely
within the lymphatic system.

The components comprising the innate immune system are discussed in the subsections

below.

2.2.1 Mucosal Immunity

The most important barrier to pathogens is our skin. Consequently, the skin is the human
body’s largest organ. The skin is literally impenetrable to most micro-organisms (if it is
not torn). The human body has evolved a number of additional mechanisms to expel a
pathogen [8]:

= Pathogens are ejected from the body through ciliary action (coughing and

sneezing) and through the flushing action of tears and saliva.

= Sticky mucus in the respiratory and gastrointestinal tracts ensnares many micro-

organisms.

= The pH of skin secretions inhibits bacterial growth, because it is less than 7.0.
Hair follicles secrete sebum, which contains lactic acid and fatty acids, which, in

their turn, prevent certain fungi and bacteria from growing.
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= Saliva, tears, nasal secretions and perspiration contain lysozyme, an enzyme that

destroys gram-positive bacterial cell walls by inducing cell lysis (bursting).

= Many pathogens are also destroyed in the stomach owing to its mucosa secreting

hydrochloric acid and protein-digesting enzymes.

2.2.2 Normal Flora

Normal flora are microbes residing in our body and usually do not cause harm. The
human body comprises about 10 cells and 10 bacteria, mostly in the large intestine.
There are about 10° to 10* microbes per cm? on the skin (predominantly staphylococcus,
aureus, staphylococcus epidermidis, diphtheroids, streptococci, etc). Lactobacilli reside in
the stomach and small intestine. Normal flora occupy all of the available ecological
niches within the body and produce bacteriocins, defensins, cationic proteins and
lactoferrin, which destroy other bacteria competing for the same niche.

Bacteria, however, can become problematic when they overrun ecological niches not
destined for them, for example, if staphylococcus gains entry into the body through a cut
in the skin [8].

2.2.3 Phagocytes

Phagocytes include neutrophils, monocytes (occurring in the blood) and macrophages
(occurring in the tissue) [62]. A phagocyte attracts, by chemotaxis, and ingests foreign
bodies through a process known as phagocytosis [1].

Promonocytes are manufactured in the bone marrow. When they are released into the
blood system, they are termed circulating monocytes, which mature into macrophages

[8].

2.2.4 Macrophages

Macrophages are strategically situated at interfaces of tissues with blood or cavity spaces
[62]. For example, macrophages can be found in the lungs, liver, lining of the lymph
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nodes and spleen, brain microglia, kidney mesangial cells, synovial cells and osteoclasts
[8]. Macropahges are long lived and attack not only diseased cells, but also pathogens
living within cells. Once a macrophage has engulfed a cell, the macrophage processes the
cell internally and distributes some of the cell’s proteins, named epitopes, on its surface
in conjunction with some of its own proteins. Other immune cells can then infer the
structure of the invading pathogen from the macrophage. Owing to the pivotal role that
they perform, macrophages are often termed antigen-presenting cells (APCs).

Macrophages are subdivided into two groups:

= Non-fixed/wandering macrophages roam blood vessels and travel to infection
sites to eliminate dead tissue and pathogens. The process by which a macrophage
squeezes through a capillary wall to tissue is known as diapedesis/extravasation.
Macrophages are attracted to an infection site by the presence of histamines [8,
1].

= Tissue macrophages are monocytes that wander into tissues, become fixed in the
tissues and swell to form tissue macrophages. They frequently proliferate and
form capsules around foreign particles that cannot be digested, thus preventing
the spread of disease [1].

2.2.5 Natural Killer Cells

Natural killer cells travel in the blood and lymph, causing cancer cells and virus-infected
cells to lyse (burst) [8].

2.2.6 Neutrophils

Polymorphonuclear neutrophils are phagocytes with no mitochondria and store glycogen
for energy. They do not divide, only live between one to four days and comprise 50 to
75 percent of all leukocytes. Neutrophils are a key form of defence against pyogenic
(pus-forming) bacteria and are always the first to emerge after the onset of an infection.

Macrophages appear several hours later.
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2.2.7 Dendritic Cells

Dendritic cells are covered with an entanglement of membranous processes. There are
four types of dendritic cells and most of them are highly efficient antigen-presenting
cells: Langerhans cells, interstitial dendritic cells, interdigitating dendritic cells and
circulating dendritic cells. These cells do their utmost to attract antigens and present them
to T-helper cells [8].

Cells within the innate immune system bind to antigens with the aid of highly
specialised pattern-recognition receptors. These receptors are genetically encoded and
have evolved so that broad clusters of antigens can be distinguished.

Although the importance of innate immunity regarding its role in our survival cannot be
overstated, adaptive immunity has generated an immense amount of research interest

because of its learning capability.

2.3 Adaptive/Acquired Immunity

Adaptive or acquired immunity differs between people and is dependent on the subset of
antigens with which an individual has come into contact. Adaptive immunity is
comprised of three key components namely learning, memory, and adaptability [62]. The
key component of the adaptive immune system is the lymphocyte.

Lymphocytes can be differentiated into two major types, namely, B-cells and T-cells.
Approximately 20 to 50 percent of circulating lymphocytes can be found in peripheral
blood, whereas the rest is constrained within the lymph system. Approximately 80
percent of lymphocytes are T-cells, 15 percent are B-cells, and the remainder are
undifferentiated cells. The total mass of all lymphocytes is approximately the same as the
human brain [8, 1,62].

Although both B-cells and T-cells are produced by stem cells within the bone marrow,
there are a number of factors which differentiate them most notably:

= Upon activation, B-cells undergo a clonal selection process.

= B-cells produce antibodies whereas T-cells do not [8].
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= T-cells undergo a sensitisation process in the thymus before being released into the
blood/lymph system; hence they are called “thymus”/T-cells [8, 1].

T-cells are primarily responsible for cell-mediated immunity, whereas B-cells are
primarily responsible for humoral immunity (immunity of the human immune system)
[8]. Cell-mediated immunity is discussed in section 2.4, and humoral immunity is
discussed in section 2.5.

2.4 Cell-mediated Immunity (Cellular Immunity)

Cellular immunity is achieved through the interaction of various classes of T-cell. T-cells
do not have surface immunoglobulin (see section 2.5.1) like B-cells and recognise
antigens primarily with their specialised “antibody-like” receptors and other adhesion
molecules [62]. The major histocompatibility complex (MHC) is the means through
which T-cells can react to antigens and is briefly discussed in section 2.4.1, before the
different T-cell classes are discussed in section 2.4.2.

2.4.1 Major Histocompatibility Complex

Unlike B-cells, which can respond to soluble/free-floating antigen, T-cells can rarely do
so and can only generally respond to antigens embedded in the MHC. MHC products can

be differentiated into two classes:

= Class 1 products have a wide distribution and are present on the surface of all
nucleated cells.

= Class 2 products have a more limited distribution on B-cells, macrophages,

dendritic cells, Langerhans cells and activated T-cells [62].

An antigen is processed and associated with MHC before encountering T-cells via
antigen-presenting cells; for example, macrophages (refer to section 2.2.4 for a general
discussion of macrophages). The process is not fully understood, but immunologists have
ascertained that, in order to be processed, an antigen must be unfolded, degraded and
fragmented.
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Antigens subject to exogenous processing undergo endocytosis and degradation in
lysosomes and are associated with class 2 MHC products. Conversely, through
endogenous processing, an antigen is processed intracellularly (for example, a viral
infection), and the resulting peptides are transported to the endoplasmic reticulum by
transporter proteins. Once in the endoplasmic reticulum, these peptides are associated
with class 2 MHC products and are transported to the cell surface [62].

2.4.2 T-cells

T-cells (thymus cells) migrate to the thymus to mature after they have been created to
learn the concept of “self” by undergoing two selection processes: positive selection and
negative selection [10]. There are contrasting views on positive and negative selection
within immunology; these views are founded on either the avidity hypothesis or the
differential signalling hypothesis:

= The avidity hypothesis postulates that the avidity with which a T-cell
lymphocyte binds to a self-MHC peptide complex dictates whether the T-cell is
positively or negatively selected. The positive selection process destroys all T-
cells with a relatively weak avidity to a self-MHC peptide complex. The
negative selection process destroys all T-cells with a strong avidity to a self-
MHC peptide complex. T-cells thus only have a single paratope, involved in

both positive and negative selection [8, 1, 62].

= The differential signalling hypothesis formulated by Cohn [10] postulates that
there are two different paratopes on T-cell receptors, namely, anti-r and anti-p.
Anti-r paratopes are germline encoded and provide specific recognition of the
MHC-peptide complex. Anti-p paratopes are somatically encoded and provide
specific recognition of the peptide bound to a MHC molecule. Positive selection
and negative selection are the result of qualitatively different interactions with a

T-cell’s receptor.

The avidity hypothesis is the most popular hypothesis and is used throughout this thesis.
T-cells that have survived both positive and negative selection are released from the
thymus [7, 58]. Interestingly, if a foetus’s thymus is removed several months before
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birth, cellular immunity cannot develop, and the likelihood of organ rejection after a

transplant is reduced [1].

There are several different varieties of T-cell: T-helper cells and T-suppressor

cells/cytotoxic cells [8, 62]. Each type of T-cell is discussed in further detail below.

2.4.2.1 T-helper Cells

T-helper (TH) cells manage the immune response by secreting lymphokines, chemicals
that cause both T-cells and B-cells to grow and divide, attract neutrophils and enhance the

abilities of macrophages [8].

2.4.2.2 T-suppressor Cells/Cytotoxic Cells

T-suppressor (TS) cells inhibit the production of killer T-cells when the killer T-cells are

no longer needed [8].

2.4.2.3 Killer Cells

The primary task of killer T-cells is to release lymphotoxins, which release results in cell
lysis [8]. There are several categories of killer cell depending on MHC restriction,
sensitisation requirements, target specificities and responses to cytokines (refer to section
2.4.3). These categories can broadly be simplified into MHC restricted and MHC non-

restricted. Each cell delivers a lytic signal through the target-cell membrane [62].

2.4.2.3.1 MHC-restricted Killer Cells

Cytotoxic T-cells are killer cells generated through sensitisation either against cells that
express foreign MHC products or against cells modified by viral infections. The life cycle
of a cytotoxic T-cell can be in one of three states: a cytotoxic cell upon stimulation, an
effector cell, which has differentiated and been specialised, or a memory cell, which can
become an effector when it is restimulated [62].
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2.4.2.3.2 MHC-non-restricted Killer Cells

MHC-non-restricted killer cells do not require sensitisation like MHC-restricted killers
and are often termed natural killers. Natural Kkiller cells comprise 5 to 30 percent of the
peripheral blood lymphocytes. These killer cells do not belong to the T- and B-cell
classes of lymphocyte and thus do not express either immunoglobulin or T-cell receptors
on their surface. Natural killer cells will terminate certain autologous, allergenic and
xenogeneic tumour cells even in the absence of class 1 MHC. Natural killer cells have
several class 1 MHC receptors on their surface, and these are referred to as killer-cell
inhibitory receptors. Interestingly, Killer-cell inhibitory receptors have also been observed
on T-cells. Immunologists are still uncertain how T-cells with different receptors for the
same molecule class (class 1 MHC) can decide whether a T-cell is activated or inhibited
[62].

2.4.3 Cytokines

Both T-cells and monocytes secrete cytokines, which influence both close and distant
events [62]. Cytokines are also aptly termed the messengers of the immune system and
are proteins secreted by cells that act to coordinate an immune response. Cytokines
comprise a diverse assortment of interleukins, interferons and growth factors [1].

2.5 Humoral Immunity

Humoral immunity is achieved through the interaction of B-cells and their related
antibodies. B-cells comprise 5 to 15 percent of blood lymphocytes and occur in the outer

subcapsular cortical area in primary, secondary follicles and medullary cords [62].

Immature B-cells develop in the bone marrow through a process of significant gene
rearrangement. Antigens do not play a role in B-cell development and, in fact, their
interaction with B-cells can lead to clonal inactivation or tolerance. Immature B-cells

leave the bone marrow and enter peripheral lymphoid organs.
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B-cells reach maturity when two conditions are met: an antigen binds to its receptors, and
a cytokine has been released by a T-helper cell in the vicinity of the immature B-cell.
Immature B-cells within the vicinity of the antigen endure differentiation and clonal

proliferation/selection and reproduce asexually via mitosis [8, 62].

The result of clonal selection culminates in a number of plasma cells, tailored to match a
specific antigen-secreting antibody at a rapid rate, and newly formed memory B-cells [8,
1, 62].

The immune response that is produced when an antigen is first encountered in the human
body is aptly termed the primary immune response. The primary immune response is
characterised by the presence of an antigen, an initially latent period during which few
antibodies are secreted — predominantly IgM — and, then, with the help of T-helper cells,
the secretion of a large amount of IgG, IgA or IgE (antibody classes are discussed in
more detail in section 2.5.1), resulting in the creation of many memory cells [8, 62]. The
subset of B-cells with the highest affinity to the antigen become long-lived or memory B-
cells.

The secondary immune response occurs upon subsequent encounters with the same
antigen. The primary characteristics of this phase are rapid proliferation of B-cells, rapid
differentiation into mature plasma cells and large numbers of antibodies, mainly 1gG
[62]. Plasma cells release immunoglobulin at an extremely high rate of about 2 000
molecules per second. This process continues for several days until the death of the
plasma cells [1].

2.5.1 Antibodies

Antibodies are also called immunoglobulin and are secreted by plasma cells [8]. An
antibody can bind with a specific subset of antigens at specific regions — epitopes — of the
antigen/s. If an antigen and an antibody combine, they do so with a strong attractive
force, because the matching areas on each molecule are relatively large [62].

An important feature of the immune system and the concept upon which immunisation is
firmly grounded is the fact that antibodies can cross-react with related antigens if their
epitopes are sufficiently similar [62].
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Antibodies act in three different ways: they can directly attack an antigen, activate a
complement system, which destroys an antigen, or activate the anaphylactic system,

which changes the environment around the invading antigen and reduces its virulence [1].

Each immunoglobulin, irrespective of the class to which it belongs, is composed of two
heavy and two light polypeptide chains, each with constant and variable domains [8, 1].
Disulfide bonds join the chains, and the molecules bind into a Y configuration [62]. The
Y-shaped region can be divided further into a variable (V) region and a constant (C)

region.

An antibody binds to small segments of an antigen (called an epitope) through its variable
regions (paratopes), and, consequently, a high diversity of amino acids occurs in the V
region [8, 62]. Hyper-variable regions within V regions contain idiotypic determinants to
which natural antibodies (referred to as anti-idiotype antibodies) bind, creating an
important mechanism for the regulation of B-cell responses [62]. The C region contains a
relatively constant sequence of amino acids and is different for each class of
immunoglobulin (Ig). [62]. Owing to its consistency, the amino-acid sequence of an

antibody’s C region determines the isotope of the antibody’s immunoglobulin class.

There are five main classes of antibodies (see Figure 3), with corresponding subclasses.

Each main class serves a different function:

= IgM is the first antibody formed when the body is exposed to a new antigen, that
is, during the body’s primary response. It consequently protects the intravascular

space from disease and serves as an antigen receptor on a B-cell membrane.

= IgG is the major antibody produced during the body’s secondary response and

protects tissues from bacteria, viruses and toxins.

= IgA is found in mucous secretions (saliva, tears etc.) and provides an early

antibacterial and antiviral defence.

= |gD is found in extremely low concentrations on the surface of developing B-
cells. IgD is believed to be an important component in the B-cell maturation

process.
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= |gE is found primarily in respiratory secretions. IgE interacts with mast cells. It
is believed that when two IgE molecules encounter an allergen, they deregulate

and cause an allergic response.
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Figure 3. Immunoglobulin classes (this image was taken from [8])
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The way in which B-cell genes are combined enforces diversity, because of the nature of
the generation process. Gene segments are disconnected and must be juxtaposed during
B-cell maturation. The potential diversity is further increased by somatic point mutations

and joining inaccuracies between the various antibody segments [62].

The detection rate of an antibody molecule is increased further, owing to the number of
degrees of flexibility that it attains as a result of freedom of movement, which allows it to

bind easily to various regions on the surface of an antigen [8].

An antibody can inactivate an antigen in several ways, most notably by agglutination,

precipitation, neutralisation and lysis [1, 62]:
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= Agglutination occurs when multiple antigenic agents bind to form a clump of
antibodies.

= Precipitation occurs when the antigen-antibody complex becomes insoluble and

precipitates.
= Neutralisation occurs when the antibody covers the toxic sites of the antigen.

= Lysis occurs when antibodies directly attack the membranes of foreign cells and

causes them to rupture.

Most of the body’s protection comes from the complement and anaphylactic systems.

2.5.2 Regulation of Human Immune Responses

Regulation of the immune system is critical to prevent unlimited antibody production,
which could result in self-destruction. The human immune system is regulated by a
number of factors, namely, the disappearance of the pathogen/foreign substance, the
idiotypic network of antibodies and cytokines. Anti-idiotypic activity occurs because the
V regions of each antibody’s molecules recognise one another. This activity blocks B-cell
receptors, thus suppressing not only further activation of the cell, but also the production
of idiotypic antibodies [62].

Both cellular and humoral immunity are essential for survival and contain a number of
explicit differences, as well as implicit differences. One of the most striking differences
between cellular and humoral immunity is persistence. Antibodies only last a few months

or years at most, whereas it is believed that sensitised T-cells last almost indefinitely [1].

2.6 Conclusion

The NIS is an intricate network of components, which work collectively to protect the
body against the virtually limitless antigens in and around the environment. Pathogens are
eliminated primarily through phagocytosis, which is facilitated by the pathogen being
coated with antibodies and complement proteins. The immune response is regulated by
successfully evolving efficient antibodies, with a high affinity towards the pathogen.
Antibodies are manufactured by B-cells, which, in their turn, are aided by T-cells. There
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are a number of complex chemical reactions involved in and around the environment to

support this process.

This chapter provided a brief overview of the innate and adaptive immune systems and
the components governing the behaviour of these systems. It is critical to understand the
NIS before one delves into AIS theory, since an AIS abstracts a subset of processes
occurring within the NIS.

The next chapter defines what an AIS is in more detail and portrays the main research
fields within AIS theory.



Chapter 3
Foundations of Artificial Immune Systems

“It is not knowledge, but the act of learning, not possession but the act of getting there,
which grants the greatest enjoyment.”

- Carl Friedrich Gauss

Artificial immune systems (AISs) emerged in the 1986 as a new computational
intelligence paradigm [30]. An AIS can be defined as a system of interconnected
components, which emulate a particular subset of aspects originating from the NIS in
order to accomplish a particular task within a particular environment/domain. Scientists
have achieved great success in finding algorithmic solutions to complex problems by
emulating and transposing mechanisms occurring naturally within biological systems to
alternative real-world domains. For example, by studying the social behaviour of birds
within a flock, scientists have created a class of algorithms termed particle swarm-
optimisation algorithms, which have been very successful in solving complex
optimisation algorithms [27]. An AIS is by no means an exception and tries to leverage
desirable characteristics from the NIS [17, 32]. The key features of a NIS that are of
interest to computer scientists have been summarised by both Wierzchon [87] and Forrest

et al. [34], and are presented below:

= Multi-layered protection: The humoral immune system provides a number of
protective layers against antigens namely innate immunity, humoral immunity
and cellular immunity. Classical security systems are monolithic and ordinarily
address security threats only at a specific level. For example, a system
containing only basic password authentication addresses security only at a single

level.

= Distributed detection: The immune system is autonomous. This is highly
desirable within any computer system, because there is no single point of failure.

24
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= Learning ability: The NIS is adaptive and develops memory B-cells in response
to encountered antigens. Interestingly, the learning ability of AIS algorithms has
often been compared to other computational intelligence learning paradigms,
such as neural networks [16, 19].

= Unique localised copies of the detection system: Each individual lymphocyte
within a population of lymphocytes consists of its own protective cells and

molecules.

= Generalisation ability: Each lymphocyte has the ability to recognise antigens
that are structurally similar to previously encountered antigens, the concept on
which immunisation is firmly based. The immune system is also able to generate
and improve on receptors, clonal selection of B-cell lymphocytes during the

primary response, to eradicate antigen that have not yet been encountered.

= Imperfect detection: The immune system achieves a very high reliability rate at
a low cost, owing to roughly distributed detection (a perfect match is not
required between an antibody and an antigen in order for the antibody to
recognise the antigen), coupled with the need for minimal communication

among immune system artefacts.

= Self-organisation: The memory cells of the NIS are organised into an idiotypic
network, which changes over time (see [52]).

= No need for negative examples: Many learning algorithms require both positive
and negative learning examples in order to differentiate correctly between
self/non-self patterns, whereas the NIS requires only self-samples.

= Uniqueness: Every individual has a unique immune system, which depends on

the antigens which an individual has been exposed to in their lifetimes.

= Explicit symbolic representation: The knowledge acquired by the NIS is
represented explicitly by the structure of receptors on the surface of
lymphocytes.
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= Robustness: In addition to the above characteristics of the NIS, Hofmeyer et al.
have noted that the natural immune system is robust, owing to its diversity,

distributed detection, error tolerance, self-awareness and adaptability [47].

This chapter presents the foundations of AISs and provides a brief overview of the most
popular AIS algorithms in section 3.2. Recognition within AISs is then discussed in
section 3.4 by focusing on the shape space theory, detector generating techniques,
matching functions employed by AISs, and undetectable regions/holes induced by the
matching functions. Finally AIS algorithm performance metrics are presented in section
3.5 which discusses traditional AIS performance metrics such as true positives, false
negatives etc. in addition to non-traditional AIS performance metrics such as
Generalisation and overfitting.

3.1 Artificial Immune-system Foundations

The focal point of most AIS research is on how lymphocytes (B-cells and T-cells)
mature, adapt, react and learn in response to a foreign antigen. A taxonomy of the main
AIS models was provided by De Castro and Timmis [22], where AIS models were
viewed as being either population based or network based [22].

Population-based algorithms such as the negative selection algorithm (NSA) [33] and the
clonal selection algorithm (CSA) [21] focus primarily on generating an initial population
of lymphocytes, and on improving and refining that population based on techniques
emulated from the NIS.

Network-based models [44, 52, 59, 90] are based on anti-idiotypic activity within the
NIS, which consequently regulate the population of lymphocytes. The concept of
artificial immune networks (AINs) was first proposed by Jerne in 1974. Jerne stated that
dynamic behaviour could be observed within the NIS even in the absence of antigens;
this suggested that B-cell lymphocytes have the capability of recognising one another
[52]. This dynamic behaviour was modelled mathematically using differential equations,

continuous models [30] or discrete models (based on a set of iterative equations) [84].
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A similar taxonomy was proposed by Dasgupta [15], but his taxonomy does not
differentiate between population-based and network-based algorithms. Instead,
Dasgupta’s taxonomy focuses on each AIS model, including Matzinger’s danger theory
[60, 61]. By fusing elements of both Dasgupta’s and De Castro’s taxonomy, a general
taxonomy of AIS research models proposed by this thesis is presented in Figure 4.

A short overview of each AIS algorithm is presented in section 3.2

AIS Algorithm Taxonomy

Network
Based
Other AIS Danger Theory C'O”?’" Negatiye Continuous Discrete
algorithms Algorithms Seleptlon Selegtlon Models Models
Algorithms Algorithms
Figure 4. Taxonomy of artificial immune system algorithms

3.2 Overview of Different AIS Algorithms
This section provides a brief description of the AlS algorithms illustrated in Figure 4.

3.2.1 Clonal Selection Algorithms

Clonal selection algorithms [20, 21] are inspired by the way in which B-cell lymphocytes
adapt in response to an antigen encounter (see section 2.5). AIS researchers generally
refer to this process as clonal selection [20, 21]. The main points of the clonal selection
process are highlighted below:

= B-cells are activated upon recognising antigens and receiving signals from T-
helper cells.

= Upon activation, B-cells rapidly proliferate and mature into plasma cells. The
proliferation rate of a B-cell is directly proportional to the affinity between the
B-cell and the recognised antigen. This will result in high-affinity B-cells to
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produce a large number of clones, whereas low-affinity B-cells will produce a

diminutive number of clones.

= The progeny/clones of the parent B-cells then undergo a mutation process. The
areas subject to mutation are the portions of the receptor that bind with the
antigen. Since lymphocytes are somatic cells, being cells not involved in
reproduction, the mutation is termed somatic mutation. Berek and Ziegner [6]
found that the somatic mutation is inversely proportional to the affinity between
the antigen and the antibody; that is, the higher the affinity is, the lower the
mutation rate is, and the lower the affinity is, the higher the mutation rate is. This
mutation principle allows the immune system to preserve cells that have a high
affinity to the antigen and to improve those cells that have a low affinity to the

antigen.

= A selection mechanism existing within the NIS guarantees that offspring that are
better than their parents at recognising the antigen are selected as long-term
memory cells. Memory cells in effect are a means by which the B-cells retain
information about the antigen and can thus react more quickly upon subsequent
encounters with the same antigen. Learning does not cease once memory cells
have been formed, and each successive encounter with the same antigen

improves the immune system’s capability to recognise that antigen.

The first version of an algorithm that was inspired by the clonal selection process, called
CLONALG, was presented by De Castro et al. [20, 21]. Interestingly when compared to
the performance of evolutionary strategies (see [26]), Walter and Garrett [85] found that,
in low dimensional landscapes, the CSA performed better than its evolutionary
counterpart did. In other studies, CLONALG is viewed as the root of all CSA algorithms,
and a number of subsequent improvements have been made to CLONALG, as mentioned

below:

= The CLONALG was found by White and Garrett [86] to be extremely good at
classifying unseen examples from binary data sets, if given enough data albeit
being computationally expensive. A modified CLONALG, called clonal
classification (CLONALGAS) was proposed by White and Garrett [86] in an
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attempt to improve upon the computational complexity exhibited by
CLONALG. Although the CLONALGAS algorithm has the same complexity as
CLONALSG it is able to converge on a solution set in fewer iterations.

= A dynamic clonal selection algorithm was created, by Kim and Bentley [57], to
overcome difficulties faced in anomaly detection owing to changing
environments. The algorithm was later extended [56] to delete memory detectors
that are no longer valid. This resulted in a reduction of the false-positive rate

exhibited by the original dynamic clonal selection algorithm.

3.2.2 Negative Selection Algorithms

Negative selection algorithms are inspired by the T-cell maturation process occurring
within the NIS. Since the work presented in this thesis is rooted in the negative selection

theory, a comprehensive overview of negative selection is given in chapter 4.

3.2.3 Immune Network Algorithms

Immune network algorithms are based on Jerne’s network theory [52], which asserts that
B-cells are capable of recognising one another. Immune network algorithms attempt to
maintain a population of detectors by using a set of mathematical equations and are
applied mainly to clustering problems [30, 59, 90]. A well-known immune network
algorithm, called AINET, was developed by De Castro and Von Zuben [18] and was
shown to be extremely effective at compressing an input space comprising of N

antibodies, while still preserving the topology of the problem space.

3.2.4 Danger-theory Algorithms

The danger theory introduced by Matzinger [60, 61] asserts that there must be
discrimination within the immune system that goes beyond the classical view of self/non-
self discrimination. Matzinger asserts that the immune system in fact discriminates “some
self from some non-self”. Matzinger’s theory is illustrated in Figure 5, which shows four
different cells: a B-cell lymphocyte (represented by the symbol B), a T-helper
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lymphocyte (represented by the symbol Th), a T-killer lymphocyte (represented by the
symbol Tk) and an antigen-presenting cell (represented by the symbol APC).

Each immune system artefact in Figure 5 conforms to the following three laws:

= A cell is activated upon receipt of signal 1 and signal 2, that is, if a B-cell
produces antibodies when it is activated. A cell dies if it receives signal 1 in the
absence of signal 2. A cell ignores the receipt of signal 2 if it did not receive
signal 1.

= Signal 2 can be accepted only from antigen-presenting cells, or, for B-cells, from
T-helper cells. B-cells can also act as APCs for long-lived T-cells. Signal 1 can
originate from any cell.

= Activated cells revert to a resting state after some finite time period.
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Figure 5. Illustration of Matzinger’s danger theory (this image was taken from [3])

Greensmith et al. implemented an AIS utilising Marzinger’s danger theory which
emulates the behaviour of dendritic cells (refer to section 2.2.7 for a discussion on
dendritic cells) [42, 43]. Their algorithm, termed the Dendritic Cell Algorithm (DCA),
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differs from other AIS algorithms in the sense that is inspired by the innate immune
system as opposed to the adaptive immune system.

An example of a NSA that implements a simplified form of the signalling concept
illustrated in Figure 5 was is by Hofmeyer and Forrest [48]. In their system, detectors can
be in one of several states (randomly created, immature, mature and naive, activated or
dead). When a detector is activated by a foreign agent for the first time, the detector
transitions from a mature state to an activated state. Thereafter, there is a fixed-time
waiting period for a signal, originating from a human operator, in the form of an e-mail,
to confirm that the foreign agent is indeed an anomaly. If the signal is received before a
particular time period, then the detector will be retained by the system as a memory
detector; otherwise the detector is purged from the system.

3.2.5 Other Immune Algorithms

Each of the AIS algorithms discussed thus far subscribes to a particular niche within the
NIS and only emulates a subset of mutually exclusive functionality from the NIS. There
is a subclass of AIS algorithms, called hybrid AIS algorithms. These algorithms try to
emulate as much of the NIS as possible in order to derive from the benefits of the NIS in
its entirety. An example is the multilevel immune learning algorithm (MILA), created by
Dasgupta et al. [14]. MILA creates three different types of ALC, namely, T-helpers, T-

suppressors and B-cells, and thus draws on both negative and clonal selection theory.

3.3 Generation of Detectors within an AIS

Most AIS algorithms generate random ALCs. This, however, is not reflective of what
happens within the NIS. The NIS stores the genetic material for an individual antibody in
seven separate libraries. An antibody molecule is produced by randomly selecting genetic
components from each of the individual libraries. Hightower et al. [46, 65] wrote a
genetic algorithm to evolve gene libraries (refer to [37] for more information on genetic
algorithms) to study the characteristics that both gene libraries and ALCs generated from
gene libraries exhibit, and found that:

= Gene libraries became increasingly dissimilar as they evolved.
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= If gene libraries were exposed to a much greater proportion of antigens, the gene
libraries evolved more rapidly and generated ALCs of a better quality. That is,
the ALCs generated from the gene libraries were able to recognise a greater

proportion of antigens.

Their algorithm was modified by Hofmeyer et al. [48] through the addition a mutation
step and found that the mutation step increased the speed at which gene libraries
converged to a specific solution. In another follow-up study, Opera and Forrest [66]
found that an increase in the size of the genome of an antibody library increased the
survival probability of an individual by increasingly smaller amounts. It is argued by
Opera and Forrest that antibodies produced by antibody libraries reflect different antigen
clusters. In a separate study, Forrest and Perelson showed how the degree of
generalisation (generalisation is discussed in section 3.5.2) in an evolved antibody
population can be controlled [31]. To date, very little work has been done on using gene
libraries in conjunction with AIS algorithms to generate detectors. The reason is probably
that such an AIS algorithm would be more complex than its random counterpart. That is,
the algorithm would first need to evolve a set of gene libraries before being able to
execute. An example of a recent AIS algorithm, which uses gene-libraries to classify e-
mails, can be found in [76].

A large percentage of the AIS algorithm classes illustrated in Figure 4 are rooted in a
number of similar key concepts. Each of these concepts is discussed in section 3.4, where
a stronger emphasis is placed on concepts that are applicable to binary problem spaces, as
opposed to real-valued problem spaces.

3.4 Recognition within an Artificial Immune System

Lymphocyte cells in the NIS (T-cells or B-cells) present receptor molecules on their
surface responsible for recognising the antigenic fragments displayed by the pathogens.
Pattern recognition within the NIS occurs on a molecular level, and covalent bonds form

between the antigen and T-cells and B-cell antibodies.
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In order to model this aspect, most AIS algorithms employ the shape-space concept
proposed by Perelson and Oster [69], which allows a quantitative description of the
interactions of receptor molecules and antigens. Perelson’s and Oster’s shape-space
theory is discussed in detail in section 3.4.1.

3.4.1 Shape-space Theory

A population of N individuals (cell receptors) can be represented as a finite volume, V,
containing n points (where n is the dimensionality of an individual/artificial lymphocyte).
Each individual has a volume, V., surrounding it such that any complementary antigen
that lies within V. is recognised by the individual. The term V.. is called the detection
area, and its size depends on a parameter, r, known as the affinity threshold. In this shape
space, an artificial lymphocyte/receptor molecule is depicted as a vector, x, with
coordinates (x4, x,, ..., X,,), Whereas an antigen/non-self artefact is depicted as a vector, y,
with coordinates (yl,yz,...,yn). Perelson’s and Oster’s [69] shape-space theory is
illustrated in Figure 6, which portrays two antibodies and their associated detection

regions.

The shape-space theory enables AIS researchers to represent antigens and immune
system artefacts (lymphocytes and antibodies) mathematically. Building on the shape-
space theory, researchers within the AIS community have studied a variety of approaches
in which the affinity between an antigen and an antibody can be captured. The most
popular approaches are discussed in section 3.4.2.
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X Antigen
@® Antibody

Figure 6. Shape-space theory

3.4.2 Affinity Threshold

The affinity-threshold functions presented in this section attempts to mimic the bonding
process that occurs withinin the NIS. When an antigen and receptor bind covalently, they
do so with varying degrees of strength depending on how well the receptor’s V region can
recognise the antigen. The bonding process that matching rules emulate is
diagrammatically depicted in Figure 7 (refer to section 2.5.1 for a more detailed
description of the bonding process). Take note that in figure 8 the terms Ab and TCR
refers to antibody and T-cell receptor respectively.
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Figure 7. Antigen/antibody bonding (this image was taken from [49])

Given an artificial lymphocyte, x, and an antigen, y, a number of matching rules can be

defined to determine whether x and y match.

3.4.2.1 Hamming-distance Rule

The hamming distance (HD) between two binary vectors is the number of corresponding
bits that differ. For example, if x =(1,0,0,1) and y = (1,1,0,1) then the hamming

distance betweenx and y, f,,(Xy), is 1.

3.4.2.2 r-Contiguous Bits Rule

The r-contiguous bits (RCBITS) rule states that two binary vectors match if they have
identical bits in at least r contiguous positions [68].

For example; if x =(1,0,1,0,0,0,0,0) and y = (0,1,1,0,0,1,1,1) then the number of r
contiguous bits between x and y, f 57X, ¥), is 3.

The RCBITS rule is a very popular matching rule, since it is conceptually simple and
lends itself equally to both mathematical and statistical analysis [87].
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3.4.2.3 r-Chunks rule

The r-Chunks (RCHK) matching rule, as conceptualised by Balthrop et al. [5], was
inspired by the RCBITS rule and matching rules for classifier systems developed by
Holland [50]. RCHK detectors are specified by a window of size r in which all » bits in
the window must match the given string in question. The remaining bit positions are
termed “don’t cares” and are ignored. An RCHK detector is depicted as a vector, x, of
length r and a starting position w (that is, detection starts at position w and ends at

position w + r — 1).

For example; if x = (1,0,0,1) and y = (1,0,0,1,0,0,0,0) then f ... (y,X, 1) = 4, where
f renx &%, 1) s the application of the RCHK rule to vectors x, y, and w = 1.

A number of experiments were performed by Balthop et al. where they concluded that the
RCHK rule performed better than the RCBITS rule for their data set [5]. It was shown
that the RCHK rule subsumes the RCBITS rule by Esponda et al. [29].

From each of the detection rules presented thus far (HD, RCBITS and RCHK) it is
evident that a trade-off between the number of detectors and their affinity threshold
exists. Larger affinity thresholds result in more specific matching, whereas smaller
affinity thresholds result in more generic matching. In other words the best values for
these parameters are problem dependant and should be fine tuned for each new problem
domain [47].

An additional trade-off, called holes or undetectable strings, exists for the RCHK and
RCBITS rule. The origins of holes are discussed further in section 3.4.2.4.

3.4.2.4 Holes induced by the r-Contiguous Bits and r-Chunks Rule

A critical difference between the RCHK and RCBITS matching rule noted by Balthrop et
al. [5] was the number of undetectable strings that they induced. These undetectable
strings are called “holes” by D’haeseleer et al. [11]. An example of holes is illustrated in
Figure 8, where the detection region, V,, or each detector, is shown as a circle in dark
grey, an antigen is shown in light grey and holes are indicated as white space.
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Figure 8. Undetectable regions induced by holes (this image was taken from [47])

Holes do not exist merely because of the limitations of the matching rules used, but also
because of similarity existing between self and non-self cells. If was noted by Hofmeyer
[49] that in reality, self and non-self are distributed at great distances from each other.
The fact that that holes can exist for any approximate matching rule, even within the NIS,
because binding between receptors and peptides is approximate [47].

Two different types of holes were identified by Balthrop et al. [5]: length-limited holes
and crossover holes. Crossover holes and length-limited holes are discussed in section

3.4.2.5 and section 3.4.2.6, respectively.

3.4.2.5 Crossover Holes

A crossover hole, h, occurs when all possible windows (the specified r contiguous
positions of a RCHK detector see section 3.4.2.3) within h are crossovers (defined
below) of adjacent windows within a particular set of vectors (where the set is either a

self-set or a non-self set depending on the AIS algorithm being employed).

Given a set, S, of self strings and two vectors, u, v € S, a crossover occurs between two
adjacent windows, wW; = (Ul', Vit+1, "'Jvi+r—1)1 and, Wit = (ul-+1, Uiyo, ...,ul-+r),

whenever bits v; = w; Vi i+ 1< j<i+r—1[5].

To illustrate this concept, consider a self-set, S = {1001,1100}, an affinity threshold,

r = 2, and a function, W (s, r), which returns a set of all possible windows of length 7,
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occurring within a string s € S. A graph, G, can be constructed by applying W (s, r) to
each s € S as follows: the set of windows returned by the application of W (s,r) to s are
added as interconnected nodes to an individual level in G pertaining to the index of s in S
(where the index of the first string in S is one). Such a graph is depicted in Figure 10. In
Figure 10 whenever two windows crossover (according to the crossover definition) they

are connected with a bold line.

Figure 9. Crossover-window graph

By traversing the paths in the graph in Figure 9 from the leftmost nodes to the rightmost
nodes (on each level starting at level 1), the following set of strings, S’, can be
generated: {1001,1100,1000,1101}. The subset S” € S’ consists of crossover holes:
{1000,1101}.

3.4.2.6 Length-limited Holes

Length-limited holes are holes that arise in full-length detectors, for example detectors
which employ the RCBITS detection rule. A length-limited hole is defined as a string,
h’, which contains at least one window of r bits not present within the self-repertoire and
for which a detector cannot be generated [5].

A length-limited hole was illustrated by Balthrop et al. [5] by means of the following

example:

Let S = {110,010} and » = 2. Then it would be impossible to generate a detector for a

non-self string defined as 011 because the generated detector would match a self-string.
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It should be noted that length-limited holes occur when the variance between self and
non-self is particularly low [5].

3.4.2.7 Overcoming Holes

Holes reduce the overall detection capability of an AIS algorithm and are hence
problematic. The RCBITS rule induces both length-limed and crossover holes, whereas
the RCHK rule can induce only crossover holes [5].

When one attempts to overcome holes, for instance in the RCBITS rule, it is tempting to
choose a value of r that is equal to n (the length of a particular antigen), because if r = n,
then it is impossible for length-limited holes to occur. Such a stringent value for r
however, carries an unfortunate consequence, in that the artificial lymphocyte loses its
generalisation capability, because it has become too specialised. It has been speculated by
Hofmeyer and Forrest [47] that MHC plays an important role within the NIS to protect a
population of artificial lymphocytes/detectors from holes. In Hofmeyer and Forrest’s
view, MHC is a mechanism through which a single protein can be represented in a
different way. Hofmeyer and Forrest went further to conclude that, because different
representations induce different holes, leveraging multiple representations will reduce the

overall number of holes.

Hofmeyer and Forrest implemented the MHC mechanism by defining a permutation
mask, m = (1, ..., m,,), where each m; € {1, ...,n} specifies a new position for bit
number i. The function f ...~ (W, m) applies a permutation mask to a vector, w. The
permutation function is applied by generating a single random permutation mask, m, for
the entire global population of artificial lymphocytes/detectors. Each antigen, y, is first
processed by fprruure (Y, m), before being introduced to the population of
detectors/artificial lymphocytes [47].

The analogy of a permutation mask is illustrated in Figure 10, which shows three
different detector sets comprising different V.. regions, because each detector set employs

a different permutation mask.
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Figure 10.  Graphical illustration of how permutation masks change the shape of
detectors (this image was taken from [47])

A detailed study of the effect of Hofmeyer and Forrest’s permutation mask used in
conjunction with the NSA was performed by Stibor et al. [80]. It was found that
randomly generated permutation masks changed the shape and distribution of the entire
data set, thus distorting its semantic meaning and resulting in artificial lymphocytes being
randomly distributed within the search space, as opposed to being concentrated around
self-regions. Furthermore, Stibor et al. also doubted whether permutation masks were
appropriate at reducing the number of holes within negative selection algorithms by

abstracting diversity.

Contrary to the view of Stibor et al., Esponda et al. [29] showed that the NSA, under the
RCBITS rule augmented by permutation masks could recognise the same set of
languages of that of the NSA under the HD rule, showing that permutation masks in fact
did reduce holes induced by the RCBITS rule.

The fundamental difference between the views of Esponda et al. and Stibor et al. is
caused by the approach in which they investigated the efficacy of the RCBITS rule. In the
former case, Esponda et al. approached the investigation with mathematics, whereas in
the latter case Stibor et al. approached the investigation empirically.

It is the view of this thesis that both Stibor et al. and Esponda et al. are correct in that
permutation masks do eradicate holes induced by the RCBITS rule if the permutation
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induced by the permutation mask is meaningful. That is, the permutation mask should
select both adjacent and non-adjacent bits where a relationship exists between the values
of the attributes (in the order induced by the permutation). For example, if a relationship
exists between attributes (1, 3, 5, 2, 4) of a five-dimensional problem space, then it is
logical to create a permutation mask that induces such a permutation on the entire self
repertoire of strings before generating detectors (by utilizing the NSA).

It was argued by Esponda et al. [29] that such a permutation is indeed very difficult, if
not computationally expensive, to infer. This is in fact not true, and an approach to
generate meaningful permutation masks is illustrated by this thesis.

The first part of this chapter discussed how AIS algorithms imitate the affinity
relationship between antigens and artificial lymphocytes by exploiting Perelson’s and
Oster’s shape-space theory in conjunction with a matching function. The final part of this
chapter focuses on how researchers typically classify the performance of an AIS
algorithm.

3.5 AlS-algorithm Performance Metrics

A variety of performance measures currently exist for different AlS-algorithm classes
(see Figure 4 for a taxonomy of different AIS classes). Since the work presented by this
thesis resides within negative selection theory, the most popular metrics applicable to
negative selection theory are presented here. This section also formally introduces two
additional metrics which measure the amount of generalisation and overfitting within an
AIS. Take note that since the NSA is a classification algorithm, thus the metrics
presented in this section are also applicable to a variety of other AIS algorithms which
perform one-class classification. Applications of AlS algorithms are by no means limited
to classification and have been applied to area such as data cluster, image compression
and job scheduling [18, 44].
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3.5.1 Popular Negative Selection-theory Performance Measures

The most popular metrics employed by AIS researchers to report on the performance of
NSAs and a number of other AIS algorithms are false positives, true positives, false

negatives and true negatives:

= False positives (FPs) occur when self-patterns are incorrectly classified as non-
self.

= True positives (TPs) occur when self-patterns are correctly classified as self.
= False negatives (FNs) occur when non-self patterns are classified as self.

= True negatives (TNs) occur when non-self patterns are correctly classified as

non-self.

These measures can be combined in a more meaningful way to create two additional

metrics, termed the detection rate (DR) and false-alarm rate (FR), defined as [82]:

TP (3.1)
DR = TP + FN

FP (3.2)
FR= FP +TN

3.5.2 Generalisation

Generalisation within AIS literature is defined as the comprehensive set of strings that a
generated detector is activated by [5]. Generalisation is defined by this thesis as the
ability of an AIS algorithm to correctly classify patterns that were not included in the
original training set as either being self or non-self patterns, in other words FP + FN = 0
for the test set. This concept can easily be demonstrated by means of Perelson and Oster’s
shape-space theory [69] in Figure 11. Each antibody in Figure 11 has a detection region
of size V. within the entire shape space, V, where V,. is the antibody’s generalisation
region. The closer the antigen is to the antibody, that is, the centroid of regionV.,., the
stronger the affinity of the bond between the antibody and antigen is. The generalisation
capability of the AIS in Figure 11 is the union of each antibody’s detection region V..
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It should be noted that the size of an antibody’s detection region, V,, is a function of the
magnitude of the affinity threshold, r, utilised by the antibody’s detection rule. For
example, if an AIS algorithm uses the HD rule, then greater r values equate to smaller
detection regions. Thus by reducing the generalisation capability of an individual artificial
lymphocyte and, consequently, the entire AIS algorithm. Pseudocode for an algorithm
that can estimate the average Generalisation capability of an AIS is presented by this
thesis in the figure below.

\Y
Vr
X
XX
X Vr

X Undetected Antigen
@® Antibody

X Detected Antigen

I Detection Diameter
Figure 11.  Graphical depiction of generalisation in terms of the shape-space theory

The ability of an immune system to generalise is the primary reason for vaccines having
been so successful in protecting human beings against a wide plethora of antigen. The
premise on which vaccination is based is that in order to protect the human body against a
particularly dangerous antigen, x, a harmless structurally similar antigen, y, is introduced
into the immune system to allow the immune system to develop antibodies against y. By
doing so, the human body will naturally be able to expel an encounter of x, because of its
Generalisation capability. Forrest et al. [5] noted, however, that generalisation within an

AIS must be strictly controlled to ensure that the number of false positives generated by
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an AlIS are sustained at an acceptable level. Overfitting is a term that is strongly related to
generalisation and is discussed in section 3.5.3.

Given a particular AIS algorithm A’ and a set Ng comprising non-self vectors, the average

generalisation capability of A’ over N can be estimated using the following algorithm:
Randomly partition N into two disjoint subsets Drp4;v @and Drgsr Such that

Ng = Drpaiy U Drpst Where |Drpapy | = 0.7+ [Ng|and [Drgsy | = 0.3 * [Ng|

Train A" using Drpav ;

Let C be a set of artificial lymphocytes generated as an output of A"

Let g (a measure of the average generalisation of an AlS algorithm):= 0;

for each artificial lymphocyte x; € ¢ do

for each y]. € Drpay do

if x; is activated by y; then

g=g9+1
end
end
end
_ 9.
9= ep

Figure 12.  Pseudocode for estimation of the average generalisation within an
artificial immune system

3.5.3 Overfitting

Overfitting is defined in this thesis as a phenomenon that occurs within an AIS when a
large number of detectors memorise the same set of training patters. A direct
consequence of overfitting is that the detection capability of the resultant AIS is
degraded.
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The degree of overfitting, within an AIS, is a function of the magnitude of the affinity
threshold, r, used by a particular matching function, in conjunction with how the AIS
algorithm distributes its resultant artificial lymphocytes. To illustrate the concept further,
two different overfitting scenarios are discussed using Perelson and Oster’s shape-space
theory.

It is the view of this thesis that the first scenario occurs when two conditions are met:

= The affinity threshold employed by a particular AlS algorithm is sufficiently
large such that the detection region, V,., of each artificial lymphocyte generated
by the AIS encompasses a broad area within the resultant shape space, V. Take
note that an explicit assumption is being made that a single affinity threshold is
utilised as an input parameter by the AIS algorithm in question, which, in turn
will generate ALCs with the same affinity threshold provided as an input
parameter to the AIS algorithm. If the assumption does not hold true, i.e. each
ALC generated by the AIS algorithm has different affinity thresholds, then the
condition occurs, when the detection regions of several ALCs encompass a
broad area within the resultant shape space, due to the affinity thresholds
employed by the ALCs being sufficiently large.

= The majority of artificial lymphocytes are distributed by the AIS algorithm in
such a manner that they are in close proximity to one another within the shape
space, V.

A direct consequence of the first scenario is that there is a high degree of intersection
between a set of artificial lymphocytes and their respective detection regions such that
each intersection reduces the efficacy of an individual artificial lymphocyte (see Figure
13 for a graphical illustration).
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Vr Vr

X Antigen (Not overfitted)
@® Antibody

X Antigen (overfitted)

Figure 13.  Overfitting scenario 1: large affinity threshold with two structurally
similar artificial lymphocytes, that is, the artificial lymphocytes are in close
proximity to one another

Conversely, a second overfitting scenario can occur when the following two conditions

are met:

= The affinity threshold employed by a particular NSA is very small such that the
detection region, V.., of each artificial lymphocyte encompasses a small area
within the resultant shape space, V, resulting in highly specialised artificial
lymphocytes (with each artificial lymphocyte typically being able to match a

maximum of two self/non-self vectors).

= A large number of artificial lymphocytes are generated by the AIS algorithm to
ensure that the AIS algorithm still exhibits an acceptable detection rate.

A direct consequence of the second scenario is that the resultant distribution of detectors
is localised almost entirely on patterns within the training set. Hence the AIS does not
capture a good fit of the training data (refer to Figure 14 below).
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Figure 14.  Overfitting scenario 2: small affinity threshold with a number of
structurally similar artificial lymphocytes

Overfitting within an AIS resulting from overlapping detectors (see overfitting scenario
in Figure 14) induces an additional undesirable condition studied by Smith et al. [78],
which can be explained as follows, given two artificial lymphocytes x; and x,:

Let each antibody have an affinity threshold of r. The shape-space theory stipulates that
these artificial lymphocytes can be represented by circles with a radius . Suppose that
the two circles intersect such that a large proportion of the area of x, is contained within
the area of x;. This signifies that x; can recognise a large proportion of antigens that can

be recognised by x,.

A direct consequence of the above association is that an antigen that lies in the
intersection area between x; and x, will be eradicated by x;, thereby leaving x, with a
smaller time window in which to develop memory cells (see the clonal selection theory in
section 3.2.1). In fact, a situation could arise whereby x, does not produce any memory
cells at all. This concept is known as antigenic sin, which many researchers regard as the
sole reason for vaccines possibly interfering with one another and thus being counter
effective [79].

The extent to which antigenic sin applies to an AIS algorithm depends on a number of
factors:
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=  The mechanisms employed by the AIS algorithm, in other words whether or not
the algorithm has a clonal selection component.

= The degree of parallelism for which the algorithm caters.
= The distributed nature of the algorithm.

= The degree of competition between artificial lymphocytes, that is, whether each
lymphocyte is given an equal opportunity to undergo the clonal selection
process.

Similar to the algorithm presented in Figure 12, an algorithm is presented by this thesis in
Figure 15 which provides an estimate of the average amount of overfitting exhibited by
an AlS algorithm A’ over a data set N .

Both overfitting and generalisation within the AIS domain occur because of the
associative nature of immunological memory. Overfitting and generalisation within AIS
algorithms are very difficult to avoid entirely, although a number of AIS algorithms,
especially network-based algorithms such as the AINET algorithm [18], have built-in

mechanisms to address overfitting and generalisation.
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Given a particular AIS algorithm A"and a Ng comprising non-self vectors, the average

overfitting exhibited by A’ over N can be estimated using the following algorithm:
Randomly partition N into two disjoint subsets Drp4;v and Drgsr such that

Ng = Drpain U Drgst Where |Drpapy | = 0.7 « [Ng|and |Drgsy | = 0.3 * [N|
Train A" using Drpain;

Let C be a set of artificial lymphocytes generated as an output of A’;

Let o (a measure of the average overfitting of an AlS algorithm) = 0;

Let Y, be set of antigens detected by an artificial lymphocyte x; where x. e C and

Y= {yi € N5|fHD(xl-, yl.) = true};
for each artificial lymphocyte x; € C do
Let o; (the number of non-self patterns overfitted by x;) := [Y[;
for each artificial lymphocyte x; € C where j # i andj > i do
Y, =Y, —(Y;nY));
end
if |Y;|>0 then
0; = 0; — |Yl;
end
end

Once o; has been calculated for each artificial lymphocyte x; € C calculate o using:

— inecoi.
Icl

Pseudocode for estimating the average overfitting exhibited by an AIS algorithm

Figure 15.  Pseudocode for estimation of the average overfitting within an artificial
immune system
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3.6 Conclusion

The biological processes within the NIS bear numerous favourable characteristics, which
artificial immune systems extract and emulate. This, in turn, enables many complex
problems that exist within the natural world to be addressed and resolved through the use
of AIS algorithms. Despite being a fairly young field, a wide variety of different AIS
algorithms is in existence today and has seen a number of successful applications [7, 13,
28, 35, 44, 58, 64, 72, 77, 89]. AIS algorithms have also inspired researchers in other
fields to incorporate immune-system theory into their own research paradigms [7, 73].

This chapter discussed the mathematical foundations on which AlS algorithms are based

by exploring:
= Perelson’s and Oster’s shape-space theory.
= Detection rules used by AlS algorithms.

= AIS performance metrics (it should be noted that the performance methods most
applicable to negative selection theory have been the focal point of this chapter).

= A high-level taxonomy of different AIS algorithms, as well as a brief description
of each AIS algorithm class.

The next chapter provides an in-depth view of negative selection algorithm theory, the
most popular variants of negative selection algorithms, and how researchers reason about

the efficacy of negative selection algorithms.



Chapter 4
The Negative Selection Algorithm

“Any sufficiently advanced technology is indistinguishable from magic.”

- Arthur C. Clarke

This chapter discusses the mechanics of the NSA proposed by Forrest et al. in section
4.1. The original mathematical equations derived by Forrest et al. to quantify the number
of resources required by the NSA to exhibit an acceptable detection rate and failure rate
(see section 3.5.1) is then discussed in section 4.2.1. Next, the short comings of Forrest
et al.’s original algorithm is highlighted followed by a broad overview of approaches
undertaken by several AIS researchers to address the short comings (see sections 4.3 to
4.4). The chapter concludes by discussing a real-valued NSA (see section 4.5).

4.1 Background on Negative Selection and Positive Selection

Immature T-cells are subjected to both a negative and a positive selection process before
being released into the blood stream (refer to section 2.4.2). The NSA was inspired by the
negative selection process occurring within the NIS and is conceptually illustrated in
Figure 16. The main concept behind the NSA is to generate a set of candidate detectors,

C, such that vx; € C and vz, € S fyarcu(X;, Z,) < r [33].

o1
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Select a
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Figure 16.  High-level overview of the negative selection algorithm

Pseudocode for Forrest’s NSA is given in Figure 17.

52

Let counter, n., be the number of self-tolerant artificial lymphocytes to train;
Let C be an empty set of self-tolerant ALCs.
Create a training set, Drra;y, comprised of self patterns;
while |C| # n, do
Randomly generate an ALC, x;.
matched := false;
for each self pattern, z,, € Drpy;y do

if f47cy (X0 Zp) is greater than the affinity threshold r then

matched:= true;
break;

end
end
if matched = false then
Add X; to C,
end
end

Figure 17.  Negative selection algorithm pseudocode
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Forrest et al.’s original NSA uses a single global affinity threshold, r, in conjunction with
the RCBITS matching rule for each individual ALC [33] within the population of
ALCs, C. The affinity threshold is determined through a process of trial and error,
whereby the threshold yielding the best system performance is chosen as the target
affinity threshold. A general framework to aid in choosing an optimum value for r in

conjunction with the RCBITS rule was provided by Timmis et al. [4], as follows:

= Create a self training test, Dyg4;y, and a self test set, Drgsr, from a set of self-

StringS S SUCh that S - DTRAIN U DTEST-

= Generate the required number of detectors, n, (the exact value for n, is
determined mathematically: see section 4.2), for each possible value of r =
1,r =2,..,r =n, wheren is the dimensionality of each ALC. Take note that
n, signifies the total number of random detectors that would need to be
generated by the NSA in order to create n. self-tolerant detectors.

= Run the NSA using Drg4yy, and test the resultant population of generated ALCs,
C, using Drgsr to obtain the values for FP, FN,TP and TN.

= Once a test has been executed for each individual value of r, use the value for r
that yielded the highest TP and TN rate whilst maintaining an acceptable FP and
FN rate.

An equally viable alternative to negative selection is positive selection, which can be
viewed as the inverse of negative selection. In positive selection, detectors that are not
self-reactive are eliminated. A minimal amount of work has been conducted on the merits
of positive selection as opposed to negative selection. A formal framework to address this
issue has been developed by Esponda et al. [29]. The framework analyses the tradeoffs
between positive and negative selection with regard to the number of detectors needed to
achieve a certain coverage of a problem space V. In comparing the two detection schemes
within a particular problem domain, the framework considers:

= The matching rules used by the algorithms (refer to section 4.2).

= The generalisation properties induced by negative and positive selection

algorithms (refer to section 3.5.2).
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= The redundancy properties induced by both negative and positive selection
algorithms. In this thesis, the terms redundancy and overfitting mean the same
thing and can be used interchangeably (refer to section 3.5.3).

= Diversity (the variance between detectors) within positive and negative selection
algorithms (refer to section 3.4.2.7).

The work in this thesis concentrates on negative selection, since negative selection
employs similar mechanisms to positive selection, and examines and builds on each facet

of the framework created by Esponda et al [29].

4.2 Effect of Matching Functions

One of the notable advantages of the NSA over many of the other AIS algorithms is that,
besides being theoretically simple, the NSA allows any matching function to be
employed (although this statement is true for a large majority of AIS algorithms it is not
true for all AIS algorithms, as discussed in section 4.3). Different matching functions,
however, induce different detection regions for each ALC, x; € C, and thus have a direct
influence on the performance of the NSA (when the performance of the NSA is assessed
using the metrics defined in section 3.5).

This section discusses two of the most prominent analyses performed by several AIS
researchers on how matching functions influence the performance of the NSA. The
original analysis performed by Forrest et al. [33], which is rooted in probability theory, is
discussed in section 4.2.1. An alternative analysis performed Gonzélez et al. [38], which
employs a simple technique to visualize the shape space generated by the NSA utilising a
particular matching rule, is then discussed in section 4.2.2.

4.2.1 Analysis of the NSA and RCBITS Rule performed by Forrest et al.

When the NSA was first introduced by Forrest et al. [33], the RCBITS rule was utilised
due to its simplicity and the ease at which it lends itself to mathematical analysis. Noting
that the NSA is probabilistic, Forrest et al. [33] derived five equations that can be used to

determine how many self tolerant detectors, n., need to be generated by the NSA in order
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to protect a set of self strings, S, with a certain failure probability, P;. Each of these
equations are presented below (see equations 4.3 to 4.7). The equations derived by
Forrest et al. are based on the probability, P, , that two random strings match in at least
positions, which was defined by Percus et al. [67, 68] as:

—r (n - 1") (nalph - 1) (41)

nalph +1

PM ~ Nalph

where ng,, is the number of symbols contained within the alphabet of the strings (for
example for a binary string n,,, is 2) and n is the length of a string. It should be noted
that this approximation is only good if n,;,, « 1. If this constraint is not satisfied, then
the exact equation must be used [45, 72]. Equation (4.1) exhibits two characteristics:
there is a linear increase in Py as n increases, and there is an exponential decrease in Py,

as r increases.

Similar to equation (4.1), Wierzchon [87] derived an equation to calculate the probability
that two random binary strings have a hamming distance of r i.e. this equation can be
used if the HD rule is employed with the NSA:

= (4.2)

It should be noted that equation (4.2) is presented merely for purposes of completeness
and that equations (4.3) to (4.7) assume that P, is calculated using equation (4.1).

The probability of a random string/ALC not matching any self-strings within S is given

by Forrest et al. [33] as:
PS = (1 - PM)|5| (43)

The probability that n. self-tolerant detectors fail to detect an antigen is given by Forrest
et al. [33] as:

Pr=(1—Py)" (4.4)
where n, is equal to the number of self-tolerant ALCs to train.

If Py, is small and n. is large, then,
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Pf ~ e_PMlsl (45)

The number of self-tolerant detectors, n., needed to attain a certain failure probability,

P, and matching probability, Py, is given by Forrest et al. [33] as :

c PM
The number of initial ALCs, n,, before censoring (i.e. applying the NSA to the detectors
to verify whether any of them are not self-tolerant), needed to generate n. detectors is
given by Forrest et al. [33] as:

“n (P) (4.7)

S P = Pyl

A number of reasons are given by Forrest et al. [33] to illustrate why the NSA is
desirable, namely:

= The performance of the algorithm is tuneable in the sense that a desired P, can
be selected and both n, and n, can be determined as a function of |S|. The
implication of this is that it is possible to determine the exact number of
detectors, n., needed to protect a particular set of self-strings, S, without having
to guess suitable values for these parameters through a trial and error process.
Furthermore, the maximum number of random strings, n,, which need to be
generated in order to create n. self-tolerant detectors can also be determined

upfront.

» The size of the detector set does not grow if both Py and P, are fixed. The
implication of this is that a set of n. self-tolerant detectors only needs to be
generated once if the problem space remains constant (i.e. the definition of self

and non-self does not change).

= There is an exponential increase in the detection probability as the number of
independent NSAs increases.
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= Detection is symmetric, implying that the same amount of protection afforded to
self by the detector set is afforded to the detector set by self, because changes to
both self and the detector set utilise an identical matching function.

One of the major disadvantages of the NSA is that if Py, Py, andn.are fixed, then an
exponential increase in n, can be observed. Forrest et al. state that this can also be
viewed in a positive light, in the sense that if such a set of n. detectors were generated by
a supercomputer, then it is highly unlikely that a change to self would go undetected [33].

Interestingly, based on a study of the suitability of the NSA for network intrusion
detection, Kim and Bentley [55] cited this factor as a primary reason for the NSA having
failed to perform effectively. Due to the NSA suffering from a severe scaling problem
Kim and Bently concluded that the NSA should rather be used as a filter for invalid
detectors and not for the generation of detectors.

Although the approach provided by Forrest et al. [33] works well in predicting the
behaviour of the NSA with the RCBITS rule, it is not a trivial matter to define
mathematical equations to predict the Py, Ps, n. and n, associated with a particular
matching function employed within the NSA. Gonzélez et al. [38] defined a much
simpler methodology to study the efficacy of various detection rules within the context of
the NSA, as discussed in section 4.2.2.

4.2.2 Visualisation of the Shape Space Generated by a Matching Rule

The method proposed by Gonzélez et al. attempts to visualise the shape space defined by
Perelson and Oster [69]. In terms of Perelson and Oster’s shape-space theory, ALCs
should be distributed throughout the entire shape space such that the detection region of
each ALC is able to detect a number of structurally similar antigen [69]. The shape space,
however, is rarely two-dimensional and, consequently, the process of distributing ALCs
throughout the shape space is not a trivial process. If, however, a mechanism existed to
map an n-dimensional problem space to 2 dimensions it would be much easier to

distribute the ALCs in a more effective manner.
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There are fortunately a number of algorithms that can be used to map multidimensional
data to a lower dimensionality [63, 74, 83]. For example, Sammon’s mapping attempts to
preserve inter-pattern distances by minimising an error criterion that differentiates
between distances amid points in the original data set and distances amid points in the
new data set. By preserving the distance between points in the original data set and the
distance between points in the new data set, the algorithm preserves the
topology/dynamics of the original shape space [75]. With regard to AIS algorithms,
Sammon’s mapping holds the following two disadvantages:

= Sammon’s algorithm is computationally expensive.

= The resultant mapping rendered by Sammon’s mapping will be intuitive only for

distance-based detection rules, such as the HD rule.

Gonzélez et al. [38] developed a much more elegant and computationally inexpensive
way to visualise Perelson and Oster’s shape space, as defined below:

Any point (x,y) taken from a problem space corresponding to the domain [0.0,1.0]? can
be mapped to a binary string, bo,b;...b7,bs,bg..b15 0f length 16 where the first eight bits
encode the integer value [255.x + 0.5] and the last eight bits encode the integer value
[255.y + 0.5]

As an example of how the mapping can be applied, Gonzélez et al. [38] considered a
single detector, 1000000010000000, and generated the areas covered by the detector

using:
= The RCBITS rule, with r = 4 (leftmost image in Figure 18).
= The RCHK rule, with x; = 0011 and w = 7 (central image in Figure 18).
= The HD rule, with r = 8 (rightmost image in Figure 18).

The grey areas in Figure 18 represent areas covered by the detector, 1000000010000000,
similarly the white areas in Figure 18 represent areas not covered by the detector. The
mapping defined by Gonzalez et al. [38] can thus be used to graphically view the amount
of the shape space covered by one or more detectors employing a particular detection

rule.
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Figure 18.  Areas covered by a detector 1000000010000000 (this image was taken
from [75])

An interesting point noted by Gonzélez et al. [38] was that the relation between the
detector and the proximity of the detector’s related detection region was not congruent
with the natural proximity relation in a real-valued two-dimensional space, making it
difficult to achieve an optimal distribution of a set of detectors. By using the mapping to
study the results of binary matching rules with regard to different training sets, Gonzalez
et al. [38] drew the following conclusions:

= The binary matching rules studied, namely, RCBITS, RCHK, and HD, cannot
produce a good generalisation of the self-space, resulting in poor coverage of the
non-self space. The reason that the binary matching rules do not produce a good
generalisation of the self-space is that they are not able to accurately capture the
affinity relation employed in the real space within the self/non-self (binary
space).

= The matching rule used by NSA needs to be chosen in such a way that the
affinity relationship between points in the problem space is preserved when the
relationship is transposed to the self/non-self space.

This section discussed how the effect of matching functions on performance of the NSA,
introduced by Forrest et al. [33], can be studied both mathematically (section 4.2.1) and
visually (section 4.2.2). The next section discusses several hybrid detector-generating
techniques introduced by AIS researchers to overcome the severe scaling problem
exhibited by the NSA.
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4.3 Alternative Detector-generating Techniques
A number of issues inherent to the original NSA were noted by Timmis et al. [4], namely

= |t is time consuming to generate a large number of candidate detectors and
examine each individual candidate detector to determine whether or not it is self
reactive (activated by a self string) and whether or not the detector can be added

to the repertoire of detectors, C.

= The number of detectors required to afford a relatively satisfactory protection
level increases exponentially as the size of the self-set increases if the failure
probability is fixed. This sentiment has been echoed by Kim and Bentley [55].
This problem is exacerbated when the length of the binary detectors increases.

= No process is incorporated to ensure that there is no redundancy. This has a
direct consequence on the overfitting and generalisation behaviour of C,

especially because of n. being fixed.

Several variations of the NSA have come into existence in an attempt to minimise some
of the issues mentioned above. Each of the alternative NSAs mentioned below have a
major disadvantage, being that the only detection rule that can be employed by these
algorithms is the RCBITS detection rule. This section discusses some of the most popular
variations of the NSA starting with the linear time detector-generating algorithm in
section 4.3.1, followed by the greedy detector-generating algorithm in section 4.3.2, an
algorithm based on the discriminative power of a detector in section 4.3.3, and the
NSMutate algorithm in section 4.4.

4.3.1 Linear Time Detector-generating Algorithm

The linear time detector-generating algorithm developed by D’haeseleer et al. [11]
obtained its name from the fact the algorithm executes in linear time with respect to the
size of the input, |S|, where n, the length of an ALC, and r, the affinity threshold, are

constant. D’haeseleer et al. [11] used the following terminology within the algorithm.
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The algorithm consists of two distinct phases. Phase 1 is concerned with solving a

counting recurrence, whereas phase 2 generates the actual detector strings.

Let s a binary string of length n, for example, 10111.
Let s denote a string without its leftmost bit, for the above example, s = 0111.
Let S denote a string without its rightmost bit, for the above example, s = 1011.

Let s. b, where b € {0,1} denote a binary string with b appended to the end of the string.
For the above example, if b = 0, thens.b = 101110.

Let b.s, where b € {0,1} denotes a binary string with b appended to the beginning of the
string. For the above example, if b = 0, then b.s = 010111.

A template of order r is a string of length n consisting of n —r blank symbols. A
template is specified by using the symbol, t;,,, where w denotes a string composed of r

bits and i denotes the starting position of the w bits.
A right completion is a string s, such that all the right blanks are replaced by valid bits.
A left completion is a string s, such that all the left blanks are replaced by valid bits.

Let S, be a set of all possible binary strings of lengthr. S, can easily be calculated by

constructing a truth table of all binary strings of length r.

Let M;[s] be the number of right completions of ¢;,, unmatched by any string within the
self-set S where the rows of M are equal to all of possible binary strings of length r, and

the columns of M are equal to all possible positions of t;,,; n — r + 1 in total.

Figure 19.  Terminology used by the linear time detector-generating algorithm

Phase 1: Counting a recurrence relation

Pseudocode for phase 1 is given in Figure 20. Figure 21 illustrates how M is created and
initialised using phase 1 of the linear time detector-generating algorithm on a finite set, S,
of self strings. Figure 21 shows two tables: the table on the left, S, is comprised of the
entire self-set of strings and the table on the right represents the matrix, M;[s].
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Create a matrix, M, such that the rows of the matrix are equal to all possible bit patterns
of size r and the columns of the matrix are set to all of the valid window positions for the

bit patterns, n —r + 1 in total;
The matrix is initialised as follows:
for each template t;,, € S, do
fori=n—r+1toldo

if 3s€S:t;,, matches s then

M;[s] := 0;
else
M;[s] =1;
end

for each string t;,, where 1 <i < (n—r+ 1) do
if 3s € S:t;,, matches s then
M;[s] := 0;
else
Update M;[s] using the following recurrence relation: M;,[s.0] + M;,,[s. 1];
end
end
end

end

Figure 20.  Pseudocode for phase 1 of the linear time detector-generating algorithm

In Figure 21, r = 3, and the S, column was generated by constructing a truth table for all

binary strings of length 3. Each row of the S, column corresponds to a window, w, or r
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bits. Each row within a particular column ¢;,, of the M;[s] table represents the number of

right completions t;,, unmatched by any string within the self-set, S.

S ST tl,w t2,w t3,w t4,w
001110 000 0 0 0 1
001101 001 0 0 2 0
001111 010 0 3 0 1
010001 011 0 0 0 1
010101 100 0 0 1 0
011100 101 3 0 2 0
011111 110 0 3 0 0
100001 111 3 0 0 0
110001

110100

Figure 21.  Application of phase 1 of the linear time detector-generating algorithm

Phase 2: Generation of strings unmatched by S

Once the recursive process has been completed for M,,_,,1[.] to My[.], each cell within
M denotes the number of unmatched bit strings starting with the r bit pattern. It should be
noted that “.” is merely a placeholder representing any string s € S. The matrix Mq[.] is
in effect a partitioning of the space of unmatched strings in M4[.] for each initial string

beginning with the bit pattern specified by “.”.

Each subsequent column from M,[.] to M,,_,,4[.] can then be viewed as a further
partitioning of the space. Following this reasoning the total number of detector strings
that are unmatched by a particular bit string s is given by

T = Yses, My [s] (4.9)

Pseudocode for phase 2 of the linear time detector-generating algorithm is given in Figure
22.
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A random detector, x;,, can be created as follows:

Construct S, so that S, is equal to all possible binary strings of length r;
Calculate T = Y s M;[s];

Randomly select a number, k € {1, ..., T};

Find a string s; suchthat P, = Y., M;[s] <k < Q1 = ¥, M, [s];
Set the first r bits of x;, equal to s;;

fori=1ton—r+1do
if k falls in the partition (P;, P; + M;,[S;.0]] then
b = 101;

X = Xp.b;
else if k falls in the partition (P; + M;,4[S;.0], @;], then
b:="1"
X = Xp.b;
end
if b =0 then
Piy1 =Py
Qiy1 = Qi + My4[5:.0];

end
else if b = 1 then
Piyq =P+ M;4][5.0];

Qis1 = Qy;

end
end

Figure 22.  Pseudocode for phase 2 of the linear time detector-generating algorithm
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To illustrate how a detector is generated by phase 2, consider Figure 23 (note that Figure
23 was generated using the information from Figure 21). The following notation is used
in Figure 23 to represent a window: <window> (<number of self-binary strings s
matched by the window>,{<implicit detector numbers detected by the window>}, where

“<” and “>” are placeholders.

4
2 011(1,{4))

2 101(2,{4,5})<
1: 11034560 010(1,{5})

111(3,{4,5.6)) f
111(0,)) 001(0.{})
100(1,{6})<

000(L,{6}))

Figure 23. Implicit portioning used by phase 2 of the linear time detector-generating
algorithm

Detector 4, in Figure 23, can be generated by tracing a route from the root of the tree to
the leaf that detects detector 4. The resultant detector is created by constructing a string
comprising of the first  bits of the root, followed by the last bit of each node visited
along the path traced from the root node to the leaf node, which detects detector 4. That
is, detector 4, 111011, is constructed by taking 111, the first r bits of the root, and the last

bit from nodes: 2, 3 and 5 respectively.

4.3.2 Greedy Detector-generating Algorithm

The greedy detector-generator algorithm of D’haeseleer et al. [11] aims to spread
detectors as far apart as possible to achieve maximal coverage of the problem space. The
greedy detector-generating algorithm is similar to the linear time detector-generating

algorithm in that it consists of two phases. The greedy detector-generating algorithm
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creates two matrices, Dg and D¢, based on a set of self-strings, S, and a set of detectors,

C, respectively. The process followed to create a D matrix is given in Figure 24.

Create a matrix M such that the rows of the matrix are equal to all possible bit patterns of
size r and the columns of the matrix are set to all of the valid window positions for the bit

patterns, n — r + 1 in total,

Create a matrix M’ equal to M (the M’ represents the number of non-matching left
completions for a template ¢; ;).

Populate M using the algorithm in Figure 20;
Populate M’ using the algorithm in Figure 20 (Note that the recurrence relation:
M, {[s.0] + M, 4[s. 1] in Figure 20 must be replaced with: M;_{[0. §] +M;_;[1. 5]

Create an empty matrix D structurally similar to M (each entry, D;[s], represents the
number of unmatched fully specified bit strings corresponding to the template represented

by i);

Populate D using D;[s] = M;[s] x M;[s] ;

Figure 24. Pseudocode for generating a D matrix

Pseudocode for phase 1 of the greedy detector-generating algorithm is given in Figure 26.

Construct an empty matrix Dg based on S (the M and M’ matrices in the algorithm in
Figure 24 are constructed by using S);

Populate Dg using the algorithm in Figure 24;

Construct an empty matrix D¢ based on C (the M and M’ matrices in the algorithm in

Figure 24 are constructed by using C);

Populate D¢ using the algorithm in Figure 24;

Figure 25.  Pseudocode for phase 1 of the greedy detector-generating algorithm

Once the D matrices have been created, detectors are generated according to the

algorithm given in Figure 26 to achieve maximal coverage.
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for each detector to be generated do

begin
Select the largest entry in D¢ (if there is a tie between entries, an entry is selected at
randomy;
Starting at this entry/template, transverse the row, D¢, corresponding to the selected
entry, from both the left and the right; O or 1 is added to the template each time
depending on which template contains the highest number of unmatched strings (note
that a template may be selected only if it is a valid detector template, that is, if it
contains a 0 entry in the arrayDyg);

Add the generated detector to C;
Update matrix D¢ by:
Setting the entries that match the newly generated detector in the M and M’ matrices
used to construct D¢ to 0.
Re-generate D¢ by executing the portion of the algorithm given in Figure 24 that
generates the D¢ matrix;
end

Figure 26.  Pseudocode for phase 2 of the greedy detector-generating algorithm

The linear time detector-generating algorithm and the greedy detector-generating
algorithm were studied by D’haeseleer et al. [11] under a number of different conditions,

with the following conclusions being drawn:

= Large alphabet sizes, m, make it increasingly difficult to choose an optimal

value for the affinity threshold, r.

= Large values of n and r increase the computational complexity of both the linear

time detector-generating algorithm and the greedy detector-generation algorithm.

= To minimise the number of holes produced by both algorithms, » must be chosen
such that |S| < 2".
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= A lower bound on the number of detectors that need to be generated by the linear
time detector-generating algorithm is given by equation (4.6). Interestingly, the
lower bound defined for the number of detectors needed by the greedy detector-

generating algorithm is defined by N, > 1;—;7. An in-depth theoretical analysis of

the linear time detector-generating algorithm and the greedy detector-generating
algorithm can be found in [12].

4.3.3 Discriminative Power of a Detector under the RCBITS Rule

Wierzchon [87] defines the discriminative power of a detector as the number of unique
strings detected by a detector using the RCBITS rule. The discriminative power of a
detector can be found by counting the number of unique strings recognised by each, t;,,,
induced by a detector, x. As an example, consider the detector 001101 and let » = 3.The
detector induces the following templates:

t1001 = 001 #xx, €5 9117 =+ 011 #x, £3 170 =+** 110 *, and Uy101 =*** 101.The first template,

n—r

1001 = 001 **x, recognises 2" unique strings. The second template, t; 017 =* 011 *x,
matches strings s; = 0011 ++ and s, = 1011 *«. However, s; is also recognised by

t1001. Hence the total number of strings recognised by t; 417 is halved.

Following this reasoning, Wierzchon [87] found that the discriminative power of a
receptor is equal to:

2m 2+n-r) (4.10)

Two additional characteristics affecting the discriminative power of a detector are the
number of holes induced by the RCBITS rule and the number of detectors that cannot be
produced because they would be self-reactive. Wierzchon created two algorithms to
calculate each measure. These are discussed in sections 4.3.3.1 and 4.3.3.2 respectively.
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4.3.3.1 Counting the Number of Holes in a Self-set

The RCBITS rule induces a number of holes (see section 3.4.2.4). Wierzchon [87]
created an algorithm to count the maximum number of holes that can exist within a self-
set, S, by dividing S into two subsets:

Sysetf - A set of all windows/templates matching at least one self-string, s € S.

Sinonsets: A set of all windows or templates that do not match a single string, s €
S. Note that candidate detectors are constructed from S

rnonself *

Using S a graph, G, is constructed using the algorithm in Figure 27.

Create an empty graph G;
for each string s € S50 dO
Add each distinct template, ¢, ,,, induced by s to level 1 of G;
end
fori=1to(n—r) do
for every t;,, at level i do
Create a left child for ¢;,, as t;+1 wo;
if tiyiwo € G then
Add t; 414010 G;
end
Create a right child for ¢;,,as t;+1w.1;
if tit1w1 € G then
Add t;y14110G;
end
Create an edge between t;,, and ¢;41 w.0;
Create an edge between ¢;,,and t;11.1;
end
end

Figure 27.  Pseudocode for creating a graph of all possible templates induced by a
self-set S
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Figure 28 shows an example of the algorithm presented in Figure 27 applied to the binary
string 001101.

0071 ***
*010** *011%**
**100* **101* **110* **111*

AN ANV ANN AN

Figure 28. A binary tree constructed for 001101

The number of self-strings induced by S, can be found by counting the number of
distinct paths from each root in G to each leaf. The number of holes in S is then equal to

|S1, i.e. the number of strings induced by S,.;f.

4.3.3.2 “FindIneffective” Procedure

Owing to the distribution of self-strings within the problem space, a situation can arise in
which a valid detector cannot be constructed from a root template chosen from S;.,,5e1
because all the leafs of the template belong to self. To illustrate this, consider the set of

self-strings,
$=4{001110,001101,001111,010001,010101,011100,011111,100001,110100}.

Using the algorithm in Figure 27 for the binary template, t1 1000 € Synonserr, 0 CONstruct a
tree, Figure 29 shows paths that will generate valid detectors (using solid edges) and

invalid paths (using dashed lines).

An algorithm, called the FindIneffective algorithm, which uses S to determine

rnonself
which binary templates t1,, € S,nonserr Cannot be used to generate valid detectors was

developed Wierzchon [87]. The FindIneffective procedure is outlined in Figure 30.
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*000** *001**
**000* **001* **010* **011*

A AT AN

*kX000  F**¥Q01  *FF*0L0 ***011  *FF*100 ***101  ***110 ***111

Figure 29.  Binary tree constructed for the non-self template t; o0

foreach t;,, € S;sr do

Check the parent t;_ ,, of ¢; ,;

if the parent t;_1,, & S,sef, but its children are members of S,...;r then
add t;_1 10 Syseif;
remove t;_i, from S,,,pseif;

end

Check the children t; 1 ,, of ¢;,,;

ifachild t;1, & S,sf, but both its parents are € S,...;¢ then
add t;11,5 t0 Sy
remove t; 1, from S, onseif;

end

end

Figure 30.  FindIneffective procedure




CHAPTER 4. THE NEGATIVE SELECTION ALGORITHM 72

Wierzchon’s methods [88] can be combined to generate a set of detectors which

maximises the discriminative power of a receptor.

4.4 Negative Selection with Mutation Algorithm

The objective of the negative selection with mutation algorithm (NSMutate) proposed by
De Castro and Timmis [23], is to increase the speed at which the NSA converges on a set
of detectors through the introduction of a mutation step (recall from section 4.2.1 that if
Py  P¢, and n. are fixed, then there is an exponential increase in n,.). The algorithm
mutates self-reactive detectors for several iterations until they are no longer activated by
any s € S. Each candidate detector has a detector lifetime indicator determining the
number of mutation attempts that can be made before the detector is finally discarded.
Pseudocode for the algorithm is given in Figure 31.

The mutation is adaptive and is proportional to the affinity between the candidate detector
and the matching self-element. The higher the affinity (between the detector and the self-
element) is, the more the detector is mutated and, similarly, the lower the affinity is, the
less the detector is mutated. This allows the detector to take larger or smaller jumps
within the search space, depending on the fitness of the detector. The mutation

probability can be calculated by using
_ fuarcy (X, 2) (4.11)
Pmutate =1-—FF=
fuaxX)
where x is a detector, z is a self string/vector, fy,4x (X)is the maximum affinity of x, and
fuarcu (X, Z) represents any matching function (for example the RCBITS rule). The

mutation step can be performed using a random mutation algorithm as summarised in

Figure 32 or an inorder mutation algorithm as summarised in Figure 33.
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Let counter n. be the number of self-tolerant artificial lymphocytes to train;
Let C be an empty set of self-tolerant ALCs;
Let mutationSteps be the number of times that a self-tolerant detector is mutated;
Create a training set Dy 4;y CONsisting of self-patterns;
while |C| # n, do
Randomly generate an ALC, x;-
matched := false;
foreachp € {1, ..., |Dygan|} do
if fyarc (Xi,Z,) is greater than the affinity threshold r then
matched:= true;
for i =1 to mutationSteps do
Mutate x;;
if Vz; €{1,..,p}: fuarcu(Xi2;) <7 then
break;
end
end
end
if matched = false then

Add X; to C,
end
end

Figure 31.  Pseudocode for the NSMutate algorithm

Let x;; be the j* element of a detector x; = (x4, %, ..., X))
Let U(0,1) be a uniform random number between 0 and 1;
for j =1 ton do

if U(0,1) < Putace then

X Ix;;, where ! denotes the Boolean NOT operator;

ij =
end

end

Figure 32.  Random mutation algorithm for a binary string
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Select mutation points, &,,&,~U(1, ...,n);
forj = & toé&, do
if U(0,1) < Putace then
X;j =Xy,
end

end

Figure 33. Inorder mutation algorithm of a binary string

The fact that the time complexity of the NSMutate algorithm degrades as P, cqce
becomes larger was noted by De Castro et al. [23]. An additional restriction is also
imposed on the algorithm by using a binary alphabet, i.e. if P, ;qre = 1.0 then each
mutation performed on a particular detector will merely flip the detector to its inverse and
back. It was also found by De Castro et al. [23] that the time complexity of the algorithm
increased as a detector’s life-time indicator increases. The benefit of the NSMutate
algorithm is that it reduces the number of candidate detectors generated when it is
computationally more expensive to generate a detector than to mutate a detector.

In their analysis of the NSMutate algorithm, Ayara et al. [4] came to the following

conclusions:

= The number of candidate detectors increases exponentially as the size of the self-

set increases.

= If the self-set is randomly distributed within the search space, there is an equal
probability of the random detector mutating either towards or away from the
self-set. This results in the performance of the NSMutate algorithm being
equivalent to the original NSA.

= The NSMutate algorithm is more tuneable than the NSA, and good performance
can be obtained by tuning the algorithm’s parameters for a specific data set.

The algorithms discussed thus far include the original NSA by Forrest et al. and some of

its variants.
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Although these algorithms are quite different from each other, the problem space in
which they reside is the same; that is, binary representations are used for both self and
non-self strings. The next section briefly discusses the real-valued negative selection
algorithm.

4.5 Real-valued Negative Selection Algorithm

The original NSA was developed for binary spaces and performs very well if the problem
space is categorised. However, the NSA does not perform well when a real-valued
problem is mapped to a binary space. The primary reason for this deficiency is that the
relation between the detector and the proximity of the detector’s detection region is not
congruent with the natural proximity relation in the real-valued space [75]. The real-
valued NSA was informally proposed by Ebner et al. [25], but Gonzalez et al. were the
first to apply the real-valued NSA [80, 82].

Each detector is represented as a hyper-sphere in an n-dimensional real-valued space,
where the centre of the hyper-sphere is indicated by the coordinates of x and the radius of
the hyper-sphere is indicated by r, the affinity threshold. The affinity-matching function
between a detector x and an antigen y is represented by the Euclidean distance, where x

matches y if the Euclidean distance between x and y is less than r.

The algorithm generates detectors in the same manner as the original NSA presented in
Figure 17, except that each detector is randomly generated within [1,0]" and
fevcripean (W, m) is used to determine the Euclidean distance between x and y. An
alternative real-valued NSA, the V-detector algorithm, which generates variable size
detectors, was developed by Ji and Dasgupta [53]. For a detector x € C, the radius r of x
is decided by the Euclidean distance to the closest self-sample by the V-detector

algorithm.
Pseudocode for the V-detector algorithm is given in Figure 34.

Ji and Dasgupta [53] showed that if the number of detectors, n., remained constant, then
the V-detector algorithm has the same complexity as the real-valued NSA. The
experiments performed by Ji and Dasgupta [53] concluded that the V-detector algorithm
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has a much better DR and FR rate (see section 3.5.1) than the real-valued NSA. The
following advantages provided by the V-detector algorithm over the real-valued NSA

were noted:

= The algorithm generates fewer detectors to cover a particular problem space.

= The algorithm is better at covering holes. That is, detectors with smaller affinity
thresholds cover holes, whereas detectors with larger affinity thresholds cover
large regions of the non-self space.

= The coverage estimate, ¢y can be used to predict the algorithm’s performance
because it provides a means to explicitly specify the percentage of the problem
space that must be protected/covered by the resultant set of generated detectors.

When Stibor et al. [81] compared the efficacy of the V-detector algorithm to statistical
anomaly detection techniques (the Parzen-Window and one-class support vector machine
techniques), they discovered a number of interesting facts about the termination
conditions of the V-detector algorithm stated by Ji and Dasgupta [53]. With reference to
the pseudocode of the VV-detector algorithm in Figure 34, two termination conditions are

1 1
orwhenl >

1-msc 1—co

reached when k >

1

= The termination condition k > P is never satisfied, because k will never

have a value greater than 1 which thus invalidates the condition as a termination
condition.

= The probability of [ > % being satisfied is decreased when |S| increases or
—to
when r increases.
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Let ¢, be the estimated coverage (percentage of data points covered) of the problem
space by a set of detectors C;
Let msc be the maximum coverage (percentage of data points covered) of the problem
space by a set of detectors C;

while |C| < n,.do

k=0,
l:=0;
7ﬂtemp = 0,

Randomly generate an ALC, x; € [1, 0]
for eachx; € C do
if fEUCLIDEAN (Xi,xj) < the radius of X;,r1, then

l=1+41;

1

if Il > then

o
return C;
end
end

end
for each self pattern, z,, € Sdo

if fEUCLIDEAN(x; Zp) — 1, <1 then

Ttemp = fEUCLIDEAN (x, Zp) - T
end
if > rythen

Set the affinity threshold r of x; equal to ¢y,

Add X; to C,
end
else
k=k+1;
end

if k>——— then
1-msc

exit the algorithm;

end
end

Figure 34.  Pseudocode for V-detector algorithm
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4.6 Conclusion

The original NSA developed by Forrest et al. [33] was prolific in the sense that it inspired
an acute interest in AIS and is one of the most popular AIS algorithms to date. The
algorithm is conceptually simple and draws from the process of T-cell maturation in the
thymus within the NIS.

The main advantages of the NSA are that self-data are sufficient to train the algorithm,
and the algorithm does not impose a specific detection rule. One of the major pitfalls of
the original algorithm (which used the RCBITS rule) is the severe scaling problem, that
is, when Py, Py andn.are fixed, an exponential increase in n, has been observed. This
effectively translates to a scenario in which a large number of redundant detectors will

need to be created in order to create n. detectors that guarantee acceptable Py and Pr

values.
This chapter provided an in-depth overview of:

= The original NSA, including a mathematical analysis of the properties exhibited
by the original NSA.

= A class of deterministic NSAs (the linear time detector-generating algorithm and
the greedy detector-generating algorithm), which exploit the mathematical
properties induced by the RCBITS rule within a binary shape space.

= Algorithms to examine the discriminative power of a receptor under the RCBITS
rule operating within a binary shape space, in addition to counting the number of
holes induced by the RCBITS rule.

= A version of the NSA that employs a mutation step in an attempt to mutate a
self-reactive detector away from the self-space.

= A means with which to visualise the effect of binary matching rules within the
NSA.

= Adiscussion of how randomly generated permutation masks affect the NSA.
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= A discussion of real-valued NSA, as well as a variant of the real-valued NSA,

called the V-detector algorithm.

The next chapter discusses a new affinity matching function, the feature-detection rule,
which infers relationships between the constituents of an antigen to decide whether the
antigen is matched by a particular detector. The thesis will show that when used as the
affinity matching function of the original NSA, introduced by Forrest et al. [33], the
feature-detection rule yields superior performance over the RCBITS, HD and RCHK
affinity matching functions (see chapter 6).



Chapter 5
The Feature-Detection Rule

“If I have seen further it is by standing on the shoulders of giants.**

- Sir Isaac Newton

The feature-detection rule derives its name from the fact that it infers relationships
between the constituents of an antigen to decide whether the antigen is matched by a
detector.

The feature-detection rule is discussed in section 5.1. The mathematical properties
associated with the feature-detection rule is then discussed in section 5.2. This is followed
by a discussion of the interrelationship between the feature-detection rule and other
affinity-matching functions discussed in this thesis (refer to section 3.4.2). This chapter
concludes with a discussion on positional-bias introduced by the feature-detection rule

and how it is addressed in this thesis.

5.1 Matching under the Feature-detection Rule

The feature-detection rule differs vastly from the RCHK, HD, and RCBITS rules in that it
uses the interrelationships between antigen fragments to decide whether an antigen is
detected by a candidate detector. To illustrate the characteristics of the feature-detection
rule, consider the following fictitious study:

Suppose that an experimental study was carried out on a sample of individuals who had
developed cancer and a sample of individuals who had not developed cancer in their
lifetimes. The purpose of the study was to develop an algorithm that could deduce
whether a person had indeed developed cancer by looking at an instance of the
attributes/characteristics captured by the experimental study. Assume that the study
interviewed each individual within the sample and captured the following data:
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Attribute 1: Does the individual smoke?

= Attribute 2: Does the individual work more than 60 hours per week?

= Attribute 3: Does the individual have a companion?

= Attribute 4: Does the individual drink alcohol more than six times per week?
= Attribute 5: Does the individual take frequent holidays?

= Attribute 6: Does the individual sleep at least eight hours per day?

= Attribute 7: Does the individual eat five portions of fruit and vegetables each

day?
= Attribute 8: Does the individual exercise less than three times per week?

Some of the attributes are relevant to the problem that the algorithm is trying to solve,
whereas others are irrelevant. It is also possible that a group of attributes and the value

that each attribute carries are relevant to the outcome of the problem.

Consider Figure 35, which depicts such a group of attributes and their relative values
(note that each attribute is a binary attribute). Figure 35 represents a particular individual

having cancer if
= the individual smokes,
= the individual drinks alcohol more often than six times per week,
= the individual sleeps less than eight hours per day, and

= the individual does not exercise three times per week.

‘EECELEL

Figure 35.  Overview of the feature-detection rule
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The feature-detection rule refers to the characteristics described in the above example as
features. From the above, the values of features 1, 4, 6 and 8 are relevant to the outcome
of the problem, whereas the values of features 2, 3, 5 and 7 are irrelevant to the outcome
of the problem. If an AIS algorithm were used to generate detectors to determine whether
an individual has cancer, based on the values of the 8 attributes, it would in fact be more
effective to:

= pre-process each self-string, comprised of all 8 features, into a shorter self-string

comprising of features 1, 4, 6, and 8, and

= generate detectors, of length 4, against the pre-processed self-strings by
employing the RCBITS rule.

The above example illustrates the premise upon which the feature-detection rule is based.
The feature-detection rule is applied by:

= pre-processing a string/vector into a shorter string/vector consisting of features
relevant to the outcome of the problem (relevant features can be determined by a
domain expert or by using mathematical techniques such as principle component

analysis) currently under consideration (see the definition for fsg; zcr below); and

= applying the RCBITS rule to the newly generated string/vector (consisting of
relevant features) and a detector, x to determine whether the affinity between x

and the newly generated string/vector is greater than r, the affinity threshold.

The definition of the feature-detection function, frzarure, IS formally stated below:

Let fsgrecr(Wy, p) be a function such that, given a binary vector w; = (wy, w,, ..., w,,)
and a vector of integer positions p = (p1, P2, -, Pns) , Where n’ < n, the function
constructs a vector wy = (W, Wp,, ..., Wpy,) by using the positions stipulated in p. In
other words the feature-detection rule generates a vector w; by selecting elements of w;,
as dictated by p . For example if w; =(1,0,1,0,1) and p =(1,3,5) then
fsereer (W, p) = (L,1,1).

Now consider an antigen, y = (y1,¥2, ...,Y,) (binary vector), a detector x =

(x4, x5, ..., x,,,) (binary vector) and a vector p (integer vector) of dimensionality n’, where



CHAPTER 5. THE FEATURE DETECTION RULE 83

the dimensionality of the problem space/antigen is n, the dimensionality of a detector is
!

n', n’<n and p comprises a subset of feature positions of y, that is, p =

(¥, Yi41, -, ¥;), Where each y; appears only once and i > 1and j < n.

Antigen y and detector x match under the feature-detection rule, frgarure, If

frcairs (X fsereer (7, )) = 7. In other words antigen y and detector x match if there are

r contiguous features.

From Figure 35, consider the example where if

x =(1,1,0,1)

y = (1,0,0,1,0,0,0,1)
p = (1,46,8)

r=2

Then
fresiTs (x, frearure (Y, P))

= fresirs ((1;1;0;1);fFEATURE((1;0;0;1;0;0,0,1), (1,4,6,8)))

= fRCBITS((Ll;O;l); (1,1,0,1))
=4

The following can be stated for the example above assuming that the feature-detection

rule is not used:

= Depending on which features are related and whether they occur in close
proximity to one another, the RCBITS rule would not be a good choice of an
affinity-matching function between y and x. For example, if an exclusive
relationship existed between feature 1 and feature 8, then only one x =
(1,0,0,1,0,0,0,1) with » = 8 would be able to detecty. But such a detector is
too specific to antigen, y, and overfits y (refer to section 3.5.3). The same
applies to the RCHK rule, since the RCHK rule subsumes the RCBITS rule [29].

= The HD rule has the ability to capture the relationship between different features
only if the difference among the features with no relationship between y and x is
less than a particular threshold, ». To illustrate what is meant by this statement,
suppose that there is a relationship between feature 1 and feature 8 and no
relationship between features 2, 3, 4,5, 6 and 7, and that r = 2. The HD rule is
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based upon the number of bits that differ, thus feature 1 and feature 8 must be
equal in both y and x and at most 2 features between feature 4, 5 ,6 and 7 may

not be different.

The next section discusses the matching probability, P,,, induced by the feature-detection

rule.

5.2 Matching Probability and Discriminative Power of the Feature-detection Rule

The discriminative power of the feature-detection rule leverages the concepts described in
section 4.3.3. Consider the following scenario, where

x = (1,1,0,1)

y = (1,0,0,1,0,0,0,1)
y' =(1,4,6,8)

r=3

The total number of strings that can be matched by x can be depicted by constructing two
trees for the two templates induced by x, i.e. t; = 1 *x 1 * Q0 *sxand t, =*xx 1 * 0% 1, as
shown in Figure 36. The total number of strings that can be matched by t; can be
calculated by noting that each “*’ can represent either 0 or 1, meaning that the template
can match 2° strings (this can be confirmed by counting the number of leafs shown in the

trees of Figure 36). The same applies to t,.

If the logic presented above is followed, then theoretically this means that x should
match 25 + 25 = 64 strings. However this is not the case, because the total number of
unique strings that the conjunction of both templates can match is in fact 2° + 2* = 48.
This is because t, can detect only half of the strings that template t, detects (owing to
overlapping strings). The number strings that overlap between templates t; and t, are
given in bold in Figure 36 (at the end of the chapter).

The reason for the reduction in the discriminative power of the detectors is very similar to
the argument presented by Wierzchon [87] (refer to section 4.3.3). That is, t; = 1 #* 1 *

0 ** induces two templates, t;" = 1 #* 1« 0 L and t;' =+x 1% 0 = 0.

Similarly, t, =##x 10 =1 induces two templates, t," = 0% 1% 0 = 1 and
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t,” = 1%+ 1% 0= 1. However, since t; = t,", the number of strings that t, can detect is

effectively halved. This argument can be generalised to any arbitrary detector x.

The probability that a detector, x, matches an antigen, y, can then be calculated by noting
that a detector x of length n’ induces n’ —r + 1 templates. The first template can

recognise 2™~ strings and each subsequent template (n’ — r in total) can recognise only

n—-r

5 strings. There are 2™ strings in total. Therefore,

on-r 4 (n’ — g) 2nr

PM: on

2"+ =) 2n ! (5.1)
= o

To compare the matching probability of the feature-detection rule with the other detection
rules discussed in this thesis (refer to section 3.4.2), the matching probabilities for the
RCBITS and RCHK rules are repeated below.

For the RCBITS rule:

on-r 4 (n—r).2""

— 2
Py = on

2"+ (m—r).2n Tt (5.2)
= n

The matching probability, P,,, of the RCHK rule can easily be calculated by noting that
the length of a detector under the RCHK rule is equal to the affinity threshold, . Thus,

each detector of length » can recognise 2™~ strings.

For the RCHK rule:
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onr (5.3)
PM = Zn

From equations (5.1) and (5.2), the matching probability, P,,, under the feature-detection
rule is greater than P,, under the RCBITS rule if:
2T+ (0 —r).2vl 2T 4 (=) 20
2" > 2"
22T+ (' =) 20T S 2T 4 (p—r). 20T

sn'=r)y>Mmn-r)
“n'>n
Furthermore, from equations (5.1) and (5.3) the matching probability, P,, under the
feature-detection rule is greater than P,, under the RCHK rule if:
20T + (0 —r). 20Tl pner
2n > 2n
&N 4 (nl _ 7,.). Zn—r—l > pn-r
s =r).2m"1 >0
s —=r)>0

an' >r
Interestingly, P,, for the feature-detection rule is calculated in a similar manner to P,, for
the RCBITS rule (see equations (5.1) and (5.2)). The feature-detection rule is therefore
expected to suffer from the same scaling problems as the NSA (from a purely
mathematical viewpoint).
The matching probability, P,,, for the HD rule was given by equation (4.2) (repeated

below for the reader’s convenience),

n

P, = z—nz (’l?) (4.2)

i=r
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From equations (5.1) and (4.2), the matching probability, P,,, under the feature-detection

rule is greater than P,, under the HD rule if:

2"+ (n' = 7). 2nrl r(
27’1. > Zn

It can be shown empirically that for any n < 100000,n" < 10000, < 10000, the
matching probability, P,, under the feature-detection rule is greater than the matching

probability P,, under the HD rule only if the following conditions hold true:

» r=0,andn > 1, resulting in the left hand side of the equation being equal to a

factor of 2™ and the right hand side of the equation being equal to 2™; or

= values of r are sufficiently small enough and values of n'are sufficiently large
enough (being almost equal to n) resulting in the left hand side of the equation

being greater than or equal to 1.0.

Taken note that there is no significance attached to the number 100000, apart from the
fact that it is large enough to cover most of the scenarios under which either the HD rule
or feature-detection rule would ever be applied. A mathematical proof needs to be
generated, so that the statement holds true for any arbitrary number, and is not within the
scope of this thesis.

When the feature-detection rule is applied, a value of n’ should be chosen such that

n > randn' < n, because
= ifn' = r, then the feature-detection rule is equivalent to the RCHK rule; and
= if n' = n, then the feature-detection rule is equivalent to the RCBITS rule.
Ifn" > r and n' < n (which will generally be the case) then:

= Py, under the HD rule will be greater than P,, under the feature-detection rule for
most cases; and
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= Py, under the RCHK rule (the RCHK rule subsumes the RCBITS rule) will be
greater than P,, under the feature-detection rule for all cases.

This effectively means that the probability of a randomly generated detector matching a
self-string under the feature-detection rule is lower than that of a detector using either the
RCHK , RCBITS, or HD rules.

5.3 Placing the Feature-detection Rule into Context

The most common affinity-matching functions used in the NSA, namely, the RCBITS
and the RCHK rules, induce holes, which can be overcome by using a permutation mask
(refer to sections 3.4.2.4 and 3.4.2.7) against an antigen to reorder the bits of the antigen.
Even though permutation masks are a mathematically feasible means of overcoming both
crossover and length-limited holes, major flaws exist in the way in which they are
implemented. Permutation masks are currently implemented by generation of an
individual random permutation mask and application of the individual random
permutation mask to a population of detectors generated under the NSA. A consequence
of the application of permutation masks in this manner is that their benefits are occluded
by what appears to be a shattering of the entire self-space (by randomly changing the
shape of the entire self-space with a randomly generated permutation mask). The
shattering of the self-space attributed to permutation masks by Stibor et al. [80] can be

explained as follows:

= A permutation mask changes the form of a shape space. Using a single random
permutation mask for an entire set of detectors generated under the NSA is
equivalent to taking a wild guess by trying to infer a single and meaningful
alternate representation for the entire problem space. There may in fact be
multiple representations of the problem space that are relevant to the problem at
hand. For example, there may be multiple relationships involving entirely
different subsets of features within a particular problem domain. If the RCBITS
rule and the RCHK rule are considered in the same context as the problem
presented in section 5.1, then two things would immediately become evident: (1)
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the RCBITS rule and RCHK rule can find relationships only between features
that are adjacent, and (2) a random permutation of the problem space will in fact
increase the efficacy of both the RCBITS and the RCHK rule, because the result
of the permutation in respect of the problem space can render two non-adjacent
attributes adjacent. More random permutations are thus equivalent to finding

more relationships between non-adjacent features.

= |t was stated by Stibor et al. [80] that finding a meaningful permutation mask to
apply to an entire set of detectors is computationally expensive and, in fact,
infeasible. Although their statement does hold true, the problem of finding a
meaningful permutation mask can be approached from another angle: Following
the argument presented in the previous point, the RCBITS rule and the RCHK
rule should actually be viewed as affinity-matching functions, which exploit the
relationships that exist between adjacent features. Relationships between non-
adjacent features can be discovered by the application of a random permutation
mask to an individual detector. Following the argument of Stibor et al. [80], the
aim should be to discover several permutation masks based on the conjunction of
the problem space and the features of an individual detector, meaning that the
problem is more computationally expensive than previously thought. Finding a
set of meaningful features, p, to use in the feature-detection rule is equivalent to
finding a meaningful permutation mask to apply to a particular problem domain.
With the only difference being that the length of p, n’, is less than or equal to the
length of an artefact (an antigen, detector or self-string), n, resident within a

particular problem domain.

= The approach used in this thesis, which is surprisingly simple and works
exceptionally well, is to couple the generation of a random permutation mask to
the generation of each individual detector under the NSA. In other words, a
detector is generated together with a random permutation mask and is checked
against the entire self-set to ensure that the detector is not activated by a self-
string before being added to the resultant repertoire of detectors. This means that
the NSA is tasked with learning a permutation mask for each detector being
generated. The same approach is used when utilising the feature-detection rule in
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the NSA, i.e. the generation of meaningful features (features whose values have
an impact on the outcome of the particular problem under consideration) is
coupled to the generation of each individual detector. The NSA is thus
performing feature extraction in addition to ascertaining whether or not a

detector is activated by self.

From the above and equations (5.1) and (5.2) it is evident that if » = n’, then a detector
generated under the feature-detection rule is equivalent to a detector generated under the
RCHK rule (the RCHK rule is used because it subsumes the RCBITS rule [29]) , where
each detector under the RCHK rule has a random permutation mask. But, if n’ > r, then
the discriminative power of a single detector under the feature-detection rule is equal to
n' —r RCHK detectors. The feature-detection rule is computationally less expensive than
the RCHK rule (where each detector has a random permutation mask), because the latter
case needs to generate a random detector and a random permutation mask, as well as to
apply the permutation mask to an antigen, before presenting the antigen to a candidate
ALC. If r < n' then one detector generated under the feature-detection rule is equivalent
to n' —r RCHK detectors. Since the feature-detection rule is equivalent to the RCHK
rule, with each detector having a random permutation mask in the worst case (when
r =n'), it follows that the feature-detection rule cannot induce either length-limited or

crossover holes.

The next section explores how the feature-detection rule introduces positional bias.

5.4 Positional Bias introduced by the Feature-Detection Rule

The feature-detection rule is a more efficient form of the RCBITS rule, in that the
feature-detection rule applies the RCBITS rule to a set of features p of an artefact (which
is an element of the problem domain), as opposed to all of the attributes comprising the
artefact. The RCBITS rule however, introduces positional bias as discussed in this
chapter and by Freitas et al. [36]. To illustrate this, consider the example presented in
Figure 35. Based on Figure 35, the values of features 1, 4, 6 and 8 are relevant to the

outcome of the problem i.e. feature 1 must bear a value of 1, feature 4 must bear a value
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of 1, feature 6 must bear a value of 0 and feature 8 must bear a value of 1. Now if an
affinity threshold of r = 4, is employed by the feature-detection rule and the features are
ordered in the manner presented above i.e. in the order of feature 1, feature 4, feature 6
and feature 8, then it is evident that there is positional bias, because if the features were
selected in a different order, for example in reverse order, then the same detector that
would have matched the features presented in their original sequence i.e. 1101, will not
match the features if they were presented in reverse order 1011.

Now consider how the feature-detection rule is applied within the context of the thesis,
the features together with the resultant detector (each detector has its own set of features)
are generated by employing the NSA i.e. the features are selected randomly against a
randomly generated detector, meaning that regardless of the order in which the features
are presented, the detector will only be activated, under the feature-detection rule, if its
attributes match the re-ordered features. Thus if the feature-detection rule is applied
within the context of the NSA, it does not introduce positional bias.

To illustrate this example, consider the following scenario (with reference to Figure 35)
with two randomly generated detectors: x; = (1,1,0,1) with a position vector, p, =
(1,4,6,8) and x,-(1,0,1,1) with a position vector, p, = (8,6,41), an affinity threshold,

r = 4 and an antigen y = (1,0,0,1,0,0,0,1). Regardless of the fact that both x; and x,
select the same set of features, albeit in a different order, both x; and x, are activated by

antigen y.

5.5 Conclusion

This chapter formally introduced the feature-detection rule and also argued that
permutation masks are not being applied correctly to the NSA, resulting in the pivotal
role that permutation masks play in reducing length-limited and crossover holes (induced
by both the RCHK and RCBITS rule) being misconstrued. The feature-detection rule is
computationally less expensive than both the RCHK rule or the RCBITS rule and has the
following additional interesting properties:

= |fr =n', then the feature-detection rule is equivalent to the RCHK rule (with a
random permutation mask applied to each detector).
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If r <n', then each individual detector under the feature-detection rule is
equivalent to n’ — r RCHK detectors. A value of r < n' should ideally be used
when the feature-detection rule is applied to a particular problem space to benefit
from an increase in the discriminative power. Furthermore, if » < n', then fewer
detectors generated under the feature-detection rule would be needed to cover a
particular problem space, as opposed to detectors generated under the RCHK

rule.

If n = n', then the feature-detection rule is equivalent to the RCBITS rule (with

a random permutation mask applied to each detector).

Due to the fact that the feature-detection rule utilises the RCBITS rule it
introduces positional bias, which in turn is overcome by coupling the coupling
the generation of the feature position vector, p, with each detector generated by
the NSA.

The next chapter, conducts a number of experiments using the feature-detection rule, the

RCHK rule with and without random permutation masks for each detector, and the HD

rule.
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Figure 36. Discriminative power of template 1**1*0** and ***1*0*1 induced by X. Note that the number of overlapping strings is
shown in bold.



Chapter 6
Experimental Results

“Facts are stubborn things, but statistics are more pliable.”

- Mark Twain

The objectives of this chapter are to validate the concepts presented in the previous

chapter by:

demonstrating the efficacy of the feature-detection rule in contrast to the RCHK
rule (with no permutation masks) and the HD rule;

demonstrating the efficacy of the feature-detection rule in contrast to the RCHK
rule (where each detector has a random permutation mask). For the purposes of
this chapter, scenarios in which a random permutation mask was used in
conjunction with the RCHK rule are denoted as RCHK (MHC). Conversely,
scenarios in which MHC masks were not used in conjunction with the RCHK
rule are denoted as RCHK (No MHC);

demonstrating how the application of an individual global MHC mask applied to
a set of already generated detectors impedes the performance of the set of
detectors. This point is important because it will validate the assertion made by
this thesis that MHC masks are being applied incorrectly within the context of
the NSA. For the purpose of this chapter, scenarios in which a global MHC mask
is applied to a pre-generated set of detectors is denoted as RCHK (Single global
MHC); and

demonstrating that the performance (detection rate and false-alarm rate) of the
feature-detection rule is equivalent to the RCHK rule (where each detector has a

random permutation mask) at worst case.
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The procedure used to conduct the experiments and scenarios tested by each experiment
is presented in section 6.1, followed by an empirical analysis of the results produced in
section 6.2. Finally, the conclusions inferred by the experiments are presented in section
6.3.

6.1 Experimental Procedure

An experiment is comprised of five scenarios where a scenario pertains to a particular

high-level objective:
= Training a set of detectors with the NSA utilising the feature-detection rule.
= Training a set of detectors with the NSA utilising the HD rule.

= Training a set of detectors with the NSA utilising the RCHK rule with no
permutation mask, denoted by RCHK (No MHC).

= Training a set of detectors with the NSA utilising the RCHK rule with a single
global permutation mask, denoted by RCHK (Global MHC). Take note that the
test sets within this particular scenario are executed by: firstly generating a set of
detectors and then applying a single global permutation mask to the generated
detector set.

= Training a set of detectors with the NSA utilising the RCHK rule where each
detector has its own randomly generated permutation mask, denoted by RCHK
(MHC).

A scenario is comprised of a number of test groups. Each test group utilises a different set
of parameters (e.g. different values of ) to test the scenario. A test group in turn is
comprised of several tests. Each test is executed with the parameters stipulated by its test
group in addition to using a particular target population size, n.. That is, different tests
have different n. values. The last test executed within a test group has the largest n.
value and is called the target test. The objective of a target test is to measure the
performance of the NSA given a maximum n, value in conjunction with the parameters
pertaining to the target test. Test groups are compared to one another within the same

scenario and across scenarios based on the results achieved by target tests.
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For each test executed within a particular test group, the TP, FP, FN, OC, GC, DR, FR,
n., and the actual population size are recorded. The overfitting count and generalisation
count, OC and GC, respectively, are used to infer the current spread of the detectors and
whether there are too many or too few detectors.

The actual population size is a critical metric used over and above the DR and FR
metrics to quantify the performance of a detection rule within a particular scenario. The
actual population size is the resultant number of detectors produced by the NSA given a
target of n. detectors as input. It is often the case that, given a target n., the NSA can
take an inordinate amount of time to generate n. detectors which are self-tolerant (not
activated by self), depending on the complexity of the data set and the detection rule
used.

In an attempt to minimise the time taken by the NSA to generate a candidate set of
detectors, the implementation of the NSA employed in this thesis attempts to generate n,
detectors at most 1000 = n, times, where after the resultant data set is returned. This
means that if the actual population size is less than n., then it reflects that the NSA failed

to generate n. detectors within an acceptable time frame.

The relationship between experiments, scenarios, test groups and tests are illustrated in
Figure 37.

Data Set

l

Experiment

(FSc?narié) JI. ) Scenario 4 Scenario 5
eature Rule ; Scenario 4
Test Groun 1 S’CL""“;)Z (RCHK Rule (Global (RCHK Rule (MHC))
Tes Group : (HD Rule) Scenario 3 MHC)) Test Group 1
est Group Test Group 1 (RCHK Rule (No MHC)) Test Group 2
Test Group 3 P Test Group 1 TestGroup 1 Test Group 3
Test Group 2 up Test Group 2 P

Test Group 2
TestGroup N Test Group 3 P Test Group 3
estroup P Test Group 3 P Test Group N

Test Group N Test Group N

Test Group N

Figure 37.  Relationship between Experiments, Scenarios and Tests
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Each experiment is performed on its own individual data set. The data sets become
increasingly more complex for each successive experiment performed in this chapter.
The same data sets originally used by Graaff [41] to test the efficacy of an AIS comprised
of evolved detectors, are used by this thesis. The data sets were collected by Graaff from
the UCI Machine Learning Repository and converted to binary strings [2]. The data were
manipulated further by grouping some of the data sets into subsets comprising self and
non-self strings, respectively. The way in which a particular data set is fragmented into a
self and non-self set is explained in each section pertaining to a particular experiment (see
section 6.2).

A training set is created based on the self-data by randomly selecting 70% of the
original self-set. The test set comprises the remaining 30% of the original self-set and a
non-self set associated with the training data. To ensure that the results are statistically
significant, each test within a particular test group is executed 30 times, and the result of
each metric records the mean value of the metric and the standard deviation of the metric
from the mean. Take note that a new test set and training set is randomly created for each

new execution of a test pertaining to a particular test set.

The parameters used to test the NSA within a particular scenario were chosen by
applying the framework suggested by Timmis et al. to choose an optimum affinity
threshold, r, for the NSA under the RCBITS rule [4] (see section 4.1). Due to the
mathematical similarity between the RCHK rule (regardless of how a permutation mask
is applied to a detector or set of detectors) and the feature-detection rule, (see Chapter 5)
the same set of affinity thresholds are used across all of the test groups in scenarios 1, 3, 4
and, 5 (see Figure 37) for each particular experiment.

Conversely, due to the differences in the mechanisms employed by the RCHK
rule/feature-detection rule and the HD rule to determine whether two binary strings are
activated by one another, the same affinity threshold, r, cannot be reused to compare the
performance of the HD rule to either the RCHK rule or the feature-detection rule. Instead,
the performance of the HD rule is optimised (by choosing an optimal r value) and
scenarios are compared to one another within a particular experiment based on each

scenario’s best performing test group. The best performing test group has the greatest
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average DR minus FR value for its target test (the last test executed within the test
group). Take note that the worst performing test group has the lowest average DR minus

FR value for its target test.

To enhance the readability of the tests results presented in 