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Abstract 

The negative selection algorithm developed by Forrest et al. was inspired by the manner 

in which T-cell lymphocytes mature within the thymus before being released into the 

blood system. The resultant T-cell lymphocytes, which are then released into the blood, 

exhibit an interesting characteristic: they are only activated by non-self cells that invade 

the human body. The work presented in this thesis examines the current body of research 

on the negative selection theory and introduces a new affinity threshold function, called 

the feature-detection rule. The feature-detection rule utilises the inter-relationship 

between both adjacent and non-adjacent features within a particular problem domain to 

determine if an artificial lymphocyte is activated by a particular antigen. The performance 

of the feature-detection rule is contrasted with traditional affinity-matching functions 

currently employed within negative selection theory, most notably the -chunks rule 

(which subsumes the -contiguous bits rule) and the hamming-distance rule. The 

performance will be characterised by considering the detection rate, false-alarm rate, 

degree of generalisation and degree of overfitting. The thesis will show that the feature-

detection rule is superior to the  -chunks rule and the hamming-distance rule, in that the 

feature-detection rule requires a much smaller number of detectors to achieve greater 

detection rates and less false-alarm rates. The thesis additionally refutes that the way in 

which permutation masks are currently applied within negative selection theory is 

incorrect and counterproductive, while placing the feature-detection rule within the 

spectrum of affinity-matching functions currently employed by artificial immune-system 

(AIS) researchers. 
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Chapter 1 
Introduction 

 

“Begin at the beginning,' the King said, very gravely, 'and go on till you come to the end: 

then stop.” 

- Lewis Carrol 

 

In the 18th century, Edward Jenner performed an experiment that would revolutionise the 

way in which humanity would view disease. An urban legend existed that milk maids 

who had developed cowpox from contact with cows’ udders were immune to smallpox. 

Unlike others, Jenner did not simply dismiss the urban legend, but, instead, embraced it 

and proved it to be scientifically true. Unbeknown to Jenner, cowpox also provided a 

reliable defence mechanism against other deadly diseases, such as poliomyelitis, measles 

and neonatal tetanus [24]. The scientific marvel witnessed by the world on 8 May 1980, 

when, during the 33rd Assembly of the World Health Organization, smallpox was 

declared to have been eradicated, was due to the astonishing way in which the natural 

immune system (NIS) functions. The NIS is able to generalise and develop effective 

defence mechanisms against a harmless agent that is structurally similar to a deadly 

pathogen (a concept often exploited by vaccines). Furthermore, the NIS continually 

learns and fine-tunes its response to a particular pathogen throughout the lifetime of an 

individual. 

The resilience and learning capability of the NIS has inspired many researchers to study 

how the NIS works, in an attempt to emulate certain facets of the NIS within computer 

systems with a view into solving very complex problems faced on a daily basis. Hence 

the computational intelligence field, called artificial immune systems (AISs), was born. 

There are many different models within AIS theory (see Figure 4), each model having 

advantages and disadvantages associated therewith.

 
 
 



CHAPTER 1. INTRODUCTION 2 

 

 

The work presented in this thesis focuses on the negative selection algorithm (NSA), a 

particular domain of AIS, inspired by the negative selection process occurring within the 

NIS (refer to section 2.4.2) and improves on the NSA by introducing an affinity-matching 

function (refer to Figure 7 for a description of affinity-matching functions), called the 

feature-detection rule. The main premise of the feature-detection rule is to pre-process an 

antigen by extracting  features from the antigen 

before presenting the antigen to an artificial lymphocyte (ALC)/detector. The thesis 

presents a detailed overview of negative selection theory, in addition to the most popular 

AIS algorithms to date, by means of an extensive background study. The purpose of the 

background study is to empower the reader with enough knowledge to critically evaluate 

NSAs and to show how and why the feature detection rule is an improvement on the set 

of traditional affinity-matching functions used within NSA implementations. 

 
1.1 Motivation 

The original NSA, developed by Forrest et al. [33], is a conceptually simple algorithm 

and has been adopted widely by the general AIS community. A major advantage of the 

NSA is that it is conceptually simple and allows a variety of different affinity-matching 

functions to be employed. The most popular affinity-matching functions currently used 

by AIS researchers (within the context of the NSA) have limited foresight in that they 

merely consider relationships between adjacent attributes of an antigen vector and an 

artificial lymphocyte (ALC)/detector vector to determine whether the ALC is activated by 

a particular antigen. Furthermore, these affinity-matching functions are also renowned for 

inducing undetectable strings or holes within a particular problem domain owing to the 

mechanics drawn upon by these affinity-matching functions. 

The work presented in this thesis: 

 Discusses a new affinity-matching function, which learns the relationship 

between both adjacent and non-adjacent attributes of an antigen vector and an 

ALC/detector to determine whether the ALC/detector is activated by the antigen. 
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 Shows how the new affinity-matching function does not induce holes and 

exhibits superior detection rates and false-alarm rates. 

 Examines the schism between views on permutation masks currently existing 

within AIS literature (some researchers state that permutation masks are a vital 

mechanism to reduce holes induced by detectors, whereas other researchers 

disagree). 

 

1.2 Objectives 

The primary objectives of this thesis can be summarised as follows: 

 to provide a detailed overview of AIS research, the key focus being on the NSA 

of Forrest et al.; 

 to introduce a new affinity-matching function, which is shown to improve the 

detection rate offered by the NSA, for data sets exhibiting a relationship between 

both adjacent and non-adjacent attributes; 

 to compare the new affinity-matching function, the feature-detection rule, to a 

number of other popular affinity-matching functions; 

 to suggest an alternative way to implement permutation masks within NSAs, 

thereby reinstating the importance of permutation masks; 

 to develop a mechanism to estimate the overfitting and generalisation 

capabilities of the NSA under different affinity-matching functions (note that the 

term affinity-matching function and detection rule are used interchangeably in 

this thesis); and 

 to place the feature-detection rule within a framework comprising of the r-

contiguous bits rule, the r-chunks rule and the feature-detection rule. 

 

1.3 Methodology 

The thesis presents an extensive literature study of negative selection theory in order to 

characterise the methodologies used by AIS researchers to: 
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 create a set of metrics that can be used to measure the relative success or failure 

of the application of a particular NSA within a problem domain; 

 understand the effect of different affinity-matching functions used within NSAs 

in order to reason about their effectiveness; and 

 mathematically and empirically compare the new affinity-matching function to a 

number of different affinity-matching functions. 

The thesis discusses overfitting and generalisation within artificial immune systems in 

general and produces two algorithms that can be used to measure the overfitting and 

generalisation exhibited by a particular instance of an AIS algorithm on a particular data 

set (refer to sections 3.5.2 and 3.6.3 for a discussion of overfitting and generalisation). 

The thesis’s new affinity-matching function, the feature-detection rule, is discussed and 

analysed, both mathematically and empirically, on several data sets. The performance of 

the feature-detection rule is compared to the r-chunks rule and the hamming-distance rule 

(refer to section 3.4.2 for a general discussion of matching rules). 

 

1.4 Contribution 

The work presented in this thesis has the following contributions: 

 A new affinity-matching function, the feature-detection rule, which uses the 

relationship between both adjacent and non-adjacent attributes of an antigen 

vector in order to determine whether an ALC/detector is activated by the antigen. 

 A more effective way to apply permutation masks to NSAs in order to realise the 

full benefits originally intended by applying permutation masks. 

 A means to estimate the current generalisation and overfitting exhibited by a 

particular detection rule. 

 

1.5 Thesis Outline 

The remainder of the thesis is organised as follows: 
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Chapter 2 presents an overview of the natural immune system. It is vital to have a good 

understanding of the natural immune system in order to reason about and appreciate 

artificial immune systems. 

Chapter 3 discusses the fundamentals of artificial immune systems (AISs) by providing a 

taxonomy of different AIS classes, in addition to explaining the key concepts on which 

all AIS algorithm classes are based. 

Chapter 4 provides a detailed overview of negative selection theory, the most popular 

negative selection algorithms to date and the methodologies often used to reason about 

negative selection algorithms. 

Chapter 5 discusses the foundations of the feature-detection rule from both a conceptual 

and mathematical perspective. 

Chapter 6 empirically compares the feature-detection rule to the hamming-distance rule 

and the r-chunks rule (with and without a permutation mask) under a number of different 

data sets, with the complexity of the problem domain differing across each data set. 

Chapter 7 summarises the work presented by the thesis and outlines additional future 

directions that can be undertaken to extend the feature-detection rule introduced in this 

thesis. 
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Chapter 2 
The Natural Immune System 

 

“If you can't explain it simply, you don't understand it well enough.” 

- Albert Einstein 

 

The natural immune system (NIS) has evolved over millions of years and comprises 

various facets, which act in tandem to protect the body. One of the most remarkable 

aspects of the NIS is that it has both a genetic (germ-line) and an adaptive (somatic) 

component. The innate immune system is genetically based: that is, it does not require a 

previous encounter with an antigen in order to be able to recognise it, and it does not 

develop a memory. The adaptive immune system, however, is capable of adapting and 

fine-tuning its response to an encountered antigen and does develop a memory [8, 1, 62]. 

Immunologists generally subscribe to different schools of thought about both the 

functional and the organisational behaviour of lymphocytes within the immune system. 

Immunologists have produced several theories governing the behaviour of immune 

systems, the most notable being the classical view, the danger-theory view and the 

network-theory view [26]: 

 The classical view of the NIS, defined by Burnet [9], postulates that the main 

function of the NIS is to successfully discriminate between self (cells occurring 

naturally within the body) and non-self (foreign cells/antigens). It should be 

noted that immunologists do not fully comprehend how this self/non-self 

discrimination is accomplished; they believe that the body learns to distinguish 

the difference between self and non-self very early in life [3]. 

 The immune network theory, introduced by Jerne [51, 52] and explored further 

by Perelson [71], postulates that the immune system is an intricate network of 

cells that recognise one another even in the absence of antigens. Immune 

network theory hypothesises a viewpoint on actions performed by lymphocytes, 
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pre-immune repertoire selection, tolerance and self/non-self discrimination and 

immunological memory.  

 The danger-theory, introduced by Matzinger [3, 60, 61], concludes that the 

immune system actually discriminates “some self from some non-self”. For 

example, why does the immune system not react to ingested food residing in the 

gut? Although each view differs on how the NIS successfully responds to 

antigen, each view is firmly grounded on concepts established within the 

classical view of the immune system. 

 

This chapter provides a brief overview of the constituents comprising the NIS, from the 

classical viewpoint of the NIS, and the mechanisms that it employs to eliminate unwanted 

pathogens from the human body. The key objective of this chapter is to provide the 

reader with a broad overview of what is currently known about the NIS by following a 

bottom-up approach starting with fluid systems in section 2.1. 

 

2.1 Fluid Systems 

Constituents of the immune system are housed primarily in the body’s two primary 

entwined fluid systems, namely, the blood system and the lymph system [8, 1]. This 

section provides a brief overview of the blood and lymph system. 

 

2.1.1 Blood System 

An average human being of 70 kg has roughly 5 litres of blood, which is 7 percent of the 

body’s total weight. Blood is composed of 52 to 62 percent liquid plasma, which is 91.5 

percent water and 38 to 48 percent cells. Blood is manufactured, by means of a process 

called haematopoiesis, by stem cells situated predominantly in the bone marrow. These 

stem cells produce haemocytoblasts, which differentiate into three types of blood cell: 

erythrocytes (red blood cells), leukocytes (white blood cells) and thrombocytes (platelets) 

[8, 1].  
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 Leukocytes play a predominant role within the NIS and are categorised as being 

either granulocytes or agranulocytes (containing no granules). 

 Granulocytes are composed of neutrophils (55 to 70 percent), eosinophils (1 to 3 

percent), and basophils (0.5 to 1.0 percent). 

 Eosinophils are weak phagocytes, believed to remove toxic substances from the 

blood [1]. 

 Basophils are very similar to large mast cells and are possibly transported to 

tissues where they become mast cells and release heparin, a substance that 

prevents blood coagulation [1]. 

 Neutrophils are short-lived cells responsible for the bulk of the immune response 

by ingesting antigens. Neutrophils, being short lived, have a half-life of four to 

ten hours when not activated and are subject to immediate death upon ingesting 

an antigen. 

Agranulocytes are lymphocytes – comprising T-cells and B-cells – and monocytes [8, 1]: 

 Lymphocytes circulate throughout the blood and lymph systems and reside in the 

lymphoid glands [8, 1]. Lymphocytes and their functions are discussed further in 

section 2.3. 

 Monocytes develop from myelomonocytic stem cells in the bone marrow. They 

are released into the blood, where they circulate for several days before 

migrating into tissues, where they mature into macrophages. 

 

The blood system is illustrated in Figure 1. 

 

2.1.2 Lymph System 

Lymph is a clear, transparent and colourless fluid, containing no red blood cells which 

envelopes and protects organs. Lymph flows through lymphatic vessels from the 

interstitial fluid up to either the thoracic duct or the right lymph duct.  Ducts terminate in 

the subclavian veins, where the lymph is mixed into blood. The right lymph duct drains 

the right side of the thorax, neck, and head, whereas the thoracic duct drains the rest of 
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the body. Lymph transports lipids and lipid-soluble vitamins, which are absorbed via the 

gastrointestinal tract. 

 

 
Figure 1. Blood system (this image was taken from [8]) 

 

Since there is no active pump in the lymph system, backpressure is not produced. 

Lymphatic vessels have one-way valves, that prevent backflow and are similar to veins. 

These valves contain additional small bean-shaped lymph nodes, which filter the 

lymphatic fluid. Antigens are usually presented to the immune system at the lymph nodes 

[8, 1]. 

The human lymphoid system comprises primary and secondary organs: 

 Primary organs include bone marrow (in the hollow centre of the bones) 

and the thymus gland (located behind the breastbone above the heart). 

 Secondary organs are located near possible pathogen portals, for example, 

adenoids, tonsils, spleen (located at the upper left of the abdomen), lymph 

nodes (along the lymphatic vessels, with large concentrations in the neck, 
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armpits and abdomen), Peyer’s patches (within the intestines) and the 

appendix [8]. 

 

The structure of the lymph system is illustrated in its entirety in Figure 2. 

Immunity is achieved as a result of the mechanisms employed by the immune system to 

protect the body against re-infection from a previously encountered antigen. 

The NIS provides two different levels of immunity, namely, innate immunity and 

adaptive immunity. Adaptive and innate immunity are described in more detail in the 

following subsections. 

 

 
Figure 2. Overview of the human lymphoid system (this image was taken from [62]) 
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2.2 Innate Immunity 

The innate immune system is genetically based and, as such, is referred to as non-specific 

immunity. It requires no previous encounter with an antigen in order to be able to 

recognise it and does not develop a memory [62]. It is non-specific, and all antigens are 

attacked with an equal probability [8].   

Innate immunity incorporates physical barriers such as skin (also referred to as mucosal 

immunity), cellular components, that is, the phagocytic system, natural killer cells and 

soluble components comprising proteins, neutrophils, dendritic cells, cytokines and 

symbiotic microbes, such as normal flora [62]. The innate immune system uses receptors 

encoded in an individual’s germ-line to identify an antigen i.e. the innate immune system 

is different from one individual to another.  The receptors can be found on cells such as 

macrophages (a phagocyte) , neutrophils, natural killer cells in addition to roaming freely 

within the lymphatic system.  

The components comprising the innate immune system are discussed in the subsections 

below. 

 

2.2.1 Mucosal Immunity 

The most important barrier to pathogens is our skin. Consequently, the skin is the human 

body’s largest organ. The skin is literally impenetrable to most micro-organisms (if it is 

not torn). The human body has evolved a number of additional mechanisms to expel a 

pathogen [8]: 

 Pathogens are ejected from the body through ciliary action (coughing and 

sneezing) and through the flushing action of tears and saliva. 

 Sticky mucus in the respiratory and gastrointestinal tracts ensnares many micro-

organisms. 

 The pH of skin secretions inhibits bacterial growth, because it is less than 7.0. 

Hair follicles secrete sebum, which contains lactic acid and fatty acids, which, in 

their turn, prevent certain fungi and bacteria from growing. 
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 Saliva, tears, nasal secretions and perspiration contain lysozyme, an enzyme that 

destroys gram-positive bacterial cell walls by inducing cell lysis (bursting). 

 Many pathogens are also destroyed in the stomach owing to its mucosa secreting 

hydrochloric acid and protein-digesting enzymes. 

 

2.2.2 Normal Flora 

Normal flora are microbes residing in our body and usually do not cause harm. The 

human body comprises about 1013 cells and 1014 bacteria, mostly in the large intestine. 

There are about 103 to 104 microbes per cm2 on the skin (predominantly staphylococcus, 

aureus, staphylococcus epidermidis, diphtheroids, streptococci, etc). Lactobacilli reside in 

the stomach and small intestine. Normal flora occupy all of the available ecological 

niches within the body and produce bacteriocins, defensins, cationic proteins and 

lactoferrin, which destroy other bacteria competing for the same niche. 

   Bacteria, however, can become problematic when they overrun ecological niches not 

destined for them, for example, if staphylococcus gains entry into the body through a cut 

in the skin [8]. 

 

2.2.3 Phagocytes 

Phagocytes include neutrophils, monocytes (occurring in the blood) and macrophages 

(occurring in the tissue) [62]. A phagocyte attracts, by chemotaxis, and ingests foreign 

bodies through a process known as phagocytosis [1]. 

Promonocytes are manufactured in the bone marrow. When they are released into the 

blood system, they are termed circulating monocytes, which mature into macrophages 

[8]. 

 

 

2.2.4 Macrophages 

Macrophages are strategically situated at interfaces of tissues with blood or cavity spaces 

[62]. For example, macrophages can be found in the lungs, liver, lining of the lymph 
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nodes and spleen, brain microglia, kidney mesangial cells, synovial cells and osteoclasts 

[8].  Macropahges are long lived and attack not only diseased cells, but also pathogens 

living within cells. Once a macrophage has engulfed a cell, the macrophage processes the 

cell internally and distributes some of the cell’s proteins, named epitopes, on its surface 

in conjunction with some of its own proteins. Other immune cells can then infer the 

structure of the invading pathogen from the macrophage. Owing to the pivotal role that 

they perform, macrophages are often termed antigen-presenting cells (APCs). 

Macrophages are subdivided into two groups: 

 Non-fixed/wandering macrophages roam blood vessels and travel to infection 

sites to eliminate dead tissue and pathogens. The process by which a macrophage 

squeezes through a capillary wall to tissue is known as diapedesis/extravasation. 

Macrophages are attracted to an infection site by the presence of histamines [8, 

1]. 

 Tissue macrophages are monocytes that wander into tissues, become fixed in the 

tissues and swell to form tissue macrophages. They frequently proliferate and 

form capsules around foreign particles that cannot be digested, thus preventing 

the spread of disease [1]. 

 

2.2.5 Natural Killer Cells 

Natural killer cells travel in the blood and lymph, causing cancer cells and virus-infected 

cells to lyse (burst) [8]. 

 

2.2.6 Neutrophils 

Polymorphonuclear neutrophils are phagocytes with no mitochondria and store glycogen 

for energy. They do not divide, only live between one to four days and comprise 50 to 

75 percent of all leukocytes. Neutrophils are a key form of defence against pyogenic 

(pus-forming) bacteria and are always the first to emerge after the onset of an infection. 

Macrophages appear several hours later. 
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2.2.7 Dendritic Cells 

Dendritic cells are covered with an entanglement of membranous processes. There are 

four types of dendritic cells and most of them are highly efficient antigen-presenting 

cells: Langerhans cells, interstitial dendritic cells, interdigitating dendritic cells and 

circulating dendritic cells. These cells do their utmost to attract antigens and present them 

to T-helper cells [8]. 

   Cells within the innate immune system bind to antigens with the aid of highly 

specialised pattern-recognition receptors. These receptors are genetically encoded and 

have evolved so that broad clusters of antigens can be distinguished. 

 

Although the importance of innate immunity regarding its role in our survival cannot be 

overstated, adaptive immunity has generated an immense amount of research interest 

because of its learning capability. 

 

2.3 Adaptive/Acquired Immunity 

Adaptive or acquired immunity differs between people and is dependent on the subset of 

antigens with which an individual has come into contact. Adaptive immunity is 

comprised of three key components namely learning, memory, and adaptability [62]. The 

key component of the adaptive immune system is the lymphocyte. 

   Lymphocytes can be differentiated into two major types, namely, B-cells and T-cells. 

Approximately 20 to 50 percent of circulating lymphocytes can be found in peripheral 

blood, whereas the rest is constrained within the lymph system. Approximately 80 

percent of lymphocytes are T-cells, 15 percent are B-cells, and the remainder are 

undifferentiated cells. The total mass of all lymphocytes is approximately the same as the 

human brain [8, 1,62]. 

Although both B-cells and T-cells are produced by stem cells within the bone marrow, 

there are a number of factors which differentiate them most notably: 

 Upon activation, B-cells undergo a clonal selection process. 

 B-cells produce antibodies whereas T-cells do not [8].  
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 T-cells undergo a sensitisation process in the thymus before being released into the 

blood/lymph system; hence they are called “thymus”/T-cells [8, 1]. 

 

T-cells are primarily responsible for cell-mediated immunity, whereas B-cells are 

primarily responsible for humoral immunity (immunity of the human immune system) 

[8]. Cell-mediated immunity is discussed in section 2.4, and humoral immunity is 

discussed in section 2.5. 

 

2.4 Cell-mediated Immunity (Cellular Immunity) 

Cellular immunity is achieved through the interaction of various classes of T-cell. T-cells 

do not have surface immunoglobulin (see section 2.5.1) like B-cells and recognise 

antigens primarily with their specialised “antibody-like” receptors and other adhesion 

molecules [62]. The major histocompatibility complex (MHC) is the means through 

which T-cells can react to antigens and is briefly discussed in section 2.4.1, before the 

different T-cell classes are discussed in section 2.4.2. 

 

2.4.1 Major Histocompatibility Complex 

Unlike B-cells, which can respond to soluble/free-floating antigen, T-cells can rarely do 

so and can only generally respond to antigens embedded in the MHC. MHC products can 

be differentiated into two classes: 

 Class 1 products have a wide distribution and are present on the surface of all 

nucleated cells. 

 Class 2 products have a more limited distribution on B-cells, macrophages, 

dendritic cells, Langerhans cells and activated T-cells [62]. 

An antigen is processed and associated with MHC before encountering T-cells via 

antigen-presenting cells; for example, macrophages (refer to section 2.2.4 for a general 

discussion of macrophages). The process is not fully understood, but immunologists have 

ascertained that, in order to be processed, an antigen must be unfolded, degraded and 

fragmented. 
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Antigens subject to exogenous processing undergo endocytosis and degradation in 

lysosomes and are associated with class 2 MHC products. Conversely, through 

endogenous processing, an antigen is processed intracellularly (for example, a viral 

infection), and the resulting peptides are transported to the endoplasmic reticulum by 

transporter proteins. Once in the endoplasmic reticulum, these peptides are associated 

with class 2 MHC products and are transported to the cell surface [62]. 

 

2.4.2 T-cells 

T-cells (thymus cells) migrate to the thymus to mature after they have been created to 

learn the concept of “self” by undergoing two selection processes: positive selection and 

negative selection [10]. There are contrasting views on positive and negative selection 

within immunology; these views are founded on either the avidity hypothesis or the 

differential signalling hypothesis: 

 The avidity hypothesis postulates that the avidity with which a T-cell 

lymphocyte binds to a self-MHC peptide complex dictates whether the T-cell is 

positively or negatively selected. The positive selection process destroys all T-

cells with a relatively weak avidity to a self-MHC peptide complex. The 

negative selection process destroys all T-cells with a strong avidity to a self-

MHC peptide complex. T-cells thus only have a single paratope, involved in 

both positive and negative selection [8, 1, 62]. 

 The differential signalling hypothesis formulated by Cohn [10] postulates that 

there are two different paratopes on T-cell receptors, namely, anti-r and anti-p. 

Anti-r paratopes are germline encoded and provide specific recognition of the 

MHC-peptide complex. Anti-p paratopes are somatically encoded and provide 

specific recognition of the peptide bound to a MHC molecule. Positive selection 

and negative selection are the result of qualitatively different interactions with a 

T-cell’s receptor. 

The avidity hypothesis is the most popular hypothesis and is used throughout this thesis. 

T-cells that have survived both positive and negative selection are released from the 

thymus [7, 58].  Interestingly, if a foetus’s thymus is removed several months before 
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birth, cellular immunity cannot develop, and the likelihood of organ rejection after a 

transplant is reduced [1]. 

There are several different varieties of T-cell: T-helper cells and T-suppressor 

cells/cytotoxic cells   [8, 62]. Each type of T-cell is discussed in further detail below. 

 

2.4.2.1 T-helper Cells 

T-helper (TH) cells manage the immune response by secreting lymphokines, chemicals 

that cause both T-cells and B-cells to grow and divide, attract neutrophils and enhance the 

abilities of macrophages [8]. 

 

2.4.2.2 T-suppressor Cells/Cytotoxic Cells 

T-suppressor (TS) cells inhibit the production of killer T-cells when the killer T-cells are 

no longer needed [8]. 

 

2.4.2.3 Killer Cells 

The primary task of killer T-cells is to release lymphotoxins, which release results in cell 

lysis [8]. There are several categories of killer cell depending on MHC restriction, 

sensitisation requirements, target specificities and responses to cytokines (refer to section 

2.4.3). These categories can broadly be simplified into MHC restricted and MHC non-

restricted. Each cell delivers a lytic signal through the target-cell membrane [62]. 

 

2.4.2.3.1 MHC-restricted Killer Cells 

Cytotoxic T-cells are killer cells generated through sensitisation either against cells that 

express foreign MHC products or against cells modified by viral infections. The life cycle 

of a cytotoxic T-cell can be in one of three states: a cytotoxic cell upon stimulation, an 

effector cell, which has differentiated and been specialised, or a memory cell, which can 

become an effector when it is restimulated [62]. 
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2.4.2.3.2 MHC-non-restricted Killer Cells 

MHC-non-restricted killer cells do not require sensitisation like MHC-restricted killers 

and are often termed natural killers. Natural killer cells comprise 5 to 30 percent of the 

peripheral blood lymphocytes. These killer cells do not belong to the T- and B-cell 

classes of lymphocyte and thus do not express either immunoglobulin or T-cell receptors 

on their surface. Natural killer cells will terminate certain autologous, allergenic and 

xenogeneic tumour cells even in the absence of class 1 MHC. Natural killer cells have 

several class 1 MHC receptors on their surface, and these are referred to as killer-cell 

inhibitory receptors. Interestingly, killer-cell inhibitory receptors have also been observed 

on T-cells. Immunologists are still uncertain how T-cells with different receptors for the 

same molecule class (class 1 MHC) can decide whether a T-cell is activated or inhibited 

[62]. 

 

2.4.3 Cytokines 

Both T-cells and monocytes secrete cytokines, which influence both close and distant 

events [62]. Cytokines are also aptly termed the messengers of the immune system and 

are proteins secreted by cells that act to coordinate an immune response. Cytokines 

comprise a diverse assortment of interleukins, interferons and growth factors [1]. 

 

2.5 Humoral Immunity  

Humoral immunity is achieved through the interaction of B-cells and their related 

antibodies. B-cells comprise 5 to 15 percent of blood lymphocytes and occur in the outer 

subcapsular cortical area in primary, secondary follicles and medullary cords [62]. 

Immature B-cells develop in the bone marrow through a process of significant gene 

rearrangement. Antigens do not play a role in B-cell development and, in fact, their 

interaction with B-cells can lead to clonal inactivation or tolerance. Immature B-cells 

leave the bone marrow and enter peripheral lymphoid organs. 
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B-cells reach maturity when two conditions are met: an antigen binds to its receptors, and 

a cytokine has been released by a T-helper cell in the vicinity of the immature B-cell. 

Immature B-cells within the vicinity of the antigen endure differentiation and clonal 

proliferation/selection and reproduce asexually via mitosis [8, 62]. 

The result of clonal selection culminates in a number of plasma cells, tailored to match a 

specific antigen-secreting antibody at a rapid rate, and newly formed memory B-cells [8, 

1, 62]. 

The immune response that is produced when an antigen is first encountered in the human 

body is aptly termed the primary immune response. The primary immune response is 

characterised by the presence of an antigen, an initially latent period during which few 

antibodies are secreted – predominantly IgM – and, then, with the help of T-helper cells, 

the secretion of a large amount of IgG, IgA or IgE (antibody classes are discussed in 

more detail in section 2.5.1), resulting in the creation of many memory cells [8, 62]. The 

subset of B-cells with the highest affinity to the antigen become long-lived or memory B-

cells. 

The secondary immune response occurs upon subsequent encounters with the same 

antigen. The primary characteristics of this phase are rapid proliferation of B-cells, rapid 

differentiation into mature plasma cells and large numbers of antibodies, mainly IgG 

[62]. Plasma cells release immunoglobulin at an extremely high rate of about 2 000 

molecules per second. This process continues for several days until the death of the 

plasma cells [1]. 

 

2.5.1 Antibodies 

Antibodies are also called immunoglobulin and are secreted by plasma cells [8]. An 

antibody can bind with a specific subset of antigens at specific regions – epitopes – of the 

antigen/s. If an antigen and an antibody combine, they do so with a strong attractive 

force, because the matching areas on each molecule are relatively large [62]. 

An important feature of the immune system and the concept upon which immunisation is 

firmly grounded is the fact that antibodies can cross-react with related antigens if their 

epitopes are sufficiently similar [62]. 
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Antibodies act in three different ways: they can directly attack an antigen, activate a 

complement system, which destroys an antigen, or activate the anaphylactic system, 

which changes the environment around the invading antigen and reduces its virulence [1]. 

Each immunoglobulin, irrespective of the class to which it belongs, is composed of two 

heavy and two light polypeptide chains, each with constant and variable domains [8, 1]. 

Disulfide bonds join the chains, and the molecules bind into a Y configuration [62]. The 

Y-shaped region can be divided further into a variable (V) region and a constant (C) 

region. 

An antibody binds to small segments of an antigen (called an epitope) through its variable 

regions (paratopes), and, consequently, a high diversity of amino acids occurs in the V 

region [8, 62]. Hyper-variable regions within V regions contain idiotypic determinants to 

which natural antibodies (referred to as anti-idiotype antibodies) bind, creating an 

important mechanism for the regulation of B-cell responses [62]. The C region contains a 

relatively constant sequence of amino acids and is different for each class of 

immunoglobulin (Ig). [62]. Owing to its consistency, the amino-acid sequence of an 

antibody’s C region determines the isotope of the antibody’s immunoglobulin class. 

There are five main classes of antibodies (see Figure 3), with corresponding subclasses. 

Each main class serves a different function: 

 IgM is the first antibody formed when the body is exposed to a new antigen, that 

is, during the body’s primary response. It consequently protects the intravascular 

space from disease and serves as an antigen receptor on a B-cell membrane. 

 IgG is the major antibody produced during the body’s secondary response and 

protects tissues from bacteria, viruses and toxins. 

 IgA is found in mucous secretions (saliva, tears etc.) and provides an early 

antibacterial and antiviral defence. 

 IgD is found in extremely low concentrations on the surface of developing B-

cells. IgD is believed to be an important component in the B-cell maturation 

process. 
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 IgE is found primarily in respiratory secretions. IgE interacts with mast cells. It 

is believed that when two IgE molecules encounter an allergen, they deregulate 

and cause an allergic response. 

 

 
Figure 3. Immunoglobulin classes  (this image was taken from [8]) 

 

The way in which B-cell genes are combined enforces diversity, because of the nature of 

the generation process. Gene segments are disconnected and must be juxtaposed during 

B-cell maturation. The potential diversity is further increased by somatic point mutations 

and joining inaccuracies between the various antibody segments [62]. 

The detection rate of an antibody molecule is increased further, owing to the number of 

degrees of flexibility that it attains as a result of freedom of movement, which allows it to 

bind easily to various regions on the surface of an antigen [8]. 

An antibody can inactivate an antigen in several ways, most notably by agglutination, 

precipitation, neutralisation and lysis [1, 62]: 
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 Agglutination occurs when multiple antigenic agents bind to form a clump of 

antibodies. 

 Precipitation occurs when the antigen-antibody complex becomes insoluble and 

precipitates. 

 Neutralisation occurs when the antibody covers the toxic sites of the antigen. 

 Lysis occurs when antibodies directly attack the membranes of foreign cells and 

causes them to rupture. 

Most of the body’s protection comes from the complement and anaphylactic systems. 

 

2.5.2 Regulation of Human Immune Responses 

Regulation of the immune system is critical to prevent unlimited antibody production, 

which could result in self-destruction. The human immune system is regulated by a 

number of factors, namely, the disappearance of the pathogen/foreign substance, the 

idiotypic network of antibodies and cytokines. Anti-idiotypic activity occurs because the 

V regions of each antibody’s molecules recognise one another. This activity blocks B-cell 

receptors, thus suppressing not only further activation of the cell, but also the production 

of idiotypic antibodies [62]. 

Both cellular and humoral immunity are essential for survival and contain a number of 

explicit differences, as well as implicit differences. One of the most striking differences 

between cellular and humoral immunity is persistence. Antibodies only last a few months 

or years at most, whereas it is believed that sensitised T-cells last almost indefinitely [1]. 

 

2.6 Conclusion 

The NIS is an intricate network of components, which work collectively to protect the 

body against the virtually limitless antigens in and around the environment. Pathogens are 

eliminated primarily through phagocytosis, which is facilitated by the pathogen being 

coated with antibodies and complement proteins. The immune response is regulated by 

successfully evolving efficient antibodies, with a high affinity towards the pathogen. 

Antibodies are manufactured by B-cells, which, in their turn, are aided by T-cells. There 
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are a number of complex chemical reactions involved in and around the environment to 

support this process. 

This chapter provided a brief overview of the innate and adaptive immune systems and 

the components governing the behaviour of these systems. It is critical to understand the 

NIS before one delves into AIS theory, since an AIS abstracts a subset of processes 

occurring within the NIS. 

The next chapter defines what an AIS is in more detail and portrays the main research 

fields within AIS theory. 
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Chapter 3 
Foundations of Artificial Immune Systems 

 

“It is not knowledge, but the act of learning, not possession but the act of getting there, 

which grants the greatest enjoyment.” 

- Carl Friedrich Gauss 

 

Artificial immune systems (AISs) emerged in the 1986 as a new computational 

intelligence paradigm [30].  An AIS can be defined as a system of interconnected 

components, which emulate a particular subset of aspects originating from the NIS in 

order to accomplish a particular task within a particular environment/domain. Scientists 

have achieved great success in finding algorithmic solutions to complex problems by 

emulating and transposing mechanisms occurring naturally within biological systems to 

alternative real-world domains. For example, by studying the social behaviour of birds 

within a flock, scientists have created a class of algorithms termed particle swarm-

optimisation algorithms, which have been very successful in solving complex 

optimisation algorithms [27]. An AIS is by no means an exception and tries to leverage 

desirable characteristics from the NIS [17, 32]. The key features of a NIS that are of 

interest to computer scientists have been summarised by both Wierzchoń [87] and Forrest 

et al. [34], and are presented below: 

 Multi-layered protection: The humoral immune system provides a number of 

protective layers against antigens namely innate immunity, humoral immunity 

and cellular immunity. Classical security systems are monolithic and ordinarily 

address security threats only at a specific level. For example, a system 

containing only basic password authentication addresses security only at a single 

level. 

 Distributed detection: The immune system is autonomous. This is highly 

desirable within any computer system, because there is no single point of failure.
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 Learning ability: The NIS is adaptive and develops memory B-cells in response 

to encountered antigens. Interestingly, the learning ability of AIS algorithms has 

often been compared to other computational intelligence learning paradigms, 

such as neural networks [16, 19].  

 Unique localised copies of the detection system: Each individual lymphocyte 

within a population of lymphocytes consists of its own protective cells and 

molecules. 

 Generalisation ability: Each lymphocyte has the ability to recognise antigens 

that are structurally similar to previously encountered antigens, the concept on 

which immunisation is firmly based. The immune system is also able to generate 

and improve on receptors, clonal selection of B-cell lymphocytes during the 

primary response, to eradicate antigen that have not yet been encountered. 

 Imperfect detection: The immune system achieves a very high reliability rate at 

a low cost, owing to roughly distributed detection (a perfect match is not 

required between an antibody and an antigen in order for the antibody to 

recognise the antigen), coupled with the need for minimal communication 

among immune system artefacts. 

 Self-organisation: The memory cells of the NIS are organised into an idiotypic 

network, which changes over time (see [52]). 

 No need for negative examples: Many learning algorithms require both positive 

and negative learning examples in order to differentiate correctly between 

self/non-self patterns, whereas the NIS requires only self-samples. 

 Uniqueness: Every individual has a unique immune system, which depends on 

the antigens which an individual has been exposed to in their lifetimes. 

 Explicit symbolic representation: The knowledge acquired by the NIS is 

represented explicitly by the structure of receptors on the surface of 

lymphocytes. 
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 Robustness: In addition to the above characteristics of the NIS, Hofmeyer et al. 

have noted that the natural immune system is robust, owing to its diversity, 

distributed detection, error tolerance, self-awareness and adaptability [47]. 

This chapter presents the foundations of AISs and provides a brief overview of the most 

popular AIS algorithms in section 3.2. Recognition within AISs is then discussed in 

section 3.4 by focusing on the shape space theory, detector generating techniques, 

matching functions employed by AISs, and undetectable regions/holes induced by the 

matching functions. Finally AIS algorithm performance metrics are presented in section 

3.5 which discusses traditional AIS performance metrics such as true positives, false 

negatives etc. in addition to non-traditional AIS performance metrics such as 

Generalisation and overfitting. 

 

3.1 Artificial Immune-system Foundations 

The focal point of most AIS research is on how lymphocytes (B-cells and T-cells) 

mature, adapt, react and learn in response to a foreign antigen. A taxonomy of the main 

AIS models was provided by De Castro and Timmis [22], where AIS models were 

viewed as being either population based or network based [22]. 

Population-based algorithms such as the negative selection algorithm (NSA) [33] and the 

clonal selection algorithm (CSA) [21] focus primarily on generating an initial population 

of lymphocytes, and on improving and refining that population based on techniques 

emulated from the NIS.       

   Network-based models [44, 52, 59, 90] are based on anti-idiotypic activity within the 

NIS, which consequently regulate the population of lymphocytes. The concept of 

artificial immune networks (AINs) was first proposed by Jerne in 1974. Jerne stated that 

dynamic behaviour could be observed within the NIS even in the absence of antigens; 

this suggested that B-cell lymphocytes have the capability of recognising one another 

[52]. This dynamic behaviour was modelled mathematically using differential equations, 

continuous models [30] or discrete models (based on a set of iterative equations) [84]. 
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A similar taxonomy was proposed by Dasgupta [15], but his taxonomy does not 

differentiate between population-based and network-based algorithms. Instead, 

Dasgupta’s taxonomy focuses on each AIS model, including Matzinger’s danger theory 

[60, 61]. By fusing elements of both Dasgupta’s and De Castro’s taxonomy, a general 

taxonomy of AIS research models proposed by this thesis is presented in Figure 4. 

 

A short overview of each AIS algorithm is presented in section 3.2 

 

AIS Algorithm Taxonomy

Network 
Based

Negative 
Selection 

Algorithms

Clonal 
Selection 

Algorithms

Discrete
Models

Continuous 
Models

Danger Theory 
Algorithms

Other AIS 
algorithms

 
Figure 4. Taxonomy of artificial immune system algorithms 

 

3.2 Overview of Different AIS Algorithms  

This section provides a brief description of the AIS algorithms illustrated in Figure 4. 

 

3.2.1 Clonal Selection Algorithms 

Clonal selection algorithms [20, 21] are inspired by the way in which B-cell lymphocytes 

adapt in response to an antigen encounter (see section 2.5). AIS researchers generally 

refer to this process as clonal selection [20, 21]. The main points of the clonal selection 

process are highlighted below: 

 B-cells are activated upon recognising antigens and receiving signals from T-

helper cells. 

 Upon activation, B-cells rapidly proliferate and mature into plasma cells. The 

proliferation rate of a B-cell is directly proportional to the affinity between the 

B-cell and the recognised antigen. This will result in high-affinity B-cells to 
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produce a large number of clones, whereas low-affinity B-cells will produce a 

diminutive number of clones. 

 The progeny/clones of the parent B-cells then undergo a mutation process. The 

areas subject to mutation are the portions of the receptor that bind with the 

antigen. Since lymphocytes are somatic cells, being cells not involved in 

reproduction, the mutation is termed somatic mutation. Berek and Ziegner [6] 

found that the somatic mutation is inversely proportional to the affinity between 

the antigen and the antibody; that is, the higher the affinity is, the lower the 

mutation rate is, and the lower the affinity is, the higher the mutation rate is. This 

mutation principle allows the immune system to preserve cells that have a high 

affinity to the antigen and to improve those cells that have a low affinity to the 

antigen. 

 A selection mechanism existing within the NIS guarantees that offspring that are 

better than their parents at recognising the antigen are selected as long-term 

memory cells. Memory cells in effect are a means by which the B-cells retain 

information about the antigen and can thus react more quickly upon subsequent 

encounters with the same antigen. Learning does not cease once memory cells 

have been formed, and each successive encounter with the same antigen 

improves the immune system’s capability to recognise that antigen. 

The first version of an algorithm that was inspired by the clonal selection process, called 

CLONALG, was presented by De Castro et al. [20, 21]. Interestingly when compared to 

the performance of evolutionary strategies (see [26]), Walter and Garrett [85] found that, 

in low dimensional landscapes, the CSA performed better than its evolutionary 

counterpart did. In other studies, CLONALG is viewed as the root of all CSA algorithms, 

and a number of subsequent improvements have been made to CLONALG, as mentioned 

below: 

 The CLONALG was found by White and Garrett [86] to be extremely good at 

classifying unseen examples from binary data sets, if given enough data albeit 

being computationally expensive. A modified CLONALG, called clonal 

classification (CLONALGAS) was proposed by White and Garrett [86] in an 
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attempt to improve upon the computational complexity exhibited by 

CLONALG. Although the CLONALGAS algorithm has the same complexity as 

CLONALG it is able to converge on a solution set in fewer iterations. 

 A dynamic clonal selection algorithm was created, by Kim and Bentley [57], to 

overcome difficulties faced in anomaly detection owing to changing 

environments. The algorithm was later extended [56] to delete memory detectors 

that are no longer valid. This resulted in a reduction of the false-positive rate 

exhibited by the original dynamic clonal selection algorithm. 

 

3.2.2 Negative Selection Algorithms 

Negative selection algorithms are inspired by the T-cell maturation process occurring 

within the NIS. Since the work presented in this thesis is rooted in the negative selection 

theory, a comprehensive overview of negative selection is given in chapter 4. 

 

3.2.3 Immune Network Algorithms 

Immune network algorithms are based on Jerne’s network theory [52], which asserts that 

B-cells are capable of recognising one another. Immune network algorithms attempt to 

maintain a population of detectors by using a set of mathematical equations and are 

applied mainly to clustering problems [30, 59, 90]. A well-known immune network 

algorithm, called AINET, was developed by De Castro and Von Zuben [18] and was 

shown to be extremely effective at compressing an input space comprising of  

antibodies, while still preserving the topology of the problem space. 

 

3.2.4 Danger-theory Algorithms  

The danger theory introduced by Matzinger [60, 61] asserts that there must be 

discrimination within the immune system that goes beyond the classical view of self/non-

self discrimination. Matzinger asserts that the immune system in fact discriminates “some 

self from some non-self”. Matzinger’s theory is illustrated in Figure 5, which shows four 

different cells: a B-cell lymphocyte (represented by the symbol B), a T-helper 
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lymphocyte (represented by the symbol Th), a T-killer lymphocyte (represented by the 

symbol Tk) and an antigen-presenting cell (represented by the symbol APC). 

Each immune system artefact in Figure 5 conforms to the following three laws: 

 A cell is activated upon receipt of signal 1 and signal 2, that is, if a B-cell 

produces antibodies when it is activated. A cell dies if it receives signal 1 in the 

absence of signal 2. A cell ignores the receipt of signal 2 if it did not receive 

signal 1. 

 Signal 2 can be accepted only from antigen-presenting cells, or, for B-cells, from 

T-helper cells. B-cells can also act as APCs for long-lived T-cells. Signal 1 can 

originate from any cell. 

 Activated cells revert to a resting state after some finite time period. 

 

 
Figure 5. Illustration of Matzinger’s danger theory  (this image was taken from [3]) 
 

Greensmith et al. implemented an AIS utilising Marzinger’s danger theory which 

emulates the behaviour of dendritic cells (refer to section 2.2.7 for a discussion on 

dendritic cells) [42, 43]. Their algorithm, termed the Dendritic Cell Algorithm (DCA), 
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differs from other AIS algorithms in the sense that is inspired by the innate immune 

system as opposed to the adaptive immune system.  

An example of a NSA that implements a simplified form of the signalling concept 

illustrated in Figure 5 was is by Hofmeyer and Forrest [48]. In their system, detectors can 

be in one of several states (randomly created, immature, mature and naïve, activated or 

dead). When a detector is activated by a foreign agent for the first time, the detector 

transitions from a mature state to an activated state. Thereafter, there is a fixed-time 

waiting period for a signal, originating from a human operator, in the form of an e-mail, 

to confirm that the foreign agent is indeed an anomaly. If the signal is received before a 

particular time period, then the detector will be retained by the system as a memory 

detector; otherwise the detector is purged from the system. 

 

3.2.5 Other Immune Algorithms 

Each of the AIS algorithms discussed thus far subscribes to a particular niche within the 

NIS and only emulates a subset of mutually exclusive functionality from the NIS. There 

is a subclass of AIS algorithms, called hybrid AIS algorithms. These algorithms try to 

emulate as much of the NIS as possible in order to derive from the benefits of the NIS in 

its entirety. An example is the multilevel immune learning algorithm (MILA), created by 

Dasgupta et al. [14]. MILA creates three different types of ALC, namely, T-helpers, T-

suppressors and B-cells, and thus draws on both negative and clonal selection theory. 

 

3.3 Generation of Detectors within an AIS 

Most AIS algorithms generate random ALCs. This, however, is not reflective of what 

happens within the NIS. The NIS stores the genetic material for an individual antibody in 

seven separate libraries. An antibody molecule is produced by randomly selecting genetic 

components from each of the individual libraries. Hightower et al. [46, 65] wrote a 

genetic algorithm to evolve gene libraries (refer to [37] for more information on genetic 

algorithms) to study the characteristics that both gene libraries and ALCs generated from 

gene libraries exhibit, and found that: 

 Gene libraries became increasingly dissimilar as they evolved. 
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 If gene libraries were exposed to a much greater proportion of antigens, the gene 

libraries evolved more rapidly and generated ALCs of a better quality. That is, 

the ALCs generated from the gene libraries were able to recognise a greater 

proportion of antigens. 

Their algorithm was modified by Hofmeyer et al. [48] through the addition a mutation 

step and found that the mutation step increased the speed at which gene libraries 

converged to a specific solution. In another follow-up study, Opera and Forrest [66] 

found that an increase in the size of the genome of an antibody library increased the 

survival probability of an individual by increasingly smaller amounts. It is argued by 

Opera and Forrest that antibodies produced by antibody libraries reflect different antigen 

clusters. In a separate study, Forrest and Perelson showed how the degree of 

generalisation (generalisation is discussed in section 3.5.2) in an evolved antibody 

population can be controlled [31].  To date, very little work has been done on using gene 

libraries in conjunction with AIS algorithms to generate detectors. The reason is probably 

that such an AIS algorithm would be more complex than its random counterpart. That is, 

the algorithm would first need to evolve a set of gene libraries before being able to 

execute.  An example of a recent AIS algorithm, which uses gene-libraries to classify e-

mails, can be found in [76]. 

 

A large percentage of the AIS algorithm classes illustrated in Figure 4 are rooted in a 

number of similar key concepts. Each of these concepts is discussed in section 3.4, where 

a stronger emphasis is placed on concepts that are applicable to binary problem spaces, as 

opposed to real-valued problem spaces. 

 

3.4 Recognition within an Artificial Immune System 

Lymphocyte cells in the NIS (T-cells or B-cells) present receptor molecules on their 

surface responsible for recognising the antigenic fragments displayed by the pathogens. 

Pattern recognition within the NIS occurs on a molecular level, and covalent bonds form 

between the antigen and T-cells and B-cell antibodies. 
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In order to model this aspect, most AIS algorithms employ the shape-space concept 

proposed by Perelson and Oster [69], which allows a quantitative description of the 

interactions of receptor molecules and antigens. Perelson’s and Oster’s shape-space 

theory is discussed in detail in section 3.4.1. 

 

3.4.1 Shape-space Theory 

A population of  individuals (cell receptors) can be represented as a finite volume, , 

containing  points (where  is the dimensionality of an individual/artificial lymphocyte). 

Each individual has a volume, , surrounding it such that any complementary antigen 

that lies within   is recognised by the individual. The term  is called the detection 

area, and its size depends on a parameter, , known as the affinity threshold. In this shape 

space, an artificial lymphocyte/receptor molecule is depicted as a vector, , with 

coordinates , whereas an antigen/non-self artefact is depicted as a vector, , 

with coordinates . Perelson’s and Oster’s [69] shape-space theory is 

illustrated in Figure 6, which portrays two antibodies and their associated detection 

regions. 

The shape-space theory enables AIS researchers to represent antigens and immune 

system artefacts (lymphocytes and antibodies) mathematically. Building on the shape-

space theory, researchers within the AIS community have studied a variety of approaches 

in which the affinity between an antigen and an antibody can be captured. The most 

popular approaches are discussed in section 3.4.2. 
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Figure 6. Shape-space theory 
 

3.4.2 Affinity Threshold 

The affinity-threshold functions presented in this section attempts to mimic the bonding 

process that occurs withinin the NIS. When an antigen and receptor bind covalently, they 

do so with varying degrees of strength depending on how well the receptor’s  region can 

recognise the antigen. The bonding process that matching rules emulate is 

diagrammatically depicted in Figure 7 (refer to section 2.5.1 for a more detailed 

description of the bonding process). Take note that in figure 8 the terms Ab and TCR 

refers to antibody and T-cell receptor respectively. 
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Figure 7. Antigen/antibody bonding (this image was taken from [49]) 

 

Given an artificial lymphocyte, , and an antigen, , a number of matching rules can be 

defined to determine whether  and  match. 

 

3.4.2.1 Hamming-distance Rule 

The hamming distance (HD) between two binary vectors is the number of corresponding 

bits that differ. For example, if  and  then the hamming 

distance between  and ,  , is 1. 

 

3.4.2.2  r-Contiguous Bits Rule 

The -contiguous bits (RCBITS) rule states that two binary vectors match if they have 

identical bits in at least  contiguous positions [68]. 

For example; if  and  then the number of  
contiguous bits between  and , , is 3.   

   The RCBITS rule is a very popular matching rule, since it is conceptually simple and 

lends itself equally to both mathematical and statistical analysis [87]. 
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3.4.2.3 r-Chunks rule 

The -Chunks (RCHK) matching rule, as conceptualised by Balthrop et al. [5], was 

inspired by the RCBITS rule and matching rules for classifier systems developed by 

Holland [50]. RCHK detectors are specified by a window of size  in which all  bits in 

the window must match the given string in question. The remaining bit positions are 

termed “don’t cares” and are ignored. An RCHK detector is depicted as a vector, , of 

length  and a starting position  (that is, detection starts at position  and ends at 

position ). 

For example; if  and  then  where 

 is the application of the RCHK rule to vectors ,  , and . 

A number of experiments were performed by Balthop et al. where they concluded that the 

RCHK rule performed better than the RCBITS rule for their data set [5].  It was shown 

that the RCHK rule subsumes the RCBITS rule by Esponda et al. [29]. 

From each of the detection rules presented thus far (HD, RCBITS and RCHK) it is 

evident that a trade-off between the number of detectors and their affinity threshold 

exists. Larger affinity thresholds result in more specific matching, whereas smaller 

affinity thresholds result in more generic matching. In other words the best values for 

these parameters are problem dependant and should be fine tuned for each new problem 

domain [47]. 

An additional trade-off, called holes or undetectable strings, exists for the RCHK and 

RCBITS rule. The origins of holes are discussed further in section 3.4.2.4. 

  

3.4.2.4 Holes induced by the r-Contiguous Bits and r-Chunks Rule 

A critical difference between the RCHK and RCBITS matching rule noted by Balthrop et 

al. [5] was the number of undetectable strings that they induced. These undetectable 

strings are called “holes” by D’haeseleer et al. [11]. An example of holes is illustrated in 

Figure 8, where the detection region, , or each detector, is shown as a circle in dark 

grey, an antigen is shown in light grey and holes are indicated as white space. 

 
 
 



CHAPTER 3. ARTIFICIAL IMMUNE SYSTEMS 37 

 

 

 
Figure 8. Undetectable regions induced by holes (this image was taken from [47]) 

 

Holes do not exist merely because of the limitations of the matching rules used, but also 

because of similarity existing between self and non-self cells. If was noted by Hofmeyer 

[49] that in reality, self and non-self are distributed at great distances from each other. 

The fact that that holes can exist for any approximate matching rule, even within the NIS, 

because binding between receptors and peptides is approximate [47]. 

Two different types of holes were identified by Balthrop et al. [5]: length-limited holes 

and crossover holes. Crossover holes and length-limited holes are discussed in section 

3.4.2.5 and section 3.4.2.6, respectively. 

 

3.4.2.5 Crossover Holes 

A crossover hole, , occurs when all possible windows (the specified   contiguous 

positions of a RCHK detector see section 3.4.2.3) within  are crossovers (defined 

below) of adjacent windows within a particular set of vectors (where the set is either a 

self-set or a non-self set depending on the AIS algorithm being employed). 

Given a set, , of self strings and two vectors, , , a crossover occurs between two 

adjacent windows, , and, , 

whenever bits  [5]. 

 

To illustrate this concept, consider a self-set, , an affinity threshold, 

,  and a function, , which returns a set of all possible windows of length , 
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occurring within a string . A graph, , can be constructed by applying  to 

each  as follows: the set of windows returned by the application of  to  are 

added as interconnected nodes to an individual level in  pertaining to the index of  in  

(where the index of the first string in  is one). Such a graph is depicted in Figure 10. In 

Figure 10 whenever two windows crossover (according to the crossover definition) they 

are connected with a bold line. 

 

10 00 01

11 10 00

Level 1

Level 2

 
Figure 9. Crossover-window graph 

 

By traversing the paths in the graph in Figure 9 from the leftmost nodes to the rightmost 

nodes (on each level starting at level 1), the following set of strings, , can be 

generated:  The subset  consists of crossover holes: 
. 

 

3.4.2.6 Length-limited Holes 

Length-limited holes are holes that arise in full-length detectors, for example detectors 

which employ the RCBITS detection rule.  A length-limited hole is defined as a string, 

, which contains at least one window of  bits not present within the self-repertoire and 

for which a detector cannot be generated [5]. 

A length-limited hole was illustrated by Balthrop et al. [5] by means of the following 

example: 

Let  and . Then it would be impossible to generate a detector for a 

non-self string defined as  because the generated detector would match a self-string. 
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It should be noted that length-limited holes occur when the variance between self and 

non-self is particularly low [5]. 

 

3.4.2.7 Overcoming Holes  

Holes reduce the overall detection capability of an AIS algorithm and are hence 

problematic. The RCBITS rule induces both length-limed and crossover holes, whereas 

the RCHK rule can induce only crossover holes [5]. 

When one attempts to overcome holes, for instance in the RCBITS rule, it is tempting to 

choose a value of  that is equal to  (the length of a particular antigen), because if , 

then it is impossible for length-limited holes to occur. Such a stringent value for  

however, carries an unfortunate consequence, in that the artificial lymphocyte loses its 

generalisation capability, because it has become too specialised. It has been speculated by 

Hofmeyer and Forrest [47] that MHC plays an important role within the NIS to protect a 

population of artificial lymphocytes/detectors from holes. In Hofmeyer and Forrest’s 

view, MHC is a mechanism through which a single protein can be represented in a 

different way. Hofmeyer and Forrest went further to conclude that, because different 

representations induce different holes, leveraging multiple representations will reduce the 

overall number of holes. 

Hofmeyer and Forrest implemented the MHC mechanism by defining a permutation 

mask, , where each   specifies a new position for bit 

number . The function  applies a permutation mask to a vector, . The 

permutation function is applied by generating a single random permutation mask, , for 

the entire global population of artificial lymphocytes/detectors. Each antigen, , is first 

processed by , before being introduced to the population of 

detectors/artificial lymphocytes [47]. 

The analogy of a permutation mask is illustrated in Figure 10, which shows three 

different detector sets comprising different  regions, because each detector set employs 

a different permutation mask. 
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Figure 10. Graphical illustration of how permutation masks change the shape of 

detectors (this image was taken from [47]) 

 

A detailed study of the effect of Hofmeyer and Forrest’s permutation mask used in 

conjunction with the NSA was performed by Stibor et al. [80]. It was found that 

randomly generated permutation masks changed the shape and distribution of the entire 

data set, thus distorting its semantic meaning and resulting in artificial lymphocytes being 

randomly distributed within the search space, as opposed to being concentrated around 

self-regions. Furthermore, Stibor et al. also doubted whether permutation masks were 

appropriate at reducing the number of holes within negative selection algorithms by 

abstracting diversity. 

Contrary to the view of Stibor et al., Esponda et al. [29] showed that the NSA, under the 

RCBITS rule augmented by permutation masks could recognise the same set of 

languages of that of the NSA under the HD rule, showing that permutation masks in fact 

did reduce holes induced by the RCBITS rule. 

The fundamental difference between the views of Esponda et al. and Stibor et al. is 

caused by the approach in which they investigated the efficacy of the RCBITS rule. In the 

former case, Esponda et al. approached the investigation with mathematics, whereas in 

the latter case Stibor et al. approached the investigation empirically. 

It is the view of this thesis that both Stibor et al. and Esponda et al. are correct in that 

permutation masks do eradicate holes induced by the RCBITS rule if the permutation 
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induced by the permutation mask is meaningful. That is, the permutation mask should 

select both adjacent and non-adjacent bits where a relationship exists between the values 

of the attributes (in the order induced by the permutation).  For example, if a relationship 

exists between attributes (1, 3, 5, 2, 4) of a five-dimensional problem space, then it is 

logical to create a permutation mask that induces such a permutation on the entire self 

repertoire of strings before generating detectors (by utilizing the NSA). 

It was argued by Esponda et al. [29] that such a permutation is indeed very difficult, if 

not computationally expensive, to infer. This is in fact not true, and an approach to 

generate meaningful permutation masks is illustrated by this thesis. 

 

The first part of this chapter discussed how AIS algorithms imitate the affinity 

relationship between antigens and artificial lymphocytes by exploiting Perelson’s and 

Oster’s shape-space theory in conjunction with a matching function. The final part of this 

chapter focuses on how researchers typically classify the performance of an AIS 

algorithm. 

 

3.5 AIS-algorithm Performance Metrics 

A variety of performance measures currently exist for different AIS-algorithm classes 

(see Figure 4 for a taxonomy of different AIS classes). Since the work presented by this 

thesis resides within negative selection theory, the most popular metrics applicable to 

negative selection theory are presented here. This section also formally introduces two 

additional metrics which measure the amount of generalisation and overfitting within an 

AIS. Take note that since the NSA is a classification algorithm, thus the metrics 

presented in this section are also applicable to a variety of other AIS algorithms which 

perform one-class classification. Applications of AIS algorithms are by no means limited 

to classification and have been applied to area such as data cluster, image compression 

and job scheduling [18, 44]. 
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3.5.1 Popular Negative Selection-theory Performance Measures 

The most popular metrics employed by AIS researchers to report on the performance of 

NSAs and a number of other AIS algorithms are false positives, true positives, false 

negatives and true negatives: 

 False positives (FPs) occur when self-patterns are incorrectly classified as non-

self. 

 True positives (TPs) occur when self-patterns are correctly classified as self. 

 False negatives (FNs) occur when non-self patterns are classified as self. 

 True negatives (TNs) occur when non-self patterns are correctly classified as 

non-self. 

These measures can be combined in a more meaningful way to create two additional 

metrics, termed the detection rate (DR) and false-alarm rate (FR), defined as [82]: 

 

 
(3.1) 

 
(3.2) 

 

3.5.2 Generalisation 

Generalisation within AIS literature is defined as the comprehensive set of strings that a 

generated detector is activated by [5].  Generalisation is defined by this thesis as the 

ability of an AIS algorithm to correctly classify patterns that were not included in the 

original training set as either being self or non-self patterns, in other words   

for the test set. This concept can easily be demonstrated by means of Perelson and Oster’s 

shape-space theory [69]  in Figure 11. Each antibody in Figure 11 has a detection region 

of size  within the entire shape space, , where  is the antibody’s generalisation 

region. The closer the antigen is to the antibody, that is, the centroid of region , the 

stronger the affinity of the bond between the antibody and antigen is. The generalisation 

capability of the AIS in Figure 11 is the union of each antibody’s detection region . 
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It should be noted that the size of an antibody’s detection region, , is a function of the 

magnitude of the affinity threshold, , utilised by the antibody’s detection rule. For 

example, if an AIS algorithm uses the HD rule, then greater  values equate to smaller 

detection regions. Thus by reducing the generalisation capability of an individual artificial 

lymphocyte and, consequently, the entire AIS algorithm. Pseudocode for an algorithm 

that can estimate the average Generalisation capability of an AIS is presented by this 

thesis in the figure below. 

V

Vr

Undetected Antigen
Antibody

Vr

Detected Antigen

Detection Diameter

 
Figure 11. Graphical depiction of generalisation in terms of the shape-space theory 

 

The ability of an immune system to generalise is the primary reason for vaccines having 

been so successful in protecting human beings against a wide plethora of antigen. The 

premise on which vaccination is based is that in order to protect the human body against a 

particularly dangerous antigen, , a harmless structurally similar antigen, , is introduced 

into the immune system to allow the immune system to develop antibodies against . By 

doing so, the human body will naturally be able to expel an encounter of , because of its 

Generalisation capability. Forrest et al. [5] noted, however, that generalisation within an 

AIS must be strictly controlled to ensure that the number of false positives generated by 
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an AIS are sustained at an acceptable level. Overfitting is a term that is strongly related to 

generalisation and is discussed in section 3.5.3. 

Given a particular AIS algorithm  and a set  comprising non-self vectors, the average 

generalisation capability of  over  can be estimated using the following algorithm: 

Randomly partition  into two disjoint subsets  and   such that  

  where   and   

Train  using ; 

Let  be a set of artificial lymphocytes generated as an output of ; 

Let  (a measure of the average generalisation of an AIS algorithm):= 0; 

for each artificial lymphocyte    do 

 for each do 

           if  is activated by  then 

       ; 

    end 
      end 

end 

; 

Figure 12. Pseudocode for estimation of the average generalisation within an 
artificial immune system 

 
 
 

3.5.3 Overfitting 

Overfitting is defined in this thesis as a phenomenon that occurs within an AIS when a 

large number of detectors memorise the same set of training patters. A direct 

consequence of overfitting is that the detection capability of the resultant AIS is 

degraded. 
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The degree of overfitting, within an AIS, is a function of the magnitude of the affinity 

threshold, , used by a particular matching function, in conjunction with how the AIS 

algorithm distributes its resultant artificial lymphocytes. To illustrate the concept further, 

two different overfitting scenarios are discussed using Perelson and Oster’s shape-space 

theory. 

 It is the view of this thesis that the first scenario occurs when two conditions are met: 

 The affinity threshold employed by a particular AIS algorithm is sufficiently 

large such that the detection region, ,  of each artificial lymphocyte generated 

by the AIS encompasses a broad area within the resultant shape space, .  Take 

note that an explicit assumption is being made that a single affinity threshold is 

utilised as an input parameter by the AIS algorithm in question, which, in turn 

will generate ALCs with the same affinity threshold provided as an input 

parameter to the AIS algorithm. If the assumption does not hold true, i.e. each 

ALC generated by the AIS algorithm has different affinity thresholds, then the 

condition occurs, when the detection regions of several ALCs encompass a 

broad area within the resultant shape space, due to the affinity thresholds 

employed by the ALCs being sufficiently large.  

 The majority of artificial lymphocytes are distributed by the AIS algorithm in 

such a manner that they are in close proximity to one another within the shape 

space, . 

A direct consequence of the first scenario is that there is a high degree of intersection 

between a set of artificial lymphocytes and their respective detection regions such that 

each intersection reduces the efficacy of an individual artificial lymphocyte (see Figure 

13 for a graphical illustration). 

 

 
 
 



CHAPTER 3. ARTIFICIAL IMMUNE SYSTEMS 46 

 

VrVr

Antigen (Not overfitted)
Antibody

Antigen (overfitted)
 

Figure 13. Overfitting scenario 1: large affinity threshold with two structurally 
similar artificial lymphocytes, that is, the artificial lymphocytes are in close 

proximity to one another 
 

Conversely, a second overfitting scenario can occur when the following two conditions 

are met: 

 The affinity threshold employed by a particular NSA is very small such that the 

detection region, , of each artificial lymphocyte encompasses a small area 

within the resultant shape space, , resulting in highly specialised artificial 

lymphocytes (with each artificial lymphocyte typically  being able to match a 

maximum of two self/non-self vectors). 

 A large number of artificial lymphocytes are generated by the AIS algorithm to 

ensure that the AIS algorithm still exhibits an acceptable detection rate.  

A direct consequence of the second scenario is that the resultant distribution of detectors 

is localised almost entirely on patterns within the training set. Hence the AIS does not 

capture a good fit of the training data (refer to Figure 14 below). 
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Antigen (Not overfitted)
Antibody

Antigen (overfitted)
 

Figure 14. Overfitting scenario 2: small affinity threshold with a number of 
structurally similar artificial lymphocytes 

 

Overfitting within an AIS resulting from overlapping detectors (see overfitting scenario 

in Figure 14) induces an additional undesirable condition studied by Smith et al. [78], 

which can be explained as follows, given two artificial lymphocytes  and : 

Let each antibody have an affinity threshold of . The shape-space theory stipulates that 

these artificial lymphocytes can be represented by circles with a radius .  Suppose that 

the two circles intersect such that a large proportion of the area of  is contained within 

the area of . This signifies that   can recognise a large proportion of antigens that can 

be recognised by . 

A direct consequence of the above association is that an antigen that lies in the 

intersection area between  and  will be eradicated by , thereby leaving  with a 

smaller time window in which to develop memory cells (see the clonal selection theory in 

section 3.2.1). In fact, a situation could arise whereby  does not produce any memory 

cells at all. This concept is known as antigenic sin, which many researchers regard as the 

sole reason for vaccines possibly interfering with one another and thus being counter 

effective [79]. 

 

The extent to which antigenic sin applies to an AIS algorithm depends on a number of 

factors: 
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 The mechanisms employed by the AIS algorithm, in other words whether or not 

the algorithm has a clonal selection component. 

 The degree of parallelism for which the algorithm caters. 

 The distributed nature of the algorithm. 

 The degree of competition between artificial lymphocytes, that is, whether each 

lymphocyte is given an equal opportunity to undergo the clonal selection 

process. 

Similar to the algorithm presented in Figure 12, an algorithm is presented by this thesis in 

Figure 15 which provides an estimate of the average amount of overfitting exhibited by 

an AIS algorithm  over a data set  . 

Both overfitting and generalisation within the AIS domain occur because of the 

associative nature of immunological memory. Overfitting and generalisation within AIS 

algorithms are very difficult to avoid entirely, although a number of AIS algorithms, 

especially network-based algorithms such as the AINET algorithm [18], have built-in 

mechanisms to address overfitting and generalisation. 
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Given a particular AIS algorithm  and a  comprising non-self vectors, the average 

overfitting exhibited by  over  can be estimated using the following algorithm: 

Randomly partition  into two disjoint subsets  and   such that  

 where   and   

Train  using ; 

Let  be a set of artificial lymphocytes generated as an output of ; 

Let  (a measure of the average overfitting of an AIS algorithm)  

Let iY  be set of antigens detected by an artificial lymphocyte ix where Ci ∈x  and  

 ; 

for each artificial lymphocyte    do 

        Let  (the number of non-self patterns overfitted by ) := ; 

 for each artificial lymphocyte   where    and  do 

       ;              

  end 

        if    then 

             ;  

        end 

 end  

Once  has been calculated for each artificial lymphocyte , calculate  using: 

; 

 Pseudocode for estimating the average overfitting exhibited by an AIS algorithm 

Figure 15. Pseudocode for estimation of the average overfitting within an artificial 
immune system 
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3.6 Conclusion  

The biological processes within the NIS bear numerous favourable characteristics, which 

artificial immune systems extract and emulate. This, in turn, enables many complex 

problems that exist within the natural world to be addressed and resolved through the use 

of AIS algorithms. Despite being a fairly young field, a wide variety of different AIS 

algorithms is in existence today and has seen a number of successful applications [7, 13, 

28, 35, 44, 58, 64, 72, 77, 89]. AIS algorithms have also inspired researchers in other 

fields to incorporate immune-system theory into their own research paradigms [7, 73]. 

This chapter discussed the mathematical foundations on which AIS algorithms are based 

by exploring: 

 Perelson’s and Oster’s shape-space theory. 

 Detection rules used by AIS algorithms. 

 AIS performance metrics (it should be noted that the performance methods most 

applicable to negative selection theory have been the focal point of this chapter). 

 A high-level taxonomy of different AIS algorithms, as well as a brief description 

of each AIS algorithm class. 

The next chapter provides an in-depth view of negative selection algorithm theory, the 

most popular variants of negative selection algorithms, and how researchers reason about 

the efficacy of negative selection algorithms.
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Chapter 4 
The Negative Selection Algorithm 

 

“Any sufficiently advanced technology is indistinguishable from magic.” 

- Arthur C. Clarke 

 

This chapter discusses the mechanics of the NSA proposed by Forrest et al. in section 

4.1. The original mathematical equations derived by Forrest et al. to quantify the number 

of resources required by the NSA to exhibit an acceptable detection rate and failure rate 

(see section 3.5.1) is then discussed in section 4.2.1.  Next, the short comings of Forrest 

et al.’s original algorithm is highlighted followed by a broad overview of approaches 

undertaken by several AIS researchers to address the short comings (see sections 4.3 to 

4.4). The chapter concludes by discussing a real-valued NSA (see section 4.5). 

 

4.1 Background on Negative Selection and Positive Selection 

Immature T-cells are subjected to both a negative and a positive selection process before 

being released into the blood stream (refer to section 2.4.2). The NSA was inspired by the 

negative selection process occurring within the NIS and is conceptually illustrated in 

Figure 16. The main concept behind the NSA is to generate a set of candidate detectors, 

, such that  and   [33]. 
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Figure 16. High-level overview of the negative selection algorithm 

 

Pseudocode for Forrest’s NSA is given in Figure 17. 

Let counter, , be the number of self-tolerant artificial lymphocytes to train; 

Let  be an empty set of self-tolerant ALCs. 

Create a training set, , comprised of self patterns; 

while  do 

    Randomly generate an ALC, ; 

    matched := false; 

        for each self pattern,   do 

           if   is greater than the affinity threshold  then 

            matched:= true; 

            break; 

        end 
    end 
    if   matched = false then 
     Add  to ; 
  end 
end 

Figure 17. Negative selection algorithm pseudocode 
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Forrest et al.’s original NSA uses a single global affinity threshold, , in conjunction with 

the RCBITS matching rule for each individual ALC [33] within the population of 

ALCs, . The affinity threshold is determined through a process of trial and error, 

whereby the threshold yielding the best system performance is chosen as the target 

affinity threshold. A general framework to aid in choosing an optimum value for  in 

conjunction with the RCBITS rule was provided by Timmis et al. [4], as follows:   

 Create a self training test, , and a self test set, , from a set of self-

strings  such that . 

 Generate the required number of detectors,  (the exact value for  is 

determined mathematically: see section 4.2), for each possible value of 

,  where  is the dimensionality of each ALC. Take note that 

 signifies the total number of random detectors that would need to be 

generated by the NSA in order to create  self-tolerant detectors. 

 Run the NSA using , and test the resultant population of generated ALCs, 

, using  to obtain the values for  and . 

 Once a test has been executed for each individual value of , use the value for  

that yielded the highest  and  rate whilst maintaining an acceptable  and 

 rate. 

 

An equally viable alternative to negative selection is positive selection, which can be 

viewed as the inverse of negative selection. In positive selection, detectors that are not 

self-reactive are eliminated. A minimal amount of work has been conducted on the merits 

of positive selection as opposed to negative selection. A formal framework to address this 

issue has been developed by Esponda et al. [29]. The framework analyses the tradeoffs 

between positive and negative selection with regard to the number of detectors needed to 

achieve a certain coverage of a problem space . In comparing the two detection schemes 

within a particular problem domain, the framework considers: 

 The matching rules used by the algorithms (refer to section 4.2).  

 The generalisation properties induced by negative and positive selection 

algorithms (refer to section 3.5.2). 
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 The redundancy properties induced by both negative and positive selection 

algorithms. In this thesis, the terms redundancy and overfitting mean the same 

thing and can be used interchangeably (refer to section 3.5.3). 

 Diversity (the variance between detectors) within positive and negative selection 

algorithms (refer to section 3.4.2.7).  

 

The work in this thesis concentrates on negative selection, since negative selection 

employs similar mechanisms to positive selection, and examines and builds on each facet 

of the framework created by Esponda et al [29]. 

 

4.2 Effect of Matching Functions  

One of the notable advantages of the  NSA over many of the other AIS algorithms is that, 

besides being theoretically simple, the NSA allows any matching function to be 

employed (although this statement is true for a large majority of AIS algorithms it is not 

true for all AIS algorithms, as discussed in section 4.3). Different matching functions, 

however, induce different detection regions for each ALC, , and thus have a direct 

influence on the performance of the NSA (when the performance of the NSA is assessed 

using the metrics defined in section 3.5).  

   This section discusses two of the most prominent analyses performed by several AIS 

researchers on how matching functions influence the performance of the NSA. The 

original analysis performed by Forrest et al. [33], which is rooted in probability theory, is 

discussed in section 4.2.1. An alternative analysis performed González et al. [38], which 

employs a simple technique to visualize the shape space generated by the NSA utilising a 

particular matching rule, is then discussed in section 4.2.2. 

 

4.2.1 Analysis of the NSA and RCBITS Rule performed by Forrest et al. 

When the NSA was first introduced by Forrest et al. [33], the RCBITS rule was utilised 

due to its simplicity and the ease at which it lends itself to mathematical analysis.  Noting 

that the NSA is probabilistic, Forrest et al. [33] derived five equations that can be used to 

determine how many self tolerant detectors, , need to be generated by the NSA in order 
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to protect a set of self strings, , with a certain failure probability, . Each of these 

equations are presented below (see equations 4.3 to 4.7).  The equations derived by 

Forrest et al. are based on the probability,  , that two random strings match in at least  

positions,  which was defined by Percus et al. [67, 68] as:   

 
(4.1) 

 where  is the number of symbols contained within the alphabet of the strings (for 

example for a binary string  is 2) and  is the length of a string. It should be noted 

that this approximation is only good if . If this constraint is not satisfied, then 

the exact equation must be used [45, 72]. Equation (4.1) exhibits two characteristics: 

there is a linear increase in  as  increases, and there is an exponential decrease in  

as  increases.  

Similar to equation (4.1), Wierzchoń [87] derived an equation to calculate the probability 

that two random binary strings have a hamming distance of  i.e. this equation can be 

used if the HD rule is employed with the NSA:  

 
(4.2) 

It should be noted that equation (4.2) is presented merely for purposes of completeness 

and that equations (4.3) to (4.7) assume that  is calculated using equation (4.1).  

The probability of a random string/ALC not matching any self-strings within S  is given 

by Forrest et al. [33] as: 

 (4.3) 

The probability that  self-tolerant detectors fail to detect an antigen is given by Forrest 

et al. [33] as: 

 (4.4) 

where  is equal to the number of self-tolerant ALCs to train.  

If  is small and  is large, then,  
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 (4.5) 

  

The number of self-tolerant detectors, , needed to attain a certain failure probability, 

, and matching probability, , is given by Forrest et al. [33] as : 

 
(4.6) 

The number of initial ALCs, , before censoring (i.e. applying the NSA to the detectors 

to verify whether any of them are not self-tolerant), needed to generate  detectors is 

given by Forrest et al. [33] as: 

 
(4.7) 

A number of reasons are given by Forrest et al. [33] to illustrate why the NSA is 

desirable, namely: 

 The performance of the algorithm is tuneable in the sense that a desired  can 

be selected and both  and  can be determined as a function of . The 

implication of this is that it is possible to determine the exact number of 

detectors, , needed to protect a particular set of self-strings, , without having 

to guess suitable values for these parameters through a trial and error process. 

Furthermore, the maximum number of random strings, , which need to be 

generated in order to create  self-tolerant detectors can also be determined 

upfront. 

 The size of the detector set does not grow if both  and  are fixed. The 

implication of this is that a set of  self-tolerant detectors only needs to be 

generated once if the problem space remains constant (i.e. the definition of self 

and non-self does not change). 

 There is an exponential increase in the detection probability as the number of 

independent NSAs increases.  
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 Detection is symmetric, implying that the same amount of protection afforded to 

self by the detector set is afforded to the detector set by self, because changes to 

both self and the detector set utilise an identical matching function. 

One of the major disadvantages of the NSA is that if , , and  are fixed, then an 

exponential increase in   can be observed. Forrest et al. state that this can also be 

viewed in a positive light, in the sense that if such a set of  detectors were generated by 

a supercomputer, then it is highly unlikely that a change to self would go undetected [33].      

   Interestingly, based on a study of the suitability of the NSA for network intrusion 

detection, Kim and Bentley [55] cited this factor as a primary reason for the NSA having 

failed to perform effectively.  Due to the NSA suffering from a severe scaling problem 

Kim and Bently concluded that the NSA should rather be used as a filter for invalid 

detectors and not for the generation of detectors. 

Although the approach provided by Forrest et al. [33] works well in predicting the 

behaviour of the NSA with the RCBITS rule, it is not a trivial matter to define 

mathematical equations to predict the , ,  and   associated with a particular 

matching function employed within the NSA. González et al. [38] defined a much 

simpler methodology to study the efficacy of various detection rules within the context of 

the NSA, as discussed in section 4.2.2.  

 

4.2.2 Visualisation of the Shape Space Generated by a Matching Rule 

The method proposed by González et al. attempts to visualise the shape space defined by 

Perelson and Oster [69].  In terms of Perelson and Oster’s shape-space theory, ALCs 

should be distributed throughout the entire shape space such that the detection region of 

each ALC is able to detect a number of structurally similar antigen [69]. The shape space, 

however, is rarely two-dimensional and, consequently, the process of distributing ALCs 

throughout the shape space is not a trivial process. If, however, a mechanism existed to 

map an -dimensional problem space to 2 dimensions it would be much easier to 

distribute the ALCs in a more effective manner.  
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    There are fortunately a number of algorithms that can be used to map multidimensional 

data to a lower dimensionality [63, 74, 83]. For example, Sammon’s mapping attempts to 

preserve inter-pattern distances by minimising an error criterion that differentiates 

between distances amid points in the original data set and distances amid points in the 

new data set.  By preserving the distance between points in the original data set and the 

distance between points in the new data set, the algorithm preserves the 

topology/dynamics of the original shape space [75]. With regard to AIS algorithms, 

Sammon’s mapping holds the following two disadvantages: 

 Sammon’s algorithm is computationally expensive. 

 The resultant mapping rendered by Sammon’s mapping will be intuitive only for 

distance-based detection rules, such as the HD rule.  

González et al. [38] developed a much more elegant and computationally inexpensive 

way to visualise Perelson and Oster’s shape space, as defined below: 

Any point  taken from a problem space corresponding to the domain  can 

be mapped to a binary string, b0,b1…b7,b8,b9..b15, of length 16 where the first eight bits 

encode the integer value  and the last eight bits encode the integer value 

  

As an example of how the mapping can be applied, González et al. [38] considered a 

single detector, 1000000010000000, and generated the areas covered by the detector 

using: 

 The RCBITS rule, with  (leftmost image in Figure 18). 

 The RCHK rule, with   and  (central image in Figure 18). 

 The HD rule, with  (rightmost image in Figure 18). 

The grey areas in Figure 18 represent areas covered by the detector, 1000000010000000, 

similarly the white areas in Figure 18 represent areas not covered by the detector.  The 

mapping defined by González et al. [38] can thus be used to graphically view the amount 

of the shape space covered by one or more detectors employing a particular detection 

rule. 
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Figure 18. Areas covered by a detector 1000000010000000  (this image was taken 

from [75]) 
 

An interesting point noted by González et al. [38] was that the relation between the 

detector and the proximity of the detector’s related detection region was not congruent 

with the natural proximity relation in a real-valued two-dimensional space, making it 

difficult to achieve an optimal distribution of a set of detectors. By using the mapping to 

study the results of binary matching rules with regard to different training sets, González 

et al. [38] drew the following conclusions: 

 The binary matching rules studied, namely, RCBITS, RCHK, and HD, cannot 

produce a good generalisation of the self-space, resulting in poor coverage of the 

non-self space. The reason that the binary matching rules do not produce a good 

generalisation of the self-space is that they are not able to accurately capture the 

affinity relation employed in the real space within the self/non-self (binary 

space). 

 The matching rule used by NSA needs to be chosen in such a way that the 

affinity relationship between points in the problem space is preserved when the 

relationship is transposed to the self/non-self space. 

This section discussed how the effect of matching functions on performance of the NSA, 

introduced by Forrest et al. [33], can be studied both mathematically (section 4.2.1) and 

visually (section 4.2.2).  The next section discusses several hybrid detector-generating 

techniques introduced by AIS researchers to overcome the severe scaling problem 

exhibited by the NSA. 
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4.3 Alternative Detector-generating Techniques 

A number of issues inherent to the original NSA were noted by Timmis et al.  [4], namely 

 It is time consuming to generate a large number of candidate detectors and 

examine each individual candidate detector to determine whether or not it is self 

reactive (activated by a self string) and whether or not the detector can be added 

to the repertoire of detectors, . 

 The number of detectors required to afford a relatively satisfactory protection 

level increases exponentially as the size of the self-set increases if the failure 

probability is fixed. This sentiment has been echoed by Kim and Bentley [55]. 

This problem is exacerbated when the length of the binary detectors increases. 

 No process is incorporated to ensure that there is no redundancy. This has a 

direct consequence on the overfitting and generalisation behaviour of , 

especially because of  being fixed. 

Several variations of the NSA have come into existence in an attempt to minimise some 

of the issues mentioned above. Each of the alternative NSAs mentioned below have a 

major disadvantage, being that the only detection rule that can be employed by these 

algorithms is the RCBITS detection rule. This section discusses some of the most popular 

variations of the NSA starting with the linear time detector-generating algorithm in 

section 4.3.1, followed by the greedy detector-generating algorithm in section 4.3.2, an 

algorithm based on the discriminative power of a detector in section 4.3.3, and the 

NSMutate algorithm in section 4.4. 

 

4.3.1 Linear Time Detector-generating Algorithm 

The linear time detector-generating algorithm developed by D’haeseleer et al. [11] 

obtained its name from the fact the algorithm executes in linear time with respect to the 

size of the input, , where , the length of an ALC, and , the affinity threshold, are 

constant. D’haeseleer et al. [11] used the following terminology within the algorithm.   
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The algorithm consists of two distinct phases. Phase 1 is concerned with solving a 

counting recurrence, whereas phase 2 generates the actual detector strings. 

Let  a binary string of length , for example, 10111. 

Let ŝ denote a string without its leftmost bit, for the above example, ŝ  . 

Let š denote a string without its rightmost bit, for the above example, š  . 

Let , where  denote a binary string with  appended to the end of the string. 

For the above example, if , then . 

Let , where  denotes a binary string with  appended to the beginning of the 

string. For the above example, if , then . 

A template of order  is a string of length  consisting of   blank symbols. A 

template is specified by using the symbol, , where  denotes a string composed of  

bits and  denotes the starting position of the  bits. 

A right completion is a string , such that all the right blanks are replaced by valid bits.  

A left completion is a string , such that all the left blanks are replaced by valid bits. 

Let  be a set of all possible binary strings of length .  can easily be calculated by 

constructing a truth table of all binary strings of length .  

Let  be the number of right completions of  unmatched by any string within the 

self-set  where the rows of  are equal to all of possible binary strings of length , and 

the columns of  are equal to all possible positions of ;  in total. 

Figure 19. Terminology used by the linear time detector-generating algorithm 
 

Phase 1: Counting a recurrence relation 

Pseudocode for phase 1 is given in Figure 20. Figure 21 illustrates how  is created and 

initialised using phase 1 of the linear time detector-generating algorithm on a finite set, , 

of self strings. Figure 21 shows two tables: the table on the left, , is comprised of the 

entire self-set of strings and the table on the right represents the matrix, .                                          
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Create a matrix, , such that the rows of the matrix are equal to all possible bit patterns 

of size   and the columns of the matrix are set to all of the valid window positions for the 

bit patterns,   in total; 

The matrix is initialised as follows: 

    for each template   do 

          for    to  do 

              if    matches  then 

                   ; 

              else       

                   ; 

         end 

      for each string  where  do 

           if   matches  then 

                ; 

           else   

              Update using the following recurrence relation:  ŝ ŝ ; 

          end 

       end 

    end 

end 

Figure 20. Pseudocode for phase 1 of the linear time detector-generating algorithm 
 

In Figure 21, , and the  column was generated by constructing a truth table for all 

binary strings of length . Each row of the  column corresponds to a window, , or  
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bits.  Each row within a particular column  of the  table represents the number of 

right completions  unmatched by any string within the self-set, . 

 

             
001110  000 0 0 0 1 
001101  001 0 0 2 0 
001111  010 0 3 0 1 
010001  011 0 0 0 1 
010101  100 0 0 1 0 
011100  101 3 0 2 0 
011111  110 0 3 0 0 
100001  111 3 0 0 0 
110001       
110100       

 

Figure 21. Application of phase 1 of the linear time detector-generating algorithm 
 

Phase 2: Generation of strings unmatched by  

Once the recursive process has been completed for  to , each cell within 

 denotes the number of unmatched bit strings starting with the  bit pattern. It should be 

noted that “.” is merely a placeholder representing any string . The matrix  is 

in effect a partitioning of the space of unmatched strings in  for each initial string 

beginning with the bit pattern specified by “.”. 

Each subsequent column from  to  can then be viewed as a further 

partitioning of the space.  Following this reasoning the total number of detector strings 

that are unmatched by a particular bit string s is given by  

 

   (4.9) 

Pseudocode for phase 2 of the linear time detector-generating algorithm is given in Figure 

22. 

 

 
 
 



CHAPTER 4. THE NEGATIVE SELECTION ALGORITHM 64 

 

 
 

A random detector, ,  can be created as follows: 

Construct   so that    is equal to all possible binary strings of length ;  

Calculate  ; 

Randomly select a number, ; 

Find a string  such that ; 

Set the first  bits of  equal to ; 

for  to  do 
    if  falls in the partition   then 

         ; 

 ; 

     else if  falls in the partition   , then  

        ; 

        ; 

    end 

   if   then 

      ; 

      ; 

  end 

       else if   then 

            ; 

   ; 

    end 

end 

Figure 22. Pseudocode for phase 2 of the linear time detector-generating algorithm 
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To illustrate how a detector is generated by phase 2, consider Figure 23 (note that Figure 

23 was generated using the information from Figure 21). The following notation is used 

in Figure 23 to represent a window: <window> (<number of self-binary strings  

matched by the window>,{<implicit detector numbers detected by the window>}, where 

“<” and “>” are placeholders.  

111(3,{4,5,6})

110(3,{4,5,6})

111(0,{})

101(2,{4,5})

100(1,{6})

011(1,{4})

010(1,{5})

001(0,{})

000(1,{6})

1:

2:
3:

4:

 
Figure 23. Implicit portioning used by phase 2 of the linear time detector-generating 

algorithm 
 

Detector 4, in Figure 23, can be generated by tracing a route from the root of the tree to 

the leaf that detects detector 4. The resultant detector is created by constructing a string 

comprising of the first  bits of the root, followed by the last bit of each node visited 

along the path traced from the root node to the leaf node, which detects detector 4. That 

is, detector 4, 111011, is constructed by taking 111, the first  bits of the root, and the last 

bit from nodes: 2, 3 and 5 respectively. 

 

4.3.2 Greedy Detector-generating Algorithm  

The greedy detector-generator algorithm of D’haeseleer et al. [11] aims to spread 

detectors as far apart as possible to achieve maximal coverage of the problem space. The 

greedy detector-generating algorithm is similar to the linear time detector-generating 

algorithm in that it consists of two phases.  The greedy detector-generating algorithm 
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creates two matrices,  and , based on a set of self-strings, , and a set of detectors, 

, respectively. The process followed to create a  matrix is given in Figure 24. 

Create a matrix  such that the rows of the matrix are equal to all possible bit patterns of 

size  and the columns of the matrix are set to all of the valid window positions for the bit 

patterns,  in total; 

Create a matrix  equal to  (the  represents the number of non-matching left 

completions for a template ); 

Populate  using the algorithm in Figure 20; 

Populate  using the algorithm in Figure 20 (Note that the recurrence relation:   

ŝ ŝ  in Figure 20 must be replaced with:  š]  š] 

Create an empty matrix  structurally similar to  (each entry, , represents the 

number of unmatched fully specified bit strings corresponding to the template represented 

by ); 

Populate  using  ; 

Figure 24. Pseudocode for generating a D matrix 
 

Pseudocode for phase 1 of the greedy detector-generating algorithm is given in Figure 26. 

Construct an empty matrix  based on  (the  and  matrices in the algorithm in 

Figure 24 are constructed by using ); 

Populate  using the algorithm in Figure 24; 

Construct an empty matrix  based on  (the  and  matrices in the algorithm in 

Figure 24 are constructed by using ); 

Populate  using the algorithm in Figure 24; 

Figure 25. Pseudocode for phase 1 of the greedy detector-generating algorithm 

 

Once the  matrices have been created, detectors are generated according to the 

algorithm given in Figure 26 to achieve maximal coverage. 
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for each detector to be generated do 

begin 

    Select the largest entry in  ( if there is a tie between entries, an entry is selected at   

     random); 

    Starting at this entry/template, transverse the row, , corresponding to the selected  

    entry, from both the left and the right; 0 or 1 is  added to the template each time  

    depending on which template contains the highest number of unmatched strings (note  

    that a template may be selected only if it is a valid detector template, that is, if it   

    contains a 0 entry in the array ); 

    Add the generated detector to ; 
     Update matrix  by: 

  Setting the entries that match the newly generated detector in the  and  matrices  
         used to construct  to 0. 

         Re-generate  by executing the portion of the algorithm given in Figure 24 that   
         generates  the  matrix; 

end 

Figure 26. Pseudocode for phase 2 of the greedy detector-generating algorithm 
 

The linear time detector-generating algorithm and the greedy detector-generating 

algorithm were studied by D’haeseleer et al. [11] under a number of different conditions, 

with the following conclusions being drawn: 

 Large alphabet sizes, , make it increasingly difficult to choose an optimal 

value for the affinity threshold, . 

 Large values of  and  increase the computational complexity of both the linear 

time detector-generating algorithm and the greedy detector-generation algorithm. 

 To minimise the number of holes produced by both algorithms,  must be chosen 

such that . 
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 A lower bound on the number of detectors that need to be generated by the linear 

time detector-generating algorithm is given by equation (4.6). Interestingly, the 

lower bound defined for the number of detectors needed by the greedy detector-

generating algorithm is defined by . An in-depth theoretical analysis of 

the linear time detector-generating algorithm and the greedy detector-generating 

algorithm can be found in [12]. 

 

4.3.3 Discriminative Power of a Detector under the RCBITS Rule 

Wierzchoń [87] defines the discriminative power of a detector as the number of unique 

strings detected by a detector using the RCBITS rule. The discriminative power of a 

detector can be found by counting the number of unique strings recognised by each, , 

induced by a detector, . As an example, consider the detector 001101 and let .The 

detector induces the following templates:  

 , , , and .The first template,  

, recognises   unique strings. The second template, , 

matches strings   and .  However,  is also recognised by 

. Hence the total number of strings recognised by  is halved. 

 Following this reasoning, Wierzchoń [87] found that the discriminative power of a 

receptor is equal to: 

 (4.10) 

Two additional characteristics affecting the discriminative power of a detector are the 

number of holes induced by the RCBITS rule and the number of detectors that cannot be 

produced because they would be self-reactive. Wierzchoń created two algorithms to 

calculate each measure. These are discussed in sections 4.3.3.1 and 4.3.3.2 respectively. 
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4.3.3.1 Counting the Number of Holes in a Self-set  

The RCBITS rule induces a number of holes (see section 3.4.2.4). Wierzchoń [87] 

created an algorithm to count the maximum number of holes that can exist within a self-

set, , by dividing   into two subsets: 

 : A set of all windows/templates matching at least one self-string, . 

 : A set of all windows or templates that do not match a single string,
. Note that candidate detectors are constructed from rnonselfS . 

Using  a graph, , is constructed using the algorithm in Figure 27. 

 

Create an empty graph ; 

for each string   do 

      Add each distinct template, , induced by  to level  of ; 

end  
for   to  do  

     for every   at level  do 

          Create a left child for  as ; 

           if    then  

           Add  to ; 

       end 
         Create a right child for  as ; 

      if    then 

         Add  to ; 

    end 
         Create an edge between  and ; 

         Create an edge between and ; 

   end 
end 

Figure 27. Pseudocode for creating a graph of all possible templates induced by a 
self-set S 
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Figure 28 shows an example of the algorithm presented in Figure 27 applied to the binary 

string 001101. 

 

 

 

 

 

 

 

Figure 28. A binary tree constructed for 001101 

 

The number of self-strings induced by   can be found by counting the number of 

distinct paths from each root in  to each leaf. The number of holes in  is then equal to 

, i.e. the number of strings induced by . 

 

4.3.3.2 “FindIneffective” Procedure 

Owing to the distribution of self-strings within the problem space, a situation can arise in 

which a valid detector cannot be constructed from a root template chosen from , 

because all the leafs of the template belong to self. To illustrate this, consider the set of 

self-strings,  

 . 

Using the algorithm in Figure 27 for the binary template, , to construct a 

tree, Figure 29 shows paths that will generate valid detectors (using solid edges) and 

invalid paths (using dashed lines).  

An algorithm, called the FindIneffective algorithm, which uses rnonselfS   to determine 

which binary templates   cannot be used to generate valid detectors was 

developed Wierzchoń [87]. The FindIneffective procedure is outlined in Figure 30. 

 

001*** 

*010** *011** 

**100* **101* **110* **111* 

***000 ***001 ***010 ***011 ***100 ***101 ***110 ***111 
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Figure 29. Binary tree constructed for the non-self template t1,000 
 

for each   do 

  Check the parent  of ; 

  if the parent , but its children are members of  then  

       add   to ;  

           remove   from  ; 

   end 

   Check the children  of ; 

   if a child  , but both its parents are  then  

       add  to ; 

            remove   from ; 

    end 

end 

Figure 30. FindIneffective procedure 

 

000*** 

*000** *001** 

**000* **001* **010* **011* 

***000 ***001 ***010 ***011 ***100 ***101 ***110 ***111 
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Wierzchoń’s methods [88] can be combined to generate a set of detectors which 

maximises the discriminative power of a receptor.   

 

4.4 Negative Selection with Mutation Algorithm 

The objective of the negative selection with mutation algorithm (NSMutate) proposed by 

De Castro and Timmis [23], is to increase the speed at which the NSA converges on a set 

of detectors  through the introduction of a mutation step (recall from section 4.2.1 that if 

 , , and  are fixed, then there is an exponential increase in ). The algorithm 

mutates self-reactive detectors for several iterations until they are no longer activated by 

any . Each candidate detector has a detector lifetime indicator determining the 

number of mutation attempts that can be made before the detector is finally discarded. 

Pseudocode for the algorithm is given in Figure 31. 

 

The mutation is adaptive and is proportional to the affinity between the candidate detector 

and the matching self-element. The higher the affinity (between the detector and the self-

element) is, the more the detector is mutated and, similarly, the lower the affinity is, the 

less the detector is mutated. This allows the detector to take larger or smaller jumps 

within the search space, depending on the fitness of the detector. The mutation 

probability can be calculated by using 

 
(4.11) 

where  is a detector,  is a self string/vector, is the maximum affinity of , and 

 represents any matching function (for example the RCBITS rule). The 

mutation step can be performed using a random mutation algorithm as summarised in 

Figure 32 or an inorder mutation algorithm as summarised in Figure 33. 
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Let counter  be the number of self-tolerant artificial lymphocytes to train; 

Let  be an empty set of self-tolerant ALCs; 

Let mutationSteps be the number of times that a self-tolerant detector is mutated; 

Create a training set  consisting of self-patterns; 

while   do 

     Randomly generate an ALC, ; 

     matched := false; 

        for each  do 

                if   is greater than the affinity threshold  then 

                 matched:= true; 

                     for    to mutationSteps do 

                         Mutate ;   

                         if   then 

                          break; 

                     end 

                end 

        end 

       if  matched = false then 

           Add   to ; 
       end 
   end 

Figure 31. Pseudocode for the NSMutate algorithm 
 

Let  be the   element of a detector   ; 

Let  be a uniform random number between  and ; 

for    to   do 

    if  then 

        , where denotes the Boolean NOT operator; 

    end 

end 

Figure 32. Random mutation algorithm for a binary string 
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Select mutation points,  ; 

  for   to   do 

       if  then 

           ; 

    end 

end 

Figure 33. Inorder mutation algorithm of a binary string  

 

The fact that the time complexity of the NSMutate algorithm degrades as  

becomes larger was noted by De Castro et al. [23]. An additional restriction is also 

imposed on the algorithm by using a binary alphabet, i.e. if  then each 

mutation performed on a particular detector will merely flip the detector to its inverse and 

back. It was also found by De Castro et al. [23] that the time complexity of the algorithm 

increased as a detector’s life-time indicator increases. The benefit of the NSMutate 

algorithm is that it reduces the number of candidate detectors generated when it is 

computationally more expensive to generate a detector than to mutate a detector. 

In their analysis of the NSMutate algorithm, Ayara et al. [4] came to the following 

conclusions: 

 The number of candidate detectors increases exponentially as the size of the self-

set increases. 

 If the self-set is randomly distributed within the search space, there is an equal 

probability of the random detector mutating either towards or away from the 

self-set. This results in the performance of the NSMutate algorithm being 

equivalent to the original NSA. 

 The NSMutate algorithm is more tuneable than the NSA, and good performance 

can be obtained by tuning the algorithm’s parameters for a specific data set. 

The algorithms discussed thus far include the original NSA by Forrest et al. and some of 

its variants. 
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Although these algorithms are quite different from each other, the problem space in 

which they reside is the same; that is, binary representations are used for both self and 

non-self strings. The next section briefly discusses the real-valued negative selection 

algorithm.  

 

4.5 Real-valued Negative Selection Algorithm 

The original NSA was developed for binary spaces and performs very well if the problem 

space is categorised. However, the NSA does not perform well when a real-valued 

problem is mapped to a binary space. The primary reason for this deficiency is that the 

relation between the detector and the proximity of the detector’s detection region is not 

congruent with the natural proximity relation in the real-valued space [75]. The real-

valued NSA was informally proposed by Ebner et al. [25], but Gonzalez et al. were the 

first to apply the real-valued NSA [80, 82].  

Each detector is represented as a hyper-sphere in an -dimensional real-valued space, 

where the centre of the hyper-sphere is indicated by the coordinates of  and the radius of 

the hyper-sphere is indicated by , the affinity threshold. The affinity-matching function 

between a detector  and an antigen  is represented by the Euclidean distance, where  

matches  if the Euclidean distance between  and  is less than . 

The algorithm generates detectors in the same manner as the original NSA presented in 

Figure 17, except that each detector is randomly generated within  and 

 is used to determine the Euclidean distance between  and . An 

alternative real-valued NSA, the V-detector algorithm, which generates variable size 

detectors, was developed by Ji and Dasgupta [53]. For a detector , the radius  of  

is decided by the Euclidean distance to the closest self-sample by the V-detector 

algorithm.  

Pseudocode for the V-detector algorithm is given in Figure 34. 

Ji and Dasgupta [53] showed that if the number of detectors, , remained constant, then 

the V-detector algorithm has the same complexity as the real-valued NSA. The 

experiments performed by Ji and Dasgupta [53] concluded that the V-detector algorithm 
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has a much better DR and FR rate (see section 3.5.1) than the real-valued NSA. The 

following advantages provided by the V-detector algorithm over the real-valued NSA 

were noted:  

 The algorithm generates fewer detectors to cover a particular problem space. 

 The algorithm is better at covering holes. That is, detectors with smaller affinity 

thresholds cover holes, whereas detectors with larger affinity thresholds cover 

large regions of the non-self space. 

 The coverage estimate, , can be used to predict the algorithm’s performance 

because it provides a means to explicitly specify the percentage of the problem 

space that must be protected/covered by the resultant set of generated detectors. 

 

When Stibor et al. [81] compared the efficacy of the V-detector algorithm to statistical 

anomaly detection techniques (the Parzen-Window and one-class support vector machine 

techniques), they discovered a number of interesting facts about the termination 

conditions of the V-detector algorithm stated by Ji and Dasgupta [53].  With reference to 

the pseudocode of the V-detector algorithm in Figure 34, two termination conditions are 

reached when  or when : 

 The termination condition  is never satisfied, because  will never 
have a value greater than  which thus invalidates the condition as a termination 
condition. 

 The probability of  being satisfied is decreased when  increases or 
when  increases.  
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Let   be the estimated coverage (percentage of data points covered) of the problem 

space by a set of detectors ; 

Let be the maximum coverage (percentage of data points covered) of the problem 

space by a set of detectors ;  

while   do 

      ; 

      ; 

      ; 

      Randomly generate an ALC, ; 

      for each  do 

            if   the radius of  , , then 

                 ; 

                  if    then 

                 return ;                 

           end 
        end 
   end 
   for each self pattern,  do  

          if    then 

                ; 
     end 
   if   then 

             Set the affinity threshold  of  equal to ; 

         Add  to ; 

   end 
        else  

            ; 
    end 
          if      then 

            exit the algorithm;  

      end 
end 

Figure 34. Pseudocode for V-detector algorithm  
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4.6 Conclusion 

The original NSA developed by Forrest et al. [33] was prolific in the sense that it inspired 

an acute interest in AIS and is one of the most popular AIS algorithms to date. The 

algorithm is conceptually simple and draws from the process of T-cell maturation in the 

thymus within the NIS.  

The main advantages of the NSA are that self-data are sufficient to train the algorithm, 

and the algorithm does not impose a specific detection rule. One of the major pitfalls of 

the original algorithm (which used the RCBITS rule) is the severe scaling problem, that 

is, when , , and  are fixed, an exponential increase in  has been observed. This 

effectively translates to a scenario in which a large number of redundant detectors will 

need to be created in order to create  detectors that guarantee acceptable  and  

values. 

This chapter provided an in-depth overview of: 

 The original NSA, including a mathematical analysis of the properties exhibited 

by the original NSA. 

 A class of deterministic NSAs (the linear time detector-generating algorithm and 

the greedy detector-generating algorithm), which exploit the mathematical 

properties induced by the RCBITS rule within a binary shape space.  

 Algorithms to examine the discriminative power of a receptor under the RCBITS 

rule operating within a binary shape space, in addition to counting the number of 

holes induced by the RCBITS rule. 

 A version of the NSA that employs a mutation step in an attempt to mutate a 

self-reactive detector away from the self-space. 

 A means with which to visualise the effect of binary matching rules within the 

NSA. 

 A discussion of how randomly generated permutation masks affect the NSA. 
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 A discussion of real-valued NSA, as well as a variant of the real-valued NSA, 

called the V-detector algorithm. 

The next chapter discusses a new affinity matching function, the feature-detection rule, 

which infers relationships between the constituents of an antigen to decide whether the 

antigen is matched by a particular detector. The thesis will show that when used as the 

affinity matching function of the original NSA, introduced by Forrest et al. [33], the 

feature-detection rule yields superior performance over the RCBITS, HD and RCHK 

affinity matching functions (see chapter 6).
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Chapter 5 
The Feature-Detection Rule 

 

“If I have seen further it is by standing on the shoulders of giants.“ 

- Sir Isaac Newton 

 

The feature-detection rule derives its name from the fact that it infers relationships 

between the constituents of an antigen to decide whether the antigen is matched by a 

detector.  

The feature-detection rule is discussed in section 5.1. The mathematical properties 

associated with the feature-detection rule is then discussed in section 5.2. This is followed 

by a discussion of the interrelationship between the feature-detection rule and other 

affinity-matching functions discussed in this thesis (refer to section 3.4.2).  This chapter 

concludes with a discussion on positional-bias introduced by the feature-detection rule 

and how it is addressed in this thesis. 

 

5.1 Matching under the Feature-detection Rule 

The feature-detection rule differs vastly from the RCHK, HD, and RCBITS rules in that it 

uses the interrelationships between antigen fragments to decide whether an antigen is 

detected by a candidate detector. To illustrate the characteristics of the feature-detection 

rule, consider the following fictitious study: 

Suppose that an experimental study was carried out on a sample of individuals who had 

developed cancer and a sample of individuals who had not developed cancer in their 

lifetimes. The purpose of the study was to develop an algorithm that could deduce 

whether a person had indeed developed cancer by looking at an instance of the 

attributes/characteristics captured by the experimental study.  Assume that the study 

interviewed each individual within the sample and captured the following data:
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 Attribute 1: Does the individual smoke? 

 Attribute 2: Does the individual work more than 60 hours per week? 

 Attribute 3: Does the individual have a companion? 

 Attribute 4: Does the individual drink alcohol more than six times per week?  

 Attribute 5: Does the individual take frequent holidays?  

 Attribute 6: Does the individual sleep at least eight hours per day? 

 Attribute 7: Does the individual eat five portions of fruit and vegetables each 

day? 

 Attribute 8: Does the individual exercise less than three times per week? 

Some of the attributes are relevant to the problem that the algorithm is trying to solve, 

whereas others are irrelevant. It is also possible that a group of attributes and the value 

that each attribute carries are relevant to the outcome of the problem. 

    Consider Figure 35, which depicts such a group of attributes and their relative values 

(note that each attribute is a binary attribute). Figure 35 represents a particular individual 

having cancer if 

 the individual smokes, 

 the individual drinks alcohol more often than six times per week, 

 the individual sleeps less than eight hours per day, and 

 the individual does not exercise three times per week. 

 

1 0 0 1 0 0 0 1

1 2 3 4 5 6 7 8  
Figure 35. Overview of the feature-detection rule 
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The feature-detection rule refers to the characteristics described in the above example as 

features. From the above, the values of features 1, 4, 6 and 8 are relevant to the outcome 

of the problem, whereas the values of features 2, 3, 5 and 7 are irrelevant to the outcome 

of the problem. If an AIS algorithm were used to generate detectors to determine whether 

an individual has cancer, based on the values of the 8 attributes, it would in fact be more 

effective to: 

 pre-process each self-string, comprised of all 8 features, into a shorter self-string 

comprising of features 1, 4, 6, and 8, and 

 generate detectors, of length 4, against the pre-processed self-strings by 

employing the RCBITS rule. 

The above example illustrates the premise upon which the feature-detection rule is based. 

The feature-detection rule is applied by: 

 pre-processing a string/vector into a shorter string/vector consisting of features 

relevant to the outcome of the problem (relevant features can be determined by a 

domain expert or by using mathematical techniques such as principle component 

analysis) currently under consideration (see the definition for  below); and 

 applying the RCBITS rule to the newly generated string/vector (consisting of 

relevant features) and a detector,  to determine whether the affinity between  

and the newly generated string/vector is greater than , the affinity threshold. 

The definition of the feature-detection function, , is formally stated below: 

Let  be a function such that, given a binary vector  

and a vector of integer positions , where , the function 

constructs a vector    by using the positions stipulated in . In 

other words the feature-detection rule generates a vector   by selecting elements of   

as dictated by . For example if  and   then 

. 

Now consider an antigen,  (binary vector), a detector 

 (binary vector) and a vector  (integer vector) of dimensionality , where 
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the dimensionality of the problem space/antigen is , the dimensionality of a detector is 

,  and  comprises a subset of feature positions of , that is, 

, where each  appears only once and  and . 

Antigen  and detector  match under the feature-detection rule, , if 

.  In other words antigen  and detector  match if there are 

 contiguous features. 

From Figure 35, consider the example where if 

  
  
  
  
 
Then  

  
  
  
  
 

The following can be stated for the example above assuming that the feature-detection 

rule is not used: 

 Depending on which features are related and whether they occur in close 

proximity to one another, the RCBITS rule would not be a good choice of an 

affinity-matching function between  and . For example, if an exclusive 

relationship existed between feature 1 and feature 8, then only one 

  with  would be able to detect . But such a detector is 

too specific to antigen, , and overfits  (refer to section 3.5.3). The same 

applies to the RCHK rule, since the RCHK rule subsumes the RCBITS rule [29]. 

 The HD rule has the ability to capture the relationship between different features 

only if the difference among the features with no relationship between  and  is 

less than a particular threshold, . To illustrate what is meant by this statement, 

suppose that there is a relationship between feature 1 and feature 8 and no 

relationship between features 2, 3, 4, 5, 6 and 7, and  that . The HD rule is 
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based upon the number of bits that differ, thus feature 1 and feature 8 must be 

equal in both  and  and at most 2 features between feature 4, 5 ,6 and 7 may 

not be different. 

The next section discusses the matching probability, , induced by the feature-detection 

rule. 

 

5.2 Matching Probability and Discriminative Power of the Feature-detection Rule 

The discriminative power of the feature-detection rule leverages the concepts described in 

section 4.3.3. Consider the following scenario, where  

 
 

 
 

The total number of strings that can be matched by  can be depicted by constructing two 

trees for the two templates induced by , i.e.  and , as 

shown in Figure 36. The total number of strings that can be matched by  can be 

calculated by noting that each ‘*’ can represent either 0 or 1, meaning that the template 

can match  strings (this can be confirmed by counting the number of leafs shown in the 

trees of Figure 36). The same applies to . 

 If the logic presented above is followed, then theoretically this means that  should 

match  strings. However this is not the case, because the total number of 

unique strings that the conjunction of both templates can match is in fact . 

This is because  can detect only half of the strings that template  detects (owing to 

overlapping strings). The number strings that overlap between templates  and   are 

given in bold in Figure 36 (at the end of the chapter). 

The reason for the reduction in the discriminative power of the detectors is very similar to 

the argument presented by Wierzchoń [87] (refer to section 4.3.3). That is, 

 induces two templates,  and .  

Similarly,    induces two templates,  and  
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. However, since , the number of strings that  can detect is 

effectively halved. This argument can be generalised to any arbitrary detector . 

The probability that a detector, , matches an antigen, , can then be calculated by noting 

that a detector  of length  induces  templates. The first template can 

recognise   strings and each subsequent template (  in total) can recognise only  

  strings. There are  strings in total. Therefore, 

  

 
 

 
(5.1) 

 

To compare the matching probability of the feature-detection rule with the other detection 

rules discussed in this thesis (refer to section 3.4.2), the matching probabilities for the 

RCBITS and RCHK rules are repeated below. 

For the RCBITS rule:  

 

 

 

 
(5.2) 

 

The matching probability, , of the RCHK rule can easily be calculated by noting that 

the length of a detector under the RCHK rule is equal to the affinity threshold, . Thus, 

each detector of length  can recognise strings. 

For the RCHK rule: 
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(5.3) 

   

From equations (5.1) and (5.2), the matching probability, , under the feature-detection 

rule is greater than  under the RCBITS rule if: 

 

 

 

 

Furthermore, from equations (5.1) and (5.3) the matching probability, under the 

feature-detection rule is greater than  under the RCHK rule if: 

 

 

 

 

 

Interestingly,  for the feature-detection rule is calculated in a similar manner to  for 

the RCBITS rule (see equations (5.1) and (5.2)). The feature-detection rule is therefore 

expected to suffer from the same scaling problems as the NSA (from a purely 

mathematical viewpoint).  

The matching probability, , for the HD rule was given by equation (4.2) (repeated 

below for the reader’s convenience), 

 

 (4.2) 
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From equations (5.1) and (4.2), the matching probability, , under the feature-detection 

rule is greater than  under the HD rule if: 

 

 

 

It can be shown empirically that for any , the 

matching probability,  under the feature-detection rule is greater than the matching 

probability  under the HD rule only if the following conditions hold true: 

 , and , resulting in the left hand side of the equation being equal to a 

factor of  and the right hand side of the equation being equal to  or 

 values of   are sufficiently small enough and values of   are sufficiently large 

enough (being almost equal to ) resulting in the left hand side of the equation 

being greater than or equal to 1.0. 

 

Taken note that there is no significance attached to the number 100000, apart from the 

fact that it is large enough to cover most of the scenarios under which either the HD rule 

or feature-detection rule would ever be applied. A mathematical proof needs to be 

generated, so that the statement holds true for any arbitrary number, and is not within the 

scope of this thesis. 

 

When the feature-detection rule is applied, a value of  should be chosen such that 

 and , because 

 if , then the feature-detection rule is equivalent to the RCHK rule; and 

 if , then the feature-detection rule is equivalent to the RCBITS rule.   

If  and  (which will generally be the case) then  

 , under the HD rule will be greater than  under the feature-detection rule for 
most cases; and 
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 , under the RCHK rule (the RCHK rule subsumes the RCBITS rule) will be 
greater than  under the feature-detection rule for all cases. 

 

 This effectively means that the probability of a randomly generated detector matching a 

self-string under the feature-detection rule is lower than that of a detector using either the 

RCHK , RCBITS, or HD rules.  

 

5.3 Placing the Feature-detection Rule into Context 

The most common affinity-matching functions used in the NSA, namely, the RCBITS 

and the RCHK rules, induce holes, which can be overcome by using a permutation mask 

(refer to sections 3.4.2.4 and 3.4.2.7) against an antigen to reorder the bits of the antigen. 

Even though permutation masks are a mathematically feasible means of overcoming both 

crossover and length-limited holes, major flaws exist in the way in which they are 

implemented. Permutation masks are currently implemented by generation of an 

individual random permutation mask and application of the individual random 

permutation mask to a population of detectors generated under the NSA. A consequence 

of the application of permutation masks in this manner is that their benefits are occluded 

by what appears to be a shattering of the entire self-space (by randomly changing the 

shape of the entire self-space with a randomly generated permutation mask). The 

shattering of the self-space attributed to permutation masks by Stibor et al. [80] can be 

explained as follows: 

 A permutation mask changes the form of a shape space. Using a single random 

permutation mask for an entire set of detectors generated under the NSA is 

equivalent to taking a wild guess by trying to infer a single and meaningful 

alternate representation for the entire problem space. There may in fact be 

multiple representations of the problem space that are relevant to the problem at 

hand. For example, there may be multiple relationships involving entirely 

different subsets of features within a particular problem domain. If the RCBITS 

rule and the RCHK rule are considered in the same context as the problem 

presented in section 5.1, then two things would immediately become evident: (1) 
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the RCBITS rule and RCHK rule can find relationships only between features 

that are adjacent, and (2) a random permutation of the problem space will in fact 

increase the efficacy of both the RCBITS and the RCHK rule, because the result 

of the permutation in respect of the problem space can render two non-adjacent 

attributes adjacent. More random permutations are thus equivalent to finding 

more relationships between non-adjacent features. 

 It was stated by Stibor et al. [80] that finding a meaningful permutation mask to 

apply to an entire set of detectors is computationally expensive and, in fact, 

infeasible. Although their statement does hold true, the problem of finding a 

meaningful permutation mask can be approached from another angle: Following 

the argument presented in the previous point, the RCBITS rule and the RCHK 

rule should actually be viewed as affinity-matching functions, which exploit the 

relationships that exist between adjacent features. Relationships between non-

adjacent features can be discovered by the application of a random permutation 

mask to an individual detector. Following the argument of Stibor et al. [80], the 

aim should be to discover several permutation masks based on the conjunction of 

the problem space and the features of an individual detector, meaning that the 

problem is more computationally expensive than previously thought. Finding a 

set of meaningful features, , to use in the feature-detection rule is equivalent to 

finding a meaningful permutation mask to apply to a particular problem domain. 

With the only difference being that the length of , , is less than or equal to the 

length of an artefact (an antigen, detector or self-string), , resident within a 

particular problem domain.  

 The approach used in this thesis, which is surprisingly simple and works 

exceptionally well, is to couple the generation of a random permutation mask to 

the generation of each individual detector under the NSA. In other words, a 

detector is generated together with a random permutation mask and is checked 

against the entire self-set to ensure that the detector is not activated by a self-

string before being added to the resultant repertoire of detectors. This means that 

the NSA is tasked with learning a permutation mask for each detector being 

generated. The same approach is used when utilising the feature-detection rule in 
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the NSA, i.e. the generation of meaningful features (features whose values have 

an impact on the outcome of the particular problem under consideration) is 

coupled to the generation of each individual detector. The NSA is thus 

performing feature extraction in addition to ascertaining whether or not a 

detector is activated by self. 

 

From the above and equations (5.1) and (5.2) it is evident that if , then a detector 

generated under the feature-detection rule is equivalent to a detector generated under the 

RCHK rule  (the RCHK rule is used because it subsumes the RCBITS rule [29]) , where 

each detector under the RCHK rule has a random permutation mask. But, if , then 

the discriminative power of a single detector under the feature-detection rule is equal to 

 RCHK detectors. The feature-detection rule is computationally less expensive than 

the RCHK rule (where each detector has a random permutation mask), because the latter 

case needs to generate a random detector and a random permutation mask, as well as to 

apply the permutation mask to an antigen, before presenting the antigen to a candidate 

ALC. If  then one detector generated under the feature-detection rule is equivalent 

to  RCHK detectors. Since the feature-detection rule is equivalent to the RCHK 

rule, with each detector having a random permutation mask in the worst case (when 

), it follows that the feature-detection rule cannot induce either length-limited or 

crossover holes. 

The next section explores how the feature-detection rule introduces positional bias. 

 

5.4 Positional Bias introduced by the Feature-Detection Rule 

The feature-detection rule is a more efficient form of the RCBITS rule, in that the 

feature-detection rule applies the RCBITS rule to a set of features  of an artefact (which 

is an element of the problem domain), as opposed to all of the attributes comprising the 

artefact. The RCBITS rule however, introduces positional bias as discussed in this 

chapter and by Freitas et al. [36]. To illustrate this, consider the example presented in 

Figure 35. Based on Figure 35, the values of features 1, 4, 6 and 8 are relevant to the 

outcome of the problem i.e. feature 1 must bear a value of 1, feature 4 must bear a value 
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of 1, feature 6 must bear a value of 0 and feature 8 must bear a value of 1. Now if an 

affinity threshold of , is employed by the feature-detection rule and the features are 

ordered in the manner presented above i.e. in the order of feature 1, feature 4, feature 6 

and feature 8, then it is evident that there is positional bias, because if the features were 

selected in a different order,  for example in reverse order, then the same detector that 

would have matched the features presented in their original sequence i.e. 1101, will not 

match the features if they were presented in reverse order 1011.  

   Now consider how the feature-detection rule is applied within the context of the thesis, 

the features together with the resultant detector (each detector has its own set of features) 

are generated by employing the NSA i.e. the features are selected randomly against a 

randomly generated detector, meaning that regardless of the order in which the features 

are presented, the detector will only be activated, under the feature-detection rule, if its 

attributes match the re-ordered features. Thus if the feature-detection rule is applied 

within the context of the NSA, it does not introduce positional bias.  

   To illustrate this example, consider the following scenario (with reference to Figure 35) 

with two randomly generated detectors:  with a position vector,  

  and  with a position vector,  , an affinity threshold, 

 and an antigen .  Regardless of the fact that both  and  

select the same set of features, albeit in a different order, both  and  are activated by 

antigen .  

 

5.5 Conclusion 

This chapter formally introduced the feature-detection rule and also argued that 

permutation masks are not being applied correctly to the NSA, resulting in the pivotal 

role that permutation masks play in reducing length-limited and crossover holes (induced 

by both the RCHK and RCBITS rule) being misconstrued. The feature-detection rule is 

computationally less expensive than both the RCHK rule or the RCBITS rule and has the 

following additional interesting properties: 

 If , then the feature-detection rule is equivalent to the RCHK rule (with a 

random permutation mask applied to each detector). 

 
 
 



CHAPTER 5. THE FEATURE DETECTION RULE 92 

 
 

 If , then each individual detector under the feature-detection rule is 

equivalent to  RCHK detectors. A value of  should ideally be used 

when the feature-detection rule is applied to a particular problem space to benefit 

from an increase in the discriminative power. Furthermore, if , then fewer 

detectors generated under the feature-detection rule would be needed to cover a 

particular problem space, as opposed to detectors generated under the RCHK 

rule. 

 If , then the feature-detection rule is equivalent to the RCBITS rule (with 

a random permutation mask applied to each detector). 

 Due to the fact that the feature-detection rule utilises the RCBITS rule it 

introduces positional bias, which in turn is overcome by coupling the coupling 

the generation of the feature position vector, , with each detector generated by 

the NSA. 

 

The next chapter, conducts a number of experiments using the feature-detection rule, the 

RCHK rule with and without random permutation masks for each detector, and the HD 

rule.
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Figure 36. Discriminative power of template 1**1*0** and ***1*0*1 induced by x. Note that the number of overlapping strings is 

shown in bold.
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Chapter 6 
Experimental Results 

 

“Facts are stubborn things, but statistics are more pliable.” 

- Mark Twain 

 

The objectives of this chapter are to validate the concepts presented in the previous 

chapter by:  

 demonstrating the efficacy of the feature-detection rule in contrast to the RCHK 

rule (with no permutation masks) and the HD rule; 

 demonstrating the efficacy of the feature-detection rule in contrast to the RCHK 

rule (where each detector has a random permutation mask). For the purposes of 

this chapter, scenarios in which a random permutation mask was used in 

conjunction with the RCHK rule are denoted as RCHK (MHC). Conversely, 

scenarios in which MHC masks were not used in conjunction with the RCHK 

rule are denoted as RCHK (No MHC); 

 demonstrating how the application of an individual global MHC mask applied to 

a set of already generated detectors impedes the performance of the set of 

detectors. This point is important because it will validate the assertion made by 

this thesis that MHC masks are being applied incorrectly within the context of 

the NSA. For the purpose of this chapter, scenarios in which a global MHC mask 

is applied to a pre-generated set of detectors is denoted as RCHK (Single global 

MHC); and 

 demonstrating that the performance (detection rate and false-alarm rate) of the 

feature-detection rule is equivalent to the RCHK rule (where each detector has a 

random permutation mask) at worst case. 
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The procedure used to conduct the experiments and scenarios tested by each experiment 

is presented in section 6.1, followed by an empirical analysis of the results produced in 

section 6.2.  Finally, the conclusions inferred by the experiments are presented in section 

6.3. 

 

6.1 Experimental Procedure 

An experiment is comprised of five scenarios where a scenario pertains to a particular 

high-level objective: 

 Training a set of detectors with the NSA utilising the feature-detection rule. 

 Training a set of detectors with the NSA utilising the HD rule. 

 Training a set of detectors with the NSA utilising the RCHK rule with no 

permutation mask, denoted by RCHK (No MHC). 

 Training a set of detectors with the NSA utilising the RCHK rule with a single 

global permutation mask, denoted by RCHK (Global MHC). Take note that the 

test sets within this particular scenario are executed by: firstly generating a set of 

detectors and then applying a single global permutation mask to the generated 

detector set.  

 Training a set of detectors with the NSA utilising the RCHK rule where each 

detector has its own randomly generated permutation mask, denoted by RCHK 

(MHC). 

A scenario is comprised of a number of test groups. Each test group utilises a different set 

of parameters (e.g. different values of ) to test the scenario. A test group in turn is 

comprised of several tests. Each test is executed with the parameters stipulated by its test 

group in addition to using a particular target population size, . That is, different tests 

have different  values.  The last test executed within a test group has the largest  

value and is called the target test. The objective of a target test is to measure the 

performance of the NSA given a maximum  value in conjunction with the parameters 

pertaining to the target test. Test groups are compared to one another within the same 

scenario and across scenarios based on the results achieved by target tests. 
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   For each test executed within a particular test group, the TP, FP, FN, OC, GC, DR, FR, 

, and the actual population size are recorded. The overfitting count and generalisation 

count, OC and GC, respectively, are used to infer the current spread of the detectors and 

whether there are too many or too few detectors. 

   The actual population size is a critical metric used over and above the DR and FR 

metrics to quantify the performance of a detection rule within a particular scenario.  The 

actual population size is the resultant number of detectors produced by the NSA given a 

target of  detectors as input. It is often the case that, given a target , the NSA can 

take an inordinate amount of time to generate  detectors which are self-tolerant (not 

activated by self), depending on the complexity of the data set and the detection rule 

used.  

    In an attempt to minimise the time taken by the NSA to generate a candidate set of 

detectors, the implementation of the NSA employed in this thesis attempts to generate  

detectors at most  times, where after the resultant data set is returned. This 

means that if the actual population size is less than , then it reflects that the NSA failed 

to generate  detectors within an acceptable time frame.   

 

The relationship between experiments, scenarios, test groups and tests are illustrated in 

Figure 37. 

Experiment

Scenario 1
(Feature Rule) Scenario 2

(HD Rule) Scenario 3
(RCHK Rule (No MHC))

Scenario 4
(RCHK Rule (Global 

MHC))

Scenario 5
(RCHK Rule (MHC))

Test Group 1
Test Group 2
Test Group 3

….
Test Group N

Data Set

Test Group 1
Test Group 2
Test Group 3

….
Test Group N

Test Group 1
Test Group 2
Test Group 3

….
Test Group N

Test Group 1
Test Group 2
Test Group 3

….
Test Group N

Test Group 1
Test Group 2
Test Group 3

….
Test Group N

 
Figure 37. Relationship between Experiments, Scenarios and Tests 
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Each experiment is performed on its own individual data set. The data sets become 

increasingly more complex for each successive experiment performed in this chapter.  

The same data sets originally used by Graaff [41] to test the efficacy of an AIS comprised 

of evolved detectors, are used by this thesis. The data sets were collected by Graaff from 

the UCI Machine Learning Repository  and converted to binary strings [2]. The data were 

manipulated further by grouping some of the data sets into subsets comprising self and 

non-self strings, respectively. The way in which a particular data set is fragmented into a 

self and non-self set is explained in each section pertaining to a particular experiment (see 

section 6.2). 

   A training set is created based on the self-data by randomly selecting 70% of the 

original self-set. The test set comprises the remaining 30% of the original self-set and a 

non-self set associated with the training data. To ensure that the results are statistically 

significant, each test within a particular test group is executed 30 times, and the result of 

each metric records the mean value of the metric and the standard deviation of the metric 

from the mean. Take note that a new test set and training set is randomly created for each 

new execution of a test pertaining to a particular test set.  

The parameters used to test the NSA within a particular scenario were chosen by 

applying the framework suggested by Timmis et al. to choose an optimum affinity 

threshold, , for the NSA under the RCBITS rule [4] (see section 4.1).  Due to the 

mathematical similarity between the RCHK rule (regardless of how a permutation mask 

is applied to a detector or set of detectors) and the feature-detection rule, (see Chapter 5) 

the same set of affinity thresholds are used across all of the test groups in scenarios 1, 3, 4 

and, 5 (see Figure 37) for each particular experiment.      

   Conversely, due to the differences in the mechanisms employed by the RCHK 

rule/feature-detection rule and the HD rule to determine whether two binary strings are 

activated by one another, the same affinity threshold, , cannot be reused to compare the 

performance of the HD rule to either the RCHK rule or the feature-detection rule. Instead, 

the performance of the HD rule is optimised (by choosing an optimal  value) and 

scenarios are compared to one another within a particular experiment based on each 

scenario’s best performing test group. The best performing test group has the greatest 
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average DR minus FR value for its target test (the last test executed within the test 

group). Take note that the worst performing test group has the lowest average DR minus 

FR value for its target test. 

 

To enhance the readability of the tests results presented in this chapter, the following 

annotations are used when presenting the results of a scenario: 

 The table row corresponding to the best performing test group for the entire 

scenario is highlighted in green.  

 The table row corresponding to the worst performing test group for the scenario is 

highlighted in red.   

 Table rows corresponding to target tests are outlined in bold. 

 

6.2 Empirical Analysis of Results 

This section discusses the empirical analysis and results pertaining to five experiments. 

Each experiment leverages its own data set and the complexity of each data set increases 

in each successive experiment.  

 

6.2.1 Car Evaluation Experiment  

The car evaluation data set imposes a valuation of cars based upon three characteristics, 

namely; price, technical characteristics, and comfort. The price factor includes the price 

of the car and the cost of maintaining the car. The technical factor addresses the safety of 

the car. The comfort factor is concerned with the car’s carrying capacity and the size of 

the car’s boot in terms of luggage capacity. The data set comprises 1728 patterns, 

distributed between four classes: good, acceptable, unacceptable and very good. Graaff 

converted each pattern into a binary string of length 13 [41]. Each element within a 

binary string was treated as an individual attribute by the NSA. The same applies for the 

rest of the experiments conducted. 
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The data sets were processed further to create a single self-set and non-self set as follows: 

 Acceptable.self: Contains 384 patterns relating to the acceptable class. 

 Acceptable.non-self: Contains all the patterns related to the unacceptable, good 

and very good classes. The set contains 1 344 patterns in total. 

The results of each scenario are reported as per the list below: 

 The results of scenario 1, the car-evaluation data set, under the feature-detection 

rule are tabulated in Table 1 and Table 2.  

 The results of scenario 2, the car evaluation data set, under the HD rule are 

tabulated in Table 3. 

 The results of scenario 3, the car evaluation data set, under the RCHK rule with 

no permutation mark are tabulated in Table 4. 

 The results of scenario 5, the car evaluation data set, under the RCHK rule with a 

single global permutation mask are tabulated in Table 5. 

 The results of scenario 4, the car evaluation data set, under the RCHK rule with 

each detector having its own random permutation mask are tabulated in Table 6. 
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Table 1. Car Evaluation Data Set test results under Feature-Detection Rule (Part 1) 

 

 

 

 

 

 

Detector 
Length r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

3 2 50 1.0±0.0
0.34689826±0.
34201074 0.0±0.0

0.6531017±0.3
4201074

0.8347826±1.8
666307

10.369735±10.
594484

0.6270664±0.1
3540047 0.0±0.0

44.0±1.581138
8

3 2 150 1.0±0.0 0.6±0.1726341 0.0±0.0
0.39999998±0.
17263411

2.9078918±0.9
240834

10.660208±2.3
427403

0.7235007±0.0
9341315 0.0±0.0

129.6±5.31977
46

3 2 500 1.0±0.0 0.7890819±0.0 0.0±0.0
0.21091811±0.
0

5.6470976±2.9
0152

9.25022±3.299
672

0.8258198±6.6
64002E-8 0.0±0.0

434.0±9.61769
2

3 2 1500 1.0±0.0 0.7890819±0.0 0.0±0.0
0.21091811±0.
0

6.223884±1.40
62006

7.6081543±1.4
12988

0.8258198±6.6
64002E-8 0.0±0.0

1316.8±3.7682
889

3 2 5000 1.0±0.0 0.7890819±0.0 0.0±0.0
0.21091811±0.
0

7.5739183±1.2
592841

7.99926±1.254
3238

0.8258198±6.6
64002E-8 0.0±0.0

4363.4±24.337
214

3 3 50 1.0±0.0
0.596526±0.12
940393 0.0±0.0

0.40347394±0.
12940393

10.868±5.5392
036

31.584±8.9822
58

0.71814245±0.
067923285 0.0±0.0 50.0±0.0

3 3 150 1.0±0.0
0.7786601±0.0
2546163 0.0±0.0

0.22133994±0.
025461629

22.699999±6.0
601187

32.896004±6.9
612565

0.8190795±0.0
16341219 0.0±0.0 150.0±0.0

3 3 500 1.0±0.0
0.78908193±6.
282881E-8 0.0±0.0

0.2109181±1.5
707203E-8

32.237797±3.3
406363

35.834732±3.3
53956

0.82581985±1.
2565762E-7 0.0±0.0

499.9±0.31622
78

3 3 1500 1.0±0.0
0.78908193±6.
282881E-8 0.0±0.0

0.2109181±1.5
707203E-8

32.539207±3.4
591494

33.789494±3.4
547026

0.82581985±1.
2565762E-7 0.0±0.0

1499.9±0.3162
2773

3 3 5000 1.0±0.0
0.78908193±6.
282881E-8 0.0±0.0

0.2109181±1.5
707203E-8

35.188686±1.7
760925

35.575317±1.7
741834

0.82581985±1.
2565762E-7 0.0±0.0

4999.3±0.6749
486

5 3 50 1.0±0.0
0.5081886±0.2
9454103 0.0±0.0

0.49181142±0.
29454106

3.7136116±2.3
06355

19.036303±10.
862264

0.6882226±0.1
1434687 0.0±0.0

44.8±1.923538
3

5 3 500 1.0±0.0 0.7890819±0.0 0.0±0.0
0.21091811±0.
0

16.109928±3.9
183753

19.831661±4.0
34572

0.8258198±6.6
64002E-8 0.0±0.0

450.4±6.87749
96

5 3 1500 1.0±0.0 0.7890819±0.0 0.0±0.0
0.21091811±0.
0

19.708607±0.7
4742484

21.046814±0.7
451664

0.8258198±6.6
64002E-8 0.0±0.0

1360.4±7.7006
493

5 3 5000 1.0±0.0 0.7890819±0.0 0.0±0.0
0.21091811±0.
0

19.958355±0.7
083699

20.372671±0.7
0495766

0.8258198±6.6
64002E-8 0.0±0.0

4519.4±11.371
016

5 4 50 1.0±0.0
0.63374686±0.
11454241 0.0±0.0

0.36625308±0.
11454241

10.588±7.9717
956

30.128002±12.
498653

0.73605597±0.
061627515 0.0±0.0 50.0±0.0

5 4 150 1.0±0.0
0.7851116±0.0
045076576 0.0±0.0

0.21488833±0.
0045076692

21.321331±2.5
096369

31.186666±3.1
381807

0.82312995±0.
003050299 0.0±0.0 150.0±0.0

5 4 500 1.0±0.0
0.853598±0.03
8760547 0.0±0.0

0.14640197±0.
038760547

25.8664±2.754
5605

29.307201±2.7
550654

0.87307054±0.
028708184 0.0±0.0 500.0±0.0

5 4 1500
0.99304354±0.
015555247

0.8357321±0.0
52239012

0.0069565214
±0.015555255

0.16426799±0.
052238993

26.642132±1.9
909208

27.821331±2.0
269582

0.85943145±0.
039744098

0.0069565214
±0.015555255 1500.0±0.0

5 4 5000 1.0±0.0
0.9012407±0.0
06658271 0.0±0.0

0.0987593±0.0
06658264

27.915562±1.0
472664

28.2996±1.036
2086

0.91014445±0.
0055605234 0.0±0.0 5000.0±0.0

5 5 50
0.99304354±0.
015555247

0.44367248±0.
105355375

0.0069565214
±0.015555255

0.5563276±0.1
0535537

4.0439997±4.1
06882

15.935999±7.0
568886

0.6434466±0.0
48531227

0.0069565214
±0.015555255 50.0±0.0

5 5 150
0.99304354±0.
015555247

0.73995036±0.
05360606

0.0069565214
±0.015555255

0.26004964±0.
053606056

7.2666664±1.8
918655

15.106667±2.3
714223

0.7937865±0.0
3230375

0.0069565214
±0.015555255 150.0±0.0

5 5 500
0.99304354±0.
00952562

0.8913151±0.0
26342487

0.0069565214
±0.009525609

0.10868486±0.
026342494

11.9428±1.810
3461

15.1224±1.850
6056

0.9017253±0.0
21868793

0.0069565214
±0.009525609 500.0±0.0

5 5 1500
0.9756522±0.0
19829132

0.92208445±0.
023051558

0.024347825±
0.019829137

0.07791563±0.
02305156

14.355867±0.6
5841585

15.532534±0.6
4935255

0.92651767±0.
019433595

0.024347825±
0.019829137 1500.0±0.0

5 5 5000
0.9373913±0.0
37603036

0.955335±0.00
9448863

0.0626087±0.0
3760304

0.044665016±
0.0094488505

15.0174±0.453
8391

15.3915205±0.
4594334

0.9545604±0.0
091885645

0.0626087±0.0
3760304 5000.0±0.0

6 4 50 1.0±0.0
0.60347396±0.
115129516 0.0±0.0

0.39652604±0.
11512952

8.992±6.90310
96

25.904001±11.
719168

0.7199381±0.0
58926884 0.0±0.0 50.0±0.0

6 4 150 1.0±0.0
0.77568233±0.
07078705 0.0±0.0

0.22431763±0.
07078705

19.342667±6.8
90137

29.178665±7.8
9573

0.8189026±0.0
45930147 0.0±0.0 150.0±0.0

6 4 500 1.0±0.0
0.83076924±0.
038055178 0.0±0.0

0.16923077±0.
038055167

25.48743±2.98
62356

28.7329±2.952
363

0.8559801±0.0
2753249 0.0±0.0

498.6±0.54772
25

6 4 1500 1.0±0.0
0.8843673±0.0
3223898 0.0±0.0

0.11563276±0.
032238968

26.255238±2.3
171303

27.501959±2.3
159204

0.89693344±0.
025141811 0.0±0.0

1494.2±1.9235
384

6 4 5000
0.99304354±0.
015555247

0.9091811±0.0
10759049

0.0069565214
±0.015555255

0.09081886±0.
010759046

26.78363±1.38
70422

27.171045±1.3
761488

0.916337±0.00
830487

0.0069565214
±0.015555255

4985.2±5.5407
58
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Table 2. Car Evaluation Data Set test results under Feature-Detection Rule (Part 2) 

 

 

 

 

 

Detector 
Length r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

6 5 50
0.9895652±0.0
155552495

0.48486352±0.
09490463

0.010434782±
0.015555255

0.5151365±0.0
9490463

4.808±2.33660
44

18.248±3.6769
986

0.65980554±0.
042294133

0.010434782±
0.015555255 50.0±0.0

6 5 150
0.99304354±0.
015555248

0.7602977±0.0
64123645

0.0069565214
±0.015555255

0.23970222±0.
06412363

8.904±1.55265
08

16.880001±1.7
105168

0.80729735±0.
03969928

0.0069565214
±0.015555255 150.0±0.0

6 5 500
0.98782605±0.
022675486

0.8818858±0.0
30268885

0.0121739125
±0.022675486

0.118114136±
0.030268883

16.0232±2.746
4504

19.307598±2.7
844162

0.8938341±0.0
22675406

0.0121739125
±0.022675486 500.0±0.0

6 5 1500
0.97913045±0.
046665765

0.9032258±0.0
17546088

0.020869564±
0.046665765

0.09677419±0.
017546073

17.633867±0.4
2715433

18.814533±0.4
0394115

0.91025317±0.
013802266

0.020869564±
0.046665765 1500.0±0.0

6 5 5000
0.973913±0.02
2169646

0.93349874±0.
016214706

0.026086956±
0.02216965

0.066501245±
0.0162147

18.41776±0.66
98696

18.80188±0.66
77639

0.9363154±0.0
13973414

0.026086956±
0.02216965 5000.0±0.0

6 6 50
0.99304354±0.
012160102

0.33548385±0.
07719209

0.0069565214
±0.012160101

0.6645161±0.0
7719209

1.926±1.53900
54

11.256±3.2695
878

0.60025096±0.
027921198

0.0069565214
±0.012160101 50.0±0.0

6 6 150
0.97913045±0.
026628824

0.6332506±0.0
5175745

0.020869564±
0.026628833

0.36674935±0.
051757444

3.5826669±1.0
072635

9.775333±1.41
00066

0.72812307±0.
031449553

0.020869564±
0.026628833 150.0±0.0

6 6 500
0.93391305±0.
04922419

0.885608±0.01
9935371

0.06608696±0.
049224187

0.114392065±
0.019935373

6.6879997±0.7
4012125

9.6934±0.7618
29

0.8908706±0.0
18771568

0.06608696±0.
049224187 500.0±0.0

6 6 1500
0.82260865±0.
03693806

0.9513647±0.0
10733585

0.17739132±0.
03693805

0.048635233±
0.010733584

8.4504±0.4317
2964

9.581266±0.44
280118

0.94435966±0.
010974495

0.17739132±0.
03693805 1500.0±0.0

6 6 5000
0.6808696±0.0
7088719

0.9806452±0.0
10960652

0.31913048±0.
0708872

0.019354839±
0.01096064

9.122801±0.26
813093

9.4779±0.2662
6307

0.97288924±0.
014271054

0.31913048±0.
0708872 5000.0±0.0

10 3 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
10 3 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
10 3 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0

10 3 1500 1.0±0.0
0.03126551±0.
06991181 0.0±0.0

0.96873456±0.
0699118 0.0±0.0 38.4±85.86501

0.5084791±0.0
18959912 0.0±0.0

0.2±0.4472136
2

10 3 5000 1.0±0.0
0.101240695±
0.13872944 0.0±0.0

0.89875925±0.
13872942 0.0±0.0

121.6±166.891
59

0.5289814±0.0
39721936 0.0±0.0 0.4±0.5477226

10 10 50
0.9765218±0.0
09211725

0.03796526±0.
020597028

0.023478258±
0.009211738

0.9620348±0.0
20597033

0.02±0.021081
85

1.1520001±0.3
1243846

0.5037774±0.0
05812775

0.023478258±
0.009211738 50.0±0.0

10 10 150
0.9504348±0.0
15902458

0.12928039±0.
03405224

0.04956522±0.
015902454

0.8707196±0.0
3405224

0.051999997±
0.024904758

1.06±0.141909
39

0.52201927±0.
010087935

0.04956522±0.
015902454 150.0±0.0

10 10 500
0.83652174±0.
03424709

0.35186106±0.
06168415

0.16347827±0.
03424709

0.64813894±0.
06168414

0.1844±0.0382
25062

1.1304±0.1066
4915

0.56411344±0.
021933494

0.16347827±0.
03424709 500.0±0.0

10 10 1500
0.5895652±0.0
34247085

0.67270476±0.
019901024

0.41043478±0.
03424708

0.32729527±0.
019901032

0.4256±0.0460
1363

1.0663334±0.0
64504385

0.6428601±0.0
18071339

0.41043478±0.
03424708 1500.0±0.0

10 10 5000
0.2±0.0298424
05

0.97493804±0.
009094671

0.79999995±0.
029842408

0.025062034±
0.009094668

0.7968999±0.0
23988204

1.0832398±0.0
25059715

0.886607±0.04
9325854

0.79999995±0.
029842408 5000.0±0.0

13 5 50 1.0±0.0
0.5315136±0.1
7376284 0.0±0.0

0.4684863±0.1
7376283

24.988972±15.
050846

87.13451±25.0
17529

0.68877673±0.
08259607 0.0±0.0

12.6±4.393176
6

13 5 150 1.0±0.0
0.817866±0.04
9147803 0.0±0.0

0.182134±0.04
9147803

49.800087±8.9
85213

84.64915±12.9
32692

0.8471082±0.0
35493888 0.0±0.0

40.2±3.492849
8

13 5 500
0.9947826±0.0
077776364

0.89478904±0.
020582072

0.005217391±
0.0077776276

0.10521092±0.
020582072

70.09715±2.36
7076

82.91542±2.61
2662

0.9046537±0.0
16435819

0.005217391±
0.0077776276

132.4±6.76756
95

13 5 1500
0.9547826±0.0
33339623

0.9290323±0.0
24476629

0.045217387±
0.03333963

0.07096775±0.
024476616

79.727295±4.0
189977

84.32462±4.05
154

0.9317395±0.0
20666404

0.045217387±
0.03333963

394.8±16.3920
7

13 5 5000
0.9060869±0.0
60993653

0.95732003±0.
015436562

0.09391304±0.
06099366

0.042679902±
0.015436558

83.91581±5.06
8424

85.39886±5.04
1089

0.95521414±0.
015067842

0.09391304±0.
06099366

1270.0±29.538
11

13 13 50
0.9956522±0.0
061487616

0.008933002±
0.00408572

0.004347826±
0.0061487537

0.99106693±0.
0040857196 0.0±0.0

0.194±0.04005
5517

0.50115156±0.
001862451

0.004347826±
0.0061487537 50.0±0.0

13 13 150
0.9808696±0.0
13471242

0.019602977±
0.0064547937

0.019130435±
0.013471246

0.98039705±0.
0064547956

0.0019999999
±0.003220306

0.16866668±0.
036925018

0.50010407±0.
0032387571

0.019130435±
0.013471246 150.0±0.0

13 13 500
0.946087±0.01
6801605

0.061042182±
0.013347325

0.05391304±0.
016801596

0.93895787±0.
013347325

0.0050000004
±0.002867441
9

0.16160001±0.
019409047

0.5018785±0.0
040656333

0.05391304±0.
016801596 500.0±0.0

13 13 1500
0.81217396±0.
06137814

0.1776675±0.0
23312738

0.18782608±0.
06137814

0.8223325±0.0
23312742

0.0150666665
±0.002313673
5

0.16833332±0.
010343482

0.49632487±0.
021494161

0.18782608±0.
06137814 1500.0±0.0

13 13 5000
0.5121739±0.0
36307175

0.466005±0.02
8311532

0.48782605±0.
036307167

0.53399503±0.
02831153

0.044±0.00231
5167

0.16905999±0.
0052008964

0.48935682±0.
026420228

0.48782605±0.
036307167 5000.0±0.0
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Table 3. Car Evaluation Data Set test results under HD Rule 

 

 

 

 

 

 

 

 

r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

3 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
3 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
3 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
3 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
3 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
5 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
5 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
5 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
5 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
5 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
6 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
6 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
6 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
6 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
6 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0

9 50
0.9808696±0.0
20413697

0.44540945±0.
10752848

0.019130433±
0.020413699

0.5545906±0.1
0752848

11.349294±3.6
571944

49.605957±8.7
47039

0.64163774±0.
044072818

0.019130433±
0.020413699 18.5±4.326918

9 150
0.97304356±0.
022988265

0.6401984±0.0
57768982

0.026956523±
0.022988265

0.35980147±0.
057768967

30.950256±3.9
141574

52.782677±5.1
65424

0.73144644±0.
027498888

0.026956523±
0.022988265 57.4±6.040603

9 500
0.9713044±0.0
24951106

0.7059554±0.0
3527202

0.028695654±
0.024951117

0.29404464±0.
03527202

42.928288±3.6
040816

50.841377±3.5
777516

0.7683508±0.0
17654179

0.028695654±
0.024951117

198.9±11.7799
26

9 1500
0.98086965±0.
0114483535

0.69181144±0.
030114787

0.019130435±
0.011448358

0.3081886±0.0
30114796

49.190403±2.0
722256

51.97506±2.08
02689

0.76136017±0.
016379708

0.019130435±
0.011448358

575.6±28.6829
41

9 5000
0.97217387±0.
017294412

0.70148885±0.
02874916

0.027826086±
0.017294416

0.29851115±0.
028749157

50.592796±0.4
1329703

51.38978±0.40
452722

0.76553756±0.
014868999

0.027826086±
0.017294416

1990.2±75.093
72

10 50
0.93826085±0.
027937569

0.50595534±0.
09179612

0.061739128±
0.027937578

0.4940447±0.0
9179614

5.6523905±1.7
752867

20.49006±3.29
97348

0.65722585±0.
04359591

0.061739128±
0.027937578

49.6±0.699205
9

10 150
0.85739124±0.
047486726

0.76625305±0.
053204462

0.1426087±0.0
47486722

0.23374692±0.
053204447

11.577742±1.3
957705

20.23759±1.70
36465

0.7873149±0.0
3791639

0.1426087±0.0
47486722

149.1±0.73786
473

10 500
0.7408696±0.0
6543282

0.9171216±0.0
16258936

0.25913042±0.
06543282

0.08287841±0.
01625894

17.58783±1.17
01149

21.022486±1.1
942682

0.8997275±0.0
15591858

0.25913042±0.
06543282

497.6±1.34989
71

10 1500
0.70869565±0.
049403075

0.9610421±0.0
070233005

0.29130435±0.
049403075

0.038957816±
0.007023303

20.340313±0.6
993385

21.553984±0.7
0822

0.9478022±0.0
09184392

0.29130435±0.
049403075

1494.0±2.0548
048

10 5000
0.6695652±0.0
765788

0.9625311±0.0
09390746

0.33043483±0.
07657881

0.037468985±
0.009390747

21.028452±0.4
0354848

21.39462±0.40
4416

0.9473878±0.0
09549535

0.33043483±0.
07657881

4979.6±5.3789
716

13 50
0.99217397±0.
009569619

0.0037220842
±0.002680207
1

0.007826087±
0.009569608

0.9962779±0.0
02680201 0.0±0.0

0.134±0.04903
5136

0.4989584±0.0
024793262

0.007826087±
0.009569608 50.0±0.0

13 150
0.9756522±0.0
16801592

0.022332506±
0.0064069205

0.024347825±
0.016801596

0.97766745±0.
0064069265

6.6666666E-
4±0.00210818
5

0.18133333±0.
032325506

0.4994554±0.0
046378346

0.024347825±
0.016801596 150.0±0.0

13 500
0.94956523±0.
017773582

0.05459057±0.
013182281

0.05043478±0.
017773576

0.9454095±0.0
13182269

0.0040±0.0026
666666

0.167±0.02091
783

0.50107944±0.
0054825

0.05043478±0.
017773576 500.0±0.0

13 1500
0.8217392±0.0
27877375

0.16848636±0.
012125286

0.17826086±0.
027877368

0.8315136±0.0
12125287

0.015666667±
0.002901681

0.16753332±0.
008526211

0.49693838±0.
010881279

0.17826086±0.
027877368 1500.0±0.0

13 5000
0.5121739±0.0
5932477

0.45756823±0.
026056552

0.48782605±0.
05932477

0.5424318±0.0
26056565

0.044460002±
0.0027921316

0.17174±0.003
8976343

0.48446384±0.
03272004

0.48782605±0.
05932477 5000.0±0.0
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Table 4. Car Evaluation Data Set test results under RCHK (no MHC) Rule 

 

 

 

 

 

r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

3 50 1.0±0.0
0.6937965±0.0
9147324 0.0±0.0

0.30620348±0.
09147323

115.282555±2
2.017618

153.52303±21.
84598

0.7689472±0.0
5351272 0.0±0.0

37.1±3.510302
5

3 150 1.0±0.0
0.7573201±0.0
51212616 0.0±0.0

0.24267991±0.
051212635

125.97691±18.
168451

140.51581±18.
225851

0.8059033±0.0
3210646 0.0±0.0

111.0±7.05533
7

3 500 1.0±0.0
0.78908193±6.
282881E-8 0.0±0.0

0.2109181±1.5
707203E-8

137.8957±7.84
37357

142.72743±7.8
088846

0.82581985±1.
2565762E-7 0.0±0.0

368.2±9.65861
7

3 1500 1.0±0.0
0.78908193±6.
282881E-8 0.0±0.0

0.2109181±1.5
707203E-8

143.77979±2.6
69157

145.45421±2.6
706285

0.82581985±1.
2565762E-7 0.0±0.0

1102.0±11.728
408

3 5000 1.0±0.0
0.78908193±6.
282881E-8 0.0±0.0

0.2109181±1.5
707203E-8

143.24014±2.0
761178

143.73682±2.0
66644

0.82581985±1.
2565762E-7 0.0±0.0

3677.5±23.453
262

5 50 1.0±0.0
0.7372209±0.0
4793715 0.0±0.0

0.26277915±0.
047937155

30.039429±15.
00694

56.68343±17.3
18945

0.7929034±0.0
2927119 0.0±0.0

49.6±0.516397
83

5 150 1.0±0.0
0.78908193±6.
282881E-8 0.0±0.0

0.2109181±1.5
707203E-8

36.578262±5.2
656755

47.476902±5.2
08559

0.82581985±1.
2565762E-7 0.0±0.0

148.4±1.34989
71

5 500 1.0±0.0
0.78908193±6.
282881E-8 0.0±0.0

0.2109181±1.5
707203E-8

49.72654±3.21
25247

53.08362±3.21
11003

0.82581985±1.
2565762E-7 0.0±0.0

492.9±2.55821
13

5 1500 1.0±0.0
0.78908193±6.
282881E-8 0.0±0.0

0.2109181±1.5
707203E-8

50.119057±2.1
898417

51.234295±2.1
824021

0.82581985±1.
2565762E-7 0.0±0.0

1481.6±5.9292
12

5 5000 1.0±0.0
0.78908193±6.
282881E-8 0.0±0.0

0.2109181±1.5
707203E-8

51.182255±1.0
891833

51.5172±1.088
6565

0.82581985±1.
2565762E-7 0.0±0.0

4931.9±7.7093
015

6 50 1.0±0.0
0.48982638±0.
0646242 0.0±0.0

0.5101737±0.0
64624205

16.765999±5.8
02858

32.424004±7.5
11584

0.6632675±0.0
28363917 0.0±0.0 50.0±0.0

6 150
0.9965218±0.0
10999221

0.6679901±0.0
41830197

0.0034782607
±0.010999227

0.3320099±0.0
4183021

27.314667±2.2
658448

34.827335±2.3
699522

0.750663±0.02
4870014

0.0034782607
±0.010999227 150.0±0.0

6 500
0.9904348±0.0
15582234

0.7645161±0.0
27667465

0.009565217±
0.015582237

0.23548386±0.
027667461

29.090122±2.4
96486

31.875097±2.5
462694

0.8082434±0.0
1858833

0.009565217±
0.015582237

499.8±0.42163
7

6 1500
0.9869565±0.0
2100199

0.78982633±0.
0011986304

0.013043478±
0.021001996

0.21017368±0.
0011986234

30.661438±1.4
157709

31.720022±1.4
12055

0.82439727±0.
0022904724

0.013043478±
0.021001996

1498.9±0.9944
2893

6 5000
0.9843478±0.0
22377117

0.79081887±0.
0031058844

0.015652174±
0.022377111

0.20918112±0.
0031058716

31.001312±0.5
7114166

31.327793±0.5
722672

0.8246962±0.0
033092082

0.015652174±
0.022377111

4997.6±1.9550
505

10 50
0.9652174±0.0
22074703

0.06699751±0.
008271298

0.034782607±
0.022074705

0.9330025±0.0
082712965

0.033999998±
0.036575645

1.882±0.28696
883

0.5084339±0.0
05985348

0.034782607±
0.022074705 50.0±0.0

10 150
0.9026086±0.0
19573256

0.19181141±0.
027006773

0.09739131±0.
019573266

0.8081886±0.0
27006771

0.21399999±0.
057387568

2.0053334±0.2
8641334

0.52766114±0.
006963673

0.09739131±0.
019573266 150.0±0.0

10 500
0.767826±0.03
6903907

0.49280396±0.
035329193

0.23217389±0.
03690391

0.50719607±0.
0353292

0.5418±0.0295
06305

1.9546001±0.0
6463608

0.6023965±0.0
15774054

0.23217389±0.
03690391 500.0±0.0

10 1500
0.49304348±0.
034062587

0.7531017±0.0
20933082

0.5069565±0.0
340626

0.24689826±0.
020933086

1.0709333±0.0
55873916

1.8901335±0.0
5978133

0.66627073±0.
021158325

0.5069565±0.0
340626 1500.0±0.0

10 5000
0.18434784±0.
04256036

0.8992556±0.0
11997655

0.8156522±0.0
42560354

0.10074441±0.
011997661

1.6117799±0.0
30573247

1.9298999±0.0
3208311

0.6413342±0.0
55760883

0.8156522±0.0
42560354 5000.0±0.0

13 50
0.99304354±0.
0068592303

0.007692308±
0.0029707667

0.0069565214
±0.006859223

0.99230754±0.
0029707565

0.0039999997
±0.00843274

0.178±0.04467
164

0.5001809±0.0
019476732

0.0069565214
±0.006859223 50.0±0.0

13 150
0.98347837±0.
011915827

0.022332508±
0.0042175516

0.016521737±
0.011915829

0.9776676±0.0
04217551

0.0013333333
±0.002810913
6

0.17±0.017284
831

0.5014668±0.0
030785354

0.016521737±
0.011915829 150.0±0.0

13 500
0.9260869±0.0
19765481

0.055583127±
0.014805394

0.07391304±0.
01976548

0.9444169±0.0
14805384

0.0068000006
±0.003910101

0.17160001±0.
018130392

0.49507746±0.
007524564

0.07391304±0.
01976548 500.0±0.0

13 1500
0.82521737±0.
036307167

0.17220843±0.
034743395

0.1747826±0.0
36307167

0.8277916±0.0
34743384

0.017199999±
0.0036757458

0.16953333±0.
01861116

0.49920145±0.
018707193

0.1747826±0.0
36307167 1500.0±0.0

13 5000
0.5156522±0.0
31231798

0.46724564±0.
017818842

0.48434776±0.
031231802

0.53275436±0.
017818844

0.043959998±
0.0030343218

0.16932±0.002
9727637

0.4915766±0.0
17126424

0.48434776±0.
031231802 5000.0±0.0
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Table 5. Car Evaluation Data Set test results under RCHK (Global MHC) Rule 

 

 

 

 

 

 

 

r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

3 50
0.5191304±0.0
8361201

0.61364776±0.
23514372

0.48086962±0.
08361201

0.38635236±0.
23514372

84.67874±18.5
80166

117.0379±20.9
95888

0.6118217±0.1
5022022

0.48086962±0.
08361201

35.2±2.740640
6

3 150
0.24608696±0.
039753493

0.7513648±0.0
12201222

0.75391304±0.
03975348

0.24863525±0.
012201216

213.12027±10.
482822

230.04013±10.
481347

0.49458584±0.
038160045

0.75391304±0.
03975348

111.0±5.24933
86

3 500
0.14869566±0.
026707591

0.89578164±0.
0

0.85130435±0.
026707593

0.104218364±
0.0

200.45786±5.9
352536

205.78947±5.9
63186

0.5834547±0.0
47493592

0.85130435±0.
026707593

368.7±5.51865
53

3 1500
0.2521739±0.0
2526898

0.78908193±6.
282881E-8

0.7478261±0.0
25268985

0.2109181±1.5
707203E-8

170.44±2.0613
496

172.22182±2.0
756462

0.5433142±0.0
25061835

0.7478261±0.0
25268985

1102.3±17.876
429

3 5000
0.4173913±0.0
38671482

0.8138958±6.2
82881E-8

0.5826087±0.0
38671497

0.18610421±1.
5707203E-8

190.96681±2.5
337741

191.49844±2.5
312166

0.69050974±0.
019413104

0.5826087±0.0
38671497

3660.4±27.407
219

5 50
0.21565218±0.
034975316

0.8439206±0.0
26115589

0.7843479±0.0
34975313

0.15607938±0.
02611557

40.575233±6.4
535637

71.84115±7.89
94837

0.580101±0.02
023211

0.7843479±0.0
34975313

49.4±0.699205
9

5 150
0.19652176±0.
026628833

0.7543425±6.2
82881E-8

0.80347836±0.
026628826

0.24565753±3.
1414405E-8

58.46186±3.71
5108

70.28572±3.70
58413

0.4427247±0.0
31756166

0.80347836±0.
026628826

148.4±0.96609
175

5 500
0.20434782±0.
03155295

0.8982631±6.2
82881E-8

0.7956523±0.0
3155295

0.10173698±7.
853601E-9

74.79267±5.44
20023

78.73871±5.43
25047

0.6645466±0.0
33208326

0.7956523±0.0
3155295

493.8±2.39443
8

5 1500
0.13913043±0.
03330181

0.88585603±6.
282881E-8

0.8608696±0.0
3330181

0.11414392±0.
0

76.32446±1.56
7062

77.731346±1.5
794283

0.5421511±0.0
6115315

0.8608696±0.0
3330181

1479.2±5.5136
194

5 5000
0.18695652±0.
025351964

0.7940446±6.2
82881E-8

0.8130436±0.0
25351956

0.20595536±1.
5707203E-8

70.732254±1.0
503442

71.111725±1.0
515862

0.47373027±0.
036189504

0.8130436±0.0
25351956

4931.6±7.8059
8

6 50
0.46434784±0.
03554715

0.55334985±0.
03912945

0.53565216±0.
035547156

0.44665012±0.
039129447

17.804±5.2073
693

37.324±6.2075
07

0.5098729±0.0
18941185

0.53565216±0.
035547156 50.0±0.0

6 150
0.23565218±0.
064090095

0.78808933±0.
060952228

0.76434785±0.
064090095

0.21191068±0.
06095223

30.908±3.5851
698

42.385998±3.8
99064

0.5293514±0.0
6860177

0.76434785±0.
064090095 150.0±0.0

6 500
0.24869564±0.
04103267

0.7843672±0.0
19378515

0.7513043±0.0
4103267

0.21563277±0.
01937851

35.550964±1.4
201787

38.991936±1.3
572165

0.5332025±0.0
46470337

0.7513043±0.0
4103267

499.8±0.42163
703

6 1500
0.22608697±0.
031486325

0.7925558±0.0
031387326

0.773913±0.03
148632

0.20744416±0.
0031387373

35.546314±0.8
531688

36.73696±0.83
4348

0.5194079±0.0
32090683

0.773913±0.03
148632

1499.6±0.6992
0594

6 5000
0.19304349±0.
040121637

0.82133996±0.
0

0.80695647±0.
040121645

0.17866005±0.
0

41.613544±0.7
0293146

41.973175±0.7
0236254

0.5143154±0.0
52136976

0.80695647±0.
040121645

4997.9±1.1005
049

10 50
0.95739126±0.
017123535

0.067741945±
0.011931905

0.042608697±
0.017123543

0.932258±0.01
1931891

0.067999996±
0.07554249

2.1179998±0.2
7575353

0.5066322±0.0
05754671

0.042608697±
0.017123543 50.0±0.0

10 150
0.80521744±0.
034830876

0.23920596±0.
04644023

0.19478261±0.
034830883

0.76079404±0.
046440236

0.20199999±0.
08606917

2.1853333±0.2
115154

0.5143868±0.0
1579484

0.19478261±0.
034830883 150.0±0.0

10 500
0.52260864±0.
061821405

0.491067±0.03
5719175

0.47739133±0.
061821405

0.508933±0.03
5719175

0.54800004±0.
06809796

2.0128±0.1469
1253

0.5055878±0.0
3121478

0.47739133±0.
061821405 500.0±0.0

10 1500
0.25652173±0.
032600645

0.7692308±0.0
16166113

0.7434783±0.0
32600645

0.23076923±0.
0161661

1.1761999±0.0
5903842

2.0384002±0.0
7190404

0.5250567±0.0
32152593

0.7434783±0.0
32600645 1500.0±0.0

10 5000
0.20086959±0.
03767001

0.88734496±0.
017357908

0.79913044±0.
037670016

0.11265508±0.
017357906

1.8097401±0.0
7867294

2.14048±0.083
814576

0.6378676±0.0
581588

0.79913044±0.
037670016 5000.0±0.0

13 50
0.9956522±0.0
061487616

0.006699752±
0.0043845684

0.004347826±
0.0061487546

0.99330026±0.
0043845647 0.0±0.0

0.172±0.05672
5457

0.5005891±0.0
01692027

0.004347826±
0.0061487546 50.0±0.0

13 150
0.98±0.016422
275

0.020347394±
0.006699241

0.02±0.016422
28

0.9796526±0.0
066992333

0.0026666666
±0.003442651
8

0.17533334±0.
04355215

0.50006235±0.
0037003066

0.02±0.016422
28 150.0±0.0

13 500
0.9417392±0.0
2010266

0.055831272±
0.008374052

0.05826087±0.
020102657

0.94416875±0.
008374052

0.0050000004
±0.002867441
6

0.16279998±0.
014823404

0.49931327±0.
0051280847

0.05826087±0.
020102657 500.0±0.0

13 1500
0.82782614±0.
03325132

0.15583126±0.
0132237375

0.1721739±0.0
33251315

0.8441688±0.0
13223737

0.013866668±
0.0027541213

0.15966666±0.
010964593

0.49496204±0.
010746985

0.1721739±0.0
33251315 1500.0±0.0

13 5000
0.5269565±0.0
48189227

0.44218364±0.
02133931

0.4730435±0.0
48189227

0.5578163±0.0
2133932

0.042260002±
0.002716289

0.16316±0.004
6435646

0.485006±0.02
7896196

0.4730435±0.0
48189227 5000.0±0.0
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Table 6. Car Evaluation Data Set test results under RCHK (MHC) Rule 

 
 

6.2.2 Car Evaluation Data Set Conclusion 

The car evaluation data set, re-formatted as a set of binary strings, is the least complex 

data set, since it comprises only 13 attributes. The results of the best performing test 

group for each scenario are summarised in Figure 38. The RCHK (MHC) rule has the 

highest DR value followed by the feature-detection rule (the DR values between the 

feature-detection rule and the RCHK (MHC) rule differ by 0.01).  The feature-detection 

rule is the best-performing rule, because it has the greatest DR minus FR value.  The 

r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

3 50 1.0±0.0
0.33697274±0.
19040091 0.0±0.0

0.6630273±0.1
9040091

1.1777778±2.1
41881

23.69969±13.1
35716

0.6081756±0.0
6693383 0.0±0.0

17.1±3.178049
6

3 150 1.0±0.0
0.669727±0.15
380368 0.0±0.0

0.33027297±0.
15380368

15.290926±10.
740243

36.276398±14.
18548

0.76008093±0.
080511875 0.0±0.0

53.7±5.963779
4

3 500 1.0±0.0
0.78387105±0.
016478373 0.0±0.0

0.21612902±0.
016478367

28.302176±10.
875965

36.99615±11.4
15833

0.82241267±0.
010774263 0.0±0.0

180.6±13.6153
51

3 1500 1.0±0.0
0.78908193±6.
282881E-8 0.0±0.0

0.2109181±1.5
707203E-8

33.92102±3.68
85273

37.120083±3.6
778576

0.82581985±1.
2565762E-7 0.0±0.0

548.8±17.3192
25

3 5000 1.0±0.0
0.78908193±6.
282881E-8 0.0±0.0

0.2109181±1.5
707203E-8

32.78231±1.73
24523

33.833244±1.7
219863

0.82581985±1.
2565762E-7 0.0±0.0

1829.4±36.417
946

5 50 1.0±0.0
0.51910675±0.
1426016 0.0±0.0

0.4808933±0.1
4260161

5.526125±2.80
74174

22.189848±6.5
863657

0.680904±0.06
529615 0.0±0.0

44.4±2.796823
5

5 150
0.9965218±0.0
10999221

0.75037223±0.
051511005

0.0034782607
±0.010999228

0.24962778±0.
051511

10.543793±3.5
72964

20.295738±4.0
18014

0.8008684±0.0
31943575

0.0034782607
±0.010999228

128.3±4.80855
7

5 500
0.99739134±0.
008249431

0.86873454±0.
020510491

0.0026086955
±0.00824942

0.1312655±0.0
20510484

18.482637±1.5
35586

22.266165±1.6
131766

0.8839592±0.0
16159816

0.0026086955
±0.00824942

434.9±6.82234
86

5 1500
0.966087±0.02
6707582

0.9143921±0.0
19229649

0.033913042±
0.026707593

0.08560793±0.
019229656

19.938938±1.8
637004

21.317707±1.8
72413

0.91886985±0.
016635654

0.033913042±
0.026707593

1300.3±13.350
407

5 5000
0.9573914±0.0
31069977

0.94317615±0.
02361163

0.042608697±
0.031069975

0.056823827±
0.023611626

21.375202±0.7
659717

21.805256±0.7
687041

0.9448045±0.0
22010047

0.042608697±
0.031069975

4321.7±29.548
643

6 50
0.9913044±0.0
2459503

0.39727047±0.
08277458

0.008695653±
0.02459502

0.6027295±0.0
82774594

3.4858108±2.4
067633

14.593817±4.6
244574

0.6232509±0.0
36291003

0.008695653±
0.02459502

49.3±1.059349
9

6 150
0.97913045±0.
014317777

0.705459±0.06
397355

0.020869564±
0.014317784

0.29454094±0.
06397356

6.9157906±2.3
304596

14.558668±2.9
310434

0.7704673±0.0
37435643

0.020869564±
0.014317784

146.4±2.79682
35

6 500
0.92260873±0.
04960674

0.905211±0.02
413745

0.077391304±
0.049606726

0.09478908±0.
024137458

11.74383±1.54
39423

14.992986±1.6
473479

0.907643±0.01
9667495

0.077391304±
0.049606726

489.2±2.52982
2

6 1500
0.82869565±0.
058841296

0.95632744±0.
015349893

0.17130435±0.
05884129

0.043672454±
0.01534989

13.36982±0.87
916386

14.557483±0.9
0283436

0.9503892±0.0
15446535

0.17130435±0.
05884129 1464.8±5.6921

6 5000
0.67565215±0.
07435786

0.98684865±0.
0067247255

0.32434782±0.
07435786

0.013151364±
0.006724723

14.31147±0.36
280334

14.682085±0.3
6298364

0.98124427±0.
008661475

0.32434782±0.
07435786

4887.9±9.9493
16

10 50
0.98086965:0.
017773572

0.0662531:0.0
18644394

0.019130435:0
.017773576

0.93374693:0.
018644398

0.028:0.01932
1835

1.626:0.32056
2

0.5123109:0.0
07928354

0.019130435:0
.017773576 50.0:0.0

10 150
0.94434786±0.
021768091

0.16277917±0.
047229044

0.055652164±
0.021768097

0.83722085±0.
04722904

0.10066666±0.
080335714

1.5233334±0.3
821996

0.5303447±0.0
119385645

0.055652164±
0.021768097 150.0±0.0

10 500
0.8130435±0.0
52374814

0.4808933±0.0
39283015

0.1869565±0.0
52374814

0.5191066±0.0
39283004

0.4264±0.1059
8029

1.7163999±0.2
0414546

0.6102571±0.0
23303607

0.1869565±0.0
52374814 500.0±0.0

10 1500
0.52±0.065304
294

0.8434243±0.0
25666354

0.47999993±0.
06530429

0.15657568±0.
025666364

0.90139997±0.
06195136

1.6992±0.0775
513

0.767723±0.03
3250857

0.47999993±0.
06530429 1500.0±0.0

10 5000
0.13652173±0.
03758069

0.99280393±0.
0037813426

0.8634783±0.0
37580684

0.007196029±
0.0037813499

1.3942599±0.0
4589167

1.6879±0.0478
59453

0.9443079±0.0
36726713

0.8634783±0.0
37580684 5000.0±0.0

13 50
0.99217397±0.
006416223

0.007940447±
0.0050718645

0.007826087±
0.0064162156

0.9920595±0.0
05071862

0.0019999999
±0.006324555
3

0.20200002±0.
07146095

0.50002706±0.
0018899277

0.007826087±
0.0064162156 50.0±0.0

13 150
0.98±0.013626
262

0.018610422±
0.005760293

0.02±0.013626
272

0.98138964±0.
0057602925

6.6666666E-
4±0.00210818
5

0.14799999±0.
018270938

0.49962783±0.
0040771035

0.02±0.013626
272 150.0±0.0

13 500
0.9330435±0.0
19680284

0.0617866±0.0
12293387

0.06695653±0.
019680286

0.93821347±0.
012293388

0.0066±0.0036
575645

0.1698±0.0146
19621

0.4985872±0.0
05273877

0.06695653±0.
019680286 500.0±0.0
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application of a single global permutation mask RCHK (single global MHC) produced 

the worst results because it has the lowest DR minus FR value. 

A comparison between GC and OC exhibited by the best performing test group for each 

scenario is summarised in Figure 39. The RCHK (Global MHC) rule has the highest OC 

and GC values and the feature-detection rule has the lowest OC and GC values. The OC 

and GC values of the feature-detection rule and the RCHK (MHC) rule are similar. The 

HD rule is the best performing rule, with reference to generalisation and overfitting, 

because it has the greatest GC minus OC value. The feature-detection rule is the worst 

performing rule, because it has the lowest GC minus OC value. 

 

 
Figure 38. Car Evaluation Data Set - DR and FR Summary 
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Figure 39. Car Evaluation Data Set -  GC and OC Summary 

 

6.2.3 Iris Experiment 

The iris data set consists of three distinct classes: namely veriscolor, virginica and setosa.  

The setosa class is linearly separable from the veriscolor and virginica classes, whereas 

the veriscolor and virginica classes are not linearly separable from one another. Each 

pattern within the data set comprises four continuous attributes, which was converted into 

a binary string of length 21 [41]. The data sets were processed further to create a single 

self-set and non-self set as follows: 

 Virginica.self: Contains 50 patterns relating to the virginica class. 

 Virginica.non-self: Contains all the patterns related to the veriscolor and setosa 

classes. The set contains 100 patterns in total. 

The results of each scenario are reported as per the list below: 

 The results of scenario 1, the iris data set, under the feature-detection rule are 

tabulated in Table 7 and Table 8. 

 The results of scenario 2, the iris data set, under the HD rule are tabulated in 

Table 9. 
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 The results of scenario 3, the iris data set, under the RCHK rule with no 

permutation mark are tabulated in Table 10. 

 The results of scenario 4, the iris data set, under the RCHK rule with a single 

global permutation mask are tabulated in Table 11. 

 The results of scenario 5, the iris data set, under the RCHK rule with each 

detector having its own random permutation mask are tabulated in Table 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



CHAPTER 6. EXPERIMENTAL RESULTS 109 

 

Table 7. Iris Data Set under Feature-Detection Rule (Part 1) 

 

 

 

 

 

 

 

Detector 
Length r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

3 2 50
0.97333336±0.
036514837 1.0±0.0

0.026666667±
0.03651484 0.0±0.0

23.456±2.9529
445

26.62±2.94923
73 1.0±0.0

0.026666667±
0.03651484 50.0±0.0

3 2 150 0.88±0.136626 1.0±0.0
0.120000005±
0.13662602 0.0±0.0

27.692001±1.7
973523

28.765331±1.8
233205 1.0±0.0

0.120000005±
0.13662602 150.0±0.0

3 2 500
0.76000005±0.
101105005 1.0±0.0

0.24000001±0.
101105005 0.0±0.0

28.638±0.3765
132

28.965998±0.3
8916555 1.0±0.0

0.24000001±0.
101105005 500.0±0.0

3 2 1500
0.8±0.0816496
5 1.0±0.0

0.2±0.0816496
6 0.0±0.0

29.084±0.7146
2417

29.1852±0.713
07117 1.0±0.0

0.2±0.0816496
6 1500.0±0.0

3 2 5000
0.8133334±0.1
4452988 1.0±0.0

0.18666667±0.
1445299 0.0±0.0

28.98544±0.44
29355

29.0168±0.443
3243 1.0±0.0

0.18666667±0.
1445299 5000.0±0.0

3 3 50
0.7266667±0.1
0634209

0.7166667±0.1
4337209

0.27333337±0.
1063421

0.28333336±0.
14337209

1.806±1.13462
87

3.7419999±1.4
73151

0.7311622±0.1
10297926

0.27333337±0.
1063421 50.0±0.0

3 3 150
0.5066667±0.2
33492

0.81333333±0.
08635271

0.4933334±0.2
3349202

0.18666668±0.
086352706

2.8713334±0.6
8007296

3.7160003±0.7
1504605

0.7226308±0.0
9954802

0.4933334±0.2
3349202 150.0±0.0

3 3 500
0.36666667±0.
11863421

0.9433333±0.0
35311654

0.6333334±0.1
1863421

0.056666665±
0.035311665

3.7555995±0.6
654341

4.0406±0.6671
765

0.8641971±0.0
693556

0.6333334±0.1
1863421 500.0±0.0

3 3 1500
0.24666667±0.
077300124

0.95666665±0.
022498278

0.75333333±0.
07730012

0.043333333±
0.022498287

4.128372±0.63
69852

4.222845±0.63
724047

0.8529293±0.0
80069505

0.75333333±0.
07730012

1499.9±0.3162
2776

3 3 5000
0.19333334±0.
08577893

0.9700001±0.0
3314763

0.80666673±0.
08577893

0.030000001±
0.033147633

4.1348±0.5651
9085

4.1637±0.5659
087

0.8825758±0.1
3702841

0.80666673±0.
08577893 5000.0±0.0

4 3 50
0.9333334±0.0
8164965 1.0±0.0

0.06666667±0.
08164965 0.0±0.0

11.768±3.4825
451

14.472±3.6130
762 1.0±0.0

0.06666667±0.
08164965 50.0±0.0

4 3 150
0.61333334±0.
13662602 1.0±0.0

0.38666666±0.
13662602 0.0±0.0

14.176±0.4033
0854

15.086667±0.4
1856897 1.0±0.0

0.38666666±0.
13662602 150.0±0.0

4 3 500
0.6±0.0816496
7 1.0±0.0

0.4±0.0816496
7 0.0±0.0

14.988399±0.8
0000377

15.272±0.7897
7424 1.0±0.0

0.4±0.0816496
7 500.0±0.0

4 3 1500
0.5866667±0.1
1925695 1.0±0.0

0.41333333±0.
11925696 0.0±0.0

15.0744±0.541
3303

15.165334±0.5
451644 1.0±0.0

0.41333333±0.
11925696 1500.0±0.0

4 3 5000
0.5866667±0.0
9888265 1.0±0.0

0.41333333±0.
09888265 0.0±0.0

14.989±0.2447
4639

15.017079±0.2
4525374 1.0±0.0

0.41333333±0.
09888265 5000.0±0.0

4 4 50
0.7199999±0.1
5331723

0.63±0.132823
1

0.27999997±0.
15331724

0.37±0.132823
1

1.2980001±0.3
7976018

3.0740001±0.6
209706

0.6645249±0.0
84139556

0.27999997±0.
15331724 50.0±0.0

4 4 150
0.34±0.127463
39

0.91±0.070360
63

0.66±0.127463
39

0.09±0.070360
62

2.574±0.77586
08

3.3939998±0.8
076697

0.8027849±0.1
4434408

0.66±0.127463
39 150.0±0.0

4 4 500
0.120000005±
0.075686164

0.99333334±0.
014054579

0.88±0.075686
16

0.006666667±
0.014054568

2.881±0.36610
168

3.1372±0.3714
2393

0.85555553±0.
31881985

0.88±0.075686
16 500.0±0.0

4 4 1500
0.060000002±
0.058373

0.9966667±0.0
10540934

0.93999994±0.
058372993

0.0033333334
±0.010540926

3.078467±0.21
836653

3.164867±0.21
730447

0.6666666±0.4
7140452

0.93999994±0.
058372993 1500.0±0.0

4 4 5000
0.04666667±0.
044996575 1.0±0.0

0.9533334±0.0
44996563 0.0±0.0

3.0703797±0.1
3541369

3.0962403±0.1
3556914 0.6±0.5163978

0.9533334±0.0
44996563 5000.0±0.0

9 8 50
0.8933333±0.1
01105

0.22666666±0.
092496246

0.10666667±0.
10110501

0.7733334±0.0
92496246

0.031999998±
0.017888544

0.33600003±0.
08876936

0.53590345±0.
0365317

0.10666667±0.
10110501 50.0±0.0

9 8 150
0.85333335±0.
08692269

0.53999996±0.
07226494

0.14666668±0.
0869227

0.45999998±0.
07226494

0.148±0.08102
126

0.504±0.12820
123

0.64971054±0.
04881381

0.14666668±0.
0869227 150.0±0.0

9 8 500
0.6666667±0.0
8164965

0.9533334±0.0
29814234

0.33333334±0.
08164965

0.04666667±0.
029814241

0.36640003±0.
07020541

0.57519996±0.
071938865

0.935205±0.03
854091

0.33333334±0.
08164965 500.0±0.0

9 8 1500
0.48000002±0.
07302969 1.0±0.0

0.52000004±0.
07302969 0.0±0.0

0.49466667±0.
04617119

0.5676001±0.0
4597729 1.0±0.0

0.52000004±0.
07302969 1500.0±0.0

9 8 5000
0.25333333±0.
098882645 1.0±0.0

0.74666667±0.
098882645 0.0±0.0

0.54592±0.009
932363

0.56804±0.009
93318 1.0±0.0

0.74666667±0.
098882645 5000.0±0.0

9 7 50
0.97333336±0.
036514837

0.59333336±0.
06411795

0.026666667±
0.03651484

0.40666667±0.
064117946

0.452±0.22432
12

1.6240002±0.3
0835044

0.70601654±0.
03938596

0.026666667±
0.03651484 50.0±0.0

9 7 150
0.79999995±0.
12472191

0.87333333±0.
07958224

0.20000002±0.
124721915

0.12666667±0.
079582244

1.016±0.27542
29

1.6706667±0.3
1239572

0.86268413±0.
089544006

0.20000002±0.
124721915 150.0±0.0

9 7 500
0.48000002±0.
055777345

0.99333334±0.
014907132

0.52±0.055777
345

0.006666667±
0.014907121

1.2992±0.0734
6562

1.5195999±0.0
747984

0.9846153±0.0
34401044

0.52±0.055777
345 500.0±0.0

9 7 1500
0.30666667±0.
1738454 1.0±0.0

0.6933334±0.1
7384538 0.0±0.0

1.3277334±0.0
7047236

1.4026667±0.0
7057068 1.0±0.0

0.6933334±0.1
7384538 1500.0±0.0

9 7 5000
0.2±0.0471404
57 1.0±0.0

0.79999995±0.
04714045 0.0±0.0

1.47244±0.054
617476

1.4952799±0.0
54817434 1.0±0.0

0.79999995±0.
04714045 5000.0±0.0
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Table 8. Iris Data Set under feature-detection Rule (Part 2) 

 

 

 

 

 

 

 

Detector 
Length r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

9 9 50
0.8933333±0.1
3770607

0.053333335±
0.044996575

0.10666667±0.
13770609

0.9466666±0.0
4499658

0.0060±0.0134
98971

0.132±0.11360
751

0.48263234±0.
0421527

0.10666667±0.
13770609 50.0±0.0

9 9 150
0.84000003±0.
06440611

0.23000002±0.
08812169

0.16000001±0.
06440612

0.77±0.088121
69

0.022000002±
0.012976712

0.18466668±0.
040006176

0.52255535±0.
02262918

0.16000001±0.
06440612 150.0±0.0

9 9 500
0.56666666±0.
20427528

0.55±0.080507
65

0.43333334±0.
2042753

0.45000005±0.
08050764

0.059600007±
0.016701298

0.1884±0.0296
91752

0.54541814±0.
088308245

0.43333334±0.
2042753 500.0±0.0

9 9 1500
0.15333335±0.
09962895

0.88±0.061262
43

0.8466667±0.0
9962894

0.120000005±
0.061262444

0.113199994±
0.015519956

0.18059999±0.
01628284

0.55523807±0.
1574744

0.8466667±0.0
9962894 1500.0±0.0

9 9 5000
0.04±0.056218
27 1.0±0.0

0.96000004±0.
056218266 0.0±0.0

0.15604±0.013
125647

0.17812±0.013
112911 0.4±0.5163978

0.96000004±0.
056218266 5000.0±0.0

14 11 50
0.97333336±0.
036514834

0.060000002±
0.054772258

0.026666667±
0.03651484

0.93999994±0.
05477227 0.0±0.0

0.088±0.06723
095

0.50889957±0.
010744805

0.026666667±
0.03651484 50.0±0.0

14 11 150
0.88±0.073029
67

0.14666668±0.
018257417

0.120000005±
0.073029675

0.85333335±0.
018257434

0.017333332±
0.015347819

0.11866667±0.
031411253

0.507027±0.02
0881211

0.120000005±
0.073029675 150.0±0.0

14 11 500
0.7866667±0.1
4452988

0.47999996±0.
13038404

0.21333334±0.
1445299

0.52000004±0.
13038406

0.026800001±
0.0046043466

0.1152±0.0106
39549

0.6014875±0.1
0327595

0.21333334±0.
1445299 500.0±0.0

14 11 1500
0.56±0.138242
95

0.74666667±0.
060553007

0.44±0.138242
95

0.25333333±0.
06055301

0.053199995±
0.009734246

0.10866666±0.
010402992

0.6841536±0.0
8319307

0.44±0.138242
95 1500.0±0.0

14 11 5000
0.25333333±0.
0869227 1.0±0.0

0.7466666±0.0
8692269 0.0±0.0

0.097279996±
0.0053583556

0.11847999±0.
005561656 1.0±0.0

0.7466666±0.0
8692269 5000.0±0.0

14 14 50
0.99333334±0.
02108185 0.0±0.0

0.006666667±
0.02108185 1.0±0.0 0.0±0.0

0.0019999999
±0.006324555
3

0.49827585±0.
005452205

0.006666667±
0.02108185 50.0±0.0

14 14 150
0.99333334±0.
021081852

0.006666667±
0.0140545685

0.006666667±
0.021081852

0.99333334±0.
014054579 0.0±0.0

0.0026666666
±0.003442652

0.49997076±0.
00699916

0.006666667±
0.021081852 150.0±0.0

14 14 500
0.98±0.032203
06

0.023333335±
0.027442422

0.020000001±
0.032203063

0.9766666±0.0
27442422 0.0±0.0

0.0038000003
±0.002394438

0.50081825±0.
007498343

0.020000001±
0.032203063 500.0±0.0

14 14 1500
0.9466666±0.0
61262432

0.080000006±
0.06885304

0.053333335±
0.061262447

0.91999996±0.
06885304

4.0000002E-
4±4.6613725E-
4

0.0070±0.0030
991836

0.50727665±0.
022279445

0.053333335±
0.061262447 1500.0±0.0

14 14 5000
0.80666673±0.
06629526

0.24333334±0.
08613799

0.19333333±0.
066295266

0.7566666±0.0
8613798

7.4E-
4±5.7387573E-
4

0.0060600005
±0.001469845

0.5166026±0.0
36862854

0.19333333±0.
066295266 5000.0±0.0

21 8 50
0.5866667±0.1
9663842

0.52666676±0.
14981471

0.41333333±0.
19663842

0.47333336±0.
1498147

0.796±0.17854
97

2.1320002±0.2
5752673

0.5480799±0.1
2051104

0.41333333±0.
19663842 50.0±0.0

21 8 150
0.14666668±0.
055777334

0.9333333±0.0
4714046

0.85333335±0.
055777334

0.06666667±0.
047140453

1.7639999±0.2
9513088

2.4906666±0.3
109341

0.7409523±0.1
6610792

0.85333335±0.
055777334 150.0±0.0

21 8 500
0.026666667±
0.03651484 1.0±0.0

0.97333336±0.
036514837 0.0±0.0

1.9132±0.1695
9125

2.1467998±0.1
7089528 0.4±0.5477226

0.97333336±0.
036514837 500.0±0.0

21 8 1500
0.026666667±
0.036514837 1.0±0.0

0.97333336±0.
036514834 0.0±0.0

2.142±0.06629
067

2.2182667±0.0
6913857 0.4±0.5477226

0.97333336±0.
036514834 1500.0±0.0

21 8 5000
0.053333335±
0.029814241 1.0±0.0

0.9466667±0.0
29814238 0.0±0.0

2.24212±0.023
489006

2.26512±0.023
556186

0.8±0.4472136
2

0.9466667±0.0
29814238 5000.0±0.0

21 21 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0
21 21 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0

21 21 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0
2.0000001E-
4±6.324556E-4 0.5±0.0 0.0±0.0 500.0±0.0

21 21 1500
0.99333334±0.
021081852 0.0±0.0

0.006666667±
0.021081852 1.0±0.0 0.0±0.0 0.0±0.0

0.49827585±0.
005452205

0.006666667±
0.021081852 1500.0±0.0

21 21 5000
0.99333334±0.
021081852 0.0±0.0

0.006666667±
0.021081852 1.0±0.0 0.0±0.0

2.0E-
5±6.3245556E-
5

0.49827585±0.
0054522054

0.006666667±
0.021081852 5000.0±0.0
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Table 9. Iris Data Set under HD Rule 

 

 

 

 

r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

3 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
3 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
3 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
3 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
3 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
4 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
4 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
4 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
4 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
4 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
9 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
9 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
9 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
9 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
9 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0

12 50
0.62666667±0.
20893615

0.37666667±0.
15638667

0.3733333±0.2
0893617

0.62333333±0.
15638667

4.2200003±4.3
879447

15.955554±8.0
33242

0.49514943±0.
08008387

0.3733333±0.2
0893617 4.5±1.95789

12 150
0.39333335±0.
15218572

0.79333335±0.
14470062

0.6066667±0.1
5218572

0.20666666±0.
14470063

10.85366±3.72
28777

18.413082±3.9
236448

0.6752944±0.1
2613614

0.6066667±0.1
5218572 14.9±4.306326

12 500
0.16666667±0.
12668617

0.92333335±0.
06858354

0.8333334±0.1
2668616

0.07666667±0.
068583556

13.644594±1.7
730017

16.538666±1.9
582787

0.6372527±0.2
4850994

0.8333334±0.1
2668616

47.1±14.14567
1

12 1500
0.09333334±0.
078252524

0.9833333±0.0
23570232

0.90666664±0.
07825252

0.016666668±
0.023570227

14.895282±0.9
2522585

16.043577±0.9
696866

0.81333333±0.
31863907

0.90666664±0.
07825252

125.5±40.1088
8

12 5000
0.06666667±0.
044444446 1.0±0.0

0.9333333±0.0
4444444 0.0±0.0

15.934755±0.9
402727

16.207302±0.9
451552

0.8±0.4216370
3

0.9333333±0.0
4444444

512.7±128.192
61

14 50
0.3333333±0.1
2957671

0.8466667±0.0
8344437

0.6666666±0.1
295767

0.15333334±0.
08344437

3.5579998±1.1
240977

5.626±1.21827
02

0.67449224±0.
18974859

0.6666666±0.1
295767 50.0±0.0

14 150
0.10666667±0.
08432741

0.97333324±0.
043885373

0.8933333±0.0
843274

0.026666667±
0.043885373

4.1686664±0.6
082564

4.964667±0.61
69783

0.69666666±0.
40565446

0.8933333±0.0
843274 150.0±0.0

14 500
0.013333334±
0.028109135 1.0±0.0

0.9866667±0.0
28109133 0.0±0.0

5.057543±0.56
11349

5.2941904±0.5
634025

0.2±0.4216370
6

0.9866667±0.0
28109133

499.9±0.31622
78

14 1500
0.033333335±
0.035136424 1.0±0.0

0.9666667±0.0
35136417 0.0±0.0

4.7965164±0.2
1805303

4.8765945±0.2
179148

0.5±0.5270462
6

0.9666667±0.0
35136417

1499.8±0.4216
3697

14 5000
0.026666667±
0.03442652 1.0±0.0

0.97333336±0.
034426518 0.0±0.0

5.070233±0.25
51826

5.093816±0.25
516415

0.4±0.5163978
3

0.97333336±0.
034426518

4999.5±0.7071
0677

16 50
0.7466666±0.1
0327955

0.39333332±0.
1654026

0.25333333±0.
10327956

0.6066667±0.1
6540262

0.19399998±0.
12580408

1.0200001±0.2
8142494

0.5564003±0.0
7604513

0.25333333±0.
10327956 50.0±0.0

16 150
0.5333334±0.1
2957671

0.6733333±0.0
9787873

0.46666664±0.
12957673

0.32666665±0.
09787874

0.47199997±0.
14833395

1.028±0.17992
589

0.6191002±0.0
9352937

0.46666664±0.
12957673 150.0±0.0

16 500
0.13333334±0.
054433104

0.9833333±0.0
28327886

0.8666667±0.0
54433104

0.01666667±0.
028327888

0.83220005±0.
07840323

1.0574±0.0801
6676

0.92166674±0.
1300641

0.8666667±0.0
54433104 500.0±0.0

16 1500
0.013333334±
0.028109137

0.9966667±0.0
10540934

0.9866667±0.0
28109131

0.0033333334
±0.010540926

0.9555333±0.0
9519314

1.0295999±0.0
9614763 0.2±0.421637

0.9866667±0.0
28109131 1500.0±0.0

16 5000
0.020000001±
0.032203063 1.0±0.0

0.98±0.032203
06 0.0±0.0

0.98772±0.029
338213

1.01028±0.029
30942 0.3±0.4830459

0.98±0.032203
06 5000.0±0.0

18 50
0.9533334±0.0
6324555

0.05±0.059317
1

0.04666667±0.
063245565

0.95±0.059317
093

0.0019999999
±0.006324555
3

0.077999994±
0.053707022

0.50082076±0.
024219608

0.04666667±0.
063245565 50.0±0.0

18 150
0.9200001±0.0
75686164

0.09666668±0.
086709395

0.08±0.075686
164

0.9033333±0.0
8670938

0.0019999999
±0.003220306

0.063999996±
0.031301007

0.504859±0.03
7212886

0.08±0.075686
164 150.0±0.0

18 500
0.72±0.139841
17

0.31333333±0.
09962894

0.28000003±0.
13984117

0.6866666±0.0
99628925

0.0132±0.0039
10101

0.0828±0.0161
98765

0.5098301±0.0
63931726

0.28000003±0.
13984117 500.0±0.0

18 1500
0.4666667±0.1
9372885

0.59±0.113366
01

0.53333336±0.
19372885

0.41000003±0.
113366015

0.02373333±0.
0065636486

0.0672±0.0099
32116

0.5205472±0.0
6836556

0.53333336±0.
19372885 1500.0±0.0

18 5000
0.06666667±0.
054433104

0.9599999±0.0
30631224

0.9333333±0.0
54433104

0.04±0.030631
222

0.050619997±
0.0071606645

0.07156±0.007
342903

0.53166664±0.
32034415

0.9333333±0.0
54433104 5000.0±0.0

21 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0
21 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0
21 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 500.0±0.0
21 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 1500.0±0.0
21 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 5000.0±0.0
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Table 10. Iris Data Set under RCHK (no MHC) Rule 

 

 

 

 

 

 

 

r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

3 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
3 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0

3 500
0.9866667±0.0
421637

0.01±0.031622
78

0.013333334±
0.042163704

0.98999995±0.
031622786

0.38627452±1.
2215072 0.4±1.264911

0.49905664±0.
0029832784

0.013333334±
0.042163704 5.1±16.127617

3 1500
0.9866667±0.0
421637

0.01±0.031622
78

0.013333334±
0.042163704

0.98999995±0.
031622786

0.3955414±1.2
508117 0.4±1.264911

0.49905664±0.
0029832784

0.013333334±
0.042163704

15.7±49.64776
2

3 5000
0.9466667±0.0
9322744

0.09333334±0.
22868381

0.053333335±
0.09322746

0.9066666±0.2
2868383

3.2055562±7.5
20418

3.215905±7.54
42333

0.5214466±0.0
7455268

0.053333335±
0.09322746

207.6±364.837
62

4 50
0.9000001±0.0
9558138

0.7133333±0.0
89166224 0.1±0.0955814

0.28666666±0.
08916624

5.153708±1.95
35967

7.525148±2.26
75576

0.7637254±0.0
5390075 0.1±0.0955814

35.1±4.148627
8

4 150
0.8666667±0.0
9938079

0.74333334±0.
084692605

0.13333334±0.
099380806

0.25666666±0.
08469262

6.56212±1.067
0122

7.77992±1.056
8224

0.7761036±0.0
4961956

0.13333334±0.
099380806

108.2±5.75036
24

4 500
0.80666673±0.
08577892

0.71999997±0.
07403701

0.19333334±0.
08577893

0.28±0.074037
04

7.3547335±1.0
858318

7.774891±1.07
23898

0.7459282±0.0
52229002

0.19333334±0.
08577893

344.3±24.7253
82

4 1500
0.71999997±0.
10795517

0.78±0.109092
765

0.28000003±0.
10795518

0.22±0.109092
78

7.7531443±1.1
783108

7.8930244±1.1
752664

0.77924657±0.
08524563

0.28000003±0.
10795518

1087.7±78.361
06

4 5000
0.8066667±0.1
4555131

0.7333333±0.0
60858052

0.19333336±0.
14555132

0.26666668±0.
060858063

8.25968±0.757
28536

8.300746±0.75
519514

0.752445±0.03
165363

0.19333336±0.
14555132

3565.7±223.88
739

9 50
0.90666664±0.
056218266

0.21999998±0.
11987648

0.093333334±
0.056218274

0.78000003±0.
119876474

0.09199999±0.
055136196

0.592±0.21212
156

0.5396224±0.0
31750735

0.093333334±
0.056218274 50.0±0.0

9 150
0.72±0.146733
98

0.61±0.191195
07

0.28000003±0.
14673398

0.39000005±0.
19119507

0.21733335±0.
10653696

0.6946666±0.1
8642312

0.6578694±0.1
2569918

0.28000003±0.
14673398 150.0±0.0

9 500
0.38±0.140721
26

0.8966667±0.0
57628006

0.62±0.140721
25

0.10333334±0.
057628013

0.4276±0.0852
4371

0.65220004±0.
09149353

0.7893232±0.0
8125502

0.62±0.140721
25 500.0±0.0

9 1500
0.120000005±
0.042163704 1.0±0.0

0.88±0.042163
7 0.0±0.0

0.6321333±0.0
65427594

0.71646667±0.
06610881 1.0±0.0

0.88±0.042163
7 1500.0±0.0

9 5000
0.12000002±0.
061262444 1.0±0.0

0.88±0.061262
44 0.0±0.0

0.68981993±0.
038678672

0.71456003±0.
03838424

0.9±0.3162277
6

0.88±0.061262
44 5000.0±0.0

14 50
0.99333334±0.
021081852

0.0033333334
±0.010540926

0.006666667±
0.021081852

0.9966667±0.0
10540934 0.0±0.0

0.007999999±
0.013984119

0.4991228±0.0
027739268

0.006666667±
0.021081852 50.0±0.0

14 150
0.98±0.032203
06

0.026666667±
0.021081852

0.020000001±
0.032203063

0.97333324±0.
021081857 0.0±0.0

0.024666665±
0.020379124

0.50163543±0.
010587996

0.020000001±
0.032203063 150.0±0.0

14 500
0.9266666±0.0
49190983

0.08333334±0.
036004115

0.07333334±0.
049190987

0.9166666±0.0
36004107

2.0000001E-
4±6.324556E-4

0.015599999±
0.005796551

0.50256425±0.
020780347

0.07333334±0.
049190987 500.0±0.0

14 1500
0.82000005±0.
054884836

0.21000001±0.
07544109

0.18±0.054884
847

0.78999996±0.
07544109

0.0021333336
±9.3227456E-4

0.015866665±
0.0036079471

0.5097975±0.0
31099215

0.18±0.054884
847 1500.0±0.0

14 5000
0.5066667±0.1
0976969

0.5733334±0.0
9913204

0.49333334±0.
109769695

0.42666668±0.
09913204

0.00552±0.001
8766401

0.017579999±
0.0026439866

0.5429275±0.0
8199566

0.49333334±0.
109769695 5000.0±0.0

21 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0

21 150
0.99333334±0.
021081852 0.0±0.0

0.006666667±
0.021081852 1.0±0.0 0.0±0.0 0.0±0.0

0.49827585±0.
005452205

0.006666667±
0.021081852 150.0±0.0

21 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 500.0±0.0

21 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0
1.3333333E-
4±4.21637E-4 0.5±0.0 0.0±0.0 1500.0±0.0

21 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0

2.0E-
5±6.3245556E-
5 0.5±0.0 0.0±0.0 5000.0±0.0
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Table 11. Iris Data Set under RCHK (Global MHC) Rule 

 

 

 

 

 

 

 

 

r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

3 50
0.93999994±0.
18973665

0.06333333±0.
20027761

0.060000002±
0.18973666

0.93666667±0.
20027761

3.148148±9.95
5318

3.6111112±11.
419337

0.5021739±0.0
06874515

0.060000002±
0.18973666 2.7±8.538149

3 150 1.0±0.0
0.026666667±
0.08432741 0.0±0.0

0.97333336±0.
0843274

1.9227272±6.0
80197 2.1±6.640783

0.5076923±0.0
2432521 0.0±0.0 2.2±6.9570107

3 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0
11.6±24.49580
6

3 1500
0.9466667±0.1
6865481 0.0±0.0

0.053333335±
0.16865481 1.0±0.0 0.0±0.0 0.0±0.0

0.4818182±0.0
57495967

0.053333335±
0.16865481

49.0±110.1322
5

3 5000
0.97333336±0.
06440611 0.0±0.0

0.026666667±
0.06440612 1.0±0.0 0.0±0.0 0.0±0.0

0.4927203±0.0
1780681

0.026666667±
0.06440612

95.6±202.2958
2

4 50
0.5066666±0.1
5137233

0.9066666±0.0
49190987

0.49333334±0.
15137233

0.09333334±0.
049190987

7.587088±1.29
88973

10.880575±1.4
479989

0.8416767±0.0
82930274

0.49333334±0.
15137233

34.5±2.223610
6

4 150
0.2±0.0888888
9

0.6933333±0.1
2049281

0.8000001±0.0
88888876

0.30666667±0.
120492816

7.336225±0.93
26625

8.415715±1.06
93196

0.39178795±0.
11240698

0.8000001±0.0
88888876

101.3±9.11713
9

4 500
0.04666667±0.
044996575

0.95333326±0.
04216371

0.9533334±0.0
44996563

0.046666667±
0.042163704

7.443494±0.66
882974

7.782298±0.71
16106

0.41000003±0.
4121758

0.9533334±0.0
44996563

354.6±15.3347
84

4 1500
0.026666667±
0.03442652 1.0±0.0

0.97333336±0.
034426514 0.0±0.0

10.78032±0.64
96992

10.930087±0.6
437873

0.4±0.5163978
3

0.97333336±0.
034426514

1062.0±75.421
776

4 5000 0.1±0.0955814 1.0±0.0
0.9±0.0955813
8 0.0±0.0

12.048187±0.8
8876873

12.092896±0.8
872982

0.7±0.4830458
8

0.9±0.0955813
8

3546.2±318.57
49

9 50 0.7±0.1968894
0.31333336±0.
1020772 0.3±0.1968894

0.6866666±0.1
02077186

0.076000005±
0.05399589

0.68±0.268659
2

0.49780852±0.
10162905 0.3±0.1968894 50.0±0.0

9 150
0.3266667±0.1
790234

0.57666665±0.
09434635

0.67333335±0.
1790234

0.42333332±0.
09434635

0.224±0.06616
1044

0.7133333±0.1
0217389

0.4123277±0.1
3530304

0.67333335±0.
1790234 150.0±0.0

9 500
0.020000001±
0.03220306

0.9599999±0.0
4388537

0.98±0.032203
056

0.040000003±
0.043885373

0.45240003±0.
10740908

0.69439995±0.
12082236

0.16666666±0.
28327882

0.98±0.032203
056 500.0±0.0

9 1500
0.006666667±
0.021081852 1.0±0.0

0.99333334±0.
02108185 0.0±0.0

0.6354667±0.0
55412095

0.71599996±0.
055307

0.1±0.3162277
6

0.99333334±0.
02108185 1500.0±0.0

9 5000 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
0.62152004±0.
03174554

0.646±0.03177
2673 0.0±0.0 1.0±0.0 5000.0±0.0

14 50 02108185 ±0.010540926 0.021081852 10540934 0.0±0.0 7942 027739266 0.021081852 50.0±0.0

14 150
0.97333336±0.
046613723

0.033333335±
0.015713485

0.026666667±
0.04661373

0.9666666±0.0
15713483 0.0±0.0

0.016666666±
0.010540926

0.50147855±0.
010032615

0.026666667±
0.04661373 150.0±0.0

14 500
0.88666666±0.
07062332

0.089999996±
0.041722186

0.11333333±0.
07062333

0.91±0.041722
186

6.0E-
4±9.660918E-4

0.019599998±
0.007351493

0.49301472±0.
02323321

0.11333333±0.
07062333 500.0±0.0

14 1500
0.80666673±0.
14555131

0.19666669±0.
097436264

0.19333336±0.
14555132

0.8033334±0.0
97436264

0.0018666666
±0.001853924
8

0.016733333±
0.0049035135

0.4986294±0.0
6586316

0.19333336±0.
14555132 1500.0±0.0

14 5000
0.42666668±0.
24383765

0.62666667±0.
10036968

0.5733334±0.2
4383764

0.37333333±0.
10036969

0.00526±0.001
8974837

0.01842±0.003
0542503

0.49948317±0.
14249705

0.5733334±0.2
4383764 5000.0±0.0

21 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0

0.0019999999
±0.006324555
3 0.5±0.0 0.0±0.0 50.0±0.0

21 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0
21 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 500.0±0.0
21 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 1500.0±0.0

21 5000 1.0±0.0
0.0033333334
±0.010540926 0.0±0.0

0.9966667±0.0
10540934 0.0±0.0

8.0E-
5±1.3984118E-
4

0.50084746±0.
0026799003 0.0±0.0 5000.0±0.0
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Table 12. Iris Data Set under RCHK (MHC) Rule 

 

 

6.2.4 Iris Data Set Conclusion 

The iris data set, re-formatted as a set of binary strings, is more complex than the car 

evaluation data set, because it comprises 21 attributes. The results of the best performing 

test group for each scenario are summarised in Figure 40. The feature-detection rule is the 

best performing rule, because its DR minus FR value is the greatest across all of the rules. 

The HD rule is the worst performing rule.  

r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

3 50
0.9333334±0.0
88888876

0.23333335±0.
2888889

0.06666667±0.
08888889

0.7666667±0.2
8888887

0.8486255±0.7
8088397

3.2239513±2.2
262013

0.5672599±0.1
0510507

0.06666667±0.
08888889

15.0±2.624669
3

3 150
0.7933333±0.1
3128048

0.59000003±0.
20967346

0.20666668±0.
1312805

0.41±0.209673
46

2.246284±1.53
87622

4.4097605±2.1
53065

0.6742336±0.1
0524034

0.20666668±0.
1312805 44.5±5.720334

3 500
0.5733334±0.1
992579

0.82333326±0.
07544109

0.42666668±0.
19925788

0.17666666±0.
075441085

3.1646423±0.9
160805

4.0670805±0.9
5371896

0.7689044±0.0
94685756

0.42666668±0.
19925788

148.3±12.1293
95

3 1500
0.34666663±0.
10327956

0.89±0.060959
406

0.6533333±0.1
0327955

0.110000014±
0.060959414

4.0109186±0.5
6978536

4.336661±0.57
61496

0.7575059±0.1
0070588

0.6533333±0.1
0327955

436.7±13.9606
58

3 5000
0.24000001±0.
08999315

0.94333327±0.
031622775

0.75999993±0.
08999313

0.056666665±
0.03162278

4.4136825±0.4
5556828

4.513071±0.45
379123

0.79752415±0.
1357313

0.75999993±0.
08999313

1479.8±36.398
41

4 50
0.68000007±0.
11243653

0.43666667±0.
16810489

0.32000002±0.
11243653

0.56333333±0.
16810489

1.5104654±0.7
3549527

3.8262355±1.2
850778

0.5532085±0.0
8873324

0.32000002±0.
11243653 29.8±3.224903

4 150
0.52666664±0.
16465452

0.8366667±0.0
8081376

0.47333336±0.
16465454

0.16333334±0.
080813766

2.8375728±0.7
4969894

4.2260017±0.7
7115417

0.76966274±0.
091742516

0.47333336±0.
16465454 86.9±5.801341

4 500
0.20000002±0.
10423146

0.95333326±0.
039126266

0.8±0.1042314
54

0.046666667±
0.03912626

4.0771327±0.6
690778

4.516092±0.67
755663

0.7872439±0.1
9589897

0.8±0.1042314
54

294.3±11.1659
2

4 1500
0.07333334±0.
058373004

0.9966667±0.0
10540934

0.92666674±0.
058372997

0.0033333334
±0.010540926

4.412161±0.34
530318

4.561801±0.34
21707

0.68±0.473286
36

0.92666674±0.
058372997

892.6±28.3360
8

4 5000
0.060000002±
0.037843082 1.0±0.0

0.93999994±0.
03784308 0.0±0.0

4.295509±0.36
027455

4.341272±0.35
835508 0.8±0.421637

0.93999994±0.
03784308

2960.3±73.961
03

9 50
0.7866667±0.1
3984117

0.21333334±0.
07403703

0.21333337±0.
13984118

0.78666675±0.
074037015

0.066±0.07306
01

0.63199997±0.
20595577

0.49707794±0.
0436068

0.21333337±0.
13984118 50.0±0.0

9 150
0.58000004±0.
104468085

0.47666663±0.
081725225

0.42000002±0.
10446808

0.5233334±0.0
81725225

0.20933333±0.
12866646

0.62±0.185205
94

0.52502394±0.
055108774

0.42000002±0.
10446808 150.0±0.0

9 500
0.23333335±0.
12272624

0.9166667±0.0
7412035

0.7666667±0.1
22726224

0.08333334±0.
07412036

0.41500002±0.
0828506

0.62659997±0.
08716803

0.72602814±0.
2007909

0.7666667±0.1
22726224 500.0±0.0

9 1500
0.04666667±0.
044996575

0.9966667±0.0
10540934

0.9533334±0.0
44996563

0.0033333334
±0.010540926

0.5434±0.0454
53493

0.6184667±0.0
46030637

0.58000004±0.
5028806

0.9533334±0.0
44996563 1500.0±0.0

9 5000
0.026666667±
0.03442652 1.0±0.0

0.97333336±0.
034426518 0.0±0.0

0.60067993±0.
04480588

0.62332±0.045
038365 0.4±0.5163978

0.97333336±0.
034426518 5000.0±0.0

14 50
0.98±0.032203
056

0.0033333334
±0.010540926

0.020000001±
0.03220306

0.9966667±0.0
10540934 0.0±0.0

0.021999998±
0.042635404

0.49567452±0.
007336217

0.020000001±
0.03220306 50.0±0.0

14 150
0.97333336±0.
034426518

0.020000001±
0.028109137

0.026666667±
0.03442652

0.98±0.028109
137

6.6666666E-
4±0.00210818
5

0.018666666±
0.015331722

0.4982461±0.0
1059245

0.026666667±
0.03442652 150.0±0.0

14 500
0.9466667±0.0
5258737

0.06000001±0.
05397759

0.053333335±
0.05258738

0.93999994±0.
053977598

2.0000001E-
4±6.324556E-4

0.0148±0.0074
356496

0.5017945±0.0
21424664

0.053333335±
0.05258738 500.0±0.0

14 1500
0.88±0.075686
16

0.19000001±0.
09434635

0.12000002±0.
075686164

0.81000006±0.
09434635

0.0013333333
±9.428091E-4

0.014466668±
0.0022010095

0.52135813±0.
041156746

0.12000002±0.
075686164 1500.0±0.0

14 5000
0.5±0.1812167
5

0.62±0.106805
466

0.5±0.1812167
5

0.38±0.106805
45

0.0052599995
±0.001015655
2

0.016980002±
0.0016040227

0.55853224±0.
0957422

0.5±0.1812167
5 5000.0±0.0

21 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0
21 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0
21 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 500.0±0.0

21 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0
1.3333333E-
4±4.21637E-4 0.5±0.0 0.0±0.0 1500.0±0.0

21 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0
4.0E-
5±8.43274E-5 0.5±0.0 0.0±0.0 5000.0±0.0
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A comparison between GC and OC exhibited by the best performing test group for each 

scenario is summarised in Figure 41. The feature-detection rule has the highest OC and 

GC values followed the HD rule and RCHK (No MHC) rule. The HD rule is the best 

performing rule, with reference to generalisation and overfitting, because it has the 

greatest GC minus OC value whereas the RCHK (Global MHC) rule is the worst 

performing rule because it has the lowest GC minus OC value. 

 

 
Figure 40. Iris Data Set: DR and FR Summary 

 

 
Figure 41. Iris Data Set: GC and OC Summary 
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6.2.5 Wisconsin Breast Cancer Experiment 

The Wisconsin breast-cancer data set comprises 699 patterns distributed between two 

classes, namely, benign and malignant. Each pattern originally consisted of nine 

attributes with values in the range . The tenth attribute indicates the target class of 

the pattern. The data set has 16 missing values for the “bare nuclei” attributes which were 

replaced by ones. Each pattern was converted into a bit string of length 37. The data sets 

were processed further to create a single self-set and non-self set as follows: 

 Benign.self: Contains 458 patterns relating to the benign class. 

 Benign.non-self: Contains all the patterns related to malignant class. The set 

contains 241 patterns in total. 

The results of each scenario are reported as per the list below: 

 The results of scenario 1, the Wisconsin breast-cancer data set, under the feature-

detection rule are tabulated in Table 13 and Table 14. 

 The results of scenario 2, the Wisconsin breast-cancer data set, under the HD 

rule are tabulated in Table 15 and Table 16. 

 The results of scenario 3, the Wisconsin breast-cancer data set, under the RCHK 

rule with no permutation mark are tabulated in Table 17. 

 The results of scenario 4, the Wisconsin breast-cancer data set, under the RCHK 

rule with a single global permutation mask are tabulated in Table 18. 

 The results of scenario 5, the Wisconsin breast-cancer data set, under the RCHK 

rule with each detector having its own random permutation mask are tabulated in 

Table 19. 
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Table 13. Wisconsin Breast-Cancer Data Set under Feature-Detection Rule (Part 1) 

 

Detector 
Length r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

3 2 50
0.9708029±0.0
17879503

0.8694445±0.0
28800627

0.029197078±
0.017879488

0.13055556±0.
028800614

29.017227±7.7
058196

34.561928±7.9
616933

0.8820877±0.0
2186769

0.029197078±
0.017879488

48.4±1.816590
2

3 2 150
0.96934307±0.
013057338

0.9388889±0.0
2324054

0.030656934±
0.013057331

0.06111111±0.
023240557

31.596691±5.3
42802

33.658703±5.3
137665

0.94097614±0.
021711493

0.030656934±
0.013057331

141.2±4.14728
83

3 2 500
0.96934307±0.
0061070076

0.98611104±6.
664002E-8

0.030656934±
0.0061070067

0.01388889±1.
0412503E-9

35.80622±4.25
27304

36.497047±4.2
408233

0.9858738±8.7
58481E-5

0.030656934±
0.0061070067

466.6±19.0341
8

3 2 1500
0.960584±0.01
8321024

0.98611104±6.
664002E-8

0.039416052±
0.018321022

0.01388889±1.
0412503E-9

37.084694±5.2
265916

37.32355±5.22
2468

0.9857432±2.6
88026E-4

0.039416052±
0.018321022

1405.6±59.935
8

3 2 5000
0.9576642±0.0
14040426

0.98611104±6.
664002E-8

0.042335767±
0.014040426

0.01388889±1.
0412503E-9

33.20325±1.56
3629

33.273182±1.5
610502

0.98570204±2.
0563458E-4

0.042335767±
0.014040426

4639.8±131.02
174

3 2 50000
0.9518248±0.0
15136083

0.98611104±6.
664002E-8

0.04817518±0.
015136089

0.01388889±1.
0412503E-9

35.2795±6.091
5318

35.286324±6.0
915985

0.98561513±2.
2499077E-4

0.04817518±0.
015136089

47404.2±1296.
1891

3 3 50
0.9715328±0.0
15936278

0.85±0.042833
46

0.028467152±
0.015936274

0.15±0.042833
455

11.146±2.4529
54

15.644±2.8116
708

0.8676165±0.0
32362953

0.028467152±
0.015936274 50.0±0.0

3 3 150
0.9408759±0.0
23950806

0.96944445±0.
015767956

0.05912409±0.
023950802

0.030555556±
0.01576795

14.352666±1.5
337793

16.170666±1.5
415505

0.96873647±0.
015719466

0.05912409±0.
023950802 150.0±0.0

3 3 500
0.9328467±0.0
1781314

0.9874999±0.0
043920544

0.06715329±0.
017813144

0.0125±0.0043
920525

14.661±1.0272
595

15.225801±1.0
317414

0.9868363±0.0
046309414

0.06715329±0.
017813144 500.0±0.0

3 3 1500
0.90073±0.023
38805

0.9944445±0.0
071721952

0.099270076±
0.02338806

0.0055555557
±0.007172191
5

15.8824005±1.
3319075

16.076±1.3331
056

0.9939146±0.0
07860418

0.099270076±
0.02338806 1500.0±0.0

3 3 5000
0.8693431±0.0
34997612 1.0±0.0

0.13065693±0.
034997612 0.0±0.0

15.555921±0.8
8677573

15.61454±0.88
66998 1.0±0.0

0.13065693±0.
034997612 5000.0±0.0

3 3 50000
0.8540146±0.0
27093733 1.0±0.0

0.1459854±0.0
27093746 0.0±0.0

15.5381365±1.
1239799

15.543915±1.1
240369 1.0±0.0

0.1459854±0.0
27093746 50000.0±0.0

5 4 50
0.96934307±0.
0140404245

0.825±0.15945
025

0.030656934±
0.014040425

0.175±0.15945
026

7.104±2.52520
9

11.268±3.1048
222

0.8591341±0.1
0407931

0.030656934±
0.014040425 50.0±0.0

5 4 150
0.94160587±0.
030095652

0.95±0.021063
53

0.058394156±
0.030095663

0.05±0.021063
544

10.204±1.1070
038

11.944±1.1575
319

0.9495287±0.0
21682972

0.058394156±
0.030095663 150.0±0.0

5 4 500
0.9197081±0.0
31395353

0.9944445±0.0
07607261

0.08029197±0.
03139535

0.0055555557
±0.007607257
5

11.538±0.3536
325

12.092±0.3609
3745

0.9940616±0.0
0814396

0.08029197±0.
03139535 500.0±0.0

5 4 1500
0.8919708±0.0
26012449 1.0±0.0

0.1080292±0.0
26012452 0.0±0.0

12.179067±0.5
630346

12.368001±0.5
620739 1.0±0.0

0.1080292±0.0
26012452 1500.0±0.0

5 4 5000
0.82919705±0.
023425996 1.0±0.0

0.17080292±0.
023425996 0.0±0.0

12.661481±0.4
5008466

12.717999±0.4
4971094 1.0±0.0

0.17080292±0.
023425996 5000.0±0.0

5 4 50000
0.7635037±0.0
23426006 1.0±0.0

0.23649636±0.
023425996 0.0±0.0

12.973272±0.3
9807707

12.978897±0.3
9799342 1.0±0.0

0.23649636±0.
023425996 50000.0±0.0

5 5 50
0.9766423±0.0
12310574

0.58194447±0.
12736951

0.023357663±
0.012310569

0.4180556±0.1
2736951

1.6460001±0.4
890853

4.512±0.96213
65

0.7054861±0.0
6436257

0.023357663±
0.012310569 50.0±0.0

5 5 150
0.959854±0.01
5861806

0.9319445±0.0
34303013

0.040145986±
0.015861806

0.068055555±
0.034303024

3.4959998±0.5
301591

5.07±0.606542
5

0.9346663±0.0
30990727

0.040145986±
0.015861806 150.0±0.0

5 5 500
0.9145986±0.0
20944363

0.9916666±0.0
09711198

0.08540146±0.
02094437

0.008333334±
0.009711193

4.3952±0.3078
487

4.915±0.31439
71

0.9910919±0.0
10323828

0.08540146±0.
02094437 500.0±0.0

5 5 1500
0.8664233±0.0
3706771 1.0±0.0

0.13357663±0.
03706771 0.0±0.0

4.7353334±0.3
0499715

4.909734±0.30
437544 1.0±0.0

0.13357663±0.
03706771 1500.0±0.0

5 5 5000
0.8262774±0.0
26830265 1.0±0.0

0.17372264±0.
026830263 0.0±0.0

4.84042±0.184
21952

4.89308±0.184
68791 1.0±0.0

0.17372264±0.
026830263 5000.0±0.0

5 5 50000
0.7510948±0.0
4303889 1.0±0.0

0.2489051±0.0
43038882 0.0±0.0

4.9307923±0.1
1548407

4.9361076±0.1
1546931 1.0±0.0

0.2489051±0.0
43038882 50000.0±0.0

14 13 50 1.0±0.0
0.008333334±
0.0076072575 0.0±0.0

0.9916667±0.0
076072617 0.0±0.0

0.04±0.028284
27

0.50209785±0.
0019150946 0.0±0.0 50.0±0.0

14 13 150 1.0±0.0
0.016666668±
0.0248452 0.0±0.0

0.9833333±0.0
24845213 0.0±0.0

0.025333334±
0.009888264

0.5042656±0.0
06377675 0.0±0.0 150.0±0.0

14 13 500
0.98540145±0.
008939761

0.05833333±0.
038540103

0.014598539±
0.008939744

0.9416667±0.0
38540095

0.0028000001
±0.002683281
4

0.0392±0.0136
82106

0.51150656±0.
010719277

0.014598539±
0.008939744 500.0±0.0

14 13 1500
0.9839417±0.0
1082657

0.22777776±0.
03878956

0.016058395±
0.010826567

0.7722222±0.0
38789555

0.005866667±
9.888265E-4

0.0436±0.0063
526034

0.5604912±0.0
10821766

0.016058395±
0.010826567 1500.0±0.0

14 13 5000
0.94452554±0.
015991908

0.54722226±0.
06334307

0.05547445±0.
0159919

0.4527778±0.0
6334309

0.01268±0.001
4872794

0.04004±0.003
3805324

0.6770841±0.0
27984152

0.05547445±0.
0159919 5000.0±0.0

14 13 50000
0.7649635±0.0
2701716 1.0±0.0

0.23503649±0.
027017161 0.0±0.0

0.037436±3.44
78938E-4

0.042320002±
3.4380183E-4 1.0±0.0

0.23503649±0.
027017161 50000.0±0.0

14 14 50 1.0±0.0

0.0013888889
±0.004392052
5 0.0±0.0

0.9986111±0.0
043920544 0.0±0.0

0.015999999±
0.015776211

0.50034964±0.
0011056802 0.0±0.0 50.0±0.0

14 14 150 1.0±0.0
0.011111111±
0.012763008 0.0±0.0

0.98888886±0.
012763013 0.0±0.0

0.013333334±
0.007698004

0.502812±0.00
32527386 0.0±0.0 150.0±0.0

14 14 500
0.9970803±0.0
051036896

0.04027778±0.
034303028

0.002919708±
0.005103693

0.9597222±0.0
34303017

2.0000001E-
4±6.324556E-4

0.015999999±
0.008164966

0.50968516±0.
009822381

0.002919708±
0.005103693 500.0±0.0

14 14 1500
0.989781±0.01
0989383

0.07638889±0.
045947764

0.010218977±
0.010989382

0.92361104±0.
045947764

4.666667E-
4±4.4996574E-
4

0.013266666±
0.0023190042

0.51754797±0.
013563929

0.010218977±
0.010989382 1500.0±0.0

14 14 5000
0.97737217±0.
01898747

0.2638889±0.0
48555966

0.022627737±
0.018987458

0.7361111±0.0
48555974

0.00168±5.181
163E-4

0.013079999±
0.001503182

0.57076204±0.
018970877

0.022627737±
0.018987458 5000.0±0.0

14 14 50000
0.8452555±0.0
23286594

0.94027776±0.
032769136

0.15474454±0.
023286588

0.059722222±
0.032769147

0.009864001±
7.923972E-4

0.014481999±
8.5304404E-4

0.9347256±0.0
34048118

0.15474454±0.
023286588 50000.0±0.0
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Table 14. Wisconsin Breast-Cancer Data Set under Feature-Detection Rule (Part 2) 

 

 

 

 

 

 

 

 

 

 

 

 

Detector 
Length r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

18 17 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0
0.007999999±
0.010954451 0.5±0.0 0.0±0.0 50.0±0.0

18 17 150 1.0±0.0

0.0055555557
±0.007607257
5 0.0±0.0

0.9944445±0.0
07607261 0.0±0.0

0.0026666666
±0.003651483
7

0.50139856±0.
0019150943 0.0±0.0 150.0±0.0

18 17 500 1.0±0.0
0.008333334±
0.0124226 0.0±0.0

0.9916667±0.0
12422605 0.0±0.0

0.0036±0.0032
863356

0.50210774±0.
003146643 0.0±0.0 500.0±0.0

18 17 1500
0.9956204±0.0
09792991

0.019444445±
0.01583577

0.004379562±
0.009792998

0.98055553±0.
015835777 0.0±0.0

0.0028000001
±8.6922705E-4

0.5038279±0.0
025900814

0.004379562±
0.009792998 1500.0±0.0

18 17 5000
0.98540145±0.
013655684

0.05555556±0.
025983732

0.014598539±
0.013655684

0.9444445±0.0
25983721

1.2E-
4±1.0954451E-
4

0.0034399997
±7.9246453E-4

0.5106641±0.0
0994992

0.014598539±
0.013655684 5000.0±0.0

18 17 50000
0.9372263±0.0
2611466

0.4333333±0.0
92858404

0.06277372±0.
026114661

0.56666666±0.
09285842

7.04E-
4±8.6487E-5

0.002772±3.41
64306E-4

0.6253177±0.0
3591798

0.06277372±0.
026114661 50000.0±0.0

18 18 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0

18 18 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0
0.0013333333
±0.00421637 0.5±0.0 0.0±0.0 150.0±0.0

18 18 500
0.9992701±0.0
02308224

0.0013888889
±0.004392053

7.29927E-
4±0.00230823
18

0.9986111±0.0
04392054 0.0±0.0

0.0016000001
±0.002951459
5

0.50016654±5.
2653695E-4

7.29927E-
4±0.00230823
18 500.0±0.0

18 18 1500
0.9992701±0.0
023082239

0.0055555557
±0.007172191
5

7.29927E-
4±0.00230823
2

0.9944445±0.0
071721952

6.666667E-
5±2.108185E-4

8.666667E-
4±7.062333E-4

0.50121546±0.
0016558042

7.29927E-
4±0.00230823
2 1500.0±0.0

18 18 5000
0.99270076±0.
010881106

0.020833336±
0.011803287

0.007299269±
0.010881109

0.9791666±0.0
11803291 0.0±0.0

7.6E-
4±2.270585E-4

0.50343424±0.
0039095245

0.007299269±
0.010881109 5000.0±0.0

18 18 50000
0.9744526±0.0
12989157

0.16666666±0.
04629629

0.025547445±
0.012989147

0.8333333±0.0
46296295

6.9999995E
5±4.346135E-5

9.2600007E
4±1.1548931E-

0.5393218±0.0
13362227

0.025547445±
0.012989147 50000.0±0.0

37 3 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0

37 3 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
37 3 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0

37 3 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
37 3 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
37 3 50000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.1 0.0±0.0 0.0±0.0
37 37 50 1.0:0.0 0.0:0.0 0.0:0.0 1.0:0.0 0.0:0.0 0.0:0.0 0.5:0.0 0.0:0.0 50.0:0.0
37 37 150 1.0:0.0 0.0:0.0 0.0:0.0 1.0:0.0 0.0:0.0 0.0:0.0 0.5:0.0 0.0:0.0 150.0:0.0
37 37 500 1.0:0.0 0.0:0.0 0.0:0.0 1.0:0.0 0.0:0.0 0.0:0.0 0.5:0.0 0.0:0.0 500.0:0.0
37 37 1500 1.0:0.0 0.0:0.0 0.0:0.0 1.0:0.0 0.0:0.0 0.0:0.0 0.5:0.0 0.0:0.0 1500.0:0.0
37 37 5000 1.0:0.0 0.0:0.0 0.0:0.0 1.0:0.0 0.0:0.0 0.0:0.0 0.5:0.0 0.0:0.0 5000.0:0.0
37 37 50000 1.0:0.0 0.0:0.0 0.0:0.0 1.0:0.0 0.0:0.0 0.0:0.0 0.5:0.0 0.0:0.0 50000.0:0.0
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Table 15. Wisconsin Breast-Cancer Data Set under HD Rule (Part 1) 

 

 

 

 

 

 

 

 

 

r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

3 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
3 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
3 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
3 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
3 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
5 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
5 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
5 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
5 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
5 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
14 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
14 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
14 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
14 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
14 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0

18 50
0.98905116±0.
012043187

0.43055552±0.
31454235

0.010948905±
0.012043181

0.5694445±0.3
1454235

11.608334±14.
164927

73.566666±49.
093334

0.65910876±0.
13214317

0.010948905±
0.012043181 1.6±1.264911

18 150
0.9773723±0.0
1630353

0.71944445±0.
23257151

0.022627737±
0.016303519

0.28055555±0.
23257151

36.001987±23.
136963

92.34504±23.6
21826

0.80065584±0.
13478164

0.022627737±
0.016303519 5.1±2.9230883

18 500
0.95693433±0.
020774081

0.8875001±0.1
0402767

0.04306569±0.
020774087

0.1125±0.1040
2769

62.708324±12.
714225

86.8261±8.580
937

0.9024786±0.0
7783978

0.04306569±0.
020774087 13.1±4.909175

18 1500
0.92189777±0.
034245253

0.9833333±0.0
19422395

0.07810219±0.
034245256

0.016666668±
0.019422386

80.431±9.3132
18

88.387085±7.1
78845

0.98292387±0.
019327555

0.07810219±0.
034245256

49.7±25.05128
1

18 5000
0.86569345±0.
046573196

0.9930555±0.0
09820932

0.13430658±0.
046573184

0.006944445±
0.009820928

90.15043±7.45
78876

92.872246±6.9
625382

0.99256194±0.
010355811

0.13430658±0.
046573184

143.7±56.2495
42

22 50
0.94817513±0.
024440145

0.95694447±0.
028874926

0.051824816±
0.024440145

0.04305556±0.
02887494

18.716±3.2323
887

23.83±3.44636
63

0.9577093±0.0
2672493

0.051824816±
0.024440145 50.0±0.0

22 150
0.8722628±0.0
3286924

0.99027777±0.
011434347

0.12773722±0.
03286923

0.009722223±
0.011434341

21.584469±1.0
862687

23.42234±1.08
12299

0.9892748±0.0
12751911

0.12773722±0.
03286923

149.9±0.31622
78

22 500
0.82627743±0.
023030974 1.0±0.0

0.17372264±0.
023030967 0.0±0.0

22.917145±0.9
434092

23.476803±0.9
440554 1.0±0.0

0.17372264±0.
023030967

499.6±0.69920
59

22 1500
0.7321168±0.0
47560535 1.0±0.0

0.2678832±0.0
47560524 0.0±0.0

23.6563±0.869
7591

23.847868±0.8
6762226 1.0±0.0

0.2678832±0.0
47560524

1498.7±1.1595
018

22 5000
0.6576642±0.0
383858 1.0±0.0

0.34233576±0.
038385805 0.0±0.0

23.767342±0.8
9334124

23.822895±0.8
9365846 1.0±0.0

0.34233576±0.
038385805

4993.2±5.6725
46

26 50
0.6576642±0.0
383858 1.0±0.0

0.34233576±0.
038385805 0.0±0.0

23.767342±0.8
9334124

23.822895±0.8
9365846 1.0±0.0

0.34233576±0.
038385805

4993.2±5.6725
46

26 150
0.96131384±0.
015407434

0.69166666±0.
060998768

0.03868613±0.
015407436

0.30833334±0.
060998775

0.7593334±0.1
6630925

1.8620001±0.2
4480881

0.7587365±0.0
32504108

0.03868613±0.
015407436 150.0±0.0

26 500
0.9036497±0.0
19403791

0.9652778±0.0
20961538

0.09635037±0.
0194038

0.03472222±0.
02096154

1.4814001±0.1
5939064

1.9610001±0.1
6888197

0.96331483±0.
02192539

0.09635037±0.
0194038 500.0±0.0

26 1500
0.8233577±0.0
26608704 1.0±0.0

0.17664234±0.
026608707 0.0±0.0

1.7411333±0.0
7687481

1.9098666±0.0
7585284 1.0±0.0

0.17664234±0.
026608707 1500.0±0.0

26 5000
0.729927±0.03
282418 1.0±0.0

0.270073±0.03
2824177 0.0±0.0

1.8144401±0.0
5800046

1.8649±0.0580
5448 1.0±0.0

0.270073±0.03
2824177 5000.0±0.0
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Table 16. Wisconsin Breast-Cancer Data Set under HD Rule (Part 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

28 50
0.9948905±0.0
035258704

0.047222223±
0.014930108

0.005109489±
0.0035258823

0.95277774±0.
014930094

0.007999999±
0.013984118

0.282±0.08189
424

0.51083684±0.
0035931314

0.005109489±
0.0035258823 50.0±0.0

28 150
0.99051094±0.
007732479

0.15555558±0.
048023343

0.00948905±0.
007732481

0.84444445±0.
048023347

0.019333333±
0.01312805

0.27±0.043800
89

0.54013336±0.
015325987

0.00948905±0.
007732481 150.0±0.0

28 500
0.9656935±0.0
19173624

0.43888888±0.
048644166

0.034306567±
0.019173613

0.5611111±0.0
48644166

0.058399998±
0.017833801

0.262±0.03663
6356

0.63295716±0.
022740938

0.034306567±
0.019173613 500.0±0.0

28 1500
0.89854014±0.
020487143

0.8347222±0.0
38428716

0.101459846±
0.020487137

0.16527776±0.
038428713

0.14926668±0.
015655078

0.28353333±0.
017919024

0.84540176±0.
032295153

0.101459846±
0.020487137 1500.0±0.0

28 5000
0.8080292±0.0
31168256

0.99027777±0.
011434347

0.1919708±0.0
31168254

0.009722223±
0.011434341

0.23112002±0.
008499516

0.28023997±0.
008756865

0.9883336±0.0
13566038

0.1919708±0.0
31168254 5000.0±0.0

30 50 1.0±0.0

0.0027777778
±0.005856069
7 0.0±0.0

0.9972221±0.0
058560725 0.0±0.0

0.011999999±
0.021499354

0.5006993±0.0
014742404 0.0±0.0 50.0±0.0

30 150
0.9985401±0.0
030776318

0.018055556±
0.0067089703

0.001459854±
0.0030776423

0.98194444±0.
006708974

6.6666666E-
4±0.00210818
5

0.022±0.01177
9875

0.50419396±0.
0012286879

0.001459854±
0.0030776423 150.0±0.0

30 500
0.99416053±0.
0057577416

0.031944446±
0.0185763

0.005839416±
0.0057577416

0.9680556±0.0
18576294

8.0000004E-
4±0.00103279
56

0.025±0.00583
09515

0.5066894±0.0
0465087

0.005839416±
0.0057577416 500.0±0.0

30 1500
0.98686135±0.
010207389

0.13611111±0.
029860212

0.013138684±
0.010207385

0.8638889±0.0
2986023

0.0014000001
±0.001421180
2

0.021466667±
0.0038206715

0.5333325±0.0
0885171

0.013138684±
0.010207385 1500.0±0.0

30 5000
0.94817525±0.
02562264

0.3611111±0.0
4293342

0.05182482±0.
025622644

0.6388889±0.0
4293344

0.00468±0.001
0921945

0.02336±0.001
4261055

0.597753±0.01
6950887

0.05182482±0.
025622644 5000.0±0.0

37 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0
37 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0
37 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 500.0±0.0
37 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 1500.0±0.0
37 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 5000.0±0.0
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Table 17. Wisconsin Breast-Cancer Data Set under RCHK (No MHC) Rule 

 

 

 

 

 

 

 

r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

3 50
0.9883211±0.0
092329355

0.1138889±0.1
2893333

0.011678832±
0.009232928

0.88611114±0.
12893331

8.786622±3.90
08367

12.724629±4.0
63304

0.5299871±0.0
4185495

0.011678832±
0.009232928

19.0±7.916228
3

3 150
0.9868612±0.0
08286815

0.1638889±0.1
5683447

0.013138686±
0.008286806

0.83611107±0.
15683445

10.367294±2.3
58778

11.872304±2.3
252962

0.54583573±0.
055955227

0.013138686±
0.008286806

58.3±13.59779
4

3 500
0.9810219±0.0
12501452

0.32222217±0.
20146072

0.0189781±0.0
12501444

0.6777778±0.2
0146072

12.415714±3.7
671154

13.068098±3.6
763296

0.599631±0.07
211803

0.0189781±0.0
12501444

207.7±52.6161
16

3 1500
0.9883212±0.0
12501454

0.30833334±0.
17133382

0.011678832±
0.012501442

0.69166666±0.
17133382

10.416087±2.3
89655

10.666994±2.3
777726

0.5940817±0.0
6037655

0.011678832±
0.012501442

501.2±170.534
33

3 5000
0.9832117±0.0
09762733

0.41944447±0.
17007825

0.01678832±0.
009762727

0.58055556±0.
17007825

11.560615±2.8
710377

11.6588955±2.
8640175

0.63526887±0.
06504298

0.01678832±0.
009762727

1722.0±456.71
97

5 50
0.9846716±0.0
12141096

0.6458333±0.1
12310275

0.015328467±
0.012141095

0.35416666±0.
112310275

5.313056±2.28
63677

9.190568±2.51
73998

0.74042714±0.
06249942

0.015328467±
0.012141095

46.6±1.955050
5

5 150
0.9744526±0.0
22889167

0.76805556±0.
104766786

0.025547441±
0.022889158

0.23194447±0.
104766786

7.799165±1.68
9095

9.5139885±1.8
663

0.8144081±0.0
71487345

0.025547441±
0.022889158

137.2±4.34101
87

5 500
0.95839417±0.
03154583

0.8819445±0.0
47777243

0.041605838±
0.031545836

0.11805556±0.
047777243

8.9524±0.5686
272

9.549214±0.58
12519

0.8920549±0.0
40323894

0.041605838±
0.031545836

459.6±7.86271
1

5 1500
0.9591241±0.0
23639817

0.925±0.04202
521

0.04087591±0.
023639819

0.075±0.04202
5205

8.781031±0.79
83001

8.989993±0.79
96678

0.92851937±0.
038420115

0.04087591±0.
023639819

1378.1±20.572
096

5 5000
0.9510949±0.0
12430195

0.9652778±0.0
21960251

0.048905108±
0.012430209

0.034722224±
0.021960262

9.557141±0.78
123945

9.623947±0.78
30472

0.9651927±0.0
21337688

0.048905108±
0.012430209

4642.7±47.185
333

14 50
0.9978102±0.0
0352587

0.011111111±
0.0109557025

0.002189781±
0.0035258825

0.98888886±0.
010955708

0.0019999999
±0.006324555
3

0.11±0.057542
26

0.5022576±0.0
030105037

0.002189781±
0.0035258825 50.0±0.0

14 150
0.9963504±0.0
038470398

0.061111115±
0.030848762

0.0036496348
±0.003847053
3

0.93888885±0.
030848747

0.0013333333
±0.002810913
6

0.086666666±
0.033259176

0.5149621±0.0
0863406

0.0036496348
±0.003847053
3 150.0±0.0

14 500
0.9832117±0.0
077324784

0.18333332±0.
032605212

0.01678832±0.
0077324808

0.8166667±0.0
3260521

0.0074±0.0044
271885

0.09279999±0.
018310895

0.5464176±0.0
10023312

0.01678832±0.
0077324808 500.0±0.0

14 1500
0.95839405±0.
014208085

0.43472224±0.
081262864

0.041605838±
0.014208079

0.5652777±0.0
81262864

0.0194±0.0057
816226

0.08960001±0.
014027135

0.6305272±0.0
34860805

0.041605838±
0.014208079 1500.0±0.0

14 5000
0.9±0.0248246
71

0.8666666±0.0
3286711

0.1±0.0248246
71

0.13333334±0.
03286711

0.04914±0.005
3300406

0.09176±0.006
342661

0.87155664±0.
028503396

0.1±0.0248246
71 5000.0±0.0

18 50 1.0±0.0

0.0013888889
±0.004392052
5 0.0±0.0

0.9986111±0.0
043920544 0.0±0.0

0.0060±0.0134
9897

0.50034964±0.
0011056802 0.0±0.0 50.0±0.0

18 150 1.0±0.0

0.0027777778
±0.005856069
3 0.0±0.0

0.99722224±0.
005856072 0.0±0.0

0.0060±0.0049
190987

0.5006993±0.0
014742404 0.0±0.0 150.0±0.0

18 500 1.0±0.0
0.006944445±
0.009820928 0.0±0.0

0.9930555±0.0
09820932 0.0±0.0

0.0034000003
±0.002503331
3

0.50175315±0.
0024840164 0.0±0.0 500.0±0.0

18 1500
0.9956204±0.0
061552855

0.034722224±
0.023832478

0.004379562±
0.0061552846

0.9652778±0.0
2383248

6.666667E-
5±2.108185E-4

0.004933334±
0.0014124664

0.5077998±0.0
062344843

0.004379562±
0.0061552846 1500.0±0.0

18 5000
0.99051094±0.
009136252

0.10555556±0.
042025205

0.00948905±0.
009136246

0.89444447±0.
04202521

1.3999999E-
4±1.3498972E-
4

0.0051999995
±0.001240071
6

0.5257064±0.0
1353999

0.00948905±0.
009136246 5000.0±0.0

37 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0
37 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0
37 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 500.0±0.0
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Table 18. Wisconsin Breast-Cancer Data Set under RCHK (Global MHC) Rule 

 

 

 

 

 

 

 

r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

3 50
0.34452555±0.
14144605

0.7916666±0.1
0164119

0.6554745±0.1
4144604

0.20833333±0.
10164119

37.508404±10.
308839

51.853035±9.4
08149

0.6281225±0.0
99770464

0.6554745±0.1
4144604

21.2±3.359894
3

3 150
0.013868613±
0.036325634

0.9666667±0.0
19858908

0.98613137±0.
036325637

0.033333335±
0.019858899

62.203743±8.5
15221

68.65662±8.60
8078

0.1209961±0.2
1418992

0.98613137±0.
036325637 60.1±9.374315

3 500
0.14525548±0.
12747395

0.5902778±0.0
8391003

0.85474455±0.
12747395

0.40972224±0.
08391004

32.66379±7.83
5868

34.095337±7.7
034526

0.21932395±0.
16015738

0.85474455±0.
12747395

174.6±39.7329
98

3 1500
0.002919708±
0.005103693

0.85555553±0.
081038356

0.9970803±0.0
0510369

0.14444444±0.
081038356

40.80667±6.30
5399

41.436058±6.1
615705

0.021689992±
0.03930594

0.9970803±0.0
0510369

596.8±200.833
15

3 5000
0.013868612±
0.007258605

0.9263889±0.0
2272765

0.9861315±0.0
07258618

0.07361111±0.
022727663

53.688915±2.8
29769

53.923847±2.8
149567

0.16305034±0.
08212627

0.9861315±0.0
07258618

1647.8±297.90
036

5 50
0.66934305±0.
14095342

0.9833334±0.0
26835881

0.33065695±0.
14095342

0.016666668±
0.026835881

22.304754±4.8
53672

28.921024±5.0
419693

0.97988766±0.
029927792

0.33065695±0.
14095342 46.5±1.433721

5 150
0.004379562±
0.011515484

0.9958333±0.0
09374292

0.9956204±0.0
11515479

0.004166667±
0.009374287

26.84968±4.07
24077

29.24116±4.11
66124

0.17243461±0.
3692846

0.9956204±0.0
11515479

138.2±2.82055
95

5 500 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
25.405043±1.0
491663

26.110447±1.0
562929 0.0±0.0 1.0±0.0 465.9±9.58529

5 1500 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
28.801758±0.9
3504375

29.029074±0.9
400669 0.0±0.0 1.0±0.0

1387.3±36.694
08

5 5000 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
30.356512±0.9
174381

30.427536±0.9
1827047 0.0±0.0 1.0±0.0

4614.9±66.395
195

14 50
0.9963504±0.0
051613594

0.029166669±
0.015284791

0.0036496348
±0.005161363
6

0.9708334±0.0
15284798 0.0±0.0

0.12599999±0.
049933285

0.5065101±0.0
04056134

0.0036496348
±0.005161363
6 50.0±0.0

14 150
0.96861315±0.
030593148

0.04444444±0.
012763008

0.03138686±0.
030593144

0.95555556±0.
012763014

0.0019999999
±0.004499657

0.082±0.03111
9047

0.5032977±0.0
06792919

0.03138686±0.
030593144 150.0±0.0

14 500
0.81094885±0.
109971896

0.16944446±0.
032605216

0.18905109±0.
1099719

0.83055556±0.
03260521

0.0088±0.0041
311826

0.0924±0.0135
25286

0.49211898±0.
037276816

0.18905109±0.
1099719 500.0±0.0

14 1500
0.5613139±0.1
9758879

0.41805553±0.
057619825

0.43868613±0.
19758877

0.58194447±0.
05761983

0.022466669±
0.0061987657

0.09586666±0.
012983561

0.47905588±0.
10482505

0.43868613±0.
19758877 1500.0±0.0

14 5000
0.053284667±
0.04927233

0.89027774±0.
04604097

0.94671524±0.
049272332

0.109722234±
0.046040967

0.05664±0.007
1608815

0.10054±0.008
098314

0.29410192±0.
12138563

0.94671524±0.
049272332 5000.0±0.0

18 50
0.97372264±0.
083096355 0.0±0.0

0.026277373±
0.08309635 1.0±0.0 0.0±0.0

0.0039999997
±0.00843274

0.49243698±0.
023916384

0.026277373±
0.08309635 50.0±0.0

18 150
0.9992701±0.0
023082239

0.0013888889
±0.004392052
5

7.29927E-
4±0.00230823
18

0.9986111±0.0
043920544 0.0±0.0

0.0046666665
±0.006324555
7

0.50016654±0.
001303946

7.29927E-
4±0.00230823
18 150.0±0.0

18 500
0.9978102±0.0
035258704

0.019444447±
0.013417942

0.002189781±
0.0035258823

0.98055553±0.
013417948 0.0±0.0

0.0058000004
±0.002740640
7

0.50438035±0.
0031421261

0.002189781±
0.0035258823 500.0±0.0

18 1500
0.98394156±0.
023030967

0.04027778±0.
023101805

0.016058395±
0.023030967

0.9597222±0.0
23101805

6.666667E-
5±2.108185E-4

0.004866667±
0.0015088216

0.5062312±0.0
07721622

0.016058395±
0.023030967 1500.0±0.0

18 5000
0.9131387±0.1
0697022

0.083333336±
0.020704333

0.08686131±0.
10697021

0.9166666±0.0
20704335

4.0000002E-
4±3.126944E-4

0.0054±9.2855
93E-4

0.49730983±0.
031519603

0.08686131±0.
10697021 5000.0±0.0

37 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0
37 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0
37 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 500.0±0.0
37 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 1500.0±0.0
37 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 5000.0±0.0
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Table 19. Wisconsin Breast-Cancer Data set under RCHK (MHC) Rule 

 
 

6.2.6 Wisconsin Breast-cancer Data Set Conclusion 

The results of the best performing test group for each scenario are summarised in Figure 

42. The feature-detection rule is the best performing rule because its DR minus FR value 

is the greatest across all of the rules. The RCHK (MHC) rule has a slightly higher DR 

than the feature-detection rule but a much greater FR than the feature-detection rule. The 

RCHK (Global MHC) rule is the worst performing rule. 

r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

3 50
0.9817518±0.0
13870756

0.6180555±0.1
2426913

0.018248174±
0.013870747

0.38194442±0.
12426912

9.412839±4.17
63096

21.992273±5.1
671844

0.7247017±0.0
57579037

0.018248174±
0.013870747

12.8±4.467164
5

3 150
0.97883224±0.
0116433045

0.84305555±0.
08930505

0.021167884±
0.011643294

0.15694445±0.
089305066

15.51458±4.60
7574

21.387207±5.1
116986

0.8666981±0.0
6407955

0.021167884±
0.011643294

37.8±3.966526
7

3 500
0.9423358±0.0
16303515

0.9708333±0.0
12161048

0.057664234±
0.016303519

0.029166669±
0.012161043

21.543339±2.6
757593

23.62818±2.64
606

0.9701873±0.0
11966607

0.057664234±
0.016303519

137.6±16.1877
88

3 1500
0.92116785±0.
024037156

0.99027765±0.
0067089736

0.07883212±0.
024037156

0.009722223±
0.0067089708

24.10754±1.66
37292

24.82481±1.61
01668

0.9895439±0.0
072238613

0.07883212±0.
024037156

411.1±34.3105
1

3 5000
0.90583944±0.
036488242

0.9944445±0.0
071721952

0.09416058±0.
036488235

0.0055555557
±0.007172191
5

22.730402±0.9
328272

22.959623±0.9
189715

0.9939731±0.0
077868267

0.09416058±0.
036488235

1303.5±90.127
38

5 50
0.9547445±0.0
21978766

0.8291667±0.0
97343385

0.045255475±
0.021978762

0.17083333±0.
0973434

7.6729364±2.9
56192

12.561213±3.3
966663

0.8540083±0.0
7135807

0.045255475±
0.021978762

43.3±3.334999
6

5 150
0.9277371±0.0
20774087

0.9763888±0.0
11434347

0.07226278±0.
020774087

0.023611112±
0.011434343

12.133601±0.7
7661574

14.263132±0.7
626694

0.97538203±0.
011343002

0.07226278±0.
020774087

125.1±6.29726
55

5 500
0.8795621±0.0
25109213

0.99722224±0.
005856072

0.12043794±0.
025109205

0.0027777778
±0.005856069
7

13.785373±0.9
514382

14.455777±0.9
4006026

0.99698555±0.
006360116

0.12043794±0.
025109205

410.9±14.4718
11

5 1500
0.84306574±0.
042177465 1.0±0.0

0.15693429±0.
04217746 0.0±0.0

13.981442±0.7
319865

14.204378±0.7
2726196 1.0±0.0

0.15693429±0.
04217746

1231.8±23.117
094

5 5000
0.79708034±0.
036706623 1.0±0.0

0.20291972±0.
036706615 0.0±0.0

14.006597±0.8
8469905

14.074193±0.8
8474834 1.0±0.0

0.20291972±0.
036706615

4095.3±71.300
7

14 50
0.9963503±0.0
051613594

0.011111111±
0.0127630085

0.0036496348
±0.005161363

0.9888889±0.0
12763014 0.0±0.0

0.07400001±0.
0525357

0.50189507±0.
0032880658

0.0036496348
±0.005161363 50.0±0.0

14 150
0.9956204±0.0
05103688

0.041666668±
0.029280351

0.004379562±
0.005103693

0.9583334±0.0
2928034

0.0026666666
±0.003442652

0.07733333±0.
02355975

0.5096443±0.0
07088245

0.004379562±
0.005103693 150.0±0.0

14 500
0.9781022±0.0
1141221

0.16944444±0.
06984453

0.02189781±0.
011412203

0.8305556±0.0
6984452

0.0092±0.0086
51269

0.0912±0.0233
46664

0.5415222±0.0
22097196

0.02189781±0.
011412203 500.0±0.0

14 1500
0.94014597±0.
02523854

0.41111112±0.
04908281

0.059854012±
0.025238546

0.58888894±0.
049082812

0.0196±0.0059
146187

0.08933333±0.
011983528

0.61529434±0.
022316841

0.059854012±
0.025238546 1500.0±0.0

14 5000
0.8948905±0.0
23888936

0.8458334±0.0
33029735

0.10510949±0.
02388893

0.15416667±0.
03302974

0.0514±0.0043
98989

0.0923±0.0054
145902

0.8538004±0.0
26330443

0.10510949±0.
02388893 5000.0±0.0

18 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0
0.0060±0.0096
60917 0.5±0.0 0.0±0.0 50.0±0.0

18 150 1.0±0.0
0.006944445±
0.0073200874 0.0±0.0

0.9930555±0.0
073200907 0.0±0.0

0.0046666665
±0.004499657

0.50174826±0.
0018428005 0.0±0.0 150.0±0.0

18 500
0.9978102±0.0
0352587

0.011111111±
0.010955703

0.002189781±
0.0035258823

0.98888886±0.
010955709

2.0000001E-
4±6.324556E-4

0.0066±0.0045
26465

0.50225765±0.
0030072092

0.002189781±
0.0035258823 500.0±0.0

18 1500
0.9963504±0.0
051613594

0.031944446±
0.017384244

0.0036496348
±0.005161363
6

0.96805555±0.
017384239

1.9999998E-
4±3.2203057E-
4

0.0057333335
±0.001992578
9

0.50723475±0.
004785661

0.0036496348
±0.005161363
6 1500.0±0.0

18 5000
0.9912408±0.0
11819917

0.08333333±0.
04088778

0.008759124±
0.01181991

0.9166666±0.0
40887777

2.0000001E-
4±2.1081851E-
4

0.00454±0.001
0751744

0.519743±0.01
2755031

0.008759124±
0.01181991 5000.0±0.0

37 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0
37 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0
37 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 500.0±0.0
37 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 1500.0±0.0
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A comparison between GC and OC exhibited by the best performing test group for each 

scenario is summarised in Figure 43. The HD rule has the greatest GC and OC values 

whereas the RCHK (Global MHC) rule has the lowest GC and OC values across all of the 

rules. The HD rule is the best performing rule, with reference to generalisation and 

overfitting, because it has the greatest GC minus OC value. The RCK (Global MHC) 

rule, followed by the feature-detection rule, is the worst performing rule because it has 

the lowest GC minus OC value. 

 
Figure 42. Wisconsin Breast-Cancer Data Set - DR and FR Summary 
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Figure 43. Wisconsin Breast-Cancer Data Set - GC and OC Summary 

 
 

6.2.7 Glass Experiment 

The glass data set comprises 214 patterns, distributed between 7 classes, each class being 

a specific glass type. Each pattern, originally consisted of nine continuous-valued 

attributes, was converted into a binary string of length 46 [41]. No patterns were recorded 

in the vehicle_windows_non_float class subset and, subsequently, this subset was 

excluded from the other data sets. The data sets were processed further to create a single 

self-set and non-self set as follows: 

 Building_window_float.self: Contains 70 patterns relating to the 

building_window_float class. 

 Building_window_float.non-self: Contains all the patterns related to the 

building_window_non-float, containers, headlamps, tableware and 

vehicle_window_float classes. The set contains 144 patterns in total. 

The results of each scenario are reported as per the list below: 

 The results of scenario 1, the glass data set, under the feature-detection rule are 

tabulated in Table 20 and Table 21. 
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 The results of scenario 2, the glass data set, under the HD rule are tabulated in 

Table 22 and Table 23. 

 The results of scenario 3, the glass data set, under the RCHK rule with no 

permutation mark are tabulated in Table 24. 

 The results of scenario 4, the glass data set, under the RCHK rule with a single 

global permutation mask are tabulated in Table 25. 

 The results of scenario 5, the glass data set, under the RCHK rule with each 

detector having its own random permutation mask are tabulated in Table 26. 
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Table 20. Glass Data Set under Feature-Detection Rule (Part 1) 

 

 

 

 

Detector 
Length r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

3 2 50
0.9333333±0.0
54294065

0.5116279±0.0
4651164

0.06666667±0.
054294072

0.4883721±0.0
46511635

3.712±0.95714
15

5.084±0.97554
094

0.65668607±0.
0228702

0.06666667±0.
054294072 50.0±0.0

3 2 150
0.9047619±0.0
58321178

0.6465117±0.0
5303142

0.0952381±0.0
58321185

0.35348836±0.
053031407

3.836±0.35666
987

4.508±0.34239
027

0.71984905±0.
028838875

0.0952381±0.0
58321185 150.0±0.0

3 2 500
0.82857144±0.
07221786

0.7069768±0.0
60643747

0.17142858±0.
07221787

0.2930233±0.0
60643744

4.158±0.33748
484

4.3996±0.3476
216

0.7388736±0.0
48520356

0.17142858±0.
07221787 500.0±0.0

3 2 1500
0.75238097±0.
10858813

0.73023254±0.
02651572

0.24761906±0.
10858814

0.26976746±0.
026515706

4.5105333±0.1
0322294

4.605467±0.10
9984346

0.73434436±0.
027510002

0.24761906±0.
10858814 1500.0±0.0

3 2 5000
0.71428573±0.
22080044

0.7767442±0.0
265157

0.2857143±0.2
2080046

0.22325583±0.
026515711

4.4102855±0.2
2387145

4.440127±0.22
473171

0.75313336±0.
04369405

0.2857143±0.2
2080046

4999.8±0.4472
1365

3 2 50000
0.64761907±0.
14521858

0.7627907±0.0
3032186

0.35238096±0.
14521858

0.23720929±0.
030321872

4.431445±0.17
084321

4.4343486±0.1
7080075

0.72819775±0.
03434478

0.35238096±0.
14521858

49998.2±1.303
8408

3 3 50
0.90952384±0.
09642122

0.4534884±0.0
9759441

0.0904762±0.0
9642123

0.5465116±0.0
975944

0.94200003±0.
37015915

2.244±0.64517
35

0.6259264±0.0
50273042

0.0904762±0.0
9642123 50.0±0.0

3 3 150
0.7571429±0.1
4966157

0.6976744±0.0
8701528

0.24285717±0.
14966159

0.30232558±0.
08701529

1.7653332±0.2
960447

2.4806666±0.3
3452305

0.71339524±0.
082226984

0.24285717±0.
14966159 150.0±0.0

3 3 500
0.62857145±0.
08922837

0.7930232±0.0
35439156

0.37142858±0.
08922838

0.20697674±0.
03543916

2.0036001±0.1
7639302

2.2603998±0.1
7629975

0.7518362±0.0
3440971

0.37142858±0.
08922838 500.0±0.0

3 3 1500
0.5047619±0.1
3127667

0.84651166±0.
02499926

0.49523813±0.
13127667

0.15348837±0.
024999248

2.2756667±0.2
7686203

2.3768666±0.2
8077653

0.76043564±0.
050043695

0.49523813±0.
13127667 1500.0±0.0

3 3 5000
0.40476188±0.
0958972

0.9325582±0.0
31867906

0.5952381±0.0
9589719

0.067441866±
0.031867914

2.38098±0.127
21117

2.41428±0.128
1865

0.86258±0.060
32462

0.5952381±0.0
9589719 5000.0±0.0

3 3 50000
0.24285717±0.
119733475

0.96744186±0.
027297385

0.7571429±0.1
1973347

0.03255814±0.
027297392

2.4022138±0.1
7931214

2.405682±0.17
93297

0.88656634±0.
10345073

0.7571429±0.1
1973347 50000.0±0.0

4 3 50
0.9714286±0.0
6388765

0.5069767±0.1
0707781

0.02857143±0.
06388766

0.49302325±0.
107077815

1.076±0.27473
62

2.216±0.38765
97

0.66563004±0.
04371143

0.02857143±0.
06388766 50.0±0.0

4 3 150
0.82857144±0.
07221786

0.6465117±0.0
7242981

0.17142859±0.
07221787

0.3534884±0.0
7242981

2.1266665±0.4
236613

2.7893333±0.4
9465138

0.70199794±0.
049137842

0.17142859±0.
07221787 150.0±0.0

4 3 500
0.6952381±0.0
796819

0.75348836±0.
02651572

0.30476195±0.
07968191

0.24651162±0.
026515713

2.8256±0.4215
3382

3.0808±0.4260
155

0.73721564±0.
030173426

0.30476195±0.
07968191 500.0±0.0

4 3 1500
0.59047616±0.
20919889

0.84651166±0.
048224285

0.40952381±0.
20919889

0.15348837±0.
04822428

3.0088±0.2861
0775

3.1146667±0.2
9324123

0.7887158±0.0
45706663

0.40952381±0.
20919889 1500.0±0.0

4 3 5000
0.43809524±0.
052164063

0.9116279±0.0
25475455

0.5619048±0.0
52164063

0.0883721±0.0
25475468

3.0554802±0.1
22387156

3.08924±0.122
25201

0.83405626±0.
038905576

0.5619048±0.0
52164063 5000.0±0.0

4 3 50000
0.35238096±0.
07221787

0.96279067±0.
020800643

0.64761907±0.
07221786

0.037209302±
0.020800631

3.1839957±0.2
2540231

3.1874518±0.2
2550656

0.91240656±0.
04973411

0.64761907±0.
07221786 50000.0±0.0

4 4 50
0.9238095±0.0
60233854

0.40697676±0.
14636596

0.07619048±0.
06023386

0.59302324±0.
14636596

0.53200006±0.
22670588

1.5680001±0.4
4002017

0.6137885±0.0
46982046

0.07619048±0.
06023386 50.0±0.0

4 4 150
0.71428573±0.
128953

0.6767441±0.0
54208167

0.28571433±0.
128953

0.32325578±0.
05420816

0.91133326±0.
2303631

1.5400001±0.2
8541502

0.6856849±0.0
52027408

0.28571433±0.
128953 150.0±0.0

4 4 500
0.59047616±0.
11920625

0.81162786±0.
056381695

0.4095238±0.1
1920625

0.1883721±0.0
56381695

1.299±0.20172
203

1.5583999±0.2
137076

0.7579904±0.0
4694468

0.4095238±0.1
1920625 500.0±0.0

4 4 1500
0.47619048±0.
10528968

0.90232563±0.
034319296

0.52380955±0.
10528968

0.097674415±
0.034319296

1.4613334±0.1
2205118

1.5626667±0.1
2782474

0.8279954±0.0
50257098

0.52380955±0.
10528968 1500.0±0.0

4 4 5000
0.3809524±0.1
0997148

0.9488373±0.0
18344415

0.6190476±0.1
0997148

0.05116279±0.
018344436

1.54814±0.111
58635

1.5810201±0.1
11567646

0.87776935±0.
04593318

0.6190476±0.1
0997148 5000.0±0.0

4 4 50000
0.20476191±0.
09269081

0.9930233±0.0
11233631

0.7952381±0.0
926908

0.0069767446
±0.011233626

1.6100502±0.0
6679349

1.6134479±0.0
6683407

0.9693658±0.0
5308783

0.7952381±0.0
926908 50000.0±0.0

5 4 50
0.9238095±0.0
7221786

0.46046513±0.
21716496

0.07619049±0.
07221787

0.53953487±0.
21716496

0.84±0.745519
94

2.2519999±1.4
527628

0.64384294±0.
09613654

0.07619049±0.
07221787 50.0±0.0

5 4 150
0.63809526±0.
20370713

0.74418604±0.
049333032

0.36190477±0.
20370714

0.25581396±0.
049333036

1.7426666±0.2
4606232

2.524±0.33587
69

0.69885695±0.
09920049

0.36190477±0.
20370714 150.0±0.0

5 4 500
0.49523813±0.
098744966

0.81860465±0.
050417397

0.5047619±0.0
98744966

0.18139535±0.
0504174

1.9104±0.3681
451

2.2008±0.3955
0626

0.72994554±0.
076897345

0.5047619±0.0
98744966 500.0±0.0

5 4 1500
0.49523813±0.
0865043

0.8930233±0.0
2651572

0.50476193±0.
0865043

0.10697675±0.
02651571

1.9210666±0.1
20027445

2.0204±0.1202
96516

0.81863135±0.
053706292

0.50476193±0.
0865043 1500.0±0.0

5 4 5000
0.34285718±0.
021295885

0.96279067±0.
020800618

0.6571429±0.0
21295883

0.037209302±
0.020800633

1.9915597±0.1
0410085

2.02508±0.103
79436

0.90330106±0.
050031748

0.6571429±0.0
21295883 5000.0±0.0

5 4 50000
0.2±0.1085881
4

0.9953488±0.0
1040032

0.8±0.1085881
3

0.004651163±
0.010400316

2.0999238±0.1
3082394

2.103408±0.13
086733

0.972±0.06260
9896

0.8±0.1085881
3 50000.0±0.0

5 5 50
0.9±0.0652533
4

0.34651163±0.
15089422

0.1±0.0652533
55

0.6534883±0.1
5089421

0.226±0.12294
534

1.0439999±0.4
0560517

0.58369255±0.
048040938

0.1±0.0652533
55 50.0±0.0

5 5 150
0.80952376±0.
0839921

0.6348837±0.1
05180964

0.19047621±0.
0839921

0.36511627±0.
10518097

0.49599996±0.
1086028

1.0526667±0.1
850312

0.6938271±0.0
48111763

0.19047621±0.
0839921 150.0±0.0

5 5 500
0.5619048±0.1
09512314

0.8255814±0.0
33342335

0.43809524±0.
109512314

0.1744186±0.0
33342343

0.81560004±0.
09962061

1.074±0.10809
872

0.76014435±0.
042628147

0.43809524±0.
109512314 500.0±0.0

5 5 1500
0.4095238±0.0
7512482

0.9186047±0.0
33342335

0.59047616±0.
07512482

0.08139535±0.
033342347

0.9352668±0.0
82310155

1.0353999±0.0
838461

0.8338618±0.0
61916098

0.59047616±0.
07512482 1500.0±0.0

5 5 5000
0.2761905±0.1
2458043

0.96279067±0.
027297381

0.7238096±0.1
2458042

0.037209302±
0.02729739

1.03748±0.089
08133

1.0694001±0.0
8932238

0.8504181±0.1
4241457

0.7238096±0.1
2458042 5000.0±0.0

5 5 50000
0.22857146±0.
083390005

0.99767435±0.
0073541375

0.7714286±0.0
8339

0.0023255814
±0.007354134

1.0216999±0.0
40236343

1.024978±0.04
0245812

0.9924731±0.0
23802103

0.7714286±0.0
8339 50000.0±0.0
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Table 21. Glass Data Set under Feature-Detection Rule (Part 2) 

 

 

 

 

 

 

 

Detector 
Length r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

10 9 50
0.9809524±0.0
26082026

0.06511628±0.
044733457

0.01904762±0.
026082026

0.9348837±0.0
44733446

0.012±0.01095
4451

0.19999999±0.
10198039

0.512184±0.01
0043031

0.01904762±0.
026082026 50.0±0.0

10 9 150
0.9333334±0.0
54294065

0.2±0.0482242
85

0.06666667±0.
05429407

0.8±0.0482242
78

0.016±0.01801
2341

0.17333333±0.
027888669

0.5384579±0.0
19271424

0.06666667±0.
05429407 150.0±0.0

10 9 500
0.7714286±0.1
0323563

0.56279075±0.
034493938

0.22857144±0.
10323564

0.43720928±0.
03449394

0.059599996±
0.022645088

0.206±0.03597
2208

0.63621765±0.
046369754

0.22857144±0.
10323564 500.0±0.0

10 9 1500
0.61904764±0.
18747638

0.7813953±0.0
7817552

0.3809524±0.1
874764

0.21860465±0.
07817552

0.10946667±0.
010722767

0.18786666±0.
010722771

0.73581046±0.
08632018

0.3809524±0.1
874764 1500.0±0.0

10 9 5000
0.2952381±0.0
7824608

0.93953484±0.
020800613

0.7047619±0.0
7824607

0.060465116±
0.020800633

0.16504±0.014
394027

0.19483998±0.
014661105

0.82546616±0.
060772207

0.7047619±0.0
7824607 5000.0±0.0

10 9 50000
0.15238096±0.
062087644

0.9953488±0.0
1040032

0.84761906±0.
06208764

0.004651163±
0.010400316

0.18932±0.005
536138

0.192452±0.00
55039707

0.9607477±0.0
877709

0.84761906±0.
06208764 50000.0±0.0

10 10 50
0.98571426±0.
023002183

0.034883723±
0.057227995

0.014285715±
0.023002185

0.9651163±0.0
57228003 0.0±0.0

0.07599999±0.
07705697

0.5056297±0.0
14639738

0.014285715±
0.023002185 50.0±0.0

10 10 150
0.9666666±0.0
4517539

0.06511629±0.
061821397

0.033333335±
0.045175396

0.9348837±0.0
6182139

0.0039999997
±0.005621826
7

0.06600001±0.
032727834

0.50859964±0.
023596324

0.033333335±
0.045175396 150.0±0.0

10 10 500
0.88095236±0.
08473871

0.2488372±0.1
2259341

0.11904763±0.
08473872

0.7511627±0.1
2259341

0.0116±0.0095
59173

0.081±0.03151
3665

0.5414856±0.0
55244934

0.11904763±0.
08473872 500.0±0.0

10 10 1500
0.75714284±0.
11099767

0.5348837±0.0
41019402

0.24285714±0.
11099768

0.46511632±0.
0410194

0.024266666±
0.0064574587

0.0746±0.0089
52275

0.61675787±0.
05156084

0.24285714±0.
11099768 1500.0±0.0

10 10 5000
0.46190482±0.
12305427

0.8790698±0.0
34319308

0.53809524±0.
12305427

0.12093024±0.
034319296

0.051779997±
0.005320359

0.07834±0.006
6653676

0.7908218±0.0
4244471

0.53809524±0.
12305427 5000.0±0.0

10 10 50000
0.21904762±0.
09309764

0.9953488±0.0
09805516

0.78095233±0.
093097635

0.004651163±
0.009805513

0.073916±0.00
34220442

0.076968±0.00
34422753

0.98357487±0.
03477789

0.78095233±0.
093097635 50000.0±0.0

23 22 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0
23 22 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0
23 22 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 500.0±0.0

23 22 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0
1.3333333E-
4±2.981424E-4 0.5±0.0 0.0±0.0 1500.0±0.0

23 22 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0

8.0E-
5±1.7888544E-
4 0.5±0.0 0.0±0.0 5000.0±0.0

23 22 50000
0.9714285±0.0
4259177

0.013953489±
0.012737734

0.02857143±0.
04259177

0.9860465±0.0
1273774 0.0±0.0

6.8E-
5±5.215362E-5

0.4960878±0.0
09537603

0.02857143±0.
04259177 50000.0±0.0

23 23 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0
23 23 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0
23 23 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 500.0±0.0
23 23 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 1500.0±0.0
23 23 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 5000.0±0.0

23 23 50000
0.9952381±0.0
15058463

0.004651163±
0.014708268

0.004761905±
0.015058466

0.9953488±0.0
14708276 0.0±0.0

1.19999995E-
5±2.1499354E-
5

0.49997097±0.
005680728

0.004761905±
0.015058466 50000.0±0.0

30 29 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0
30 29 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0
30 29 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 500.0±0.0
30 29 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 1500.0±0.0
30 29 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 5000.0±0.0
30 29 50000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50000.0±0.0
30 30 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0
30 30 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0
30 30 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 500.0±0.0
30 30 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 1500.0±0.0
30 30 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 5000.0±0.0
30 30 50000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50000.0±0.0
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Table 22. Glass Data Set under HD Rule (Part 1) 

 

 

 

 

 

r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

3 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
3 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
3 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
3 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
3 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
3 50000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
4 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
4 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
4 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
4 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
4 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
4 50000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
5 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
5 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
5 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
5 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
5 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
5 50000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
10 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
10 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
10 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
10 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
10 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
10 50000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0

20 50
0.9952381±0.0
15058463

0.048837207±
0.10822216

0.004761905±
0.015058466

0.9511628±0.1
08222164 0.0±0.0 6.5±10.102255

0.5129782±0.0
29135816

0.004761905±
0.015058466

0.4±0.5163978
3

20 150
0.97619045±0.
06044264

0.1±0.1250202
8

0.023809524±
0.060442645

0.9±0.1250202
8 0.6±1.3498971

10.925±12.682
036

0.5220973±0.0
2855374

0.023809524±
0.060442645 0.9±1.286684

20 500
0.91904765±0.
081092305

0.3372093±0.2
157352

0.08095238±0.
08109232

0.66279066±0.
2157352 2.77±3.481962

20.369999±7.9
98679

0.5918059±0.0
6953432

0.08095238±0.
08109232 2.4±1.4298407

20 1500
0.7761905±0.1
2708329

0.60697675±0.
15129194

0.22380953±0.
1270833

0.39302325±0.
15129194

8.548217±3.95
90602

19.17448±2.87
1987

0.67253184±0.
07721886

0.22380953±0.
1270833 9.5±4.5030856

20 5000
0.5952381±0.1
2944052

0.82790697±0.
106402226

0.40476194±0.
12944053

0.17209303±0.
10640223

15.531412±3.8
455102

20.749231±4.1
14126

0.7819675±0.0
8519047

0.40476194±0.
12944053 28.4±8.983936

20 50000
0.252381±0.10
777298

0.988372±0.02
2600584

0.7476191±0.1
07772976

0.011627907±
0.022600587

19.770397±1.6
137989

20.286346±1.5
261385

0.9589304±0.0
76007016

0.7476191±0.1
07772976

350.3±76.4940
8

23 50
0.7047619±0.1
706626

0.6372093±0.1
4919208

0.2952381±0.1
7066261

0.3627907±0.1
4919208

5.570545±1.92
36504

10.514498±2.4
599261

0.6643947±0.0
9595997

0.2952381±0.1
7066261

20.4±3.657564
4

23 150
0.50476193±0.
08751778

0.855814±0.06
0841605

0.49523807±0.
08751778

0.14418605±0.
060841605

8.33427±0.967
4668

10.612213±1.0
347575

0.7803383±0.0
73570535

0.49523807±0.
08751778

60.1±8.569324
5

23 500
0.32380956±0.
10718694

0.9604651±0.0
22062395

0.6761905±0.1
0718694

0.039534885±
0.022062402

9.829529±0.78
81025

10.598936±0.7
8515047

0.8881976±0.0
6961326

0.6761905±0.1
0718694

207.2±19.1125
34

23 1500
0.23809524±0.
0925548

0.988372±0.01
6444352

0.76190484±0.
092554785

0.011627907±
0.016444344

10.589329±0.4
8597506

10.855404±0.4
7665945

0.96619797±0.
048766017

0.76190484±0.
092554785

621.6±60.9393
12

23 5000
0.1809524±0.0
49180746 1.0±0.0

0.81904775±0.
049180735 0.0±0.0

10.65942±0.59
30913

10.74222±0.58
803684 1.0±0.0

0.81904775±0.
049180735

2029.0±157.25
563

23 50000
0.1809524±0.0
6269339 1.0±0.0

0.81904763±0.
06269339 0.0±0.0

10.810839±0.5
617536

10.819035±0.5
6157833 1.0±0.0

0.81904763±0.
06269339

20548.5±1128.
9988

26 50
0.6142857±0.0
91045275

0.7069767±0.0
728847

0.3857143±0.0
9104527

0.29302323±0.
07288471

2.918±0.80141
264

5.034±1.04222
19

0.67835623±0.
053125173

0.3857143±0.0
9104527 50.0±0.0

26 150
0.40952381±0.
100890465

0.89767444±0.
03501269

0.5904762±0.1
00890465

0.10232558±0.
03501268

4.3953156±0.5
020622

5.3593154±0.5
2150756

0.7974443±0.0
65636456

0.5904762±0.1
00890465

149.9±0.31622
776

26 500
0.21904762±0.
09309764

0.972093±0.02
1370629

0.78095233±0.
093097635

0.027906975±
0.021370618

4.7962947±0.3
3945233

5.1128225±0.3
4092423

0.86870784±0.
14645883

0.78095233±0.
093097635

499.8±0.42163
7

26 1500
0.21428573±0.
07186813

0.9953488±0.0
09805517

0.78571427±0.
07186813

0.004651163±
0.009805513

4.8649993±0.2
0390247

4.9706416±0.2
0581971

0.9859514±0.0
29711718

0.78571427±0.
07186813

1499.4±1.0749
677

26 5000
0.15238097±0.
03756241 1.0±0.0

0.84761906±0.
03756241 0.0±0.0

5.155404±0.43
017474

5.1876907±0.4
3062395 1.0±0.0

0.84761906±0.
03756241

4999.0±1.0540
925

26 50000
0.17142858±0.
03329552 1.0±0.0

0.82857144±0.
033295516 0.0±0.0

5.0095086±0.2
2666542

5.012742±0.22
665998 1.0±0.0

0.82857144±0.
033295516

49983.2±6.477
31
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Table 23. Glass Data Set under HD Rule (Part 2) 

 

 

 

 

 

 

r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

30 50
0.8333333±0.0
9848947

0.33023256±0.
110611215

0.16666667±0.
09848947

0.6697674±0.1
1061121

0.25800002±0.
057696525

1.266±0.22921
123

0.5553608±0.0
53901047

0.16666667±0.
09848947 50.0±0.0

30 150
0.6142857±0.1
2982924

0.66511625±0.
09250501

0.38571432±0.
12982926

0.33488372±0.
092505015

0.508±0.13766
304

1.1506667±0.2
0476304

0.6491089±0.0
52665647

0.38571432±0.
12982926 150.0±0.0

30 500
0.352381±0.09
309765

0.9348837±0.0
30617688

0.6476191±0.0
9309764

0.06511629±0.
030617703

0.8539999±0.1
3116571

1.1345999±0.1
3727847

0.84826726±0.
05647938

0.6476191±0.0
9309764 500.0±0.0

30 1500
0.22380956±0.
08414196

0.98139536±0.
021370629

0.7761905±0.0
8414195

0.018604651±
0.02137062

1.0020001±0.0
74924156

1.1024666±0.0
7616618

0.915734±0.10
1191044

0.7761905±0.0
8414195 1500.0±0.0

30 5000
0.24285717±0.
06127067 1.0±0.0

0.7571429±0.0
6127066 0.0±0.0

1.05916±0.037
076846

1.08988±0.037
422307 1.0±0.0

0.7571429±0.0
6127066 5000.0±0.0

30 50000
0.15714286±0.
06753031 1.0±0.0

0.8428572±0.0
67530304 0.0±0.0

1.094888±0.03
2369517

1.0979521±0.0
32376822 1.0±0.0

0.8428572±0.0
67530304 50000.0±0.0

34 50
0.99047625±0.
020077953

0.030232554±
0.031104501

0.00952381±0.
020077955

0.9697674±0.0
31104503

0.0019999999
±0.006324555
3

0.08±0.067330
03

0.5053501±0.0
1009524

0.00952381±0.
020077955 50.0±0.0

34 150
0.9666668±0.0
23002183

0.04883721±0.
025593137

0.033333335±
0.023002187

0.9511628±0.0
25593122

0.0026666666
±0.004661373

0.06933333±0.
029847348

0.5040595±0.0
02936059

0.033333335±
0.023002187 150.0±0.0

34 500
0.88571435±0.
08751776

0.21627907±0.
07519779

0.11428572±0.
08751778

0.78372085±0.
0751978

0.010000001±
0.0065996633

0.073±0.01639
1056

0.5303013±0.0
31133622

0.11428572±0.
08751778 500.0±0.0

34 1500
0.74285716±0.
10812308

0.47674417±0.
07125883

0.25714287±0.
108123094

0.5232558±0.0
7125882

0.018666666±
0.0039999997

0.065066665±
0.008398707

0.58611083±0.
027190857

0.25714287±0.
108123094 1500.0±0.0

34 5000
0.37142855±0.
06659105

0.87674415±0.
042529825

0.6285714±0.0
6659104

0.12325583±0.
042529818

0.04182±0.003
9185598

0.067660004±
0.0043767556

0.7500234±0.0
8258855

0.6285714±0.0
6659104 5000.0±0.0

34 50000
0.18571429±0.
065253355 1.0±0.0

0.81428564±0.
06525335 0.0±0.0

0.065859996±
0.002002288

0.068849996±
0.0020236871 1.0±0.0

0.81428564±0.
06525335 50000.0±0.0

37 50 1.0±0.0
0.0023255814
±0.007354134 0.0±0.0

0.99767435±0.
0073541375 0.0±0.0

0.0019999999
±0.006324555
3

0.50058824±0.
0018601726 0.0±0.0 50.0±0.0

37 150
0.9952381±0.0
15058463

0.0023255814
±0.007354134

0.004761905±
0.015058466

0.99767435±0.
0073541375 0.0±0.0

0.0026666666
±0.004661373

0.49936873±0.
004463906

0.004761905±
0.015058466 150.0±0.0

37 500
0.9857143±0.0
45175392

0.004651163±
0.009805513

0.014285715±
0.045175407

0.9953488±0.0
09805517 0.0±0.0

0.0028000001
±0.003552776
8

0.49733034±0.
012811552

0.014285715±
0.045175407 500.0±0.0

37 1500
0.99047625±0.
020077951

0.018604651±
0.018344432

0.00952381±0.
020077953

0.98139536±0.
018344441 0.0±0.0

0.0015333334
±7.0623326E-4

0.5022945±0.0
064957417

0.00952381±0.
020077953 1500.0±0.0

37 5000
0.9476191±0.0
725659

0.09534884±0.
06245003

0.052380957±
0.072565906

0.90465117±0.
06245003

9.999999E-
5±1.0540926E-
4

0.00264±7.988
881E-4

0.51140445±0.
03340081

0.052380957±
0.072565906 5000.0±0.0

37 50000
0.6142857±0.1
06361054

0.6232558±0.1
3054596

0.3857143±0.1
0636105

0.3767442±0.1
3054596

7.7000004E-
4±1.617268E-4

0.0024100002
±2.6637485E-4

0.6243481±0.1
018129

0.3857143±0.1
0636105 50000.0±0.0

40 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0
40 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0
40 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 500.0±0.0
40 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 1500.0±0.0
40 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 5000.0±0.0

40 50000
0.99047625±0.
030116927

0.004651163±
0.009805513

0.00952381±0.
030116932

0.99534875±0.
009805516 0.0±0.0

1.19999995E-
5±1.0327954E-
5

0.49867645±0.
008671075

0.00952381±0.
030116932 50000.0±0.0

43 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0
43 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0
43 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 500.0±0.0
43 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 1500.0±0.0
43 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 5000.0±0.0
43 50000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50000.0±0.0
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Table 24. Glass Data Set under RCHK Rule (No MHC) 

 

 

 

 

 

 

 

 

r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

3 50
0.9952381±0.0
15058463 0.0±0.0

0.004761905±
0.015058466 1.0±0.0

0.3333333±1.0
540924 0.7±2.213595

0.4987805±0.0
038564324

0.004761905±
0.015058466 0.3±0.9486834

3 150
0.9809524±0.0
33295516

0.025581395±
0.080895476

0.01904762±0.
03329552

0.97441864±0.
08089548

1.5966666±2.5
871692

2.2117648±3.5
742471

0.50243±0.017
026598

0.01904762±0.
03329552 2.8±5.49343

3 500
0.94285715±0.
083390005

0.11627908±0.
19239806

0.05714286±0.
083390005

0.883721±0.19
239803

2.7477965±3.5
69662

3.0850585±4.0
049863

0.52147686±0.
03984839

0.05714286±0.
083390005

22.9±32.43951
8

3 1500
0.95238096±0.
077761576

0.06511628±0.
13727717

0.04761905±0.
07776158

0.9348837±0.1
3727716

3.0727916±4.0
080724

3.1690917±4.1
37878

0.5066654±0.0
21075856

0.04761905±0.
07776158

62.5±100.8070
2

3 5000
0.9619048±0.0
58536787

0.04418605±0.
13972855

0.03809524±0.
05853679

0.955814±0.13
972853

3.780357±4.08
69803

3.8119469±4.1
243753

0.5043122±0.0
31367112

0.03809524±0.
05853679

158.9±214.729
52

3 50000
0.9476191±0.0
69006555

0.037209302±
0.11766615

0.052380957±
0.069006555

0.96279067±0.
11766614

4.8788047±3.3
671396

4.8828077±3.3
698754

0.49750367±0.
018719977

0.052380957±
0.069006555

2177.0±2437.4
18

4 50
0.8952381±0.0
8339

0.37906975±0.
07358219

0.10476191±0.
083390005

0.6209302±0.0
7358219

3.1855748±0.8
35195

5.220943±1.13
44805

0.5909282±0.0
18137148

0.10476191±0.
083390005 32.9±5.021066

4 150
0.81428564±0.
06127066

0.46046513±0.
06740175

0.18571429±0.
06127067

0.53953487±0.
06740175

4.2986846±0.7
94539

5.171873±0.80
291915

0.60217774±0.
034330837

0.18571429±0.
06127067

100.2±11.9703
33

4 500
0.80952376±0.
14197256

0.49534884±0.
06582303

0.1904762±0.1
4197257

0.5046512±0.0
6582303

4.783385±0.57
271

5.08765±0.552
05864

0.61399364±0.
029802337

0.1904762±0.1
4197257

321.6±47.4486
9

4 1500
0.82857144±0.
09309763

0.5488372±0.0
59240222

0.17142859±0.
09309765

0.45116282±0.
059240233

4.7709265±0.4
0157795

4.8807225±0.3
9577875

0.64760953±0.
02502077

0.17142859±0.
09309765

949.5±132.753
11

4 5000
0.68095237±0.
13846874

0.6953488±0.0
945927

0.31904763±0.
13846876

0.30465117±0.
0945927

4.983709±0.49
624225

5.0197806±0.4
993514

0.69559115±0.
02971134

0.31904763±0.
13846876

3306.9±347.21
64

4 50000
0.64285713±0.
081711344

0.760465±0.05
029807

0.35714287±0.
081711344

0.23953488±0.
05029807

4.9721837±0.2
2040553

4.976135±0.22
020245

0.7290802±0.0
44787027

0.35714287±0.
081711344

34518.7±3375.
251

5 50
0.8761905±0.0
7169263

0.46279067±0.
053088035

0.12380953±0.
07169263

0.53720933±0.
053088047

1.7452924±0.4
6817815

3.1875374±0.5
9823483

0.61975664±0.
0334265

0.12380953±0.
07169263

49.3±0.823272
65

5 150
0.8333334±0.1
15010925

0.6139535±0.0
82913116

0.16666669±0.
11501093

0.3860465±0.0
8291313

2.8135474±0.3
166245

3.474409±0.32
508323

0.6843349±0.0
48169978

0.16666669±0.
11501093

146.9±1.44913
77

5 500
0.74761903±0.
08708487

0.6837209±0.0
528043

0.25238097±0.
08708487

0.31627905±0.
052804295

3.2594776±0.4
5599228

3.4782548±0.4
539657

0.70356756±0.
031376023

0.25238097±0.
08708487

492.8±2.25092
58

5 1500
0.77619046±0.
114571944

0.71860456±0.
05194376

0.22380953±0.
114571944

0.28139538±0.
051943764

3.2410684±0.2
4100436

3.3171177±0.2
4491523

0.7340803±0.0
3201579

0.22380953±0.
114571944

1475.1±8.9000
63

5 5000
0.63809526±0.
12738033

0.7651162±0.0
67088984

0.36190477±0.
12738034

0.23488374±0.
067088984

3.4977927±0.2
7101275

3.524032±0.27
346817

0.734777±0.03
4182213

0.36190477±0.
12738034

4927.1±13.101
739

5 50000
0.6095238±0.1
2458042

0.7767441±0.0
46769306

0.3904762±0.1
24580435

0.22325583±0.
046769314

3.4485002±0.1
4926931

3.4511216±0.1
4924602

0.72927964±0.
049658358

0.3904762±0.1
24580435

49165.4±78.28
7506

10 50
0.9476191±0.0
4735376

0.15581395±0.
10110263

0.052380957±
0.04735376

0.844186±0.10
110263

0.053999998±
0.048120223

0.43600002±0.
15629032

0.53013474±0.
03783357

0.052380957±
0.04735376 50.0±0.0

10 150
0.8761905±0.0
95765725

0.3651163±0.0
71930304

0.12380953±0.
09576573

0.6348837±0.0
7193028

0.13133332±0.
048488256

0.49800006±0.
11452748

0.57956666±0.
029593945

0.12380953±0.
09576573 150.0±0.0

10 500
0.6952381±0.1
00890465

0.6837209±0.0
728847

0.30476195±0.
100890465

0.31627908±0.
072884716

0.2928±0.0436
0632

0.489±0.05018
4116

0.68830246±0.
048873566

0.30476195±0.
100890465 500.0±0.0

10 1500
0.5714286±0.1
1878277

0.80930233±0.
042175096

0.42857146±0.
11878277

0.19069766±0.
042175103

0.3857333±0.0
36745638

0.4692667±0.0
39345823

0.74555105±0.
05858532

0.42857146±0.
11878277 1500.0±0.0

10 5000
0.4666667±0.0
7027285

0.8860465±0.0
41673433

0.53333336±0.
07027285

0.11395349±0.
04167343

0.44923997±0.
020304529

0.47823995±0.
02025654

0.80627376±0.
06508751

0.53333336±0.
07027285 5000.0±0.0

10 50000
0.3952381±0.0
8708487

0.9046513±0.0
13201081

0.6047619±0.0
8708486

0.09534883±0.
013201076

0.46049±0.015
004503

0.46347603±0.
015084453

0.80131805±0.
03580803

0.6047619±0.0
8708486 50000.0±0.0

23 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0
23 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0
23 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 500.0±0.0
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Table 25. Glass Data Set under RCHK (Global MHC) Rule 

 

 

 

 

 

 

 

r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

3 50
0.99047625±0.
030116927

0.076744184±
0.1626245

0.00952381±0.
030116932

0.92325574±0.
16262451

3.2416663±9.0
10835

6.166667±14.9
90738

0.5213848±0.0
46649527

0.00952381±0.
030116932 1.1±2.1317704

3 150
0.8952381±0.2
5868633

0.13255814±0.
3112478

0.10476191±0.
25868633

0.86744183±0.
3112478

3.4716668±7.3
50401

5.220834±11.1
586485

0.5351945±0.0
9556517

0.10476191±0.
25868633 2.9±7.5784783

3 500
0.60952383±0.
50485176

0.38372093±0.
49079624

0.39047617±0.
50485176

0.61627907±0.
49079624

15.611067±22.
310247

17.02638±23.9
7929

0.35117644±0.
24234612

0.39047617±0.
50485176

27.8±32.60470
2

3 1500
0.9±0.3162277
3

0.12325583±0.
31182644

0.1±0.3162277
3

0.87674415±0.
3118265

6.48541±14.17
1725

6.652715±14.5
23705

0.45617285±0.
1607956

0.1±0.3162277
3 62.1±70.2115

3 5000
0.81428564±0.
39168093

0.18372092±0.
38766667

0.18571429±0.
39168093

0.81627905±0.
38766667

6.5678735±14.
0471115

6.6312346±14.
180851

0.49561438±0.
016042164

0.18571429±0.
39168093

243.9±294.746
37

3 50000
0.9666666±0.1
0540926

0.041860465±
0.1323744

0.033333335±
0.105409265

0.95813954±0.
13237442

4.0964155±12.
954003 4.1±12.96534

0.5034162±0.0
108028175

0.033333335±
0.105409265

442.1±932.033
7

4 50
0.05714286±0.
109512314

0.86976737±0.
0871533

0.94285715±0.
1095123

0.13023256±0.
0871533

8.958323±3.36
54995

14.456305±3.9
609573

0.13361117±0.
22482152

0.94285715±0.
1095123

33.0±3.126943
8

4 150 0.0±0.0
0.9953488±0.0
14708276 1.0±0.0

0.004651163±
0.014708268

12.484487±2.6
378107

14.769422±2.6
221848 0.0±0.0 1.0±0.0

97.1±11.58974
6

4 500 0.0±0.0
0.9906977±0.0
120092565 1.0±0.0

0.009302326±
0.012009251

19.976822±3.8
474326

20.6483±3.793
5975 0.0±0.0 1.0±0.0

323.6±41.7697
37

4 1500 0.0±0.0
0.99767435±0.
007354138 1.0±0.0

0.0023255814
±0.007354134

20.332546±2.5
06348

20.556635±2.4
9479 0.0±0.0 1.0±0.0

984.4±83.3282
6

4 5000 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
21.162405±3.7
877228

21.22525±3.78
8769 0.0±0.0 1.0±0.0

3490.4±181.23
172

4 50000 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
21.876986±1.8
535818

21.88363±1.85
36389 0.0±0.0 1.0±0.0

32134.9±3253.
5427

5 50
0.0952381±0.0
70986286

0.8±0.1293435
8

0.9047619±0.0
7098628

0.2±0.1293435
8

4.9436507±2.6
606731

8.139898±3.07
46574

0.2993428±0.1
8799506

0.9047619±0.0
7098628

48.7±0.948683
26

5 150 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
17.391571±2.1
354585

18.702265±2.1
306646 0.0±0.0 1.0±0.0

148.1±0.99442
9

5 500 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
16.236181±1.2
401501

16.650606±1.2
431763 0.0±0.0 1.0±0.0

491.3±3.40098
07

5 1500 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
16.421528±0.2
5572318

16.559887±0.2
5540945 0.0±0.0 1.0±0.0

1474.5±8.5537
51

5 5000 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
20.868145±0.5
005871

20.91037±0.50
21556 0.0±0.0 1.0±0.0

4923.1±24.401
505

5 50000 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
13.174988±0.8
899951

13.178961±0.8
9003295 0.0±0.0 1.0±0.0

49154.0±155.4
1986

10 50
0.6857143±0.2
1201025

0.26976746±0.
14634542

0.31428576±0.
21201026

0.73023254±0.
14634542

0.148±0.10674
997

1.136±0.31662
107

0.479885±0.10
193973

0.31428576±0.
21201026 50.0±0.0

10 150
0.23333332±0.
13365419

0.7395348±0.0
991521

0.7666667±0.1
3365419

0.26046515±0.
0991521

0.4533333±0.1
6979289

1.1973333±0.2
3128624

0.45225447±0.
19140065

0.7666667±0.1
3365419 150.0±0.0

10 500
0.01904762±0.
03329552

0.9837209±0.0
19145884

0.98095244±0.
033295516

0.016279068±
0.019145874

0.768±0.10297
789

1.0849999±0.1
11296415

0.25058824±0.
4253067

0.98095244±0.
033295516 500.0±0.0

10 1500 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
1.1633999±0.0
47341637

1.2708±0.0474
63864 0.0±0.0 1.0±0.0 1500.0±0.0

10 5000 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
1.2457999±0.0
62283743

1.2801799±0.0
62932506 0.0±0.0 1.0±0.0 5000.0±0.0

10 50000 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
1.147278±0.02
4349857

1.150646±0.02
4379004 0.0±0.0 1.0±0.0 50000.0±0.0

23 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0

23 150
0.9952381±0.0
15058463 0.0±0.0

0.004761905±
0.015058466 1.0±0.0 0.0±0.0 0.0±0.0

0.4987805±0.0
038564324

0.004761905±
0.015058466 150.0±0.0

23 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 500.0±0.0
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Table 26. Glass Data Set under RCHK (MHC) Rule 

 

 

6.2.8 Glass Data Set Conclusion 

The results of the best performing test group for each scenario are summarised in Figure 

44. None of the rules performed particularly well for the glass data set since each rule 

was only able to achieve an average DR value of 0.5.  The HD rule followed by the 

feature-detection rules were the worst performing rules for the glass data set experiment. 

A comparison between GC and OC exhibited by the best performing test group for each 

scenario is summarised in Figure 45. The OC value was equal to 0 across all of the rules 

r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

3 50
0.8714286±0.0
97976506

0.43720928±0.
11999238

0.12857142±0.
097976506

0.5627907±0.1
19992375

1.5296618±0.6
8811005

4.1056714±1.2
495579

0.61094445±0.
05110929

0.12857142±0.
097976506

23.3±2.907843
6

3 150
0.8428572±0.1
10085964

0.67906976±0.
07255415

0.15714286±0.
11008598

0.3209302±0.0
7255416

2.8481133±0.8
7744546

4.5180883±1.1
029426

0.7246135±0.0
59179217

0.15714286±0.
11008598

62.1±5.915140
6

3 500
0.71428573±0.
05019488

0.760465±0.04
1092582

0.2857143±0.0
50194886

0.2395349±0.0
41092582

3.5731494±0.3
0506957

4.1507907±0.3
344633

0.7500489±0.0
30431

0.2857143±0.0
50194886

213.0±10.8934
23

3 1500
0.59047616±0.
12130142

0.8255814±0.0
42811476

0.40952381±0.
12130143

0.1744186±0.0
42811476

3.9422047±0.2
9657614

4.1672206±0.3
055191

0.7694938±0.0
59313163

0.40952381±0.
12130143

634.6±8.84684
6

3 5000
0.4857143±0.0
626934

0.88139534±0.
053088054

0.5142857±0.0
626934

0.118604645±
0.053088043

4.2391233±0.3
2158607

4.315446±0.32
24119

0.8100405±0.0
6505675

0.5142857±0.0
626934

2108.9±56.281
93

3 50000
0.2666667±0.1
2130142

0.96279067±0.
031392947

0.73333335±0.
121301405

0.037209302±
0.031392958

4.351283±0.26
49779

4.3596377±0.2
6506206

0.868186±0.08
936007

0.73333335±0.
121301405

21251.1±431.0
1288

4 50
0.81428576±0.
117610365

0.5116279±0.1
09079435

0.18571432±0.
117610365

0.4883721±0.1
0907943

1.6879463±0.7
762898

3.925763±0.93
10747

0.62511814±0.
070688814

0.18571432±0.
117610365

33.9±3.510302
3

4 150
0.6952382±0.1
3127665

0.7581395±0.0
45466296

0.30476192±0.
13127665

0.24186048±0.
045466285

2.748637±0.70
25969

3.8315856±0.8
1384385

0.73948216±0.
039385345

0.30476192±0.
13127665

102.9±6.90330
1

4 500
0.5619048±0.1
2046772

0.83720934±0.
052576207

0.43809527±0.
12046772

0.1627907±0.0
525762

3.6979206±0.4
968366

4.106407±0.53
25562

0.7782221±0.0
46235673

0.43809527±0.
12046772

348.4±9.51256
5

4 1500
0.38571432±0.
11099768

0.91627914±0.
024999252

0.61428577±0.
11099768

0.08372094±0.
02499925

3.890334±0.40
2285

4.0452223±0.4
051408

0.81850207±0.
039274015

0.61428577±0.
11099768

1065.2±15.619
078

4 5000
0.2904762±0.1
2387056

0.9581394±0.0
306177

0.70952386±0.
12387055

0.041860465±
0.030617703

3.8408477±0.1
5966877

3.8886075±0.1
5942991

0.8649079±0.0
7622035

0.70952386±0.
12387055

3499.6±43.777
72

4 50000
0.25238097±0.
09537027

0.9906977±0.0
120092565

0.74761903±0.
09537027

0.009302326±
0.012009251

3.8780797±0.3
0551845

3.8829963±0.3
0545288

0.9669405±0.0
4447665

0.74761903±0.
09537027

34979.0±724.2
717

5 50
0.8238095±0.0
8414195

0.6046511±0.1
1602039

0.17619048±0.
08414196

0.39534885±0.
116020374

1.6741127±0.8
311934

3.5559907±1.1
541469

0.6801237±0.0
6917711

0.17619048±0.
08414196

46.8±1.813529
5

5 150
0.5714286±0.1
0997148

0.79999995±0.
03983017

0.42857146±0.
109971486

0.2±0.0398301
78

2.837321±0.29
30957

3.7692275±0.3
1316403

0.73986036±0.
030842584

0.42857146±0.
109971486

137.2±4.68567
5

5 500
0.36666667±0.
118888795

0.92093027±0.
036688864

0.6333334±0.1
18888795

0.07906978±0.
03668887

3.3038394±0.3
229541

3.6289482±0.3
281322

0.8216284±0.0
7052505

0.6333334±0.1
18888795

461.9±5.91514
1

5 1500
0.27142856±0.
09537028

0.9651163±0.0
1976364

0.7285715±0.0
9537027

0.034883723±
0.019763643

3.580412±0.24
787942

3.6990154±0.2
4814913

0.8835987±0.0
6994

0.7285715±0.0
9537027

1378.6±13.712
93

5 5000
0.1809524±0.0
5853679

0.9906977±0.0
120092565

0.8190476±0.0
58536787

0.009302326±
0.012009251

3.53556±0.283
26243

3.57175±0.283
3429

0.9516964±0.0
6901005

0.8190476±0.0
58536787

4598.3±54.839
26

5 50000
0.22380956±0.
084141955 1.0±0.0

0.77619046±0.
08414195 0.0±0.0

3.7274082±0.2
9098976

3.7310824±0.2
9099393 1.0±0.0

0.77619046±0.
08414195

45919.5±385.3
2706

10 50
0.9285714±0.0
6447649

0.19069767±0.
10841633

0.071428575±
0.0644765

0.80930233±0.
10841634

0.072±0.06124
6317

0.562±0.25147
563

0.5358424±0.0
36045093

0.071428575±
0.0644765 50.0±0.0

10 150
0.8047619±0.1
1544823

0.45116282±0.
09315237

0.19523811±0.
11544824

0.5488373±0.0
9315237

0.14533333±0.
059694696

0.56933326±0.
10551228

0.5935995±0.0
727671

0.19523811±0.
11544824 150.0±0.0

10 500
0.55714285±0.
11675033

0.79767436±0.
08207542

0.44285718±0.
11675033

0.20232558±0.
08207542

0.3672±0.0864
8288

0.607±0.10781
981

0.7396345±0.0
61302025

0.44285718±0.
11675033 500.0±0.0

10 1500
0.31904763±0.
06753031

0.95348835±0.
036359802

0.6809524±0.0
67530304

0.046511628±
0.036359817

0.48613334±0.
030569566

0.5854±0.0309
07985

0.87379456±0.
097133994

0.6809524±0.0
67530304 1500.0±0.0

10 5000
0.17619048±0.
07792341

0.9953488±0.0
09805517

0.8238095±0.0
7792341

0.004651163±
0.009805513

0.56424±0.022
898773

0.5951201±0.0
22716453

0.95828915±0.
104448855

0.8238095±0.0
7792341 5000.0±0.0

10 50000
0.17142859±0.
055894658 1.0±0.0

0.82857144±0.
055894654 0.0±0.0

0.588532±0.01
6320607

0.591588±0.01
6336117 1.0±0.0

0.82857144±0.
055894654 50000.0±0.0

23 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0
23 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0
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within the glass data set. The feature-detection rule and the HD rule had the highest GC 

values. The RCHK (MHC) rule is the best performing rule, with reference to 

generalisation and overfitting, because it has the greatest GC minus OC value. The HD 

rule and feature-detection rule have identical GC minus OC values and are the worst 

performing rules. 

 
Figure 44. Glass Data Set: DR and FR Summary 

 

 
Figure 45. Glass Data Set: GC and OC Summary 
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6.2.9 Mushroom Experiment 

The mushroom data set comprises hypothetical samples, corresponding to 23 species of 

mushroom described by 22 nominal-valued attributes. Each pattern is classified as being 

edible, non-edible or unknown. The non-edible and unknown classes were combined into 

the same data set [41] and each pattern was converted into a binary string of length 58. 

The 2480 missing attributes were replaced by ones. The data sets were further processed 

to create a single self-set and non-self set as follows: 

 Edible.self: Contains 4 208 patterns relating to the edible class. 

 Edible.non-self: Contains all the patterns related to poisonous class. The set 

contains 3 916 patterns in total. 

The results of each scenario are reported as per the list below: 

 The results of scenario 1, the mushroom data set, under the feature-detection rule 

are tabulated in Table 27 and Table 28. 

 The results of scenario 2, the mushroom data set, under the HD rule are tabulated 

in Table 29 and Table 30. 

 The results of scenario 3, the mushroom data set, under the RCHK rule with no 

permutation mark are tabulated in Table 31. 

 The results of scenario 4, the mushroom data set, under the RCHK rule with a 

single global permutation mask are tabulated in Table 32. 

 The results of scenario 5, the mushroom data set, under the RCHK rule with 

each detector having its own random permutation mask are tabulated in Table 

33. 
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Table 27. Mushroom Data Set under Feature-Detection Rule (Part 1) 

 

Detector 
Length r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

4 3 50 1.0±0.0
0.69702125±0.
07462234 0.0±0.0

0.3029787±0.0
7462233

43.463997±23.
56166

110.159996±3
9.4344

0.76958054±0.
046078883 0.0±0.0 50.0±0.0

4 3 150 1.0±0.0
0.91217023±0.
08229703 0.0±0.0

0.08782979±0.
08229704

61.444±20.600
685

92.968±24.275
59

0.9234908±0.0
6994341 0.0±0.0 150.0±0.0

4 3 500 1.0±0.0
0.99761707±0.
0053285095 0.0±0.0

0.0023829788
±0.005328502
5

86.8408±6.821
222

99.0276±7.200
9373

0.9976451±0.0
05265734 0.0±0.0 500.0±0.0

4 3 1500
0.999683±7.08
72996E-4 1.0±0.0

3.1695722E-
4±7.087379E-4 0.0±0.0

91.61014±4.37
30774

95.86293±4.52
31586 1.0±0.0

3.1695722E-
4±7.087379E-4 1500.0±0.0

4 3 5000
0.9993661±8.6
801336E-4 1.0±0.0

6.3391443E-
4±8.680231E-4 0.0±0.0

95.7916±4.244
6437

97.073044±4.2
26847 1.0±0.0

6.3391443E-
4±8.680231E-4 5000.0±0.0

4 3 50000
0.9982567±0.0
011753137 1.0±0.0

0.0017432647
±0.001175308
8 0.0±0.0

96.84412±1.34
87492

96.97956±1.34
69739 1.0±0.0

0.0017432647
±0.001175308
8

48755.8±33.72
981

4 4 50 1.0±0.0
0.43378726±0.
3263127 0.0±0.0

0.5662128±0.3
263127

11.955999±7.9
828753

53.908±28.419
512

0.66635454±0.
1519384 0.0±0.0 50.0±0.0

4 4 150 1.0±0.0
0.8775319±0.1
1462148 0.0±0.0

0.12246808±0.
114621475

31.888666±20.
311428

59.444664±23.
345339

0.89890033±0.
0874324 0.0±0.0 150.0±0.0

4 4 500
0.9987322±0.0
030621032

0.9940426±0.0
08697709

0.0012678287
±0.003062097
6

0.005957446±
0.008697708

46.0436±7.661
872

57.0828±7.860
389

0.9941436±0.0
08514198

0.0012678287
±0.003062097
6 500.0±0.0

4 4 1500
0.99928683±0.
0013180211 1.0±0.0

7.1315374E-
4±0.00131801
11 0.0±0.0

50.2868±4.435
5907

54.288532±4.5
174923 1.0±0.0

7.1315374E-
4±0.00131801
11 1500.0±0.0

4 4 5000
0.99786055±0.
0026160937 1.0±0.0

0.002139461±
0.0026160975 0.0±0.0

53.414345±2.5
325062

54.6144±2.540
683 1.0±0.0

0.002139461±
0.0026160975 5000.0±0.0

4 4 50000
0.9869255±5.6
034233E-4 1.0±0.0

0.013074486±
5.603061E-4 0.0±0.0

53.769913±1.1
727937

53.88747±1.17
54507 1.0±0.0

0.013074486±
5.603061E-4 50000.0±0.0

5 4 50 1.0±0.0
0.691234±0.14
816506 0.0±0.0

0.30876598±0.
14816505

22.359999±9.4
85874

75.228±20.974
63

0.7713316±0.0
80420494 0.0±0.0 50.0±0.0

5 4 150 1.0±0.0
0.9341276±0.0
6688463 0.0±0.0

0.06587234±0.
06688463

43.749336±26.
232157

73.95333±28.5
37117

0.94110173±0.
057888854 0.0±0.0 150.0±0.0

5 4 500
0.9993661±0.0
014174865 1.0±0.0

6.3391443E-
4±0.00141747
58 0.0±0.0

67.489204±5.1
937623

79.11±5.08274
36 1.0±0.0

6.3391443E-
4±0.00141747
58 500.0±0.0

5 4 1500
0.9993661±0.0
014174865 1.0±0.0

6.3391443E-
4±0.00141747
58 0.0±0.0

62.81613±4.16
8236

66.76387±4.15
0565 1.0±0.0

6.3391443E-
4±0.00141747
58 1500.0±0.0

5 4 5000
0.9988907±0.0
01544661 1.0±0.0

0.0011093502
±0.001544658
4 0.0±0.0

67.33044±2.97
82577

68.53693±2.99
25284 1.0±0.0

0.0011093502
±0.001544658
4 5000.0±0.0

5 4 50000
0.9964342±5.6
03002E-4 1.0±0.0

0.0035657687
±5.603063E-4 0.0±0.0

69.22625±0.20
408516

69.34732±0.20
210527 1.0±0.0

0.0035657687
±5.603063E-4

49964.5±0.707
10677

5 5 50
0.9999207±2.5
057385E-4

0.42451063±0.
27462012

7.9239304E-
5±2.5057668E-
4

0.5754894±0.2
7462015

5.4519997±9.7
97279

35.374±29.373
774

0.6519661±0.1
1061471

7.9239304E-
5±2.5057668E-
4 50.0±0.0

5 5 150 1.0±0.0
0.7666384±0.1
2535655 0.0±0.0

0.23336169±0.
12535657

11.634001±5.9
630756

32.006004±10.
77589

0.81799144±0.
07914066 0.0±0.0 150.0±0.0

5 5 500 1.0±0.0
0.9687659±0.0
35439543 0.0±0.0

0.031234046±
0.03543954

25.8866±4.037
9605

36.0858±4.347
611

0.9707239±0.0
32729674 0.0±0.0 500.0±0.0

5 5 1500
0.9992076±0.0
013468176 1.0±0.0

7.923931E-
4±0.00134680
91 0.0±0.0

30.776134±2.3
899307

34.54513±2.44
53573 1.0±0.0

7.923931E-
4±0.00134680
91 1500.0±0.0

5 5 5000
0.9967511±0.0
029987942 1.0±0.0

0.0032488115
±0.002998788
4 0.0±0.0

33.63446±1.89
26196

34.8164±1.899
3171 1.0±0.0

0.0032488115
±0.002998788
4 5000.0±0.0

5 5 50000
0.9896989±0.0
07844287 1.0±0.0

0.010301109±
0.007844291 0.0±0.0

36.15195±0.40
49604

36.270348±0.4
101637 1.0±0.0

0.010301109±
0.007844291 50000.0±0.0

8 7 50 1.0±0.0
0.31642553±0.
34844252 0.0±0.0

0.68357444±0.
3484425

2.816±3.97218
8

20.048±16.562
859

0.61975133±0.
1576186 0.0±0.0 50.0±0.0

8 7 150 1.0±0.0
0.50723404±0.
21386015 0.0±0.0

0.49276596±0.
21386015

2.568±2.14392
9

15.149335±5.0
2384

0.6815764±0.1
01985164 0.0±0.0 150.0±0.0

8 7 500
0.99809825±0.
0034357219

0.82485104±0.
13839199

0.0019017432
±0.003435734
2

0.17514893±0.
13839199

6.6131997±2.8
061378

14.165601±4.0
07726

0.85924256±0.
08937

0.0019017432
±0.003435734
2 500.0±0.0

8 7 1500
0.9993661±0.0
014174865 1.0±0.0

6.3391443E-
4±0.00141747
58 0.0±0.0

13.696533±1.3
123132

17.344799±1.5
937269 1.0±0.0

6.3391443E-
4±0.00141747
58 1500.0±0.0

8 7 5000
0.999683±4.34
00665E-4

0.92459583±0.
035268344

3.1695722E-
4±4.3401154E-
4

0.07540426±0.
03526836

8.004±3.47566
49

15.944±4.4535
556

0.93067235±0.
030967826

3.1695722E-
4±4.3401154E-
4 500.0±0.0

8 7 50000 0.9793978±0.0 1.0±0.0
0.020602219±
0.0 0.0±0.0

17.42082±0.86
450803

17.53071±0.86
565447 1.0±0.0

0.020602219±
0.0 50000.0±0.0

8 8 50 1.0±0.0
0.18476596±0.
17278177 0.0±0.0

0.81523407±0.
17278178

0.51199996±1.
0748934

11.82±9.44924
7

0.5555171±0.0
54074783 0.0±0.0 50.0±0.0

8 8 150
0.9998415±5.0
11477E-4

0.25804254±0.
18796925

1.5847861E-
4±5.0115335E-
4

0.7419575±0.1
8796924

1.0433333±0.8
5599846

9.266±3.27478
89

0.58058226±0.
0678448

1.5847861E-
4±5.0115335E-
4 150.0±0.0

8 8 500
0.9995246±7.6
55158E-4

0.5678298±0.1
8919745

4.7543584E-
4±7.655244E-4

0.43217024±0.
18919745

1.8024±1.1812
133

6.2383995±2.7
43206

0.7104604±0.1
0432369

4.7543584E-
4±7.655244E-4 500.0±0.0

8 8 1500
0.99960375±6.
7339704E-4

0.95472336±0.
038047623

3.9619656E-
4±6.7340455E-
4

0.045276597±
0.03804762

5.0198±1.1386
182

8.166733±1.29
8796

0.9577851±0.0
3393721

3.9619656E-
4±6.7340455E-
4 1500.0±0.0

8 8 5000
0.9971474±0.0
03625432

0.99982977±5.
3826073E-4

0.002852615±
0.0036254325

1.7021276E-
4±5.3826E-4

6.6673393±0.8
4673965

7.7646194±0.8
714975

0.99983007±5.
373183E-4

0.002852615±
0.0036254325 5000.0±0.0

8 8 50000
0.98098254±0.
002241243 1.0±0.0

0.019017432±
0.002241226 0.0±0.0

7.6297398±0.5
17772

7.74076±0.513
501 1.0±0.0

0.019017432±
0.002241226 50000.0±0.0
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Table 28. Mushroom Data Set under feature-detection Rule (Part 2) 

 

 

 

 

 

Detector 
Length r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

18 17 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0
0.384±0.85865
01 0.5±0.0 0.0±0.0 50.0±0.0

18 17 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0

18 17 500 1.0±0.0
0.0073191486
±0.016366113 0.0±0.0

0.99268085±0.
016366122 0.0±0.0

0.0384±0.0625
8434

0.5018639±0.0
041678 0.0±0.0 500.0±0.0

18 17 1500 1.0±0.0
0.0076595745
±0.013266772 0.0±0.0

0.99234045±0.
013266764 0.0±0.0

0.029066667±
0.04750111

0.5019402±0.0
033682927 0.0±0.0 1500.0±0.0

18 17 5000
0.999683±7.08
72996E-4

0.096510634±
0.103747085

3.1695722E-
4±7.087379E-4

0.9034894±0.1
0374709

4.0000002E-
4±8.9442724E-
4

0.06412±0.043
87245

0.5265921±0.0
3035928

3.1695722E-
4±7.087379E-4 5000.0±0.0

18 17 50000
0.99524564±0.
0022412008

0.49617022±0.
098694034

0.0047543584
±0.002241226
1

0.5038298±0.0
9869407

0.00798±0.004
0446506

0.04564±0.010
606602

0.6653642±0.0
43305043

0.0047543584
±0.002241226
1 50000.0±0.0

18 12 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0
1.5439999±1.3
739287 0.5±0.0 0.0±0.0 50.0±0.0

18 12 150 1.0±0.0
0.10229788±0.
08717154 0.0±0.0

0.8977021±0.0
8717153

0.376±0.76708
11

3.4146667±3.9
557674

0.52785975±0.
024682764 0.0±0.0 150.0±0.0

18 12 500
0.9995246±7.0
872996E-4

0.10791489±0.
08620021

4.7543584E-
4±7.087379E-4

0.8920851±0.0
8620021

0.2408±0.2584
6702

1.9883999±1.0
925515

0.52927196±0.
023799784

4.7543584E-
4±7.087379E-4 500.0±0.0

18 12 1500
0.999683±7.08
72996E-4

0.6076596±0.0
8967726

3.1695722E-
4±7.087379E-4

0.39234042±0.
08967725

1.0058666±0.5
498419

2.9256±0.7191
176

0.72039807±0.
043517333

3.1695722E-
4±7.087379E-4 1500.0±0.0

18 12 5000
0.99587953±0.
003238168

0.97021276±0.
017243242

0.004120444±
0.0032381641

0.029787233±
0.017243234

1.55596±0.374
39027

2.4749603±0.3
9238054

0.9711938±0.0
16166512

0.004120444±
0.0032381641 5000.0±0.0

18 12 50000
0.98098254±0.
0033618433 1.0±0.0

0.019017432±
0.0033618393 0.0±0.0

2.3811698±0.1
4437707

2.4843202±0.1
4563574 1.0±0.0

0.019017432±
0.0033618393 50000.0±0.0

18 18 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0
18 18 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0

18 18 500 1.0±0.0
0.005531915±
0.017493451 0.0±0.0

0.9944681±0.0
17493445 0.0±0.0

0.0288±0.0647
9506

0.5014223±0.0
04497757 0.0±0.0 500.0±0.0

18 18 1500 1.0±0.0
0.0073191486
±0.013927892 0.0±0.0

0.9926809±0.0
139279 0.0±0.0

0.011066667±
0.01660641

0.50185883±0.
00355401 0.0±0.0 1500.0±0.0

18 18 5000
0.999683±0.00
10023143

0.034042552±
0.048406836

3.1695722E-
4±0.00100230
67

0.96595746±0.
048406847

1.00000005E-
4±3.162278E-4

0.017900001±
0.017142864

0.50886905±0.
013171588

3.1695722E-
4±0.00100230
67 5000.0±0.0

18 18 50000
0.9988114±5.6
03002E-4

0.10978723±0.
03851475

0.0011885896
±5.6030654E-4

0.8902128±0.0
3851476

8.3000003E-
4±7.071068E-5

0.01262±9.050
97E-4

0.5288547±0.0
106429225

0.0011885896
±5.6030654E-4 50000.0±0.0

29 28 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0
29 28 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0
29 28 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 500.0±0.0
29 28 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 1500.0±0.0
29 28 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 5000.0±0.0
29 28 50000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50000.0±0.0

29 16 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0
0.152±0.27770
486 0.5±0.0 0.0±0.0 50.0±0.0

29 16 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0
0.20533332±0.
35796958 0.5±0.0 0.0±0.0 150.0±0.0

29 16 500 1.0±0.0
0.037446808±
0.04547023 0.0±0.0

0.9625532±0.0
4547023

0.0192±0.0429
32507

0.39040002±0.
46515888

0.50976527±0.
012138217 0.0±0.0 500.0±0.0

29 16 1500
0.9993661±0.0
014174865

0.12595744±0.
037663784

6.3391443E-
4±0.00141747
58

0.87404263±0.
0376638

0.023200002±
0.027949955

0.43319997±0.
25827652

0.5336205±0.0
10742749

6.3391443E-
4±0.00141747
58 1500.0±0.0

29 16 5000
0.9992076±0.0
011206005

0.35012767±0.
12653348

7.92393E-
4±0.00112061
3

0.6498724±0.1
265335

0.06016±0.037
043866

0.34743997±0.
112009585

0.60869753±0.
045450617

7.92393E-
4±0.00112061
3 5000.0±0.0

29 16 50000
0.9916799±0.0
016809427

0.99106383±0.
007823298

0.008320127±
0.001680919

0.0089361705
±0.007823309

0.26129±0.035
114918

0.35898±0.035
86444

0.99110603±0.
007734031

0.008320127±
0.001680919 50000.0±0.0

29 29 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0
29 29 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0
29 29 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 500.0±0.0
29 29 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 1500.0±0.0
29 29 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 5000.0±0.0
29 29 50000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50000.0±0.0
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Table 29. Mushroom Data Set under HD Rule (Part 1) 

 

 

 

r Nc TP TN FP FN OC GC DR FR

 
Population 
Size

4 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
4 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
4 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
4 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
4 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
4 50000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
5 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
5 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
5 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
5 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
5 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
5 50000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
8 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
8 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
8 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
8 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
8 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
8 50000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
18 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
18 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
18 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
18 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
18 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0
18 50000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 0.0±0.0

29 50 1.0±0.0
0.03812766±0.
082679145 0.0±0.0

0.9618724±0.0
8267914 0.0±0.0 62.9±136.7995

0.51060414±0.
023395646 0.0±0.0

0.5±0.5270462
6

29 150
0.9998415±3.3
40985E-4

0.06187234±0.
10612967

1.5847861E-
4±3.3410222E-
4

0.9381277±0.1
06129676 6.1±19.289892

156.94±286.65
704

0.5174333±0.0
30566

1.5847861E-
4±3.3410222E-
4 1.2±1.4757297

29 500
0.9984943±0.0
013699299

0.10765958±0.
12313119

0.0015055469
±0.001369921

0.8923405±0.1
23131186

9.52698±15.84
7981

100.691444±1
05.53751

0.53032815±0.
038384773

0.0015055469
±0.001369921 5.7±2.626785

29 1500
0.995087±0.00
26884351

0.448±0.22318
155

0.004912837±
0.0026884335

0.552±0.22318
156

48.574554±33.
24388

139.63503±54.
149807

0.6582142±0.1
1844484

0.004912837±
0.0026884335

20.4±5.337497
7

29 5000
0.98684627±0.
0031739732

0.8220426±0.0
7870021

0.013153724±
0.0031739713

0.17795745±0.
07870022

94.59834±19.2
22433

152.4141±29.2
02215

0.85075986±0.
058920704

0.013153724±
0.0031739713 62.1±9.338689

29 50000
0.9061014±0.0
073791416

0.99234045±0.
0045743412

0.09389858±0.
0073791407

0.007659574±
0.0045743305

142.17032±6.7
1335

149.35657±6.6
462173

0.99165154±0.
004916182

0.09389858±0.
0073791407

661.0±23.4852
2

32 50
0.99667186±0.
0017036012

0.34221274±0.
17187156

0.003328051±
0.0017035936

0.6577872±0.1
7187156

20.21659±21.6
99276

84.29561±42.8
1381

0.6084197±0.0
6464365

0.003328051±
0.0017035936

24.7±2.057506
6

32 150
0.9871632±0.0
065427804

0.67668086±0.
1772373

0.012836767±
0.0065427762

0.32331914±0.
1772373

40.806343±14.
218592

83.87942±19.6
21346

0.76639307±0.
10823254

0.012836767±
0.0065427762

71.1±6.756889
3

32 500
0.9643424±0.0
076095327

0.9222128±0.0
6626674

0.03565769±0.
007609541

0.077787235±
0.06626674

64.56476±10.5
82784

81.951584±11.
776536

0.9287437±0.0
56296945

0.03565769±0.
007609541

241.9±10.5561
99

32 1500
0.91743267±0.
011469495

0.99021274±0.
012144038

0.08256735±0.
01146949

0.009787234±
0.01214403

74.80389±9.44
5896

81.15986±9.47
6468

0.98961174±0.
012688861

0.08256735±0.
01146949

719.3±29.1320
74

32 5000
0.807607±0.00
9746409

0.99982977±3.
588279E-4

0.19239302±0.
009746399

1.7021276E-
4±3.5884004E-
4

75.5018±3.193
8293

77.555046±3.2
100976

0.9997899±4.4
287893E-4

0.19239302±0.
009746399

2426.2±38.159
897

32 50000
0.459271±0.01
2978482 1.0±0.0

0.540729±0.01
297849 0.0±0.0

77.23062±1.18
89819

77.44145±1.18
72092 1.0±0.0

0.540729±0.01
297849

24023.1±157.6
5958

36 50
0.996672±0.00
22965726

0.24195746±0.
18061547

0.0033280507
±0.002296573

0.7580425±0.1
8061547

4.752±5.70301
44

26.434002±15.
581465

0.57397234±0.
06478694

0.0033280507
±0.002296573 50.0±0.0

36 150
0.98763865±0.
0035672334

0.6181277±0.1
9238394

0.012361331±
0.0035672355

0.38187233±0.
19238396

8.786665±5.55
1827

24.369333±9.8
03609

0.73455215±0.
106470436

0.012361331±
0.0035672355 150.0±0.0

36 500
0.96600646±0.
005840219

0.9067234±0.0
6771078

0.033993658±
0.005840223

0.0932766±0.0
6771079

16.004599±4.2
424874

23.7896±4.853
0383

0.915244±0.05
638885

0.033993658±
0.005840223 500.0±0.0

36 1500
0.91188586±0.
0064892387

0.99387234±0.
007941247

0.0881141±0.0
06489242

0.006127659±
0.007941236

20.366266±1.1
653075

23.433468±1.1
561518

0.9933953±0.0
08495512

0.0881141±0.0
06489242 1500.0±0.0

36 5000
0.7867671±0.0
11570328 1.0±0.0

0.21323295±0.
011570324 0.0±0.0

22.591898±1.3
866035

23.56524±1.38
68679 1.0±0.0

0.21323295±0.
011570324 5000.0±0.0

36 50000
0.36053884±0.
002241222 1.0±0.0

0.63946116±0.
002241243 0.0±0.0

23.72004±0.35
90979

23.81806±0.35
725963 1.0±0.0

0.63946116±0.
002241243 50000.0±0.0
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Table 30. Mushroom Data Set under HD Rule (Part 2) 

 

 

 

 

r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

39 50
0.99865294±0.
0013494034

0.080170214±
0.10722414

0.0013470681
±0.001349396
8

0.9198297±0.1
07224144

0.036±0.04087
9223

3.72±3.973847
6

0.5221044±0.0
31085536

0.0013470681
±0.001349396
8 50.0±0.0

39 150
0.9956419±0.0
02340214

0.18893619±0.
16899946

0.004358162±
0.0023402069

0.8110639±0.1
6899945

0.35199997±0.
43634617

4.2559996±2.7
453957

0.5558071±0.0
5650185

0.004358162±
0.0023402069 150.0±0.0

39 500
0.98518217±0.
0042924304

0.5817873±0.1
0770672

0.01481775±0.
0042924336

0.4182128±0.1
07706726

1.8504±0.7639
5166

6.401±1.46020
13

0.70567435±0.
05322618

0.01481775±0.
0042924336 500.0±0.0

39 1500
0.95641834±0.
009610892

0.89259577±0.
06489674

0.043581616±
0.009610886

0.107404254±
0.06489674

3.6785998±0.5
235904

6.2306004±0.6
5332294

0.9020715±0.0
53771183

0.043581616±
0.009610886 1500.0±0.0

39 5000
0.8778923±0.0
09614155

0.9982127±0.0
02487737

0.12210777±0.
00961415

0.0017872341
±0.002487734
7

5.59548±0.678
3551

6.5180006±0.6
743856

0.99797046±0.
002821673

0.12210777±0.
00961415 5000.0±0.0

39 50000
0.45404118±0.
0011206215 1.0±0.0

0.54595876±0.
0011206425 0.0±0.0

6.3485603±0.0
59368726

6.44538±0.059
453692 1.0±0.0

0.54595876±0.
0011206425 50000.0±0.0

43 50 1.0±0.0
0.005531915±
0.01462163 0.0±0.0

0.9944681±0.0
14621621 0.0±0.0

0.232±0.52248
98

0.5014115±0.0
037433838 0.0±0.0 50.0±0.0

43 150
0.999683±5.54
0397E-4

0.009361701±
0.014691641

3.1695722E-
4±5.540459E-4

0.99063826±0.
014691642

0.0053333333
±0.010795519

0.47466666±0.
33513293

0.5022971±0.0
037986836

3.1695722E-
4±5.540459E-4 150.0±0.0

43 500
0.9993661±8.1
837084E-4

0.09029786±0.
06996052

6.3391443E-
4±8.1838E-4

0.9097021±0.0
6996052

0.010999999±
0.021791942

0.46260005±0.
29809624

0.52412146±0.
019324906

6.3391443E-
4±8.1838E-4 500.0±0.0

43 1500
0.9953248±0.0
024337263

0.16706383±0.
07704836

0.004675119±
0.0024337347

0.83293617±0.
077048354

0.0176±0.0069
36752

0.3772±0.1422
2875

0.5452982±0.0
23049496

0.004675119±
0.0024337347 1500.0±0.0

43 5000
0.98391455±0.
0026426292

0.36834043±0.
12156868

0.016085576±
0.0026426306

0.6316596±0.1
2156868

0.06786±0.029
05031

0.36868±0.085
31157

0.6122273±0.0
4750673

0.016085576±
0.0026426306 5000.0±0.0

43 50000
0.844691±0.00
5603086

0.99276596±0.
0054161227

0.15530904±0.
0056030652

0.0072340425
±0.005416137

0.28617±0.005
04875

0.3772±0.0059
396923

0.991549±0.00
6248186

0.15530904±0.
0056030652 50000.0±0.0

46 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0
0.01±0.016996
732 0.5±0.0 0.0±0.0 50.0±0.0

46 150
0.9999207±2.5
057385E-4 0.0±0.0

7.9239304E-
5±2.5057668E-
4 1.0±0.0 0.0±0.0

0.014666666±
0.03794733

0.49998015±6.
2671745E-5

7.9239304E-
5±2.5057668E-
4 150.0±0.0

46 500
0.9995245±6.6
8197E-4

0.0010212766
±0.002942707

4.7543584E-
4±6.6820445E-
4

0.99897873±0.
0029427016 0.0±0.0

0.0070±0.0110
85526

0.5001375±8.0
129463E-4

4.7543584E-
4±6.6820445E-
4 500.0±0.0

46 1500
0.999683±5.54
0397E-4

0.0010212766
±0.002655173
7

3.1695722E-
4±5.540459E-4

0.99897873±0.
0026551776 0.0±0.0

0.0064666667
±0.009232525

0.500177±6.43
9526E-4

3.1695722E-
4±5.540459E-4 1500.0±0.0

46 5000
0.9989699±0.0
01059822

0.010382978±
0.013680703

0.001030111±
0.0010598205

0.989617±0.01
3680698 0.0±0.0

0.00772±0.005
7489704

0.5023732±0.0
03432526

0.001030111±
0.0010598205 5000.0±0.0

46 50000
0.98454833±0.
003922144

0.16255319±0.
03370041

0.015451664±
0.003922146

0.8374468±0.0
33700366

5.4000004E-
4±5.6568522E-
5

0.01164±3.111
2673E-4

0.5404613±0.0
09007329

0.015451664±
0.003922146 50000.0±0.0

50 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0
50 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0
50 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 500.0±0.0
50 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 1500.0±0.0

50 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0

2.9999999E-
4±8.8065624E-
4 0.5±0.0 0.0±0.0 5000.0±0.0

50 50000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0

3.0E-
5±4.2426407E-
5 0.5±0.0 0.0±0.0 50000.0±0.0

54 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0
54 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0
54 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 500.0±0.0
54 1500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 1500.0±0.0
54 5000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 5000.0±0.0

54 50000 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50000.0±0.0
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Table 31. Mushroom Data Set under RCHK Rule (No MHC) 

 

 

 

 

 

 

 

r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

4 50 1.0±0.0
0.005957447±
0.012559401 0.0±0.0

0.9940426±0.0
12559404

11.820044±8.7
01273

27.16063±12.5
93609

0.5015119±0.0
03187331 0.0±0.0 18.7±4.083843

4 150 1.0±0.0
0.010978723±
0.016353078 0.0±0.0

0.9890213±0.0
16353084

24.111988±7.4
141755

32.74413±8.52
7584

0.50279063±0.
0041618785 0.0±0.0

55.9±3.604010
3

4 500 1.0±0.0
0.03182979±0.
0032888218 0.0±0.0

0.9681703±0.0
032888271

26.686655±1.8
892406

32.200867±3.2
26187

0.5080874±8.5
01924E-4 0.0±0.0

187.0±16.5864
73

4 1500 1.0±0.0
0.13021275±0.
3056308 0.0±0.0

0.8697872±0.3
056308

29.546057±2.0
157392

33.3054±3.238
5743

0.55768347±0.
15541664 0.0±0.0

566.1±22.4175
03

4 5000 1.0±0.0
0.22927657±0.
4062069 0.0±0.0

0.7707234±0.4
0620688

31.859491±1.6
8345

33.603176±1.9
359661

0.6074556±0.2
0688906 0.0±0.0

1889.0±28.067
379

4 50000 1.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0
33.215576±0.3
4709042

33.4862±0.327
66646 1.0±0.0 0.0±0.0

18957.0±281.4
285

5 50 1.0±0.0
0.14936168±0.
3084011 0.0±0.0

0.8506383±0.3
084011

23.21824±7.96
1108

66.52985±26.2
06745

0.56346846±0.
15497707 0.0±0.0

47.7±0.948683
26

5 150 1.0±0.0
0.15668085±0.
30556405 0.0±0.0

0.8433191±0.3
0556405

39.34468±9.48
368

59.35299±14.5
14336

0.56539446±0.
15428439 0.0±0.0

143.0±2.30940
1

5 500 1.0±0.0
0.16468084±0.
30999324 0.0±0.0

0.83531916±0.
30999324

48.141735±6.4
522495

55.3899±7.128
6464

0.5682105±0.1
5482424 0.0±0.0

468.7±6.60050
5

5 1500 1.0±0.0
0.6450213±0.3
7493983 0.0±0.0

0.35497874±0.
37493983

53.98475±5.57
28965

57.49181±5.95
905

0.7925104±0.2
188744 0.0±0.0

1409.8±11.487
193

5 5000 1.0±0.0
0.90161705±0.
23492794 0.0±0.0

0.09838298±0.
23492791

56.21656±2.40
59608

57.53488±2.47
6286

0.9374382±0.1
4134353 0.0±0.0

4709.2±17.637
081

5 50000 1.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0
56.23073±0.10
749402

56.37847±0.10
102296 1.0±0.0 0.0±0.0

47085.5±119.5
01045

8 50 1.0±0.0
0.40068084±0.
42409757 0.0±0.0

0.5993191±0.4
2409757 9.33±9.75669

48.344±20.367
07

0.6759914±0.2
1414967 0.0±0.0 50.0±0.0

8 150 1.0±0.0
0.81387234±0.
21457614 0.0±0.0

0.18612766±0.
21457614

37.117336±17.
594069

70.51867±23.2
56191

0.86722696±0.
14873143 0.0±0.0 150.0±0.0

8 500 1.0±0.0
0.992±0.02529
8215 0.0±0.0

0.007999999±
0.025298221

49.806±7.7022
357

61.708202±7.8
795094

0.99259263±0.
023424285 0.0±0.0 500.0±0.0

8 1500 1.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0
52.57973±6.06
6954

56.741596±6.0
767136 1.0±0.0 0.0±0.0 1500.0±0.0

8 5000
0.9993661±0.0
0200461 1.0±0.0

6.3391443E-
4±0.00200461
34 0.0±0.0

54.250843±3.1
516454

55.532063±3.1
428046 1.0±0.0

6.3391443E-
4±0.00200461
34 5000.0±0.0

8 50000
0.99841523±0.
0 1.0±0.0

0.0015847861
±0.0 0.0±0.0

56.68237±2.08
6346

56.814873±2.0
89429 1.0±0.0

0.0015847861
±0.0 50000.0±0.0

18 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0

18 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0
0.112±0.30216
99 0.5±0.0 0.0±0.0 150.0±0.0

18 500 1.0±0.0
0.0029787235
±0.00941955 0.0±0.0

0.9970213±0.0
09419553 0.0±0.0

0.0936±0.1519
7894

0.5007559±0.0
023904983 0.0±0.0 500.0±0.0

18 1500 1.0±0.0
0.108±0.14745
958 0.0±0.0

0.8920001±0.1
474596

0.011066666±
0.020277578

0.20533332±0.
17981058

0.5317087±0.0
4524287 0.0±0.0 1500.0±0.0

18 5000 1.0±0.0
0.24723406±0.
15515591 0.0±0.0

0.75276595±0.
15515591

0.0077799996
±0.008627321

0.15652±0.075
36956

0.57475±0.053
12338 0.0±0.0 5000.0±0.0

18 50000 1.0±0.0
0.8506383±0.1
4382853 0.0±0.0

0.1493617±0.1
4382853

0.0673±0.0087
96406

0.14633±0.017
267544

0.87691414±0.
10973501 0.0±0.0 50000.0±0.0

29 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0
29 150 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 150.0±0.0
29 500 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 500.0±0.0
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Table 32. Mushroom Data Set under RCHK (Global MHC) Rule 

 

 

 

 

 

 

 

r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

4 50
0.70990497±0.
27624604

0.5445958±0.3
6513105

0.29009512±0.
27624607

0.45540422±0.
36513105

16.92912±11.0
02508

101.452286±5
2.658417

0.68541604±0.
22108233

0.29009512±0.
27624607

19.9±3.247221
2

4 150
0.14690967±0.
094811775

0.97744673±0.
015611872

0.8530903±0.0
94811775

0.022553192±
0.01561186

1111.3855±21
0.99782

1231.9104±21
5.58998

0.7898246±0.2
9386997

0.8530903±0.0
94811775

54.8±7.375635
6

4 500
0.027812997±
0.0432134

0.988766±0.00
5023767

0.97218704±0.
043213397

0.011234042±
0.0050237603

982.76044±62.
743404

1018.00684±6
3.51552

0.42160597±0.
3468847

0.97218704±0.
043213397

190.0±9.63788
8

4 1500
0.058399368±
0.055331573

0.9297021±0.1
1658104

0.9416007±0.0
55331573

0.07029787±0.
11658104

96.980995±20.
588842

107.40198±21.
629555

0.53981036±0.
31740895

0.9416007±0.0
55331573

569.9±20.9573
65

4 5000 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
105.1542±5.77
7478

108.62724±5.8
32725 0.0±0.0 1.0±0.0

1880.6±42.172
134

4 50000 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
154.08511±0.6
530402

154.4632±0.64
528245 0.0±0.0 1.0±0.0

18785.5±164.7
5587

5 50
0.0381141±0.0
4025282

0.9706383±0.0
74736826

0.9618858±0.0
40252827

0.0293617±0.0
7473683

226.81345±84.
86678

341.96255±94.
05652

0.71001804±0.
36689875

0.9618858±0.0
40252827

47.5±1.779513
1

5 150
0.001030111±
0.0023639358

0.99991494±2.
69121E-4

0.99896985±0.
002363932

8.510638E-
5±2.6913002E-
4

441.04184±65.
60221

485.5606±67.2
19345

0.2±0.4216370
3

0.99896985±0.
002363932

141.4±1.95505
06

5 500 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
440.28973±21.
83272

454.9833±21.7
5868 0.0±0.0 1.0±0.0

471.9±4.04007
67

5 1500 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
656.0951±19.8
6889

660.99884±19.
881073 0.0±0.0 1.0±0.0

1414.4±7.7201
037

5 5000 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
275.06488±9.0
25789

276.41937±9.0
01372 0.0±0.0 1.0±0.0

4701.5±14.683
702

5 50000 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
233.15485±2.7
620957

233.29616±2.7
669837 0.0±0.0 1.0±0.0

47089.332±36.
82843

8 50
0.11259905±0.
070906706

0.8765957±0.1
4062856

0.8874009±0.0
709067

0.12340425±0.
14062856

66.708±30.134
165

150.20999±42.
4026

0.615578±0.30
520397

0.8874009±0.0
709067 50.0±0.0

8 150
0.0019017432
±0.002152303

0.99965954±0.
0010765215

0.99809825±0.
0021523053

3.4042553E-
4±0.00107652
01

150.59465±22.
837961

187.80933±23.
585642

0.5537856±0.4
9693552

0.99809825±0.
0021523053 150.0±0.0

8 500 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
143.458±13.75
8787

154.9164±13.6
65003 0.0±0.0 1.0±0.0 500.0±0.0

8 1500 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
164.68521±8.0
457

168.52234±8.0
07914 0.0±0.0 1.0±0.0 1500.0±0.0

8 5000 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
113.90718±3.6
696684

115.11122±3.6
520426 0.0±0.0 1.0±0.0 5000.0±0.0

8 50000 0.0±0.0 1.0±0.0 1.0±0.0 0.0±0.0
149.77882±0.5
9936

149.89317±0.5
968308 0.0±0.0 1.0±0.0 50000.0±0.0

18 50
0.99896985±0.
002746207 0.0±0.0

0.001030111±
0.0027462004 1.0±0.0 0.0±0.0 0.0±0.0

0.49974146±6.
89525E-4

0.001030111±
0.0027462004 50.0±0.0

18 150
0.9987322±0.0
017991982

1.7021276E-
4±5.3826004E-
4

0.0012678287
±0.001799195
5

0.99982977±5.
3826073E-4 0.0±0.0

0.06533333±0.
20196074

0.49972504±4.
8232905E-4

0.0012678287
±0.001799195
5 150.0±0.0

18 500
0.9749603±0.0
24093037

0.01412766±0.
02100134

0.025039619±
0.024093036

0.9858724±0.0
21001346

4.0000002E-
4±0.00126491
11

0.13159999±0.
13975789

0.4972009±0.0
049879565

0.025039619±
0.024093036 500.0±0.0

18 1500
0.9534073±0.0
30417066

0.08417021±0.
05339886

0.046592712±
0.03041707

0.9158298±0.0
5339886

0.0123333335
±0.020618223

0.21626666±0.
17282408

0.51030326±0.
017482562

0.046592712±
0.03041707 1500.0±0.0

18 5000
0.8317749±0.0
3677032

0.19497873±0.
109347224

0.16822504±0.
036770318

0.8050213±0.1
09347224

0.016320001±
0.011950343

0.17977999±0.
058583535

0.5100225±0.0
3709205

0.16822504±0.
036770318 5000.0±0.0

18 50000
0.123085044±
0.018075129

0.89191484±0.
02181446

0.876915±0.01
8075144

0.1080851±0.0
2181448

0.09216666±0.
03613454

0.17748±0.044
095937

0.53332764±0.
075637914

0.876915±0.01
8075144 50000.0±0.0

29 50 1.0±0.0 0.0±0.0 0.0±0.0 1.0±0.0 0.0±0.0 0.0±0.0 0.5±0.0 0.0±0.0 50.0±0.0
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Table 33. Mushroom Data Set under RCHK (MHC) Rule 

 

 
 
6.2.10 Mushroom Data Set Conclusion 

The mushroom data set, re-formatted as a set of binary strings, is by far the most complex 

data set, in that it comprises 58 attributes and contains a large number of both self (4208) 

and non-self data (3916). The results of the best performing test group for each scenario 

are summarised in Figure 46. Although the feature-detection rule, RCHK (No MHC) rule 

and RCHK (MHC) rule perform equally well under the mushroom data set, the RCHK 

r Nc TP TN FP FN OC GC DR FR

Actual 
Population 
Size

4 50 1.0±0.0
0.6174468±0.2
8208262 0.0±0.0

0.3825532±0.2
8208265

24.327267±19.
269402

89.47553±38.9
49303

0.7492238±0.1
429538 0.0±0.0

39.6±1.897366
5

4 150 1.0±0.0
0.9073192±0.1
1863885 0.0±0.0

0.09268086±0.
118638866

65.4457±28.48
4499

103.8782±30.3
92515

0.92369175±0.
0875852 0.0±0.0

122.1±6.06355
24

4 500 1.0±0.0
0.99914896±0.
0021605056 0.0±0.0

8.510638E-
4±0.00216050
3

97.72725±19.3
0461

112.11742±19.
27626

0.9991538±0.0
02146279 0.0±0.0

400.7±7.48405
74

4 1500
0.9981775±0.0
023041544 1.0±0.0

0.001822504±
0.0023041554 0.0±0.0

93.36151±8.41
909

98.305786±8.4
86203 1.0±0.0 0.0±0.1

1215.0±17.416
468

4 5000
0.9982567±0.0
018973408 1.0±0.0

0.0017432647
±0.001897335
9 0.0±0.0

101.046585±5.
909478

102.55873±5.9
02949 1.0±0.0

0.0017432647
±0.001897335
9

4017.5±33.764
71

4 50000
0.9949815±0.0
02420806 1.0±0.0

0.005018489±
0.002420801 0.0±0.0

100.44702±0.7
921632

100.59853±0.7
8638285 1.0±0.0

0.005018489±
0.002420801

40346.332±20
1.51758

5 50 1.0±0.0
0.61489356±0.
12761371 0.0±0.0

0.38510638±0.
12761372

21.741444±14.
393579

78.69987±27.5
37529

0.72776026±0.
07002552 0.0±0.0

48.1±1.370320
3

5 150 1.0±0.0
0.94399995±0.
04487617 0.0±0.0

0.056±0.04487
617

43.850758±10.
957314

75.48036±12.2
48281

0.948476±0.03
9397586 0.0±0.0

145.2±2.14993
52

5 500
0.99976236±7.
517216E-4

0.9995745±0.0
013456425

2.377179E-
4±7.517299E-4

4.255319E-
4±0.00134564
98

77.02253±13.1
56308

88.879395±13.
207469

0.9995763±0.0
013399313

2.377179E-
4±7.517299E-4

481.3±3.97352
36

5 1500
0.99659264±0.
0040239925 1.0±0.0

0.0034072902
±0.00402399 0.0±0.0

86.380936±6.7
08734

90.486496±6.7
010803 1.0±0.0

0.0034072902
±0.00402399

1447.3±6.6508
14

5 5000
0.9964341±0.0
031750817 1.0±0.0

0.0035657685
±0.003175069
8 0.0±0.0

86.541336±2.6
93077

87.76869±2.70
87092 1.0±0.0

0.0035657685
±0.003175069
8

4827.4±14.017
449

5 50000
0.9849445±0.0
039619803 1.0±0.0

0.015055466±
0.003961965 0.0±0.0

88.83602±0.33
894545

88.95706±0.33
889985 1.0±0.0

0.015055466±
0.003961965

48295.668±56.
074356

8 50
0.9992076±0.0
020115573

0.48561698±0.
2925818

7.923931E-
4±0.00201156
18

0.51438296±0.
2925818

16.466±16.637
562

57.286±31.248
003

0.6840696±0.1
3930975

7.923931E-
4±0.00201156
18 50.0±0.0

8 150
0.9988907±0.0
018375698

0.84434044±0.
07708011

0.0011093502
±0.001837562
2

0.15565959±0.
07708011

21.06±10.5332
4

46.239998±12.
71232

0.86878765±0.
06007408

0.0011093502
±0.001837562
2 150.0±0.0

8 500
0.997385±0.00
27714975

0.9994043±0.0
012718553

0.0026148972
±0.002771488
2

5.957447E-
4±0.00127185
89

39.848797±6.3
938384

50.4896±6.712
111

0.99940443±0.
0012718834

0.0026148972
±0.002771488
2 500.0±0.0

8 1500
0.9969889±0.0
022965749 1.0±0.0

0.0030110935
±0.002296573 0.0±0.0

45.622936±3.5
570722

49.294266±3.5
51394 1.0±0.0

0.0030110935
±0.002296573 1500.0±0.0

8 5000
0.99072903±0.
005296477 1.0±0.0

0.009270998±
0.0052964687 0.0±0.0

47.01552±3.06
34825

48.116478±3.0
616374 1.0±0.0

0.009270998±
0.0052964687 5000.0±0.0

8 50000
0.95853144±0.
004364171 1.0±0.0

0.04146857±0.
0043641604 0.0±0.0

49.2777±0.420
73905

49.389484±0.4
177469 1.0±0.0

0.04146857±0.
0043641604 50000.0±0.0

18 50 1.0±0.0
0.0013617021
±0.00430608 0.0±0.0

0.99863833±0.
004306086 0.0±0.0

0.392±0.80394
59

0.5003427±0.0
010839101 0.0±0.0 50.0±0.0

18 150 1.0±0.0
0.002212766±
0.0069973804 0.0±0.0

0.9977872±0.0
069973893 0.0±0.0

0.076±0.13627
134

0.5005594±0.0
017689075 0.0±0.0 150.0±0.0

18 500
0.9998415±5.0
114776E-4

0.005957447±
0.008309684

1.5847861E-
4±5.0115335E-
4

0.9940426±0.0
08309684 0.0±0.0

0.1576±0.1411
0924

0.50146204±0.
0021334544

1.5847861E-
4±5.0115335E-
4 500.0±0.0
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(MHC) rule and feature-detection rule are the best performing rules because they both 

reach their peak performance at an average population size of 5000 detectors. That is the 

performance (DR and FR values) exhibited by the feature-detection rule and RCHK 

(MHC) rule do not improve or degrade after an average population size of 5000 is 

reached.  The RCHK rule (Global MHC) has the worst performance followed by the HD 

rule. 

A comparison between GC and OC exhibited by the best performing test group for each 

scenario is summarised in Figure 47. The HD rule has the greatest OC and GC values and 

the RCHK (Global MHC) rule has the lowest OC and GC values. The HD rule is the best 

performing rule, with reference to generalisation and overfitting, because it has the 

greatest GC minus OC value. The feature-detection rule is consequently the worst 

performing rule because it has the lowest GC minus OC value. 

 
Figure 46. Mushroom Data Set: DR and FR Summary 
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Figure 47. Mushroom Data Set: GC and OC Summary 

 

6.2.11 Benchmarking the number of detectors generated for each experiment 

The actual number of detectors generated under each experiment, in order to exhibit 

satisfactory DR and FR values, can be benchmarked against a theoretical number of 

detectors by utilising Forret et al.’s [33] original equations to calculate the number of 

candidate detectors,   (equation 4.6), needed to generate,  (equation 4.7) detectors given a  

matching probability,   and a failure probability, . 

By fixing  at 0.05, ,   and  were calculated for the feature-detection rule, HD rule and 

RCHK rule respectively for each experiment and are presented  below. The rows which correlate 

to the best performing test groups are highlighted using the same conventions followed in this 

chapter (apart from the worst performing test groups, which are not shown in the tables below). In 

order to collate the rows pertaining to best performing test groups for the RCHK (No MHC), 

RHCK (Global MHC) and RHCK (MHC) into a single table, an addition column termed “Best 

Under” was added to the tables relating to the RCHK rule for each experiment.  Equation (5.1), 

equation (5.3) and equation (4.2) were used to calculate  for the feature-detection, RCHK 

and HD rule respectively. By comparing the theoretical number of detectors to the actual 

number of detectors generated under each experiment the following can be observed: 

 The theoretical  calculated for the Car Evaluation Experiment (Table 34, Table 

35 and Table 36) is large for all of the rules, whereas the theoretical  is much 
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smaller than the experimental/actual , 5000,  needed by the best performing 

target test groups to exhibit satisfactory DR and FR values . The theoretical  for 

all of the rules is much greater, than the stopping condition employed by the NSA 

algorithm, implemented in this chapter i.e. the algorithm will only attempt to 

generate a candidate detector at most  times, after which, it will 

terminate.  The stopping condition (indicated when the target  is not equal to the 

actual population size) was true for the HD, RCHK (No MHC), RCHK (Global MHC) 

and RCHK (MHC) rules for the Car Evaluation Experiment (see Table 3, Table 4, 

Table 5 and Table 6 respectively). 

 The theoretical  calculated for the Iris Experiment (Table 37, Table 38 and 

Table 39) is large for all of the rules, whereas the theoretical  is much smaller 

than the actual , 5000, needed by the best performing test groups with the 

exception of the RCHK (MHC) and RCHK (Global MHC) which have a theoretical  

equal to 6282655.717. The stopping condition was true for the HD and RCHK (No 

MHC) rules (see Table 9 and Table 10 respectively). 

 The theoretical  calculated for the Wisconsin Breast Cancer Experiment (Table 

40, Table 41 and Table 42) is large (much larger than the stopping condition) for 

all of the rules, whereas the theoretical  is much smaller than the actual  

needed by the best performing test groups with the exception of the RCHK (Global 

MHC). The stopping condition was true for the feature-detection rule, HD rule, 

RCHK (No MHC) and RCHK (MHC) rules (see Table 13, Table 14, Table 15, Table 

16, Table 17 and Table 19 respectively). 

 The theoretical  calculated for the Glass Experiment (Table 43, Table 44 and 

Table 45) and the theoretical  is large (much larger than the stopping condition) 

for all of the rules. Interestingly the theoretical   is significantly larger than the 

actual , needed by the best performing test groups. The stopping condition was 

false for any of the rules in the Glass Experiment. 

 The theoretical  calculated for the Mushroom Experiment (Table 46, Table 47 

and Table 48) is once again large (with some of the results being reported as 

“Infinity” meaning that they could not be computed) for all of the rules, whereas 

the theoretical  is much smaller than the actual , needed by the best 
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performing test groups with the exception of  the RCHK (Global MHC) rule.  The 

stopping condition was true for the feature-detection, HD,   RCHK (No MHC) and 

RCHK (MHC) rules (see Table 27, Table 28, Table 29, Table 30, Table 31 and 

Table 33 respectively). 

 

Table 34. Car Evaluation Experiment – Feature-Detection Rule Benchmark 

 

 

Table 35. Car Evaluation Experiment – HD Rule Benchmark 

 

 

Table 36. Car Evaluation Experiment – RCHK Rule Benchmark 

 

 

 

 

 

n' r nr nc Pm Pf S
3 2 1.93E+79 7.988619 0.375 0.05 384
3 3 4.45E+23 23.96586 0.125 0.05 384
5 3 1.14E+49 11.98293 0.25 0.05 384
5 4 8.34E+17 31.95448 0.09375 0.05 384
5 5 1.89E+07 95.86343 0.03125 0.05 384
6 4 4.45E+23 23.96586 0.125 0.05 384
6 5 6.49E+09 63.908955 0.046875 0.05 384
6 6 81100.21243 191.7269 0.015625 0.05 384

10 3 3.90E+138 5.325746 0.5625 0.05 384
10 10 4464.192968 3067.63 9.77E-04 0.05 384
13 5 4.14E+29 19.17269 0.15625 0.05 384
13 13 25718.86141 24541.039 0.000122 0.05 384

r nr nc Pm Pf S
3 Infinity 3.029757875 0.98877 0.05 384
5 Infinity 3.456971233 0.866577 0.05 384
6 5.78E+206 4.222477423 0.709473 0.05 384
9 1.71E+25 22.45291746 0.1334229 0.05 384

10 4.91E+09 64.92338303 0.046143 0.05 384
13 25718.8614 24541.03878 0.0001221 0.05 384

r nr nc Pm Pf S Best Under

3 4.45E+23 23.96585819 0.125 0.05 384

RCHK (No 
MHC)  and 
RCHK 
(Global 
MHC)

5 1.89E+07 95.86343275 0.03125 0.05 384
RCHK 
(MHC)

6 81100.212 191.7268655 0.015625 0.05 384 N/A
10 4464.193 3067.629848 9.77E-04 0.05 384 N/A
13 25718.861 24541.03878 1.22E-04 0.05 384 N/A
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Table 37. Iris Experiment – Feature-Detection Rule Benchmark 
 

 
 

Table 38. Iris Experiment – HD Rule Benchmark 

 

 

Table 39. Iris – RCHK Rule Benchmark 

 

 

Table 40. Wisconsin Breast Cancer Experiment – Feature-Detection Rule Benchmark 

 
 

 

 

 

n' r nr nc Pm Pf S
3 2 1.28E+11 7.988619396 0.375 0.05 50

3 3 1.90E+04 23.96585819 0.125 0.05 50
4 3 5.16E+05 15.97723879 0.1875 0.05 50
4 4 1.21E+03 47.93171638 0.0625 0.05 50
9 8 6.86E+02 511.2716414 0.005859 0.05 50
9 7 4.21E+02 191.7268655 0.015625 0.05 50
9 9 1.69E+03 1533.814924 0.001953 0.05 50

14 11 2608.65331 2454.103878 0.001221 0.05 50
14 14 4.92E+04 49082.07757 6.10E-05 0.05 50
21 8 452.230982 102.2543283 2.93E-02 0.05 50

21 21 6.28E+06 6282505.929 4.77E-07 0.05 50

r nr nc Pm Pf S
3 1.92E+198 2.996063717 0.999889374 0.05 50
4 7.49E+156 2.997965217 0.99925518 0.05 50
9 2.77E+36 3.706007785 0.808344841 0.05 50

12 5.14E+09 9.028405037 0.331811905 0.05 50

14 4.56E+03 31.65947354 0.094623566 0.05 50
16 439.9215759 225.2117124 1.33E-02 0.05 50
18 4174.759453 4022.090864 7.45E-04 0.05 50
21 6282655.717 6282505.929 4.77E-07 0.05 50

r nr nc Pm Pf S Best Under
3 1.90E+04 23.96585819 0.125 0.05 50 N/A

4 1.21E+03 47.93171638 0.0625 0.05 50
RCHK (No 
MHC)

9 1691.320844 1533.814924 0.001953125 0.05 50 N/A
14 49232.09756 49082.07757 6.10E-05 0.05 50 N/A

21 6282655.717 6282505.929 4.77E-07 0.05 50

RCHK (Global 
MHC) and 
RCHK (MHC)

n' r nr nc Pm Pf S
3 2 2.45E+94 7.9886194 0.375 0.05 50

3 3 8.71E+27 23.965858 0.125 0.05 50
5 4 1.22E+21 31.954478 0.09375 0.05 50
5 5 1.98E+08 95.863433 0.03125 0.05 50

14 13 1.78E+04 16360.693 1.83E-04 0.05 50
14 14 5.05E+04 49082.078 6.10E-05 0.05 50
18 17 2.63E+05 261771.08 1.14E-05 0.05 50
18 18 786686.4884 785313.24 3.81E-06 0.05 50
37 3 5.49E-45 1.3314366 2.25E+00 0.05 50
37 37 4.12E+11 4.12E+11 7.28E-12 0.05 50
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Table 41. Wisconsin Breast Cancer Experiment – HD Rule Benchmark 

 

 

Table 42. Wisconsin Breast Cancer Experiment – RCHK Rule Benchmark 

 

 

Table 43. Glass Experiment – Feature-Detection Rule Benchmark 

 

 

Table 44. Glass Experiment – HD Rule Benchmark 

 

 

 

r nr nc Pm Pf S
3 Infinity 2.995732289 1 0.05 50
5 Infinity 2.995733898 0.9999995 0.05 50

14 Infinity 3.151530964 0.9505641 0.05 50

18 4.82E+197 4.765832378 0.6285853 0.05 50

22 2.64E+36 18.49168369 0.1620043 0.05 50
26 30297.18702 298.4710942 1.00E-02 0.05 50
28 4205.643742 2337.486683 1.28E-03 0.05 50
30 32758.95201 31356.37754 9.55E-05 0.05 50
37 4.12E+11 4.12E+11 7.28E-12 0.05 50

r nr nc Pm Pf S Best Under
3 8.71E+27 23.96585819 0.125 0.05 50 RCHK (MHC)

5 1.98E+08 95.86343275 0.03125 0.05 50
RCHK (No 
MHC)

14 50473.52311 49082.07757 6.10E-05 0.05 50 N/A
18 786686.4884 785313.2411 3.81E-06 0.05 50 N/A

37 4.12E+11 4.12E+11 7.28E-12 0.05 50
RCHK (Global 
MHC)

n' r nr nc Pm Pf S
3 2 1.55E+15 7.9886194 0.375 0.05 50
3 3 2.75E+05 23.965858 0.125 0.05 50
4 3 3.28E+07 15.977239 0.1875 0.05 50
4 4 4.39E+03 47.931716 0.0625 0.05 50
5 4 3.14E+04 31.954478 9.38E-02 0.05 50
5 5 8.85E+02 95.863433 3.13E-02 0.05 50

10 9 1.26E+03 1022.5433 2.93E-03 0.05 50
10 10 3284.774494 3067.6298 9.77E-04 0.05 50
23 22 8.38E+06 8376674.6 3.58E-07 0.05 50

23 23 2.51E+07 2.51E+07 1.19E-07 0.05 50

30 29 1.07E+09 1.07E+09 2.79E-09 0.05 50
30 30 3.22E+09 3.22E+09 9.31E-10 0.05 50

r nr nc Pm Pf S
3 Infinity 2.995732274 1 0.05 50
4 Infinity 2.995732274 1 0.05 50
5 Infinity 2.995732281 1 0.05 50

10 Infinity 2.995793029 0.9999797 0.05 50
20 1.05E+58 3.52853302 0.8490022 0.05 50
23 3.84E+25 5.363869848 5.59E-01 0.05 50
26 1.22E+09 12.98565031 2.31E-01 0.05 50
30 754.7743983 110.7970452 2.70E-02 0.05 50
34 3.87E+03 3.65E+03 8.21E-04 0.05 50
37 1.48E+05 1.48E+05 2.03E-05 0.05 50

40 1.93E+07 1.93E+07 1.55E-07 0.05 50

43 1.30E+10 1.30E+10 2.31E-10 0.05 50
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Table 45. Glass Experiment – RCHK Rule Benchmark 

 

 

Table 46. Mushroom Experiment – Feature-Detection Rule Benchmark 

 

 

Table 47. Mushroom Experiment – HD Rule Benchmark 

 

 

Table 48. Mushroom Experiment – RCHK Rule Benchmark 

 

r nr nc Pm Pf S Best Under
3 2.75E+05 23.96585819 0.125 0.05 50 N/A
4 4.39E+03 47.93171638 0.0625 0.05 50 N/A
5 884.7750971 95.86343275 3.13E-02 0.05 50 N/A

10 3284.774494 3067.629848 9.77E-04 0.05 50 N/A
23 2.51E+07 2.51E+07 1.19E-07 0.05 50 N/A

30 3.22E+09 3.22E+09 9.31E-10 0.05 50

RCHK (No 
MHC), RCHK 
(Global MHC) 
& RCHK(MHC)

n' r nr nc Pm Pf S
4 3 Infinity 15.977239 0.1875 0.05 50

4 4 4.22E+119 47.931716 0.0625 0.05 50
5 4 2.54E+181 31.954478 0.09375 0.05 50
5 5 1.01E+60 95.863433 0.03125 0.05 50
8 7 8.92E+23 255.63582 1.17E-02 0.05 50
8 8 1.09E+10 766.90746 3.91E-03 0.05 50

18 17 2.75E+05 261771.08 1.14E-05 0.05 50
18 12 187220.6869 3067.6298 9.77E-04 0.05 50
18 18 7.98E+05 785313.24 3.81E-06 0.05 50
29 28 5.36E+08 5.36E+08 5.59E-09 0.05 50
29 16 4.24E+04 2.62E+04 1.14E-04 0.05 50
29 29 1.61E+09 1.61E+09 1.86E-09 0.05 50

r nr nc Pm Pf S
4 Infinity 2.995732274 1 0.05 50
5 Infinity 2.995732274 1 0.05 50
8 Infinity 2.995732277 1 0.05 50

18 Infinity 2.999080074 0.9988837 0.05 50

29 Infinity 5.425494407 0.5521584 0.05 50

32 Infinity 11.70568444 2.56E-01 0.05 50
36 1.17E+83 68.90788228 4.35E-02 0.05 50
39 4.30E+13 502.2966439 5.96E-03 0.05 50
43 3.72E+04 1.95E+04 1.53E-04 0.05 50
46 7.42E+05 7.29E+05 4.11E-06 0.05 50
50 3.82E+08 3.82E+08 7.85E-09 0.05 50
54 1.89E+12 1.89E+12 1.58E-12 0.05 50

r nr nc Pm Pf S
Best 
Under

4 4.22E+119 47.93171638 0.0625 0.05 50

RCHK (No 
MHC) and 
RCHK (MHC)

5 1.01E+60 95.86343275 0.03125 0.05 50 N/A
8 1.09E+10 766.907462 3.91E-03 0.05 50 N/A

18 798021.0282 785313.2411 3.81E-06 0.05 50 N/A

29 1.61E+09 1.61E+09 1.86E-09 0.05 50
RCHK (Global 
MHC)
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An interesting point that can be raised when comparing the theoretical  values to the 

actual  values, is that the theoretical  values assume that each resultant detector, not 

activated by self, which is added to the repertoire of detectors, , is optimally placed within the 

shape space, .  

   This implies that there can be no margin for errors, such as overfitting. In reality, 

however this is not the case i.e. if a randomly generated detector is not activated by self 

and is therefore added to ,  there  is no guarantee that the detector is actually optimal. 

This is illustrated by the degree of overfitting exhibited by the resultant detectors 

generated under each experiment. Furthermore the theoretical number of detectors,  

needed to generate  optimal detectors is disproportionally large, rendering such an exercise 

impractical. Generalisation and overfitting are discussed in more detail in the next section. 

 

6.2.12 Generalisation and Overfitting exhibited within the Data Sets 

In addition to studying the performance of the feature-detection rule under a number of 

different conditions and data sets, the tests performed in this chapter also undertook to 

study the overfitting and generalisation behaviour exhibited by the different detection 

rules. For each simulation, the GC and OC counts were calculated using the algorithms 

described in section 3.5.2 and section 3.5.3, respectively. The rate at which both the OC 

and GC values increased as the number of detectors were increased within the best test 

groups was observed and the following was discovered: 

 for all detection rules, a general trend was observed whereby the rate of the OC 

count increased as the number of detectors within each test group were 

increased. This indicates that the degree of overlapping between detectors 

increased as the number of candidate detectors,  were increased; and 

 for all detection rules, a general trend was observed whereby the  rate of the GC 

count fluctuated slightly around a singleton value as the number of detectors 

within each test group were increased.  

The GC and OC trends exhibited by each scenario’s best test group for each experiment 

are summarised in Table 49 (where cells following the trends described above are 
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highlighted in green and cells not following the trends described above are highlighted in 

red).  

The graphs illustrating the trends summarised in Table 49 can be found in Appendix C. 

The cells highlighted in red in Table 49 correspond to situations where the best test group 

did not perform well within a particular scenario. 

All the detection rules used a constant value for the affinity threshold, , meaning that the 

maximum generalisation that can be achieved by each individual detector is the same.  

The maximum generalisation value for each individual detector can in fact be calculated 

by using equations (5.1) to (5.3) in the previous chapter; that is, by mathematically 

counting the maximum number of strings that a detector can match. The algorithm 

introduced by the thesis to calculate GC across a set of detectors (see Figure 12) measures 

the average number of antigens that are detected by each detector within a detector set. 

Consequently, a theoretical maximum GC value across a set of detectors is equal to the 

maximum number of strings that any given detector can theoretically match (calculated 

by using equations (5.1) to (5.3)) divided by the total number of detectors within the 

detector set. If the GC value across a set of detectors calculated by the generalisation 

algorithm (see Figure 12) is equal to the theoretical maximum GC value across a set of 

detectors (calculated mathematically), then it indicates that the NSA has achieved a good 

generalisation of the particular problem domain. Some of the test results report GC rates 

that increase or decrease as the number of detectors increases; this is a direct consequence 

of the spread of detectors (the location of the detectors within the shape space), that is, 

GC is actually measuring the average number of non-self strings detected by each 

detector. Consequently, a low GC value indicates that detectors are not located within 

critical non-self  regions, assuming that the non-self data set comprises a good non-self 

representation, whereas a high GC value, which approaches the theoretical maximum GC 

(calculated mathematically), indicates that detectors are located within critical non-self 

regions. A critical non-self region is a location within the shape space comprising a 

significant number of non-self cells. The average GC and OC values of the best test 

group for each scenario across each experiment is contrasted to the theoretical maximum 

GC and OC values, calculated individually for each best test group, as tabulated in Table 

50. Take note that the average GC and OC values reported in Table 50 will never be 
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equal to the theoretical maximum GC and OC values because the size of the non-self data 

set used for each experiment is far too small. The theoretical maximum GC and OC 

values should consequently only be used as a guideline and not as a benchmark. 
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Table 49. GC and OC Trends 

Rule GC Trend OC Trend GC Trend OC Trend GC Trend OC Trend GC Trend OC Trend GC Trend OC Trend

Feature-
detection Rule

GC fluctuates around 
the same value.

Increases until it is 
equal to GC.

GC fluctuates around 
the same value.

Increases until it is 
equal to GC.

GC fluctuates around 
the same value.

Is equal to GC and 
follows the same trend 
as GC i.e. fluctuates 
around the same 
value.

Is equal to 0 and 
increases sharply at a 
population size of 
5000 to 0.000012. Is always equal to 0.

GC fluctuates around 
the same value.

Increases until it is 
equal to GC.

HD Rule
GC fluctuates around 
the same value.

Increases until it is 
equal to GC.

GC fluctuates around 
the same value.

Increases until it is 
equal to GC.

GC fluctuates around 
the same value.

Increases until it is 
equal to GC.

Is equal to 0 and 
increases sharply at a 
population size of 
5000 to 0.000012. Is always equal to 0.

Initially increases, 
decreases and then 
slowly increases to a 
single value.

Increases until it is 
equal to GC.

RCHK (No 
MHC)

GC fluctuates around 
the same value.

Increases until it is 
equal to GC.

GC fluctuates around 
the same value.

Increases until it is 
equal to GC.

GC fluctuates around 
the same value.

Increases until it is 
equal to GC. Is always equal to 0. Is always equal to 0.

Is equal to 0 and 
increases sharply at a 
population size of 5. Is always equal to 0.

RCHK (Global 
MHC)

Initially increases and 
then decreases.

Increases and 
decreases at the same 
rate as GC and is 
equal to GC.

Decreases and then 
increases slightly. Is always equal to 0. Is always equal to 0. Is always equal to 0. Is always equal to 0. Is always equal to 0. Is always equal to 0. Is always equal to 0.

RCHK (MHC)
GC fluctuates around 
the same value.

Increases until it is 
equal to GC.

Is initially 0, increases 
sharply and at a 
population size of 500 
and then decreases 
sharply at a population 
size of 5000. Is always equal to 0.

GC fluctuates around 
the same value.

Increases until it is 
equal to GC.

Is equal to 0 and 
increases sharply at 
5000 to 0.000002. Is always equal to 0.

GC fluctuates around 
the same value.

Increases until it is 
equal to GC.

Car Data Set Iris Data Set Cancer Data Set Glass Data Set Mushroom Data Set
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Table 50. Maximum Theoretical GC and OC vs. Actual GC and OC 

 

n 13 n 21 n 37 n 46 n 58
r 5 r 2 r 2 r 23 r 3
n' 6 n' 3 n' 3 n' 23 n' 4
Average Reported - 
GC 18.801

Average Reported - 
GC 29.01

Average Reported - 
GC 35.28

Average Reported - 
GC 1.99

Average Reported - 
GC 96.97

Average Reported - 
OC 18.41

Average Reported - 
OC 28.98

Average Reported - 
OC 35.27

Average Reported - 
OC 0

Average Reported - 
OC 96.84

Theoretical 
Maximum - GC 384

Theoretical 
Maximum - GC 786432

Theoretical Maximum 
- GC 51539607552

Theoretical Maximum 
- GC 8388608

Theoretical 
Maximum - GC 5.40432E+16

Theoretical 
Maximum - OC 384

Theoretical 
Maximum - OC 786432

Theoretical Maximum 
- OC 51539607552

Theoretical Maximum 
- OC 8388608

Theoretical 
Maximum - OC 5.40432E+16

r 9 r 12 r 18 r 40 r 29
Average Reported - 
GC 51.38

Average Reported - 
GC 16.2

Average Reported - 
GC 92.87

Average Reported - 
GC 1.19

Average Reported - 
GC 149.35

Average Reported - 
OC 50.59

Average Reported - 
OC 15.93

Average Reported - 
OC 90.15

Average Reported - 
OC 0

Average Reported - 
OC 142.17

Theoretical 
Maximum - GC 1093

Theoretical 
Maximum - GC 695860

Theoretical Maximum 
- GC 86392108636

Theoretical Maximum 
- GC 10917020

Theoretical 
Maximum - GC 1.59149E+17

Theoretical 
Maximum - OC 1093

Theoretical 
Maximum - OC 695860

Theoretical Maximum 
- OC 86392108636

Theoretical Maximum 
- OC 10917020

Theoretical 
Maximum - OC 1.59149E+17

r 3 r 4 r 5 r 30 r 4
Average Reported - 
GC 143.7

Average Reported - 
GC 8.3

Average Reported - 
GC 9.62

Average Reported - 
GC 0

Average Reported - 
GC 33.48

Average Reported - 
OC 143.24

Average Reported - 
OC 8.25

Average Reported - 
OC 9.55

Average Reported - 
OC 0

Average Reported - 
OC 33.21

Theoretical 
Maximum - GC 1024

Theoretical 
Maximum - GC 131072

Theoretical Maximum 
- GC 4294967296

Theoretical Maximum 
- GC 65536

Theoretical 
Maximum - GC 1.80144E+16

Theoretical 
Maximum - OC 1024

Theoretical 
Maximum - OC 131072

Theoretical Maximum 
- OC 4294967296

Theoretical Maximum 
- OC 65536

Theoretical 
Maximum - OC 1.80144E+16

r 3 r 21 r 37 r 30 r 29
Average Reported - 
GC 191.49

Average Reported - 
GC 8.00E-05

Average Reported - 
GC 0

Average Reported - 
GC 0

Average Reported - 
GC 6.67E-05

Average Reported - 
OC 190.96

Average Reported - 
OC 0

Average Reported - 
OC 0

Average Reported - 
OC 0

Average Reported - 
OC 0

Theoretical 
Maximum - GC 1024

Theoretical 
Maximum - GC 1

Theoretical Maximum 
- GC 1

Theoretical Maximum 
- GC 65536

Theoretical 
Maximum - GC 536870912

Theoretical 
Maximum - OC 1024

Theoretical 
Maximum - OC 1

Theoretical Maximum 
- OC 1

Theoretical Maximum 
- OC 65536

Theoretical 
Maximum - OC 536870912

r 5 r 21 r 3 r 30 r 4
Average Reported - 
GC 21.8

Average Reported - 
GC 4.00E-05

Average Reported - 
GC 22.95

Average Reported - 
GC

Average Reported - 
GC 100.59

Average Reported - 
OC 21.37

Average Reported - 
OC 0

Average Reported - 
OC 22.73

Average Reported - 
OC

Average Reported - 
OC 100.44

Theoretical 
Maximum - GC 256

Theoretical 
Maximum - GC 1

Theoretical Maximum 
- GC 17179869184

Theoretical Maximum 
- GC 65536

Theoretical 
Maximum - GC 1.80144E+16

Theoretical 
Maximum - OC 256

Theoretical 
Maximum - OC 1

Theoretical Maximum 
- OC 17179869184

Theoretical Maximum 
- OC 65536

Theoretical 
Maximum - OC 1.80144E+16

Car Data Set Iris Data Set Cancer Data Set Glass Data Set Mushroom Data Set
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6.2.13 The Feature-Detection Rule vs. The RCHK Rule with when r = n’ 

Chapter 5 argued that the feature-detection is equivalent to the RCHK (MHC) rule if 

. To empirically validate this argument, the following graphs were created for the 

test groups where  for both the feature-detection rule and RCHK (MHC) rule for 

each experiment (the graphs can be found in Appendix C): 

 A plot of the OC value as the number of detectors increased. 

 A plot of the GC value as the number of detectors increased. 

 A plot of the DR value as the number of detectors increased. 

 A plot of the FR value as the number of detectors increased. 

 A plot of actual population size vs. the target population size, . 

The graphs show that regardless of the data set, when  the feature-detection rule 

had a slightly lower OC, GC value than the RCHK (MHC) rule and equivalent DR and 

FR value.  Interestingly the feature-detection rule was always able to achieve the target 

population size,  whereas the RCHK (MHC) rule was not always able to achieve the 

target population size. 

 

6.3 Conclusion 

The purpose of this chapter was to empirically verify and validate the theoretical analysis 

of the feature-detection rule performed in chapter 5 by demonstrating that the feature-

detection rule performs better than both the HD and the RCHK (No MHC) rules at best 

case and exhibits performance equivalent to the RCHK (MHC) rule at worst case.  

The tests performed in this chapter showed that 

 the feature-detection rule was superior (with regards to its DR and FR values) to 

the RCHK (MHC), RCHK (No MHC), RCHK (Global MHC) and HD for 3 

experiments (Car Evaluation, Wisconsin Breast Cancer, and Iris experiments), 

equivalent to the RCHK (MHC) rule in 1 experiment (Mushroom experiment) 
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and the worst performing rule in 1 data experiment (Glass experiment) because of 

a very low FR value (0.0047 ± 0.015); and  

 the HD rule was superior (with regards to its GC and OC values) to the RCHK 

(MHC), RCHK, (No MHC), RCHK (Global MHC) and HD rule for 4 

experiments (Car Evaluation, Iris, Wisconsin Breast Cancer, and Mushroom 

experiments). The feature-detection rule was the worst performing rule for 3 of 

the experiments (Car Evaluation, Mushroom, and Glass experiments) because it 

has the lowest GC minus OC value. 

 

The application of a single global permutation mask to a set of pre-generated detectors 

(under the NSA) consistently produced poor results across all of the data sets, thus 

reaffirming the assertion made in this thesis that permutation masks need to be included 

in the learning process.  

This chapter also studied the effect of different numbers of detectors on the overall GC 

and OC rates of the feature-detection rule, the RCHK (MHC) rule, the HD and the RCHK 

(no MHC) rule. It was shown that the OC rate was directly proportional to the number of 

detectors used across all rules. Interestingly, the chapter showed that the GC count is a 

quick way to discern whether detectors are located within critical non-self regions, with 

low GC values indicating that detectors are not located within critical non-self regions.
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Chapter 7 
Conclusion 
 
“Every day you may make progress. Every step may be fruitful. Yet there will stretch out 

before you an ever-lengthening, ever-ascending, ever-improving path. You know you will 

never get to the end of the journey. But this, so far from discouraging, only adds to the 

joy and glory of the climb.” 

- Sir Winston Churchill 

 
Although still fairly young, AIS research has proved to be an extremely promising field 

with regards to a diverse number of application domains. The purpose of this thesis was 

to examine an individual facet of AIS research, comprising negative selection theory, in 

order to: 

 understand and elaborate on the current thinking within negative selection 

theory; 

 explore how negative selection algorithms are traditionally applied to both 

binary and real-valued spaces; and  

 understand the current limitations imposed by Forrest’s original negative 

selection algorithm operating in binary problem domains. 

One such limitation of the traditional matching rules used within NSA, namely, the 

RCHK rule and the RCBITS rule, is that they are renowned for their simplicity and for 

inducing undetectable strings/holes. Researchers typically approached this problem by 

using one of two methodologies: by using another detection rule, such as the HD rule, or 

by using the concept of a permutation mask to permute the attributes of an antigen before 

presenting the antigen to a candidate detector. A problem with the former approach is that 

the HD rule does not necessarily always give the best performance; this was consistently 

validated against all data sets in the previous chapter. Similarly, a problem with the latter 

approach, that is, to use permutation masks, was the way in which the permutation masks 
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were implemented, resulting in researchers misconstruing their value and associated 

benefits. Permutation (MHC) masks are typically applied by AIS researchers in the 

following manner: a population of detectors is trained under the NSA, and, after training 

was concluded, a random permutation mask is generated and used by the entire detector 

set. Since a random permutation mask in fact changes the shape and, thus, the 

characteristics of a data set, it is not surprising that Stibor et al. stated that permutation 

masks actually shattered the self space, whereas Hofmeyer and Forrest both argued that 

permutation masks were a mathematically sound way to eradicate holes.  

Both researchers are indeed correct, in that permutation masks definitely do eradicate 

holes induced by both the RCBITS and the RCHK rule. The manner in which they are 

applied, however, does shatter the self-space, because choosing a single permutation 

mask for an entire set of detectors is equivalent to taking a random guess. 

The viewpoint presented in this thesis is to consider a binary problem domain as a set of 

characteristics/features that need to be learned by the NSA in order to differentiate 

successfully between self and non-self. For example, consider a detector, , under the 

RCBITS rule, where  and .  Now the detector  can actually be 

interpreted as capturing three relationships between the following features of a data set: 

(1, 2, 3); (2, 3, 4) and (3, 4, 5), respectively. If detection rules were to be examined in this 

manner, then it is evident that both the RCBITS rule and the RCHK rule will not easily 

be able to learn the relationship between non-adjacent features. By employing this 

viewpoint, the thesis introduced a new detection rule, called the feature-detection rule, 

which selects a subset of both adjacent and or non-adjacent features of an antigen in order 

to learn the most meaningful relationships between characteristics within a set of antigen. 

The thesis also took the viewpoint that multiple relationships, that is, meaningful 

permutations between features, exist and that these need to be learnt in order to 

differentiate successfully between self and non-self data. In view of the number of 

possible permutations of features that could exist in a binary data set of length , it is 

very difficult to infer which relationships between features are meaningful and will assist 

in solving the problem. A much more feasible way of approaching this problem is to 

include the learning in the NSA; that is, to generate random detectors abiding to the 
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feature-detection rule, where the subset of features selected by a random detector are 

determined randomly, and to apply the NSA to the random detectors. Consequently, the 

same approach needs to be applied to the generation of permutation masks for the 

RCBITS rule or the RCHK rule. That is, a random permutation mask must be generated 

for each detector abiding to either the RCBITS or RCHK rule, and the NSA is then 

applied to the detectors. Following this line of thought, the thesis showed that, 

conceptually, the feature-detection rule is equivalent to the RCHK rule (MHC) if  , 

and if , the feature-detection rule is equivalent to multiple RCHK detectors. The 

empirical results performed in the previous chapter confirmed that the feature–detection 

rule performs better than the RCHK (No MHC), RCHK (Global MHC), RCHK (MHC) 

and HD rule. One negative aspect of the feature-detection rule is that is introduces 

positional bias because it leverages the RCBITS rule, which is overcome by coupling the 

generation of the feature vector , together with each detector , generated by the NSA. 

   The empirical results performed in the previous chapter also showed that if  then 

the feature-detection rule has a similar DR and FR to the RCHK (MHC) rule in addition 

to having lower GC and OC values. 

 

The following future work can be undertaken to expand the work presented within this 

thesis: 

 The NSA was shown to suffer from a severe scaling problem that is, when ,  

, and  are fixed, an exponential increase in  can be observed. The feature-

detection rule is not immune to this problem, and extensions to algorithms such 

as the linear time detector-generation algorithm and the greedy detector-

generating algorithm can be undertaken to address this issue. 

 The NSA distributes detectors in a random manner. This was verified by two 

phenomena occurring within empirical results, in that 1) OC was shown to be 

directly proportional to the number of detectors used in a particular simulation 

and 2) the best performing scenarios exhibited both a high GC and OC rate. A 

mechanism similar to the one employed by the real-valued NSA could be used to 

optimise the distribution of the detectors so that OC is minimised. 
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 The applicability of the feature-detection rule can be extended to other AIS 

paradigms, such as clonal selection theory or network algorithms. Take note 

however that the effect of positional-bias introduced by the feature-detection rule 

needs to considered when applying the feature-detection rule to these algorithms. 

 The applicability of the feature-detection rule can be extended and investigated 

within real-valued spaces. 

 The feature-detection rule can be extended further such that rules other than the 

RCBITS rule are used to ascertain whether a detector is activated by an antigen, 

in an attempt to explicitly remove the positional bias introduced by the feature-

detection rule. For instance a series of binary rules can be applied to the position 

vector . 

 The technique used by González et al. to visualise an immune system [14] can 

be used to graphically visualise the shape space induced by the feature-detection 

rule.  

 The technique used by González et al. [14] could be contrasted to Sammon’s 

mapping to determine how effective both methods are in attempting to visualise 

the shape space. 

 Immune libraries are exceptionally good at generating diversity within the 

immune system and should be combined with the NSA and compared to a 

traditional NSA with randomly generated detectors. 
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Appendix A - Acronyms  
 

AIN Artificial immune network 

AINET Artificial immune network for data analysis 

AIS Artificial immune system 

ALC Artificial lymphocyte 

APC Antigen-presenting cell 

CSA Clonal selection algorithm 

DCA Dendritic Cell Algorithm 

DR Detection rate 

FN False negative 

FP False positive 

FR False-alarm rate 

GC Generalisation count 

HD Hamming distance 

HS Hamming separation 

Ig Immunoglobulin 

MHC Major histocompatibility complex  

MILA Multilevel immune learning algorithm 

NIS Natural immune system 

NSMutate Negative selection with guided mutation 

NSA Negative selection algorithm 

OC Overfitting count 

RCBITS R-contiguous bits 

RCHK R-chunks 

TH T-helper lymphocytes 

TN True negative 

TP True positive 

TS T-suppressor lymphocyte 
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Appendix B - Glossary 
 

  A particular AIS algorithm. 

  A binary string with  appended to the beginning of the string,  

 where . 

 A set of artificial lymphocytes generated by a particular AIS  

 algorithm. 

 The centre of a real-valued detector in hyper space. 

 The estimated coverage of the problem space by a set of  

 detectors . 

 A matrix that is structurally similar to , where each entry   

 represents the number of unmatched fully specified bit strings  

 corresponding to the template represented by . Each entry  

 , where . 

  A matrix that is structurally similar to  where each entry   

  represents the number of   unmatched fully specified bit strings  

  corresponding to the template represented by i . Each entry    

 , where . 

  A training set of self/non-self vectors depending on the AIS  

 algorithm being employed. 

  A test set of self/non-self vectors depending on the AIS algorithm  

 being employed. 

  Returns the Euclidean distance between vectors  and . 

  Returns the hamming distance between two binary vectors and   

 .
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  A generic matching function that determines the affinity between  

 vectors  and . 

  Returns the maximum affinity of a detector. 

 Applies a permutation mask , to a vector, . 

  Returns the number of contiguous bits shared by two binary  

 vectors  and .  

   Returns the number of contiguous bits between vectors  and  

 starting at position,  in .  

   Given a binary vector  and a vector of  

 integer positions  where  and     

 construct a vector   by using the  

 positions stipulated in . 

  A graph containing all possible templates, , induced by a set of  

 self-strings, . 

  The average generalisation of a particular AIS algorithm. 

  A crossover hole. 

  A set of holes for a given non-self set. 

  A set of holes for a given self-set. 

  A permutation mask. 

  A matrix representing the number of non-matching left  

 completions for a template, . 

  A matrix representing the number of non-matching left  

 completions for a template, . 
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  The number of right completions of  that is unmatched by any  

 string within the self-set, . 

  The maximum coverage of the problem space by a set of  

 detectors,  

  The dimensionality of a particular artificial lymphocyte. 

  The dimensionality of an artificial lymphocyte under the feature- 

 detection rule, where . 

  The number of symbols in an alphabet. For example, the binary  

 alphabet contains two symbols. 

  The number of candidate artificial lymphocytes to train. 

  The number of detectors needed by the NSA that would need to  

 be created in order to generate  detectors. 

  A set comprising non-self vectors/binary strings. 

  The average overfitting of a particular AIS algorithm.  

  The number of self/non-self patterns that are overfitted by an  

 artificial lymphocyte, . 

  The probability of a random string not matching any self- 

 string/vector. 

  The probability that  detectors fail to detect an intrusion. 

  The probability that two random strings match under a specific  

 affinity-matching function. 

 The probability that two random strings do not match under a  

 specific affinity-matching function. 

  The probability that a detector is mutated. 
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   The affinity threshold of an artificial lymphocyte. 

  Self-radius (used in the V-detector algorithm). 

  A set comprising self-vectors/self-binary strings. 

  A set of all possible windows/templates of size  in . 

  A set of all windows/templates matching at least one self string,  

   with . 

  A set of all windows or templates that do not match a single  

 string , with . 

  A binary string of length . 

ŝ  A binary string without its leftmost bit. 

ŝ  A binary string without its rightmost bit. 

  A binary string with  appended to the end of the string, where   

 . 

  The total number of strings unmatched in a particular set. 

 A template where w  denotes the binary string of length  and   

 denotes the starting position of . 

 Entire shape space comprising all self- and non-self vectors. 

  The detection region of an artificial lymphocyte. 

  The starting position of the detection window used by the RCHK  

 rule. 

  An artificial lymphocyte/detector of length  with coordinates  

 . 

  The  element of a  detector  . 

  An antigen/non-self artifact of length  with coordinates   
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  A subset of features selected from  such that  

  and each   and  the length of  is equal  

 to : A set of antigens detected by an artificial lymphocyte  ,  

 that is, . 

 A self-cell/artifact of length  with coordinates . 
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Appendix C – Graphs and Trends 
 

Appendix C is comprised of all of the graphs used to illustrate the trends observed within 

the best test groups for each of the experiments executed in chapter 6. The appendix is 

grouped into 5 sections, where each section corresponds to a particular experiment 

performed in chapter 6. For the sake of completeness, the DR and FR trends are also 

illustrated in addition to the GC and OC trends discussed in chapter 6. The significance of 

the DR and FR trends is that they graphically illustrate the effect of an increasing average 

population size on the DR and FR values. 

 

C.1 The Car Evaluation Data Set Trends 

This section contains graphs that illustrate the OC, GC, DR, and FR trends observed for 

each scenario’s best test groups for the Car Evaluation experiment. The section is 

concluded with graphs illustrating the OC, GC, DR, FR, and target population size, vs. 

actual average population size trends for the feature-detection rule and RCHK (MHC) 

rule test groups where . 

 

C.1.1 Feature-Detection Rule Trends 

The GC and OC trends of the feature-detection rule for the best scenario illustrated in 

Figure 48 show that: 

 OC increases sharply as the average population size increases until it is equal to 

GC at an average population size of 5000.  The OC trend is bad because it 

illustrates that the amount of overfitting increases as the number of detectors are 

increased i.e. the NSA is distributing detectors in a manner such that their 

detection regions overlap. 

 GC initially decreases as the average population size increases and then settles 

on a value of 18. The GC trend is essentially equal to an average of 18 and the 

fluctuation in the GC value is caused by the randomness that occurs when 

executing each test within the test group, i.e. each test within a particular test 
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group is executed 30 times where each test execution entails that a test set and 

training set are randomly selected from the self-set in addition to randomly 

generating detectors.  

 

 
Figure 48. Car Evaluation Data Set – Feature-Detection Rule GC and OC Trends 

 

The DR and FR trends of the feature-detection rule for the best scenario illustrated in 

Figure 49 show that:   

 DR increases as the average population size increases until it is equal to 1 at a 

population size of 5000.  

 FR only increases marginally as the average population size increases and is 

equal to 0.02 at an average population size of 5000. 

The DR and FR trends are good because the DR value is equal to 1 whilst the FR is 

almost equal to 0, meaning that the DR - FR value is maximised. 
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Figure 49. Car Evaluation Data Set – Feature-Detection Rule DR and FR Trends 

 

C.1.2 HD Rule Trends 

The GC and OC trends of the HD rule for the best scenario illustrated in Figure 50 show 

that:  

 GC fluctuates slightly around a value of 50 as the average population size 

increases. The GC value is essentially equal to an average of 50 and the 

fluctuation in the GC value is caused by the randomness that occurs when 

executing each test within the test group.  

 OC increases sharply as the average population size increases and is almost 

equal to GC at an average population size of 1990.2.  The OC trend is bad 

because it illustrates that the amount of overfitting increases as the number of 

detectors are increased, i.e. the NSA is distributing detectors in a manner such 

that their detection regions overlap. 
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Figure 50. Car Evaluation Data Set - HD Rule GC and OC Trends 

 

The DR and FR trends of the HD rule for the best scenario illustrated in Figure 51 show 

that:  

 DR increases slowly from 0.64 to 0.76 as the average population size increases. 

 FR is relatively constant (fluctuating by an average of 0.02) at 0.02. 

The DR and FR trends are good and illustrate that an average population size of 198.9 is 

sufficient to obtain the same DR and FR value at an average population size of 1990.2. 
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Figure 51. Car Evaluation Data Set - HD Rule DR and FR Trends 

 

C.1.3 RCHK (No MHC) Rule Trends 

The GC and OC trends of the RCHK (No MHC) rule for the best scenario illustrated in 

Figure 52 show that:  

 GC is initially equal to 153 at an average population size of 37.1 and then settles 

on 143 at an average population size of 3677. GC is essentially equal to an 

average of 143 and the fluctuation in the GC value is caused by the randomness 

that occurs when executing each test within a test group. 

 OC is initially equal to 115 at an average population size of 37.1 and gradually 

increases as the average population size increases until it is equal to GC. The OC 

trend is bad because it illustrates that the amount of overfitting increases as the 

number of detectors are increased, i.e. the NSA is distributing detectors in a 

manner such that their detection regions overlap. 
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Figure 52. Car Evaluation Data Set - RCHK (No MHC) Rule GC and OC Trends 

 

The DR and FR trends of the RCHK (No MHC) rule for the best scenario illustrated in 

Figure 53 show that:  

 DR increases slightly as the average population size increases. 

 FR is constant at 0 as the average population size increases. 

The DR and FR trends are good and illustrate that an average population size of 368.2 is 

sufficient to maintain the DR and FR value obtained by an average population size of 

3677.5. 
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Figure 53. Car Evaluation Data Set - RCHK (No MHC) Rule DR and FR Trends 

 

C.1.4 RCHK (Global MHC) Rule Trends 

The GC and OC trends of the RCHK (No MHC) rule for the best scenario illustrated in 

Figure 54 show that both GC and OC increase and then decreases at the same rate as the 

average population size increases.  The GC and OC trends are bad because they illustrate 

that the average amount of overfitting exhibited by the NSA under the RCHK rule (No 

MHC) is equivalent to the average amount of generalisation exhibited by the NSA 

regardless of the average population size. 
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Figure 54. Car Evaluation Data Set - RCHK (Global MHC) Rule GC and OC Trends 

 

The DR and FR trends of the RCHK (No MHC) rule for the best scenario illustrated in 

Figure 55 show that:  

 DR is initially equal to 0.61 at an average population size of 35.2, decreases to 

0.49 at an average population size of 111 and then slowly increases to 0.69 at an 

average population size of 3660. 

 The FR trend resembles a parabola with a negative gradient in that it increases as 

the average population size increases, approaches a turning point at an average 

population size of 368.7 and then decreases. 

The DR and FR trends are not good because the DR – FR rate is low. The randomness 

illustrated by the DR and FR trends is a direct consequence of the application of a single 

randomly generated global permutation mask to a set of detectors generated with the 

NSA. The random permutation mask changes the shape space of the resultant detectors in 

a non-meaningful way.   
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Figure 55. Car Evaluation Data Set - RCHK (Global MHC)  Rule DR and FR Trends 
 
C.1.5 RCHK (MHC) Rule Trends 

The GC and OC trends of the RCHK (MHC) rule for the best scenario illustrated in 

Figure 56 show that:  

 GC fluctuates around 21 as the average population size increases. The GC trend 

is essentially equal to an average of 21 and the fluctuation in the GC value is 

caused by the randomness that occurs when executing each test within the test 

group. 

 OC is equal to 5 at an average population size of 44 and increases sharply as the 

average population size increases until it is equal to GC. The OC trend is bad 

because it illustrates that the amount of overfitting increases as the number of 

detectors are increased, i.e. the NSA is distributing detectors in a manner such 

that their detection regions overlap. 
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Figure 56. Car Evaluation Data Set - RCHK (MHC) Rule GC and OC Trends 

 

The DR and FR trends of the RCHK (MHC) rule for the best scenario illustrated in 

Figure 57 show that:  

 DR increases as the average population size increases. 

 FR is initially zero at an average population size of 44.4 and starts increasing 

slightly at an average population size of 434.9. 

The DR and FR trends are good and illustrate that an average population size of 4321.7 is 

required to maximise the DR value. 

 

0

5

10

15

20

25

44.4 128.3 434.9 1300.3 4321.7

Av
er

ag
e 

Va
lu

e

Average Population Size

RCHK Rule (MHC) : GC and OC Trends

OC 

GC

 
 
 



APPENDIX C. GRAPHS AND TRENDS 186 

 

 

 
Figure 57. Car Evaluation Data Set  RCHK (MHC) Rule -  DR and FR Trends 

 
 
C.1.6 RCHK (MHC) Rule vs. Feature Detection-Rule Trends where r = n’ 

A comparison between the OC, GC, DR, FR values and actual population size for the 

feature-detection rule where  and the RCHK (MHC) rule for the best scenarios is 

presented in Figure 58 to Figure 62 respectively. The figures show that the feature-

detection rule has a slightly lower OC and GC value than the RCHK (MHC) rule and that 

the DR and FR values for the feature-detection rule and RCHK (MHC) rule are almost 

identical. Figure 62 shows that the feature-detection rule is always able to achieve the 

target population size, , whereas the RCHK (MHC) rule is not always able to achieve 

the target population size. 
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Figure 58. Car Evaluation Data Set:  Feature-Detection Rule and RCHK (MHC) 

Rule – OC Comparison 
 

 
Figure 59. Car Evaluation Data Set:  Feature-Detection Rule and RCHK (MHC) 

Rule – GC Comparison 
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Figure 60. Car Evaluation Data Set:  Feature-Detection Rule and RCHK (MHC) 

Rule – DR Comparison 
 

 
Figure 61. Car Evaluation Data Set:  Feature-Detection Rule and RCHK (MHC) 

Rule – FR Comparison 
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Figure 62. Car -Evaluation Data Set:  Feature-Detection Rule and RCHK (MHC) 

Rule – Population Size Comparison 
 

 

C.2 Iris Experiment Trends 

This section contains graphs that illustrate the OC, GC, DR, and FR trends observed for 

each scenario’s best test groups for the Iris experiment. The section is concluded with 

graphs illustrating the OC, GC, DR, FR, and target population size, vs. actual 

population size trends for the feature-detection rule and RCHK (MHC) test groups where 

. 

 
 
C.2.1 Feature-Detection Rule Trends 

The GC and OC trends of the feature-detection rule for the best scenario illustrated in 

Figure 63 show that: 

 GC is equal to 26.62 at an average population size of 50 and only increases 

slightly as the average population size increases. The GC trend is essentially 

equal to an average of 26.62 and the fluctuation in the GC value is caused by the 

randomness that occurs when executing each test within the test group. 
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 OC is equal to 23.45 at an average population size of 50 and increases slightly 

until it is equal to GC as the average population size increases. The OC trend is 

bad as it illustrates that the generated detectors exhibit the same amount of 

overfitting and generalisation regardless of the average population size. 

 
Figure 63. Iris Data Set – Feature-Detection Rule GC and OC Trends 

 

The DR and FR trends of the feature-detection rule for the best scenario illustrated in 

Figure 64 show that:  

 DR is constant as the average population size increases. 

 FR increases as the average population size increases to 500 and starts gradually 

decreasing as the average population size increases. The FR trend is bad because 

it highlights that the FR value increases as more detectors are added to the 

candidate detector set, i.e. as the average population size increases. 

 

0

5

10

15

20

25

30

35

50 150 500 1500 5000

Av
er

ag
e 

Va
lu

e

Average Population Size

Feature-Detection Rule: GC and OC Trends

OC 

GC

 
 
 



APPENDIX C. GRAPHS AND TRENDS 191 

 

 

 
Figure 64. Iris Data Set – Feature-Detection Rule DR and FR Trends 

 

C.2.2 HD Rule Trends 

The GC and OC trends of the HD rule for the best scenario illustrated in Figure 65 show 

that:  

 GC is equal to 15.95 at an average population size of 4.5 and then increases 

slightly to 18.41 at an average population size of 14.9 where after it gradually 

decreases to 16.2. The GC trend is essentially equal to an average of 16.2 and the 

fluctuation in the GC value is caused by the randomness that occurs when 

executing each test within the test group. 

 OC increases as the average population size increases until it is almost equal to 

GC at an average population size of 512.7. The OC trend is bad because it 

illustrates that the amount of overfitting increases as the number of detectors are 

increased, i.e. the NSA is distributing detectors in a manner such that their 

detection regions overlap. 
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Figure 65. Iris Data Set  - HD Rule GC and OC Trends 

 

The DR and FR trends of the HD rule for the best scenario illustrated in Figure 66 show 

that: 

 DR increases as the average population size increases i.e. an average population 

size of 512.7 is required to maximise the detection rate. 

 FR increases sharply as the average population size increases and is greater than 

DR at an average population size of 512.7.  The FR trend is bad because it 

highlights the fact that as the average population size increases (which is 

necessary to maximise DR) so does the FR value. 
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Figure 66. Iris Data Set – Feature-Detection Rule DR and FR Trend 

 
C.2.3 RCHK (No MHC) Rule Trends 

The GC and OC trends of the RCHK (No MHC) rule for the best scenario illustrated in 

Figure 67 show that: 

 GC is relatively the same as the average population size increases and the 

fluctuation in the GC value is caused by the randomness that occurs when 

executing each test within the test group. 

 OC increases slowly as the average population size increases until it is equal to 

GC. The OC trend is bad because it illustrates that the amount of overfitting 

increases as the number of detectors are increased, i.e. the NSA is distributing 

detectors in a manner such that their detection regions overlap. 
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Figure 67. Iris Data Set - RCHK (No MHC) Rule GC and OC Trends 

 

The DR and FR trends of the RCHK (No MHC) rule for the best scenario illustrated in 

Figure 68 show that: 

 DR fluctuates slightly around 0.75 as the average population size increases. The 

DR trend effectively illustrates that an increase in the average population size 

has no effect in improving the resultant DR value. 

 FR initially increases as the average population size increases and starts 

decreasing slightly at an average population size of 1087.7. The FR trend is bad 

because it signifies that the FR value increases as the average population size 

increases. 

 

0

1

2

3

4

5

6

7

8

9

35.1 108.2 344.3 1087.7 3565.7

Av
er

ag
e 

Va
lu

e

Average Population Size

RCHK Rule (No MHC): GC and OC Trends

OC 

GC

 
 
 



APPENDIX C. GRAPHS AND TRENDS 195 

 

 

 
Figure 68. Iris Data Set - RCHK (No MHC) Rule DR and FR Trends 

 
 
 
C.2.4 RCHK (Global MHC) Rule Trends 

The GC and OC trends of the RCHK (Global MHC) rule for the best scenario illustrated 

in Figure 69 show that: 

 GC is initially equal to 0.0019 at an average population size of 50 and then 

decreases to 0 as the average population size increases. The GC trend is bad 

because the amount of generalisation decreases as the average population size 

increases. 

 OC is constant at 0 as the average population size increases. The OC trend is 

good because it illustrates the NSA is distributing detectors in a manner such that 

their detection regions do not overlap. 
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Figure 69. Iris Data Set - RCHK (Global MHC) Rule DR and FR Trends 

 

The DR and FR trends of the RCHK (Global MHC) rule for the best scenario illustrated 

in Figure 70 show that: 

 DR is constant at 0.5 as the average population size increases. The DR trend 

illustrates that the magnitude of the average population size does not affect the 

DR value. 

 FR is constant at 0 as the average population size increases. The FR trend is 

good because it is constantly 0 regardless of the average population size. 
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Figure 70. Iris Data Set - RCHK (Global MHC) Rule  DR and FR Trends 

 
 
C.2.5 RCHK (MHC) Rule Trends 

The GC and OC trends of the RCHK (MHC) rule for the best scenario illustrated in 

Figure 71 show that: 

 GC is initially constant at 0. As the average population size increases, GC 

suddenly increases to 1.33 at an average population size of 1500 and then 

decreases to 0.0004. The GC trend is bad because it is effectively equal to 0, 

indicating that none of the generated detectors are able to generalise across the 

data set. 

 OC is constant at 0 as the average population size increases. The OC trend is 

good because it illustrates that the generated detectors are distributed in a 

manner such that their detection regions do no overlap. 
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Figure 71. Iris Data Set - RCHK (MHC) Rule GC and OC Trends 

 

The DR and FR trends of the RCHK (MHC) rule for the best scenario illustrated in 

Figure 72 show that: 

 DR is constant at 0.5 as the average population size increases. The DR trend 

illustrates that the magnitude of the average population size has no effect on the 

DR value. The DR trend is bad because it illustrates that the generated detectors 

will never be able to achieve a maximum DR rate of 1. 

 FR is constant at 0 as the average population size increases. The FR rate is good 

because it is constant at 0. 
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Figure 72. Iris Data Set - RCHK (MHC) Rule DR and FR Trends 

 

C.2.6 RCHK (MHC) Rule vs. Feature-Detection Rule Trends 

A comparison between the OC, GC, DR, FR and actual population size for the feature-

detection rule where   and the RCHK (MHC) rule for the best scenarios is 

presented in Figure 73 to Figure 77 respectively. The figures show that the feature-

detection rule has slightly lower OC, GC values than the RCHK (MHC) rule while the 

DR and FR values are very similar.  Figure 77 shows that the feature-detection rule is 

always able to achieve the target population size, , whereas the RCHK (MHC) rule is 

not always able to achieve the target population size. 
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Figure 73. Iris Data Set:  Feature-Detection Rule and RCHK (MHC) Rule – OC 

Comparison 

 

 
Figure 74. Iris Data Set:  Feature-Detection Rule and RCHK (MHC) Rule – GC 

Comparison 
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Figure 75. Iris Data Set:  Feature-Detection  Rule and RCHK (MHC) Rule – DR 

Comparison 
 

 
Figure 76. Iris Data Set:  Feature-Detection  Rule and RCHK (MHC) Rule – FR 

Comparison 
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Figure 77. Iris Data Set:  Feature-Detection Rule and RCHK (MHC) Rule – 

Population Size Comparison 

 

C.3 Wisconsin Breast Cancer Experiment Trends 

This section contains graphs that illustrate the OC, GC, DR, and FR trends observed for 

each scenario’s best test groups for the Wisconsin Breast Cancer experiment. The section 

is concluded with graphs illustrating the OC, GC, DR, FR, and target population size, 

vs. actual average population size trends for the feature-detection rule and RCHK 

(MHC) rule test groups where . 

 

C.3.1 Feature-Detection Rule Trends 

The GC and OC trends of the feature-detection rule for the best scenario illustrated in 

Figure 78 show that: 

 GC is initially equal to 34 at an average population size of 48.4, increases 

slightly as the average population size increases, starts decreasing at an average 

population size of 1405.6 and then starts increasing again at 47404.2. The GC 

trend is essentially equal to an average of 34 and the fluctuation in the GC value 
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is caused by the randomness that occurs when executing each test within the test 

group. 

 OC is initially equal to 29 at an average population size of 48.4, increases until it 

is equal to GC and then follows the same trend as GC. The OC trend is bad as it 

illustrates that the generated detectors exhibit the same amount of overfitting and 

generalisation regardless of the average population size. 

 
Figure 78. Wisconsin Breast-Cancer Data Set – Feature-Detection Rule GC and OC 

Trends 
 

The DR and FR trends of the feature-detection rule for the best scenario illustrated in 

Figure 79 show that: 

 DR is initially equal to 0.88 at an average population size of 48.4, increases as 

the average population size increases and then remains constant at 1. 

 FR is initially equal to 0.02 at an average population size of 48.4 and increases 

slightly as the average population size increases. 

 The DR and FR trends are good and illustrate that the DR value is maximised at an 

average population size of 466.6. 
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Figure 79. Wisconsin Breast-Cancer Data Set –Feature-Detection Rule DR and FR 

Trends 
 
 

C.3.2 HD Rule Trends 

The GC and OC trends of the HD rule for the best scenario illustrated in Figure 80 show 

that: 

 GC is initially equal to 73.56 at an average population size of 1.6, increases to 

92.34 at an average population size of 5.1, decreases to 86.82 at a population 

size of 13.1 and then increases to 92.87 as the average population size increases.  

The GC trend is essentially equal to an average of 92 and the fluctuation in the 

GC value is caused by the randomness that occurs when executing each test 

within the test group. 

 OC increases as the average population size increases until it is almost equal to 

GC. The OC trend is bad because it illustrates that the amount of overfitting 

increases as the number of detectors are increased, i.e. the NSA is distributing 

detectors in a manner such that their detection regions overlap. 
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Figure 80. Wisconsin Breast-Cancer Data Set - HD Rule GC and OC Trends 

 

The DR and FR trends of the HD rule for the best scenario illustrated in Figure 81 show 

that: 

 DR increases as the average population size increases. 

 FR initially increases at a low rate as the average population size increases until 

the average population size is equal to 13.1 where FR starts increasing at a 

higher rate. 

The DR trend is good because the DR value increases as the population size increases 

whereas the FR trend is bad because the FR value increases as the population size 

increases. 
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Figure 81. Wisconsin Breast-Cancer Data Set - HD Rule  DR and FR Trend 

 
 
C.3.3 RCHK (No MHC) Rule Trends 

 

 
Figure 82. Wisconsin Breast-Cancer Data Set - RCHK (No MHC) Rule DR and FR 

Trends 
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C.3.4 RCHK (Global MHC) Rule Trends 

The GC and OC trends of the RCHK (Global MHC) rule for the best scenario illustrated 

in Figure 83 show that both GC and OC are 0 as the average population size increases. 

The GC trend is bad because it indicates that the generated detectors are not able to 

generalise across the data set whereas the OC trend is good because it indicates that the 

generated detectors are distributed in a manner such that their detection regions do not 

overlap. 

 
Figure 83. Wisconsin Breast-Cancer Data Set - RCHK (Global MHC) Rule GC and 

OC Trends 
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in Figure 84 show that: 

 DR is constant at 0.5 as the average population size increases. 

 FR is constant at 0 as the average population size increases. 

The DR and FR trends are a result of TP always being equal to 1 and FN always being 

equal to 1. 
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Figure 84. Wisconsin Breast-Cancer Data Set - RCHK (Global MHC) Rule DR and 

FR Trends 
 
 
C.3.5 RCHK (MHC) Rule Trends 

The GC and OC trends of the RCHK (MHC) rule for the best scenario illustrated in 

Figure 85 show that: 

 GC is initially equal to 21 at an average population size of 12.8 and fluctuates 

between 21 and 23 as the population size increases. The GC trend is essentially 

equal to an average of 22 and the fluctuation in the GC value is caused by the 

randomness that occurs when executing each test within the test group. 

 OC increases sharply as the average population size increases until it is equal to 

GC. The OC trend is bad because it illustrates that the amount of overfitting 

increases as the number of detectors are increased, i.e. the NSA is distributing 

detectors in a manner such that their detection regions overlap. 
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Figure 85. Wisconsin Breast-Cancer  Data Set - RCHK (MHC) Rule GC and OC 

Trends 
 

The DR and FR trends of the RCHK (MHC) rule for the best scenario illustrated in 

Figure 86 show that: 

 DR increases as the average population size increases until it is equal to 1. 

 FR increases as the average population size increases.  

The DR trend is good because it approaches 1 as the average population size increases 

whereas the FR trend is bad because it increases more rapidly as the average population 

size increases. 
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Figure 86. Wisconsin Breast-Cancer Data Set - RCHK (MHC) Rule DR and FR 

Trend 
 
C.3.6 RCHK (MHC) Rule vs. Feature-Detection Rule Trends 

A comparison between the OC, GC, DR, FR and actual population size for the feature-

detection rule where   and the RCHK (MHC) rule for the best scenarios is 

presented in Figure 87 to Figure 91 respectively. The figures show that the feature-

detection rule has slightly lower OC, GC, DR and FR values than the RCHK (MHC) rule. 

Figure 91 shows that the feature-detection rule is always able to achieve the target 

population size, , whereas the RCHK (MHC) rule is not always able to achieve the 

target population size. 
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Figure 87. Wisconsin Breast-Cancer Data Set:  Feature-Detection Rule and RCHK 

(MHC) – Rule OC Comparison 
 

 
Figure 88. Wisconsin Breast-Cancer Data Set:  Feature-Detection Rule and RCHK 

(MHC) Rule – GC Comparison 
 

0

5

10

15

20

25

3 5 14 18 37

Av
er

ag
e 

Va
lu

e

r

Feature-Detection Rule and RCHK Rule (MHC) - OC Comparison

Feature-Detection Rule

RCHK Rule (MHC)

0

5

10

15

20

25

3 5 14 18 37

Av
er

ag
e 

Va
lu

e

r

Feature-Detection Rule and RCHK Rule (MHC) - GC Comparison

Feature-Detection Rule

RCHK Rule (MHC)

 
 
 



APPENDIX C. GRAPHS AND TRENDS 212 

 

 

 
Figure 89. Wisconsin Breast-Cancer Data Set:  Feature-Detection Rule and RCHK 

(MHC) Rule – DR Comparison 
 

 
Figure 90. Wisconsin Breast-Cancer Data Set:  Feature-Detection Rule and RCHK 

(MHC) Rule – FR Comparison 
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Figure 91. Wisconsin Breast-Cancer Data Set:  Feature-Detection Rule and RCHK 

(MHC) Rule – Population Size Comparison 
 
C.4 Glass Experiment Trends 

This section contains graphs that illustrate the OC, GC, DR, and FR trends observed for 

each scenario’s best test groups for the Glass experiment. The section is concluded with 

graphs illustrating the OC, GC, DR, FR, and target population size, vs. actual average 

population size trends for the feature-detection rule and RCHK (MHC) rule test groups 

where . 

 
 
C.4.1  Feature-Detection Rule Trends 

The GC and OC trends of the feature-detection rule for the best scenario illustrated in 

Figure 92 show that: 

 GC is initially 0 as the average population size increases and then suddenly 

increases to 0.000012 at an average population size of 50000. 

 OC is constant at 0 as the average population size increases. 

The GC trend is bad because it illustrates that the generated detectors are not able to 

generalise across the data set. 
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Figure 92. Glass Data Set – Feature-Detection Rule GC and OC Trends 

 

The DR and FR trends of the feature-detection rule for the best scenario illustrated in 

Figure 93 show that: 

 DR is constant at 0.49 as the average population size increases. 

 FR is constant at zero as the average population size increases and then increases 

slightly when the average population size reaches 50000. 

The DR trend is bad because it does not improve as the magnitude of the average 

population size increases whereas the FR trend is good because it is constantly zero 

regardless of the magnitude of the average population size. 
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Figure 93. Glass Data Set – Feature-Detection Rule DR and FR Trends 

 

 

C.4.2 HD Rule Trends 

The GC and OC trends of the HD for the best scenario illustrated in Figure 94 show that: 

 GC is initially 0 as the average population size increases and then increases 

sharply to 0.000012 at an average population size of 50000. The GC trend is bad 

because it illustrates that the generated detectors are not able to generalise across 

the data set. 

 OC is constant at 0 as the average population size increases. The OC trend is 

good because it indicates that the NSA is distributing the detectors in a manner 

such that their detection regions do not overlap. 
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Figure 94. Glass Data Set - HD Rule GC and OC Trend 

 

The DR and FR trends of the HD for the best scenario illustrated in Figure 95 show that: 

 DR is constant at 0.5 as the average population size increases. 

 FR is constant at 0 as the average population size increases and increases slightly 

to 0.009 at an average population size of 50000. 

The DR trend is bad because it illustrates that the DR value cannot be improved by 

increasing the magnitude of the average population size whereas the FR trend is good 

because it is approximately zero as the average population size increases. 
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Figure 95. Glass Data Set - HD Rule DR  and FR Trends 

 
C.4.3 RCHK (No MHC) Rule Trends 

The GC and OC trends of the RCHK (No MHC) rule for the best scenario illustrated in 

Figure 96 show that both GC and OC are constant at 0 as the average population size 

increases. The GC trend is bad because it illustrates that the generated detectors are not 

able to generalise across the dataset whereas the OC trend is good because it illustrates 

that the detectors are distributed in a manner such that their detection regions do not 

overlap. 

 
Figure 96. Glass Data Set - RCHK (No MHC) Rule GC and OC Trends 
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The DR and FR trends of the RCHK (No MHC) rule for the best scenario illustrated in 

Figure 97 show that: 

 DR is constant at 0.5 as the average population size increases. 

 FR is constant at 0 as the average population size increases. 

The DR trend is bad because it illustrates that increasing the magnitude of the average 

population size does not improve the DR value. The FR trend is good because it is 

constant at 0 regardless of the magnitude of the average population size. 

 
Figure 97. Glass Data Set - RCHK (No MHC) Rule DR and FR Trends 

 
C.4.4 RCHK (Global MHC) Rule Trends 

The GC and OC trends of the RCHK (Global MHC) rule for the best scenario illustrated 

in Figure 98 show that both GC and OC are constant at 0 as the average population size 

increases. The GC trend is bad because it illustrates that the generated detectors are not 

able to generalise across the data set whereas the OC trend is good because it illustrates 

that the generated detectors are distributed in manner such that their detection regions do 

not overlap. 
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Figure 98. Glass Data Set - RCHK (Global  MHC) Rule GC and OC Trends 

 

The DR and FR trends of the RCHK (Global MHC) rule for the best scenario illustrated 

in Figure 99 show that: 

 DR is constant at 0.5 as the average population size increases. 

 FR is constant at 0 as the average population size increases. 

The DR trend is bad because it illustrates that increasing the magnitude of the average 

population size does not improve the DR value. The FR trend is good because it is 

constant at 0 regardless of the magnitude of the average population size. 
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Figure 99. Glass Data Set - RCHK (Global  MHC) Rule  DR and FR Trends 

 
 
C.4.5 RCHK (MHC) Rule Trends 

The GC and OC trends of the RCHK Rule (MHC) for the best scenario illustrated in 

Figure 100 show that: 

 GC is initially 0 as the average population size increases and suddenly increases 

to  at an average population size of 50000. 

 OC is constantly 0 as the average population size increases. 

The GC trend is bad because it illustrates that the generated detectors are not able to 

generalise across the data set whereas the OC trend is good because it illustrates that the 

generated detectors are distributed in manner such that their detection regions do not 

overlap. 
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Figure 100. Glass Data Set - RCHK (MHC) Rule GC and OC Trends 

 

The DR and FR trends of the RCHK (MHC) rule for the best scenario illustrated in 

Figure 101 show that: 

 DR is constant at 0.5 as the average population size increases. 

 FR is constant at 0 as the average population size increases. 

The DR trend is bad because it illustrates that increasing the magnitude of the average 

population size does not improve the DR value. The FR trend is good because it is 

constant at 0 regardless of the magnitude of the average population size 
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Figure 101. Glass Data Set - RCHK (MHC) Rule DR and FR Trends 

 
 
 
C.4.6 RCHK (MHC) Rule vs. Feature-Detection Rule Trends 

A comparison between the OC, GC, DR, FR and actual population size for the feature-

detection rule where   and the RCHK (MHC) rule for the best scenarios is 

illustrated in Figure 102 to Figure 106 respectively. The figures show that the feature-

detection rule has a lower OC and GC value than the RCHK (MHC) rule and that DR and 

FR values for the feature-detection rule and RCHK rule (MHC) are almost identical. 

Figure 106 shows that the feature-detection rule is always able to achieve the target 

population size, , whereas the RCHK (MHC) rule is not always able to achieve the 

target population size. 
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Figure 102. Glass Data Set:  Feature-Detection Rule and RCHK (MHC) Rule – OC 

Comparison 

 

 
Figure 103. Glass Data Set:  Feature-Detection Rule and RCHK (MHC) Rule – GC 

Comparison 
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Figure 104. Glass Data Set:  Feature-Detection Rule and RCHK (MHC) Rule – DR 

Comparison 

 

 
Figure 105. Glass Data Set:  Feature-Detection Rule and RCHK (MHC) Rule – FR 

Comparison 
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Figure 106. Glass Data Set:  Feature-Detection Rule and RCHK (MHC) Rule – 

Population Size Comparison 
 

C.5.0 Mushroom Data Set Trends 

This section contains graphs that illustrate the OC, GC, DR, and FR trends observed for 

each scenario’s best test groups for the Mushroom experiment. The section is concluded 

with graphs illustrating the OC, GC, DR, FR, and target population size, , vs. actual 

average population size trends for the feature-detection rule and RCHK (MHC) rule test 

groups where . 
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the number of detectors are increased, i.e. the NSA is distributing detectors in a 

manner such that their detection regions overlap. 

 
Figure 107. Mushroom Data Set – Feature-Detection Rule GC and OC Trends 

 

The DR and FR trends of the feature-detection rule for the best scenario illustrated in 

Figure 108 show that: 

 DR is initially 0.76 when the average population size is 50 and then increases to 

1 as the average population size increases. 

 FR is constant at 0 as the average population size increases. 

The DR trend is good because it illustrates that DR approaches 1 as the magnitude of the 

average population size is increased. The FR trend is good because it illustrates that FR is 

constant at 0 regardless of the magnitude of the average population size.  
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Figure 108. Mushroom Data Set – Feature-Detection Rule DR and FR Trend 

 
C.5.2 HD Rule Trends 

The GC and OC trends of the HD rule for the best scenario illustrated in Figure 109 show 

that: 

 GC is initially equal to 62.9 at an average population size of 0.5, increases 

sharply to 156.94 at an average population size of 1.2, decreases sharply to 

100.69 at an average population size of 5.7 and then slowly increases to 149.35 

as the average population size increases. The GC trend is good because it 

indicates that the average generalisation exhibited by the generated detectors 

increases as the average population size increases. 

 OC initially increases slowly as the average population size increases and starts 

increasing at a rapid rate at an average population size of 5.7 until it is almost 

equal to GC at a population size of 661. The OC trend is bad because it 

illustrates that the amount of overfitting increases as the number of detectors are 

increased, i.e. the NSA is distributing detectors in a manner such that their 

detection regions overlap. 
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Figure 109. Mushroom Data Set - HD Rule GC and OC Trends 

 

The DR and FR trends of the HD rule for the best scenario illustrated in Figure 110 show 

that: 

 DR is initially constant at 0.5 and starts increasing at an average population size 

of 5.7 until it is equal to 0.99. 

 FR is initially constant at 0 as the average population size increases and then 

starts increasing at an average population size of 62.1. 

The DR trend is good because it illustrates that the DR value approaches one as the 

average population size increases. The FR trend is good because it illustrates that there is 

only a slight increase in the FR value as the average population size increases. 
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Figure 110. Mushroom Data Set - HD Rule DR and FR Trends 

 
C.5.3 RCHK (No MHC) Rule Trends 

The GC and OC trends of the RCHK (No MHC) rule for the best scenario illustrated in 

Figure 111 show that: 

 GC is initially equal to 27.16 at an average population size of 18.7 and then 

slowly increases to 33.6 as the average population size increases. The GC trend 

is essentially equal to an average of 27 and the fluctuation in the GC value is 

caused by the randomness that occurs when executing each test within the test 

group. 

 OC increases until it is equal to GC as the average population size increases. The 

OC trend is bad because it illustrates that the amount of overfitting increases as 

the number of detectors are increased, i.e. the NSA is distributing detectors in a 

manner such that their detection regions overlap. 
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Figure 111. Mushroom Data Set -  RCHK (No MHC) Rule GC and OC Trends 

 

The DR and FR trends of the RCHK (No MHC) rule for the best scenario illustrated in 

Figure 112 show that: 

 DR is initially constant and starts increasing at an average population size of 187 

until it is equal to 1. 

 FR is constant at 0 as the average population size increases. 

The DR trend is good because it indicates that the average DR value approaches 1 as the 

average population size increases. The FR trend is good because it is constant at 0 as the 

population size increases. 
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Figure 112. Mushroom Data Set - RCHK (No MHC) Rule DR and FR Trends 

 
 
C.5.4 RCHK (Global MHC) Rule Trends 

The GC and OC trends for the RCHK (Global MHC) rule for the best scenario illustrated 

in Figure 113 show that both GC and OC are 0 as the average population size increases. 

The GC trend is bad because it illustrates that the generated detectors are unable to 

generalise whereas the OC trend is good because it illustrates that the detectors are 

distributed in a manner such that their detection regions do not overlap. 

 
Figure 113. Mushroom Data Set - RCHK (Global MHC) Rule GC and OC Trends 
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The DR and FR trends of the RCHK (Global MHC) rule for the best scenario illustrated 

in Figure 114 show that: 

 DR is constant at 0.5 as the average population size increases. 

 FR is constant at 0 as the average population size increases. 

The DR trend is bad because it illustrates that increasing the magnitude of the average 

population size does not increase the DR value. The FR trend is good because it is 

constant at 0 as the average population size increases. 

 
Figure 114. Mushroom Data Set - RCHK (Global MHC) Rule DR and FR Trends 

 
 
C.5.5 RCHK (MHC) Rule Trends 

The GC and OC trends of the RCHK (MHC) rule for the best scenario illustrated in 

Figure 115 show that: 

 GC is initially equal to 89 at an average population size of 39.6, increases 

slightly as the average population size approaches 400.7 and then decreases to 

100. The GC trend is essentially equal to an average of 89 and the fluctuation in 

the GC value is caused by the randomness that occurs when executing each test 

within the test group. 
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 OC increases until it is equal to GC as the average population size increases. The 

OC trend is bad because it illustrates that the amount of overfitting increases as 

the number of detectors are increased, i.e. the NSA is distributing detectors in a 

manner such that their detection regions overlap. 

 

 
Figure 115. Mushroom Data Set -  RCHK (MHC) Rule GC and OC Trends 

 
The DR and FR trends of the RCHK (MHC) rule for the best scenario illustrated in 

Figure 115 show that: 

 DR increases as the average population size increases until it is equal to 1. 

 FR is constant at 0 as the average population size increases. 

The DR trend illustrates that DR is maximised at an average population size of 400.7. 

The FR trend is good because it is constant at 0 as the population size increases. 
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Figure 116. Mushroom Data Set -  RCHK (MHC Rule) DR and FR Trend 

 
 
C.5.6 RCHK (MHC) Rule vs. Feature Detection Rule Trends 

A comparison between the OC, GC, DR, FR and actual population size for the feature-

detection rule where   and the RCHK (MHC) rule for the best scenarios is 

presented in Figure 117 to  Figure 121 respectively. The figures show that the feature-

detection rule has lower OC, GC, FR and DR values than the RCHK (MHC) rule. Figure 

121 shows that the feature-detection rule is always able to achieve the target population 

size, , whereas the RCHK (MHC) rule is not always able to achieve the target 

population size. 
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Figure 117. Mushroom Data Set:  Feature-Detection Rule and RCHK (MHC) Rule – 

OC Comparison 

 

 
Figure 118. Mushroom Data Set:  Feature-Detection Rule and RCHK (MHC) Rule – 

GC Comparison 
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Figure 119. Mushroom Data Set:  Feature-Detection Rule and RCHK (MHC) Rule – 

DR Comparison 
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Figure 120. Mushroom Data Set:  Feature-Detection Rule and RCHK (MHC) Rule – 
FR Comparison 

 
 

 
Figure 121. Mushroom Data Set:  Feature-Detection Rule and RCHK (MHC) Rule – 

Population Size Comparison 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

10000

20000

30000

40000

50000

60000

4 5 8 18 29

Av
er

ag
e 

Va
lu

e

r

Feature-Detection Rule and RCHK Rule (MHC) - Actual Population 
Size Comparison

Feature-Detection Rule

RCHK Rule (MHC)

 
 
 


	The blood system is illustrated in Figure 1.



