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A critical analysis of two refactoring tools 
 
Abstract 
 

This study provides a critical analysis of refactoring by surveying the 

refactoring tools in IDEA and Eclipse. Ways are discussed to locate targets for 

refactorings, via detection of code smells from static code analysis in IDEA 

and during the compilation process in Eclipse.  

 

New code smells are defined as well as the refactorings needed to remove the 

code smells. The impacts the code smells have on design are well documented. 

Considerable effort is made to describe how these code smells and their 

refactorings can be used to improve design.  

 

Practical methods are provided to detect code smells in large projects such as 

Sun’s JDK. The methodology includes a classification scheme to categorise 

code smells by their value and complexity to handle large projects more 

efficiently.  

 

Additionally a detailed analysis is performed on the evolution of the JDK from 

a maintainability point of view. Code smells are used to measure 

maintainability in this instance. 
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Chapter 1 Introduction 
 

1.1 Background 
 
Refactoring helps to improve the design of existing code and adds in the extra 
constraint requiring that the behaviour of the refactored code is to stay the 
same after a refactoring has improved the design of existing code. The 
intention is to make the code more maintainable. 
 
The design of object-oriented software has been a topic of interest throughout 
the last decade. Fowler [1999] brought refactoring to the forefront of Java 
developers. Agile software methodologies such as XP [Beck 2000] have 
realised the need to accommodate change in software systems. With the need 
for change in software, come a new set of requirements: system flexibility and 
ease of maintenance. 
 
With the acceptance and incorporation of refactoring facilities in mainstream 
integrated development environments (IDEs) such as Eclipse and IDEA, it is 
worthwhile to study refactoring as it has a widespread impact in a software 
development life cycle where change occurs frequently. Change can be a result 
of changing user requirements, a change in the system environment or a new 
business process requiring additions to the software system. 
 
Identifying where and how change can occur in a software system will help 
understand what role refactoring can play in the change of a dynamic software 
system. The focus will mainly be on large software systems and use the Java 
development kit (JDK) as the basis for the analysis studies. 
 

1.2 Motivation 
 
Much has been written and many studies have been executed into the research 
field of refactoring. Through exposure to various programming languages and 
different problem domains one is able to see what factors are desirable in a 
language and which are not. For example, when comparing procedural and 
object-oriented programming languages one can see that there are clear 
advantages in terms of reuse, flexibility, encapsulation and so forth. However, 
these advantages only come with the proper use of object-oriented design, 
which needs to be taught and mastered before one can build a robust software 
system.  
 
The use of such techniques as design patterns have been held in high regard in 
academic and commercial circles. It was only at the turn of the millennium that 
refactoring started coming to the forefront and more followers started to 
understand its benefits. Refactoring research is still strong in that recently 
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Kerievsky [2004] has a book about refactoring to design patterns. There are 
mail groups available, which support refactoring communities, providing 
answers and discussions around refactoring. The mail group 
(refactoring@yahoogroups.com) is popular example with over 3800 members 
at present. 
 
The author of this dissertation was lucky enough to be involved in a J2EE 
software development project, which involved a major application involving 
stock trading with equity and future stocks. This is where he got the chance to 
get development experience as well a look into the world of Java development 
with Eclipse and a variety of open source products. In essence, his academic 
interest was married with that of his commercial career. 
 

1.3 Research objectives 
 
The early objective of this study was to gain as much information about 
refactoring as possible. This started with background reading into the domain, 
as well as experimentation with a refactoring tool. 
 
Over time, the focus shifted towards the need for an in-depth tool survey for 
refactoring. The tool survey was to provide a comparison between some of the 
many different IDEs, which supported refactoring, and to highlight the 
effectiveness of these tools in terms of productivity and scope. IDEA and 
Eclipse were chosen as the two tools for the tool survey. 
 
Once a tool survey was performed by using the 1.4.2 version of the JDK for 
code smell analysis and refactoring productivity, an analysis was done on the 
all of the other major versions of the JDK (from 1.0 to 1.5). This analysis 
provided a study into the evolution of the JDK by measuring the amount of 
code smells in each version and classifying them according to the proposed 
classification method. 
 
Therefore, the research objectives can be summarised as follows: 
 
1. To perform a tool survey that investigates refactoring support in common 

IDEs. 
 
2. To perform a study into the evolution of the JDK from a code smell 

perspective. 
 
There were a number of research questions that were posed, such as: 
 

1. What are the major advantages of the individual tools? 
 

2. What is the number of refactorings available in each tool? 
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3. How can code smells be detected within the tool? 
 

4. How is the IDE designed to facilitate code smell detection? 
 

5. Can one tool be considered better than another? 
 

6. Are there any productivity issues with the tools? 
 
 
Questions from a code evolution point of view where also posed, such as: 
 

1. What is the impact of code smells on software systems as they start to 
grow and are not refactored in an evolving system? 

 
2. How can one classify code smells, so that it is easier to filter out the 

less important code smells? 
 

3. How can one measure the quality of a system as it evolves? 
 

4. Can system quality to a certain degree, be measured by the amount of 
code smells that increase as code size increases over time? 

 
For future work questions such as the following where posed: 
 

1. What other methods can be used to organise the code smells when 
performing an analysis of the code base? 

 
2. How can the code smell information be mined so that it can be of more 

use to developers in charge of software maintenance? 
 

1.4 Overview 
 
The following provides a brief overview of all of the chapters contained in this 
dissertation: 
 
Chapter 2 discusses how software design, maintenance and evolution are 
impacted by refactoring. 
 
Chapter 3 answers many of the questions around refactoring. It also introduces 
motivations for the tool survey and JDK code review. 
 
Chapter 4 gives an introduction into the early and recent research done on 
refactoring.  
 
Chapter 5 provides a description into the analysis methodology used in the 
Eclipse and IDEA code reviews, which follow. 
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Chapter 6 presents the Eclipse code review. Ways are looked at to find and 
remove unnecessary code. 
 
Chapter 7 is the beginning of the IDEA code review. Most of the refactorings 
here are from Fowler’s work except for two identified and discussed in detail 
by the author. 
 
Chapter 8 is the second part of the IDEA code review. This work provides an 
overview of the work from Kerievsky [2004], as well as contributions from the 
author of this dissertation. 
 
Chapter 9 compares the two IDEs used for the code reviews. 
 
Chapter 10 describes the code reviews from a code evolution perspective.  It 
also reveals the statistics on code reviews performed on all major versions of 
the JDK, from version 1.0 to 1.5. 
 
Chapter 11 provides final thoughts on all of the results in the previous chapters.  
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Chapter 2 Software design, maintenance 

and evolution 
 
Throughout programming history, there have been many attempts to improve 
the design of code. This chapter starts with a description of design heuristics 
and design patterns (section 2.1) in order to introduce the theme of design 
issues in relation to object-oriented programming.  
 
Software maintenance and software evolution are also defined (in sections 2.2 
and 2.3 respectively) to provide an understanding of the links between software 
design, maintenance, evolution and refactoring. This will serve as an 
introduction to the next chapter, which focuses on the answers to the many 
questions around refactoring. The following sections provide an understanding 
of the impact of refactoring on the many other phases contained in the software 
development life cycle. 
 

2.1 Design Heuristics and Design Patterns 
 

2.1.1 Design Heuristics 
 
The more general design guidelines for developing object-oriented systems are 
often represented by design heuristics. The 68 design heuristics (found in the 
appendix) catalogued by Riel [1996] are good examples of such heuristics. Riel 
placed these heuristics into eight different categories, where each heuristic that 
he mentioned had a name, an outline and example of the problem, as well as a 
suggested approach to solve the problem.  
 
Grotehen and Dittrich [1997] have an object oriented design method called 
MeTHOOD (Measures, Transformation Rules, and Heuristics for Object-
Oriented Design) which discusses 20 design heuristics. For each heuristic, 
MeTHOOD describes the following: a heuristic name, a short description, a 
definition, its rationale, its position in life cycle, the heuristic’s granularity, an 
example, subsuming/subsumed heuristics, checking rules, transformation rules, 
violated heuristics, justification for violating these heuristics, and its effect on 
measures. 
 
Although these design heuristics are too numerous to memorize in a short 
space of time (consider Riel’s 68 design heuristics), they are nevertheless 
useful tips on what aspects of the design to focus on. If considered before the 
initial implementation of an object-oriented program, design heuristics will 
help considerably in the design of the program. All of these heuristics are 
discussed in [Riel 1996]. 
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The design heuristics themselves seem very simple at first glance. For deeper 
insight, one needs to understand why a given heuristic constitutes a guideline 
for good design in the first place, and this cannot always be easily understood 
from reading the heuristic itself. Therefore, to understand heuristics, one needs 
to understand what good design is and before using the heuristic, one should 
understand in what sense it can improve the design. This requires a detailed 
description and examples of the problem, which the heuristic proposes to solve. 
 
An example heuristic would be ‘Keep related data and behavior in one place’. 
This is a very general heuristic and it explains that in order to be able to find 
related data and behavior, one should keep it in one place. The place in object-
orientated programming is a class. Object orientated programming is about 
coupling data and behavior. Other software architectural styles such as SOA 
decouple data from behavior. The move (variable or method) refactoring can 
be used to move unrelated data to the correct classes. 
 
A more complicated heuristic would be ‘Inheritance should only be used to 
model a specialization hierarchy’. In other words, one should not just use 
inheritance to share data between classes or just to eliminate duplicate code. 
Inheritance should rather be used to model the “is a” relationship. For example, 
a car is a vehicle and should inherit from the vehicle class if there are common 
behaviors between the vehicle and car. In this example, the car is a 
specialization of the vehicle. 
 
Another interesting heuristic not mentioned in the appendix is: ‘Choose 
interfaces over abstract classes’. If one knows something is going to be a base 
class, the first choice should be to make it an interface, and only if one is 
forced to have method definitions or member variables should one change it to 
an abstract class. An interface talks about what the client wants to do, while a 
class tends to focus on (or allow) implementation details. The ‘extract 
interface’ refactoring can be used to extract an interface from a class and make 
that class implement it. All other classes with the same interface can implement 
it. This refactoring clearly helps in implementing the heuristic. The idea of 
using a common interface allows one to represent multiple objects, which have 
different behaviour, but the same interface. 
 

2.1.2 Design Patterns 
 
Gamma et al. [1995] have a more specific approach to improving design than 
the more general approach of following design heuristics, as discussed above. 
Instead, they advocate the use of design patterns in order to improve design. 
The design patterns can be seen as solutions to re-occurring design problems 
and are categorized into behavioral, creational and structural design patterns. 
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Gamma et al. [1995] mention an important fact in relation to design: “Design 
patterns help one determine how to reorganise a design, and they can reduce 
the amount of refactoring one needs to do later. Useful abstractions and 
patterns are seldom found during analysis or even the early stages of design; 
they're discovered later in the course of making a design more flexible and 
reusable.”  
 
When refactoring to patterns, Kerievsky [2004] realised that there is no need 
for one big static design when building a system that is easy to maintain. 
Refactoring to patterns will result in refactorings to existing code, which in 
turn makes further refactorings easier to do, because the initial refactorings 
take into consideration the design issues in the current code. Therefore, design 
evolution or continuous design [Shore 2004] plays a big role while 
implementing software, because it is almost impossible to think of all of the 
design issues before a project has begun its implementation phase. 
  
The simplest example of a design pattern is probably the Singleton. This design 
pattern ensures a class only has one instance, and provides a global point of 
access to it.   
 

 
Figure 1: Singleton Design Pattern Structure diagram 

 

The Singleton pattern from Gamma et al. [1995] has several benefits: 

1. Controlled access to sole instance. Because the Singleton class 
encapsulates its sole instance, it can have strict control over how and 
when clients access it. 
 

2. Reduced name space. The Singleton pattern is an improvement over 
global variables. It avoids polluting the name space with global 
variables that store sole instances. 
 

3. Permits refinement of operations and representation. The Singleton 
class may be subclassed, and it is easy to configure an application with 
an instance of this extended class. One can configure the application 
with an instance of the class one needs at run-time. 
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4. Permits a variable number of instances. The pattern makes it easy to 
change ones mind and allow more than one instance of the Singleton 
class. Moreover, one can use the same approach to control the number 
of instances that the application uses. Only the operation that grants 
access to the Singleton instance needs to change. 
 

5. More flexible than class operations. Another way to package a 
singleton's functionality is to use class operations (that is, static member 
functions in C++ or class methods in Smalltalk). But both of these 
language techniques make it hard to change a design to allow more than 
one instance of a class. Moreover, static member functions in C++ are 
never virtual, so subclasses cannot override them polymorphically. 

  
Figure 2: Observer Design Pattern Structure diagram 

A more complex design pattern from Gamma et al. [1995] is the Observer 
design pattern: 

The Observer pattern lets one vary subjects and observers independently. One 
can reuse subjects without reusing their observers, and vice versa. It lets one 
add observers without modifying the subject or other observers. 

Further benefits and liabilities of the Observer pattern include the following: 

1. Abstract coupling between Subject and Observer. All a subject knows 
is that it has a list of observers, each conforming to the simple interface 
of the abstract Observer class. The subject doesn't know the concrete 
class of any observer. Thus the coupling between subjects and 
observers is abstract and minimal.  

Because Subject and Observer aren't tightly coupled, they can belong to 
different layers of abstraction in a system. A lower-level subject can 
communicate and inform a higher-level observer, thereby keeping the 
system's layering intact. If Subject and Observer are lumped together, 
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then the resulting object must either span two layers (and violate the 
layering), or it must be forced to live in one layer or the other (which 
might compromise the layering abstraction). 

2. Support for broadcast communication. Unlike an ordinary request, the 
notification that a subject sends needn't specify its receiver. The 
notification is broadcast automatically to all interested objects that 
subscribed to it. The subject doesn't care how many interested objects 
exist; its only responsibility is to notify its observers. This gives one the 
freedom to add and remove observers at any time. It's up to the 
observer to handle or ignore a notification. 
 

3. Unexpected updates. Because observers have no knowledge of each 
other's presence, they can be blind to the ultimate cost of changing the 
subject. A seemingly innocuous operation on the subject may cause a 
cascade of updates to observers and their dependent objects. Moreover, 
dependency criteria that aren't well-defined or maintained usually lead 
to spurious updates, which can be hard to track down.  

This problem is aggravated by the fact that the simple update protocol 
provides no details on what changed in the subject. Without additional 
protocol to help observers discover what changed, they may be forced to work 
hard to deduce the changes. 

 

2.1.3 Conclusions 
 
Overall, the above approaches have the following in common: they strive to 
reduce complexity and improve the flexibility of code. These are attributes of a 
well-designed system. Refactoring builds on these ideas, but adds in the extra 
constraint requiring that the behaviour of the refactored code is to stay the 
same after a refactoring has improved the design of existing code in order to 
make it more maintainable. 
 
It is reasonable to suggest that at least some of the heuristics mentioned by the 
experts above could be implemented by refactoring. Therefore, if a piece of 
code breaks a certain heuristic then it can be considered a candidate for 
refactoring. The only requirement would be that the runtime behaviour 
resulting from the design changes would have to remain unchanged. 
 
Code smells are targets for refactorings since they represent bad code design 
and they may lead to more un-maintainable code. The lack of heuristics (refer 
to the Appendix for examples) can be used to automatically check the design 
for potential design flaws and can therefore be seen as potential candidates for 
code smells.  
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When considering the sheer number of heuristics, design patterns, code smells 
and refactorings that are available, it makes sense to employ an IDE to manage 
and implement this knowledge more efficiently on a source code level. This 
will be discussed further on in the dissertation, specifically in Chapters 5, 6, 
 
It is interesting to note that some design patterns may in fact violate a few 
heuristics, for very good reasons. A number of such examples can be seen in 
Molla’s [2005] dissertation where a comparison between design patterns and 
heuristics is given. In such cases, it is up to the designer to decide which rule or 
patterns can be overridden.  
 
For example the following violations are identified by Molla [2005] just for the 
Observer pattern alone. Molla [2005] provides a description of the pattern, the 
specific deign heuristic violations, a reason as to why it violates certain design 
heuristics and comments: 
 
Observer pattern 
Observer pattern describes how to establish relationships. In this pattern, the 
change in the state of an object can cause automatic updates in a list of 
dependents objects, that means each observer will query the subject to 
synchronize its state with all dependents state. 
 
Violate: “Keep related data and behavior in one place” (see # 2.9 in Appendix 
A.3) and “Minimize the number of classes with which another class 
collaborates” (see # 4.1 in Appendix A.3). 
 
Reason for violation: The motivation for this violation is to minimize the 
strength of the coupling between the subject and the observers. 
Comments: When an object changes in the system, all its dependent objects 
are notified and updated automatically. For example, consider a spreadsheet 
program, when data insert or modify in that program, all the corresponding 
charts are change immediately, because document and chart class must know 
each other. The main idea of observer pattern is changing data in a window 
should be immediately reflect in all. This pattern also teaches how an object 
can tell other objects about events. 
 

2.2 Software Maintenance 
 
Refactoring is used to make code easier to understand and maintain. In order to 
understand what maintainable code is one needs to understand what software 
maintenance entails. 
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2.2.1 Definition 
 
The IEEE [1998] has the following definition for software maintenance: 
  

1. Adaptive maintenance – “Modification of a software product performed 
after delivery to keep a computer program usable in a changed or 
changing environment”. 

 
2. Corrective maintenance – “Reactive modification of a software product 

performed after delivery to correct discovered faults”. 
 

3. Perfective maintenance – “Modification of a software product after 
delivery to improve performance or maintainability”. 

 
Once a software system has been released, it is usually the case that a few bugs 
still exist and maintenance work still needs to be done. If the code was poorly 
designed it is possible to introduce more bugs into the system while trying to 
fix the new ones. This is especially the case for new developers that have no 
regard or knowledge of the existing design and its purpose. 
 
Performance issues may also arise, once more users start using the system. 
These issues may be fixed by buying more machines to improve scalability, but 
often times it is cheaper to improve the software. When refactoring it is 
important to note that, it may cause performance issues. When improving 
design, it is sometimes the case that performance is increased. In fact, it 
normally decreases performance. Fowler [1999] argues that refactored code is 
easier to optimise. Usually a profiler will be used to profile a specific 
applications performance. A profiler will normally identify specific hot spots in 
the code, which take a long time to complete. In general, only 10% of the code 
takes 90% of the time to run. This means that if the code is refactored properly, 
then it will be easier to find the hotspots, since the methods should be small 
and well structured, opposed to a program that is not refactored. Smaller parts 
of the code are easier to tune.  
 
The addition of new features also provides many challenges to software 
maintenance, as the system needs to be flexible enough to grow and simple 
enough to maintain. These issues will however be discussed in the next main 
sub-section (2.3) under the heading of software evolution.  
 

2.2.2 When development becomes maintenance 
 
Mantyla [2003] provides a literature survey on software maintainability in the 
context of refactoring and bad code smells as a whole.  
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From several references found in this dissertation, it is widely accepted that all 
changes to a product after it has been accepted by the client (or after its first 
public release) can be classified as maintenance.  
 
When considering the above statement and the fact that most software would 
be maintained for much longer than the time it actually took to originally write 
the software, then it is clear that maintenance can become very costly, 
especially if the lifespan of a software product is expected to be long.  
 

2.2.3 Maintenance cost factors 
 
Sommerville [2004] describes how maintenance costs are usually two to a 
hundred times greater than development costs, depending on the application. 
He attributes maintenance costs to the following factors: 
   

1. Team stability - Maintenance costs are reduced if the same staff is 
involved with the maintained software for some time. 

 
2. Contractual responsibility - The developers of a system may have no 

contractual responsibility for maintenance so there is no incentive to 
design for future change. 

 
3. Staff skills - Maintenance staff are often inexperienced and have limited 

domain knowledge. 
 
4. Program age and structure - As programs age, their structure is 

degraded and they become harder to understand and change. Structure 
degradation can occur through constant addition of enhancements and 
changing requirements. 

 

2.2.4 Maintenance and change prediction 
 
Sommerville [2004] mentions that maintenance prediction is concerned with 
assessing which parts of the system may cause problems and have high 
maintenance costs and adds the following facts about system maintainability: 
 

1. Change acceptance depends on the maintainability of the components 
affected by the change; 

 
2. Implementing changes degrades the system and reduces its 

maintainability; 
 
3. Maintenance costs depend on the number of changes and costs of 

change depend on maintainability. 
 

 
 
 



 21

Sommerville [2004] goes on to say the following about change prediction: 
 

1. Predicting the number of changes requires an understanding of the 
relationships between a system and its environment. 

 
2. Tightly coupled systems tend to require changes whenever the 

environment is changed. 
 

3. Factors influencing the difficulty of maintenance with regards to 
changes are: 

 
• Number and complexity of system interfaces; 
• Number of inherently volatile system requirements; 
• The business processes where the system is used. 

 

 
Figure 3: Maintenance Prediction 

 
Figure 3 above from Sommerville [2004] gives a good indication of the 
questions that need to be answered about predicting maintainability, system 
changes and maintenance costs. 
 
As Sun Microsystems [1999] points out, code conventions are vital for a 
number of reasons:  

• Eighty percent of the lifetime cost of a piece of software goes to 
maintenance.  
 
• Hardly any software is maintained for its whole life by the original author.  
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• Code conventions improve the readability of the software, allowing 
engineers to understand new code more quickly and thoroughly.  
 
• If one ships source code as a product, it should be ensured that it is as well 
packaged and as clean as possible. 

Code conventions should be considered as a complementing technique for 
refactoring, as refactoring is also extensively used in the maintenance phase 
and leads to more maintainable code. 
It is interesting to note that most modern IDE’s can now format source code 
according to pre-defined code conventions. This allows code created by 
different programmers to be formatted in exactly the same way in regard to 
factors such as comments, indentation, white space, line wrapping etc.  
 
If each programmer were allowed to have his or her own style, then it will be 
harder to read and understand the code when one is trying to adapt from 
reading one style to another. However, having one standardised set of code 
conventions to which programmers need to adhere, results in code which is 
easier to read and thus more maintainable. Therefore it is important to 
standardise on a code convention and to use a common IDE which can easily 
implement it. For example, at the time of writing this dissertation, Eclipse had 
built-in Java code conventions, which can be applied by formatting the code 
with the hot-keys CTRL-SHIFT-F. 
 

2.2.5 Source Code Metrics 
 
Complexity metrics for object oriented programming go far beyond those of 
procedural programs. In the past the simple LOC metric was used to measure 
maintainability along with other measures such as McCabe’s [1976] 
Cyclomatic complexity measure. Now measures include measures of 
complexity for control and data structures. Complexity also depends on object, 
method and module size. Many more complexity metrics will be discussed 
throughout this dissertation in order to locate possible design flaws and areas 
which will be particularly difficult to maintain. 
 
Together with using the JDK compiler in conjunction with Eclipse to find 
unused code, IDEA’s static code analysis techniques will be used to locate 
targets for refactoring. Mantyla [2003] argues that source code metrics are a 
reliable measure of maintainability and presents case studies by Bandi et al 
[2003] and by Li & Henry [1993a, 1993b] that prove this true for object-
oriented source code metrics. 
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2.2.6 Conclusions 
 
It is important to lay down the above facts as this dissertation will be talking 
about the maintainability of software. If maintenance is not properly done or if 
the product was not properly designed in the first place, then the product will 
be very hard to maintain and this will escalate maintenance costs and 
development effort needed for maintenance. 
 
A common scenario in the commercial IT industry is for IT consultants to 
complete a software product, release it to the public or into production and then 
move onto another project, leaving the project to be maintained by other 
developers who have no prior knowledge of how the system was designed. A 
short handover process may take effect between the old and new developers, 
and a large portion of intellectual capital is still lost to the developers who 
leave with their experience.  
 
The loss of intellectual capital impacts directly on increased maintenance costs 
caused through the lack of knowledge of the new developers. Not knowing 
how a system works will lead to a developer spending a lot more time figuring 
out a system, rather than actually being able to perform maintenance work.  
 
Developers are paid for the time they spend during maintenance. Increased 
effort by new developer’s results in increased costs and longer maintenance 
iterations then what was previously experienced with the original developers of 
the software product. This is because the original developers already had 
experience with the system since some of them actually wrote the code for it. 
The developers who first implemented the software product will be the ones 
with the most experience and knowledge of the software product and would 
therefore be the best potential candidates concerning any further maintenance 
tasks that would be required. 
 
It is therefore important to realise the impact of losing the original developers. 
Loss of intellectual capital can also in effect directly reflect in the increased 
maintenance costs. 
 

2.3 Software Evolution 
 
Refactoring can be used to improve the design of existing code and thereby 
evolve the software. Sommerville [2004] explains that proposals for change are 
the driver for system evolution. Change identification and evolution continue 
throughout the system lifetime. 
 
Evolution processes will depend on: 
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1. The type of software being maintained; 
 

2. The development processes used; 
 

3. The skills and experience of the people involved. 
 

2.3.1 Design Evolution 
 
Tokuda [1999] notices that as applications evolve, so do their designs.  
 
Designs evolve for many reasons: 
 

1. Capability to support new features or changes to existing features. 
 

2. Reusability to carve out software artifacts for reuse in other 
applications. 
 

3. Extensibility to provide for the addition of future extensions. 
 

4. Maintainability to reduce the cost of software maintenance through 
restructuring. 

 
Tokuda observed that designs also evolve for human reasons: 
 

1. Experience - Experienced employees may create better designs based 
on their domain knowledge. 

 
2. New Perspective - New project members often have different ideas 

about how a design could or should be structured. Many organizations 
use a code ownership model, which empowers new employees with the 
ability to realize their ideas. 

 
3. Experimentation - Arriving at a suitable design may require exploration 

of different design paths. Tokuda observed software cycles in which the 
principal development activity was experimentation with multiple 
designs. 

 
Tokuda’s [1999] research assesses the capabilities of refactorings for evolving 
object-oriented designs and attempts to determine if refactoring technology can 
be successfully transferred to mainstream programming languages such as C++ 
and Java. 
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2.3.2 The 8 laws of software evolution 
 
Process evolution dynamics involves the study of the processes of system 
change.  Lehman & Belady [1985] conducted empirical studies into the process 
evolution dynamics of many organizations and concluded the following eight 
laws: 
 

1. Continuing change - A program that is used in a real-world 
environment necessarily must change or become progressively less 
useful in that environment. 

2. Increasing complexity - As an evolving program changes, its structure 
tends to become more complex. Extra resources must be devoted to 
preserve and simplify the structure. 

3. Large program evolution - Program evolution is a self-regulating 
process. System attributes such as size, time between releases and the 
number of reported errors is approximately invariant for each system 
release. 

4. Organizational stability - Over a program’s lifetime, its rate of 
development is approximately constant and independent of the 
resources devoted to system development. 

5. Conservation of familiarity - Over the lifetime of a system, the 
incremental change in each release is approximately constant. 

6. Continuing growth - The functionality offered by systems has to 
increase to maintain user satisfaction. 

7. Declining quality - The quality of systems will appear to be declining 
unless they are adapted to changes in their operational environment. 

8. Feedback system - Evolution processes incorporate multi-agent, multi-
loop feedback systems and one has to treat them as feedback systems to 
achieve significant product improvement. 

 

2.3.3 Software reengineering 
 
When considering that software, either reengineering involves the complete re-
writing of a system or the restructuring thereof, one can draw the conclusion 
that refactoring may be used for re-structuring under the condition that 
behaviour is to be persevered. 
 
According to Sommerville [2004], reengineering of sub-systems, which are 
frequently maintained, is appropriate in order to make the frequently used sub-
systems more maintainable. 
 
 
 
 
 

 
 
 



 26

Reengineering is seen as an alternative to developing a new system when one 
considers the advantages:  
 

1. Reduced risk - There is a high risk in new software development. There 
may be development problems, staffing problems and specification 
problems. 

 
2. Reduced cost - The cost of re-engineering is often significantly less 

than the costs of developing new software. 
 

2.3.4 Conclusions 
 
Design and software evolution are complex topics, which deserve to have tools 
dedicated to them in order to cope with change. Refactoring may be used in the 
re-structuring portion of re-engineering, which may also include total re-
writing of code. Reengineering is often seen as a means of saving money, by 
not having to develop a new system. 
 

2.4 Summary 
 
This chapter started with a description of design heuristics and design patterns 
to introduce the theme of design issues in relation to object-oriented 
programming. Three examples of design heuristics are given. Examples are 
also given into how one can use refactorings in order to introduce the absence 
of heuristics. The Singleton design pattern is introduced and its major 
advantages are identified. A brief discussion is given towards the conflicts that 
can appear between design patterns and design heuristics as was found to be 
the case with the Singleton design pattern. 
 
Software maintenance and software evolution are also defined (in sections 2.2 
and 2.3 respectively) to provide an understanding of the links between software 
design, maintenance, evolution and refactoring. This will serve as an 
introduction to the next chapter, which focuses on the answers to the many 
questions around refactoring. The following sections provide an understanding 
of the impact of refactoring on the many other phases contained in the software 
development life cycle. 
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Chapter 3 Refactoring  
 

3.1 Definition 
 
Refactoring helps to improve the design of existing code and adds in the extra 
constraint requiring that the behaviour of the refactored code is to stay the 
same after a refactoring has improved the design of the existing code. This will 
in turn make the code more maintainable. 
 
One definition of the word “factor” means to influence something. If X has an 
influence in Y then X is a factor in Y. To factor in X in situation Y, is to take 
X’s influence into account in situation Y. Thus, to re-factor situation Y, is to 
reconsider (the influence of X) in situation Y. To refactor means to re-
influence something that already exists. There is however a deeper meaning in 
the computer science context. To refactor a program, one would need to apply 
one or more refactorings in such a way as to improve the design of the program 
and simultaneously preserve the programs behaviour. These refactorings 
should be performed with the intention of improved software maintainability 
and design. A simple example would be to refactor a long method into shorter 
methods with more descriptive names in order to improve the readability of the 
code.   
 

3.2 Overview 
 
One needs to know how refactoring fits into the software engineering process 
in order to see how to benefit from it.  
 
Foote [1997] explains: “Building systems from the ground up is expensive and 
time consuming. Moreover, it is difficult to tell if they really solve the 
problems they were intended to solve until they are complete.”  
 
Agile runs the risk of evolving architectural chaos. The absence of a grand 
design risks the development of the software equivalent of a squatter camp, 
instead of a beautiful urban complex. This is exacerbated if revisions / updates 
also take place in an uncontrolled fashion. Refactoring is one of the ways of 
controlling the updates and revisions in a disciplined fashion. If one considers 
that no major upfront design takes place in agile practises then it should be 
clear that without an opportunity to redesign certain elements of the code, 
architectural chaos could ensue. This is especially the case in environments 
where change is inevitable and refactoring allows those software changes to 
take place in a controlled manner.  
 
Agile software methodologies like XP [Beck 2000] claim an inherent 
inflexibility in designs which do not evolve with the development of a system, 
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and that the resulting cost of change is high in such systems. Continuous design 
[Shore 2004], which utilises refactoring, allows one to add more flexibility into 
the design by not having a big upfront design, but rather by adding to the 
design as the need arises. Thus, the design will evolve as the code grows. With 
the coming of agile software development, there is a shift from building 
software to growing it. The process of refactoring can be used to achieve the 
growth. 
 
Garlan [1994] mentions: “Object-oriented systems have some disadvantages. 
The most significant is that in order for one object to interact with another (via 
a procedure call) it must know the identity of that other object. This is in 
contrast, for example, to pipe and filter systems, where filters do not need to 
know what other filters are in the system in order to interact with them. The 
significance of this is that whenever the identity of an object changes it is 
necessary to modify all other objects that explicitly invoke it. “  
 
Automated refactorings manage to soften the disadvantages of the object 
oriented architectural style, by modifying the part of the object that is invoked 
and all of the invokers as well. Thus, any dependencies are seamlessly 
resolved, as the refactoring tool will usually utilise an abstract syntax tree or 
code database, which will hold the crucial code dependencies that need to be 
updated whenever a refactoring is made. More examples of this will be shown 
later on in Chapter 6 to Chapter 8. 
 

3.3 Applicability 
 
Refactoring can be used in different contexts. For example to:  
 

1. improve the design and code quality of existing systems; 
 
2. evolve the design of systems dynamically through incremental 

development with practises such as test driven development and agile 
methodologies, thereby negating the need for a big upfront design; 

 
3. understand how existing code works [Fowler 1999]; 

 
4. manage change in a software organisation [Beck 2000]; 

 
5. perform refactoring at an architectural level [Van Kempen 2005]; and  

 
6. refactor with design patterns as targets of the refactoring [Kerievsky 

2004]. 
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3.4 Motivations 
 
Gamma et al. [1995] explain the role that refactoring plays rather well: “Once 
software has reached adolescence and is put into service, its evolution is 
governed by two conflicting needs: (1) the software must satisfy more 
requirements, and (2) the software must be more reusable. New requirements 
usually add new classes, operations, and perhaps even entire class hierarchies. 
The software goes through an expansionary phase to meet new requirements. 
This cannot continue for long, however. Eventually the software will become 
too inflexible and arthritic for further change. The class hierarchies will no 
longer match any problem domain. Instead, they will reflect many problem 
domains, and classes will define many unrelated operations and instance 
variables. To continue to evolve, the software must be reorganized in a process 
known as refactoring. This is the phase in which frameworks often emerge.” 
 
Gamma et al. [1995] warn that when faced with design issues like 
encapsulation, granularity, dependency, flexibility, performance, evolution and 
reusability it is almost impossible to create a perfect design first time, 
especially when considering that these design issues often conflict when one is 
trying to decompose a system into objects. 
 
Although refactoring fits best in agile methodologies, it is not a technique only 
used in iterative development scenarios. Large projects have design issues, 
which can be detected through the correct analysis tools found in common 
IDEs. These design issues are in turn, potential targets for refactorings. 
 
Developer intervention in refactoring is more desirable in some cases, as there 
are still a few problems with refactoring automations for specific code smells. 
These problems will be discussed in detail later in this dissertation. IDEs have 
advance to the point where they are able apply refactorings on a project or 
global scale, through the click of one button. This allows several thousand code 
smells to be eradicated without the need to manually remove each one. 
 

3.5 Problems  
 

Refactoring is a good practise, but there are a few troubles in applying 
refactoring in the real world. Here are four possible reasons Opdyke [1992] 
mentions as to why one might still not refactor programs: 
 

1. One might not understand how to refactor. 
 
2. If the benefits are long-term, why exert the effort now? In the long 
term, one might not be with the project long enough to reap the benefits. 
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3. Refactoring code is an overhead activity; one is paid to write new 
features. 
 
4. Refactoring might break the existing program. 

 
An organisation’s management structure may be inflexible and may not allow 
the proper environment in which one would need to refactor. Such an 
environment would typically need unit testing to test the refactorings. Beck and 
Gamma [JUnit 2005] created a popular Java unit test framework. 
 
If no unit tests had been done during the development of the project then the 
amount of work needed to implement these unit tests as part of a refactoring 
process, could outweigh the benefits received from such refactoring. Generally, 
one should only consider refactoring if unit tests were properly carried out in 
the first place. However, there have been recent suggestions for the automatic 
generation of test cases for a Java class file. This approach makes use of a 
symbolic Java virtual machine that can generate constraints representing the 
conditions for the control flow under consideration. No feasible tool has been 
developed yet, but there is future work planned by Müller et al [2006]. 
 

3.6 Tool Survey Motivation 
 
The aim of the tool survey was to see what the capabilities of the common 
open source and commercial IDEs were, in terms of their refactoring tool 
support. For the purpose of the survey, IBM’s Eclipse and IntelliJ’s IDEA was 
chosen. IDEs such as Netbeans, Jbuilder Enterprise 2005, CodePro’s Studio, 
Jrefactory, CodeGuide and Jfactor were compared. Eclipse and IDEA had the 
most amounts of automated refactorings available and were therefore chose for 
the tool survey. This information was sourced from another refactoring plug-in 
Refactorit [2006].  
   
The automated refactorings in most modern IDEs allow one to preview the 
resulting impact of the refactorings on code. The preview also shows warnings 
when code could be negatively impacted. The automated refactorings consider 
the entire project code and thus save one a lot of time compared to manual 
refactorings. The latter are error prone and rely on the compilation process to 
dig out errors caused by unchecked dependencies that might have been missed 
by the manual work of the programmer. 
 
Currently, there is a choice between manual and automated refactorings. The 
programmer alone performs manual refactorings, which are more error-prone 
when compared to the automated refactorings available in IDEs. Automated 
refactorings are performed in such a way as to automate most of the code 
restructuring, so that limited input is needed from the developer and the chance 
of a successful refactoring will be high. In most cases all that is needed is for 
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the programmer to click on a specific piece of code and to select an applicable 
refactoring from a drop down menu. There is also a choice between searching 
for targets for refactorings and having the IDE do it through static code 
analysis or through a compiler refactoring approach. IDEA uses a static code 
analysis approach while Eclipse utilises a compiler refactoring approach. 
 
These issues can make or break the ease with which refactoring is performed. 
The problem is to find practical, inexpensive solutions for enterprises that wish 
to evolve their designs through refactoring. 
 
Building refactoring tools, which preserve behaviour, requires that a set of pre 
conditions be met before each refactoring is run and post conditions after the 
refactoring is run. These conditions are different for each refactoring and 
research by Roberts [1999a, 1999b] and Kataoka et al [2001] was done to 
ensure behaviour is indeed preserved in automated refactorings. Korman 
[1998] also provides a star diagram method, which is used for exploring, 
planning and carrying out refactorings of Java code. Opdyke [1992] defines pre 
and post conditions that hold for all of his refactorings in order to preserve 
behaviour. 
 

3.7 Code Review Motivation 
 
After using the different IDEs on a few code bases, the code review was 
performed with IDEA and Eclipse. Results from both of these reviews will be 
presented. A description of code smells that can be found is given as well as 
the refactorings needed to fix these issues. There are issues of productivity, 
which separate the two IDEs, and the weak and strong points will be 
highlighted in the chapters to come.  
 
Through the code review, a detailed study of the code smells present in the 
JDK code base was given. Through the experience of the author, information is 
given on how to recreate the code review. An insight is given into the many 
different code issues and how to fix them. A classification method is proposed 
to be able to sift through the many code smells that are found. Classification 
enables us to focus on problems, which are more urgent, and to leave less 
severe problems for later. 
 
An opportunity arose from the Java JDK to find and analyse code smells as 
well as their target refactorings. By reviewing all the different versions from 
1.0.2 to 1.5.0, a more detailed understanding was gained of how code smells 
grow along with a large code base (Chapter 10). Chapter 10 also highlights the 
potential risks identified in the case where refactoring is not applied on an 
ongoing basis. These risks come in the form of code smells. 
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3.8 Summary 
 

A continuous design process [Shore 2004] allows one to evolve a design to 
make the maintenance phase less costly by adding more flexibility and 
reusability into the code as well as solving any design issues overlooked 
previously.  
 
Refactoring plays an important role in continuous design and certainly has 
benefits, but the process must be adequately managed to ensure that it is done 
properly. The following chapter provides an insight into the roots of refactoring 
where old and recent research on refactoring is discussed. 
 
In this chapter, a stronger refactoring background was given. Motivations for 
the tool survey and code reviews were discussed. The following chapter give 
more insight into the previous and current research work done in the research 
field of refactoring. 
 
Chapter 5 describes the analysis methodology used to perform the code 
reviews.  
 
Chapter 6 contains the Eclipse code review and Chapter 7 and Chapter 8 the 
IDEA code review. The IDEA code review was divided into two parts in order 
to distinguish the two main influences ([Fowler 1999] and [Kerievsky 2004]) 
that governed the code review. 
 
The rest of the chapters include an IDE comparison, which forms part of the 
tool survey as well as a code evolution chapter, which forms part of the code 
review. 
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Chapter 4 The roots of refactoring 
 
This chapter indicates where refactoring first started and introduces important 
research recently conducted in the field.  
 

4.1 Introduction 
 
Opdyke was the first to coin the term “refactoring” and proceeded to introduce 
8 basic refactorings, which where broken down into 26 low-level refactorings 
and 3 more abstract, high-level refactorings (made up of low-level ones). 
Although Opdyke’s work had examples in C++, Fowler later used most of 
these refactorings in his book [Fowler 1999], but used Java as the language of 
choice. Fowler provides a catalogue of over 70 refactorings for class design. 
He also explains how to identify hotspots for refactorings, which he calls “bad 
smells”. 
 
Opdyke focused on refactoring object-oriented programs, since the underlying 
language structures where far richer than other languages. He mentions three 
cases where refactorings may be applied, namely to: 
 
1. Extract re-usable components. 
 
2. Improve consistency among components. 
 
3. Support an iterative design approach. 
 
Refactoring owes its firm foundations to research by Griswold [1991] and 
Opdyke [1992]. Griswold started to reason about program restructurings and 
how software maintenance (enhancement and repair) remains 
disproportionately expensive, relative to the expected cost of the required 
changes and the quality of the resulting software.  
 

4.2 Founding Work 
 
Griswold [1991] provides research to support that the size of the system tends 
to grow linearly with respect to the release interval number; the complexity of 
the system grows exponentially in relation to its size. This model for 
complexity equates to the cost of a change, since to make a correct change 
requires crosschecking for consistency over an exponential number of 
relationships. 
 
Griswold [1991] further points out: Anti-regressive techniques or techniques, 
which aim to improve software maintainability, are ignored under financial and 
time pressures and, because they are not usually as psychologically satisfying 
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as progressive activities. As complexity increases so does the need for anti-
regressive activity. This should be maintained only while complexity is not too 
large.  
 
The idea is that automated restructuring will have constant cost with respect to 
release number, and thus constant complexity. Refactoring cannot reduce the 
number of existing faults, since meaning is preserved. If refactoring is targeted 
to the change, so that it is localized within a module, the number of layer 
elements and their pair-wise interactions of elements for the proposed changes 
is reduced drastically [Griswold 1991]. Simply put, if the change is localised to 
influence only one module, then the number of dependencies needed to be 
refactored decreases. Whereas the opposite case would be to influence a 
module with many dependencies, resulting in many more interactions that 
would need to be refactored. As automated refactoring tools are able to deal 
with more complexity, so the cost of such restructuring becomes linear with 
respect to complexity. 
 
Opdyke’s research focus was on using refactorings in order to support an 
iterative design approach.  Three options come to mind when improving an 
existing system: Redesign, rewriting or re-structuring. Opdyke realised that 
generally re-structuring was the better choice. He describes a refactoring as a 
program restructuring that needs to provide meaningful abstractions. The 
abstractions are used to refactor the program easier to re-use and extend. He 
puts great effort into realising an automated approach to refactoring, but also 
warns that an automated tool should only be made to aid the designer to apply 
the refactorings correctly and not to decide which refactorings to perform.  
 

4.3 Recent Research 
 
Related work from Tokuda [1999] stresses that being able to adapt software to 
change will result in lowering of project costs. The process is to refactor a 
system without changing its behaviour and improving its design so as to be 
able to extend the system easier. Tokuda [1999] focuses mainly on design 
evolution and stresses the fact that as an application evolves so too does its 
design. He goes on to say that, design evolution patterns need to be identified 
and that these patterns can be recognized as program transformations, which 
are automatable with object-oriented refactorings. 
 
Cinnéide [2000] develops design pattern transformations by taking a pattern, 
decomposing it into its constituent mini-patterns, developing a mini-
transformation for each mini-pattern, and finally specifying the complete 
transformation as a sequential composition of these mini-transformations. A 
mini-transformation here is seen as a refactoring, as only the design is 
improved, while behaviour remains constant. Similar work is done by 
Kerievsky [2004] who focuses on performing refactorings as targets for design 
patterns. 
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Mens et al. [2004] provide a thorough look at research in the domain of 
software refactoring and software restructuring. Five different categories were 
researched:  
 
1. Refactoring activities supported: 
 

The refactoring process consists of a number of distinct activities: 
 

• Identify where the software should be refactored; 
• Determine which refactoring(s) should be applied to the 

identified code smells; 
• Guarantee that the applied refactoring preserves behavior; 
• Apply the refactoring; 
• Assess the effect of the refactoring on quality characteristics of 

the software (e.g., complexity, understandability, 
maintainability) or the process (e.g., productivity, cost, effort); 

• Maintain the consistency between the refactored program code 
and other software artifacts (such as documentation, design 
documents, requirements specifications, tests and so on) 

 
2. Specific techniques and formalisms that are used to support these 

activities: 
 

A wide variety of formalisms and techniques have been, proposed and 
used to deal with one or more refactoring activities. Mens et al. [2004] 
discuss two such techniques in detail: the use of assertions 
(preconditions, postconditions and invariants) and the use of graph 
transformation. Next, Mens et al. [2004] discuss how formalisms can 
help us to guarantee program correctness and preservation in the 
context of refactoring. Finally, Mens et al. [2004] provide an indicative, 
but inevitably incomplete, list of other useful techniques to support 
refactoring activities. 

 
3. Kinds of software artefacts that are being refactored: 
 

Mens et al. [2004] argue that although contemporary IDEs limit support 
for refactoring to the source code only, refactoring can be applied to 
any type of software artifact. For example, it is possible and useful to 
refactor design models, database schemas, software architectures and 
software requirements. Refactoring of these kinds of software artifacts 
rids the developer from many implementation-specific details, and 
raises the expressive power of the changes that are made. On the other 
hand, applying refactorings to different types of software artifacts 
introduces the need to keep them all in harmony. 

 
 
 

 
 
 



 36

4. Important issues when building refactoring tools: 
 

Although it is possible to refactor manually, tool support is considered 
crucial. Today, a wide range of tools is available that automate various 
aspects of refactoring. Mens et al. [2004] explore the different 
characteristics that affect the usability of a tool. More specifically, 
Mens et al. [2004] discuss the notions of automation, reliability, 
configurability, coverage and scalability of refactoring tools. 

 
5. The effect of refactoring on the software development process: 
 

Refactoring is an important activity in the software development 
process. Mens et al. [2004] discusses how refactoring fits into the 
processes of software reengineering, agile software development, and 
framework-based software development. 
 

Mens et al. [2004] say that although commercial refactoring tools have begun 
to proliferate, research into software restructuring and refactoring continues to 
be very active, and remains essential to reveal and address the shortcomings of 
these tools. This dissertation aims to identify any such shortcomings in the 
tools selected. 
 
Van Kempen [2005] shows the refactoring of the Pipe & filter architectures 
into the Blackboard and Client/Server architectures by mapping UML state 
charts into CSP (Communicating sequential processes). He also elaborates on 
refactoring distribution responsibilities of a Software Architecture expressed as 
an UML model. 
 

4.4 Summary 
 
This chapter introduced us to where refactoring started originally. Attention 
was also payed to recent research done in the field. Specifically focus was put 
onto research performed by Mens et al. [2004], which was a wide study into 
five different areas of refactoring. 
 
The following chapter introduces the analysis methodology. Eclipse and IDEA 
are used to find code smells in the Java Software Development Kit. A code 
smell classification method is introduced which will be used through the rest of 
the dissertation.  
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Chapter 5 Analysis Methodology 
 
To perform the analysis, a code review was performed on a popular and open-
source code base. A project as large as the Java SDK (version 1.4.2) was likely 
to have detectable code smells. Eclipse 3.1.0 and IDEA 5.0 were used for 
analysis. All detected code smells are reported and discussed in two separate 
code reviews (one review for each IDE used). The first Eclipse review is 
covered in Chapter 6. This review deals only with unnecessary code. The 
IDEA review is covered in Chapter 7 and Chapter 8 and covers a wide array of 
code smells. In addition, an analysis on the evolution of the JDK from version 
1.02 to version 1.5.0 was performed in order to see the effects of the software 
evolution of the JDK in terms of maintainability. Code smells will be used to 
measure the maintainability of the code. Some of the code smells are generated 
by object-oriented software metrics such as class and method metrics relating 
to size, coupling and complexity. A comparison of the two IDEs is given in 
Chapter 9. 
 
This chapter includes refactorings for fixing code smells, ways of classifying 
various code smells by value and complexity, and refactoring productivity 
issues. Code smell classification is used as a guide for when it is best to 
refactor. Comparisons are made on how the two IDEs handle the analysis 
results as well as their capabilities in finding and removing code smells. 
 
When considering complexity it is useful to learn from Griswold [1991]. He 
provides research to support the claims that the size of the system tends to 
grow linearly with respect to the release interval number; and that the 
complexity of the system grows exponentially in relation to its size. This model 
for complexity predicts the cost of a change, since to make a correct change 
requires crosschecking it for consistency for an exponential number of 
relationships. 
 

5.1 JDK Code Base Statistics 
 
The 1.4.2 version of the JDK will be used to perform a detailed analysis. An 
analysis of the entire JDK from version 1.02 to version 1.5 will be performed 
in Chapter 10 for the purposes of seeing how the code evolves from version to 
version. 
 
Statistics were gathered on the number of files, number of source lines of code 
(SLOC, means no commented or blanks lines), number of commented lines of 
code, number of blank lines and the total number of lines of code in each code 
base. Thus Total number of lines of code (TLOC) = SLOC + Comments + 
Blanks.  
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Version Files SLOC Comments Blanks TLOC  
1.4.2_03 4,141 563,073 569,285 161,504 1,293,862 
  43.5% 44.0% 12.5% 100% 
Table 1: JDK 1.4.2 Code Statistics 

 
This JDK version has 457,801 lines of Javadoc comments, which is about 80% 
of all the comments. They are necessary as documentation generation relies on 
them as they form part of the code conventions for Sun Microsystems. The 
comment statistic in Table 1 includes both Javadoc and normal code 
comments. 
 

5.2 Classifying Code Smells 
 
The characterization of code smells and their associated refactorings in terms 
of complexity and value to the overall project can at best, be done at a notional, 
subjective level. There are no objective metrics available. Nevertheless, the 
view is taken in this dissertation that it is worthwhile and instructive to 
undertake such a classification, albeit somewhat subjective, as a guide in 
investigating the various refactoring facilities offered by the IDEs under 
consideration. However, one should consider that the more experience a person 
has with a code base, the less subjective his/her classifications become, 
because they have experienced where the design flaws in the system are and 
they can then determine what value will be brought from performing a 
refactoring on a focused part of the code base. In the this case, the author has 
little or no experience with the JDK code-base and is left with only the 
classification method as a means to decide which refactorings to use and which 
ones to avoid. To this end, consider Figure 4. 
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Figure 4: A refactoring classification graph 

Picture (accessed 2006-04-01), from www.silofx.com/migration. 
 
The four categories displayed in Figure 4: A refactoring classification 
graphFigure 4 are commonly used in financial circles to classify the value and 
complexity of something. The term “quick win” appears often in financial 
literature. Refer to this 4-quadrant graph throughout in order to classify the 
refactorings mentioned. 
 
Complexity increases from left to right on the x-axis. Value increases from 
bottom to top on the y-axis. Four quadrants are identified in relation to 
complexity/value combinations. These are designated: Low Hanging Fruits 
(LHF); Quick Wins; Strategic; and Nice to have/Avoid. 
 
Refactoring complexity (x-axis) can be related roughly to the amount of time 
taken to perform the refactoring. The term time complexity will be used 
throughout this dissertation to denote how long something will take to do. A 
task may be relatively simple, but if it appears in very large numbers then it 
will take a long time to complete and in this sense, it will be considered 
complex.  
 
However, refactoring complexity is not merely limited to time considerations. 
The complexity is also determined by how much impact the refactoring has on 
the surrounding code base. If the refactoring change ripples through a large 
part of the code base then one can consider the refactoring to be complex. In 
addition, complex refactorings cannot be easily automated and complex code 
smells could require multiple refactorings in order to improve the design. 
Complexity is also high when the code is at risk of potentially breaking other 
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code when being refactored. For example, if an abstract method is changed 
then all of the abstract class’ children will also be affected by this change. 
 
The value (y-axis) of removing a code smell, though real, is difficult to 
measure in precise terms. It is generally recognised that there are significant 
financial rewards for code that is well structured and comprehensible and thus 
easily maintainable. However, in assigning value levels to various refactorings 
in this dissertation, no attempt is made to fully justify these levels in terms of 
financial benefits. Instead, value levels are generally chosen to reflect, to the 
authors best judgement, the extent to which the maintainability of the code is 
improved as a result of the refactoring.  
 
Another measure of value would be to measure how often that piece of code is 
changed or maintained. Refactoring code that is used and changed more often 
will produce more value than refactoring code that no one uses. This is because 
refactored code is easier to maintain. This measure of value will not be used as 
there is no information telling us how often the source code is changed. If a 
versioning system would be able to provide this sort of information, then 
versioning information could be factored into the classification to be able to 
better focus on the most important parts of the code. 
 
 
Note that this assessment of maintainability is not entirely subjective. In many 
cases, the value of a refactoring will be associated with a complimentary notion 
of code smell severity. This, in turn, is frequently tied to various severity 
settings that may be indicated in the IDE under investigation, these settings 
being used to identify and repair the various code smells.   
 
To illustrate these notions, consider the presence of duplicate code as an 
example of a code smell. A change made to one version of the duplicated code 
generally has to be replicated on all the other versions of the duplicated code, a 
process that is notoriously error-prone. Refactoring this duplicate code smell 
often consists of gathering all of the duplicate code into one method. All 
instances of duplicate code are then deleted and the single new method is 
called at each point instead.  
 
Now a refactoring that eliminates say 10 lines of duplicate code (a low severity 
code smell) would clearly have lower value than a refactoring, which 
eliminates 200 lines of code (a more severe code smell). To this extent, value 
derived from a refactoring varies with the severity of the associated code smell: 
if severity rises, then refactoring value also rises.  
 
Of course, code smell severity may also be related to complexity of the 
associated refactoring. However, in general, this relationship is less clear-cut 
than the tie-in between value and severity. For example, in principle 
refactoring 200 lines of duplicated code into a method does not seem 
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significantly more complex than refactoring 10 lines of duplicated code into a 
method. 
 
When referring back to Figure 4, one can focus on quick wins to get the most 
refactoring value in the shortest amount of time. The size of the JDK project 
(especially the later versions) makes it very difficult to refactor all of the code 
smells. It is therefore a better idea to be able to classify the code smells in such 
a way as to return the most refactoring value with the least amount of effort. 
Therefore, the code smells that can be fixed quickly and that hold high 
refactoring value should be addressed first.  
 
In forthcoming chapters, various code smells will be classified into appropriate 
quadrants of Figure 4 based on severity settings in the IDE under investigation 
and/or on the informed but ultimately subjective judgement of the author. In 
Chapter 10, suggestions are provided for the classification of various code 
smells into one of the four quadrants in the above figure. These classifications 
should not be construed to be the final word on the matter. Rather, they are a 
starting point for further discussion and reflection. 
 
 

5.3 Choosing Thresholds in IDEA 
 
The best way to explain a threshold in IDEA is to give an example: 
 
A good example is the generation of the code smell “method with too many 
exceptions” for each major version of the JDK. The threshold value determines 
the maximum value that is allowed to go undetected through the search, so if 
the threshold is set to five, then all values above five will be detected. The first 
threshold used was three, then four and then five. The following are the results: 
 
Threshold Value 1.02 1.1.8 1.2.2 1.3.1 1.4.2 1.5.0 
       
5 0 0 0 0 1 48 
4 0 0 4 4 9 78 
3 0 6 16 16 48 167 

Table 2: Code smell count for different thresholds 

 
Code smell thresholds will be used in IDEA to distinguish between severe and 
non-severe code smells. Note that most strategic refactorings will have 
thresholds available. Also, note that a threshold value is not always applicable 
to every code smell as this is application or IDE specific. 
 
Each threshold generated a number of code smells. General heuristics were 
used to determine acceptable threshold values. When considering “the method 
with too many exceptions” code smell, the number of code smells generated 
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was used as a guide for selecting the thresholds for some of the code smell 
detection tools. If the number of code smells generated was close to zero, but 
not zero, then the threshold value was considered a high threshold value. All 
values lower than the highest threshold value will be considered lower higher 
threshold values. The threshold values used were first used on the 1.4.2 version 
of the JDK and were later reused for all of the other versions of the JDK. 
 
The choice of thresholds depends entirely on the user of the IDE. It is 
recommended to choose a threshold that will filter out the least severe smells 
so that the most severe code smells will be displayed and fixed. It is the case 
that, in general, the more severe code smells occur less frequently than the less 
severe code smells. This can be seen by the frequency of code smells generated 
for each code smell using different thresholds. 
 
The first column in the above table represents the threshold values. The other 
columns represent values falling under the specific JDK version. It should be 
clear that for each version, the greater the threshold value used, the smaller the 
number of code smells that is generated. For example, consider the highlighted 
number nine in the row with a threshold of four and JDK version of 1.4.2. 
When increasing the threshold to five, the frequency of code smells drops from 
nine to one. Decreasing the threshold to three causes the frequency of code 
smells to increase to 48.  
 
One can therefore decide how strict one wants to be on the generation of code 
smells by manipulating the threshold values used during their detection. The 
number of code smells generated will change from project to project, so 
initially one should play around with a few random threshold values before the 
required output is generated. 
 
It is difficult to determine the threshold values for each code smell, because the 
code quality differs with each project. In other words, it is possible to search 
for methods with over three exceptions in some projects and find numerous 
examples. In other projects, it might be the case that there are no methods with 
more than three exceptions and lower threshold values would need to be used 
in order to find bad code smells. 
 
With the above being said, it should be clear that it is up to the user to 
determine what an acceptable threshold value is. The other code smells, which 
have configurable threshold values used for analysis, are ‘Nesting Depth’, 
‘Long Method’, ‘Too many parameters’, ‘Large Class’ and ‘Inappropriate 
Intimacy’. In section 10.3 these code smells are discussed in detail. Low, 
normal and high threshold values were chosen for these code smells and the 
statistical details as well as a discussion are provided. 
 

5.4 Java As The Language Of Choice 
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This dissertation views Java as the language with the greatest amount of 
refactoring support, mainly due to its open source nature, its popularity and the 
amount of refactoring support it has gained in the source of books, articles and 
automated tools available for it. 
 
Refactorings have spread into many different languages, but Java remains the 
language with the most refactoring tool support, with C# being in a close 
second position. A list of recent refactoring tools is available for several 
languages [Fowler 2005].  
 
 

5.5 Summary 
 
The analysis methodology includes the use of Eclipse and IDEA to find code 
smells in the Java Software Development Kit. A code smell classification 
method was introduced which will be used through the rest of the dissertation.  
 
The following chapter will show how to capture code smells in the popular 
open source IDE from IBM, namely Eclipse. A code review will be performed 
on version 1.4.2 of the JAVA development kit. 
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Chapter 6 Eclipse Code Review 
 
This chapter describes how to reproduce the code review in Eclipse. All the 
checks for unnecessary code that can be carried out in Eclipse will be shown as 
well as its abilities to remove these code smells. The analysis techniques 
already present in Eclipse will be used to detect code smells.  
 
If necessary, code segments are provided throughout this chapter to illustrate 
the general issue and its solution more clearly. Note that the results displayed 
are for the 1.4.2 version of the JDK.  Please refer to Appendix A.1 and A.2 
when looking for information on all of the code smells and refactorings in this 
review. 
 
The only code smells considered for Eclipse are kinds of unnecessary code. 
While there are many other refactorings available in the tool, the only code 
smells detected are by the compiler, and involve unused code. 
 

6.1 Unnecessary Code 
 
Fowler [1999] does not refer to unnecessary code smells. Manyla [2006] uses a 
bad code smell taxonomy to categorise code smells. One of the code smell 
categories mentioned is the ‘Dispensables’ category, which contains ‘Dead 
code’ which translates to unnecessary code. This category can be found in 
Appendix A.3.  The ‘Dispensables’ category contains many more examples of 
code, which can be removed. In this chapter, the focus will be on searching for 
dead code (code that is not being used) and using the facilities available in 
Eclipse to do this.  
 
To be able to search for unnecessary code there are a few things that need to be 
setup under Eclipse. These setup issues and further advice will be given in this 
and the following chapter.  
 
To access the compiler analysis tools of Eclipse, follow this menu flow: 
Project -> Properties -> Java Compiler -> Errors/Warnings -> Unnecessary 
code. This can be seen in Figure 5 on the following page. 

 

 
 
 



 45

 
Figure 5: Error categories under Java compiler settings in Eclipse. 

 
Figure 6Figure 6 below shows the settings for unnecessary code that have been 
used in this study. After code is built, (compiled) messages are received 
indicating what is wrong with the code, depending on how the Eclipse java 
compiler has been configured. Eclipse reacts to specific problems, by giving an 
error, warning or ignoring the problem. The developer in order of priority can 
configure these three options. 
 

 
Figure 6: Revealing unnecessary code in Eclipse. 
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All unnecessary code warnings are caught during compilation and displayed 
under the problems tab, once the above settings are setup. Filtering the 
warnings returns statistics pertaining to a specific issue. The severity of this 
unnecessary code smell varies widely as it comes in many different forms.  
 
Fowler [1999] does not discuss unnecessary code, although it can most 
definitely describe as a code smell. Unnecessary code can confuse 
programmers, as they will usually first try to figure out what the code does and 
then try to find how it connects to the rest of the software system. The result is 
that the code has no link to any other method i.e. it is not called from any 
method from outside the class. In some cases, the entire class in which 
unnecessary code exists could also be unnecessary. 
 
Finding solutions to all of these problems follows a common pattern. First, one 
must enable the “Problems” filter to show all of the warnings (refer to Figure 
8). Set filter configurations by clicking on the filter icon (refer to Figure 7) 
found on the right hand corner of the Problems tab window next to the window 
controls:  
 

  
Figure 7: Filter icon 

 

 
Figure 8: Warnings filtered by unused imports and sorted by Resource 

 
Each warning will be described by the description column (refer to Figure 8). 
One may filter by the description column to find one type of warning; 
otherwise, the problem tab will display every single warning.  
 
String prefixes for all the Eclipse warnings are provided in the following sub-
sections and are labelled as “Filter search prefix”. To illustrate this process 
more clearly, refer to Figure 9, which contains a filter search prefix containing 
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the string “The import”. This filter setting will search for strings in the 
description column that start with the letters “The import”. String prefixes; 
filter out the unwanted warnings by searching all the descriptions for an 
occurrence of the search prefix string. As an example, a (case-sensitive) string 
warning description for each warning is provided. Names used for 
demonstration purposes are denoted by the letter x.  
 
After filtering, the warnings are sorted by ‘Resource’ and can apply a quick fix 
to each one. Figure 8 displays how a quick fix is about to be performed on the 
unused import in line 23 of the code. When right clicking on a resource (Java 
file) as shown in Figure 8, Eclipse comes up with a pop-up window, which 
allows a quick fix allowing import removal within the resource. This is quicker 
than having to open the physical resource and performing the refactoring. 
 
The following sections discuss all of the code smells in JDK 1.4.2 that were 
detected using Eclipse. A means by which to replicate the analysis is provided 
and a discussion of the results is also given. If necessary, code segments are 
provided to illustrate the general issue and its solution more clearly.  
 
Whenever a code smell appears in large numbers and the only possibility for 
removal is a manual one (i.e. removing each code smell, one by one) then one 
can say that the time complexity for the code smell is high and therefore the 
overall complexity is high. 
 
It will be seen that most of the code smells were assigned a high complexity 
value, for this reason.  For example, one cannot select all of the unused 
imports, right click on them and quick fix all of them. Instead, they have to be 
repaired one by one; therefore, a high complexity value was assigned to this 
code smell. 
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Figure 9: Setting a filter search prefix 

 

6.1.1 Unused imports 
 
Often programmers import a library to be used in a class, and may 
subsequently delete the class, but forget to delete the corresponding import. It 
is possible that an unused import points to a resource not existing in the 
production phase of the project, but present in the development phase. This will 
cause unwanted dependencies on resources that do not exist and compile time 
errors will result in the production phase.  
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If for example, if one codes ‘import java.sql.Timestamp’, but provides an 
import statement ‘import java.sql.*, then the scope of the import statement is 
too large. When organising imports, Eclipse not only removes unneeded 
imports but will also remove wildcards and replace them with the actual classes 
that should be there. So after organising imports ‘import java.sql.*’ becomes 
import ‘java.sql.Timestamp’, if this is the only class that one is using in the 
java.sql library. 
 
Fixing this problem in Eclipse is difficult (Figure 8) and time consuming. The 
problem is the sheer volume of unused imports.  
 
Sorting the warnings by the resource column (Figure 8) allows us to view how 
many unused imports exist in one project. By performing the “organise 
imports” quick fix, one is able to remove all unused imports from a class.  
 
The unused imports smell rarely results in an inability to compile in the case of 
the JDK project analysed and receives a low value. Eclipse does not allow the 
imports to be organised in more than one file at a time. This smell has a large 
numbers of occurrences, which increases the time complexity involved in 
refactoring.  However, it is possible (by activating the hot key CTRL-SHIFT-
O) to remove all unwanted imports from a single file, but this is still not good 
enough from a productivity point of view. 
 
Description: “The import x is never used” 
Filter search prefix: “The import” 
Files affected: 30% (1234) 
Occurrences: 3532 
Refactoring Complexity - High 
Value – Low  
Classification – Avoid  
Classification justification – Time complexity and number of occurrences is 
too high, therefore it is recommend to avoid this refactoring. 
 

6.1.2 Unread local variables 
 
Proceed with caution when removing this smell in Eclipse. In Figure 10, notice 
oldValue in the following method from class AbstractButton: 
 

 
Figure 10: Variable oldValue is local and unused 
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Delete the oldValue variable without any behaviour change. Method 
getMnemonic() (see Figure 11) simply returns a value that is assigned to 
oldValue. It is safe to refactor this code by deleting the oldValue (assignee) 
variable and the assignor method getMnemonic(). 
 

 
Figure 11: Standard getter - getMnemonic() 

 
If an assignor method accepts an object as a parameter and changes the state of 
this object then one can no longer use this refactoring. If the parameter object 
state is needed in the operations following the assignor call, then deleting the 
assignor can change behaviour. 
 
Now getMnemonic(IntValue iv) (Figure 13) (assignor) can change the value of 
variable iv. This can lead to different behaviour if one removes the assignor 
and oldValue. However, removing oldValue and still calling the assignor will 
be a behaviour preserving refactoring.  
 

 
Figure 12: A mutable int Wrapper class. 

 

 
Figure 13: Side effects in getter method. 

 
As shown above getter, methods should not have side affects like that of the 
getMnemonic(IntValue iv). Assignors containing side effects are not always 
getter methods. When clicked, a yellow triangle with an exclamation mark in 
the middle (not seen in Figure 13, but will appear just to the left of the 
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highlighted variable as in Figure 10) will produce recommendations from 
Eclipse on how to remove the unused local variable. Eclipse recommends 
removing the assignor and the assignee, which can prove troublesome.  
 
Description: “The local variable x is never read” 
Filter search prefix: “The local variable” 
Files affected: 7% (295)   
Occurrences: 517 
Refactoring Complexity - High 
Value – Low 
Classification – Low Hanging Fruit. Avoid complex cases.  
Classification justification – The value of these refactorings can be rather low. 
When taking into account the fact that the resulting refactoring can not 
preserve behaviour, one should rather leave this refactoring out. The complex 
cases mentioned here are those where an assignor could have a possible side 
effect. The resulting refactoring of such a complex case would give rise to a 
change in behaviour. The behavioural change would make the refactoring 
invalid. 
 

6.1.3 Unread parameter 
 
If the method concerned is private or final then the method may be refactored 
by removing the parameter (use the “change method signature” refactoring).  
The final keyword ensures that the method cannot be overloaded or inherited 
from a subclass.  
 
It is common to give empty method implementations in an abstract class. There 
is a design pattern that advocates doing so, called Adapter [Gamma et al. 
1995]. These methods may be overloaded in the subclass inheriting from the 
abstract class and may contain many parameters that are unused in the abstract 
class but used in the overloaded method present in the concrete class. 
Removing the unused parameters in the sub class will result in errors if both 
methods have an inheritance relationship. Eclipse does no checks for errors in 
hierarchies before highlighting a parameter as being unused. 
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Figure 14: A mutable int Wrapper class 

 

 
Figure 15: Children of AbstractA 

 
In Figure 14, method a(…) is defined to be abstract. Method b(…) is defined as 
an Adapter method. Classes inheriting from AbstractA need an implementation 
of method a(…) and can choose to overload method b(…). In Figure 15, Class 
A and Aa both satisfy the contracts of AbstractA. Eclipse gives two warnings in 
the form of yellow triangles next to the two unread parameters in Class Aa. 
AbstractA is used in the main method to make use of the Adapter pattern and to 
make use of the abstract implementations. Eclipse does not pick this up and 
removing the two parameters has some serious behaviour changes. 
 
Removing parameter a from Aa:a(…) results in Class Aa deviating from its 
inheritance contract with AbstractA and a compilation error. Similarly 
removing parameter a from Aa:b(…) creates this problem. 
 
In the case where there is no direct inheritance relationship with the offending 
class, the class’ offending method, may just have the unused parameter 
removed. 

 
 
 



 53

 
Description: “The parameter x is never read” 
Filter search prefix: “The parameter” 
Files affected: 20% (820) 
Occurrences: 4890 
Refactoring Complexity – High  
Value – Low 
Classification – Avoid Complex cases, all else are Low Hanging Fruit. 
Classification justification – The complex cases mentioned here should be 
avoided, due to the way that Eclipse deals with the refactoring (essentially 
breaking the class hierarchies). All other simple cases where no class hierarchy 
relationship exists should be refactored. An unused parameter can be deleted 
without having any affect on the code. 
 

6.1.4 Unnecessary throws clause                              
(method or constructor) 

 
This situation occurs when the declared exception x is not actually thrown by 
the method x() from type X. 
 
In general, remove unused throws clauses in overloaded methods or methods 
implemented from abstract methods. Other methods have to catch or re-throw 
exceptions thrown from these methods. In projects where there are deep chains 
of method calls, this results in many unwanted catch and throws clauses. This 
smell adds unnecessary error handling complexity. 
 
Figure 16 shows AbstractA::b() as having a unnecessary throws clause 
warning.  The reason for this is that AbstractA::b() does not throw the 
SomeException exception. Removing this throws clause, causes A::b() in 
Figure 17, to no longer be compatible with the contract from AbstractA::b(). 
The same problem holds for abstract methods. 
 
This issue is very similar to the one found when detecting unread parameters. 
Eclipse fails to recognise the deeper implications when removing an unused 
parameter or exception when the code smell appears in class hierarchies. 
 
Most trivial cases of this code smell would include offending methods that do 
not necessarily occur in class hierarchies, but are called by many other methods 
throughout a project. Each of these methods needs to catch the exception, even 
if it is not thrown. This can result in large try-catch blocks scattered throughout 
a project with many unnecessary catch blocks and more confusing while 
performing error handling. 
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Figure 16: SomeException and AbstractA 

 

 
Figure 17: A::b() throws SomeException 

 
If one is throwing more than three exceptions from a method, then whoever is 
calling that method must catch all of the exceptions. Dealing with too many 
exceptions can result in clumsy and bulky error handling code, especially in 
projects with long method call chains. An example call chain could be: 
 
Layer 1 a() 
Layer 2 b() c() 
Layer 3 d() e() f() g() 
Table 3: Using layering to handle exceptions (Eclipse) 

 
It is common to divide a complex project into layers. These layers could also 
represent class hierarchies. A layer is assigned certain responsibilities. A parent 
layer would use its child layers to carry out its responsibilities. The call chain 
would include a() calling b() which calls d() and e(). After b() has completed, 
a() calls c() which calls f() and g(). Consider that all methods on Layer 3 throw 
two unique exceptions. This will mean that a() needs to deal with 8 exceptions.  
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Parent layers should wrap the child layer exceptions into more general 
exceptions in order to reduce too many catch statements at the top-most layers. 
A method declaring too many exceptions is dangerous when it is being used 
often and if it is deep in the call chain (like the methods in Layer 3). In such 
cases, create a superclass exception that can be extended by all of the offending 
exceptions. Only throw the superclass exception to the calling methods. If 
necessary, wrap the child exceptions manually by catching and wrapping them 
as the superclass exception. Perform any error handling in the catch statement 
used to wrap the exception. These specials cases are Quick wins as their value 
is high.  
 
Filter search prefix: “The declared exception” 
Files affected: 6% (249) 
Occurrences: 623 
Refactoring Complexity – Medium to High 
Value – Medium to High 
Classification – Complex cases could lead to strategic design changes. Simple 
cases can also be seen as Strategic refactorings. 
Classification justification – Simple cases would need to be cleaned up so that 
all code that is catching or re-throwing the exception is removed. Complex 
cases would require one to re-throw the bottom layer exceptions and wrap them 
into other exceptions. 
 

6.1.5 Unused private members 
 
This category is divided into 4 separate warnings. Their removal from the code 
base is very simple and involves a simple deletion performed automatically by 
Eclipse through clicking on a yellow triangle and following the recommended 
fix. A single filter search prefix “is never used locally” can be used to filter all 
of these warnings or alternatively search for them individually. 
 

6.1.5.1 Unused private method 
 
Unused private methods should be deleted. These methods cause confusion 
when they have names that lead us to believe that they do something 
meaningful. This happens when searching for specific verbs in a method name. 
Reading and understanding such methods is a waste of developer time. 
 
Description: “The method x() from the type X is never used locally” 
Filter search prefix: “The method” 
Files affected: 2% (99) 
Occurrences: 152 
Refactoring Complexity - Low 
Value – Medium 
Classification – Quick Wins 
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Classification justification – This code smell can be easily removed. It has a 
small number of occurrences and reasonable value. 

6.1.5.2 Unused private constructor 
 
Unused constructors should be deleted. Unused constructors cause confusion 
and can lead us to believe that they do something meaningful.  
 
Description: “The constructor X() is never used locally” 
Filter search prefix: “The constructor” 
Files affected: 0.1% (8) 
Occurrences: 8 
Refactoring Complexity - Low 
Value – Medium 
Classification – Quick Wins 
Classification justification – This code smell can be easily removed. It has a 
small number of occurrences and reasonable value. 
 

6.1.5.3 Unused private type/class 
 
Unused classes should be deleted. They can lead us to believe that they do 
something meaningful.  
 
Description: “The type X is never used locally” 
Filter search prefix: “The type” 
Files affected: 0.07% (3) 
Occurrences: 5 
Refactoring Complexity - Low 
Value – High 
Classification – Quick Wins 
Classification justification – This code smell can be easily removed. It has a 
small number of occurrences and high value. 
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6.1.5.4 Unused private member field 
 
Unused private member variables should be deleted. They could cause 
unwanted confusion. Searching for their usages is a waste of time. 
 
Description: “The field x is never read locally” 
Filter search prefix: “The field” 
Files affected: 5% (209) 
Refactoring Complexity - Low 
Occurrences: 362 
Value – Medium 
Classification – Quick Wins 
Classification justification – Even though this refactoring does not hold a very 
high value, it has been decided that because there are not too many 
occurrences, that all of the smells will be quickly removed so as not to waste 
too much time and gain the most possible value. 
 

6.2 Summary 
 
This chapter provides the available code smell detection inside the Eclipse 
IDE. Each code smell and it corresponding refactoring is discussed. Possible 
problems with the automated refactorings are raised. All of the code smells 
detectable in Eclipse are related to unused code issues. 
 
The above are not hard and fast rules that dictate what good code should look 
like. Under special conditions, there are many exceptions to the rules. 
Following these rules blindly under such special conditions can lead to 
mistakes. Experience helps us correct the compiler’s mistakes when detecting 
code smells. Eclipse is quick and requires little memory when detecting the 
code smells.  
 
Our main concern is dealing with bulk quick fixes. A bulk quick fix entails the 
ability to fix a large number of code smells with just one action, instead of 
attending to each code smell separately. Eclipse is unable to process more than 
one file simultaneously. For some smells, this is good, as it requires the 
developer to think in case he makes a bad decision. Trivial smells in large 
numbers occurring in multiple files become tedious to remove and a bulk quick 
fix would make more sense to implement.  
 
There is risk of breaking code (causing compile errors) when following the 
refactorings Eclipse suggests for some of the code smells. This is true for 
unread local variables, unread parameters and unused throws clauses. 
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Below are the summarised results of the Eclipse code review. 
 
Name Occurrences Value Classification 
Unused imports 3532 Low Low Hanging Fruit 
Local variable is never read 517 Low LHF to Avoid 
Unread parameter 4890 Low LHF to Strategic 
Unnecessary throws clause 623 Low to High LHF to Strategic 
Unread private member field 362 Medium Quick Wins 
Unused local or private 
members 

165 Medium to 
High 

Quick Wins 

    
Total 10089   

Table 4: Eclipse code smell summary 

 
The following chapter will include a detailed code review that was done in 
IDEA. The code review spans version 1.02 to version 1.5.0 of the JDK. 
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Chapter 7 IDEA Code Review – Part 1 
 

7.1 Introduction 
 
This chapter describes how to reproduce the code review in IDEA. Section 7.2 
gives the IDEA settings needed to do the review. The remaining sections then 
consider various categories of code smells. Thus, section 7.3 considers code 
smells that relate to duplicate variables; section 7.4 considers code smells that 
relate to inheritance; section 7.5 considers code smells associated with types; 
section 7.6 looks at abstraction-related code smells; and section 7.7 addresses 
code smells related to encapsulation. Then, in sections, 7.8 and 7.9 method 
metrics and class metrics are considered, respectively.    
 
IDEA’s vast collection of code smell detection facilities is demonstrated, along 
with its abilities to remove these code smells in an automated fashion.  
 
It should be noted that the code smells detected here are mostly from Fowler 
[1999]. The exceptions are:  
 

• Chains using instanceof. 
• Methods with too many exceptions declared, discussed in section 7.8.3. 

 
The above exceptions are code smells identified by the author. 
 
Please refer to Appendix A.1 and A.2 when looking for information on all of 
the code smells and refactorings in this review. 
 

7.2 Code Review Methodology 
 
IDEA 5 was used for this review as it dynamically detects a large number of 
code smells upon entering a source file. However, it was found that earlier 
builds of IDEA 5 have many bugs. It is therefore recommended that the newest 
available build be identified before using this IDE.  
 
In the succeeding sections, various analysis techniques already present in 
IDEA are mapped to specific code smells. In each case, the analysis techniques 
are motivated for each code smell and advice is provided on how best to use 
these refactoring tools to one’s advantage. Where necessary, Java code 
segments are provided to illustrate general issues more clearly.  
 
Note that the code smells detected are for the 1.4.2 version of the JDK. High 
threshold values were used in order to generate a conservative number of code 
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smells. (Refer to section 5.3 in order to see more information concerning 
threshold values within IDEA.) 
 
To configure the global analysis settings follow this menu flow: 
File -> Settings -> Errors 
 
This leads to figure 18, which provides the screen for IDEA’s file analysis 
settings. At this stage, the custom profile needs to be set. This provides the user 
with the ability to setup which code smells he wishes to have automatically 
detected. To set this profile, click on the man with the hat icon (bottom right 
hand corner). Configure the custom profile by clicking the ellipsis (…). 

 
Figure 18: IDEA file analysis settings 

 
Most menu flows can be accessed by right clicking on a package or class.  
Some code smells and refactorings mentioned here in this dissertation can be 
found in [Fowler 1999] & [Kerievsky 2004]. The rest are inspections that 
where mapped to code smells. The smells and their refactorings are discussed 
in detail in the remainder of this chapter and in Chapter 8. 
 
The following figure shows how one would be able to select the ‘Feature 
Envy’ and ‘Magic Number’ code smells from IDEA’s static file analysis tool. 
 

  
Figure 19: IDEA code smell selection. 

 
When considering how to handle and refactor code smells please refer to  
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 Figure 20. As shown in the figure below, clicking on an item will provide a 
problem description and show the offending code. 
 
In some cases, right clicking on the man in the hat reveals a menu option, 
which allows one to fix all smells under that category with one click. This is 
useful for fixing many trivial smells without having to inspect each source file.  
 

 
 Figure 20: IDEA Analysis Results 

 
The following section describes one of the most well known code smells 
(duplicate code). IDEA provides rather sophisticated mechanisms to detect this 
smell. 
 

7.3 Locating Duplicates 
 
“Number one in the stink parade is duplicated code. If one see the same code 
structure in more than one place, one can be sure that oner program will be 
better if one find a way to unify them.”  
        Martin Fowler. 

7.3.1 Introduction 
 
IDEA is able to find duplicates in code. Duplicate code is normally a result of 
copying and pasting code from one place to another. The duplicate code could 
be in the same class or in a different class entirely. The copy and paste pattern 
is usually an anti-pattern.  
 
Although the precise definition of cost is not given here, it may generally be 
taken to mean the length of the string of text in the code that is to be matched 
with the rest of the text. 
 
One can thus filter duplicates according to cost. The value 10 is the default cost 
threshold (see Figure 21). This value is input next to the literal “Do not show 
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duplicates simpler than”. This value is a cost representation that IDEA uses to 
calculate cost. Code sections with less code duplication will have lower cost 
and longer duplicate sections have higher cost.  
 
Throughout this section, this “cost metric” will be used to measure the value of 
refactoring a duplicate section of code. High value will equate to high cost and 
low value to low cost. 
 

 
Figure 21: Duplicate location settings 

 

7.3.2 Anonymity 
 
Anonymity allows duplicate code sections to differ by their variable names and 
string literals (refer to class names highlighted in blue in Figure 22). 
Anonymity is used to find more duplicate code sections. These variables can be 
member (field) or local variables. The trade-off is that more anonymity in 
duplicates results in slighter higher refactoring complexity, as refactoring this 
code requires the variable names to be changed and string literals to be 
parameterised. Changing variable names is however trivial for both local and 
member variables. 
 
Duplicate code sections can differ by one or more string literals and can be 
refactored by extracting a method that accepts the string literals as parameters. 
Too many anonymous string literals become impractical to handle. Other 
refactorings like “Introduce Parameter Object” are used to handle excess 
parameters. These refactorings can become complex. This was found to be the 
case in some of the inspections that performed. Default anonymity settings are 
shown in Figure 21.  
 
 
 
 
Selecting no anonymity options results in: 
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1. lower refactoring complexity and fewer duplicates and 
2. high refactoring value and reduced search times.  

 
No anonymity options where selected in the final analysis in order to focus on 
Quick Wins (refer to Figure 4). The number of duplicates returned with the 
default anonymity settings is a too large. For example, under these 
circumstances, the java.util package returned over 400 duplicate groups and the 
java.awt package, over 1000. Below, a duplicate search is shown with 
anonymous variable names in the class, java.util.regex.Pattern. 
 

 
Figure 22: Duplicate code found in java.util.regex.Pattern 

 
When considering Figure 22, then a variable name could be made to be 
anonymous if prev.study() and yes.study() had both been changed to 
genericname.study(). The “generic name” in this example would be changed in 
order to make the duplication clearer and the resulting refactoring easier to 
perform. 
 
In general, it was rather surprsing to discover that a large amount of code 
duplication existed in the JDK as this code smell undoubtedly can lead to many 
maintenance problems. However, a detailed study into the results of the 
duplicates found in the entire code base is beyond the scope of this dissertation.  
 

7.3.3 Solutions 
 
Depending on context, code duplication can be repaired by the following 
refactorings:  
 

1. Extract method – This refactoring will extract a method from a 
duplicated piece of code. After a method is extracted, the method can 
replace every piece of duplicated code, with a call to that method. 

 
2. Parameterize method – This refactoring can be used in order to 

consolidate multiple methods that do the same thing and only differ by 
certain values. 
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3. Extract Class – This is when a new class is extracted from another 

class, by moving the relevant methods and fields from the old class into 
the new one. 

 
4. Extract Superclass – Is when one has two classes that share similar 

features. The similar features are consolidated into one class i.e. the 
superclass. 

 
5. Form Template method – This is when one has a process that performs 

similar steps in a specific order, but the steps are different. 
 

6. Introduce parameter object. – This is when one has a number of 
parameters that appear inside a method and one chooses to reduce the 
parameters by putting them into an object. This will simplify the 
method, by reducing the number of parameters. 

 
Please refer to Fowler [1999] for more precise definitions of the above 
refactorings.  ’Replace Method with method object’ may also be used when it 
is difficult to use the ‘Extract Method’ refactoring. 
 
An effort should be made to refactor the duplicate groups that carry a high cost 
in favour of low cost duplicates in order to add as much value to the 
refactorings. This is especially the case if one is not considering removing all 
of the code smells due to their overwhelming size. 
 
Figure 23 shows the IDEA listing of duplicate code groups found in the 
java.util.BitSET class. In each case, the number of duplicates in a group as well 
as the cost for that group is indicated. A duplicate group can contain two or 
more duplicate code sections. In the example provided, the number of 
duplicates a group had varied between 2 and 14.   
 
Note that after an analysis on duplicates, IDEA does not supply a detailed 
statistical summary of the number of duplicate groups identified. Manual 
counting was performed to find out that there were 17 duplicate groups in this 
particular run. 
 
As noted in Section 7.3.1, one can set a cost threshold to filter out duplicates. 
Increasing the cost threshold will decrease search times. However, the example 
provided here illustrates that such filtering could miss a group with a large 
number of low cost duplicates (blue highlighted line in Figure 23Figure 23: 
Seventeen duplicates groups in java.util.BitSet.). Large duplicate groups are 
excellent candidates for the ‘extract method’ refactoring, because IDEA can 
find all of the duplicated code sections and extract them into a single method.  
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Figure 23: Seventeen duplicates groups in java.util.BitSet. 

 
In general, the more a piece of code is duplicated, the more severe the code 
smells, especially if the code section is large. Consider a developer 
(inexperienced with a code base) changing one method in order to add the 
desired behaviour. This developer could be unaware that there are, say, 13 
other similar such methods which also need to be changed. If all of these 
methods were extracted into one single method, then the developer need not 
have to search for the duplicate code. 
 
Another thing to note is that the four duplicates found in one group with a cost 
of 40, together have a cost of 160. This total cost is the highest total cost out of 
all of the duplicate groups. Due to the automatic way that IDEA handles the 
refactoring of duplicates, the number of duplicates in a group can become 
transparent when considering the complexity of dealing with too many similar 
duplicate code sections. 
 

7.3.4 Dealing with Anonymity  
 
When one avoids anonymity, far fewer results are obtained. The results are also 
far easier to refactor. IDEA can only sort duplicate groups by cost (as is shown 
in Figure 23Error! Reference source not found.). It does not provide detailed 
results of its duplication analysis. For large projects, one needs to manage the 
code duplication information to be more productive. Customised methods 
where used to organise the analysis results IDEA provided for code 
duplication. These methods are described in more detail in the following 
paragraphs.  
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In general, if a code base is allowed to grow without any refactoring, code 
duplicates will be more common in larger packages and classes than in smaller 
ones. The “Physical source lines of code” (SLOC) metric can be easily used to 
measure package size accurately. For this code review, a physical source code 
analyser was used to group and sort the JDK packages by their SLOCs. 
 
In total, there are over 230 packages in the JDK. When performing the 
duplication analysis by a package-by-package basis, it was found that 60% of 
the version 1.4.2 of the JDK code could be covered by only analysing 25 
packages. This information can be read from the output of a good source code 
analyser. It makes more sense to only refactor the larger packages in order to 
cover as much of the code as possible without having to analyse all of the 
packages. Thus grouping the JDK by packages was a useful abstraction. 
 
As a proof of concept, the duplicate code in the class 
java.awt.image.DirectColorModel was refactored. The focus was on the high 
cost or large duplicate groups. For example, when considering Figure 23, 
consider the first few items with the highest cost. In terms of larger groups, one 
may only consider the 14 duplicates (highlighted in blue) due to the large 
number of groups. The ‘Extract Method’ refactoring was applied for roughly 
20 minutes. As a result, this reduced the 715 physical source lines of code by 
150 lines. In essence, twenty-one percent of the code was removed from this 
class. 
 
IDEA allows the user to selectively specify which duplicated sections are to 
abstracted into a single method. Consider a group that contains 10 duplicates 
sections, 10 sections each with the same code. If the ‘Extract Method’ 
refactoring operation is performed on one of these sections, then IDEA first 
highlights each of the remaining nine duplicate sections sequentially, asking 
the user whether refactor the particular duplicate code section into the method. 
This results in higher productivity when performing this refactoring. 
 
When dealing with a large project, one must be able to decide which classes 
are worth refactoring. From experience, it can be shown that one saves time by 
analysing the largest classes in a package first. Larger classes will have a 
greater likelihood of containing code duplication. If time permits, duplicates 
over multiple packages may be located to check if any smaller classes with a 
lot of code duplication have been missed. However, cross package duplication 
is discovered at the expense of longer analysis times.  
 

7.3.5 Final Analysis and Conclusion 
 
Due to the long analysis time, a package-by-package analysis was done– i.e. no 
cross-package analysis was performed. No anonymity options where used and 
a cost threshold of 40 was selected. All of the located duplicate groups can be 
classified as Quick Wins, due to their high value and low refactoring 
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complexity. In total, the JDK contained 68 duplicate groups either that had a 
cost of at least 40 or that had a reasonable group size (like the group of 14 
highlighted in blue in Figure 23). The counts for the respective packages are 
given below. 
 
java: 15 javax: 19 
com: 25 org: 9 
Table 5: Duplicate group occurrences 

As pointed out above, repair of these duplicates by one of the various 
refactoring methods was considered to be beyond the scope of this present 
limited study.   
 
Packages affected: JDK wide  
Occurrences: 68 
Refactoring Complexity – Low 
Value – High  
Classification – Quick Win Group 
Classification Justification – The number of duplicates found here was highly 
dependent on the input parameters, which only filtered out the duplicates with 
the highest cost, and therefore the highest value. No anonymity was used in 
order to make the refactoring of the duplicates as simple as possible. Due to the 
ease with which this code smell is refactored, the refactoring complexity can be 
termed as being low. 
 

7.4 Inheritance Issues 
 

7.4.1 Refused Bequest 
 
“Subclasses get to inherit the methods and data of their parents. However, 
what if they do not want or need what they are given? They are given all these 
great gifts and pick just a few to play with.” 

  Martin Fowler. 
 
Choosing to inherit from a superclass that does not truly reflect the operations 
or data needed in the subclass is generally bad design. The refused bequest 
smell shows subclass methods that override (and thereby ignore) the 
implementations in their superclass.  
 
If many Refused Bequest smells occur in a class, then one should consider 
refactoring it with the ‘Replace inheritance with delegation” refactoring.  
 
Fowler [1999] uses the java.util.Stack class in the JDK as an example of when 
to use ‘Replace inheritance with delegation’. The motivation is that Stack 
should only implement push(), pop(), size() and isEmpty(). Instead Stack, 
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inherits everything from Vector and reuses only a little, ignoring the rest. 
Vector should be made a member and be used for delegation. The inheritance 
from Vector can now be removed.  
 
In simple hierarchies, one can use the refactoring ‘Push Down Field/Method’ 
to fix one or two “Refused bequest” smells. This will ensure that only common 
code stays in the superclass and that the subclass specific code is pushed down 
from the superclass to the sub-class. In complex class hierarchies, it is difficult 
to perform the ‘Push Down’ refactoring, as there could be multiple 
dependencies on the data or method to consider. It is important to design the 
hierarchy properly and catch any such smells as early as possible before the 
hierarchy gets too complex and inflexible to refactor.  
 
Packages affected: 110  
Occurrences: 5485 
Refactoring Complexity – High (due to too many occurrences) 
Value – Low to Medium 
Classification – Avoid 
Classification Justification – Due to the high complexity of refactoring this 
code smell, it is classified as being a code smell to avoid. 
 

7.5 Type Code  
 
When talking about “type code” one talks about code that is executed based on 
decisions taken relating to an object’s type. These decisions are taken within 
conditional statements, such as if and switch blocks. It will be indicated why 
the presence of type code is often considered a code smell. An explantation 
will also be given in order to explain a new type of way to encode type code 
inside a class and will show what the best way is to encode type code 
information using the ‘Type Safe Enum’ pattern. 
 
The detection of type code is discussed along with a number of methods that 
will be used to remove type code. The major subsections involve the replace 
with class, subclass, state, strategy and command pattern refactorings in order 
to refactor this code smell. 
 

7.5.1 Detection of Type Code 
 
Quite a few instances of type code where found. To search for instances of type 
code, one needs to find switch or if statements with too many branches in the 
control flow category of IDEA’s analysis section. High threshold values need 
to be set for the number of branches in order to get high refactoring value. A 
default value of ten was used for both if and switch statements. 
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7.5.2 Replace with Class 
 
This section is used as an introduction to dealing with type information. Use 
this refactoring if a class is encountered that contains type information that 
does not affect the behaviour of the class. IDEA cannot detect this code smell. 
The following subsection explains this in further detail. 
 

  
Figure 24: Embedded type information 

 

 
Figure 25: Typesafe Enum pattern 

 
Figure 24 shows a typical way for storing type information. Figure 25 shows a 
type safe solution. Note that the private constructor is used so that no instance 
of the class can be made. This will allow the class to be used for the purposes 
of accessing the public static variables exclusively. This is exactly the case 
with the CarType class. This is the “Type Safe Enum” pattern [Tiger 2004], 
which mimics C style enumerations (see values[]). Figure 26 shows a new 
TypeSafeCar class which can only be created when it receives an object 
instance of class CarType. Compile time type safety is now implemented. 
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Figure 26: A type-safe class 

 

 
Figure 27: Demonstration of Car and TypeSafeCar 

 
If one will be moving to the JDK 1.5 version of Java in the future, rather wait 
before attempting this refactoring. JDK 1.5 allows easier handling of 
enumerations through its new language features. It would be simpler to refactor 
the code so that it will support the new type features that are supported in the 
new version of the JDK rather than the older one shown in the figures above. 
The result would be far more maintainable code. Tiger [2004] explains a better 
approach for dealing with enumerations in the 1.5 version of the JDK and 
sample code is provided below: 
 
enum Suit { CLUBS, DIAMONDS, HEARTS, SPADES } 
enum Rank { DEUCE, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, 
JACK, QUEEN, KING, ACE } 
 
List<Card> deck = new ArrayList<Card>(); 
 
for (Suit suit : Suit.values()) 

for (Rank rank : Rank.values()) 
deck.add(new Card(suit, rank)); 

 
Collections.shuffle(deck); 
 
The above code demonstrates how much easier it is to deal with types when 
using enumerations in the 1.5 version of the JDK.  The same code in an earlier 
version of the JDK would take many more classes and work to achieve the 
same affect. 
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7.5.3 Replace with Subclasses 
 
Use the ‘Replace with Subclasses’ refactoring when the type information 
influences class behaviour. If it does not then use the ‘Replace with Class’ 
refactoring. 
 

 
Figure 28: Factory method for the Car class 

 
 

 
Figure 29: Factory method for the TypeSafeCar class 

 
This refactoring can be used as soon as conditional logic determines object 
creation based on type information. All type information that is encoded in the 
if statements is replaced with subclasses. 
 
There are many possible ways to create the object with conditionals (including 
switch statements). The name of the ‘Replace Conditional with Polymorphism’ 
refactoring is confusing when dealing with creational logic that needs type 
information. The solution is to move the creational logic to the inheritance 
structure. The child instances will be used to customise behaviour. 
 

7.5.4 Replace with State, Strategy or Command Pattern 
 
Use this refactoring when the behaviour or state can change during an objects 
lifetime. This can make its difficult or impossible to use ‘Replace with 
Subclass’. State and Strategy are very similar and as a result, the refactorings 
will be very similar. As with “Chains of instanceof”, the solution is to ‘Replace 
Conditional with Polymorphism’. 
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Interestingly enough Kerievsky [2004] includes three refactorings that depend 
on checks for conditional logic. All of the following refactorings are based on 
refactoring to patterns. 
 
1) Replace Conditional Logic with Strategy 
2) Replace State-Altering Conditionals with State  
3) Replace Conditional Dispatcher with Command 
 
1) and 2) have already been discussed in this section. Use 3) to replace 
conditional logic deciding what actions to execute (based on an action name or 
type) with polymorphism (Command Pattern).  
 
It is interesting to note that the GUI related classes in the 
com.java.sun.swing.plaf.gtk and javax.swing.plaf.basic packages implement 
the PropertyChangeListener interface. All of the implementations of this 
interface contained the following general code structure, where 
propertyChange(…) is the method to implement:  
 

  
Figure 30: Replacing a conditional dispatcher with Command 

 
A project may follow certain anti-patterns (as show in   
Figure 30), which would benefit from the ‘Replace Conditional Dispatcher 
with Command’. So in effect, each if and else if statement will be handled by 
the Command Pattern. The command Pattern is used to replace each action 
with a class that inherits from a subclass as show in Figure 31 below. The 
result is that the Command Pattern decouples the object that invokes the 
operation from the one that knows how to perform it. 
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Figure 31: Command pattern structure diagram 

 

7.5.5 Chains using Instanceof 
 
IDEA can check for chains of instanceof, if statements. It searches for chain 
lengths with a minimum size of two, i.e. an if statement with one or more else 
branches. The check ensures that all the conditionals contain the instanceof 
keyword. A chain length parameter cannot be set, but it still helps us to identify 
cases, which could benefit more from polymorphism. The reasoning behind 
this is that the conditional logic can be replaced by one polymorphic method 
call, which will delegate the behaviour to the correct subclass or instance. 
 
An if-else chain that chooses behaviour, based on object type, is usually a sign 
of poor design. If practical, one should remove the if checks and implement the 
behaviour into subclasses using polymorphism. Polymorphism decides which 
object one is going to call the method on and removes the need for the if-else 
structure. In general, larger if-else chains containing large amounts of 
behaviour will contain more refactoring value and complexity. 
 
The solutions depend on whether or not one is working in a creational or a 
behavioural context as discussed in the above section. Use the above sections 
to identify the type code contained in the conditionals and refactor accordingly 
if necessary.  
 
Packages affected: 46 
Occurrences: 173 
Refactoring Complexity –High 
Value – Low to High 
Classification – Strategic. 
Classification Justification – The act of adding polymorphism to substitute the 
instanceof chains is not a simple task. Thus, the complexity of this refactoring 
is high. However, the value of the refactoring puts the code into a more user-
friendly object-orientated style, which can be maintained much easier than 
normal if-else branches. 
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7.5.6 Conclusion 
 
Fowler [1999] covers refactorings on all of the type code smells. The only new 
refactoring is that of ‘Replace Conditional Dispatcher with Command” from 
Kerievsky [2004]. A definition of the type code smell is given in order to group 
all of the refactorings that solve type code smells. 
 
All the type code refactorings (except two) can be generalized with one 
solution, namely ‘Replace Conditional with Polymorphism’. The only 
exceptions are when refactoring creating logic with ‘Replace with Class’ and 
‘Replace with Subclasses’.  The low-level refactorings needed are identical 
across all the other high-level refactorings. The only differences are the 
contexts across which these refactorings are applied. 
 

7.6 Abstraction Issues 
 
This section will describe abstraction issues. These are issues pertaining to the 
object-orientated principle of having an abstract or superclass used to sub-class 
other classes, which share common data and behaviour. 
 

7.6.1 Feature Envy 
 
This smell occurs when an object method, say X.m() is too “interested” in the 
data of another object, say Y. For example, object Y can be passed via a 
parameter to X.m(), or object Y can be instantiated locally in X.m() and then 
many methods of Y are called from X.m(). This is an indication that 
functionality is in the wrong class. It is as if object X is overly interested in the 
methods (features) of object Y, and X is therefore deemed the “offending” 
object. 
 
IDEA’s approach to detecting this feature envy code smell is to indicate that 
the smell occurs when Y’s methods are called more than 2 times from methods 
of the offending object X. IDEA does not allow for any value other than two to 
be used in this context.  
 
When running IDEA against the JDK1.4.2, the results were as follows: 
 
Packages affected: 26  
Occurrences: 58, 219 
Refactoring Complexity - High 
Value – Low to Medium 
Classification – Avoid 
Classification Justification – The value of these refactoring is low and the large 
number of occurrences justifies putting this code smell in the avoid category. 
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Intuitively, one could say that the greater the number of external method calls 
from the offending object, the more severe the smell. It would have been useful 
to be able to configure the threshold value used to identify feature envy in 
IDEA, but this was not possible. 
 
Feature envy may be eliminated by relying on the ‘Extract Method’ refactoring 
to isolate access to the offending object. The selected code will therefore be 
extracted into a method. After performing. the ‘Extract Method’ refactoring use 
the ‘Move Method’ refactoring to move the extracted method to the offending 
class. This will cause the behaviour, to be moved to the calling class. 
 

7.6.2 Magic Numbers 
 
Magic numbers are literal numeric constants used without declaration. They 
can result in code whose intention is extremely unclear. Errors may result if a 
magic number is changed in one code location but not another. Good coding 
practice therefore traditionally requires that meaningful constants are assigned 
to magic numbers. One should focus on selecting meaningful names for magic 
numbers, especially in instances where the same number is to be used several 
times.  
 
The numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0L, 1L, 0.0, 1.0, 0.0F and 1.0F are 
not reported by IDEA. The results obtained when running IDEA against 
JDK1.4.2 were as follows: 
 
Packages affected: 125 
Occurrences: 13003 
Refactoring Complexity - Medium 
Value – Low to Medium  
Classification – Avoid, due to too many occurrences. 
Classification Justification – The value of these refactorings is low and the 
large number of occurrences justifies putting this code smell in the avoid 
category. 
 
IDEA has a refactoring named ‘Introduce Constant’ which can solve this 
problem. Folwer [1999] has a ‘Replace Magic Number with Symbolic 
Constant’ refactoring to solve this problem. 
 
As an example, consider the magic numbers that IDEA found in the 
java.math.MutableBitInteger class method binaryGcd(int a, int b) : 
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Magic number '0xff' at line 1060  
Magic number '0xff' at line 1069  
Magic number '0xff' at line 1083  
Magic number '0xff' at line 1089 
Magic number '0x80000000' at line 1080  
Magic number '0x80000000' at line 1080 

Table 6: Magic Number example 

The solution to this magic number problem is to replace 0xff and 0x80000000 
with descriptive constants. In the first case, IDEA will ask if one wants to 
replace the matching four magic numbers in the same method automatically, 
and similarly in the second case. 
 

7.7 Encapsulation 
 
Encapsulation is an important part of the object-orientated style. It was 
designed to limit access to class data. All data should be private and only 
accessible from get and set methods. There are however a few exceptions, such 
as constants, which are discussed later in the following section. 
 

7.7.1 Public Field 
 
If a field is not a constant and is, declared public then anyone can access this 
field from a class. This will violate the encapsulation law, which is designed 
for object-orientated programs. 
 
In general, public fields should only be used when defining constants. A 
constant should be static and final, otherwise IDEA will report it as a smell. It 
must be static to represent the fact that it must hold one value across each class 
instance. It must be final so that nothing can write to it. It is a Java convention 
that the constant name should be written in higher-case letters.  
 
To refactor this code smell, use the ‘Encapsulate Field’ refactoring.  
 
Packages affected: 48 
Occurrences: 700 
Refactoring Complexity – Trivial 
Value – Low  
Classification – Low Hanging Fruit. 
Classification Justification – This smell occurs a fair deal. However, it is very 
simple to refactor. This is why it is classified as low hanging fruit. 
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7.8 Method Metrics 
 
This section describes code smells relating to methods. Methods are the 
building blocks of classes and are used to encapsulate behaviour. The code 
smells, which arise from methods, are therefore important, albeit more difficult 
to fix, since one has to rely on manual refactorings in order to fix them. Manual 
refactorings are by their nature, more error prone to fix when compared to 
automatic refactorings. In order to detect these smells methods metrics are 
used. 
 

7.8.1 Long Method  
 
“The object programs that live best and longest are those with short methods” 
                                              Martin Fowler. 
 
One should decide what a long method is. Usually a method hides a lot of code 
that does many different things in a sequence. A long method should be broken 
down into more methods, which do less and are easier to understand. It is 
difficult to find a piece of functionality in a long method, than it is to find it in 
a short method; therefore, short methods are more maintainable. 
 
If one only considers strategic refactorings, then one should attempt to refactor 
methods longer than 74 lines. To keep things in perspective, a 30-line method 
without any braces and comments can fit onto a 19” screen in IDEA. Analysis 
does not count comments or blank lines. 
 
The ‘Extract Method’ refactoring can be used to shorten long methods. Long 
methods can contain complex nested conditional statements. Organise the code 
for easy understandability and navigation. Extracting short methods from the 
long ones helps us do this. The “Poor Method Composition” section gives 
more information on proper method composition. 
 
To refactor this smell use the ‘Replace Nested Conditional with Guard 
Clauses’ or ‘Decompose Conditional’ refactorings. Fowler [1999] has an entire 
chapter on simplifying conditional statements. He also recommends ‘Replace 
Temp with Query’, ‘Introduce Parameter Object’, ‘Preserve Whole Object’ and 
‘Replace Method with Method Object’ for this smell. 
 
Packages affected: 104 
Occurrences: 1264 (default setting of 30 physical source lines of code) 
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Method Length 30  >= 50  >= 75 >= 100 
Occurrences 1264 450 195 92 
Complexity Low Medium High High 
Value Low Medium High High 
Classification LHF LHF Strategic Strategic 
Table 7: Long Method analysis results 

 
Classification Justifications – Methods shorter than 75 lines were seen as low 
hanging fruit due to their low complexity and value. Methods over this limit 
were seen as strategic refactorings due to the high complexity and value 
involved in the refactorings.  
 

7.8.2 Long Parameter List 
 
A method may have too many parameters in it. The result will be that this 
method will be difficult to use and understand. The method can also potentially 
be a long method due to the large amount of parameters that it holds. 
 
Methods with long parameter lists are difficult to understand. Due to its 
complexity, this smell has no automatic refactoring suggested. Introducing a 
parameter object takes work. Unless the object already exists, one needs to 
build the object from the calling side to use it in the method.  
 
Sending a large Serializable object across the network as a parameter could be 
uneconomical if all of its fields where not needed. This is not a problem if one 
is only sending it by reference. If one decides to construct smaller versions of 
objects to send them over the network efficiently as parameters, then one must 
also consider the class explosion problem. 
 
To refactor this smell use the ‘Replace parameter with method’, ‘Preserve 
Whole Object’ and/or ‘Introduce Parameter Object’ refactorings. 
 
Packages affected: 76 
Occurrences: 681 (default setting of five parameters lines) 
 

Parameters >= 5 >= 8  >= 11 
Occurrences 681 108 35 
Complexity Medium Medium High 
Value Low Medium High 
Classification Nice to have LHF Strategic 

Table 8: Long Parameter List analysis results 

Classification Justifications – One can see that as the number of unused 
parameters increase, the higher the complexity and value becomes. Threshold 
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values were chosen to filter out items so as to ensure that only a few high 
valued items could be classified as being strategic. 
 

7.8.3 Too Many Exceptions  
 
Dealing with too many exceptions can result in clumsy and bulky error 
handling code, especially in projects with long method call chains. The issues 
and solutions with this code smell are discussed below. 
 
If one is throwing more than three exceptions from a method, then whoever is 
calling that method must catch all of the exceptions. An example call chain 
could be: 
 
Layer 1 a() 
Layer 2 b() c() 
Layer 3 d() e() f() g() 
Table 9: Using layering to handle exceptions 

 
It is common to divide a complex project into layers. These layers could also 
represent class hierarchies. A layer is assigned certain responsibilities. A parent 
layer would use its child layers to carry out its responsibilities. The call chain 
would include a() calling b() which calls d() and e(). After b() has completed, 
a() calls c() which calls f() and g(). Consider that all methods on Layer 3 throw 
two unique exceptions. This will mean that a() needs to deal with 8 exceptions.  
  
Parent layers should wrap the child layer exceptions into more general 
exceptions in order to reduce too many catch statements at the top-most layers. 
A method declaring too many exceptions is dangerous when it is being used 
often and if it is deep in the call chain (like the methods in Layer 3). In such 
cases, create a superclass exception that can be extended by all of the offending 
exceptions. Only throw the superclass exception to the calling methods. If 
necessary, wrap the child exceptions manually by catching and wrapping them 
as the superclass exception. Perform any error handling in the catch statement 
used to wrap the exception. These specials cases are Quick wins as their value 
is high.  
 
Packages affected: 15 (for more than three exceptions) 
Occurrences: 48  
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Exceptions >= 4 >= 5 >= 6 
Occurrences 48 9 1 
Complexity Medium Medium Medium 
Value Medium Medium High 
Classification Strategic Strategic Strategic 

 Table 10: Method with too many exceptions analysis results 

 
Classification Justifications – One can see that as the number of unused 
exceptions increases, the higher the complexity and value becomes. Threshold 
values were chosen to filter out items to ensure that all of the refactorings were 
classified as being strategic. 
 

7.9 Class Metrics 
 
Class metrics are used to pick up code smells pertaining to classes. 
Inappropriate intimacy deals with how highly coupled a class is and large 
classes deal with classes that have too many instance variables. Refactorings 
and discussions are given around these two code smells. 
  

7.9.1 Inappropriate Intimacy 
 
“Sometimes classes become far too intimate and spend too much time delving 
in each others' private parts. We may not be prudes when it comes to people, 
but we think our classes should follow strict, puritan rules.” 
             Martin Fowler. 
 
To measure inappropriate intimacy, highly coupled classes were identified. 
Highly coupled classes lead to one change needing to be propagated through to 
all dependent classes. This makes maintenance difficult when an automatic 
refactoring is not available. 
  
The ‘Move Method’ and ‘Move Field’ refactorings can be used to solve this 
issue. Use the ‘Change Bidirectional Association to Unidirectional’ refactoring 
if possible. ‘Extract Class’ or ‘Hide Delegate’ could also be appropriate 
refactorings depending on the context.  
 
Packages affected: 140  
Occurrences: 1277  
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Dependencies >= 10 >= 30 >= 50 
Occurrences 1277 155 29 
Complexity Low  Medium  High 
Value Low Medium High 
Classification Avoid Strategic Strategic 

Table 11: Inappropriate Intimacy analysis results 

 
Classification Justifications – One can see that as the number of dependencies 
increases, the higher the complexity and value becomes. Threshold values were 
chosen to filter out items to ensure that only a few high valued items could be 
classified as being strategic. 
 

7.9.2 Large Class  
 
“As with a class with too many instance variables, a class with too much code 
is prime breeding ground for duplicated code, chaos, and death.” 
              Martin Fowler. 
 
The number of member fields was used as an indication of a class’ size. A class 
with a large number of member fields could be suggestive of a class that is 
trying to do too much. However, constant fields were ignored in the analysis.  
Note that using the number of methods only (i.e. ignoring member instance 
fields) as measure of whether or not a class is too big can be misleading, since 
a class may have only a few methods, but these methods could be rather long.  
 
To refactor this code smell use the ‘Extract Class’ or ‘Extract Subclass’ 
refactoring to group the local variables. 
 
Packages affected: 68 
Occurrences: 278 (for 10 local variables) 
 

Variables >= 10 >= 20 >= 30 
Occurrences 278 105 44 
Complexity Low  Medium  High 
Value Low Medium High 
Classification LHF Strategic Strategic 

Table 12: Large Class analysis results 

 
Classification Justifications – One can see that as the number of instance 
variables increases, the higher the complexity and value becomes. Threshold 
values were chosen to filter out items to ensure that only a few high valued 
items could be classified as being strategic. 
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7.10 Summary 
 
A large number of code smells were classified and their appropriate 
refactorings were given, which are defined by Fowler [1999]. This was done 
using IDEA in the context of the Java SDK code base. 
 
The next chapter deals with refactoring to pattern techniques [Kerievsky 2004]. 
Kerievsky [2004] is cited where applicable while the author of this dissertation 
identifies the rest of the code smells. The author provides new complementing 
code smells. The respective solutions or refactorings are also provided for the 
newly identified code smells. Note that not all the refactorings implement a 
pattern as the result of the refactoring. Mention is also given on how coupling 
and cohesion can influence what should be refactored.  
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Chapter 8 IDEA Code Review – Part 2 
 

8.1 Introduction 
 
This chapter continues the IDEA Code Review. In contrast to the previous 
chapter, however, there are almost no references to code smells mentioned by 
Fowler [1999]. Instead, some concepts have been taken from [Kerievsky 2004] 
and this work is citied appropriately. The author has provided the rest of the 
contribution in terms of unused code smells and the discussion on coupling and 
cohesion and its resulting relationship with refactoring. 
 
This chapter deals with a number of issues such as poor method composition, 
creational issues, control flow issues and unused code. Please refer to 
Appendix A.1 and A.2 when looking for information on all of the code smells 
and refactorings in this review. 
 

8.2  Poor Method Composition 

“You can't rapidly understand a method's logic”                                      
         
 Joshua Kerievsky  

Method composition refers to method structure. An analysis and discussion of 
issues mentioned in [Kerievsky 2004] and [Fowler 1999] on method 
composition is given. In Section 8.2.1 a discussion into the breakdown of 
methods is given. Section 8.2.2 deals with coupling and cohesion. Finally, 
8.2.3 discusses IDEA. 

Current developers should write maintainable code for future developers. 
Methods must have appropriate names, which clearly describe their purpose. 
The result may be more code, but the benefits will be that the code is easier to 
navigate.  
 

8.2.1 Method breakdown 

A developer working on an existing code base needs to go through a lot of 
code in order to find functionality that is being sought. A project with well-
composed methods will allow one to do this quickly, because the developer 
will focus on methods describing the functionality that he is looking for. 

Consider that one wants to find some functionality in a 1000 line method. This 
illustrates Fowler’s “Long Method” code smell. Searching through all the 1000 
lines and finding the functionality at the very bottom is not very productive for 
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the programmer. The entire 1000 line method needed to be understood. 
Consider that this method is now composed into two methods with descriptive 
names, each with 500 hundred lines. The developer is saved from reading 500 
lines of code provided it is known which method to search. Each 500-line 
method may then be further broken down. This may continue until the methods 
are of reasonable size. This concept is similar to finding a number in an 
unsorted array (1000 line method) as opposed to a sorted binary tree 
(composed methods). 
 
In section 8.2.2 below, facilities available in IDEA are discussed for detecting 
poorly composed methods that could be further broken down in the way 
discussed above.  
 

8.2.2 Coupling and Cohesion  

Method size should not be the only consideration in dividing long methods. 
Gamma et al. [1995] emphasise the importance of low coupling and they 
define coupling to be “The degree to which software components depend on 
each other”. Methods depending heavily on other classes are highly coupled. 
High coupling leads to fragile code as one change in a method can propagate 
changes to all referenced classes.  

Although low coupling is desirable, an aspect that Gamma et al. [1995] do not 
mention is cohesion [Constantine 1979]. Cohesion was first defined by an IBM 
researcher (Larry Constantine) trying to identify the characteristics of good 
programming practises through source code analysis. High cohesion often 
correlates with low coupling, and vice versa. Cohesion is a measure of how 
strongly related and focused the responsibilities of a single class are.  

Cohesion levels are more informative than coupling and give the developer a 
better idea of how to deal with method composition. Cohesion is categorised 
into seven levels, ranked according to their level of cohesion. Cohesion can 
help decide how to divide long and complicated methods into classes or among 
other classes if appropriate. Good method composition using high cohesion 
will therefore influence positively on the class. 

Removing high coupling levels of a method; by using the ‘Extract Method’ 
refactoring to divide, the method into smaller methods is futile. This will not 
change the class coupling level, as the class will still reference the same 
number of external classes, albeit in more methods now. Instead, the aim 
should be to reduce the total number of external classes referenced in the class 
as a whole. Instead, methods from the highly coupled methods should be 
extracted in such a way as to separate the code containing the largest parts of 
the “Feature Envy” smell. In other words, code segments with the highest 
amount of external references should be extracted. This can be achieved by 
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using the move method to move the unwanted functionality into the correct 
class. 
 
The removal of high coupling within classes creates communicational 
cohesion. Communicational cohesion ensures that methods are working on data 
that is co-located in a class. Functional cohesion is preferable to 
communicational cohesion, but is harder and sometimes impossible to create. 
Functional cohesion will group methods together in a class to contribute only 
to the single responsibility of the class. 
 
Functional cohesion will automatically enable a developer to understand a class 
quicker. This ensures that the class and its methods perform no other tasks, 
other than the ones required to fulfil the responsibility of the class. It is 
therefore a very desirable attribute to strive for when designing a new class or 
refactoring an existing class through method composition. If functional 
cohesion is not attainable or impractical to achieve in context, then 
communicational cohesion is sufficient. Classes with cohesions levels lower 
than that of communication cohesion (as defined in [Constantine 1979]) should 
be refactored through proper method composition so they adhere to the rules of 
communication cohesion. 
 

8.2.3 More informative smell detections  

IDEA has several inspections, which can be used to indicate poor method 
composition. These inspections reveal method characteristics such as 
cyclomatic complexity, level of nesting, method coupling, and method length.  

Complex methods are shown by measuring cyclomatic complexity. Nested 
methods indicate the level of nesting that is made with if, while, try, for 
statements etc. Coupled methods show methods referencing too many classes. 
Long methods can also be an indication of poor method composition.  

Each IDEA inspection in relation to these characteristics accepts a threshold 
parameter to control the inspection results. Highly coupled methods have 
already discussed them in section 7.9.1 under the heading of “Inappropriate 
intimacy” and will not be covered here. “Long methods” were also discussed in 
section 7.8.1.  

A method nesting depth is measured by the maximum depth at which 
statements are found in a method. The statements that contribute to the nesting 
depth include if, while, switch and for statements. Take for example an if 
statement containing a for loop and that for loop containing another for loop. In 
this case, the maximum nesting depth is three.  
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Higher nesting depths are often found in longer methods. However, it is 
generally more profitable to base smell detection on nesting depth, rather than 
on a search governed by method size alone. This is because long methods may 
embody trivial code, despite their length. 
 
The ‘Compose Method’ refactoring shown by [Kerievsky 2004] tells us to 
transform the logic into a small number of intention-revealing steps at the same 
level of detail. In other words, the small number of intention-revealing steps 
would comprise of methods extracted from the original method. This 
improvement is powerful in its simplicity, but has no regard for coupling or 
cohesion. For improvements taking cohesion and coupling into account, then 
research into how the method is fulfilling its responsibilities to the class, 
should be conducted. Further refactorings considering cohesion and coupling 
issues will be of a higher value as they will contribute more to the overall 
design of the classes.  
 
One may use all the refactorings mentioned by Fowler to simplify conditional 
statements, as these will be part of the nesting. Extract method may also be 
used in this case, but care should be taken with deeply nested structures as they 
are tricky to refactor. 

Large nesting depths in methods can make even a short and lowly coupled 
method a maintenance hazard. Using IDEA to detect smells that exceed a 
nesting depth threshold of four yielded the following results for the JDK1.4.2. 

Packages affected: 73 
Occurrences: 435 (for a nesting depth threshold of 4) 
 

Nesting depth >= 5 >= 6 >= 7 
Occurrences 435 154 53 
Complexity Medium Medium  High 
Value High High High 
Classification Strategic Strategic Strategic 

Table 13: Method nesting depth analysis results 

 
Classification Justifications – One can see that as the nesting depth increases, 
the higher the complexity and value becomes. Threshold values were chosen to 
filter out items, which displayed the highest complexity and value. 
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8.3  Creational Issues 
 
In this section, code smells related to the creation of objects are considered. In 
the first three subsections, the focus is on constructors. In the last subsection, 
subsection 8.3.4, the theme is on scenarios in which data and code that is used 
to instantiate a class spans across several classes. That way one is able to detect 
more smells quicker, instead of just focusing on one particular smell.  
 

8.3.1 Non-private Utility Class constructors 
 
This code smell is detected through IDEA and is not found in [Fowler 1999] or 
[Kerievsky 2004]. Utility classes only contain static methods and have no state. 
Utility classes should have all public constructors removed. In addition, since 
utility classes with no constructors can still be constructed with the default 
constructor provided by Java, the default constructor should be made private. 
These measures ensure that access to utility classes is always static. IDEA 
provides smell detection for utility classes with public constructors or no 
constructors at all.  
 
IDEA has global automatic removal of these two smells built in already. It can 
detect utility classes with no private or public constructors. It automatically 
creates private default constructors in all offending utility classes with the click 
of a button if none existed beforehand. 
 
Packages affected: 50 
Occurrences: 101  
Refactoring Complexity – Trivial  
Value – Medium (Due to low time complexity) 
Classification – Quick Wins 
Classification Justifications – Due to low complexity and relatively high value, 
this smell is classified as a quick win. 
 

8.3.2 Confusing or too many constructors 

Unless only static methods are called on a class, then one can be sure that a 
constructor needs to be called to create the object before it can be used.  

Kerievsky [2004] replaces the constructors with intention-revealing “Creation 
Methods” that return object instances. These methods may be seen as static or 
non-static factory methods. The confusing constructors themselves are made 
private as a result. 
 
 
Detection: IDEA can be used to search for classes with too many constructors. 
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Classes with too many constructors will result in confusion. Just how many 
constructors are too many will vary from class to class. If one finds that one 
cannot understand the creation process fast enough, then it is a sure sign that 
the construction process is too complicated and needs refactoring. 
  
One should focus on classes that are referenced often. This arises in more 
complexity, but greater refactoring value. Classes needed to exceed a 
constructor threshold of six in order to be seen as potential problems. Use 
lower thresholds to find more potential refactoring candidates. 
 
Use the ‘Introduce Factory’ refactoring in IDEA to replace the constructor with 
a creation (factory) method. The ‘Replace Constructors with Creation 
Methods’ refactoring from to pattern technique Kerievsky [2004] is already 
available in both Eclipse and IDEA.  
 
Packages affected: 17 
Occurrences: 31 
Refactoring Complexity – Trivial  
Value – Medium (Due to low time complexity) 
Classification – Quick Wins 
Classification Justifications – Due to low complexity and relatively high value, 
this smell is classified as a quick win. 
 

8.3.3 Constructors with duplicate code 
 
It has already been pointed out that code duplication can be seen as a bad 
smell. In general, more code duplication is found in long classes. This rule can 
be  extrapolated to constructors. The more constructors a class has, the greater 
the chance that they will contain code duplication. 
 
As a proof of concept, the java.util package was searched for classes with too 
many constructors. To guarantee some duplication, a constructor threshold 
limit of six was used(refer to section on confusing constructors). Tthe 
GregorianCalendar class had seven constructors. A duplicate search was 
performed on this class to search for duplication in constructors. The settings 
used are displayed in figure 31.  
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Figure 32: Constructor code duplication settings 

 
Only local variables are anonymized. Fields do not need to be anonymized as 
one is only searching for duplicates in one class. Literals are left out in order to 
return fewer duplicates.  

In java.util.GregorianCalendar, five duplicate groups were spotted, two of 
which are groups where constructors contained duplicate code. One group had 
three duplicates; the other, had two.  

The ‘Chain Constructors’ refactoring discussed by Kerievsky [2004] is one 
possible solution to this smell. Chaining constructors involves calling one 
constructor from the other. However, it was not possible to chain constructors 
in the example mentioned above. Instead, the duplicate code was removed by 
extracting a private constructor from the duplicate code. This private 
constructor can then be called in place of the duplicated code. This refactoring 
is called “Extract Constructor”. 

The first class with a high number of constructors, turned out to have 
duplicated code in the constructors. Subsequent random attempts to find 
duplicates resulted in only a handful of constructors containing duplicate code. 

Note that the Java language limits this refactoring, such that each constructor 
can at most call one other constructor. All other initialisation code must follow 
the first constructor call. The amount of code duplication is usually low for this 
code smell when compared to searching for normal code duplication. It is also 
very difficult to locate this smell. The value added is therefore minimal and 
there is more complexity to deal with. Seaching for this smell should therefore 
be avoided in favour duplicate detection searches that have a higher value 
(mentioned in the Locating Duplicates section).  
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8.3.4 Distributed creation information  

This smell occurs when data and code used to instantiate a class, starts to span 
across numerous classes.  

Detection: IDEA has no way to detect high coupling inside constructors.  
 
The factory method is usually used when a class requires many other classes in 
order to be created and the creational logic can be dispersed to the point that it 
starts to exist in different classes. Take for example a Maze class, which 
requires room, door and decoration information. The refactoring will make the 
offending constructors private, replacing them with a public create methods 
and replacing all uses of the now private constructors with the new factory 
method. This refactoring employs a design pattern and ensures that the creation 
logic is placed in one class only. 
 
Use the ‘Move Creation Knowledge to Factory’ refactoring to pattern 
technique to solve this issue. IDEA has the ‘Introduce Factory’ refactoring for 
this code smell. 
 

8.4 Redundant if Statements 
 
Replacing redundant if statements with better logic is good programming 
practice. This issue can also be one of coding style. One can argue that, brevity 
saves lines of source code. IDEA provides a global quick fix to eradicate all of 
these smells with one click. This is why one can consider the smells as Quick 
Wins. See Fig 3.3 and the text to the right of it to see how to do this.  
 

 
Figure 33: Redundant if - before refactoring 

 
Clicking on the light bulb (see Figure 33 above) results in IDEA suggesting to 
us to simplify the if statement. 
 
 

 
Figure 34: Redundant if - after before refactoring 

 
The result (see Figure 34) of simplifying the if statement is cleaner code. 

 
 
 



 91

The following results were obtained when running IDEA on the JDK 1.4.2. 
 
Packages affected: 48 
Occurrences: 161 
Refactoring Complexity – Trivial  
Value – Medium (Due to low time complexity) 
Classification – Quick Wins 
Classification Justifications – Due to low complexity and relatively high value, 
this smell is classified as a quick win. 
 

8.5 Unused Code 
 
One can carry out smell detection for unused code in IDEA as indicated in 
Figure 34. Navigate to the inspection profile settings and supply a string prefix 
for the filter. Click the Funnel on the top right and IDEA will return all 
categories that correspond to the keyword that was requested. The string 
“unused” is used to search for unused code. 
 

 
Figure 35: Searching for unused code in IDEA 

 

8.5.1 Redundant local variables 
 
A local variable that only gets used once is redundant. It should be replaced by 
the value that is assigned to it. Fixing this smell has little value. 
 
 
Entry e = new Entry(hash, key, value, tab[index]); 
                tab[index] = e; 
 
is replaced by:  tab[index] = new Entry(hash, key, value, tab[index]); 
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IDEA does this refactoring automatically. Fowler [1999] calls it Inline Temp. 
 
Packages affected: 125 
Occurrences: 335 
Refactoring Complexity - Trivial 
Value – Low  
Classification - Low Hanging Fruit. 
Classification Justifications – Due to low complexity and low value, this smell 
is classified as low hanging fruit. 
 

8.5.2 Unused method parameters 
 
This smell is discussed in section 6.1.3 under the Eclipse Review.  
 
IDEA provides a global quick fix to eradicate all of these smells with one click. 
This is why one can consider the smells as Quick Wins. IDEA also checks if 
these parameters are not used in methods implemented or overridden from the 
class. This additional check explains why the number of occurrences found in 
Eclipse (4890) is greater. IDEA therefore only detects less complex versions of 
this smell and as a result, the solution is less complex.  
 
Packages affected: 94 
Occurrences: 1122 
Refactoring Complexity - Trivial 
Value – Medium (Due to low time complexity)  
Classification – Quick Wins  
Classification Justifications – Due to low complexity and relatively high value, 
this smell is classified as a quick win. 
 

8.5.3 Redundant throws clause  
 
Read about the “Method with too many exceptions declared” smell detected by 
IDEA for more background information. 
 
IDEA provides a global quick fix to eradicate all of these smells with one click. 
This is why one can consider the smells as Quick Wins. IDEA also checks if 
this method does not use the throws clause in methods implemented or 
overridden from the class. This additional check explains why the number of 
occurrences found in Eclipse (623) is greater. IDEA therefore only detects less 
complex versions of this smell and as a result, the solution is less complex.  
 
Side Effects: This smell produces another potential smell after refactoring. 
Once removed, redundant throws clauses must have had a place where they 
were caught or re-thrown. All catch statements used to catch these clauses are 
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redundant. All throw clauses used to re-throw the exceptions are also 
redundant. This means that this refactoring needs to be run as many times as 
new redundant throws clauses are detected. This could require many iterations 
of smell detection, but could also reduce the code base considerably. 
 
To illustrate the side effects: C.doIt() previously threw a redundant 
IOException. B.one() and B.two() both called C.doIt() and had to handle the 
IOException somehow. This was done by catching or re-throwing the 
exception. 
 
Now both methods need to be refactored. B.one() shows a compile error as the 
catch statement is now unreachable. B.two() shows another redundant throws 
clause. 
 
This could be a problem depending on how many times C.doIt() was called 
throughout a project and how its exception was handled by the callers and their 
callers and so on. For an idea on how this smell can become serious, please see 
the section on “Methods with too many exceptions declared”. 
 

 
Figure 36: Exception side effects. 

 
Note that although Eclipse was used to display the code, the behaviour is 
similar in IDEA. IDEA will need some initial setup to display all warnings, 
though. 
 

 
 
 



 94

Warning: This detection also finds exceptions that are thrown in interface 
methods. Applying a global quick fix in this case can have potentially 
disastrous effects. One only needs to go as far as the java.sql.Array interface to 
see what would happen if the exceptions were seen as redundant and removed 
from the interface. 
 
Packages affected: 68 
Occurrences: 491  
Refactoring Complexity - Trivial 
Value – Medium (Due to low time complexity) 
Classification – Quick Wins and Strategic refactorings 
Classification Justifications – Due to low complexity and relatively high value, 
this smell is classified as a quick win. 
 

8.5.4 Unused imports  
 
Unused imports seem like a trivial code smell. However, over a long time, 
unused imports can litter a large class. This is especially the case when new 
classes are added and removed, without cleaning up any imports. Over time the 
imports can take up many lines of code, especially in heavily used classes. 
 
IDEA can organise imports in every class simultaneously. Checking to see that 
everything still compiles should provide sufficient testing. This smell is further 
discussed in section 6.1.1 under the Eclipse Review. The redundant import 
smell is also fixed when one organises the imports.  
 
Select a package or file and press Ctrl-Alt-O.  
 
Packages affected: 37 
Occurrences: 3427  
Refactoring Complexity - Trivial 
Value – Medium (Due to low time complexity) 
Classification – Quick Wins  
Classification Justifications – Due to low complexity and relatively high value, 
this smell is classified as a quick win. 
 

8.5.5 Field can be local 
 
This would be an important inspection for reducing the amount of data in a 
class. Network traffic e.g. could be reduced in web-applications if the classes 
passed through the network are made smaller, by removing redundant fields. 
Consider first how many local fields need to be created, before removing the 
field. It is counter-intuitive to declare a member variable that is never returned 
from the class and only used in one method. 
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IDEA will provide a refactoring for this smell, named ‘Convert to local’ after 
analysis. IDEA provides a global quick fix to eradicate all of these smells with 
one click. This is why one can consider the smells as Quick Wins.  
 
Side Effects: Say somebody is relying on the size of class to always stay 
constant and uses it to identify that class (an in-experienced programmer may 
do this). If a field is removed from the class, the programmer’s code does not 
recognize the class anymore, since its size has changed! 
 
Packages affected: 48  
Occurrences: 179 
Refactoring Complexity – Trivial 
Value – Medium (Due to low time complexity) 
Classification – Quick Wins 
Classification Justifications – Due to low complexity and relatively high value, 
this smell is classified as a quick win. 
 

8.6 IDEA Code Review Conclusion 
 
This conclusion provides a consolidated view in table 14 of this chapter and the 
previous one. The table groups code smells detected in the 1.4.2 version of the 
JDK by the various classification groups previously identified: Quick Wins, 
Strategic, LHF and Avoid. Recall that relatively high threshold values were 
used for the above in order to produce a conservative amount of code smells. 
The table includes the number of code smells detected in each case.  
 
Large numbers of trivial code smells that do not have global quick fixes should 
rather be detected by dynamic inspection in IDEA. This is because it will take 
too long to refactor the code smells manually. IDEA should be configured to 
pick up emerging smells while developers start to create or change 
functionality. As the developer navigates the code base, an attempt should be 
made to refactor code smells located in the current areas of focus. The 
developer will understand the code he/she is creating or editing and will 
therefore be in a better position to refactor. This method of dynamic inspection, 
which can be switched on in IDEA, is far better than having to do a manual 
code inspection for a large amount of files. 
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Name Occurrences Value Classification 
    
Quick Win Group    
Duplicates  68 High Quick Wins 
Confusing Constructors 31 Medium Quick Wins 
Non-private Utility 
Class 

101 Medium Quick Wins 

Unused parameters* 1122 Medium Quick Wins 
Redundant throws 
clause* 

491 Medium Quick Wins 

Unused imports * 3427  Medium Quick Wins 
Field can be local*
  

179 Medium Quick Wins 

Redundant if 
statement*  

161 Medium Quick Wins 

    
Strategic Group    
Method with too many 
exceptions declared 

48 to 1 Medium to High Strategic 

Nesting Depth 453 to 35 Medium to High Strategic 
Long Method  1264 to 92 Low to High LHF to Strategic 
Large Class  278 to 44 Low to High LHF to Strategic 
Too many parameters  681 to 35 Low to High Avoid to Strategic 
Inappropriate Intimacy 1277 to 29 Low to High Avoid to Strategic 
Feature Envy  58 Low to High LHF to Strategic 
Instance of Chains 173 Low to High Strategic 
    
Low Hanging Fruit    
Public field 700 Low Low Hanging Fruit 
Redundant local 
variables 

333 Low Low Hanging Fruit 

    
Avoid    
Refused Bequest 5485 Low to Medium Avoid 
Magic Numbers 13003 Low to Medium Avoid 

Table 14: IDEA code smell summary 

 
* - represents smells having a global quick fix. This fix can be applied to all 
offending files with one click. Value was increased in these cases due to the 
massively reduced time complexity. 
 
 
IDEA can educate developers about code smells by its dynamic detection of 
code smells. This will prevent developers from re-creating the code smells. A 
large team of developers practising refactoring will slowly remove all of the 
code smells over time.  
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Another good way to categorise code smells is to use the taxonomy created by 
[Mantyla 2006]. This taxonomy is presented in the appendix at the end of the 
dissertation (refer to Appendix A.3). 
 

8.7 Summary 
 
This concludes the full IDEA code review. An analysis of the JDK is given 
from a code smell and refactoring perspective. This analysis includes work 
from the author, who has mapped new and existing code smells and 
refactorings by investigating IDEA. 
 
The next chapter gives a comparison between IDEA and Eclipse from a 
productivity and feature point of view. The discussion also touches on how 
well each IDE (Integrated Development Environment) handles refactoring 
complexity. 
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Chapter 9 An IDE Comparison 
 
Table 15 is used to compare the aspects thought to be most important when 
considering good refactoring tool support in a modern Java IDE. This chapter 
provides a comparison between IDEA and Eclipse from a productivity and 
feature point of view. Note that even though only 19 code smell inspections 
were found in IDEA, it is possible to find a few more code smells, which are 
suitable targets for refactorings. 
 
It is important to define the comparison criteria before the results are produced: 
 

1. Code smell inspections – Here the physical number of code smell 
inspections available is shown for each IDE. Note that these are the 
code smell detections that were identified by the author and that there 
could possibly still be several more of them available in IDEA. 

 
2. Dynamic Analysis – This refers to the ability of the IDE to 

automatically detect code smells upon opening of a specific resource 
(such as a Java source file). The type of code smells detected would 
depend on user settings. This feature is much like that of Words ability 
to dynamically pick up spelling mistakes in a document. 

 
3. Refactorings available – This tells us whether or not there are a large 

number of refactorings available in the IDE. Both IDEs had a 
comparable number of refactorings available.  

 
4. Smell detection speed – this tells us how quick it is to locate the code 

smells. Note that large projects were used to measure detection speed. 
Eclipse uses a compiler-based method to perform analysis. IDEA uses a 
static analysis detection method, which is far slower than that of 
Eclipse. 

 
5. Assisted smell removal – Eclipse allows one to fix each code smell that 

it detects. In most of the cases, the removal of the code smells is rather 
simple. There are problems with the automated removal as discussed 
for example in Section 6.1.3. IDEA has very good smell removal 
techniques, but not all of them are automated. 

 
6. Global smell removal – This criterion refers to being able to remove all 

of the detected code smells in a project, as opposed to having to fix the 
code smells separately in each file through a manual process. 

 
7. Filter smells by severity – This idea is based on the threshold concept, 

present in IDEA when one is doing a static code analysis. 
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8. Detection of complex smells – Eclipse can only detect code smells 
pertaining to unused code. IDEA can detect somewhat more complex 
smells, one of the most complex being the location of duplicate sections 
of code. 

 
 IDEA Eclipse 
Code smell inspections 19 8 
Dynamic Analysis Partial Yes 
Refactorings available Yes Yes 
Smell detection speed Slow Fast 
Assisted smell removal Partial Full 
Global smell removal Partial No 
Filter smells by severity Partial No 
Detection of complex 
smells 

Yes No 

Table 15: An IDE Comparison 

 
This chapter provides insight into how Eclipse filters refactoring by context. A 
discussion is provided on the various productivity issues that arise when one 
starts refactoring with Eclipse and IDEA. The discussion follows on how 
refactoring complexity can be dealt with in the other IDE’s. 
 

9.1 Filtering Refactorings By Context In Eclipse 
 
This section is related to productivity issues present in Eclipse. A 
demonstration will be given on how only certain refactorings appear available 
to the user, depending on the code element selected.  
 
Examples of available refactorings for different programming attributes: 
 

 
Figure 37: Class refactorings 
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Figure 38: Method refactorings 
 

 
Figure 39: Constructor refactorings 
 
Programmers inexperienced with refactoring will be less prone to pick 
incorrect refactorings by mistake in Eclipse, due to its selective filtering. This  
is still not perfect, e.g., Eclipse shows refactorings which rely on classes 
belonging to class hierarchies even if they don’t (such as Pull Up and Push 
Down). 
 
Eclipse shows refactorings that are applicable in the current context. For 
example if one right clicks a class, then only class applicable refactorings will 
be displayed (Figure 37). Note how ‘Introduce Factory’ is only available for 
constructors (Figure 39). Although not perfect, it is less confusing to see these 
filtered menus compared to the 27 or so available refactorings shown by IDEA. 
 

9.2 Productivity Issues 
 
There is no doubt that semantic preserving refactorings found in Eclipse and 
IDEA make the refactoring exercise more productive. The same can be said for 
finding targets for refactorings. 
 
Eclipse quickly performs checks by building the source. To build the code, first 
configure the type of warnings emitted from the compiler. Thereafter, 
incremental builds are performed and code is checked for smells as one saves. 
Eclipse has a small amount of smells to analyse, so this approach is feasible.  
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IDEA can do over 400 code inspections, of which 16 mapped to bad code 
smells. IDEA is pre-configured once to perform analysis transparently; each 
time a source file is accessed or changed. IDEA can extract a method from 
multiple code duplicate groups in one operation.  This feature only works for 
low cost duplicate groups in Eclipse. 
 
Eclipse can perform the compilation of the JDK source in the background. 
Compiling code in the background allows one to carry on coding and using the 
IDE. In comparison, IDEA consumes large amounts of CPU time and memory 
while blocking the IDE during analysis. Eclipse performs eight code 
inspections in the background while compiling the JDK code in under 2 
minutes. The java memory settings for IDEA need to be tweaked to configure 
the system memory (heap size).  
 
IDEA is written in Java. Therefore it uses garbage collection in order to 
manage its memory allocation and de-allocation. IDEA documentation claims 
that the garbage collector automatically performs garbage collection before it 
starts to run out of memory. This is not the case while running a complex 
analysis and will crash the IDE. The solution is to do this manually by clicking 
on the bin in the lower left hand corner of the IDE. To ensure optimal 
performance, garbage collection should be performed before analysis and/or 
the physical memory used should be increased. 
 

9.3 Handling Refactoring Complexity 
 
It is easy to make mistakes when fixing unnecessary code in Eclipse. These 
mistakes occur in complex smells where parameters or exceptions are not used 
in methods implemented or overridden from a super class. For an example of 
these issues, please refer back to section 6.1.3. 
 
IDEA simplifies its code smell detection for certain types of unnecessary code, 
by ignoring class hierarchies altogether. This results in refactorings, which can 
cause bugs, because of the ignorance of class hierarchy relationships. The 
advantage is that the refactoring can be automated for many classes. This is 
quite clear in section 6.1.3. 
 
Code smells in large class hierarchies can identify potential design flaws. This 
is particularly true of code smells that are more complex and that can lead to 
strategic refactorings. The over-simplification for the “unread parameter” code 
smell search in IDEA has the drawback of not being able to identify such 
issues. This is discussed in section 8.5.2. 
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9.4 Summary 
 
This chapter provided a comparison between IDEA and Eclipse from a 
productivity and feature point of view. The previous chapters explore the 
different features present in Eclipse and IDEA and this chapter provides the 
results. Discussion centred on how well each IDE (Integrated Development 
Environment) handled refactoring complexity. It is important to note that no 
IDE is better than the other. It is up to the user to decide which IDE will best 
suit their needs based on the advice given in this thesis. 
 
The following chapter will give an analysis of all previous results from a code 
evolution perspective. 
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Chapter 10 Code evolution 
 

"Complex systems that work, evolved from simple systems that worked."  
G.Booch 

 
Usually if a system is designed well enough then it will have few code smells. 
Having a design that is more flexible usually leads to code that is more 
complex. This added flexibility will not always be needed in the future and will 
eventually clutter up the code base. An example is to use a strategy pattern to 
allow for multiple algorithms when there is only one algorithm needed at 
present. The strategy pattern is redundant in this case and breaks the ‘YAGNI’ 
rule. YAGNI stands for “One Ain’t Gonna Need IT” [Beck 2000] and is used 
in XP circles to show that one should not build code merely because it might 
fulfil some future requirements. One should only build code for current 
requirements and future requirements may change. It is easy to change 
requirements, but much harder to change code. 
 
A well-built system eventually looses out to growth. Good design cannot 
foresee all of the possible future requirements and problems. During the 
evolution of code, there are certain warning signs that can show us that there 
may be trouble ahead. These warning signs are code smells. If these warnings 
are ignored, then all sorts of problems tend to emerge, and these eventually can 
become unmanageable. 
 
The JDK source code (available from the software development kits), has been 
used below to show how the code has evolved from version 1.02 to version 
1.5.0. An investigation was performed on how such a code base grows in 
number of files, source lines of code and code smells. The classification system 
from Figure 4 is used to describe the changes and provide graphs, which 
identify the evolutionary aspects of the code. 
 

10.1 A Statistical View 
 
As with the first code review, statistics were gathered on the number of files, 
number of source lines of code (SLOC, means no commented or blanks lines), 
number of commented lines of code, number of blank lines and the total 
number of lines of code in each code base. Thus SLOC + Comments + Blanks 
= Total number of lines of code.  
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Version Files SLOC Comments Blanks Total 
1.0.2 217 15,350 17,401 3,333 36,084 
1.1.8_10 685 64,795 72,399 11,526 148,720 
1.2.2_17 1,654 215,806 227,664 50,938 494,408 
1.3.1_17 1,882 246,385 263,834 56,240 566,459 
1.4.2_03 4,141 563,073 569,285 161,504 1,293,862 
1.5.0_02 6,565 836,453 827,428 223,830 1,887,711 
Table 16: All JDK Code Statistics 

 
Version SLOC % Comments % Blanks % Total 
1.0.2 43% 48% 9% 36084 
1.1.8_10 44% 49% 8% 148720 
1.2.2_17 44% 46% 10% 494408 
1.3.1_17 43% 47% 10% 566459 
1.4.2_03 44% 44% 12% 1293862 
1.5.0_02 44% 44% 12% 1887711 

Table 17: JDK Code Statistics (in percentages) 

 
The next three graphs are used to identify any possible relationships between 
the number of physical source lines of code, number of files and code smell 
across the JDK versions. 
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Figure 40: Source lines of code per JDK version 
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Figure 41: Files per JDK version 
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Figure 42: Code smells per JDK version (High thresholds) 

 
From the statistical view of the physical source lines of code (SLOC), number 
of files and code smell groups, its obvious that the growth rates for each of 
these three attributes are very similar. The similar shape of all three graphs 
(Figure 40, Figure 41, and Figure 42) reveals this trend.  
 
The following figure shows that there is no relationship between the numbers 
of smells per 1000 lines of physical source code. The data shows that version 
1.0 had a high ratio of code smells to source lines of code when compared to 
the later versions. The ratio in the later versions seems to remain rather 
constant. 
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Figure 43: Smells per 1000 SLOC 

 
The next few subsections will show the frequency distribution of the various 
code smells as they appear in each JDK version. Each group will be shown in 
order of importance. These statistics where used to compile the information in 
Figure 42. 
 

10.2 Quick Win Group 
 
This is the most important group in the code smells. If the global quick fixes 
(indicated by the * symbol in Table 18) are proven to be 100% semantically 
correct then one has a chance to refactor a vast portion of the code without 
much manual intervention. 
 
 1.02 1.1.8 1.2.2 1.3.1 1.4.2 1.5.0 
Duplicates  3 12 29 38 68 86 
Confusing Constructors 2 6 19 21 31 40 
Non-private Utility Class* 0 7 23 42 101 182 
Unused parameters* 40 66 472 538 1122 1448 
Redundant throws clause* 13 38 223 225 491 554 
Unused imports * 34 108 1045 1131 3427 3509 
Field can be local*  9 26 54 63 179 258 
Redundant if statement*  0 26 60 69 161 210 

Table 18: JDK - Quick Win Group 
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10.3 Strategic Group 
 
Section 5.3 showed how thresholds were generated for strategic groups. 
 
Strategic refactoring holds the most value, but at the cost of increased 
complexity. Table 21 shows the input thresholds (to the right of the names of 
the code smells) that were used to retrieve the desired code smells. A very 
conservative set of threshold values was selected, which yielded a low number 
of code smells. Table 19 shows the number of code smells that were retrieved 
after using low threshold values. Table 20 shows the number of code smells 
retrieved with a medium threshold values.  
 
Brackets next to the code smell name surround the actual threshold value. The 
same threshold values where used across all of the JDK versions to illustrate 
the growth of the code smells from version to version. Only the highest 
threshold values were used in order to reduce the total number of code smells 
reported and to show the code smells with the highest refactoring value. 
Refactoring does not stop once all of the code smells are refactored. The lower 
threshold values can be used to report new code smells, until acceptable 
threshold values are reached. 
 
These strategic refactorings are characterised by their higher complexity levels 
and lack of automated global quick fixes. They will normally require many 
low-level refactorings. All of the code smells reported in Table 20 will be of 
high value due to the high threshold values used during inspection. Note that 
the inspection tool must exceed the threshold value in order to report the code. 
The strategic group arises from the ability to detect code smells based on the 
value that they carry. 
 
Before showing the number of code smells generated for each of the differing 
code smells. Thresholds for different code smell are explained: 
  

1. Too many method exceptions – Each method searched contains a 
number of thrown exceptions. If the threshold value is, say, three then 
all methods with four or more exceptions will be found. 

2. Nesting Depth – A nesting depth is determined by the amount of nested 
statements such as if, switch, for and while loops. If the nesting 
threshold is 4 then all statements with a depth greater than 4 are found. 

3. Long Method – If the threshold value is 49, then all methods with more 
than 49 lines of code will be found. 

4. Too many parameters – If the threshold value is four then all methods 
with more than 4 parameters will be found. 

5. Large Class – If the threshold value is nine then all classes with more 
than nine variables (excluding constants) will be found. 

6. Inappropriate Intimacy – This threshold measures the amount of 
coupling by the number of classes referenced by the class. If the 
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threshold is nine then any class with more than 9 referenced classes is 
counted. 

 
 1.02 1.1.8 1.2.2 1.3.1 1.4.2 1.5.0 
Too many method exceptions (3) 0 6 16 16 48 167 
Nesting Depth (4) 0 35 156 190 435 650 
Long Method (49) 29 116 544 623 1264 1909 
Too many parameters (4) 24 83 481 526 681 1562 
Large Class (9) 11 30 140 159 278 407 
Inappropriate Intimacy (9) 0 30 554 615 1277 2100 

Table 19: JDK - Strategic Group (low thresholds) 

 
As can be seen above, low thresholds produce large amounts of code smells 
when compared with the tables below, which use higher threshold values. 
 
 1.02 1.1.8 1.2.2 1.3.1 1.4.2 1.5.0 
Too many method exceptions (4) 0 0 4 4 9 78 
Nesting Depth (5) 0 11 54 66 154 233 
Long Method (74) 9 27 69 75 195 321 
Too many parameters (7) 5 12 67 73 108 278 
Large Class (19) 2 7 42 46 105 159 
Inappropriate Intimacy (29) 0 4 41 55 155 271 

Table 20: JDK - Strategic Group (medium thresholds) 

 
As the threshold values increase, so the amount of generated code smells 
decreases. 
 
 1.02 1.1.8 1.2.2 1.3.1 1.4.2 1.5.0 
Too many method exceptions (5) 0 0 0 0 1 48 
Nesting Depth (6) 0 5 23 24 53 80 
Long Method (99) 7 15 32 37 92 155 
Too many parameters (10) 0 2 14 18 35 74 
Large Class (29) 0 1 16 16 44 70 
Inappropriate Intimacy (49) 0 2 6 8 29 62 

Table 21: JDK - Strategic Group (high thresholds) 

 
The values in Table 21 are the original values that were used for the IDEA 
review. They are the most conservative set of values that were chosen as can be 
seen by the small amount of generated code smells. 
 
 1.02 1.1.8 1.2.2 1.3.1 1.4.2 1.5.0 
Feature Envy  2 8 28 33 58 219 
Instance of Chains 0 10 55 65 173 278 

Table 22: JDK - Strategic Group (Threshold independent smells) 
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The code smells in Table 22 require no thresholds for generation and therefore 
only have one set of results. Even though no threshold values are present these 
code smells are here because they were classified as being strategic targets for 
refactoring. 
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Figure 44: Code smells group per JDK version (low threshold values) 

 
Compare Figure 42, which displays code smell information with low threshold 
values with that of Figure 44 where high threshold values apply. There is a 
marked increase between the two yellow lines representing the count of 
strategic code smells across all of the JDK versions. This clearly illustrates the 
large impact that the threshold values can have on the number of code smells 
produced.  
 

10.4 Low Hanging Fruit Group 
 
The LHF group contains a large number of trivial code smells. They are easy to 
refactor, but their number of occurrences has grown to such a level that it 
would be impractical to refactor all of the code smells. Note that if these code 
smells had eben tackled in the earlier JDK versions, then it might have been 
easier to handle them in current versions. Had the developers been aware of the 
code smell and starting fixing them early on, then they might also have been 
encouraged to prevent these code smells from re-appearing. 
 
 1.02 1.1.8 1.2.2 1.3.1 1.4.2 1.5.0 
Public field 47 63 284 304 700 1135 
Redundant local variables 3 13 123 163 333 547 

Table 23: JDK – Low Hanging Fruit Group 
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10.5 Avoid Group 
 
Due to the relatively high number of occurrences, these code smells should be 
avoided. The reasoning behind this is that the sheer number of the code smells, 
makes them impractical to remove, since it would take a very long time to 
remove them. The resulting value of removing these code smells would not 
warrant the large amount of time expended on removing them. There is no way 
to sort the code smells into high or low value groups, except by manual 
inspection. The nature of these code smells is such that some of them could be 
of little or no value. As a result, much time will be lost in trying to refactor 
these smells, due to the manual filtering required. As with the “Low Hanging 
Fruit Group”, these code smells should have been caught earlier on in the 
development process, where their removal would have been much less of a 
problem. 
 
 1.02 1.1.8 1.2.2 1.3.1 1.4.2 1.5.0 
Refused Bequest 97 350 2414 2680 5485 7870 
Magic Numbers 1196 1616 5198 5699 13003 18622

Table 24: JDK - Avoid Group 

 

10.6 Removing the Avoid Group 
 
The “Avoid Group” was removed in order to get a better statistical view of the 
other groups. The results (see Figure 45) again showed a graph that resembled 
those of Figure 40 and Figure 41  (SLOC and number of files in the JDK 
version). Of course, it cannot be claimed that this similarity phenomenon 
would be reproduced across all projects. However, it makes sense that if code 
smells are not refactored, then over time they will increase proportionally in 
line with the size of the code base. The growth rates between the different JDK 
version were almost identical. 
 
The results also show that the “Quick Win” group closely follows the total 
number of code smells across the JDK versions. This is good news as most of 
the code smells in the “Quick Win Group” are easily refactored. 
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Figure 45: Code smells group per JDK version (- avoid group) 

 

10.7 Summary 
 
This chapter gave an analysis of all previous results from a code evolution 
perspective. All classification groups where represented statistically and it was 
determined that there was a distinct linear relationship between the size of the 
JDK code base and the number of code smells as the code base grew between 
different versions. 
 
The last chapter describes the contributions made to the field of refactoring, 
analysis results are presented, future work is proposed and the conclusions 
derived from this work. 
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Chapter 11 Conclusion 
 
“Any damn fool can write code that a computer can understand the trick is to 
write code that humans can understand.”   
                      Martin Fowler. 
 

11.1 Refactoring Contributions 
 
This dissertation shows how to efficiently identify and refactor common and 
new code smells, by using a popular IDE on a large code base. Common code 
smells are those presented by Martin Fowler. New code smells defined by the 
author, gave rise to suggestions for new refactorings that, to the best of his 
knowledge, have not been previously proposed.  
 
Detailed discussions based on the authors experience were given on all code 
smells. The most significant new code smell mentioned is that of unnecessary 
code. The many different variants of unnecessary code were discussed as well 
as the refactorings used to eliminate these smells. By proposing a way to 
classify code smells, the research conducted gave more insight into when to 
refactor code smells and the possible pitfalls one may find along the way. The 
code smells and refactorings proposed by Fowler [1999] were used as a rough 
guide and additional comments made by the author of this dissertation also 
made the purpose behind the refactorings more clear. 
 
A new way to classify code smells was proposed. The classification is used to 
show that refactoring is not always practical in every context. The aim was to 
detect code smells that brought the most value to a refactoring exercise. IDEA 
can successfully be used to attain code smell classifications.  A comparison 
was given between Eclipse and IDEA from a number of perspectives in 
Chapter 9.  
 
Mens et al. [2004] point out that although commercial refactoring tools have 
begun to proliferate, research into software restructuring and refactoring 
continues to be very active, and remains essential to reveal and address the 
shortcomings of these tools. This dissertation clearly identifies any such 
shortcomings as well as advantages in the tools selected.  
 
The code evolution of a large project is discussed and classification is used to 
determine what should and should not be refactored. There are many 
discussions on each code smell based on the authors experience in general. 
These discussions include observations concerning shortfalls identified in the 
two IDEs when considering automated refactoring tools. A number of 
comments are made on how the design of a program can be improved by each 
refactoring described. 
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11.2 Analysis Results 
 
Refactoring is not always beneficial. Sometimes code smells are put there for 
very good reasons, e.g. to increase performance. It pays to be familiar in the 
problem domain in which one is working before starting to refactor. Knowing 
the difference between good and bad practices in a domain can mean the 
difference between good and bad refactorings. No one should be allowed to 
attempt complex refactorings without decent exposure to the system or 
problem domain. Code reviews are another line of defence to ensure that 
refactorings are improving the design of existing code. Knowledge of good 
design is essential, before one starts to refactor.  
 
For refactoring to succeed, one needs to refactor code smells pointing to design 
flaws. In general, strategic code smells pointed to bad design. Not every code 
smell found has the same refactoring value e.g. finding duplicates will be more 
valuable to refactor than unused imports. Not every instance of one specific 
code smell type will necessarily have the same refactoring value e.g. when 
finding duplicates, not all of the duplicates found will be equally valuable. 
 
Being able to classify code smell types, can lead to greater refactoring 
productivity. This is often only possible with the right refactoring tools, such as 
IDEA which can (in some cases) offer analysis threshold parameters in order to 
filter out code smells by the refactoring value and complexity that they hold. 
 
The resulting analysis performed with IDEA and Eclipse, gave a list of code 
smells with the number of times each code smell occurred in each version of 
the JDK. This list may be used to see the quality of the JDK code, through a 
code smell perspective. When looking at the design of the JDK at very detailed 
granularity, one can see how the design is affected through the many code 
smells present. The more code smells present the harder the JDK will be to 
maintain.  
 
Importance is placed on the need for continuous design, which constantly 
integrates refactoring into the development process to ensure good code 
maintainability. It is shown that IDEA is one of the best tools to use when one 
needs to employ a continuous design technique. It is also shown that tools such 
as Eclipse have drawbacks, which can cause refactoring to break down if 
proper care is not taken. 
 

Different refactorings require different amounts of effort, and provide different 
returns in terms of the improvement of the system as a whole. This means that 
it is necessary to characterize code smells and their refactorings to prioritize 
their application. This is achieved through employing a four-quadrant model, 
which contrasts complexity against value. 

 

 
 
 



 114

In the study of the evolution of the JDK, the analysis results conclude that code 
smells generally increased at a linear or constant rate throughout all of the 
different versions. The only exception to this rule was that of the average 
number of code smells per 1000 lines of code, decreased sharply from the first 
to second version of the JDK.  
 
In principle, poor code smell detection in Eclipse can be remedied with plug-
ins such as PMD (http://pmd.sourceforge.net). However, this plug-in does not 
integrate very well into Eclipse and produces output in HTML format. This 
raises productivity issues when one compares the abilities of IDEA, which has 
fully integrated inspections, which provide links to the offending code as well 
as providing solutions. PMD offers around 160 inspections. IDEA offers over 
400. Although PMD can be used as a plug-in in many IDEs, it falls short of the 
abilities of IDEA. 
 

11.3 Future Work 
  
A lot of information was gained from the research done; it would be valuable 
to go further than having statistical measurements of a software system. The 
code smell classification system provided was very useful and it was clear from 
the research that as code evolves then the number of code smells increases. To 
be able to pinpoint the density of code smells in relation to classes would prove 
very useful. 
 
When classifying code smells, another measure of value would be to measure 
how often that piece of code is changed or maintained. Refactoring code that is 
used and changed more often will produce more value than refactoring code 
that no one uses. This is because refactored code is easier to maintain and it 
makes more sense to maintain code that is used more often.  
 
The more a class is maintained and used to add new features into, the larger it 
will grow and therefore the greater the likelihood becomes of more errors and 
code smells occurring in that class. In effect, finding such hotspots in a 
software system would alert developers as to where the most refactoring work 
is needed or in other words, where the greatest density of code smells is likely 
to exist. It would be interesting to be able to persist the code smell information 
into a database and to be able to mine that data more meaningfully through 
statistical queries and even to derive patterns in that data. 
 
To be able to rank each class according to the number and type of code smells 
it contains would tell us straight away where to start refactoring. If versioning 
information were also incorporated then this would further enrich the ranking 
of the classes. One might be tempted to say that in order to find hot spots, one 
should only need to look for the largest classes in the system as these would 
normally point us to the God classes, which are seemingly getting out of 
control and are starting to suffer from code rot or excessive code smells. These 
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classes could be the ones that are constantly changed and have enhancements 
added unto them, causing them to become God classes over time. 
 
More work could be done in order to derive such knowledge from a code base. 
In essence, one would be mining source code for smells as if it was a database. 
The obvious problem is where to find the source for all of this code smell data.  
 
During the code review with IDEA, an HTML report was generated for code 
smells that were detected in the system. The HTML report informs us of each 
class that contained the code smell, how many times it occurred in that class, in 
which method and on, which line it, occurred. This is clearly enough 
information from which one could populate a database  
 
Depending on the project chosen for analysis, most of the work would go into 
parsing the HTML, retrieving the necessary information and storing it into a 
database. The information retrieved would be more useful than what any 
refactoring tool can provide now. 
 
There has been work into building a fact extraction tool that extracts facts from 
a code base and uses a visualization method in order to organise the data in a 
meaningful way. Visualizations tools [Lommerse, Nossin, Voinea, Telea 2005] 
can be used to visualise large code bases, which normally take a very long time 
to understand. Many different kinds of facts may be extracted. The fact 
extraction tool can be customised so that the user can focus on facts that are 
most important to him/her. Such feature extraction tools could also benefit 
from having code smells identified as the features to be extracted. 
 
The main views identified for visualisation tools from [Lommerse, Nossin, 
Voinea, Telea 2005] are: The syntactic view, showing the syntactic constructs 
in the source code. The symbol view, showing the objects a file makes 
available after compilation, such as function signatures, variables, and 
namespaces. The evolution view looks at different versions of the same source 
file during a project lifetime. 
 
There has been some work into the analysis of code evolution by Voinea, Telea 
and van Wijk [2004]. CVSgrab [Voinea, Telea and van Wijk 2004] is a tool 
aimed at developers involved in maintenance projects. It acquires the 
information about artefact evolution of entire projects and it visualizes it down 
to file level. It enables correlations based on activity and contributors. It may 
be used as a CVS data acquisition tool for the CVSscan application. CVSscan 
is an integrated multiview environment, using a line-oriented display of the 
changing code, where a column represents each version, and where the 
horizontal direction is used for time. Separate linked displays show various 
metrics, as well as the source code itself. A large variety of options is provided 
to visualize a number of different aspects. These two applications are for the 
C/C++ market. 
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Tools such as CVSgrab can possibly be incorporated into an application, to see 
which class files are being maintained the most and are therefore potential 
breeding grounds for bad code smells. This will further help prioritize the code 
smells found in a project.  
 

11.4 Final Thoughts 
 
Traditional agile practises such as test-driven development recommend the use 
of refactoring. Unit testing is used to ensure behaviour preservation. 
Refactoring in this type of scenario is not always perfect. Time constraints and 
many other issues can result in code being left with code smells. Not all 
programmers are equally experienced and the less experienced ones may 
produce many code smells. In some scenarios, refactoring is seen as a luxury 
and not a necessity, which can lead to various levels of un-maintainable code in 
the long term. 
 
Refactoring code that has not been refactored over many years is a great 
maintenance challenge. Continuously refactoring early on in a projects life 
cycle will help to ease the difficulty of such a challenge. If refactoring is done 
early, small problems can be prevented from turning into serious problems. 
Flaws in design can be caught quickly and stopped from spreading. Code 
smells are therefore a good indication of the state of a project and should be 
taken seriously. The best refactoring tool is still the experienced developer with 
his suite of unit tests, practising continuous design.  
 
When considering design heuristics, design patterns, software maintenance, 
software evolution and software reengineering, this dissertation links each of 
these software disciplines with the practice of refactoring. 
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Appendix 
 

A.1 Refactorings 
 
Here refactorings will be categorized and explained. There are many other 
refactorings than the ones mentioned here. There is specific focus only on 
those refactorings that have been mentioned in the dissertation. The intention is 
to be able to look up the refactorings when searching for their meanings in the 
dissertation.  
 
The Eclipse and IDEA code review will heavily reference this section in order 
to describe the many solutions to code smells. In some cases, it will be possible 
to have more than one refactoring as a solution to a code smell. 
 
 
Moving Features 
 
Move Method   
This refactoring moves the method to another class. The reasoning would 
normally be that the method gets used more in the target class. 
 
Move Field   
This refactoring moves the field to another class. The reasoning would 
normally be that the field gets used more in the target class. 
 
Extract Class  
Split a class into two or more classes when it does the job of two or more 
classes. 
The new class is extracted from another class, by moving the relevant methods 
and fields from the old class into the new one. 
 
Hide Delegate  
Create delegate methods to hide the delegate for encapsulation reasons. An 
example would be having class X calling class Y and then Z. Class Y 
information would be needed to access class Z information. Class Z can be 
hidden, by creating a method in class Y that calls Class Z and thereby negating 
the direct call to Class Z. 
 
 
Composing Methods 
 
Extract Method  
This refactoring will extract a method from a section of code. This will 
normally used to give a name to a section of code so that a large body of code 
can be abstracted to more methods and therefore be more clearly understood. 
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Replace Method with method object 
One has a long method that uses local variables in such a way that one cannot 
apply the ‘Extract Method’ refactoring. This refactoring makes an object out of 
method and it helps to use the ‘Extract Method’ refactoring. 
 
Replace Temp with Query   
This refactoring is used when one is using a temporary variable to hold the 
result of an expression. Extract the expression into a method. Replace all 
references to the temp with the expression. The new method can then be used 
in other methods. 
 
 
Organizing Data 
 
Replace Bidirectional with Unidirectional  
This refactoring needs to be used whenever one has a two-way relationship 
between two classes that is no longer needed. The reference to the other class 
will need to be removed. 
 
Magic Number with Symbolic Constant 
Create a constant with a meaningful name in order to avoid mentioning the 
same constant value in different places. 
 
Encapsulate Field   
Make the data item private, add accessors (get/set) in order to enforce 
encapsulation.  
 
Replace Type Code with Class  
Replace type number with class. This will entail having a class that uses a 
constructor to encode the different types, which can be encoded. The class will 
normally have a private constructor and will have public variables, which are 
instances of the same class. These public class instances can be used to store 
the type information. This will ensure that there is a common place from which 
one can access and store type code information. 
 
Replace Type Code with Subclasses  
This approach is similar to the one above and introduces subclasses instead of 
type code. The idea is to return a common super class, which could have any 
child class associated with it. Integers are still used to store type information in. 
 
Replace Type Code with State/Strategy   
This approach is very similar to the two above methods, but will normally be 
used when one cannot use sub classing. The approach is best utilized whenever 
the type code needs to change throughout the object’s lifetime. 
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Conditionals 
 
Decompose Conditionals 
Whenever a complicated invariant exists, it will prove useful to extract parts of 
the conditional into methods, by using the ‘Extract Method’ refactoring. 
 
Replace Conditional with Polymorphism  
This is used whenever we have different behaviors being implemented, 
depending on the conditions of if statements. The refactoring removes the 
conditionals and replaces it with polymorphism. This enables the code to be 
simplified as only one method call needs to be called and the conditionals are 
removed. 
 
Replace Nested Conditional with Guard Clause  
This refactoring removes a particular complicated nesting of “if” and “else if” 
statements, by introducing guard clauses. The guard clauses negate the need for 
the “else if “statements and this results in no nesting of if statements. 
 
 
Method Calls 
 
Parameterize Method   
This refactoring can be used in order to consolidate multiple methods that do 
the same thing and only differ by certain values. 
 
Preserve Whole Object  
If one is passing several values from an object into a method, then it is better to 
rather pass the entire object into the method. This refactoring simplifies the 
method, by removing unnecessary parameters. This makes the method easier to 
understand. 
 
Parameter Object  
This is when one has a number of parameters that appear inside a method and 
one chooses to reduce the parameters by grouping them into an object. This 
will simplify the method, by reducing the number of parameters. This is 
especially useful if the method is called in multiple places. 
 
Replace Constructor with Factory Method 
This allows more complex creation of classes through the use of a factory 
create method. 
 
Replace parameter with method 
An object can invoke a method x() and use the value from this method as a 
parameter to another method y(). What should in fact happen is that the method 
to which the parameter is passed (method y) should invoke the original method 
x(). 
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Generalization  
 
Pull Up Field  
In order avoid duplication of a field in subclasses; it would be useful to move 
the field to the superclass. 
 
Pull Up Method   
In order avoid duplication of a method in subclasses; it would be useful to 
move the field to the superclass. 
 
Push Down Method   
If a method is not used in all subclasses, or is only used in one sub-class, it 
would be useful to move the method to that sub-class. In this way the 
developer is not lead to think that the method is actually needed in all of the 
subclasses. 
 
Push Down Field   
If a field is not used in all subclasses, or is only used in one sub-class, it would 
be useful to move the field to that sub-class. In this way the developer is not 
lead to think that the field is actually needed in all of the subclasses. 
Extract Subclass   
If there were a subset of features that is not used by a number of subclasses 
then it would be useful for the subset of features to be extracted into a separate 
subclass. 
 
Form Template Method  
If one has a process that performs similar steps in a specific order, but the steps 
are different then one can apply the form template method refactoring. One has 
two methods in subclasses that perform similar but different steps in the same 
order - get the steps into methods, then pull original methods. Inheritance helps 
eliminate duplicate behaviour 
 
Replace Inheritance with Delegation 
It is possible that a subclass does not match the relationship that it should have 
with the parent. The ideal relationship would need to use all of the data from 
the superclass and all of the behaviour. If a subclass does not need the data 
from the super class, then it might not necessarily need to inherit from it. This 
is also true of the interface. If the subclass does not necessarily need all of the 
methods from the super class then it would be a better idea to replace the 
inheritance and delegate the needed superclass functionality to the superclass. 
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Design Patterns 
 
Compose Method 
This refactoring will be used when one cannot rapidly understand a method’s 
logic. The idea is to refactor the method (using the ‘Extract Method’ 
refactoring) into smaller, intention-revealing steps. This will make the method 
easier to understand and maintain. 
 
Replace Conditional Dispatcher with Command 
This will employ the “Command pattern” in order to remove complicated “if 
else” statements. This will also decouple the behaviour from the decision logic. 
 
Introduce Factory 
This refactoring will call a Factory create method instead of the public 
constructor. This employs the “Factory method” design pattern. The idea is to 
have a single place where the decision and creational logic pertaining to the 
construction of multiple objects can be housed. These factories will be used for 
objects, which have an inheritance relationship. 
 
Chain Constructors 
It is possible to have a lot of duplicated constructor code inside of a class. 
Instead of repeating the constructor logic, one can make calls from a 
constructor to another constructor. This will eliminate code duplication. 
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A.2 Code smells 
 
Unnecessary code 
 
The following code smells are found in Eclipse and IDEA. The refactorings 
needed in all cases are that of pure deletion of the code. Deletion is reasonable 
if one has previous versions of the code base stored in a code repository. The 
only exception is that of the redundant local variables. This code smell uses the 
‘Inline Temp’ refactoring to remove the unnecessary temporary variable. 
Therefore, if any code is accidentally deleted, then there will a place from 
which one could restore. The following is a list of unnecessary code: 
 
Redundant local variables  
This smell happens whenever a temporary variable is used in one place. The 
temporary variable should rather be replaced directly with the expression, by 
using the ‘Inline Temp’ refactoring. 
 
Redundant throws clause  
Some methods may throw exceptions for no reason. This will result in calling 
methods having to catch the exceptions coming from these methods. This will 
result in a lot of unnecessary code. The redundant throws clause and the 
accompanying catch clauses should be deleted. 
 
Unused imports  
Unused imports usually start to build in large classes where new classes are 
added and removed on a continuous basis. Developers will often forget to 
remove the unused imports once they delete some code. 
 
Unread local variables  
Some variables may be used during development or testing, but then forgotten. 
 
Unread parameter  
Some variables may be used during development or testing, but then forgotten.  
 
Unread private member field  
Unread fields that are private have no use whatsoever and can be deleted. 
 
Unused private method  
Unread methods that are private have no use whatsoever and can be deleted. 
 
Unused private constructor  
Unread constructors that are private have no use whatsoever and can be 
deleted. 
 
Unused private type/class  
Unread classes that are private have no use whatsoever and can be deleted. 
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Code Duplicates 
 
This is one of the worst code smells around and the following refactorings are 
needed in order to resolve the many variations of the smell: 
 
1. Extract method – This refactoring will extract a method from a section of 
code. This will normally used to give a name to a section of code so that a large 
body of code can be abstracted to more methods and therefore be more clearly 
understood. 
 
2. Parameterize method – This refactoring can be used in order to consolidate 
multiple methods that do the same thing and only differ by certain values. 
 
3. Extract Class – This is when a new class is extracted from another class, by 
moving the relevant methods and fields from the old class into the new one. 
 
4. Extract Superclass – Is when one has two classes that share similar features. 
The similar features are consolidated into one class i.e. the superclass. 
 
5. Form Template method – This is when one has a process that performs 

similar steps in a specific order, but the steps are different. 
 
6. Introduce parameter object. – This is when one has a number of parameters 

that appear inside a method and one chooses to reduce the parameters by 
putting them into an object. This will simplify the method, by reducing the 
number of parameters. 

 
 
Inheritance Issues 
 
Refused Bequest  
Some subclasses may not need all of the behaviour and data from their parent 
classes. This is normally a faint smell and is solved by creating a new subclass, 
which will have all of the unwanted methods moved into it by using the ‘Push 
Down Field’ and ‘Push Down Method’ refactorings. 
 
 
Type Code 
 
Chains using Instanceof  
IDEA can check for chains of instanceof, if statements. It searches for chain 
lengths with a minimum size of two, i.e. an “if” statement with one or more 
else branches. The check ensures that all the conditionals contain the instanceof 
keyword. A chain length parameter cannot be set, but it still helps us to identify 
cases, which could benefit more from polymorphism. 
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Abstraction Issues 
 
Feature Envy  
If a method is too interested in another class, extract the offending code using 
the ‘Extract Method’ refactoring and use the ‘Move Method’ refactoring to 
move the extracted method to the class that is being called. 
 
 
Encapsulation 
 
Public Field  
If a field is not a constant and part of the data of a class then it should be made 
private. The field should also have get and set methods provided for it. 
 
 
Method Metrics 
 
Long Method  
A method that is too long cannot easily be understood and can sometimes be a 
maintenance nightmare. Sections of the code should be grouped into more 
intention-revealing methods so that the code will be easier to understand. The 
‘Extract Method’ refactoring can be used to do this. 
 
Long Parameter List  
A method that uses too many parameters is hard to use and to understand. The 
refactoring ‘Introduce Parameter Object’ can be used to group related 
parameter fields into an object. This will reduce the number of method 
parameters. 
 
Too Many Exceptions  
A method that throws too many exceptions can be difficult to maintain. 
Methods that have to catch exceptions from other methods can have many 
catch statements if a method throws too many exceptions. This makes the code 
less maintainable. One of the solutions is to create generic exceptions, which 
have subclasses inheriting from them. This can reduce the number of total 
thrown exceptions. 
 
 
Class Metrics 
 
Inappropriate Intimacy  
This smell happens when one class gets too involved with another class. This 
results in high coupling. 
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Large Class  
This smell indicates too many fields inside a class. The refactoring would be 
‘Extract Class’. If the class is doing too many things it would make sense to 
extract classes from it in order to make the behaviour more maintainable. 
 
 
Creational Issues 
 
Non-private Utility Class constructors 
Utility classes are meant to have no data and should only expose public static 
methods, which could be used by any other class. An utility class should have a 
private default constructor and no public constructors so that it can only be 
used statically. 
 
Confusing or too many constructors  
If one finds that one cannot understand the creational process of a class fast 
enough, then it would be beneficial to refactor it. The solution would be to 
replace the constructors with creational methods that describe the creational 
process more clearly. The ‘Replace Constructors with Creation Methods’ 
refactoring can be used. 
 
Constructors with duplicate code  
It is possible to chain constructors if they contain duplicate code. This is done 
by having one constructor calling another and resuming with its own creational 
code. The ‘Extract Method’ or in this case ‘Extract Constructor’ refactoring 
may be used. 
 
Distributed creation information  
This problem occurs whenever code used to instantiate a class starts to span 
across multiple classes. The solution is to use the ‘Move Creation Knowledge 
to Factory’ refactoring. 
 
Redundant if Statements 
 
This code smell occurs when an “if statement” is made redundant. For 
example, assigning a value to a boolean variable. If the condition is true the 
boolean is true, otherwise it is false. It is easier to assign the condition directly 
to the boolean variable, which makes the if else statement redundant. 
 
Magic Numbers 
 
This smell occurs whenever a constant value is reused multiple times over a 
project and it has no link to a physical constant. The refactoring is to replace 
the value with a constant. This allows the value to be changed in one place, as 
well to assign a meaningful name to it. 
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A.3 Riel Heuristics 
 
Heuristic #2.1: All data should be hidden within its class. 
 
Heuristic #2.2: Users of a class must be dependent on its public interface, but a class 
should not be dependent on its users. 
 
Heuristic #2.3: Minimize the number of messages in the protocol of a class. 
 
Heuristic #2.4: Implement a minimal public interface, which all classes understand 
(e.g. operations such as copy (deep versus shallow), equality testing, pretty printing, 
parsing from a ASCII description, etc.). 
 
Heuristic #2.5: Do not put implementation details such as common-code private 
functions into the public interface of a class. 
 
Heuristic #2.6: Do not clutter the public interface of a class with things that users of 
that class are not able to use or are not interested in using. 
 
Heuristic #2.7: Classes should only exhibit nil or export coupling with other classes, 
i.e. a class should only use operations in the public interface of another class or have 
nothing to do with that class. 
 
Heuristic #2.8: A class should capture one and only one key abstraction. 
 
Heuristic #2.9: Keep related data and behavior in one place. 
 
Heuristic #2.10: Spin off non-related information into another class (i.e. non-
communicating behavior). 
 
Heuristic #2.11: Be sure the abstractions that one models are classes and not simply 
the roles objects play. 
 
Heuristic #3.1: Distribute system intelligence horizontally as uniformly as possible, 
i.e. the top level classes in a design should share the work uniformly. 
 
Heuristic #3.2: Do not create god classes/objects in ones system. Be very suspicious of 
an abstraction whose name contains Driver, Manager, System, or Subsystem. 
 
Heuristic #3.3: Beware of classes that have many accessor methods defined in their 
public interface, many of them imply that related data and behavior are not being kept 
in one place. 
 
Heuristic #3.4: Beware of classes, which have too much non-communicating behavior, 
i.e. methods which operate on a proper subset of the data members of a class. God 
classes often exhibit lots of non-communicating behavior.  
 
Heuristic #3.5: In applications, which consist of an object-oriented model interacting 
with a user interface, the model should never be dependent on the interface. The 
interface should be dependent on the model. 
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Heuristic #3.6: Model the real world whenever possible. (This heuristic is often 
violated for reasons of system intelligence distribution, avoidance of god classes, and 
the keeping of related data and behavior in one place). 
 
Heuristic #3.7: Eliminate irrelevant classes from ones design. 
 
Heuristic #3.8: Eliminate classes that are outside the system. 
 
Heuristic #3.9: Do not turn an operation into a class. Be suspicious of any class whose 
name is a verb or derived from a verb. Especially those which have only one piece of 
meaningful behavior (i.e. do not count sets, gets, and prints). Ask if that piece of 
meaningful behavior needs to be migrated to some existing or undiscovered class. 
 
Heuristic #3.10: Agent classes are often placed in the analysis model of an application. 
During design time, many agents are found to be irrelevant and should be removed. 
 
Heuristic #4.1: Minimize the number of classes with which another class collaborates. 
 
Heuristic #4.2: Minimize the number of message sends between a class and its 
collaborator. 
 
Heuristic #4.3: Minimize the amount of collaboration between a class and its 
collaborator, i.e. the number of different messages sent. 
 
Heuristic #4.4: Minimize fanout in a class, i.e. the product of the number of messages 
defined by the class and the messages they send. 
 
Heuristic #4.5: If a class contains objects of another class then the containing class 
should be sending messages to the contained objects, i.e. the containment relationship 
should always imply a uses relationship. 
 
Heuristic #4.6: Most of the methods defined on a class should be using most of the 
data members most of the time. 
 
Heuristic #4.7: Classes should not contain more objects than a developer can fit in his 
or her short term memory. A favorite value for this number is six. 
 
Heuristic #4.8: Distribute system intelligence vertically down narrow and deep 
containment hierarchies. 
 
Heuristic #4.9: When implementing semantic constraints, it is best to implement them 
in terms of the class definition. Often this will lead to a proliferation of classes in 
which case the constraint must be implemented in the behavior of the class, usually, 
but not necessarily, in the constructor. 
 
Heuristic #4.10: When implementing semantic constraints in the constructor of a class, 
place the constraint test in the constructor as far down a containment hierarchy as the 
domain allows. 
 

 
 
 



 132

Heuristic #4.11: The semantic information on which a constraint is based is best 
placed in a central third-party object when that information is volatile. 
 
Heuristic #4.12: The semantic information on which a constraint is based is best 
decentralized among the classes involved in the constraint when that information is 
stable. 
 
Heuristic #4.13: A class must know what it contains, but it should never know who 
contains it. 
 
Heuristic #4.14: Objects which share lexical scope, i.e. those contained in the same 
containing class, should not have uses relationships between them. 
 
Heuristic #5.1: Inheritance should only be used to model a specialization hierarchy. 
 
Heuristic #5.2: Derived classes must have knowledge of their base class by definition, 
but base classes should not know anything about their derived classes. 
 
Heuristic #5.3: All data in a base class should be private, i.e. do not use protected data. 
 
Heuristic #5.4: Theoretically, inheritance hierarchies should be deep, i.e. the deeper 
the better. 
 
Heuristic #5.5: Pragmatically, inheritance hierarchies should be no deeper than an 
average person can keep in their short term memory. A popular value for this depth is 
six. 
 
Heuristic #5.6: All abstract classes must be base classes. 
 
Heuristic #5.7: All base classes should be abstract classes. 
 
Heuristic #5.8: Factor the commonality of data, behavior, and/or interface as high as 
possible in the inheritance hierarchy. 
 
Heuristic #5.9: If two or more classes only share common data (no common behavior) 
then that common data should be placed in a class which will be contained by each 
sharing class. 
 
Heuristic #5.10: If two or more classes have common data and behavior (i.e. methods) 
then those classes should each inherit from a common base class which captures those 
data and methods. 
 
Heuristic #5.11: If two or more classes only share common interface (i.e. messages, 
not methods) then they should inherit from a common base class only if they will be 
used polymorphically. 
 
Heuristic #5.12: Explicit case analysis on the type of an object is usually an error, the 
designer should use polymorphism in most of these cases. 
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Heuristic #5.13: Explicit case analysis on the value of an attribute is often an error. 
The class should be decomposed into an inheritance hierarchy where each value of the 
attribute is transformed into a derived class. 
 
Heuristic #5.14: Do not model the dynamic semantics of a class using the inheritance 
relationship. An attempt to model dynamic semantics with a static semantic 
relationship will lead to a toggling of types at runtime. 
 
Heuristic #5.15: Do not turn objects of a class into derived classes of the class. Be 
very suspicious of any derived class for which there is only one instance. 
 
Heuristic #5.16: If one thinks one needs to create new classes at runtime, take a step 
back and realize that what you are trying to create are objects. Now generalize these 
objects into a class. 
 
Heuristic #5.17: It should be illegal for a derived class to override a base class method 
with a NOP method, i.e. a method which does nothing. 
 
Heuristic #5.18: Do not confuse optional containment with the need for inheritance, 
modeling optional containment with inheritance will lead to a proliferation of classes. 
 
Heuristic #5.19: When building an inheritance hierarchy try to construct reusable 
frameworks rather than reusable components. 
 
Heuristic #6.1: If one has an example of multiple inheritance in ones design, assume 
one has made a mistake and prove otherwise. 
 
Heuristic #6.2: Whenever there is inheritance in an object-oriented design ask onesself 
two questions: 1) Am I a special type of the thing I'm inheriting from? and 2) Is the 
thing I'm inheriting from part of me? 
 
Heuristic #6.3: Whenever one has found a multiple inheritance relationship in an 
object oriented design be sure that no base class is actually a derived class of another 
base class, i.e. accidental multiple inheritance. 
 
Heuristic #7.1: When given a choice in an object-oriented design between containment 
relationship and an association relationship, choose the containment relationship. 
 
Heuristic #8.1: Do not use global data or functions to perform bookkeeping 
information on the objects of a class, class variables or methods should be used 
instead. 
 
Heuristic #9.1: Object-oriented designers should never allow physical design criteria 
to corrupt their logical designs. However, very often physical design criteria is used in 
the decision making process at logical design time. 
 
Heuristic #9.2: Do not change the state of an object without going through its public 
interface. 
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A.4 MeTHOOD Heuristics 
 
Heuristic #1: A class in a containment hierarchy should only depend from its child 
classes. 
 
Heuristic #2: Every attribute should be hidden within its class. 
 
Heuristic #3: A client-server dependency between two classes should not lead to 
dependencies from the server to the client. 
 
Heuristic #4: Avoid dependencies from database classes to their clients. 
 
Heuristic #5: A class should capture one and only one key abstraction with all its 
information and all its behavior. 
 
Heuristic #6: Do not create unnecessary classes to model roles. 
 
Heuristic #7: Avoid pure accessor methods. 
 
Heuristic #8: Avoid additional relationships from base classes to their derived classes. 
 
Heuristic #9: Avoid classes with properties implying redundancies. 
 
Heuristic #10: Avoid multivalued dependencies. 
 
Heuristic #11: Convert associations, and uses relationships in the strongest 
containment relationship wherever possible. 
 
Heuristic #12: Avoid contained instances that have to be modified concurrently. 
 
Heuristic #13: All properties of the base class interface must be usable in instances of 
its 
derived classes in every location where a base class instance is expected. 
 
Heuristic #14: Common properties of instances should be defined in a single location. 
 
Heuristic #15: Instable classes should not be base classes. 
 
Heuristic #16: Do not misuse inheritance for sharing attributes. 
 
Heuristic #17: The overloading should define only differences to the overloaded 
method. 
 
Heuristic #18: Avoid case analysis on properties of instances. 
 
Heuristic #19: Prefer typing by attribute before typing by inheritance. 
 
Heuristic #20: A method should use only classes of attributes of its class, classes of its 
parameters, or classes of instances locally created. 
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A.5 Code Smell Taxonomy 
 
The following taxonomy was assembled by [Mantyla 2006]. 
 
It can be used to understand how the different code smells impact on different parts of 
a system’s design. 
 

Group name Smells in group  

 

The Bloaters

-Long Method 
-Large Class 
-Primitive Obsession 
-Long Parameter List 
-DataClumps 

 

 
Bloater smells represent something that has grown so large that it cannot be 
effectively handled.  
 
Primitive Obsession is actually more of a symptom that causes bloats than a 
bloat itself. The same holds for Data Clumps. When a Primitive Obsession 
exists, there are no small classes for small entities (e.g. phone numbers). Thus, 
the functionality is added to some other class, which increases the class and 
method size in the software.  
 
With Data Clumps there exists a set of primitives that always appear together 
(e.g. 3 integers for RGB colors). Since the data items are not encapsulated in a 
class, this increases the sizes of methods and classes.  
 

The Object-
Orientation 
Abusers  

-Switch Statements 
-Temporary Field 
-Refused Bequest 
-Alternative Classes with Different 
Interfaces 

  

 
The common denominator for the smells in the Object-Orientation Abuser 
category is that they represent cases where the solution does not fully exploit 
the possibilities of object-oriented design.  
 
For example, a Switch Statement might be considered acceptable or even good 
design in procedural programming, but is something that should be avoided in 
object-oriented programming. The situation where switch statements or type 
codes are needed should be handled by creating subclasses. Parallel Inheritance 
Hierarchies and Refused Bequest smells lack proper inheritance design, which 
is one of the key elements in object-oriented programming.  
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The Alternative Classes with Different Interfaces smell lacks a common 
interface for closely related classes, so it can also be considered a certain type 
of inheritance misuse. The Temporary Field smell means a case in which a 
variable is in the class scope, when it should be in method scope. This violates 
the information hiding principle. 

The Change 
Preventers  

-Divergent Change 
-Shotgun Surgery  
-Parallel Inheritance Hierarchies  

  

 
Change Preventers are smells is that hinder changing or further developing the 
software  

These smells violate the rule suggested by Fowler and Beck, which says that 
classes and possible changes should have a one-to-one relationship. For 
example, changes to the database only affect one class, while changes to 
calculation formulas only affect the other class. 

The Divergent Change smell means that we have a single class that needs to be 
modified by many different types of changes. With the Shotgun Surgery smell 
the situation is the opposite, we need to modify many classes when making a 
single change to a system (change several classes when changing database 
from one vendor to another) 

Parallel Inheritance Hierarchies, which means a duplicated class hierarchy, was 
originally placed in OO-abusers. One could also place it inside of The 
Dispensables since there is redundant logic that should be replaced. 
 

The 
Dispensables

-Lazy class 
-Data class  
-Duplicate Code 
-Dead Code, 
-Speculative Generality 

  

 
The common thing for the Dispensable smells is that they all represent 
something unnecessary that should be removed from the source code.  
 
This group contains two types of smells (dispensable classes and dispensable 
code), but since they violate the same principle, we will look at them 
together. If a class is not doing enough, it needs to be removed or its 
responsibility needs to be increased. This is the case with the Lazy class and 
the Data class smells. Code that is not used or is redundant needs to be 
removed. This is the case with Duplicate Code, Speculative Generality and 
Dead Code smells.  
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The 
Couplers 

-Feature Envy 
-Inappropriate Intimacy 
-Message Chains  
-Middle Man 

 

 
This group has four coupling-related smells.  

One design principle that has been around for decades is low coupling (Stevens 
et al. 1974). This group has 3 smells that represent high coupling. The Middle 
Man smell on the other hand represents a problem that might be created when 
trying to avoid high coupling with constant delegation. Middle Man is a class 
that is doing too much simple delegation instead of really contributing to the 
application.  

The Feature Envy smell means a case where one method is too interested in 
other classes, and the Inappropriate Intimacy smell means that two classes are 
coupled tightly to each other. Message Chains is a smell where class A needs 
data from class D. To access this data, class A needs to retrieve object C from 
object B (A and B have a direct reference). When class A gets object C it then 
asks C to get object D. When class A finally has a reference to class D, A asks 
D for the data it needs. The problem here is that A becomes unnecessarily 
coupled to classes B, C, and D, when it only needs some piece of data from 
class D. The following example illustrates the message chain smell: 
A.getB().getC().getD().getTheNeededData() 

Of course, I could make an argument that these smells should belong to the 
Object-Orientation abusers group, but since they all focus strictly on coupling, 
I think it makes the taxonomy more understandable if they are introduced in a 
group of their own. 
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A.6 Refactoring Tool Support Comparison 
 

 
Comparison compiled by [Refactorit 2006]. 
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