

A critical analysis of two refactoring tools

by Martin Zbigniew Drozdz

Supervisor - Derrick Kourie

Co-supervisor - Andrew Boake

Submitted in partial fulfilment of the requirements for the degree

Magister Scientia (Computer Science)

in the faculty of Engineering, Built Environment and Information Technology

University of Pretoria

November 2007

 2

A critical analysis of two refactoring tools

Abstract

This study provides a critical analysis of refactoring by surveying the

refactoring tools in IDEA and Eclipse. Ways are discussed to locate targets for

refactorings, via detection of code smells from static code analysis in IDEA

and during the compilation process in Eclipse.

New code smells are defined as well as the refactorings needed to remove the

code smells. The impacts the code smells have on design are well documented.

Considerable effort is made to describe how these code smells and their

refactorings can be used to improve design.

Practical methods are provided to detect code smells in large projects such as

Sun’s JDK. The methodology includes a classification scheme to categorise

code smells by their value and complexity to handle large projects more

efficiently.

Additionally a detailed analysis is performed on the evolution of the JDK from

a maintainability point of view. Code smells are used to measure

maintainability in this instance.

 3

Acknowledgements

I would like to acknowledge:

• Firstly, the higher power that looks on, over every one of us.

• The love and support from my parents and friends.

• All researches whom I have referenced.

• My supervisor and co-supervisor for their guidance.

• All work colleagues who provided me with their support.

Martin Drozdz, 11rh February 2007, South Africa

List of abbreviations

IDE Integrated Development Environment
JDK Java Development Kit
LOC Lines of code
LHF Low Hanging Fruit
SLOC Source lines of code
SDK Software Development Kit

 4

Table of Contents

ACKNOWLEDGEMENTS.. 3
CHAPTER 1 INTRODUCTION .. 9

1.1 BACKGROUND... 9
1.2 MOTIVATION .. 9
1.3 RESEARCH OBJECTIVES... 10
1.4 OVERVIEW .. 11

CHAPTER 2 SOFTWARE DESIGN, MAINTENANCE... 13
AND EVOLUTION... 13

2.1 DESIGN HEURISTICS AND DESIGN PATTERNS.. 13
2.1.1 Design Heuristics .. 13
2.1.2 Design Patterns ... 14
2.1.3 Conclusions ... 17

2.2 SOFTWARE MAINTENANCE ... 18
2.2.1 Definition... 19
2.2.2 When development becomes maintenance... 19
2.2.3 Maintenance cost factors... 20
2.2.4 Maintenance and change prediction ... 20
2.2.5 Source Code Metrics ... 22
2.2.6 Conclusions ... 23

2.3 SOFTWARE EVOLUTION .. 23
2.3.1 Design Evolution ... 24
2.3.2 The 8 laws of software evolution ... 25
2.3.3 Software reengineering ... 25
2.3.4 Conclusions ... 26

2.4 SUMMARY... 26
CHAPTER 3 REFACTORING .. 27

3.1 DEFINITION... 27
3.2 OVERVIEW .. 27
3.3 APPLICABILITY ... 28
3.4 MOTIVATIONS... 29
3.5 PROBLEMS .. 29
3.6 TOOL SURVEY MOTIVATION... 30
3.7 CODE REVIEW MOTIVATION... 31
3.8 SUMMARY... 32

CHAPTER 4 THE ROOTS OF REFACTORING ... 33
4.1 INTRODUCTION ... 33
4.2 FOUNDING WORK ... 33
4.3 RECENT RESEARCH... 34
4.4 SUMMARY... 36

CHAPTER 5 ANALYSIS METHODOLOGY .. 37
5.1 JDK CODE BASE STATISTICS .. 37
5.2 CLASSIFYING CODE SMELLS ... 38
5.3 CHOOSING THRESHOLDS IN IDEA .. 41
5.4 JAVA AS THE LANGUAGE OF CHOICE... 42
5.5 SUMMARY... 43

CHAPTER 6 ECLIPSE CODE REVIEW... 44

 5

6.1 UNNECESSARY CODE.. 44
6.1.1 Unused imports ... 48
6.1.2 Unread local variables.. 49
6.1.3 Unread parameter ... 51
6.1.4 Unnecessary throws clause (method or constructor) 53
6.1.5 Unused private members ... 55

6.1.5.1 Unused private method ...55
6.1.5.2 Unused private constructor ...56
6.1.5.3 Unused private type/class ...56
6.1.5.4 Unused private member field..57

6.2 SUMMARY... 57
CHAPTER 7 IDEA CODE REVIEW – PART 1 .. 59

7.1 INTRODUCTION ... 59
7.2 CODE REVIEW METHODOLOGY .. 59
7.3 LOCATING DUPLICATES .. 61

7.3.1 Introduction... 61
7.3.2 Anonymity.. 62
7.3.3 Solutions .. 63
7.3.4 Dealing with Anonymity .. 65
7.3.5 Final Analysis and Conclusion.. 66

7.4 INHERITANCE ISSUES .. 67
7.4.1 Refused Bequest... 67

7.5 TYPE CODE ... 68
7.5.1 Detection of Type Code ... 68
7.5.2 Replace with Class .. 69
7.5.3 Replace with Subclasses.. 71
7.5.4 Replace with State, Strategy or Command Pattern ... 71
7.5.5 Chains using Instanceof .. 73
7.5.6 Conclusion... 74

7.6 ABSTRACTION ISSUES ... 74
7.6.1 Feature Envy ... 74
7.6.2 Magic Numbers ... 75

7.7 ENCAPSULATION... 76
7.7.1 Public Field ... 76

7.8 METHOD METRICS .. 77
7.8.1 Long Method ... 77
7.8.2 Long Parameter List.. 78
7.8.3 Too Many Exceptions .. 79

7.9 CLASS METRICS.. 80
7.9.1 Inappropriate Intimacy.. 80
7.9.2 Large Class ... 81

7.10 SUMMARY... 82
CHAPTER 8 IDEA CODE REVIEW – PART 2 .. 83

8.1 INTRODUCTION ... 83
8.2 POOR METHOD COMPOSITION .. 83

8.2.1 Method breakdown.. 83
8.2.2 Coupling and Cohesion ... 84
8.2.3 More informative smell detections .. 85

8.3 CREATIONAL ISSUES ... 87
8.3.1 Non-private Utility Class constructors.. 87
8.3.2 Confusing or too many constructors ... 87
8.3.3 Constructors with duplicate code.. 88
8.3.4 Distributed creation information... 90

8.4 REDUNDANT IF STATEMENTS.. 90
8.5 UNUSED CODE .. 91

 6

8.5.1 Redundant local variables... 91
8.5.2 Unused method parameters... 92
8.5.3 Redundant throws clause... 92
8.5.4 Unused imports ... 94
8.5.5 Field can be local .. 94

8.6 IDEA CODE REVIEW CONCLUSION... 95
8.7 SUMMARY... 97

CHAPTER 9 AN IDE COMPARISON.. 98
9.1 FILTERING REFACTORINGS BY CONTEXT IN ECLIPSE ... 99
9.2 PRODUCTIVITY ISSUES .. 100
9.3 HANDLING REFACTORING COMPLEXITY... 101
9.4 SUMMARY... 102

CHAPTER 10 CODE EVOLUTION .. 103
10.1 A STATISTICAL VIEW.. 103
10.2 QUICK WIN GROUP... 106
10.3 STRATEGIC GROUP ... 107
10.4 LOW HANGING FRUIT GROUP ... 109
10.5 AVOID GROUP... 110
10.6 REMOVING THE AVOID GROUP ... 110
10.7 SUMMARY... 111

CHAPTER 11 CONCLUSION .. 112
11.1 REFACTORING CONTRIBUTIONS.. 112
11.2 ANALYSIS RESULTS .. 113
11.3 FUTURE WORK ... 114
11.4 FINAL THOUGHTS ... 116

REFERENCES.. 117
APPENDIX .. 121

A.1 REFACTORINGS... 121
A.2 CODE SMELLS ... 126
A.3 RIEL HEURISTICS .. 130
A.4 METHOOD HEURISTICS .. 134
A.5 CODE SMELL TAXONOMY... 135
A.6 REFACTORING TOOL SUPPORT COMPARISON.. 138

 7

List of Tables

Table 1: JDK 1.4.2 Code Statistics 38
Table 2: Code smell count for different thresholds 41
Table 3: Using layering to handle exceptions (Eclipse) 54
Table 4: Eclipse code smell summary 58
Table 5: Duplicate group occurrences 67
Table 6: Magic Number example 76
Table 7: Long Method analysis results 78
Table 8: Long Parameter List analysis results 78
Table 9: Using layering to handle exceptions 79
Table 10: Method with too many exceptions analysis results 80
Table 11: Inappropriate Intimacy analysis results 81
Table 12: Large Class analysis results 81
Table 13: Method nesting depth analysis results 86
Table 14: IDEA code smell summary 96
Table 15: An IDE Comparison 99
Table 16: All JDK Code Statistics 104
Table 17: JDK Code Statistics (in percentages) 104
Table 18: JDK - Quick Win Group 106
Table 19: JDK - Strategic Group (low thresholds) 108
Table 20: JDK - Strategic Group (medium thresholds) 108
Table 21: JDK - Strategic Group (high thresholds) 108
Table 22: JDK - Strategic Group (Threshold independent smells) 108
Table 23: JDK – Low Hanging Fruit Group 109
Table 24: JDK - Avoid Group 110

 8

List of Figures

Figure 1: Singleton Design Pattern Structure diagram.. 15
Figure 2: Observer Design Pattern Structure diagram... 16
Figure 3: Maintenance Prediction ... 21
Figure 4: A refactoring classification graph.. 39
Figure 5: Error categories under Java compiler settings in Eclipse... 45
Figure 6: Revealing unnecessary code in Eclipse. .. 45
Figure 7: Filter icon... 46
Figure 8: Warnings filtered by unused imports and sorted by Resource................................... 46
Figure 9: Setting a filter search prefix... 48
Figure 10: Variable oldValue is local and unused... 49
Figure 11: Standard getter - getMnemonic() ... 50
Figure 12: A mutable int Wrapper class.. 50
Figure 13: Side effects in getter method. .. 50
Figure 14: A mutable int Wrapper class.. 52
Figure 15: Children of AbstractA .. 52
Figure 16: SomeException and AbstractA.. 54
Figure 17: A::b() throws SomeException.. 54
Figure 18: IDEA file analysis settings .. 60
Figure 19: IDEA code smell selection. ... 60
Figure 20: IDEA Analysis Results .. 61
Figure 21: Duplicate location settings... 62
Figure 22: Duplicate code found in java.util.regex.Pattern ... 63
Figure 23: Seventeen duplicates groups in java.util.BitSet. .. 65
Figure 24: Embedded type information... 69
Figure 25: Typesafe Enum pattern .. 69
Figure 26: A type-safe class .. 70
Figure 27: Demonstration of Car and TypeSafeCar.. 70
Figure 28: Factory method for the Car class ... 71
Figure 29: Factory method for the TypeSafeCar class .. 71
Figure 30: Replacing a conditional dispatcher with Command... 72
Figure 31: Command pattern structure diagram.. 73
Figure 32: Constructor code duplication settings.. 89
Figure 33: Redundant if - before refactoring... 90
Figure 34: Redundant if - after before refactoring .. 90
Figure 35: Searching for unused code in IDEA .. 91
Figure 36: Exception side effects. ... 93
Figure 37: Class refactorings... 99
Figure 38: Method refactorings... 100
Figure 39: Constructor refactorings .. 100
Figure 40: Source lines of code per JDK version.. 104
Figure 41: Files per JDK version .. 105
Figure 42: Code smells per JDK version (High thresholds).. 105
Figure 43: Smells per 1000 SLOC .. 106
Figure 44: Code smells group per JDK version (low threshold values).................................. 109
Figure 45: Code smells group per JDK version (- avoid group) ... 111

 9

Chapter 1 Introduction

1.1 Background

Refactoring helps to improve the design of existing code and adds in the extra
constraint requiring that the behaviour of the refactored code is to stay the
same after a refactoring has improved the design of existing code. The
intention is to make the code more maintainable.

The design of object-oriented software has been a topic of interest throughout
the last decade. Fowler [1999] brought refactoring to the forefront of Java
developers. Agile software methodologies such as XP [Beck 2000] have
realised the need to accommodate change in software systems. With the need
for change in software, come a new set of requirements: system flexibility and
ease of maintenance.

With the acceptance and incorporation of refactoring facilities in mainstream
integrated development environments (IDEs) such as Eclipse and IDEA, it is
worthwhile to study refactoring as it has a widespread impact in a software
development life cycle where change occurs frequently. Change can be a result
of changing user requirements, a change in the system environment or a new
business process requiring additions to the software system.

Identifying where and how change can occur in a software system will help
understand what role refactoring can play in the change of a dynamic software
system. The focus will mainly be on large software systems and use the Java
development kit (JDK) as the basis for the analysis studies.

1.2 Motivation

Much has been written and many studies have been executed into the research
field of refactoring. Through exposure to various programming languages and
different problem domains one is able to see what factors are desirable in a
language and which are not. For example, when comparing procedural and
object-oriented programming languages one can see that there are clear
advantages in terms of reuse, flexibility, encapsulation and so forth. However,
these advantages only come with the proper use of object-oriented design,
which needs to be taught and mastered before one can build a robust software
system.

The use of such techniques as design patterns have been held in high regard in
academic and commercial circles. It was only at the turn of the millennium that
refactoring started coming to the forefront and more followers started to
understand its benefits. Refactoring research is still strong in that recently

 10

Kerievsky [2004] has a book about refactoring to design patterns. There are
mail groups available, which support refactoring communities, providing
answers and discussions around refactoring. The mail group
(refactoring@yahoogroups.com) is popular example with over 3800 members
at present.

The author of this dissertation was lucky enough to be involved in a J2EE
software development project, which involved a major application involving
stock trading with equity and future stocks. This is where he got the chance to
get development experience as well a look into the world of Java development
with Eclipse and a variety of open source products. In essence, his academic
interest was married with that of his commercial career.

1.3 Research objectives

The early objective of this study was to gain as much information about
refactoring as possible. This started with background reading into the domain,
as well as experimentation with a refactoring tool.

Over time, the focus shifted towards the need for an in-depth tool survey for
refactoring. The tool survey was to provide a comparison between some of the
many different IDEs, which supported refactoring, and to highlight the
effectiveness of these tools in terms of productivity and scope. IDEA and
Eclipse were chosen as the two tools for the tool survey.

Once a tool survey was performed by using the 1.4.2 version of the JDK for
code smell analysis and refactoring productivity, an analysis was done on the
all of the other major versions of the JDK (from 1.0 to 1.5). This analysis
provided a study into the evolution of the JDK by measuring the amount of
code smells in each version and classifying them according to the proposed
classification method.

Therefore, the research objectives can be summarised as follows:

1. To perform a tool survey that investigates refactoring support in common

IDEs.

2. To perform a study into the evolution of the JDK from a code smell

perspective.

There were a number of research questions that were posed, such as:

1. What are the major advantages of the individual tools?

2. What is the number of refactorings available in each tool?

 11

3. How can code smells be detected within the tool?

4. How is the IDE designed to facilitate code smell detection?

5. Can one tool be considered better than another?

6. Are there any productivity issues with the tools?

Questions from a code evolution point of view where also posed, such as:

1. What is the impact of code smells on software systems as they start to
grow and are not refactored in an evolving system?

2. How can one classify code smells, so that it is easier to filter out the

less important code smells?

3. How can one measure the quality of a system as it evolves?

4. Can system quality to a certain degree, be measured by the amount of
code smells that increase as code size increases over time?

For future work questions such as the following where posed:

1. What other methods can be used to organise the code smells when
performing an analysis of the code base?

2. How can the code smell information be mined so that it can be of more

use to developers in charge of software maintenance?

1.4 Overview

The following provides a brief overview of all of the chapters contained in this
dissertation:

Chapter 2 discusses how software design, maintenance and evolution are
impacted by refactoring.

Chapter 3 answers many of the questions around refactoring. It also introduces
motivations for the tool survey and JDK code review.

Chapter 4 gives an introduction into the early and recent research done on
refactoring.

Chapter 5 provides a description into the analysis methodology used in the
Eclipse and IDEA code reviews, which follow.

 12

Chapter 6 presents the Eclipse code review. Ways are looked at to find and
remove unnecessary code.

Chapter 7 is the beginning of the IDEA code review. Most of the refactorings
here are from Fowler’s work except for two identified and discussed in detail
by the author.

Chapter 8 is the second part of the IDEA code review. This work provides an
overview of the work from Kerievsky [2004], as well as contributions from the
author of this dissertation.

Chapter 9 compares the two IDEs used for the code reviews.

Chapter 10 describes the code reviews from a code evolution perspective. It
also reveals the statistics on code reviews performed on all major versions of
the JDK, from version 1.0 to 1.5.

Chapter 11 provides final thoughts on all of the results in the previous chapters.

 13

Chapter 2 Software design, maintenance

and evolution

Throughout programming history, there have been many attempts to improve
the design of code. This chapter starts with a description of design heuristics
and design patterns (section 2.1) in order to introduce the theme of design
issues in relation to object-oriented programming.

Software maintenance and software evolution are also defined (in sections 2.2
and 2.3 respectively) to provide an understanding of the links between software
design, maintenance, evolution and refactoring. This will serve as an
introduction to the next chapter, which focuses on the answers to the many
questions around refactoring. The following sections provide an understanding
of the impact of refactoring on the many other phases contained in the software
development life cycle.

2.1 Design Heuristics and Design Patterns

2.1.1 Design Heuristics

The more general design guidelines for developing object-oriented systems are
often represented by design heuristics. The 68 design heuristics (found in the
appendix) catalogued by Riel [1996] are good examples of such heuristics. Riel
placed these heuristics into eight different categories, where each heuristic that
he mentioned had a name, an outline and example of the problem, as well as a
suggested approach to solve the problem.

Grotehen and Dittrich [1997] have an object oriented design method called
MeTHOOD (Measures, Transformation Rules, and Heuristics for Object-
Oriented Design) which discusses 20 design heuristics. For each heuristic,
MeTHOOD describes the following: a heuristic name, a short description, a
definition, its rationale, its position in life cycle, the heuristic’s granularity, an
example, subsuming/subsumed heuristics, checking rules, transformation rules,
violated heuristics, justification for violating these heuristics, and its effect on
measures.

Although these design heuristics are too numerous to memorize in a short
space of time (consider Riel’s 68 design heuristics), they are nevertheless
useful tips on what aspects of the design to focus on. If considered before the
initial implementation of an object-oriented program, design heuristics will
help considerably in the design of the program. All of these heuristics are
discussed in [Riel 1996].

 14

The design heuristics themselves seem very simple at first glance. For deeper
insight, one needs to understand why a given heuristic constitutes a guideline
for good design in the first place, and this cannot always be easily understood
from reading the heuristic itself. Therefore, to understand heuristics, one needs
to understand what good design is and before using the heuristic, one should
understand in what sense it can improve the design. This requires a detailed
description and examples of the problem, which the heuristic proposes to solve.

An example heuristic would be ‘Keep related data and behavior in one place’.
This is a very general heuristic and it explains that in order to be able to find
related data and behavior, one should keep it in one place. The place in object-
orientated programming is a class. Object orientated programming is about
coupling data and behavior. Other software architectural styles such as SOA
decouple data from behavior. The move (variable or method) refactoring can
be used to move unrelated data to the correct classes.

A more complicated heuristic would be ‘Inheritance should only be used to
model a specialization hierarchy’. In other words, one should not just use
inheritance to share data between classes or just to eliminate duplicate code.
Inheritance should rather be used to model the “is a” relationship. For example,
a car is a vehicle and should inherit from the vehicle class if there are common
behaviors between the vehicle and car. In this example, the car is a
specialization of the vehicle.

Another interesting heuristic not mentioned in the appendix is: ‘Choose
interfaces over abstract classes’. If one knows something is going to be a base
class, the first choice should be to make it an interface, and only if one is
forced to have method definitions or member variables should one change it to
an abstract class. An interface talks about what the client wants to do, while a
class tends to focus on (or allow) implementation details. The ‘extract
interface’ refactoring can be used to extract an interface from a class and make
that class implement it. All other classes with the same interface can implement
it. This refactoring clearly helps in implementing the heuristic. The idea of
using a common interface allows one to represent multiple objects, which have
different behaviour, but the same interface.

2.1.2 Design Patterns

Gamma et al. [1995] have a more specific approach to improving design than
the more general approach of following design heuristics, as discussed above.
Instead, they advocate the use of design patterns in order to improve design.
The design patterns can be seen as solutions to re-occurring design problems
and are categorized into behavioral, creational and structural design patterns.

 15

Gamma et al. [1995] mention an important fact in relation to design: “Design
patterns help one determine how to reorganise a design, and they can reduce
the amount of refactoring one needs to do later. Useful abstractions and
patterns are seldom found during analysis or even the early stages of design;
they're discovered later in the course of making a design more flexible and
reusable.”

When refactoring to patterns, Kerievsky [2004] realised that there is no need
for one big static design when building a system that is easy to maintain.
Refactoring to patterns will result in refactorings to existing code, which in
turn makes further refactorings easier to do, because the initial refactorings
take into consideration the design issues in the current code. Therefore, design
evolution or continuous design [Shore 2004] plays a big role while
implementing software, because it is almost impossible to think of all of the
design issues before a project has begun its implementation phase.

The simplest example of a design pattern is probably the Singleton. This design
pattern ensures a class only has one instance, and provides a global point of
access to it.

Figure 1: Singleton Design Pattern Structure diagram

The Singleton pattern from Gamma et al. [1995] has several benefits:

1. Controlled access to sole instance. Because the Singleton class
encapsulates its sole instance, it can have strict control over how and
when clients access it.

2. Reduced name space. The Singleton pattern is an improvement over
global variables. It avoids polluting the name space with global
variables that store sole instances.

3. Permits refinement of operations and representation. The Singleton
class may be subclassed, and it is easy to configure an application with
an instance of this extended class. One can configure the application
with an instance of the class one needs at run-time.

 16

4. Permits a variable number of instances. The pattern makes it easy to
change ones mind and allow more than one instance of the Singleton
class. Moreover, one can use the same approach to control the number
of instances that the application uses. Only the operation that grants
access to the Singleton instance needs to change.

5. More flexible than class operations. Another way to package a
singleton's functionality is to use class operations (that is, static member
functions in C++ or class methods in Smalltalk). But both of these
language techniques make it hard to change a design to allow more than
one instance of a class. Moreover, static member functions in C++ are
never virtual, so subclasses cannot override them polymorphically.

Figure 2: Observer Design Pattern Structure diagram

A more complex design pattern from Gamma et al. [1995] is the Observer
design pattern:

The Observer pattern lets one vary subjects and observers independently. One
can reuse subjects without reusing their observers, and vice versa. It lets one
add observers without modifying the subject or other observers.

Further benefits and liabilities of the Observer pattern include the following:

1. Abstract coupling between Subject and Observer. All a subject knows
is that it has a list of observers, each conforming to the simple interface
of the abstract Observer class. The subject doesn't know the concrete
class of any observer. Thus the coupling between subjects and
observers is abstract and minimal.

Because Subject and Observer aren't tightly coupled, they can belong to
different layers of abstraction in a system. A lower-level subject can
communicate and inform a higher-level observer, thereby keeping the
system's layering intact. If Subject and Observer are lumped together,

 17

then the resulting object must either span two layers (and violate the
layering), or it must be forced to live in one layer or the other (which
might compromise the layering abstraction).

2. Support for broadcast communication. Unlike an ordinary request, the
notification that a subject sends needn't specify its receiver. The
notification is broadcast automatically to all interested objects that
subscribed to it. The subject doesn't care how many interested objects
exist; its only responsibility is to notify its observers. This gives one the
freedom to add and remove observers at any time. It's up to the
observer to handle or ignore a notification.

3. Unexpected updates. Because observers have no knowledge of each
other's presence, they can be blind to the ultimate cost of changing the
subject. A seemingly innocuous operation on the subject may cause a
cascade of updates to observers and their dependent objects. Moreover,
dependency criteria that aren't well-defined or maintained usually lead
to spurious updates, which can be hard to track down.

This problem is aggravated by the fact that the simple update protocol
provides no details on what changed in the subject. Without additional
protocol to help observers discover what changed, they may be forced to work
hard to deduce the changes.

2.1.3 Conclusions

Overall, the above approaches have the following in common: they strive to
reduce complexity and improve the flexibility of code. These are attributes of a
well-designed system. Refactoring builds on these ideas, but adds in the extra
constraint requiring that the behaviour of the refactored code is to stay the
same after a refactoring has improved the design of existing code in order to
make it more maintainable.

It is reasonable to suggest that at least some of the heuristics mentioned by the
experts above could be implemented by refactoring. Therefore, if a piece of
code breaks a certain heuristic then it can be considered a candidate for
refactoring. The only requirement would be that the runtime behaviour
resulting from the design changes would have to remain unchanged.

Code smells are targets for refactorings since they represent bad code design
and they may lead to more un-maintainable code. The lack of heuristics (refer
to the Appendix for examples) can be used to automatically check the design
for potential design flaws and can therefore be seen as potential candidates for
code smells.

 18

When considering the sheer number of heuristics, design patterns, code smells
and refactorings that are available, it makes sense to employ an IDE to manage
and implement this knowledge more efficiently on a source code level. This
will be discussed further on in the dissertation, specifically in Chapters 5, 6,

It is interesting to note that some design patterns may in fact violate a few
heuristics, for very good reasons. A number of such examples can be seen in
Molla’s [2005] dissertation where a comparison between design patterns and
heuristics is given. In such cases, it is up to the designer to decide which rule or
patterns can be overridden.

For example the following violations are identified by Molla [2005] just for the
Observer pattern alone. Molla [2005] provides a description of the pattern, the
specific deign heuristic violations, a reason as to why it violates certain design
heuristics and comments:

Observer pattern
Observer pattern describes how to establish relationships. In this pattern, the
change in the state of an object can cause automatic updates in a list of
dependents objects, that means each observer will query the subject to
synchronize its state with all dependents state.

Violate: “Keep related data and behavior in one place” (see # 2.9 in Appendix
A.3) and “Minimize the number of classes with which another class
collaborates” (see # 4.1 in Appendix A.3).

Reason for violation: The motivation for this violation is to minimize the
strength of the coupling between the subject and the observers.
Comments: When an object changes in the system, all its dependent objects
are notified and updated automatically. For example, consider a spreadsheet
program, when data insert or modify in that program, all the corresponding
charts are change immediately, because document and chart class must know
each other. The main idea of observer pattern is changing data in a window
should be immediately reflect in all. This pattern also teaches how an object
can tell other objects about events.

2.2 Software Maintenance

Refactoring is used to make code easier to understand and maintain. In order to
understand what maintainable code is one needs to understand what software
maintenance entails.

 19

2.2.1 Definition

The IEEE [1998] has the following definition for software maintenance:

1. Adaptive maintenance – “Modification of a software product performed
after delivery to keep a computer program usable in a changed or
changing environment”.

2. Corrective maintenance – “Reactive modification of a software product

performed after delivery to correct discovered faults”.

3. Perfective maintenance – “Modification of a software product after
delivery to improve performance or maintainability”.

Once a software system has been released, it is usually the case that a few bugs
still exist and maintenance work still needs to be done. If the code was poorly
designed it is possible to introduce more bugs into the system while trying to
fix the new ones. This is especially the case for new developers that have no
regard or knowledge of the existing design and its purpose.

Performance issues may also arise, once more users start using the system.
These issues may be fixed by buying more machines to improve scalability, but
often times it is cheaper to improve the software. When refactoring it is
important to note that, it may cause performance issues. When improving
design, it is sometimes the case that performance is increased. In fact, it
normally decreases performance. Fowler [1999] argues that refactored code is
easier to optimise. Usually a profiler will be used to profile a specific
applications performance. A profiler will normally identify specific hot spots in
the code, which take a long time to complete. In general, only 10% of the code
takes 90% of the time to run. This means that if the code is refactored properly,
then it will be easier to find the hotspots, since the methods should be small
and well structured, opposed to a program that is not refactored. Smaller parts
of the code are easier to tune.

The addition of new features also provides many challenges to software
maintenance, as the system needs to be flexible enough to grow and simple
enough to maintain. These issues will however be discussed in the next main
sub-section (2.3) under the heading of software evolution.

2.2.2 When development becomes maintenance

Mantyla [2003] provides a literature survey on software maintainability in the
context of refactoring and bad code smells as a whole.

 20

From several references found in this dissertation, it is widely accepted that all
changes to a product after it has been accepted by the client (or after its first
public release) can be classified as maintenance.

When considering the above statement and the fact that most software would
be maintained for much longer than the time it actually took to originally write
the software, then it is clear that maintenance can become very costly,
especially if the lifespan of a software product is expected to be long.

2.2.3 Maintenance cost factors

Sommerville [2004] describes how maintenance costs are usually two to a
hundred times greater than development costs, depending on the application.
He attributes maintenance costs to the following factors:

1. Team stability - Maintenance costs are reduced if the same staff is
involved with the maintained software for some time.

2. Contractual responsibility - The developers of a system may have no

contractual responsibility for maintenance so there is no incentive to
design for future change.

3. Staff skills - Maintenance staff are often inexperienced and have limited

domain knowledge.

4. Program age and structure - As programs age, their structure is

degraded and they become harder to understand and change. Structure
degradation can occur through constant addition of enhancements and
changing requirements.

2.2.4 Maintenance and change prediction

Sommerville [2004] mentions that maintenance prediction is concerned with
assessing which parts of the system may cause problems and have high
maintenance costs and adds the following facts about system maintainability:

1. Change acceptance depends on the maintainability of the components
affected by the change;

2. Implementing changes degrades the system and reduces its

maintainability;

3. Maintenance costs depend on the number of changes and costs of

change depend on maintainability.

 21

Sommerville [2004] goes on to say the following about change prediction:

1. Predicting the number of changes requires an understanding of the
relationships between a system and its environment.

2. Tightly coupled systems tend to require changes whenever the

environment is changed.

3. Factors influencing the difficulty of maintenance with regards to
changes are:

• Number and complexity of system interfaces;
• Number of inherently volatile system requirements;
• The business processes where the system is used.

Figure 3: Maintenance Prediction

Figure 3 above from Sommerville [2004] gives a good indication of the
questions that need to be answered about predicting maintainability, system
changes and maintenance costs.

As Sun Microsystems [1999] points out, code conventions are vital for a
number of reasons:

• Eighty percent of the lifetime cost of a piece of software goes to
maintenance.

• Hardly any software is maintained for its whole life by the original author.

 22

• Code conventions improve the readability of the software, allowing
engineers to understand new code more quickly and thoroughly.

• If one ships source code as a product, it should be ensured that it is as well
packaged and as clean as possible.

Code conventions should be considered as a complementing technique for
refactoring, as refactoring is also extensively used in the maintenance phase
and leads to more maintainable code.
It is interesting to note that most modern IDE’s can now format source code
according to pre-defined code conventions. This allows code created by
different programmers to be formatted in exactly the same way in regard to
factors such as comments, indentation, white space, line wrapping etc.

If each programmer were allowed to have his or her own style, then it will be
harder to read and understand the code when one is trying to adapt from
reading one style to another. However, having one standardised set of code
conventions to which programmers need to adhere, results in code which is
easier to read and thus more maintainable. Therefore it is important to
standardise on a code convention and to use a common IDE which can easily
implement it. For example, at the time of writing this dissertation, Eclipse had
built-in Java code conventions, which can be applied by formatting the code
with the hot-keys CTRL-SHIFT-F.

2.2.5 Source Code Metrics

Complexity metrics for object oriented programming go far beyond those of
procedural programs. In the past the simple LOC metric was used to measure
maintainability along with other measures such as McCabe’s [1976]
Cyclomatic complexity measure. Now measures include measures of
complexity for control and data structures. Complexity also depends on object,
method and module size. Many more complexity metrics will be discussed
throughout this dissertation in order to locate possible design flaws and areas
which will be particularly difficult to maintain.

Together with using the JDK compiler in conjunction with Eclipse to find
unused code, IDEA’s static code analysis techniques will be used to locate
targets for refactoring. Mantyla [2003] argues that source code metrics are a
reliable measure of maintainability and presents case studies by Bandi et al
[2003] and by Li & Henry [1993a, 1993b] that prove this true for object-
oriented source code metrics.

 23

2.2.6 Conclusions

It is important to lay down the above facts as this dissertation will be talking
about the maintainability of software. If maintenance is not properly done or if
the product was not properly designed in the first place, then the product will
be very hard to maintain and this will escalate maintenance costs and
development effort needed for maintenance.

A common scenario in the commercial IT industry is for IT consultants to
complete a software product, release it to the public or into production and then
move onto another project, leaving the project to be maintained by other
developers who have no prior knowledge of how the system was designed. A
short handover process may take effect between the old and new developers,
and a large portion of intellectual capital is still lost to the developers who
leave with their experience.

The loss of intellectual capital impacts directly on increased maintenance costs
caused through the lack of knowledge of the new developers. Not knowing
how a system works will lead to a developer spending a lot more time figuring
out a system, rather than actually being able to perform maintenance work.

Developers are paid for the time they spend during maintenance. Increased
effort by new developer’s results in increased costs and longer maintenance
iterations then what was previously experienced with the original developers of
the software product. This is because the original developers already had
experience with the system since some of them actually wrote the code for it.
The developers who first implemented the software product will be the ones
with the most experience and knowledge of the software product and would
therefore be the best potential candidates concerning any further maintenance
tasks that would be required.

It is therefore important to realise the impact of losing the original developers.
Loss of intellectual capital can also in effect directly reflect in the increased
maintenance costs.

2.3 Software Evolution

Refactoring can be used to improve the design of existing code and thereby
evolve the software. Sommerville [2004] explains that proposals for change are
the driver for system evolution. Change identification and evolution continue
throughout the system lifetime.

Evolution processes will depend on:

 24

1. The type of software being maintained;

2. The development processes used;

3. The skills and experience of the people involved.

2.3.1 Design Evolution

Tokuda [1999] notices that as applications evolve, so do their designs.

Designs evolve for many reasons:

1. Capability to support new features or changes to existing features.

2. Reusability to carve out software artifacts for reuse in other
applications.

3. Extensibility to provide for the addition of future extensions.

4. Maintainability to reduce the cost of software maintenance through
restructuring.

Tokuda observed that designs also evolve for human reasons:

1. Experience - Experienced employees may create better designs based
on their domain knowledge.

2. New Perspective - New project members often have different ideas

about how a design could or should be structured. Many organizations
use a code ownership model, which empowers new employees with the
ability to realize their ideas.

3. Experimentation - Arriving at a suitable design may require exploration

of different design paths. Tokuda observed software cycles in which the
principal development activity was experimentation with multiple
designs.

Tokuda’s [1999] research assesses the capabilities of refactorings for evolving
object-oriented designs and attempts to determine if refactoring technology can
be successfully transferred to mainstream programming languages such as C++
and Java.

 25

2.3.2 The 8 laws of software evolution

Process evolution dynamics involves the study of the processes of system
change. Lehman & Belady [1985] conducted empirical studies into the process
evolution dynamics of many organizations and concluded the following eight
laws:

1. Continuing change - A program that is used in a real-world
environment necessarily must change or become progressively less
useful in that environment.

2. Increasing complexity - As an evolving program changes, its structure
tends to become more complex. Extra resources must be devoted to
preserve and simplify the structure.

3. Large program evolution - Program evolution is a self-regulating
process. System attributes such as size, time between releases and the
number of reported errors is approximately invariant for each system
release.

4. Organizational stability - Over a program’s lifetime, its rate of
development is approximately constant and independent of the
resources devoted to system development.

5. Conservation of familiarity - Over the lifetime of a system, the
incremental change in each release is approximately constant.

6. Continuing growth - The functionality offered by systems has to
increase to maintain user satisfaction.

7. Declining quality - The quality of systems will appear to be declining
unless they are adapted to changes in their operational environment.

8. Feedback system - Evolution processes incorporate multi-agent, multi-
loop feedback systems and one has to treat them as feedback systems to
achieve significant product improvement.

2.3.3 Software reengineering

When considering that software, either reengineering involves the complete re-
writing of a system or the restructuring thereof, one can draw the conclusion
that refactoring may be used for re-structuring under the condition that
behaviour is to be persevered.

According to Sommerville [2004], reengineering of sub-systems, which are
frequently maintained, is appropriate in order to make the frequently used sub-
systems more maintainable.

 26

Reengineering is seen as an alternative to developing a new system when one
considers the advantages:

1. Reduced risk - There is a high risk in new software development. There
may be development problems, staffing problems and specification
problems.

2. Reduced cost - The cost of re-engineering is often significantly less

than the costs of developing new software.

2.3.4 Conclusions

Design and software evolution are complex topics, which deserve to have tools
dedicated to them in order to cope with change. Refactoring may be used in the
re-structuring portion of re-engineering, which may also include total re-
writing of code. Reengineering is often seen as a means of saving money, by
not having to develop a new system.

2.4 Summary

This chapter started with a description of design heuristics and design patterns
to introduce the theme of design issues in relation to object-oriented
programming. Three examples of design heuristics are given. Examples are
also given into how one can use refactorings in order to introduce the absence
of heuristics. The Singleton design pattern is introduced and its major
advantages are identified. A brief discussion is given towards the conflicts that
can appear between design patterns and design heuristics as was found to be
the case with the Singleton design pattern.

Software maintenance and software evolution are also defined (in sections 2.2
and 2.3 respectively) to provide an understanding of the links between software
design, maintenance, evolution and refactoring. This will serve as an
introduction to the next chapter, which focuses on the answers to the many
questions around refactoring. The following sections provide an understanding
of the impact of refactoring on the many other phases contained in the software
development life cycle.

 27

Chapter 3 Refactoring

3.1 Definition

Refactoring helps to improve the design of existing code and adds in the extra
constraint requiring that the behaviour of the refactored code is to stay the
same after a refactoring has improved the design of the existing code. This will
in turn make the code more maintainable.

One definition of the word “factor” means to influence something. If X has an
influence in Y then X is a factor in Y. To factor in X in situation Y, is to take
X’s influence into account in situation Y. Thus, to re-factor situation Y, is to
reconsider (the influence of X) in situation Y. To refactor means to re-
influence something that already exists. There is however a deeper meaning in
the computer science context. To refactor a program, one would need to apply
one or more refactorings in such a way as to improve the design of the program
and simultaneously preserve the programs behaviour. These refactorings
should be performed with the intention of improved software maintainability
and design. A simple example would be to refactor a long method into shorter
methods with more descriptive names in order to improve the readability of the
code.

3.2 Overview

One needs to know how refactoring fits into the software engineering process
in order to see how to benefit from it.

Foote [1997] explains: “Building systems from the ground up is expensive and
time consuming. Moreover, it is difficult to tell if they really solve the
problems they were intended to solve until they are complete.”

Agile runs the risk of evolving architectural chaos. The absence of a grand
design risks the development of the software equivalent of a squatter camp,
instead of a beautiful urban complex. This is exacerbated if revisions / updates
also take place in an uncontrolled fashion. Refactoring is one of the ways of
controlling the updates and revisions in a disciplined fashion. If one considers
that no major upfront design takes place in agile practises then it should be
clear that without an opportunity to redesign certain elements of the code,
architectural chaos could ensue. This is especially the case in environments
where change is inevitable and refactoring allows those software changes to
take place in a controlled manner.

Agile software methodologies like XP [Beck 2000] claim an inherent
inflexibility in designs which do not evolve with the development of a system,

 28

and that the resulting cost of change is high in such systems. Continuous design
[Shore 2004], which utilises refactoring, allows one to add more flexibility into
the design by not having a big upfront design, but rather by adding to the
design as the need arises. Thus, the design will evolve as the code grows. With
the coming of agile software development, there is a shift from building
software to growing it. The process of refactoring can be used to achieve the
growth.

Garlan [1994] mentions: “Object-oriented systems have some disadvantages.
The most significant is that in order for one object to interact with another (via
a procedure call) it must know the identity of that other object. This is in
contrast, for example, to pipe and filter systems, where filters do not need to
know what other filters are in the system in order to interact with them. The
significance of this is that whenever the identity of an object changes it is
necessary to modify all other objects that explicitly invoke it. “

Automated refactorings manage to soften the disadvantages of the object
oriented architectural style, by modifying the part of the object that is invoked
and all of the invokers as well. Thus, any dependencies are seamlessly
resolved, as the refactoring tool will usually utilise an abstract syntax tree or
code database, which will hold the crucial code dependencies that need to be
updated whenever a refactoring is made. More examples of this will be shown
later on in Chapter 6 to Chapter 8.

3.3 Applicability

Refactoring can be used in different contexts. For example to:

1. improve the design and code quality of existing systems;

2. evolve the design of systems dynamically through incremental

development with practises such as test driven development and agile
methodologies, thereby negating the need for a big upfront design;

3. understand how existing code works [Fowler 1999];

4. manage change in a software organisation [Beck 2000];

5. perform refactoring at an architectural level [Van Kempen 2005]; and

6. refactor with design patterns as targets of the refactoring [Kerievsky

2004].

 29

3.4 Motivations

Gamma et al. [1995] explain the role that refactoring plays rather well: “Once
software has reached adolescence and is put into service, its evolution is
governed by two conflicting needs: (1) the software must satisfy more
requirements, and (2) the software must be more reusable. New requirements
usually add new classes, operations, and perhaps even entire class hierarchies.
The software goes through an expansionary phase to meet new requirements.
This cannot continue for long, however. Eventually the software will become
too inflexible and arthritic for further change. The class hierarchies will no
longer match any problem domain. Instead, they will reflect many problem
domains, and classes will define many unrelated operations and instance
variables. To continue to evolve, the software must be reorganized in a process
known as refactoring. This is the phase in which frameworks often emerge.”

Gamma et al. [1995] warn that when faced with design issues like
encapsulation, granularity, dependency, flexibility, performance, evolution and
reusability it is almost impossible to create a perfect design first time,
especially when considering that these design issues often conflict when one is
trying to decompose a system into objects.

Although refactoring fits best in agile methodologies, it is not a technique only
used in iterative development scenarios. Large projects have design issues,
which can be detected through the correct analysis tools found in common
IDEs. These design issues are in turn, potential targets for refactorings.

Developer intervention in refactoring is more desirable in some cases, as there
are still a few problems with refactoring automations for specific code smells.
These problems will be discussed in detail later in this dissertation. IDEs have
advance to the point where they are able apply refactorings on a project or
global scale, through the click of one button. This allows several thousand code
smells to be eradicated without the need to manually remove each one.

3.5 Problems

Refactoring is a good practise, but there are a few troubles in applying
refactoring in the real world. Here are four possible reasons Opdyke [1992]
mentions as to why one might still not refactor programs:

1. One might not understand how to refactor.

2. If the benefits are long-term, why exert the effort now? In the long
term, one might not be with the project long enough to reap the benefits.

 30

3. Refactoring code is an overhead activity; one is paid to write new
features.

4. Refactoring might break the existing program.

An organisation’s management structure may be inflexible and may not allow
the proper environment in which one would need to refactor. Such an
environment would typically need unit testing to test the refactorings. Beck and
Gamma [JUnit 2005] created a popular Java unit test framework.

If no unit tests had been done during the development of the project then the
amount of work needed to implement these unit tests as part of a refactoring
process, could outweigh the benefits received from such refactoring. Generally,
one should only consider refactoring if unit tests were properly carried out in
the first place. However, there have been recent suggestions for the automatic
generation of test cases for a Java class file. This approach makes use of a
symbolic Java virtual machine that can generate constraints representing the
conditions for the control flow under consideration. No feasible tool has been
developed yet, but there is future work planned by Müller et al [2006].

3.6 Tool Survey Motivation

The aim of the tool survey was to see what the capabilities of the common
open source and commercial IDEs were, in terms of their refactoring tool
support. For the purpose of the survey, IBM’s Eclipse and IntelliJ’s IDEA was
chosen. IDEs such as Netbeans, Jbuilder Enterprise 2005, CodePro’s Studio,
Jrefactory, CodeGuide and Jfactor were compared. Eclipse and IDEA had the
most amounts of automated refactorings available and were therefore chose for
the tool survey. This information was sourced from another refactoring plug-in
Refactorit [2006].

The automated refactorings in most modern IDEs allow one to preview the
resulting impact of the refactorings on code. The preview also shows warnings
when code could be negatively impacted. The automated refactorings consider
the entire project code and thus save one a lot of time compared to manual
refactorings. The latter are error prone and rely on the compilation process to
dig out errors caused by unchecked dependencies that might have been missed
by the manual work of the programmer.

Currently, there is a choice between manual and automated refactorings. The
programmer alone performs manual refactorings, which are more error-prone
when compared to the automated refactorings available in IDEs. Automated
refactorings are performed in such a way as to automate most of the code
restructuring, so that limited input is needed from the developer and the chance
of a successful refactoring will be high. In most cases all that is needed is for

 31

the programmer to click on a specific piece of code and to select an applicable
refactoring from a drop down menu. There is also a choice between searching
for targets for refactorings and having the IDE do it through static code
analysis or through a compiler refactoring approach. IDEA uses a static code
analysis approach while Eclipse utilises a compiler refactoring approach.

These issues can make or break the ease with which refactoring is performed.
The problem is to find practical, inexpensive solutions for enterprises that wish
to evolve their designs through refactoring.

Building refactoring tools, which preserve behaviour, requires that a set of pre
conditions be met before each refactoring is run and post conditions after the
refactoring is run. These conditions are different for each refactoring and
research by Roberts [1999a, 1999b] and Kataoka et al [2001] was done to
ensure behaviour is indeed preserved in automated refactorings. Korman
[1998] also provides a star diagram method, which is used for exploring,
planning and carrying out refactorings of Java code. Opdyke [1992] defines pre
and post conditions that hold for all of his refactorings in order to preserve
behaviour.

3.7 Code Review Motivation

After using the different IDEs on a few code bases, the code review was
performed with IDEA and Eclipse. Results from both of these reviews will be
presented. A description of code smells that can be found is given as well as
the refactorings needed to fix these issues. There are issues of productivity,
which separate the two IDEs, and the weak and strong points will be
highlighted in the chapters to come.

Through the code review, a detailed study of the code smells present in the
JDK code base was given. Through the experience of the author, information is
given on how to recreate the code review. An insight is given into the many
different code issues and how to fix them. A classification method is proposed
to be able to sift through the many code smells that are found. Classification
enables us to focus on problems, which are more urgent, and to leave less
severe problems for later.

An opportunity arose from the Java JDK to find and analyse code smells as
well as their target refactorings. By reviewing all the different versions from
1.0.2 to 1.5.0, a more detailed understanding was gained of how code smells
grow along with a large code base (Chapter 10). Chapter 10 also highlights the
potential risks identified in the case where refactoring is not applied on an
ongoing basis. These risks come in the form of code smells.

 32

3.8 Summary

A continuous design process [Shore 2004] allows one to evolve a design to
make the maintenance phase less costly by adding more flexibility and
reusability into the code as well as solving any design issues overlooked
previously.

Refactoring plays an important role in continuous design and certainly has
benefits, but the process must be adequately managed to ensure that it is done
properly. The following chapter provides an insight into the roots of refactoring
where old and recent research on refactoring is discussed.

In this chapter, a stronger refactoring background was given. Motivations for
the tool survey and code reviews were discussed. The following chapter give
more insight into the previous and current research work done in the research
field of refactoring.

Chapter 5 describes the analysis methodology used to perform the code
reviews.

Chapter 6 contains the Eclipse code review and Chapter 7 and Chapter 8 the
IDEA code review. The IDEA code review was divided into two parts in order
to distinguish the two main influences ([Fowler 1999] and [Kerievsky 2004])
that governed the code review.

The rest of the chapters include an IDE comparison, which forms part of the
tool survey as well as a code evolution chapter, which forms part of the code
review.

 33

Chapter 4 The roots of refactoring

This chapter indicates where refactoring first started and introduces important
research recently conducted in the field.

4.1 Introduction

Opdyke was the first to coin the term “refactoring” and proceeded to introduce
8 basic refactorings, which where broken down into 26 low-level refactorings
and 3 more abstract, high-level refactorings (made up of low-level ones).
Although Opdyke’s work had examples in C++, Fowler later used most of
these refactorings in his book [Fowler 1999], but used Java as the language of
choice. Fowler provides a catalogue of over 70 refactorings for class design.
He also explains how to identify hotspots for refactorings, which he calls “bad
smells”.

Opdyke focused on refactoring object-oriented programs, since the underlying
language structures where far richer than other languages. He mentions three
cases where refactorings may be applied, namely to:

1. Extract re-usable components.

2. Improve consistency among components.

3. Support an iterative design approach.

Refactoring owes its firm foundations to research by Griswold [1991] and
Opdyke [1992]. Griswold started to reason about program restructurings and
how software maintenance (enhancement and repair) remains
disproportionately expensive, relative to the expected cost of the required
changes and the quality of the resulting software.

4.2 Founding Work

Griswold [1991] provides research to support that the size of the system tends
to grow linearly with respect to the release interval number; the complexity of
the system grows exponentially in relation to its size. This model for
complexity equates to the cost of a change, since to make a correct change
requires crosschecking for consistency over an exponential number of
relationships.

Griswold [1991] further points out: Anti-regressive techniques or techniques,
which aim to improve software maintainability, are ignored under financial and
time pressures and, because they are not usually as psychologically satisfying

 34

as progressive activities. As complexity increases so does the need for anti-
regressive activity. This should be maintained only while complexity is not too
large.

The idea is that automated restructuring will have constant cost with respect to
release number, and thus constant complexity. Refactoring cannot reduce the
number of existing faults, since meaning is preserved. If refactoring is targeted
to the change, so that it is localized within a module, the number of layer
elements and their pair-wise interactions of elements for the proposed changes
is reduced drastically [Griswold 1991]. Simply put, if the change is localised to
influence only one module, then the number of dependencies needed to be
refactored decreases. Whereas the opposite case would be to influence a
module with many dependencies, resulting in many more interactions that
would need to be refactored. As automated refactoring tools are able to deal
with more complexity, so the cost of such restructuring becomes linear with
respect to complexity.

Opdyke’s research focus was on using refactorings in order to support an
iterative design approach. Three options come to mind when improving an
existing system: Redesign, rewriting or re-structuring. Opdyke realised that
generally re-structuring was the better choice. He describes a refactoring as a
program restructuring that needs to provide meaningful abstractions. The
abstractions are used to refactor the program easier to re-use and extend. He
puts great effort into realising an automated approach to refactoring, but also
warns that an automated tool should only be made to aid the designer to apply
the refactorings correctly and not to decide which refactorings to perform.

4.3 Recent Research

Related work from Tokuda [1999] stresses that being able to adapt software to
change will result in lowering of project costs. The process is to refactor a
system without changing its behaviour and improving its design so as to be
able to extend the system easier. Tokuda [1999] focuses mainly on design
evolution and stresses the fact that as an application evolves so too does its
design. He goes on to say that, design evolution patterns need to be identified
and that these patterns can be recognized as program transformations, which
are automatable with object-oriented refactorings.

Cinnéide [2000] develops design pattern transformations by taking a pattern,
decomposing it into its constituent mini-patterns, developing a mini-
transformation for each mini-pattern, and finally specifying the complete
transformation as a sequential composition of these mini-transformations. A
mini-transformation here is seen as a refactoring, as only the design is
improved, while behaviour remains constant. Similar work is done by
Kerievsky [2004] who focuses on performing refactorings as targets for design
patterns.

 35

Mens et al. [2004] provide a thorough look at research in the domain of
software refactoring and software restructuring. Five different categories were
researched:

1. Refactoring activities supported:

The refactoring process consists of a number of distinct activities:

• Identify where the software should be refactored;
• Determine which refactoring(s) should be applied to the

identified code smells;
• Guarantee that the applied refactoring preserves behavior;
• Apply the refactoring;
• Assess the effect of the refactoring on quality characteristics of

the software (e.g., complexity, understandability,
maintainability) or the process (e.g., productivity, cost, effort);

• Maintain the consistency between the refactored program code
and other software artifacts (such as documentation, design
documents, requirements specifications, tests and so on)

2. Specific techniques and formalisms that are used to support these

activities:

A wide variety of formalisms and techniques have been, proposed and
used to deal with one or more refactoring activities. Mens et al. [2004]
discuss two such techniques in detail: the use of assertions
(preconditions, postconditions and invariants) and the use of graph
transformation. Next, Mens et al. [2004] discuss how formalisms can
help us to guarantee program correctness and preservation in the
context of refactoring. Finally, Mens et al. [2004] provide an indicative,
but inevitably incomplete, list of other useful techniques to support
refactoring activities.

3. Kinds of software artefacts that are being refactored:

Mens et al. [2004] argue that although contemporary IDEs limit support
for refactoring to the source code only, refactoring can be applied to
any type of software artifact. For example, it is possible and useful to
refactor design models, database schemas, software architectures and
software requirements. Refactoring of these kinds of software artifacts
rids the developer from many implementation-specific details, and
raises the expressive power of the changes that are made. On the other
hand, applying refactorings to different types of software artifacts
introduces the need to keep them all in harmony.

 36

4. Important issues when building refactoring tools:

Although it is possible to refactor manually, tool support is considered
crucial. Today, a wide range of tools is available that automate various
aspects of refactoring. Mens et al. [2004] explore the different
characteristics that affect the usability of a tool. More specifically,
Mens et al. [2004] discuss the notions of automation, reliability,
configurability, coverage and scalability of refactoring tools.

5. The effect of refactoring on the software development process:

Refactoring is an important activity in the software development
process. Mens et al. [2004] discusses how refactoring fits into the
processes of software reengineering, agile software development, and
framework-based software development.

Mens et al. [2004] say that although commercial refactoring tools have begun
to proliferate, research into software restructuring and refactoring continues to
be very active, and remains essential to reveal and address the shortcomings of
these tools. This dissertation aims to identify any such shortcomings in the
tools selected.

Van Kempen [2005] shows the refactoring of the Pipe & filter architectures
into the Blackboard and Client/Server architectures by mapping UML state
charts into CSP (Communicating sequential processes). He also elaborates on
refactoring distribution responsibilities of a Software Architecture expressed as
an UML model.

4.4 Summary

This chapter introduced us to where refactoring started originally. Attention
was also payed to recent research done in the field. Specifically focus was put
onto research performed by Mens et al. [2004], which was a wide study into
five different areas of refactoring.

The following chapter introduces the analysis methodology. Eclipse and IDEA
are used to find code smells in the Java Software Development Kit. A code
smell classification method is introduced which will be used through the rest of
the dissertation.

 37

Chapter 5 Analysis Methodology

To perform the analysis, a code review was performed on a popular and open-
source code base. A project as large as the Java SDK (version 1.4.2) was likely
to have detectable code smells. Eclipse 3.1.0 and IDEA 5.0 were used for
analysis. All detected code smells are reported and discussed in two separate
code reviews (one review for each IDE used). The first Eclipse review is
covered in Chapter 6. This review deals only with unnecessary code. The
IDEA review is covered in Chapter 7 and Chapter 8 and covers a wide array of
code smells. In addition, an analysis on the evolution of the JDK from version
1.02 to version 1.5.0 was performed in order to see the effects of the software
evolution of the JDK in terms of maintainability. Code smells will be used to
measure the maintainability of the code. Some of the code smells are generated
by object-oriented software metrics such as class and method metrics relating
to size, coupling and complexity. A comparison of the two IDEs is given in
Chapter 9.

This chapter includes refactorings for fixing code smells, ways of classifying
various code smells by value and complexity, and refactoring productivity
issues. Code smell classification is used as a guide for when it is best to
refactor. Comparisons are made on how the two IDEs handle the analysis
results as well as their capabilities in finding and removing code smells.

When considering complexity it is useful to learn from Griswold [1991]. He
provides research to support the claims that the size of the system tends to
grow linearly with respect to the release interval number; and that the
complexity of the system grows exponentially in relation to its size. This model
for complexity predicts the cost of a change, since to make a correct change
requires crosschecking it for consistency for an exponential number of
relationships.

5.1 JDK Code Base Statistics

The 1.4.2 version of the JDK will be used to perform a detailed analysis. An
analysis of the entire JDK from version 1.02 to version 1.5 will be performed
in Chapter 10 for the purposes of seeing how the code evolves from version to
version.

Statistics were gathered on the number of files, number of source lines of code
(SLOC, means no commented or blanks lines), number of commented lines of
code, number of blank lines and the total number of lines of code in each code
base. Thus Total number of lines of code (TLOC) = SLOC + Comments +
Blanks.

 38

Version Files SLOC Comments Blanks TLOC
1.4.2_03 4,141 563,073 569,285 161,504 1,293,862
 43.5% 44.0% 12.5% 100%
Table 1: JDK 1.4.2 Code Statistics

This JDK version has 457,801 lines of Javadoc comments, which is about 80%
of all the comments. They are necessary as documentation generation relies on
them as they form part of the code conventions for Sun Microsystems. The
comment statistic in Table 1 includes both Javadoc and normal code
comments.

5.2 Classifying Code Smells

The characterization of code smells and their associated refactorings in terms
of complexity and value to the overall project can at best, be done at a notional,
subjective level. There are no objective metrics available. Nevertheless, the
view is taken in this dissertation that it is worthwhile and instructive to
undertake such a classification, albeit somewhat subjective, as a guide in
investigating the various refactoring facilities offered by the IDEs under
consideration. However, one should consider that the more experience a person
has with a code base, the less subjective his/her classifications become,
because they have experienced where the design flaws in the system are and
they can then determine what value will be brought from performing a
refactoring on a focused part of the code base. In the this case, the author has
little or no experience with the JDK code-base and is left with only the
classification method as a means to decide which refactorings to use and which
ones to avoid. To this end, consider Figure 4.

 39

Figure 4: A refactoring classification graph

Picture (accessed 2006-04-01), from www.silofx.com/migration.

The four categories displayed in Figure 4: A refactoring classification
graphFigure 4 are commonly used in financial circles to classify the value and
complexity of something. The term “quick win” appears often in financial
literature. Refer to this 4-quadrant graph throughout in order to classify the
refactorings mentioned.

Complexity increases from left to right on the x-axis. Value increases from
bottom to top on the y-axis. Four quadrants are identified in relation to
complexity/value combinations. These are designated: Low Hanging Fruits
(LHF); Quick Wins; Strategic; and Nice to have/Avoid.

Refactoring complexity (x-axis) can be related roughly to the amount of time
taken to perform the refactoring. The term time complexity will be used
throughout this dissertation to denote how long something will take to do. A
task may be relatively simple, but if it appears in very large numbers then it
will take a long time to complete and in this sense, it will be considered
complex.

However, refactoring complexity is not merely limited to time considerations.
The complexity is also determined by how much impact the refactoring has on
the surrounding code base. If the refactoring change ripples through a large
part of the code base then one can consider the refactoring to be complex. In
addition, complex refactorings cannot be easily automated and complex code
smells could require multiple refactorings in order to improve the design.
Complexity is also high when the code is at risk of potentially breaking other

 40

code when being refactored. For example, if an abstract method is changed
then all of the abstract class’ children will also be affected by this change.

The value (y-axis) of removing a code smell, though real, is difficult to
measure in precise terms. It is generally recognised that there are significant
financial rewards for code that is well structured and comprehensible and thus
easily maintainable. However, in assigning value levels to various refactorings
in this dissertation, no attempt is made to fully justify these levels in terms of
financial benefits. Instead, value levels are generally chosen to reflect, to the
authors best judgement, the extent to which the maintainability of the code is
improved as a result of the refactoring.

Another measure of value would be to measure how often that piece of code is
changed or maintained. Refactoring code that is used and changed more often
will produce more value than refactoring code that no one uses. This is because
refactored code is easier to maintain. This measure of value will not be used as
there is no information telling us how often the source code is changed. If a
versioning system would be able to provide this sort of information, then
versioning information could be factored into the classification to be able to
better focus on the most important parts of the code.

Note that this assessment of maintainability is not entirely subjective. In many
cases, the value of a refactoring will be associated with a complimentary notion
of code smell severity. This, in turn, is frequently tied to various severity
settings that may be indicated in the IDE under investigation, these settings
being used to identify and repair the various code smells.

To illustrate these notions, consider the presence of duplicate code as an
example of a code smell. A change made to one version of the duplicated code
generally has to be replicated on all the other versions of the duplicated code, a
process that is notoriously error-prone. Refactoring this duplicate code smell
often consists of gathering all of the duplicate code into one method. All
instances of duplicate code are then deleted and the single new method is
called at each point instead.

Now a refactoring that eliminates say 10 lines of duplicate code (a low severity
code smell) would clearly have lower value than a refactoring, which
eliminates 200 lines of code (a more severe code smell). To this extent, value
derived from a refactoring varies with the severity of the associated code smell:
if severity rises, then refactoring value also rises.

Of course, code smell severity may also be related to complexity of the
associated refactoring. However, in general, this relationship is less clear-cut
than the tie-in between value and severity. For example, in principle
refactoring 200 lines of duplicated code into a method does not seem

 41

significantly more complex than refactoring 10 lines of duplicated code into a
method.

When referring back to Figure 4, one can focus on quick wins to get the most
refactoring value in the shortest amount of time. The size of the JDK project
(especially the later versions) makes it very difficult to refactor all of the code
smells. It is therefore a better idea to be able to classify the code smells in such
a way as to return the most refactoring value with the least amount of effort.
Therefore, the code smells that can be fixed quickly and that hold high
refactoring value should be addressed first.

In forthcoming chapters, various code smells will be classified into appropriate
quadrants of Figure 4 based on severity settings in the IDE under investigation
and/or on the informed but ultimately subjective judgement of the author. In
Chapter 10, suggestions are provided for the classification of various code
smells into one of the four quadrants in the above figure. These classifications
should not be construed to be the final word on the matter. Rather, they are a
starting point for further discussion and reflection.

5.3 Choosing Thresholds in IDEA

The best way to explain a threshold in IDEA is to give an example:

A good example is the generation of the code smell “method with too many
exceptions” for each major version of the JDK. The threshold value determines
the maximum value that is allowed to go undetected through the search, so if
the threshold is set to five, then all values above five will be detected. The first
threshold used was three, then four and then five. The following are the results:

Threshold Value 1.02 1.1.8 1.2.2 1.3.1 1.4.2 1.5.0

5 0 0 0 0 1 48
4 0 0 4 4 9 78
3 0 6 16 16 48 167

Table 2: Code smell count for different thresholds

Code smell thresholds will be used in IDEA to distinguish between severe and
non-severe code smells. Note that most strategic refactorings will have
thresholds available. Also, note that a threshold value is not always applicable
to every code smell as this is application or IDE specific.

Each threshold generated a number of code smells. General heuristics were
used to determine acceptable threshold values. When considering “the method
with too many exceptions” code smell, the number of code smells generated

 42

was used as a guide for selecting the thresholds for some of the code smell
detection tools. If the number of code smells generated was close to zero, but
not zero, then the threshold value was considered a high threshold value. All
values lower than the highest threshold value will be considered lower higher
threshold values. The threshold values used were first used on the 1.4.2 version
of the JDK and were later reused for all of the other versions of the JDK.

The choice of thresholds depends entirely on the user of the IDE. It is
recommended to choose a threshold that will filter out the least severe smells
so that the most severe code smells will be displayed and fixed. It is the case
that, in general, the more severe code smells occur less frequently than the less
severe code smells. This can be seen by the frequency of code smells generated
for each code smell using different thresholds.

The first column in the above table represents the threshold values. The other
columns represent values falling under the specific JDK version. It should be
clear that for each version, the greater the threshold value used, the smaller the
number of code smells that is generated. For example, consider the highlighted
number nine in the row with a threshold of four and JDK version of 1.4.2.
When increasing the threshold to five, the frequency of code smells drops from
nine to one. Decreasing the threshold to three causes the frequency of code
smells to increase to 48.

One can therefore decide how strict one wants to be on the generation of code
smells by manipulating the threshold values used during their detection. The
number of code smells generated will change from project to project, so
initially one should play around with a few random threshold values before the
required output is generated.

It is difficult to determine the threshold values for each code smell, because the
code quality differs with each project. In other words, it is possible to search
for methods with over three exceptions in some projects and find numerous
examples. In other projects, it might be the case that there are no methods with
more than three exceptions and lower threshold values would need to be used
in order to find bad code smells.

With the above being said, it should be clear that it is up to the user to
determine what an acceptable threshold value is. The other code smells, which
have configurable threshold values used for analysis, are ‘Nesting Depth’,
‘Long Method’, ‘Too many parameters’, ‘Large Class’ and ‘Inappropriate
Intimacy’. In section 10.3 these code smells are discussed in detail. Low,
normal and high threshold values were chosen for these code smells and the
statistical details as well as a discussion are provided.

5.4 Java As The Language Of Choice

 43

This dissertation views Java as the language with the greatest amount of
refactoring support, mainly due to its open source nature, its popularity and the
amount of refactoring support it has gained in the source of books, articles and
automated tools available for it.

Refactorings have spread into many different languages, but Java remains the
language with the most refactoring tool support, with C# being in a close
second position. A list of recent refactoring tools is available for several
languages [Fowler 2005].

5.5 Summary

The analysis methodology includes the use of Eclipse and IDEA to find code
smells in the Java Software Development Kit. A code smell classification
method was introduced which will be used through the rest of the dissertation.

The following chapter will show how to capture code smells in the popular
open source IDE from IBM, namely Eclipse. A code review will be performed
on version 1.4.2 of the JAVA development kit.

 44

Chapter 6 Eclipse Code Review

This chapter describes how to reproduce the code review in Eclipse. All the
checks for unnecessary code that can be carried out in Eclipse will be shown as
well as its abilities to remove these code smells. The analysis techniques
already present in Eclipse will be used to detect code smells.

If necessary, code segments are provided throughout this chapter to illustrate
the general issue and its solution more clearly. Note that the results displayed
are for the 1.4.2 version of the JDK. Please refer to Appendix A.1 and A.2
when looking for information on all of the code smells and refactorings in this
review.

The only code smells considered for Eclipse are kinds of unnecessary code.
While there are many other refactorings available in the tool, the only code
smells detected are by the compiler, and involve unused code.

6.1 Unnecessary Code

Fowler [1999] does not refer to unnecessary code smells. Manyla [2006] uses a
bad code smell taxonomy to categorise code smells. One of the code smell
categories mentioned is the ‘Dispensables’ category, which contains ‘Dead
code’ which translates to unnecessary code. This category can be found in
Appendix A.3. The ‘Dispensables’ category contains many more examples of
code, which can be removed. In this chapter, the focus will be on searching for
dead code (code that is not being used) and using the facilities available in
Eclipse to do this.

To be able to search for unnecessary code there are a few things that need to be
setup under Eclipse. These setup issues and further advice will be given in this
and the following chapter.

To access the compiler analysis tools of Eclipse, follow this menu flow:
Project -> Properties -> Java Compiler -> Errors/Warnings -> Unnecessary
code. This can be seen in Figure 5 on the following page.

 45

Figure 5: Error categories under Java compiler settings in Eclipse.

Figure 6Figure 6 below shows the settings for unnecessary code that have been
used in this study. After code is built, (compiled) messages are received
indicating what is wrong with the code, depending on how the Eclipse java
compiler has been configured. Eclipse reacts to specific problems, by giving an
error, warning or ignoring the problem. The developer in order of priority can
configure these three options.

Figure 6: Revealing unnecessary code in Eclipse.

 46

All unnecessary code warnings are caught during compilation and displayed
under the problems tab, once the above settings are setup. Filtering the
warnings returns statistics pertaining to a specific issue. The severity of this
unnecessary code smell varies widely as it comes in many different forms.

Fowler [1999] does not discuss unnecessary code, although it can most
definitely describe as a code smell. Unnecessary code can confuse
programmers, as they will usually first try to figure out what the code does and
then try to find how it connects to the rest of the software system. The result is
that the code has no link to any other method i.e. it is not called from any
method from outside the class. In some cases, the entire class in which
unnecessary code exists could also be unnecessary.

Finding solutions to all of these problems follows a common pattern. First, one
must enable the “Problems” filter to show all of the warnings (refer to Figure
8). Set filter configurations by clicking on the filter icon (refer to Figure 7)
found on the right hand corner of the Problems tab window next to the window
controls:

Figure 7: Filter icon

Figure 8: Warnings filtered by unused imports and sorted by Resource

Each warning will be described by the description column (refer to Figure 8).
One may filter by the description column to find one type of warning;
otherwise, the problem tab will display every single warning.

String prefixes for all the Eclipse warnings are provided in the following sub-
sections and are labelled as “Filter search prefix”. To illustrate this process
more clearly, refer to Figure 9, which contains a filter search prefix containing

 47

the string “The import”. This filter setting will search for strings in the
description column that start with the letters “The import”. String prefixes;
filter out the unwanted warnings by searching all the descriptions for an
occurrence of the search prefix string. As an example, a (case-sensitive) string
warning description for each warning is provided. Names used for
demonstration purposes are denoted by the letter x.

After filtering, the warnings are sorted by ‘Resource’ and can apply a quick fix
to each one. Figure 8 displays how a quick fix is about to be performed on the
unused import in line 23 of the code. When right clicking on a resource (Java
file) as shown in Figure 8, Eclipse comes up with a pop-up window, which
allows a quick fix allowing import removal within the resource. This is quicker
than having to open the physical resource and performing the refactoring.

The following sections discuss all of the code smells in JDK 1.4.2 that were
detected using Eclipse. A means by which to replicate the analysis is provided
and a discussion of the results is also given. If necessary, code segments are
provided to illustrate the general issue and its solution more clearly.

Whenever a code smell appears in large numbers and the only possibility for
removal is a manual one (i.e. removing each code smell, one by one) then one
can say that the time complexity for the code smell is high and therefore the
overall complexity is high.

It will be seen that most of the code smells were assigned a high complexity
value, for this reason. For example, one cannot select all of the unused
imports, right click on them and quick fix all of them. Instead, they have to be
repaired one by one; therefore, a high complexity value was assigned to this
code smell.

 48

Figure 9: Setting a filter search prefix

6.1.1 Unused imports

Often programmers import a library to be used in a class, and may
subsequently delete the class, but forget to delete the corresponding import. It
is possible that an unused import points to a resource not existing in the
production phase of the project, but present in the development phase. This will
cause unwanted dependencies on resources that do not exist and compile time
errors will result in the production phase.

 49

If for example, if one codes ‘import java.sql.Timestamp’, but provides an
import statement ‘import java.sql.*, then the scope of the import statement is
too large. When organising imports, Eclipse not only removes unneeded
imports but will also remove wildcards and replace them with the actual classes
that should be there. So after organising imports ‘import java.sql.*’ becomes
import ‘java.sql.Timestamp’, if this is the only class that one is using in the
java.sql library.

Fixing this problem in Eclipse is difficult (Figure 8) and time consuming. The
problem is the sheer volume of unused imports.

Sorting the warnings by the resource column (Figure 8) allows us to view how
many unused imports exist in one project. By performing the “organise
imports” quick fix, one is able to remove all unused imports from a class.

The unused imports smell rarely results in an inability to compile in the case of
the JDK project analysed and receives a low value. Eclipse does not allow the
imports to be organised in more than one file at a time. This smell has a large
numbers of occurrences, which increases the time complexity involved in
refactoring. However, it is possible (by activating the hot key CTRL-SHIFT-
O) to remove all unwanted imports from a single file, but this is still not good
enough from a productivity point of view.

Description: “The import x is never used”
Filter search prefix: “The import”
Files affected: 30% (1234)
Occurrences: 3532
Refactoring Complexity - High
Value – Low
Classification – Avoid
Classification justification – Time complexity and number of occurrences is
too high, therefore it is recommend to avoid this refactoring.

6.1.2 Unread local variables

Proceed with caution when removing this smell in Eclipse. In Figure 10, notice
oldValue in the following method from class AbstractButton:

Figure 10: Variable oldValue is local and unused

 50

Delete the oldValue variable without any behaviour change. Method
getMnemonic() (see Figure 11) simply returns a value that is assigned to
oldValue. It is safe to refactor this code by deleting the oldValue (assignee)
variable and the assignor method getMnemonic().

Figure 11: Standard getter - getMnemonic()

If an assignor method accepts an object as a parameter and changes the state of
this object then one can no longer use this refactoring. If the parameter object
state is needed in the operations following the assignor call, then deleting the
assignor can change behaviour.

Now getMnemonic(IntValue iv) (Figure 13) (assignor) can change the value of
variable iv. This can lead to different behaviour if one removes the assignor
and oldValue. However, removing oldValue and still calling the assignor will
be a behaviour preserving refactoring.

Figure 12: A mutable int Wrapper class.

Figure 13: Side effects in getter method.

As shown above getter, methods should not have side affects like that of the
getMnemonic(IntValue iv). Assignors containing side effects are not always
getter methods. When clicked, a yellow triangle with an exclamation mark in
the middle (not seen in Figure 13, but will appear just to the left of the

 51

highlighted variable as in Figure 10) will produce recommendations from
Eclipse on how to remove the unused local variable. Eclipse recommends
removing the assignor and the assignee, which can prove troublesome.

Description: “The local variable x is never read”
Filter search prefix: “The local variable”
Files affected: 7% (295)
Occurrences: 517
Refactoring Complexity - High
Value – Low
Classification – Low Hanging Fruit. Avoid complex cases.
Classification justification – The value of these refactorings can be rather low.
When taking into account the fact that the resulting refactoring can not
preserve behaviour, one should rather leave this refactoring out. The complex
cases mentioned here are those where an assignor could have a possible side
effect. The resulting refactoring of such a complex case would give rise to a
change in behaviour. The behavioural change would make the refactoring
invalid.

6.1.3 Unread parameter

If the method concerned is private or final then the method may be refactored
by removing the parameter (use the “change method signature” refactoring).
The final keyword ensures that the method cannot be overloaded or inherited
from a subclass.

It is common to give empty method implementations in an abstract class. There
is a design pattern that advocates doing so, called Adapter [Gamma et al.
1995]. These methods may be overloaded in the subclass inheriting from the
abstract class and may contain many parameters that are unused in the abstract
class but used in the overloaded method present in the concrete class.
Removing the unused parameters in the sub class will result in errors if both
methods have an inheritance relationship. Eclipse does no checks for errors in
hierarchies before highlighting a parameter as being unused.

 52

Figure 14: A mutable int Wrapper class

Figure 15: Children of AbstractA

In Figure 14, method a(…) is defined to be abstract. Method b(…) is defined as
an Adapter method. Classes inheriting from AbstractA need an implementation
of method a(…) and can choose to overload method b(…). In Figure 15, Class
A and Aa both satisfy the contracts of AbstractA. Eclipse gives two warnings in
the form of yellow triangles next to the two unread parameters in Class Aa.
AbstractA is used in the main method to make use of the Adapter pattern and to
make use of the abstract implementations. Eclipse does not pick this up and
removing the two parameters has some serious behaviour changes.

Removing parameter a from Aa:a(…) results in Class Aa deviating from its
inheritance contract with AbstractA and a compilation error. Similarly
removing parameter a from Aa:b(…) creates this problem.

In the case where there is no direct inheritance relationship with the offending
class, the class’ offending method, may just have the unused parameter
removed.

 53

Description: “The parameter x is never read”
Filter search prefix: “The parameter”
Files affected: 20% (820)
Occurrences: 4890
Refactoring Complexity – High
Value – Low
Classification – Avoid Complex cases, all else are Low Hanging Fruit.
Classification justification – The complex cases mentioned here should be
avoided, due to the way that Eclipse deals with the refactoring (essentially
breaking the class hierarchies). All other simple cases where no class hierarchy
relationship exists should be refactored. An unused parameter can be deleted
without having any affect on the code.

6.1.4 Unnecessary throws clause
(method or constructor)

This situation occurs when the declared exception x is not actually thrown by
the method x() from type X.

In general, remove unused throws clauses in overloaded methods or methods
implemented from abstract methods. Other methods have to catch or re-throw
exceptions thrown from these methods. In projects where there are deep chains
of method calls, this results in many unwanted catch and throws clauses. This
smell adds unnecessary error handling complexity.

Figure 16 shows AbstractA::b() as having a unnecessary throws clause
warning. The reason for this is that AbstractA::b() does not throw the
SomeException exception. Removing this throws clause, causes A::b() in
Figure 17, to no longer be compatible with the contract from AbstractA::b().
The same problem holds for abstract methods.

This issue is very similar to the one found when detecting unread parameters.
Eclipse fails to recognise the deeper implications when removing an unused
parameter or exception when the code smell appears in class hierarchies.

Most trivial cases of this code smell would include offending methods that do
not necessarily occur in class hierarchies, but are called by many other methods
throughout a project. Each of these methods needs to catch the exception, even
if it is not thrown. This can result in large try-catch blocks scattered throughout
a project with many unnecessary catch blocks and more confusing while
performing error handling.

 54

Figure 16: SomeException and AbstractA

Figure 17: A::b() throws SomeException

If one is throwing more than three exceptions from a method, then whoever is
calling that method must catch all of the exceptions. Dealing with too many
exceptions can result in clumsy and bulky error handling code, especially in
projects with long method call chains. An example call chain could be:

Layer 1 a()
Layer 2 b() c()
Layer 3 d() e() f() g()
Table 3: Using layering to handle exceptions (Eclipse)

It is common to divide a complex project into layers. These layers could also
represent class hierarchies. A layer is assigned certain responsibilities. A parent
layer would use its child layers to carry out its responsibilities. The call chain
would include a() calling b() which calls d() and e(). After b() has completed,
a() calls c() which calls f() and g(). Consider that all methods on Layer 3 throw
two unique exceptions. This will mean that a() needs to deal with 8 exceptions.

 55

Parent layers should wrap the child layer exceptions into more general
exceptions in order to reduce too many catch statements at the top-most layers.
A method declaring too many exceptions is dangerous when it is being used
often and if it is deep in the call chain (like the methods in Layer 3). In such
cases, create a superclass exception that can be extended by all of the offending
exceptions. Only throw the superclass exception to the calling methods. If
necessary, wrap the child exceptions manually by catching and wrapping them
as the superclass exception. Perform any error handling in the catch statement
used to wrap the exception. These specials cases are Quick wins as their value
is high.

Filter search prefix: “The declared exception”
Files affected: 6% (249)
Occurrences: 623
Refactoring Complexity – Medium to High
Value – Medium to High
Classification – Complex cases could lead to strategic design changes. Simple
cases can also be seen as Strategic refactorings.
Classification justification – Simple cases would need to be cleaned up so that
all code that is catching or re-throwing the exception is removed. Complex
cases would require one to re-throw the bottom layer exceptions and wrap them
into other exceptions.

6.1.5 Unused private members

This category is divided into 4 separate warnings. Their removal from the code
base is very simple and involves a simple deletion performed automatically by
Eclipse through clicking on a yellow triangle and following the recommended
fix. A single filter search prefix “is never used locally” can be used to filter all
of these warnings or alternatively search for them individually.

6.1.5.1 Unused private method

Unused private methods should be deleted. These methods cause confusion
when they have names that lead us to believe that they do something
meaningful. This happens when searching for specific verbs in a method name.
Reading and understanding such methods is a waste of developer time.

Description: “The method x() from the type X is never used locally”
Filter search prefix: “The method”
Files affected: 2% (99)
Occurrences: 152
Refactoring Complexity - Low
Value – Medium
Classification – Quick Wins

 56

Classification justification – This code smell can be easily removed. It has a
small number of occurrences and reasonable value.

6.1.5.2 Unused private constructor

Unused constructors should be deleted. Unused constructors cause confusion
and can lead us to believe that they do something meaningful.

Description: “The constructor X() is never used locally”
Filter search prefix: “The constructor”
Files affected: 0.1% (8)
Occurrences: 8
Refactoring Complexity - Low
Value – Medium
Classification – Quick Wins
Classification justification – This code smell can be easily removed. It has a
small number of occurrences and reasonable value.

6.1.5.3 Unused private type/class

Unused classes should be deleted. They can lead us to believe that they do
something meaningful.

Description: “The type X is never used locally”
Filter search prefix: “The type”
Files affected: 0.07% (3)
Occurrences: 5
Refactoring Complexity - Low
Value – High
Classification – Quick Wins
Classification justification – This code smell can be easily removed. It has a
small number of occurrences and high value.

 57

6.1.5.4 Unused private member field

Unused private member variables should be deleted. They could cause
unwanted confusion. Searching for their usages is a waste of time.

Description: “The field x is never read locally”
Filter search prefix: “The field”
Files affected: 5% (209)
Refactoring Complexity - Low
Occurrences: 362
Value – Medium
Classification – Quick Wins
Classification justification – Even though this refactoring does not hold a very
high value, it has been decided that because there are not too many
occurrences, that all of the smells will be quickly removed so as not to waste
too much time and gain the most possible value.

6.2 Summary

This chapter provides the available code smell detection inside the Eclipse
IDE. Each code smell and it corresponding refactoring is discussed. Possible
problems with the automated refactorings are raised. All of the code smells
detectable in Eclipse are related to unused code issues.

The above are not hard and fast rules that dictate what good code should look
like. Under special conditions, there are many exceptions to the rules.
Following these rules blindly under such special conditions can lead to
mistakes. Experience helps us correct the compiler’s mistakes when detecting
code smells. Eclipse is quick and requires little memory when detecting the
code smells.

Our main concern is dealing with bulk quick fixes. A bulk quick fix entails the
ability to fix a large number of code smells with just one action, instead of
attending to each code smell separately. Eclipse is unable to process more than
one file simultaneously. For some smells, this is good, as it requires the
developer to think in case he makes a bad decision. Trivial smells in large
numbers occurring in multiple files become tedious to remove and a bulk quick
fix would make more sense to implement.

There is risk of breaking code (causing compile errors) when following the
refactorings Eclipse suggests for some of the code smells. This is true for
unread local variables, unread parameters and unused throws clauses.

 58

Below are the summarised results of the Eclipse code review.

Name Occurrences Value Classification
Unused imports 3532 Low Low Hanging Fruit
Local variable is never read 517 Low LHF to Avoid
Unread parameter 4890 Low LHF to Strategic
Unnecessary throws clause 623 Low to High LHF to Strategic
Unread private member field 362 Medium Quick Wins
Unused local or private
members

165 Medium to
High

Quick Wins

Total 10089

Table 4: Eclipse code smell summary

The following chapter will include a detailed code review that was done in
IDEA. The code review spans version 1.02 to version 1.5.0 of the JDK.

 59

Chapter 7 IDEA Code Review – Part 1

7.1 Introduction

This chapter describes how to reproduce the code review in IDEA. Section 7.2
gives the IDEA settings needed to do the review. The remaining sections then
consider various categories of code smells. Thus, section 7.3 considers code
smells that relate to duplicate variables; section 7.4 considers code smells that
relate to inheritance; section 7.5 considers code smells associated with types;
section 7.6 looks at abstraction-related code smells; and section 7.7 addresses
code smells related to encapsulation. Then, in sections, 7.8 and 7.9 method
metrics and class metrics are considered, respectively.

IDEA’s vast collection of code smell detection facilities is demonstrated, along
with its abilities to remove these code smells in an automated fashion.

It should be noted that the code smells detected here are mostly from Fowler
[1999]. The exceptions are:

• Chains using instanceof.
• Methods with too many exceptions declared, discussed in section 7.8.3.

The above exceptions are code smells identified by the author.

Please refer to Appendix A.1 and A.2 when looking for information on all of
the code smells and refactorings in this review.

7.2 Code Review Methodology

IDEA 5 was used for this review as it dynamically detects a large number of
code smells upon entering a source file. However, it was found that earlier
builds of IDEA 5 have many bugs. It is therefore recommended that the newest
available build be identified before using this IDE.

In the succeeding sections, various analysis techniques already present in
IDEA are mapped to specific code smells. In each case, the analysis techniques
are motivated for each code smell and advice is provided on how best to use
these refactoring tools to one’s advantage. Where necessary, Java code
segments are provided to illustrate general issues more clearly.

Note that the code smells detected are for the 1.4.2 version of the JDK. High
threshold values were used in order to generate a conservative number of code

 60

smells. (Refer to section 5.3 in order to see more information concerning
threshold values within IDEA.)

To configure the global analysis settings follow this menu flow:
File -> Settings -> Errors

This leads to figure 18, which provides the screen for IDEA’s file analysis
settings. At this stage, the custom profile needs to be set. This provides the user
with the ability to setup which code smells he wishes to have automatically
detected. To set this profile, click on the man with the hat icon (bottom right
hand corner). Configure the custom profile by clicking the ellipsis (…).

Figure 18: IDEA file analysis settings

Most menu flows can be accessed by right clicking on a package or class.
Some code smells and refactorings mentioned here in this dissertation can be
found in [Fowler 1999] & [Kerievsky 2004]. The rest are inspections that
where mapped to code smells. The smells and their refactorings are discussed
in detail in the remainder of this chapter and in Chapter 8.

The following figure shows how one would be able to select the ‘Feature
Envy’ and ‘Magic Number’ code smells from IDEA’s static file analysis tool.

Figure 19: IDEA code smell selection.

When considering how to handle and refactor code smells please refer to

 61

 Figure 20. As shown in the figure below, clicking on an item will provide a
problem description and show the offending code.

In some cases, right clicking on the man in the hat reveals a menu option,
which allows one to fix all smells under that category with one click. This is
useful for fixing many trivial smells without having to inspect each source file.

 Figure 20: IDEA Analysis Results

The following section describes one of the most well known code smells
(duplicate code). IDEA provides rather sophisticated mechanisms to detect this
smell.

7.3 Locating Duplicates

“Number one in the stink parade is duplicated code. If one see the same code
structure in more than one place, one can be sure that oner program will be
better if one find a way to unify them.”
 Martin Fowler.

7.3.1 Introduction

IDEA is able to find duplicates in code. Duplicate code is normally a result of
copying and pasting code from one place to another. The duplicate code could
be in the same class or in a different class entirely. The copy and paste pattern
is usually an anti-pattern.

Although the precise definition of cost is not given here, it may generally be
taken to mean the length of the string of text in the code that is to be matched
with the rest of the text.

One can thus filter duplicates according to cost. The value 10 is the default cost
threshold (see Figure 21). This value is input next to the literal “Do not show

 62

duplicates simpler than”. This value is a cost representation that IDEA uses to
calculate cost. Code sections with less code duplication will have lower cost
and longer duplicate sections have higher cost.

Throughout this section, this “cost metric” will be used to measure the value of
refactoring a duplicate section of code. High value will equate to high cost and
low value to low cost.

Figure 21: Duplicate location settings

7.3.2 Anonymity

Anonymity allows duplicate code sections to differ by their variable names and
string literals (refer to class names highlighted in blue in Figure 22).
Anonymity is used to find more duplicate code sections. These variables can be
member (field) or local variables. The trade-off is that more anonymity in
duplicates results in slighter higher refactoring complexity, as refactoring this
code requires the variable names to be changed and string literals to be
parameterised. Changing variable names is however trivial for both local and
member variables.

Duplicate code sections can differ by one or more string literals and can be
refactored by extracting a method that accepts the string literals as parameters.
Too many anonymous string literals become impractical to handle. Other
refactorings like “Introduce Parameter Object” are used to handle excess
parameters. These refactorings can become complex. This was found to be the
case in some of the inspections that performed. Default anonymity settings are
shown in Figure 21.

Selecting no anonymity options results in:

 63

1. lower refactoring complexity and fewer duplicates and
2. high refactoring value and reduced search times.

No anonymity options where selected in the final analysis in order to focus on
Quick Wins (refer to Figure 4). The number of duplicates returned with the
default anonymity settings is a too large. For example, under these
circumstances, the java.util package returned over 400 duplicate groups and the
java.awt package, over 1000. Below, a duplicate search is shown with
anonymous variable names in the class, java.util.regex.Pattern.

Figure 22: Duplicate code found in java.util.regex.Pattern

When considering Figure 22, then a variable name could be made to be
anonymous if prev.study() and yes.study() had both been changed to
genericname.study(). The “generic name” in this example would be changed in
order to make the duplication clearer and the resulting refactoring easier to
perform.

In general, it was rather surprsing to discover that a large amount of code
duplication existed in the JDK as this code smell undoubtedly can lead to many
maintenance problems. However, a detailed study into the results of the
duplicates found in the entire code base is beyond the scope of this dissertation.

7.3.3 Solutions

Depending on context, code duplication can be repaired by the following
refactorings:

1. Extract method – This refactoring will extract a method from a
duplicated piece of code. After a method is extracted, the method can
replace every piece of duplicated code, with a call to that method.

2. Parameterize method – This refactoring can be used in order to

consolidate multiple methods that do the same thing and only differ by
certain values.

 64

3. Extract Class – This is when a new class is extracted from another

class, by moving the relevant methods and fields from the old class into
the new one.

4. Extract Superclass – Is when one has two classes that share similar

features. The similar features are consolidated into one class i.e. the
superclass.

5. Form Template method – This is when one has a process that performs

similar steps in a specific order, but the steps are different.

6. Introduce parameter object. – This is when one has a number of
parameters that appear inside a method and one chooses to reduce the
parameters by putting them into an object. This will simplify the
method, by reducing the number of parameters.

Please refer to Fowler [1999] for more precise definitions of the above
refactorings. ’Replace Method with method object’ may also be used when it
is difficult to use the ‘Extract Method’ refactoring.

An effort should be made to refactor the duplicate groups that carry a high cost
in favour of low cost duplicates in order to add as much value to the
refactorings. This is especially the case if one is not considering removing all
of the code smells due to their overwhelming size.

Figure 23 shows the IDEA listing of duplicate code groups found in the
java.util.BitSET class. In each case, the number of duplicates in a group as well
as the cost for that group is indicated. A duplicate group can contain two or
more duplicate code sections. In the example provided, the number of
duplicates a group had varied between 2 and 14.

Note that after an analysis on duplicates, IDEA does not supply a detailed
statistical summary of the number of duplicate groups identified. Manual
counting was performed to find out that there were 17 duplicate groups in this
particular run.

As noted in Section 7.3.1, one can set a cost threshold to filter out duplicates.
Increasing the cost threshold will decrease search times. However, the example
provided here illustrates that such filtering could miss a group with a large
number of low cost duplicates (blue highlighted line in Figure 23Figure 23:
Seventeen duplicates groups in java.util.BitSet.). Large duplicate groups are
excellent candidates for the ‘extract method’ refactoring, because IDEA can
find all of the duplicated code sections and extract them into a single method.

 65

Figure 23: Seventeen duplicates groups in java.util.BitSet.

In general, the more a piece of code is duplicated, the more severe the code
smells, especially if the code section is large. Consider a developer
(inexperienced with a code base) changing one method in order to add the
desired behaviour. This developer could be unaware that there are, say, 13
other similar such methods which also need to be changed. If all of these
methods were extracted into one single method, then the developer need not
have to search for the duplicate code.

Another thing to note is that the four duplicates found in one group with a cost
of 40, together have a cost of 160. This total cost is the highest total cost out of
all of the duplicate groups. Due to the automatic way that IDEA handles the
refactoring of duplicates, the number of duplicates in a group can become
transparent when considering the complexity of dealing with too many similar
duplicate code sections.

7.3.4 Dealing with Anonymity

When one avoids anonymity, far fewer results are obtained. The results are also
far easier to refactor. IDEA can only sort duplicate groups by cost (as is shown
in Figure 23Error! Reference source not found.). It does not provide detailed
results of its duplication analysis. For large projects, one needs to manage the
code duplication information to be more productive. Customised methods
where used to organise the analysis results IDEA provided for code
duplication. These methods are described in more detail in the following
paragraphs.

 66

In general, if a code base is allowed to grow without any refactoring, code
duplicates will be more common in larger packages and classes than in smaller
ones. The “Physical source lines of code” (SLOC) metric can be easily used to
measure package size accurately. For this code review, a physical source code
analyser was used to group and sort the JDK packages by their SLOCs.

In total, there are over 230 packages in the JDK. When performing the
duplication analysis by a package-by-package basis, it was found that 60% of
the version 1.4.2 of the JDK code could be covered by only analysing 25
packages. This information can be read from the output of a good source code
analyser. It makes more sense to only refactor the larger packages in order to
cover as much of the code as possible without having to analyse all of the
packages. Thus grouping the JDK by packages was a useful abstraction.

As a proof of concept, the duplicate code in the class
java.awt.image.DirectColorModel was refactored. The focus was on the high
cost or large duplicate groups. For example, when considering Figure 23,
consider the first few items with the highest cost. In terms of larger groups, one
may only consider the 14 duplicates (highlighted in blue) due to the large
number of groups. The ‘Extract Method’ refactoring was applied for roughly
20 minutes. As a result, this reduced the 715 physical source lines of code by
150 lines. In essence, twenty-one percent of the code was removed from this
class.

IDEA allows the user to selectively specify which duplicated sections are to
abstracted into a single method. Consider a group that contains 10 duplicates
sections, 10 sections each with the same code. If the ‘Extract Method’
refactoring operation is performed on one of these sections, then IDEA first
highlights each of the remaining nine duplicate sections sequentially, asking
the user whether refactor the particular duplicate code section into the method.
This results in higher productivity when performing this refactoring.

When dealing with a large project, one must be able to decide which classes
are worth refactoring. From experience, it can be shown that one saves time by
analysing the largest classes in a package first. Larger classes will have a
greater likelihood of containing code duplication. If time permits, duplicates
over multiple packages may be located to check if any smaller classes with a
lot of code duplication have been missed. However, cross package duplication
is discovered at the expense of longer analysis times.

7.3.5 Final Analysis and Conclusion

Due to the long analysis time, a package-by-package analysis was done– i.e. no
cross-package analysis was performed. No anonymity options where used and
a cost threshold of 40 was selected. All of the located duplicate groups can be
classified as Quick Wins, due to their high value and low refactoring

 67

complexity. In total, the JDK contained 68 duplicate groups either that had a
cost of at least 40 or that had a reasonable group size (like the group of 14
highlighted in blue in Figure 23). The counts for the respective packages are
given below.

java: 15 javax: 19
com: 25 org: 9
Table 5: Duplicate group occurrences

As pointed out above, repair of these duplicates by one of the various
refactoring methods was considered to be beyond the scope of this present
limited study.

Packages affected: JDK wide
Occurrences: 68
Refactoring Complexity – Low
Value – High
Classification – Quick Win Group
Classification Justification – The number of duplicates found here was highly
dependent on the input parameters, which only filtered out the duplicates with
the highest cost, and therefore the highest value. No anonymity was used in
order to make the refactoring of the duplicates as simple as possible. Due to the
ease with which this code smell is refactored, the refactoring complexity can be
termed as being low.

7.4 Inheritance Issues

7.4.1 Refused Bequest

“Subclasses get to inherit the methods and data of their parents. However,
what if they do not want or need what they are given? They are given all these
great gifts and pick just a few to play with.”

 Martin Fowler.

Choosing to inherit from a superclass that does not truly reflect the operations
or data needed in the subclass is generally bad design. The refused bequest
smell shows subclass methods that override (and thereby ignore) the
implementations in their superclass.

If many Refused Bequest smells occur in a class, then one should consider
refactoring it with the ‘Replace inheritance with delegation” refactoring.

Fowler [1999] uses the java.util.Stack class in the JDK as an example of when
to use ‘Replace inheritance with delegation’. The motivation is that Stack
should only implement push(), pop(), size() and isEmpty(). Instead Stack,

 68

inherits everything from Vector and reuses only a little, ignoring the rest.
Vector should be made a member and be used for delegation. The inheritance
from Vector can now be removed.

In simple hierarchies, one can use the refactoring ‘Push Down Field/Method’
to fix one or two “Refused bequest” smells. This will ensure that only common
code stays in the superclass and that the subclass specific code is pushed down
from the superclass to the sub-class. In complex class hierarchies, it is difficult
to perform the ‘Push Down’ refactoring, as there could be multiple
dependencies on the data or method to consider. It is important to design the
hierarchy properly and catch any such smells as early as possible before the
hierarchy gets too complex and inflexible to refactor.

Packages affected: 110
Occurrences: 5485
Refactoring Complexity – High (due to too many occurrences)
Value – Low to Medium
Classification – Avoid
Classification Justification – Due to the high complexity of refactoring this
code smell, it is classified as being a code smell to avoid.

7.5 Type Code

When talking about “type code” one talks about code that is executed based on
decisions taken relating to an object’s type. These decisions are taken within
conditional statements, such as if and switch blocks. It will be indicated why
the presence of type code is often considered a code smell. An explantation
will also be given in order to explain a new type of way to encode type code
inside a class and will show what the best way is to encode type code
information using the ‘Type Safe Enum’ pattern.

The detection of type code is discussed along with a number of methods that
will be used to remove type code. The major subsections involve the replace
with class, subclass, state, strategy and command pattern refactorings in order
to refactor this code smell.

7.5.1 Detection of Type Code

Quite a few instances of type code where found. To search for instances of type
code, one needs to find switch or if statements with too many branches in the
control flow category of IDEA’s analysis section. High threshold values need
to be set for the number of branches in order to get high refactoring value. A
default value of ten was used for both if and switch statements.

 69

7.5.2 Replace with Class

This section is used as an introduction to dealing with type information. Use
this refactoring if a class is encountered that contains type information that
does not affect the behaviour of the class. IDEA cannot detect this code smell.
The following subsection explains this in further detail.

Figure 24: Embedded type information

Figure 25: Typesafe Enum pattern

Figure 24 shows a typical way for storing type information. Figure 25 shows a
type safe solution. Note that the private constructor is used so that no instance
of the class can be made. This will allow the class to be used for the purposes
of accessing the public static variables exclusively. This is exactly the case
with the CarType class. This is the “Type Safe Enum” pattern [Tiger 2004],
which mimics C style enumerations (see values[]). Figure 26 shows a new
TypeSafeCar class which can only be created when it receives an object
instance of class CarType. Compile time type safety is now implemented.

 70

Figure 26: A type-safe class

Figure 27: Demonstration of Car and TypeSafeCar

If one will be moving to the JDK 1.5 version of Java in the future, rather wait
before attempting this refactoring. JDK 1.5 allows easier handling of
enumerations through its new language features. It would be simpler to refactor
the code so that it will support the new type features that are supported in the
new version of the JDK rather than the older one shown in the figures above.
The result would be far more maintainable code. Tiger [2004] explains a better
approach for dealing with enumerations in the 1.5 version of the JDK and
sample code is provided below:

enum Suit { CLUBS, DIAMONDS, HEARTS, SPADES }
enum Rank { DEUCE, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN,
JACK, QUEEN, KING, ACE }

List<Card> deck = new ArrayList<Card>();

for (Suit suit : Suit.values())

for (Rank rank : Rank.values())
deck.add(new Card(suit, rank));

Collections.shuffle(deck);

The above code demonstrates how much easier it is to deal with types when
using enumerations in the 1.5 version of the JDK. The same code in an earlier
version of the JDK would take many more classes and work to achieve the
same affect.

 71

7.5.3 Replace with Subclasses

Use the ‘Replace with Subclasses’ refactoring when the type information
influences class behaviour. If it does not then use the ‘Replace with Class’
refactoring.

Figure 28: Factory method for the Car class

Figure 29: Factory method for the TypeSafeCar class

This refactoring can be used as soon as conditional logic determines object
creation based on type information. All type information that is encoded in the
if statements is replaced with subclasses.

There are many possible ways to create the object with conditionals (including
switch statements). The name of the ‘Replace Conditional with Polymorphism’
refactoring is confusing when dealing with creational logic that needs type
information. The solution is to move the creational logic to the inheritance
structure. The child instances will be used to customise behaviour.

7.5.4 Replace with State, Strategy or Command Pattern

Use this refactoring when the behaviour or state can change during an objects
lifetime. This can make its difficult or impossible to use ‘Replace with
Subclass’. State and Strategy are very similar and as a result, the refactorings
will be very similar. As with “Chains of instanceof”, the solution is to ‘Replace
Conditional with Polymorphism’.

 72

Interestingly enough Kerievsky [2004] includes three refactorings that depend
on checks for conditional logic. All of the following refactorings are based on
refactoring to patterns.

1) Replace Conditional Logic with Strategy
2) Replace State-Altering Conditionals with State
3) Replace Conditional Dispatcher with Command

1) and 2) have already been discussed in this section. Use 3) to replace
conditional logic deciding what actions to execute (based on an action name or
type) with polymorphism (Command Pattern).

It is interesting to note that the GUI related classes in the
com.java.sun.swing.plaf.gtk and javax.swing.plaf.basic packages implement
the PropertyChangeListener interface. All of the implementations of this
interface contained the following general code structure, where
propertyChange(…) is the method to implement:

Figure 30: Replacing a conditional dispatcher with Command

A project may follow certain anti-patterns (as show in
Figure 30), which would benefit from the ‘Replace Conditional Dispatcher
with Command’. So in effect, each if and else if statement will be handled by
the Command Pattern. The command Pattern is used to replace each action
with a class that inherits from a subclass as show in Figure 31 below. The
result is that the Command Pattern decouples the object that invokes the
operation from the one that knows how to perform it.

 73

Figure 31: Command pattern structure diagram

7.5.5 Chains using Instanceof

IDEA can check for chains of instanceof, if statements. It searches for chain
lengths with a minimum size of two, i.e. an if statement with one or more else
branches. The check ensures that all the conditionals contain the instanceof
keyword. A chain length parameter cannot be set, but it still helps us to identify
cases, which could benefit more from polymorphism. The reasoning behind
this is that the conditional logic can be replaced by one polymorphic method
call, which will delegate the behaviour to the correct subclass or instance.

An if-else chain that chooses behaviour, based on object type, is usually a sign
of poor design. If practical, one should remove the if checks and implement the
behaviour into subclasses using polymorphism. Polymorphism decides which
object one is going to call the method on and removes the need for the if-else
structure. In general, larger if-else chains containing large amounts of
behaviour will contain more refactoring value and complexity.

The solutions depend on whether or not one is working in a creational or a
behavioural context as discussed in the above section. Use the above sections
to identify the type code contained in the conditionals and refactor accordingly
if necessary.

Packages affected: 46
Occurrences: 173
Refactoring Complexity –High
Value – Low to High
Classification – Strategic.
Classification Justification – The act of adding polymorphism to substitute the
instanceof chains is not a simple task. Thus, the complexity of this refactoring
is high. However, the value of the refactoring puts the code into a more user-
friendly object-orientated style, which can be maintained much easier than
normal if-else branches.

 74

7.5.6 Conclusion

Fowler [1999] covers refactorings on all of the type code smells. The only new
refactoring is that of ‘Replace Conditional Dispatcher with Command” from
Kerievsky [2004]. A definition of the type code smell is given in order to group
all of the refactorings that solve type code smells.

All the type code refactorings (except two) can be generalized with one
solution, namely ‘Replace Conditional with Polymorphism’. The only
exceptions are when refactoring creating logic with ‘Replace with Class’ and
‘Replace with Subclasses’. The low-level refactorings needed are identical
across all the other high-level refactorings. The only differences are the
contexts across which these refactorings are applied.

7.6 Abstraction Issues

This section will describe abstraction issues. These are issues pertaining to the
object-orientated principle of having an abstract or superclass used to sub-class
other classes, which share common data and behaviour.

7.6.1 Feature Envy

This smell occurs when an object method, say X.m() is too “interested” in the
data of another object, say Y. For example, object Y can be passed via a
parameter to X.m(), or object Y can be instantiated locally in X.m() and then
many methods of Y are called from X.m(). This is an indication that
functionality is in the wrong class. It is as if object X is overly interested in the
methods (features) of object Y, and X is therefore deemed the “offending”
object.

IDEA’s approach to detecting this feature envy code smell is to indicate that
the smell occurs when Y’s methods are called more than 2 times from methods
of the offending object X. IDEA does not allow for any value other than two to
be used in this context.

When running IDEA against the JDK1.4.2, the results were as follows:

Packages affected: 26
Occurrences: 58, 219
Refactoring Complexity - High
Value – Low to Medium
Classification – Avoid
Classification Justification – The value of these refactoring is low and the large
number of occurrences justifies putting this code smell in the avoid category.

 75

Intuitively, one could say that the greater the number of external method calls
from the offending object, the more severe the smell. It would have been useful
to be able to configure the threshold value used to identify feature envy in
IDEA, but this was not possible.

Feature envy may be eliminated by relying on the ‘Extract Method’ refactoring
to isolate access to the offending object. The selected code will therefore be
extracted into a method. After performing. the ‘Extract Method’ refactoring use
the ‘Move Method’ refactoring to move the extracted method to the offending
class. This will cause the behaviour, to be moved to the calling class.

7.6.2 Magic Numbers

Magic numbers are literal numeric constants used without declaration. They
can result in code whose intention is extremely unclear. Errors may result if a
magic number is changed in one code location but not another. Good coding
practice therefore traditionally requires that meaningful constants are assigned
to magic numbers. One should focus on selecting meaningful names for magic
numbers, especially in instances where the same number is to be used several
times.

The numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0L, 1L, 0.0, 1.0, 0.0F and 1.0F are
not reported by IDEA. The results obtained when running IDEA against
JDK1.4.2 were as follows:

Packages affected: 125
Occurrences: 13003
Refactoring Complexity - Medium
Value – Low to Medium
Classification – Avoid, due to too many occurrences.
Classification Justification – The value of these refactorings is low and the
large number of occurrences justifies putting this code smell in the avoid
category.

IDEA has a refactoring named ‘Introduce Constant’ which can solve this
problem. Folwer [1999] has a ‘Replace Magic Number with Symbolic
Constant’ refactoring to solve this problem.

As an example, consider the magic numbers that IDEA found in the
java.math.MutableBitInteger class method binaryGcd(int a, int b) :

 76

Magic number '0xff' at line 1060
Magic number '0xff' at line 1069
Magic number '0xff' at line 1083
Magic number '0xff' at line 1089
Magic number '0x80000000' at line 1080
Magic number '0x80000000' at line 1080

Table 6: Magic Number example

The solution to this magic number problem is to replace 0xff and 0x80000000
with descriptive constants. In the first case, IDEA will ask if one wants to
replace the matching four magic numbers in the same method automatically,
and similarly in the second case.

7.7 Encapsulation

Encapsulation is an important part of the object-orientated style. It was
designed to limit access to class data. All data should be private and only
accessible from get and set methods. There are however a few exceptions, such
as constants, which are discussed later in the following section.

7.7.1 Public Field

If a field is not a constant and is, declared public then anyone can access this
field from a class. This will violate the encapsulation law, which is designed
for object-orientated programs.

In general, public fields should only be used when defining constants. A
constant should be static and final, otherwise IDEA will report it as a smell. It
must be static to represent the fact that it must hold one value across each class
instance. It must be final so that nothing can write to it. It is a Java convention
that the constant name should be written in higher-case letters.

To refactor this code smell, use the ‘Encapsulate Field’ refactoring.

Packages affected: 48
Occurrences: 700
Refactoring Complexity – Trivial
Value – Low
Classification – Low Hanging Fruit.
Classification Justification – This smell occurs a fair deal. However, it is very
simple to refactor. This is why it is classified as low hanging fruit.

 77

7.8 Method Metrics

This section describes code smells relating to methods. Methods are the
building blocks of classes and are used to encapsulate behaviour. The code
smells, which arise from methods, are therefore important, albeit more difficult
to fix, since one has to rely on manual refactorings in order to fix them. Manual
refactorings are by their nature, more error prone to fix when compared to
automatic refactorings. In order to detect these smells methods metrics are
used.

7.8.1 Long Method

“The object programs that live best and longest are those with short methods”
 Martin Fowler.

One should decide what a long method is. Usually a method hides a lot of code
that does many different things in a sequence. A long method should be broken
down into more methods, which do less and are easier to understand. It is
difficult to find a piece of functionality in a long method, than it is to find it in
a short method; therefore, short methods are more maintainable.

If one only considers strategic refactorings, then one should attempt to refactor
methods longer than 74 lines. To keep things in perspective, a 30-line method
without any braces and comments can fit onto a 19” screen in IDEA. Analysis
does not count comments or blank lines.

The ‘Extract Method’ refactoring can be used to shorten long methods. Long
methods can contain complex nested conditional statements. Organise the code
for easy understandability and navigation. Extracting short methods from the
long ones helps us do this. The “Poor Method Composition” section gives
more information on proper method composition.

To refactor this smell use the ‘Replace Nested Conditional with Guard
Clauses’ or ‘Decompose Conditional’ refactorings. Fowler [1999] has an entire
chapter on simplifying conditional statements. He also recommends ‘Replace
Temp with Query’, ‘Introduce Parameter Object’, ‘Preserve Whole Object’ and
‘Replace Method with Method Object’ for this smell.

Packages affected: 104
Occurrences: 1264 (default setting of 30 physical source lines of code)

 78

Method Length 30 >= 50 >= 75 >= 100
Occurrences 1264 450 195 92
Complexity Low Medium High High
Value Low Medium High High
Classification LHF LHF Strategic Strategic
Table 7: Long Method analysis results

Classification Justifications – Methods shorter than 75 lines were seen as low
hanging fruit due to their low complexity and value. Methods over this limit
were seen as strategic refactorings due to the high complexity and value
involved in the refactorings.

7.8.2 Long Parameter List

A method may have too many parameters in it. The result will be that this
method will be difficult to use and understand. The method can also potentially
be a long method due to the large amount of parameters that it holds.

Methods with long parameter lists are difficult to understand. Due to its
complexity, this smell has no automatic refactoring suggested. Introducing a
parameter object takes work. Unless the object already exists, one needs to
build the object from the calling side to use it in the method.

Sending a large Serializable object across the network as a parameter could be
uneconomical if all of its fields where not needed. This is not a problem if one
is only sending it by reference. If one decides to construct smaller versions of
objects to send them over the network efficiently as parameters, then one must
also consider the class explosion problem.

To refactor this smell use the ‘Replace parameter with method’, ‘Preserve
Whole Object’ and/or ‘Introduce Parameter Object’ refactorings.

Packages affected: 76
Occurrences: 681 (default setting of five parameters lines)

Parameters >= 5 >= 8 >= 11
Occurrences 681 108 35
Complexity Medium Medium High
Value Low Medium High
Classification Nice to have LHF Strategic

Table 8: Long Parameter List analysis results

Classification Justifications – One can see that as the number of unused
parameters increase, the higher the complexity and value becomes. Threshold

 79

values were chosen to filter out items so as to ensure that only a few high
valued items could be classified as being strategic.

7.8.3 Too Many Exceptions

Dealing with too many exceptions can result in clumsy and bulky error
handling code, especially in projects with long method call chains. The issues
and solutions with this code smell are discussed below.

If one is throwing more than three exceptions from a method, then whoever is
calling that method must catch all of the exceptions. An example call chain
could be:

Layer 1 a()
Layer 2 b() c()
Layer 3 d() e() f() g()
Table 9: Using layering to handle exceptions

It is common to divide a complex project into layers. These layers could also
represent class hierarchies. A layer is assigned certain responsibilities. A parent
layer would use its child layers to carry out its responsibilities. The call chain
would include a() calling b() which calls d() and e(). After b() has completed,
a() calls c() which calls f() and g(). Consider that all methods on Layer 3 throw
two unique exceptions. This will mean that a() needs to deal with 8 exceptions.

Parent layers should wrap the child layer exceptions into more general
exceptions in order to reduce too many catch statements at the top-most layers.
A method declaring too many exceptions is dangerous when it is being used
often and if it is deep in the call chain (like the methods in Layer 3). In such
cases, create a superclass exception that can be extended by all of the offending
exceptions. Only throw the superclass exception to the calling methods. If
necessary, wrap the child exceptions manually by catching and wrapping them
as the superclass exception. Perform any error handling in the catch statement
used to wrap the exception. These specials cases are Quick wins as their value
is high.

Packages affected: 15 (for more than three exceptions)
Occurrences: 48

 80

Exceptions >= 4 >= 5 >= 6
Occurrences 48 9 1
Complexity Medium Medium Medium
Value Medium Medium High
Classification Strategic Strategic Strategic

 Table 10: Method with too many exceptions analysis results

Classification Justifications – One can see that as the number of unused
exceptions increases, the higher the complexity and value becomes. Threshold
values were chosen to filter out items to ensure that all of the refactorings were
classified as being strategic.

7.9 Class Metrics

Class metrics are used to pick up code smells pertaining to classes.
Inappropriate intimacy deals with how highly coupled a class is and large
classes deal with classes that have too many instance variables. Refactorings
and discussions are given around these two code smells.

7.9.1 Inappropriate Intimacy

“Sometimes classes become far too intimate and spend too much time delving
in each others' private parts. We may not be prudes when it comes to people,
but we think our classes should follow strict, puritan rules.”
 Martin Fowler.

To measure inappropriate intimacy, highly coupled classes were identified.
Highly coupled classes lead to one change needing to be propagated through to
all dependent classes. This makes maintenance difficult when an automatic
refactoring is not available.

The ‘Move Method’ and ‘Move Field’ refactorings can be used to solve this
issue. Use the ‘Change Bidirectional Association to Unidirectional’ refactoring
if possible. ‘Extract Class’ or ‘Hide Delegate’ could also be appropriate
refactorings depending on the context.

Packages affected: 140
Occurrences: 1277

 81

Dependencies >= 10 >= 30 >= 50
Occurrences 1277 155 29
Complexity Low Medium High
Value Low Medium High
Classification Avoid Strategic Strategic

Table 11: Inappropriate Intimacy analysis results

Classification Justifications – One can see that as the number of dependencies
increases, the higher the complexity and value becomes. Threshold values were
chosen to filter out items to ensure that only a few high valued items could be
classified as being strategic.

7.9.2 Large Class

“As with a class with too many instance variables, a class with too much code
is prime breeding ground for duplicated code, chaos, and death.”
 Martin Fowler.

The number of member fields was used as an indication of a class’ size. A class
with a large number of member fields could be suggestive of a class that is
trying to do too much. However, constant fields were ignored in the analysis.
Note that using the number of methods only (i.e. ignoring member instance
fields) as measure of whether or not a class is too big can be misleading, since
a class may have only a few methods, but these methods could be rather long.

To refactor this code smell use the ‘Extract Class’ or ‘Extract Subclass’
refactoring to group the local variables.

Packages affected: 68
Occurrences: 278 (for 10 local variables)

Variables >= 10 >= 20 >= 30
Occurrences 278 105 44
Complexity Low Medium High
Value Low Medium High
Classification LHF Strategic Strategic

Table 12: Large Class analysis results

Classification Justifications – One can see that as the number of instance
variables increases, the higher the complexity and value becomes. Threshold
values were chosen to filter out items to ensure that only a few high valued
items could be classified as being strategic.

 82

7.10 Summary

A large number of code smells were classified and their appropriate
refactorings were given, which are defined by Fowler [1999]. This was done
using IDEA in the context of the Java SDK code base.

The next chapter deals with refactoring to pattern techniques [Kerievsky 2004].
Kerievsky [2004] is cited where applicable while the author of this dissertation
identifies the rest of the code smells. The author provides new complementing
code smells. The respective solutions or refactorings are also provided for the
newly identified code smells. Note that not all the refactorings implement a
pattern as the result of the refactoring. Mention is also given on how coupling
and cohesion can influence what should be refactored.

 83

Chapter 8 IDEA Code Review – Part 2

8.1 Introduction

This chapter continues the IDEA Code Review. In contrast to the previous
chapter, however, there are almost no references to code smells mentioned by
Fowler [1999]. Instead, some concepts have been taken from [Kerievsky 2004]
and this work is citied appropriately. The author has provided the rest of the
contribution in terms of unused code smells and the discussion on coupling and
cohesion and its resulting relationship with refactoring.

This chapter deals with a number of issues such as poor method composition,
creational issues, control flow issues and unused code. Please refer to
Appendix A.1 and A.2 when looking for information on all of the code smells
and refactorings in this review.

8.2 Poor Method Composition

“You can't rapidly understand a method's logic”

 Joshua Kerievsky

Method composition refers to method structure. An analysis and discussion of
issues mentioned in [Kerievsky 2004] and [Fowler 1999] on method
composition is given. In Section 8.2.1 a discussion into the breakdown of
methods is given. Section 8.2.2 deals with coupling and cohesion. Finally,
8.2.3 discusses IDEA.

Current developers should write maintainable code for future developers.
Methods must have appropriate names, which clearly describe their purpose.
The result may be more code, but the benefits will be that the code is easier to
navigate.

8.2.1 Method breakdown

A developer working on an existing code base needs to go through a lot of
code in order to find functionality that is being sought. A project with well-
composed methods will allow one to do this quickly, because the developer
will focus on methods describing the functionality that he is looking for.

Consider that one wants to find some functionality in a 1000 line method. This
illustrates Fowler’s “Long Method” code smell. Searching through all the 1000
lines and finding the functionality at the very bottom is not very productive for

 84

the programmer. The entire 1000 line method needed to be understood.
Consider that this method is now composed into two methods with descriptive
names, each with 500 hundred lines. The developer is saved from reading 500
lines of code provided it is known which method to search. Each 500-line
method may then be further broken down. This may continue until the methods
are of reasonable size. This concept is similar to finding a number in an
unsorted array (1000 line method) as opposed to a sorted binary tree
(composed methods).

In section 8.2.2 below, facilities available in IDEA are discussed for detecting
poorly composed methods that could be further broken down in the way
discussed above.

8.2.2 Coupling and Cohesion

Method size should not be the only consideration in dividing long methods.
Gamma et al. [1995] emphasise the importance of low coupling and they
define coupling to be “The degree to which software components depend on
each other”. Methods depending heavily on other classes are highly coupled.
High coupling leads to fragile code as one change in a method can propagate
changes to all referenced classes.

Although low coupling is desirable, an aspect that Gamma et al. [1995] do not
mention is cohesion [Constantine 1979]. Cohesion was first defined by an IBM
researcher (Larry Constantine) trying to identify the characteristics of good
programming practises through source code analysis. High cohesion often
correlates with low coupling, and vice versa. Cohesion is a measure of how
strongly related and focused the responsibilities of a single class are.

Cohesion levels are more informative than coupling and give the developer a
better idea of how to deal with method composition. Cohesion is categorised
into seven levels, ranked according to their level of cohesion. Cohesion can
help decide how to divide long and complicated methods into classes or among
other classes if appropriate. Good method composition using high cohesion
will therefore influence positively on the class.

Removing high coupling levels of a method; by using the ‘Extract Method’
refactoring to divide, the method into smaller methods is futile. This will not
change the class coupling level, as the class will still reference the same
number of external classes, albeit in more methods now. Instead, the aim
should be to reduce the total number of external classes referenced in the class
as a whole. Instead, methods from the highly coupled methods should be
extracted in such a way as to separate the code containing the largest parts of
the “Feature Envy” smell. In other words, code segments with the highest
amount of external references should be extracted. This can be achieved by

 85

using the move method to move the unwanted functionality into the correct
class.

The removal of high coupling within classes creates communicational
cohesion. Communicational cohesion ensures that methods are working on data
that is co-located in a class. Functional cohesion is preferable to
communicational cohesion, but is harder and sometimes impossible to create.
Functional cohesion will group methods together in a class to contribute only
to the single responsibility of the class.

Functional cohesion will automatically enable a developer to understand a class
quicker. This ensures that the class and its methods perform no other tasks,
other than the ones required to fulfil the responsibility of the class. It is
therefore a very desirable attribute to strive for when designing a new class or
refactoring an existing class through method composition. If functional
cohesion is not attainable or impractical to achieve in context, then
communicational cohesion is sufficient. Classes with cohesions levels lower
than that of communication cohesion (as defined in [Constantine 1979]) should
be refactored through proper method composition so they adhere to the rules of
communication cohesion.

8.2.3 More informative smell detections

IDEA has several inspections, which can be used to indicate poor method
composition. These inspections reveal method characteristics such as
cyclomatic complexity, level of nesting, method coupling, and method length.

Complex methods are shown by measuring cyclomatic complexity. Nested
methods indicate the level of nesting that is made with if, while, try, for
statements etc. Coupled methods show methods referencing too many classes.
Long methods can also be an indication of poor method composition.

Each IDEA inspection in relation to these characteristics accepts a threshold
parameter to control the inspection results. Highly coupled methods have
already discussed them in section 7.9.1 under the heading of “Inappropriate
intimacy” and will not be covered here. “Long methods” were also discussed in
section 7.8.1.

A method nesting depth is measured by the maximum depth at which
statements are found in a method. The statements that contribute to the nesting
depth include if, while, switch and for statements. Take for example an if
statement containing a for loop and that for loop containing another for loop. In
this case, the maximum nesting depth is three.

 86

Higher nesting depths are often found in longer methods. However, it is
generally more profitable to base smell detection on nesting depth, rather than
on a search governed by method size alone. This is because long methods may
embody trivial code, despite their length.

The ‘Compose Method’ refactoring shown by [Kerievsky 2004] tells us to
transform the logic into a small number of intention-revealing steps at the same
level of detail. In other words, the small number of intention-revealing steps
would comprise of methods extracted from the original method. This
improvement is powerful in its simplicity, but has no regard for coupling or
cohesion. For improvements taking cohesion and coupling into account, then
research into how the method is fulfilling its responsibilities to the class,
should be conducted. Further refactorings considering cohesion and coupling
issues will be of a higher value as they will contribute more to the overall
design of the classes.

One may use all the refactorings mentioned by Fowler to simplify conditional
statements, as these will be part of the nesting. Extract method may also be
used in this case, but care should be taken with deeply nested structures as they
are tricky to refactor.

Large nesting depths in methods can make even a short and lowly coupled
method a maintenance hazard. Using IDEA to detect smells that exceed a
nesting depth threshold of four yielded the following results for the JDK1.4.2.

Packages affected: 73
Occurrences: 435 (for a nesting depth threshold of 4)

Nesting depth >= 5 >= 6 >= 7
Occurrences 435 154 53
Complexity Medium Medium High
Value High High High
Classification Strategic Strategic Strategic

Table 13: Method nesting depth analysis results

Classification Justifications – One can see that as the nesting depth increases,
the higher the complexity and value becomes. Threshold values were chosen to
filter out items, which displayed the highest complexity and value.

 87

8.3 Creational Issues

In this section, code smells related to the creation of objects are considered. In
the first three subsections, the focus is on constructors. In the last subsection,
subsection 8.3.4, the theme is on scenarios in which data and code that is used
to instantiate a class spans across several classes. That way one is able to detect
more smells quicker, instead of just focusing on one particular smell.

8.3.1 Non-private Utility Class constructors

This code smell is detected through IDEA and is not found in [Fowler 1999] or
[Kerievsky 2004]. Utility classes only contain static methods and have no state.
Utility classes should have all public constructors removed. In addition, since
utility classes with no constructors can still be constructed with the default
constructor provided by Java, the default constructor should be made private.
These measures ensure that access to utility classes is always static. IDEA
provides smell detection for utility classes with public constructors or no
constructors at all.

IDEA has global automatic removal of these two smells built in already. It can
detect utility classes with no private or public constructors. It automatically
creates private default constructors in all offending utility classes with the click
of a button if none existed beforehand.

Packages affected: 50
Occurrences: 101
Refactoring Complexity – Trivial
Value – Medium (Due to low time complexity)
Classification – Quick Wins
Classification Justifications – Due to low complexity and relatively high value,
this smell is classified as a quick win.

8.3.2 Confusing or too many constructors

Unless only static methods are called on a class, then one can be sure that a
constructor needs to be called to create the object before it can be used.

Kerievsky [2004] replaces the constructors with intention-revealing “Creation
Methods” that return object instances. These methods may be seen as static or
non-static factory methods. The confusing constructors themselves are made
private as a result.

Detection: IDEA can be used to search for classes with too many constructors.

 88

Classes with too many constructors will result in confusion. Just how many
constructors are too many will vary from class to class. If one finds that one
cannot understand the creation process fast enough, then it is a sure sign that
the construction process is too complicated and needs refactoring.

One should focus on classes that are referenced often. This arises in more
complexity, but greater refactoring value. Classes needed to exceed a
constructor threshold of six in order to be seen as potential problems. Use
lower thresholds to find more potential refactoring candidates.

Use the ‘Introduce Factory’ refactoring in IDEA to replace the constructor with
a creation (factory) method. The ‘Replace Constructors with Creation
Methods’ refactoring from to pattern technique Kerievsky [2004] is already
available in both Eclipse and IDEA.

Packages affected: 17
Occurrences: 31
Refactoring Complexity – Trivial
Value – Medium (Due to low time complexity)
Classification – Quick Wins
Classification Justifications – Due to low complexity and relatively high value,
this smell is classified as a quick win.

8.3.3 Constructors with duplicate code

It has already been pointed out that code duplication can be seen as a bad
smell. In general, more code duplication is found in long classes. This rule can
be extrapolated to constructors. The more constructors a class has, the greater
the chance that they will contain code duplication.

As a proof of concept, the java.util package was searched for classes with too
many constructors. To guarantee some duplication, a constructor threshold
limit of six was used(refer to section on confusing constructors). Tthe
GregorianCalendar class had seven constructors. A duplicate search was
performed on this class to search for duplication in constructors. The settings
used are displayed in figure 31.

 89

Figure 32: Constructor code duplication settings

Only local variables are anonymized. Fields do not need to be anonymized as
one is only searching for duplicates in one class. Literals are left out in order to
return fewer duplicates.

In java.util.GregorianCalendar, five duplicate groups were spotted, two of
which are groups where constructors contained duplicate code. One group had
three duplicates; the other, had two.

The ‘Chain Constructors’ refactoring discussed by Kerievsky [2004] is one
possible solution to this smell. Chaining constructors involves calling one
constructor from the other. However, it was not possible to chain constructors
in the example mentioned above. Instead, the duplicate code was removed by
extracting a private constructor from the duplicate code. This private
constructor can then be called in place of the duplicated code. This refactoring
is called “Extract Constructor”.

The first class with a high number of constructors, turned out to have
duplicated code in the constructors. Subsequent random attempts to find
duplicates resulted in only a handful of constructors containing duplicate code.

Note that the Java language limits this refactoring, such that each constructor
can at most call one other constructor. All other initialisation code must follow
the first constructor call. The amount of code duplication is usually low for this
code smell when compared to searching for normal code duplication. It is also
very difficult to locate this smell. The value added is therefore minimal and
there is more complexity to deal with. Seaching for this smell should therefore
be avoided in favour duplicate detection searches that have a higher value
(mentioned in the Locating Duplicates section).

 90

8.3.4 Distributed creation information

This smell occurs when data and code used to instantiate a class, starts to span
across numerous classes.

Detection: IDEA has no way to detect high coupling inside constructors.

The factory method is usually used when a class requires many other classes in
order to be created and the creational logic can be dispersed to the point that it
starts to exist in different classes. Take for example a Maze class, which
requires room, door and decoration information. The refactoring will make the
offending constructors private, replacing them with a public create methods
and replacing all uses of the now private constructors with the new factory
method. This refactoring employs a design pattern and ensures that the creation
logic is placed in one class only.

Use the ‘Move Creation Knowledge to Factory’ refactoring to pattern
technique to solve this issue. IDEA has the ‘Introduce Factory’ refactoring for
this code smell.

8.4 Redundant if Statements

Replacing redundant if statements with better logic is good programming
practice. This issue can also be one of coding style. One can argue that, brevity
saves lines of source code. IDEA provides a global quick fix to eradicate all of
these smells with one click. This is why one can consider the smells as Quick
Wins. See Fig 3.3 and the text to the right of it to see how to do this.

Figure 33: Redundant if - before refactoring

Clicking on the light bulb (see Figure 33 above) results in IDEA suggesting to
us to simplify the if statement.

Figure 34: Redundant if - after before refactoring

The result (see Figure 34) of simplifying the if statement is cleaner code.

 91

The following results were obtained when running IDEA on the JDK 1.4.2.

Packages affected: 48
Occurrences: 161
Refactoring Complexity – Trivial
Value – Medium (Due to low time complexity)
Classification – Quick Wins
Classification Justifications – Due to low complexity and relatively high value,
this smell is classified as a quick win.

8.5 Unused Code

One can carry out smell detection for unused code in IDEA as indicated in
Figure 34. Navigate to the inspection profile settings and supply a string prefix
for the filter. Click the Funnel on the top right and IDEA will return all
categories that correspond to the keyword that was requested. The string
“unused” is used to search for unused code.

Figure 35: Searching for unused code in IDEA

8.5.1 Redundant local variables

A local variable that only gets used once is redundant. It should be replaced by
the value that is assigned to it. Fixing this smell has little value.

Entry e = new Entry(hash, key, value, tab[index]);
 tab[index] = e;

is replaced by: tab[index] = new Entry(hash, key, value, tab[index]);

 92

IDEA does this refactoring automatically. Fowler [1999] calls it Inline Temp.

Packages affected: 125
Occurrences: 335
Refactoring Complexity - Trivial
Value – Low
Classification - Low Hanging Fruit.
Classification Justifications – Due to low complexity and low value, this smell
is classified as low hanging fruit.

8.5.2 Unused method parameters

This smell is discussed in section 6.1.3 under the Eclipse Review.

IDEA provides a global quick fix to eradicate all of these smells with one click.
This is why one can consider the smells as Quick Wins. IDEA also checks if
these parameters are not used in methods implemented or overridden from the
class. This additional check explains why the number of occurrences found in
Eclipse (4890) is greater. IDEA therefore only detects less complex versions of
this smell and as a result, the solution is less complex.

Packages affected: 94
Occurrences: 1122
Refactoring Complexity - Trivial
Value – Medium (Due to low time complexity)
Classification – Quick Wins
Classification Justifications – Due to low complexity and relatively high value,
this smell is classified as a quick win.

8.5.3 Redundant throws clause

Read about the “Method with too many exceptions declared” smell detected by
IDEA for more background information.

IDEA provides a global quick fix to eradicate all of these smells with one click.
This is why one can consider the smells as Quick Wins. IDEA also checks if
this method does not use the throws clause in methods implemented or
overridden from the class. This additional check explains why the number of
occurrences found in Eclipse (623) is greater. IDEA therefore only detects less
complex versions of this smell and as a result, the solution is less complex.

Side Effects: This smell produces another potential smell after refactoring.
Once removed, redundant throws clauses must have had a place where they
were caught or re-thrown. All catch statements used to catch these clauses are

 93

redundant. All throw clauses used to re-throw the exceptions are also
redundant. This means that this refactoring needs to be run as many times as
new redundant throws clauses are detected. This could require many iterations
of smell detection, but could also reduce the code base considerably.

To illustrate the side effects: C.doIt() previously threw a redundant
IOException. B.one() and B.two() both called C.doIt() and had to handle the
IOException somehow. This was done by catching or re-throwing the
exception.

Now both methods need to be refactored. B.one() shows a compile error as the
catch statement is now unreachable. B.two() shows another redundant throws
clause.

This could be a problem depending on how many times C.doIt() was called
throughout a project and how its exception was handled by the callers and their
callers and so on. For an idea on how this smell can become serious, please see
the section on “Methods with too many exceptions declared”.

Figure 36: Exception side effects.

Note that although Eclipse was used to display the code, the behaviour is
similar in IDEA. IDEA will need some initial setup to display all warnings,
though.

 94

Warning: This detection also finds exceptions that are thrown in interface
methods. Applying a global quick fix in this case can have potentially
disastrous effects. One only needs to go as far as the java.sql.Array interface to
see what would happen if the exceptions were seen as redundant and removed
from the interface.

Packages affected: 68
Occurrences: 491
Refactoring Complexity - Trivial
Value – Medium (Due to low time complexity)
Classification – Quick Wins and Strategic refactorings
Classification Justifications – Due to low complexity and relatively high value,
this smell is classified as a quick win.

8.5.4 Unused imports

Unused imports seem like a trivial code smell. However, over a long time,
unused imports can litter a large class. This is especially the case when new
classes are added and removed, without cleaning up any imports. Over time the
imports can take up many lines of code, especially in heavily used classes.

IDEA can organise imports in every class simultaneously. Checking to see that
everything still compiles should provide sufficient testing. This smell is further
discussed in section 6.1.1 under the Eclipse Review. The redundant import
smell is also fixed when one organises the imports.

Select a package or file and press Ctrl-Alt-O.

Packages affected: 37
Occurrences: 3427
Refactoring Complexity - Trivial
Value – Medium (Due to low time complexity)
Classification – Quick Wins
Classification Justifications – Due to low complexity and relatively high value,
this smell is classified as a quick win.

8.5.5 Field can be local

This would be an important inspection for reducing the amount of data in a
class. Network traffic e.g. could be reduced in web-applications if the classes
passed through the network are made smaller, by removing redundant fields.
Consider first how many local fields need to be created, before removing the
field. It is counter-intuitive to declare a member variable that is never returned
from the class and only used in one method.

 95

IDEA will provide a refactoring for this smell, named ‘Convert to local’ after
analysis. IDEA provides a global quick fix to eradicate all of these smells with
one click. This is why one can consider the smells as Quick Wins.

Side Effects: Say somebody is relying on the size of class to always stay
constant and uses it to identify that class (an in-experienced programmer may
do this). If a field is removed from the class, the programmer’s code does not
recognize the class anymore, since its size has changed!

Packages affected: 48
Occurrences: 179
Refactoring Complexity – Trivial
Value – Medium (Due to low time complexity)
Classification – Quick Wins
Classification Justifications – Due to low complexity and relatively high value,
this smell is classified as a quick win.

8.6 IDEA Code Review Conclusion

This conclusion provides a consolidated view in table 14 of this chapter and the
previous one. The table groups code smells detected in the 1.4.2 version of the
JDK by the various classification groups previously identified: Quick Wins,
Strategic, LHF and Avoid. Recall that relatively high threshold values were
used for the above in order to produce a conservative amount of code smells.
The table includes the number of code smells detected in each case.

Large numbers of trivial code smells that do not have global quick fixes should
rather be detected by dynamic inspection in IDEA. This is because it will take
too long to refactor the code smells manually. IDEA should be configured to
pick up emerging smells while developers start to create or change
functionality. As the developer navigates the code base, an attempt should be
made to refactor code smells located in the current areas of focus. The
developer will understand the code he/she is creating or editing and will
therefore be in a better position to refactor. This method of dynamic inspection,
which can be switched on in IDEA, is far better than having to do a manual
code inspection for a large amount of files.

 96

Name Occurrences Value Classification

Quick Win Group
Duplicates 68 High Quick Wins
Confusing Constructors 31 Medium Quick Wins
Non-private Utility
Class

101 Medium Quick Wins

Unused parameters* 1122 Medium Quick Wins
Redundant throws
clause*

491 Medium Quick Wins

Unused imports * 3427 Medium Quick Wins
Field can be local*

179 Medium Quick Wins

Redundant if
statement*

161 Medium Quick Wins

Strategic Group
Method with too many
exceptions declared

48 to 1 Medium to High Strategic

Nesting Depth 453 to 35 Medium to High Strategic
Long Method 1264 to 92 Low to High LHF to Strategic
Large Class 278 to 44 Low to High LHF to Strategic
Too many parameters 681 to 35 Low to High Avoid to Strategic
Inappropriate Intimacy 1277 to 29 Low to High Avoid to Strategic
Feature Envy 58 Low to High LHF to Strategic
Instance of Chains 173 Low to High Strategic

Low Hanging Fruit
Public field 700 Low Low Hanging Fruit
Redundant local
variables

333 Low Low Hanging Fruit

Avoid
Refused Bequest 5485 Low to Medium Avoid
Magic Numbers 13003 Low to Medium Avoid

Table 14: IDEA code smell summary

* - represents smells having a global quick fix. This fix can be applied to all
offending files with one click. Value was increased in these cases due to the
massively reduced time complexity.

IDEA can educate developers about code smells by its dynamic detection of
code smells. This will prevent developers from re-creating the code smells. A
large team of developers practising refactoring will slowly remove all of the
code smells over time.

 97

Another good way to categorise code smells is to use the taxonomy created by
[Mantyla 2006]. This taxonomy is presented in the appendix at the end of the
dissertation (refer to Appendix A.3).

8.7 Summary

This concludes the full IDEA code review. An analysis of the JDK is given
from a code smell and refactoring perspective. This analysis includes work
from the author, who has mapped new and existing code smells and
refactorings by investigating IDEA.

The next chapter gives a comparison between IDEA and Eclipse from a
productivity and feature point of view. The discussion also touches on how
well each IDE (Integrated Development Environment) handles refactoring
complexity.

 98

Chapter 9 An IDE Comparison

Table 15 is used to compare the aspects thought to be most important when
considering good refactoring tool support in a modern Java IDE. This chapter
provides a comparison between IDEA and Eclipse from a productivity and
feature point of view. Note that even though only 19 code smell inspections
were found in IDEA, it is possible to find a few more code smells, which are
suitable targets for refactorings.

It is important to define the comparison criteria before the results are produced:

1. Code smell inspections – Here the physical number of code smell
inspections available is shown for each IDE. Note that these are the
code smell detections that were identified by the author and that there
could possibly still be several more of them available in IDEA.

2. Dynamic Analysis – This refers to the ability of the IDE to

automatically detect code smells upon opening of a specific resource
(such as a Java source file). The type of code smells detected would
depend on user settings. This feature is much like that of Words ability
to dynamically pick up spelling mistakes in a document.

3. Refactorings available – This tells us whether or not there are a large

number of refactorings available in the IDE. Both IDEs had a
comparable number of refactorings available.

4. Smell detection speed – this tells us how quick it is to locate the code

smells. Note that large projects were used to measure detection speed.
Eclipse uses a compiler-based method to perform analysis. IDEA uses a
static analysis detection method, which is far slower than that of
Eclipse.

5. Assisted smell removal – Eclipse allows one to fix each code smell that

it detects. In most of the cases, the removal of the code smells is rather
simple. There are problems with the automated removal as discussed
for example in Section 6.1.3. IDEA has very good smell removal
techniques, but not all of them are automated.

6. Global smell removal – This criterion refers to being able to remove all

of the detected code smells in a project, as opposed to having to fix the
code smells separately in each file through a manual process.

7. Filter smells by severity – This idea is based on the threshold concept,

present in IDEA when one is doing a static code analysis.

 99

8. Detection of complex smells – Eclipse can only detect code smells
pertaining to unused code. IDEA can detect somewhat more complex
smells, one of the most complex being the location of duplicate sections
of code.

 IDEA Eclipse
Code smell inspections 19 8
Dynamic Analysis Partial Yes
Refactorings available Yes Yes
Smell detection speed Slow Fast
Assisted smell removal Partial Full
Global smell removal Partial No
Filter smells by severity Partial No
Detection of complex
smells

Yes No

Table 15: An IDE Comparison

This chapter provides insight into how Eclipse filters refactoring by context. A
discussion is provided on the various productivity issues that arise when one
starts refactoring with Eclipse and IDEA. The discussion follows on how
refactoring complexity can be dealt with in the other IDE’s.

9.1 Filtering Refactorings By Context In Eclipse

This section is related to productivity issues present in Eclipse. A
demonstration will be given on how only certain refactorings appear available
to the user, depending on the code element selected.

Examples of available refactorings for different programming attributes:

Figure 37: Class refactorings

 100

Figure 38: Method refactorings

Figure 39: Constructor refactorings

Programmers inexperienced with refactoring will be less prone to pick
incorrect refactorings by mistake in Eclipse, due to its selective filtering. This
is still not perfect, e.g., Eclipse shows refactorings which rely on classes
belonging to class hierarchies even if they don’t (such as Pull Up and Push
Down).

Eclipse shows refactorings that are applicable in the current context. For
example if one right clicks a class, then only class applicable refactorings will
be displayed (Figure 37). Note how ‘Introduce Factory’ is only available for
constructors (Figure 39). Although not perfect, it is less confusing to see these
filtered menus compared to the 27 or so available refactorings shown by IDEA.

9.2 Productivity Issues

There is no doubt that semantic preserving refactorings found in Eclipse and
IDEA make the refactoring exercise more productive. The same can be said for
finding targets for refactorings.

Eclipse quickly performs checks by building the source. To build the code, first
configure the type of warnings emitted from the compiler. Thereafter,
incremental builds are performed and code is checked for smells as one saves.
Eclipse has a small amount of smells to analyse, so this approach is feasible.

 101

IDEA can do over 400 code inspections, of which 16 mapped to bad code
smells. IDEA is pre-configured once to perform analysis transparently; each
time a source file is accessed or changed. IDEA can extract a method from
multiple code duplicate groups in one operation. This feature only works for
low cost duplicate groups in Eclipse.

Eclipse can perform the compilation of the JDK source in the background.
Compiling code in the background allows one to carry on coding and using the
IDE. In comparison, IDEA consumes large amounts of CPU time and memory
while blocking the IDE during analysis. Eclipse performs eight code
inspections in the background while compiling the JDK code in under 2
minutes. The java memory settings for IDEA need to be tweaked to configure
the system memory (heap size).

IDEA is written in Java. Therefore it uses garbage collection in order to
manage its memory allocation and de-allocation. IDEA documentation claims
that the garbage collector automatically performs garbage collection before it
starts to run out of memory. This is not the case while running a complex
analysis and will crash the IDE. The solution is to do this manually by clicking
on the bin in the lower left hand corner of the IDE. To ensure optimal
performance, garbage collection should be performed before analysis and/or
the physical memory used should be increased.

9.3 Handling Refactoring Complexity

It is easy to make mistakes when fixing unnecessary code in Eclipse. These
mistakes occur in complex smells where parameters or exceptions are not used
in methods implemented or overridden from a super class. For an example of
these issues, please refer back to section 6.1.3.

IDEA simplifies its code smell detection for certain types of unnecessary code,
by ignoring class hierarchies altogether. This results in refactorings, which can
cause bugs, because of the ignorance of class hierarchy relationships. The
advantage is that the refactoring can be automated for many classes. This is
quite clear in section 6.1.3.

Code smells in large class hierarchies can identify potential design flaws. This
is particularly true of code smells that are more complex and that can lead to
strategic refactorings. The over-simplification for the “unread parameter” code
smell search in IDEA has the drawback of not being able to identify such
issues. This is discussed in section 8.5.2.

 102

9.4 Summary

This chapter provided a comparison between IDEA and Eclipse from a
productivity and feature point of view. The previous chapters explore the
different features present in Eclipse and IDEA and this chapter provides the
results. Discussion centred on how well each IDE (Integrated Development
Environment) handled refactoring complexity. It is important to note that no
IDE is better than the other. It is up to the user to decide which IDE will best
suit their needs based on the advice given in this thesis.

The following chapter will give an analysis of all previous results from a code
evolution perspective.

 103

Chapter 10 Code evolution

"Complex systems that work, evolved from simple systems that worked."
G.Booch

Usually if a system is designed well enough then it will have few code smells.
Having a design that is more flexible usually leads to code that is more
complex. This added flexibility will not always be needed in the future and will
eventually clutter up the code base. An example is to use a strategy pattern to
allow for multiple algorithms when there is only one algorithm needed at
present. The strategy pattern is redundant in this case and breaks the ‘YAGNI’
rule. YAGNI stands for “One Ain’t Gonna Need IT” [Beck 2000] and is used
in XP circles to show that one should not build code merely because it might
fulfil some future requirements. One should only build code for current
requirements and future requirements may change. It is easy to change
requirements, but much harder to change code.

A well-built system eventually looses out to growth. Good design cannot
foresee all of the possible future requirements and problems. During the
evolution of code, there are certain warning signs that can show us that there
may be trouble ahead. These warning signs are code smells. If these warnings
are ignored, then all sorts of problems tend to emerge, and these eventually can
become unmanageable.

The JDK source code (available from the software development kits), has been
used below to show how the code has evolved from version 1.02 to version
1.5.0. An investigation was performed on how such a code base grows in
number of files, source lines of code and code smells. The classification system
from Figure 4 is used to describe the changes and provide graphs, which
identify the evolutionary aspects of the code.

10.1 A Statistical View

As with the first code review, statistics were gathered on the number of files,
number of source lines of code (SLOC, means no commented or blanks lines),
number of commented lines of code, number of blank lines and the total
number of lines of code in each code base. Thus SLOC + Comments + Blanks
= Total number of lines of code.

 104

Version Files SLOC Comments Blanks Total
1.0.2 217 15,350 17,401 3,333 36,084
1.1.8_10 685 64,795 72,399 11,526 148,720
1.2.2_17 1,654 215,806 227,664 50,938 494,408
1.3.1_17 1,882 246,385 263,834 56,240 566,459
1.4.2_03 4,141 563,073 569,285 161,504 1,293,862
1.5.0_02 6,565 836,453 827,428 223,830 1,887,711
Table 16: All JDK Code Statistics

Version SLOC % Comments % Blanks % Total
1.0.2 43% 48% 9% 36084
1.1.8_10 44% 49% 8% 148720
1.2.2_17 44% 46% 10% 494408
1.3.1_17 43% 47% 10% 566459
1.4.2_03 44% 44% 12% 1293862
1.5.0_02 44% 44% 12% 1887711

Table 17: JDK Code Statistics (in percentages)

The next three graphs are used to identify any possible relationships between
the number of physical source lines of code, number of files and code smell
across the JDK versions.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 1 2 3 4 5

Version (1.x)

SL
O

C

Figure 40: Source lines of code per JDK version

 105

0

1000

2000

3000

4000

5000

6000

7000

0 1 2 3 4 5

Version (1.x)

Fi
le

s

Figure 41: Files per JDK version

0

5000

10000

15000

20000

25000

30000

35000

40000

0 1 2 3 4 5

Version (1.x)

Sm
el

ls

Total Quick Wins Strategic LHF Avoid

Figure 42: Code smells per JDK version (High thresholds)

From the statistical view of the physical source lines of code (SLOC), number
of files and code smell groups, its obvious that the growth rates for each of
these three attributes are very similar. The similar shape of all three graphs
(Figure 40, Figure 41, and Figure 42) reveals this trend.

The following figure shows that there is no relationship between the numbers
of smells per 1000 lines of physical source code. The data shows that version
1.0 had a high ratio of code smells to source lines of code when compared to
the later versions. The ratio in the later versions seems to remain rather
constant.

 106

0

10
20

30
40

50

60
70

80
90

100

0 1 2 3 4 5

Version (1.x)

Figure 43: Smells per 1000 SLOC

The next few subsections will show the frequency distribution of the various
code smells as they appear in each JDK version. Each group will be shown in
order of importance. These statistics where used to compile the information in
Figure 42.

10.2 Quick Win Group

This is the most important group in the code smells. If the global quick fixes
(indicated by the * symbol in Table 18) are proven to be 100% semantically
correct then one has a chance to refactor a vast portion of the code without
much manual intervention.

 1.02 1.1.8 1.2.2 1.3.1 1.4.2 1.5.0
Duplicates 3 12 29 38 68 86
Confusing Constructors 2 6 19 21 31 40
Non-private Utility Class* 0 7 23 42 101 182
Unused parameters* 40 66 472 538 1122 1448
Redundant throws clause* 13 38 223 225 491 554
Unused imports * 34 108 1045 1131 3427 3509
Field can be local* 9 26 54 63 179 258
Redundant if statement* 0 26 60 69 161 210

Table 18: JDK - Quick Win Group

 107

10.3 Strategic Group

Section 5.3 showed how thresholds were generated for strategic groups.

Strategic refactoring holds the most value, but at the cost of increased
complexity. Table 21 shows the input thresholds (to the right of the names of
the code smells) that were used to retrieve the desired code smells. A very
conservative set of threshold values was selected, which yielded a low number
of code smells. Table 19 shows the number of code smells that were retrieved
after using low threshold values. Table 20 shows the number of code smells
retrieved with a medium threshold values.

Brackets next to the code smell name surround the actual threshold value. The
same threshold values where used across all of the JDK versions to illustrate
the growth of the code smells from version to version. Only the highest
threshold values were used in order to reduce the total number of code smells
reported and to show the code smells with the highest refactoring value.
Refactoring does not stop once all of the code smells are refactored. The lower
threshold values can be used to report new code smells, until acceptable
threshold values are reached.

These strategic refactorings are characterised by their higher complexity levels
and lack of automated global quick fixes. They will normally require many
low-level refactorings. All of the code smells reported in Table 20 will be of
high value due to the high threshold values used during inspection. Note that
the inspection tool must exceed the threshold value in order to report the code.
The strategic group arises from the ability to detect code smells based on the
value that they carry.

Before showing the number of code smells generated for each of the differing
code smells. Thresholds for different code smell are explained:

1. Too many method exceptions – Each method searched contains a
number of thrown exceptions. If the threshold value is, say, three then
all methods with four or more exceptions will be found.

2. Nesting Depth – A nesting depth is determined by the amount of nested
statements such as if, switch, for and while loops. If the nesting
threshold is 4 then all statements with a depth greater than 4 are found.

3. Long Method – If the threshold value is 49, then all methods with more
than 49 lines of code will be found.

4. Too many parameters – If the threshold value is four then all methods
with more than 4 parameters will be found.

5. Large Class – If the threshold value is nine then all classes with more
than nine variables (excluding constants) will be found.

6. Inappropriate Intimacy – This threshold measures the amount of
coupling by the number of classes referenced by the class. If the

 108

threshold is nine then any class with more than 9 referenced classes is
counted.

 1.02 1.1.8 1.2.2 1.3.1 1.4.2 1.5.0
Too many method exceptions (3) 0 6 16 16 48 167
Nesting Depth (4) 0 35 156 190 435 650
Long Method (49) 29 116 544 623 1264 1909
Too many parameters (4) 24 83 481 526 681 1562
Large Class (9) 11 30 140 159 278 407
Inappropriate Intimacy (9) 0 30 554 615 1277 2100

Table 19: JDK - Strategic Group (low thresholds)

As can be seen above, low thresholds produce large amounts of code smells
when compared with the tables below, which use higher threshold values.

 1.02 1.1.8 1.2.2 1.3.1 1.4.2 1.5.0
Too many method exceptions (4) 0 0 4 4 9 78
Nesting Depth (5) 0 11 54 66 154 233
Long Method (74) 9 27 69 75 195 321
Too many parameters (7) 5 12 67 73 108 278
Large Class (19) 2 7 42 46 105 159
Inappropriate Intimacy (29) 0 4 41 55 155 271

Table 20: JDK - Strategic Group (medium thresholds)

As the threshold values increase, so the amount of generated code smells
decreases.

 1.02 1.1.8 1.2.2 1.3.1 1.4.2 1.5.0
Too many method exceptions (5) 0 0 0 0 1 48
Nesting Depth (6) 0 5 23 24 53 80
Long Method (99) 7 15 32 37 92 155
Too many parameters (10) 0 2 14 18 35 74
Large Class (29) 0 1 16 16 44 70
Inappropriate Intimacy (49) 0 2 6 8 29 62

Table 21: JDK - Strategic Group (high thresholds)

The values in Table 21 are the original values that were used for the IDEA
review. They are the most conservative set of values that were chosen as can be
seen by the small amount of generated code smells.

 1.02 1.1.8 1.2.2 1.3.1 1.4.2 1.5.0
Feature Envy 2 8 28 33 58 219
Instance of Chains 0 10 55 65 173 278

Table 22: JDK - Strategic Group (Threshold independent smells)

 109

The code smells in Table 22 require no thresholds for generation and therefore
only have one set of results. Even though no threshold values are present these
code smells are here because they were classified as being strategic targets for
refactoring.

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4 5

Version (1.x)

Sm
el

ls

Total Quick Wins Strategic LHF

Figure 44: Code smells group per JDK version (low threshold values)

Compare Figure 42, which displays code smell information with low threshold
values with that of Figure 44 where high threshold values apply. There is a
marked increase between the two yellow lines representing the count of
strategic code smells across all of the JDK versions. This clearly illustrates the
large impact that the threshold values can have on the number of code smells
produced.

10.4 Low Hanging Fruit Group

The LHF group contains a large number of trivial code smells. They are easy to
refactor, but their number of occurrences has grown to such a level that it
would be impractical to refactor all of the code smells. Note that if these code
smells had eben tackled in the earlier JDK versions, then it might have been
easier to handle them in current versions. Had the developers been aware of the
code smell and starting fixing them early on, then they might also have been
encouraged to prevent these code smells from re-appearing.

 1.02 1.1.8 1.2.2 1.3.1 1.4.2 1.5.0
Public field 47 63 284 304 700 1135
Redundant local variables 3 13 123 163 333 547

Table 23: JDK – Low Hanging Fruit Group

 110

10.5 Avoid Group

Due to the relatively high number of occurrences, these code smells should be
avoided. The reasoning behind this is that the sheer number of the code smells,
makes them impractical to remove, since it would take a very long time to
remove them. The resulting value of removing these code smells would not
warrant the large amount of time expended on removing them. There is no way
to sort the code smells into high or low value groups, except by manual
inspection. The nature of these code smells is such that some of them could be
of little or no value. As a result, much time will be lost in trying to refactor
these smells, due to the manual filtering required. As with the “Low Hanging
Fruit Group”, these code smells should have been caught earlier on in the
development process, where their removal would have been much less of a
problem.

 1.02 1.1.8 1.2.2 1.3.1 1.4.2 1.5.0
Refused Bequest 97 350 2414 2680 5485 7870
Magic Numbers 1196 1616 5198 5699 13003 18622

Table 24: JDK - Avoid Group

10.6 Removing the Avoid Group

The “Avoid Group” was removed in order to get a better statistical view of the
other groups. The results (see Figure 45) again showed a graph that resembled
those of Figure 40 and Figure 41 (SLOC and number of files in the JDK
version). Of course, it cannot be claimed that this similarity phenomenon
would be reproduced across all projects. However, it makes sense that if code
smells are not refactored, then over time they will increase proportionally in
line with the size of the code base. The growth rates between the different JDK
version were almost identical.

The results also show that the “Quick Win” group closely follows the total
number of code smells across the JDK versions. This is good news as most of
the code smells in the “Quick Win Group” are easily refactored.

 111

0
1000
2000

3000
4000
5000
6000
7000

8000
9000

10000

0 1 2 3 4 5

Version (1.x)

Sm
el

ls

Total Quick Wins Strategic LHF

Figure 45: Code smells group per JDK version (- avoid group)

10.7 Summary

This chapter gave an analysis of all previous results from a code evolution
perspective. All classification groups where represented statistically and it was
determined that there was a distinct linear relationship between the size of the
JDK code base and the number of code smells as the code base grew between
different versions.

The last chapter describes the contributions made to the field of refactoring,
analysis results are presented, future work is proposed and the conclusions
derived from this work.

 112

Chapter 11 Conclusion

“Any damn fool can write code that a computer can understand the trick is to
write code that humans can understand.”
 Martin Fowler.

11.1 Refactoring Contributions

This dissertation shows how to efficiently identify and refactor common and
new code smells, by using a popular IDE on a large code base. Common code
smells are those presented by Martin Fowler. New code smells defined by the
author, gave rise to suggestions for new refactorings that, to the best of his
knowledge, have not been previously proposed.

Detailed discussions based on the authors experience were given on all code
smells. The most significant new code smell mentioned is that of unnecessary
code. The many different variants of unnecessary code were discussed as well
as the refactorings used to eliminate these smells. By proposing a way to
classify code smells, the research conducted gave more insight into when to
refactor code smells and the possible pitfalls one may find along the way. The
code smells and refactorings proposed by Fowler [1999] were used as a rough
guide and additional comments made by the author of this dissertation also
made the purpose behind the refactorings more clear.

A new way to classify code smells was proposed. The classification is used to
show that refactoring is not always practical in every context. The aim was to
detect code smells that brought the most value to a refactoring exercise. IDEA
can successfully be used to attain code smell classifications. A comparison
was given between Eclipse and IDEA from a number of perspectives in
Chapter 9.

Mens et al. [2004] point out that although commercial refactoring tools have
begun to proliferate, research into software restructuring and refactoring
continues to be very active, and remains essential to reveal and address the
shortcomings of these tools. This dissertation clearly identifies any such
shortcomings as well as advantages in the tools selected.

The code evolution of a large project is discussed and classification is used to
determine what should and should not be refactored. There are many
discussions on each code smell based on the authors experience in general.
These discussions include observations concerning shortfalls identified in the
two IDEs when considering automated refactoring tools. A number of
comments are made on how the design of a program can be improved by each
refactoring described.

 113

11.2 Analysis Results

Refactoring is not always beneficial. Sometimes code smells are put there for
very good reasons, e.g. to increase performance. It pays to be familiar in the
problem domain in which one is working before starting to refactor. Knowing
the difference between good and bad practices in a domain can mean the
difference between good and bad refactorings. No one should be allowed to
attempt complex refactorings without decent exposure to the system or
problem domain. Code reviews are another line of defence to ensure that
refactorings are improving the design of existing code. Knowledge of good
design is essential, before one starts to refactor.

For refactoring to succeed, one needs to refactor code smells pointing to design
flaws. In general, strategic code smells pointed to bad design. Not every code
smell found has the same refactoring value e.g. finding duplicates will be more
valuable to refactor than unused imports. Not every instance of one specific
code smell type will necessarily have the same refactoring value e.g. when
finding duplicates, not all of the duplicates found will be equally valuable.

Being able to classify code smell types, can lead to greater refactoring
productivity. This is often only possible with the right refactoring tools, such as
IDEA which can (in some cases) offer analysis threshold parameters in order to
filter out code smells by the refactoring value and complexity that they hold.

The resulting analysis performed with IDEA and Eclipse, gave a list of code
smells with the number of times each code smell occurred in each version of
the JDK. This list may be used to see the quality of the JDK code, through a
code smell perspective. When looking at the design of the JDK at very detailed
granularity, one can see how the design is affected through the many code
smells present. The more code smells present the harder the JDK will be to
maintain.

Importance is placed on the need for continuous design, which constantly
integrates refactoring into the development process to ensure good code
maintainability. It is shown that IDEA is one of the best tools to use when one
needs to employ a continuous design technique. It is also shown that tools such
as Eclipse have drawbacks, which can cause refactoring to break down if
proper care is not taken.

Different refactorings require different amounts of effort, and provide different
returns in terms of the improvement of the system as a whole. This means that
it is necessary to characterize code smells and their refactorings to prioritize
their application. This is achieved through employing a four-quadrant model,
which contrasts complexity against value.

 114

In the study of the evolution of the JDK, the analysis results conclude that code
smells generally increased at a linear or constant rate throughout all of the
different versions. The only exception to this rule was that of the average
number of code smells per 1000 lines of code, decreased sharply from the first
to second version of the JDK.

In principle, poor code smell detection in Eclipse can be remedied with plug-
ins such as PMD (http://pmd.sourceforge.net). However, this plug-in does not
integrate very well into Eclipse and produces output in HTML format. This
raises productivity issues when one compares the abilities of IDEA, which has
fully integrated inspections, which provide links to the offending code as well
as providing solutions. PMD offers around 160 inspections. IDEA offers over
400. Although PMD can be used as a plug-in in many IDEs, it falls short of the
abilities of IDEA.

11.3 Future Work

A lot of information was gained from the research done; it would be valuable
to go further than having statistical measurements of a software system. The
code smell classification system provided was very useful and it was clear from
the research that as code evolves then the number of code smells increases. To
be able to pinpoint the density of code smells in relation to classes would prove
very useful.

When classifying code smells, another measure of value would be to measure
how often that piece of code is changed or maintained. Refactoring code that is
used and changed more often will produce more value than refactoring code
that no one uses. This is because refactored code is easier to maintain and it
makes more sense to maintain code that is used more often.

The more a class is maintained and used to add new features into, the larger it
will grow and therefore the greater the likelihood becomes of more errors and
code smells occurring in that class. In effect, finding such hotspots in a
software system would alert developers as to where the most refactoring work
is needed or in other words, where the greatest density of code smells is likely
to exist. It would be interesting to be able to persist the code smell information
into a database and to be able to mine that data more meaningfully through
statistical queries and even to derive patterns in that data.

To be able to rank each class according to the number and type of code smells
it contains would tell us straight away where to start refactoring. If versioning
information were also incorporated then this would further enrich the ranking
of the classes. One might be tempted to say that in order to find hot spots, one
should only need to look for the largest classes in the system as these would
normally point us to the God classes, which are seemingly getting out of
control and are starting to suffer from code rot or excessive code smells. These

 115

classes could be the ones that are constantly changed and have enhancements
added unto them, causing them to become God classes over time.

More work could be done in order to derive such knowledge from a code base.
In essence, one would be mining source code for smells as if it was a database.
The obvious problem is where to find the source for all of this code smell data.

During the code review with IDEA, an HTML report was generated for code
smells that were detected in the system. The HTML report informs us of each
class that contained the code smell, how many times it occurred in that class, in
which method and on, which line it, occurred. This is clearly enough
information from which one could populate a database

Depending on the project chosen for analysis, most of the work would go into
parsing the HTML, retrieving the necessary information and storing it into a
database. The information retrieved would be more useful than what any
refactoring tool can provide now.

There has been work into building a fact extraction tool that extracts facts from
a code base and uses a visualization method in order to organise the data in a
meaningful way. Visualizations tools [Lommerse, Nossin, Voinea, Telea 2005]
can be used to visualise large code bases, which normally take a very long time
to understand. Many different kinds of facts may be extracted. The fact
extraction tool can be customised so that the user can focus on facts that are
most important to him/her. Such feature extraction tools could also benefit
from having code smells identified as the features to be extracted.

The main views identified for visualisation tools from [Lommerse, Nossin,
Voinea, Telea 2005] are: The syntactic view, showing the syntactic constructs
in the source code. The symbol view, showing the objects a file makes
available after compilation, such as function signatures, variables, and
namespaces. The evolution view looks at different versions of the same source
file during a project lifetime.

There has been some work into the analysis of code evolution by Voinea, Telea
and van Wijk [2004]. CVSgrab [Voinea, Telea and van Wijk 2004] is a tool
aimed at developers involved in maintenance projects. It acquires the
information about artefact evolution of entire projects and it visualizes it down
to file level. It enables correlations based on activity and contributors. It may
be used as a CVS data acquisition tool for the CVSscan application. CVSscan
is an integrated multiview environment, using a line-oriented display of the
changing code, where a column represents each version, and where the
horizontal direction is used for time. Separate linked displays show various
metrics, as well as the source code itself. A large variety of options is provided
to visualize a number of different aspects. These two applications are for the
C/C++ market.

 116

Tools such as CVSgrab can possibly be incorporated into an application, to see
which class files are being maintained the most and are therefore potential
breeding grounds for bad code smells. This will further help prioritize the code
smells found in a project.

11.4 Final Thoughts

Traditional agile practises such as test-driven development recommend the use
of refactoring. Unit testing is used to ensure behaviour preservation.
Refactoring in this type of scenario is not always perfect. Time constraints and
many other issues can result in code being left with code smells. Not all
programmers are equally experienced and the less experienced ones may
produce many code smells. In some scenarios, refactoring is seen as a luxury
and not a necessity, which can lead to various levels of un-maintainable code in
the long term.

Refactoring code that has not been refactored over many years is a great
maintenance challenge. Continuously refactoring early on in a projects life
cycle will help to ease the difficulty of such a challenge. If refactoring is done
early, small problems can be prevented from turning into serious problems.
Flaws in design can be caught quickly and stopped from spreading. Code
smells are therefore a good indication of the state of a project and should be
taken seriously. The best refactoring tool is still the experienced developer with
his suite of unit tests, practising continuous design.

When considering design heuristics, design patterns, software maintenance,
software evolution and software reengineering, this dissertation links each of
these software disciplines with the practice of refactoring.

 117

References

1. [Bandi, Vaishnavi, Turk 2003] BANDI, R.K, VAISHNAVI, V.K AND
TURK, D.E: Predicting maintenance performance using object
orientated design complexity metrics, IEEE Transaction on Software
Engineering, vol. 29, no 1, pp 77-87.

2. [Beck 2000], BECK, K, FOWLER, M: Planning Extreme

Programming, Addison Wesley.

3. [Cinnéide 2000] CINNÉIDE, MEL Ó: Automated application of design
patterns - A refactoring approach, University of Dublin, PhD
dissertation.

4. [Foote 1997] FOOTE, B, OPDYKE, W: Life Cycle and Refactoring

Patterns that Support Evolution and Reuse.

5. [Fowler 1999] FOWLER, MARTIN. Refactoring: Improving the
Design of Existing Programs. Addison-Wesley, 1999.

6. [Fowler 2005] FOWLER, MARTIN: A list of refactoring tools for

several languages, http://www.refactoring.com/tools.html, accessed
2005-08-13.

7. [Gamma et al. 1995] GAMMA, E, HELM, R, JOHNSON, R and

VLISSIDES, J: Design Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley.

8. [Garlan 1994] GARLAND, D, SHAW, M: An Introduction to Software

Architecture, Carnegie Mellon University.

9. [Griswold 1991] GRISWOLD, WILLIAM, E: Program restructuring

as an aid to program maintenance, University of Washington, PhD
dissertation.

10. [Grotehen & Dittrich 1997] GROTEHEN, T, DITTRICH, R: The

MeTHOOD Approach, Transformation Rules, and Heuristics for Object
Oriented Design, Technical report.

11. [IEEE 1998], THE INSTITUTE FOR ELECTRICAL AND

ELECTRONIC ENGINEERS, New York: IEEE Standard for Software
Maintenance.

 118

12. [JUnit 2005] JUNIT HOME PAGE, http://www.junit.org/, accessed
2005-08-28.

13. [Kataoka, Ernst, Griswold, Notkin 2001] KATAOKA, YOSHIO,

ERNST, MICHAEL GRISWOLD, WILLIAM, NOTKIN, DAVID:
Automated Support for Program Refactoring using Invariants, ICSM
2001.

14. [Kerievsky 2004] KERIEVSKY, JOSHUA: Refactoring to Patterns,

Addison Wesley,
http://www.industriallogic.com/xp/refactoring/index.html, accessed
2005-08-15.

15. [Korman 1998] KORMAN, WALTER, F: Elbereth: Tool support for
refactoring Java programs, University of California, MSc dissertation.

16. [Lehman & Belady 1985] LEHMAN, M.M, BELDAY, L.A: Program

Evolution, Academic Press.

17. [Li & Henry 1993a] LI, W and HENRY, S.M: Maintenance metrics for

the object oriented paradigm, in Proceedings of the First International
Software Metrics Symposium, IEEE, pp. 52-60.

18. [Li & Henry 1993b] LI, W and HENRY, S.M: Object-Oriented metrics

that predict maintainability, Journal of System and Software, vol 23,
no2, pp 111-122.

19. [Mantyla 2003], MANTYLA, MIKA: Bad smells in Code: A taxonomy

and an empirical study, MSc Dissertation.

20. [Mantyla 2006] MANTYLA, MIKA: A Taxonomy for "Bad Code

Smells",http://www.soberit.hut.fi/mmantyla/BadCodeSmellsTaxonomy.
htm, accessed 2006-01-02.

21. [McCabe 1976] MCCABE, T.J: A complexity measure, IEEE

Transactions on Software Engineering, vol. 2, no. 4, pp. 308-320.

22. [Mens et al. 2004], MENS ET AL., T and TOURWÉ, T: A Survey of

Software Refactoring, IEEE Transactions on software engineering,
VOL. XX, NO. Y, MONTH 2004.

23. [Molla 2005] MUHAMMAD K. BASHAR MOLLA: An overview of

object orientated design heuristsics, Department of Computer Science,
Umeå University, Sweden, MSc Dissertation.

 119

24. [Müller. Lembeck, Kuchen 2004] R. MÜLLER, C. LEMBECK, H.
KUCHEN: A Symbolic Java Vitual Machine for Test-Case Generation,
Proceedings IASTED, 2004.

25. [Opdyke 1992] OPDYKE, WILLIAM, F: Refactoring: Object-Oriented
Frameworks, University of Illinois, PhD dissertation.

26. [Refactorit 2006] REFACTORIT: Refactoring Comparison,

http://www.refactorit.com/failid/refactorMatrix.pdf,
accessed 2005-03-02.

27. [Riel 1996] RIEL, ARTHUR J: Object-Oriented Design Heuristics.

Addison-Wesley.

28. [Roberts 1999a] ROBERTS, DONALD, BRADLEY: Practical
analysis for refactoring, University of Illinois, PhD dissertation.

29. [Roberts 1999b] FOWLER, MARTIN: Refactoring: Improving the

Design of Existing Programs. (Chapter 14 Contributed by Don Roberts
and John Brant) Addison-Wesley, 1999.

30. [Shore 2004], JIM, SHORE: Continuous Design,

http://martinfowler.com/ieeeSoftware/continuousDesign.pdf,
accessed 2005-08-11.

31. [Sommerville 2004] SOMMERVILLE, IAN: Software evolution and

reengineering, Software Engineering 7th Edition (Chp 21) Addison-
Wesley, retrieved from http://www.ifi.unizh.ch/req/ftp/kvse/kap06-
evolution.pdf, accessed 2006-09-09.

32. [Sun Microsystems 1999] SUN MICROSYSYSTEMS, Code

Conventions for the Java Programming Language.

33. [Tiger 2004] JOSHUA BLOCH AND NEAL GAFTER; Forthcoming
Java Programming Language Features. Sun Microsystems, 2004.
http://java.sun.com/j2se/1.5/pdf/Tiger-lang.pdf, accessed 2005-12-28.

34. [Tokuda 1999] TOKUDA, LANCE, A: Evolving Object-Oriented

Designs with Refactorings, University of Texas at Austin, PhD
dissertation.

35. [Van Kempen 2005] VAN KEMPEN, MARC: Studies into Refactoring

of Software Architectures, Technishe Universiteit Eindhoven, MSc
Dissertation.

 120

36. [Voinea, Telea, van Wijk 2004] Lucian Voinea, Alex Telea, Jarke J.
van Wijk: CVSscan: Visualization of Code Evolution, Technische
Universiteit Eindhoven.

37. [Lommerse, Nossin, Voinea, Telea 2005] : Gerard Lommerse, Freek
Nossin, Lucian Voinea, Alexandru Telea: The Visual Code Navigator:
An Interactive Toolset for Source Code Investigation, Technische
Universiteit Eindhoven.

 121

Appendix

A.1 Refactorings

Here refactorings will be categorized and explained. There are many other
refactorings than the ones mentioned here. There is specific focus only on
those refactorings that have been mentioned in the dissertation. The intention is
to be able to look up the refactorings when searching for their meanings in the
dissertation.

The Eclipse and IDEA code review will heavily reference this section in order
to describe the many solutions to code smells. In some cases, it will be possible
to have more than one refactoring as a solution to a code smell.

Moving Features

Move Method
This refactoring moves the method to another class. The reasoning would
normally be that the method gets used more in the target class.

Move Field
This refactoring moves the field to another class. The reasoning would
normally be that the field gets used more in the target class.

Extract Class
Split a class into two or more classes when it does the job of two or more
classes.
The new class is extracted from another class, by moving the relevant methods
and fields from the old class into the new one.

Hide Delegate
Create delegate methods to hide the delegate for encapsulation reasons. An
example would be having class X calling class Y and then Z. Class Y
information would be needed to access class Z information. Class Z can be
hidden, by creating a method in class Y that calls Class Z and thereby negating
the direct call to Class Z.

Composing Methods

Extract Method
This refactoring will extract a method from a section of code. This will
normally used to give a name to a section of code so that a large body of code
can be abstracted to more methods and therefore be more clearly understood.

 122

Replace Method with method object
One has a long method that uses local variables in such a way that one cannot
apply the ‘Extract Method’ refactoring. This refactoring makes an object out of
method and it helps to use the ‘Extract Method’ refactoring.

Replace Temp with Query
This refactoring is used when one is using a temporary variable to hold the
result of an expression. Extract the expression into a method. Replace all
references to the temp with the expression. The new method can then be used
in other methods.

Organizing Data

Replace Bidirectional with Unidirectional
This refactoring needs to be used whenever one has a two-way relationship
between two classes that is no longer needed. The reference to the other class
will need to be removed.

Magic Number with Symbolic Constant
Create a constant with a meaningful name in order to avoid mentioning the
same constant value in different places.

Encapsulate Field
Make the data item private, add accessors (get/set) in order to enforce
encapsulation.

Replace Type Code with Class
Replace type number with class. This will entail having a class that uses a
constructor to encode the different types, which can be encoded. The class will
normally have a private constructor and will have public variables, which are
instances of the same class. These public class instances can be used to store
the type information. This will ensure that there is a common place from which
one can access and store type code information.

Replace Type Code with Subclasses
This approach is similar to the one above and introduces subclasses instead of
type code. The idea is to return a common super class, which could have any
child class associated with it. Integers are still used to store type information in.

Replace Type Code with State/Strategy
This approach is very similar to the two above methods, but will normally be
used when one cannot use sub classing. The approach is best utilized whenever
the type code needs to change throughout the object’s lifetime.

 123

Conditionals

Decompose Conditionals
Whenever a complicated invariant exists, it will prove useful to extract parts of
the conditional into methods, by using the ‘Extract Method’ refactoring.

Replace Conditional with Polymorphism
This is used whenever we have different behaviors being implemented,
depending on the conditions of if statements. The refactoring removes the
conditionals and replaces it with polymorphism. This enables the code to be
simplified as only one method call needs to be called and the conditionals are
removed.

Replace Nested Conditional with Guard Clause
This refactoring removes a particular complicated nesting of “if” and “else if”
statements, by introducing guard clauses. The guard clauses negate the need for
the “else if “statements and this results in no nesting of if statements.

Method Calls

Parameterize Method
This refactoring can be used in order to consolidate multiple methods that do
the same thing and only differ by certain values.

Preserve Whole Object
If one is passing several values from an object into a method, then it is better to
rather pass the entire object into the method. This refactoring simplifies the
method, by removing unnecessary parameters. This makes the method easier to
understand.

Parameter Object
This is when one has a number of parameters that appear inside a method and
one chooses to reduce the parameters by grouping them into an object. This
will simplify the method, by reducing the number of parameters. This is
especially useful if the method is called in multiple places.

Replace Constructor with Factory Method
This allows more complex creation of classes through the use of a factory
create method.

Replace parameter with method
An object can invoke a method x() and use the value from this method as a
parameter to another method y(). What should in fact happen is that the method
to which the parameter is passed (method y) should invoke the original method
x().

 124

Generalization

Pull Up Field
In order avoid duplication of a field in subclasses; it would be useful to move
the field to the superclass.

Pull Up Method
In order avoid duplication of a method in subclasses; it would be useful to
move the field to the superclass.

Push Down Method
If a method is not used in all subclasses, or is only used in one sub-class, it
would be useful to move the method to that sub-class. In this way the
developer is not lead to think that the method is actually needed in all of the
subclasses.

Push Down Field
If a field is not used in all subclasses, or is only used in one sub-class, it would
be useful to move the field to that sub-class. In this way the developer is not
lead to think that the field is actually needed in all of the subclasses.
Extract Subclass
If there were a subset of features that is not used by a number of subclasses
then it would be useful for the subset of features to be extracted into a separate
subclass.

Form Template Method
If one has a process that performs similar steps in a specific order, but the steps
are different then one can apply the form template method refactoring. One has
two methods in subclasses that perform similar but different steps in the same
order - get the steps into methods, then pull original methods. Inheritance helps
eliminate duplicate behaviour

Replace Inheritance with Delegation
It is possible that a subclass does not match the relationship that it should have
with the parent. The ideal relationship would need to use all of the data from
the superclass and all of the behaviour. If a subclass does not need the data
from the super class, then it might not necessarily need to inherit from it. This
is also true of the interface. If the subclass does not necessarily need all of the
methods from the super class then it would be a better idea to replace the
inheritance and delegate the needed superclass functionality to the superclass.

 125

Design Patterns

Compose Method
This refactoring will be used when one cannot rapidly understand a method’s
logic. The idea is to refactor the method (using the ‘Extract Method’
refactoring) into smaller, intention-revealing steps. This will make the method
easier to understand and maintain.

Replace Conditional Dispatcher with Command
This will employ the “Command pattern” in order to remove complicated “if
else” statements. This will also decouple the behaviour from the decision logic.

Introduce Factory
This refactoring will call a Factory create method instead of the public
constructor. This employs the “Factory method” design pattern. The idea is to
have a single place where the decision and creational logic pertaining to the
construction of multiple objects can be housed. These factories will be used for
objects, which have an inheritance relationship.

Chain Constructors
It is possible to have a lot of duplicated constructor code inside of a class.
Instead of repeating the constructor logic, one can make calls from a
constructor to another constructor. This will eliminate code duplication.

 126

A.2 Code smells

Unnecessary code

The following code smells are found in Eclipse and IDEA. The refactorings
needed in all cases are that of pure deletion of the code. Deletion is reasonable
if one has previous versions of the code base stored in a code repository. The
only exception is that of the redundant local variables. This code smell uses the
‘Inline Temp’ refactoring to remove the unnecessary temporary variable.
Therefore, if any code is accidentally deleted, then there will a place from
which one could restore. The following is a list of unnecessary code:

Redundant local variables
This smell happens whenever a temporary variable is used in one place. The
temporary variable should rather be replaced directly with the expression, by
using the ‘Inline Temp’ refactoring.

Redundant throws clause
Some methods may throw exceptions for no reason. This will result in calling
methods having to catch the exceptions coming from these methods. This will
result in a lot of unnecessary code. The redundant throws clause and the
accompanying catch clauses should be deleted.

Unused imports
Unused imports usually start to build in large classes where new classes are
added and removed on a continuous basis. Developers will often forget to
remove the unused imports once they delete some code.

Unread local variables
Some variables may be used during development or testing, but then forgotten.

Unread parameter
Some variables may be used during development or testing, but then forgotten.

Unread private member field
Unread fields that are private have no use whatsoever and can be deleted.

Unused private method
Unread methods that are private have no use whatsoever and can be deleted.

Unused private constructor
Unread constructors that are private have no use whatsoever and can be
deleted.

Unused private type/class
Unread classes that are private have no use whatsoever and can be deleted.

 127

Code Duplicates

This is one of the worst code smells around and the following refactorings are
needed in order to resolve the many variations of the smell:

1. Extract method – This refactoring will extract a method from a section of
code. This will normally used to give a name to a section of code so that a large
body of code can be abstracted to more methods and therefore be more clearly
understood.

2. Parameterize method – This refactoring can be used in order to consolidate
multiple methods that do the same thing and only differ by certain values.

3. Extract Class – This is when a new class is extracted from another class, by
moving the relevant methods and fields from the old class into the new one.

4. Extract Superclass – Is when one has two classes that share similar features.
The similar features are consolidated into one class i.e. the superclass.

5. Form Template method – This is when one has a process that performs

similar steps in a specific order, but the steps are different.

6. Introduce parameter object. – This is when one has a number of parameters

that appear inside a method and one chooses to reduce the parameters by
putting them into an object. This will simplify the method, by reducing the
number of parameters.

Inheritance Issues

Refused Bequest
Some subclasses may not need all of the behaviour and data from their parent
classes. This is normally a faint smell and is solved by creating a new subclass,
which will have all of the unwanted methods moved into it by using the ‘Push
Down Field’ and ‘Push Down Method’ refactorings.

Type Code

Chains using Instanceof
IDEA can check for chains of instanceof, if statements. It searches for chain
lengths with a minimum size of two, i.e. an “if” statement with one or more
else branches. The check ensures that all the conditionals contain the instanceof
keyword. A chain length parameter cannot be set, but it still helps us to identify
cases, which could benefit more from polymorphism.

 128

Abstraction Issues

Feature Envy
If a method is too interested in another class, extract the offending code using
the ‘Extract Method’ refactoring and use the ‘Move Method’ refactoring to
move the extracted method to the class that is being called.

Encapsulation

Public Field
If a field is not a constant and part of the data of a class then it should be made
private. The field should also have get and set methods provided for it.

Method Metrics

Long Method
A method that is too long cannot easily be understood and can sometimes be a
maintenance nightmare. Sections of the code should be grouped into more
intention-revealing methods so that the code will be easier to understand. The
‘Extract Method’ refactoring can be used to do this.

Long Parameter List
A method that uses too many parameters is hard to use and to understand. The
refactoring ‘Introduce Parameter Object’ can be used to group related
parameter fields into an object. This will reduce the number of method
parameters.

Too Many Exceptions
A method that throws too many exceptions can be difficult to maintain.
Methods that have to catch exceptions from other methods can have many
catch statements if a method throws too many exceptions. This makes the code
less maintainable. One of the solutions is to create generic exceptions, which
have subclasses inheriting from them. This can reduce the number of total
thrown exceptions.

Class Metrics

Inappropriate Intimacy
This smell happens when one class gets too involved with another class. This
results in high coupling.

 129

Large Class
This smell indicates too many fields inside a class. The refactoring would be
‘Extract Class’. If the class is doing too many things it would make sense to
extract classes from it in order to make the behaviour more maintainable.

Creational Issues

Non-private Utility Class constructors
Utility classes are meant to have no data and should only expose public static
methods, which could be used by any other class. An utility class should have a
private default constructor and no public constructors so that it can only be
used statically.

Confusing or too many constructors
If one finds that one cannot understand the creational process of a class fast
enough, then it would be beneficial to refactor it. The solution would be to
replace the constructors with creational methods that describe the creational
process more clearly. The ‘Replace Constructors with Creation Methods’
refactoring can be used.

Constructors with duplicate code
It is possible to chain constructors if they contain duplicate code. This is done
by having one constructor calling another and resuming with its own creational
code. The ‘Extract Method’ or in this case ‘Extract Constructor’ refactoring
may be used.

Distributed creation information
This problem occurs whenever code used to instantiate a class starts to span
across multiple classes. The solution is to use the ‘Move Creation Knowledge
to Factory’ refactoring.

Redundant if Statements

This code smell occurs when an “if statement” is made redundant. For
example, assigning a value to a boolean variable. If the condition is true the
boolean is true, otherwise it is false. It is easier to assign the condition directly
to the boolean variable, which makes the if else statement redundant.

Magic Numbers

This smell occurs whenever a constant value is reused multiple times over a
project and it has no link to a physical constant. The refactoring is to replace
the value with a constant. This allows the value to be changed in one place, as
well to assign a meaningful name to it.

 130

A.3 Riel Heuristics

Heuristic #2.1: All data should be hidden within its class.

Heuristic #2.2: Users of a class must be dependent on its public interface, but a class
should not be dependent on its users.

Heuristic #2.3: Minimize the number of messages in the protocol of a class.

Heuristic #2.4: Implement a minimal public interface, which all classes understand
(e.g. operations such as copy (deep versus shallow), equality testing, pretty printing,
parsing from a ASCII description, etc.).

Heuristic #2.5: Do not put implementation details such as common-code private
functions into the public interface of a class.

Heuristic #2.6: Do not clutter the public interface of a class with things that users of
that class are not able to use or are not interested in using.

Heuristic #2.7: Classes should only exhibit nil or export coupling with other classes,
i.e. a class should only use operations in the public interface of another class or have
nothing to do with that class.

Heuristic #2.8: A class should capture one and only one key abstraction.

Heuristic #2.9: Keep related data and behavior in one place.

Heuristic #2.10: Spin off non-related information into another class (i.e. non-
communicating behavior).

Heuristic #2.11: Be sure the abstractions that one models are classes and not simply
the roles objects play.

Heuristic #3.1: Distribute system intelligence horizontally as uniformly as possible,
i.e. the top level classes in a design should share the work uniformly.

Heuristic #3.2: Do not create god classes/objects in ones system. Be very suspicious of
an abstraction whose name contains Driver, Manager, System, or Subsystem.

Heuristic #3.3: Beware of classes that have many accessor methods defined in their
public interface, many of them imply that related data and behavior are not being kept
in one place.

Heuristic #3.4: Beware of classes, which have too much non-communicating behavior,
i.e. methods which operate on a proper subset of the data members of a class. God
classes often exhibit lots of non-communicating behavior.

Heuristic #3.5: In applications, which consist of an object-oriented model interacting
with a user interface, the model should never be dependent on the interface. The
interface should be dependent on the model.

 131

Heuristic #3.6: Model the real world whenever possible. (This heuristic is often
violated for reasons of system intelligence distribution, avoidance of god classes, and
the keeping of related data and behavior in one place).

Heuristic #3.7: Eliminate irrelevant classes from ones design.

Heuristic #3.8: Eliminate classes that are outside the system.

Heuristic #3.9: Do not turn an operation into a class. Be suspicious of any class whose
name is a verb or derived from a verb. Especially those which have only one piece of
meaningful behavior (i.e. do not count sets, gets, and prints). Ask if that piece of
meaningful behavior needs to be migrated to some existing or undiscovered class.

Heuristic #3.10: Agent classes are often placed in the analysis model of an application.
During design time, many agents are found to be irrelevant and should be removed.

Heuristic #4.1: Minimize the number of classes with which another class collaborates.

Heuristic #4.2: Minimize the number of message sends between a class and its
collaborator.

Heuristic #4.3: Minimize the amount of collaboration between a class and its
collaborator, i.e. the number of different messages sent.

Heuristic #4.4: Minimize fanout in a class, i.e. the product of the number of messages
defined by the class and the messages they send.

Heuristic #4.5: If a class contains objects of another class then the containing class
should be sending messages to the contained objects, i.e. the containment relationship
should always imply a uses relationship.

Heuristic #4.6: Most of the methods defined on a class should be using most of the
data members most of the time.

Heuristic #4.7: Classes should not contain more objects than a developer can fit in his
or her short term memory. A favorite value for this number is six.

Heuristic #4.8: Distribute system intelligence vertically down narrow and deep
containment hierarchies.

Heuristic #4.9: When implementing semantic constraints, it is best to implement them
in terms of the class definition. Often this will lead to a proliferation of classes in
which case the constraint must be implemented in the behavior of the class, usually,
but not necessarily, in the constructor.

Heuristic #4.10: When implementing semantic constraints in the constructor of a class,
place the constraint test in the constructor as far down a containment hierarchy as the
domain allows.

 132

Heuristic #4.11: The semantic information on which a constraint is based is best
placed in a central third-party object when that information is volatile.

Heuristic #4.12: The semantic information on which a constraint is based is best
decentralized among the classes involved in the constraint when that information is
stable.

Heuristic #4.13: A class must know what it contains, but it should never know who
contains it.

Heuristic #4.14: Objects which share lexical scope, i.e. those contained in the same
containing class, should not have uses relationships between them.

Heuristic #5.1: Inheritance should only be used to model a specialization hierarchy.

Heuristic #5.2: Derived classes must have knowledge of their base class by definition,
but base classes should not know anything about their derived classes.

Heuristic #5.3: All data in a base class should be private, i.e. do not use protected data.

Heuristic #5.4: Theoretically, inheritance hierarchies should be deep, i.e. the deeper
the better.

Heuristic #5.5: Pragmatically, inheritance hierarchies should be no deeper than an
average person can keep in their short term memory. A popular value for this depth is
six.

Heuristic #5.6: All abstract classes must be base classes.

Heuristic #5.7: All base classes should be abstract classes.

Heuristic #5.8: Factor the commonality of data, behavior, and/or interface as high as
possible in the inheritance hierarchy.

Heuristic #5.9: If two or more classes only share common data (no common behavior)
then that common data should be placed in a class which will be contained by each
sharing class.

Heuristic #5.10: If two or more classes have common data and behavior (i.e. methods)
then those classes should each inherit from a common base class which captures those
data and methods.

Heuristic #5.11: If two or more classes only share common interface (i.e. messages,
not methods) then they should inherit from a common base class only if they will be
used polymorphically.

Heuristic #5.12: Explicit case analysis on the type of an object is usually an error, the
designer should use polymorphism in most of these cases.

 133

Heuristic #5.13: Explicit case analysis on the value of an attribute is often an error.
The class should be decomposed into an inheritance hierarchy where each value of the
attribute is transformed into a derived class.

Heuristic #5.14: Do not model the dynamic semantics of a class using the inheritance
relationship. An attempt to model dynamic semantics with a static semantic
relationship will lead to a toggling of types at runtime.

Heuristic #5.15: Do not turn objects of a class into derived classes of the class. Be
very suspicious of any derived class for which there is only one instance.

Heuristic #5.16: If one thinks one needs to create new classes at runtime, take a step
back and realize that what you are trying to create are objects. Now generalize these
objects into a class.

Heuristic #5.17: It should be illegal for a derived class to override a base class method
with a NOP method, i.e. a method which does nothing.

Heuristic #5.18: Do not confuse optional containment with the need for inheritance,
modeling optional containment with inheritance will lead to a proliferation of classes.

Heuristic #5.19: When building an inheritance hierarchy try to construct reusable
frameworks rather than reusable components.

Heuristic #6.1: If one has an example of multiple inheritance in ones design, assume
one has made a mistake and prove otherwise.

Heuristic #6.2: Whenever there is inheritance in an object-oriented design ask onesself
two questions: 1) Am I a special type of the thing I'm inheriting from? and 2) Is the
thing I'm inheriting from part of me?

Heuristic #6.3: Whenever one has found a multiple inheritance relationship in an
object oriented design be sure that no base class is actually a derived class of another
base class, i.e. accidental multiple inheritance.

Heuristic #7.1: When given a choice in an object-oriented design between containment
relationship and an association relationship, choose the containment relationship.

Heuristic #8.1: Do not use global data or functions to perform bookkeeping
information on the objects of a class, class variables or methods should be used
instead.

Heuristic #9.1: Object-oriented designers should never allow physical design criteria
to corrupt their logical designs. However, very often physical design criteria is used in
the decision making process at logical design time.

Heuristic #9.2: Do not change the state of an object without going through its public
interface.

 134

A.4 MeTHOOD Heuristics

Heuristic #1: A class in a containment hierarchy should only depend from its child
classes.

Heuristic #2: Every attribute should be hidden within its class.

Heuristic #3: A client-server dependency between two classes should not lead to
dependencies from the server to the client.

Heuristic #4: Avoid dependencies from database classes to their clients.

Heuristic #5: A class should capture one and only one key abstraction with all its
information and all its behavior.

Heuristic #6: Do not create unnecessary classes to model roles.

Heuristic #7: Avoid pure accessor methods.

Heuristic #8: Avoid additional relationships from base classes to their derived classes.

Heuristic #9: Avoid classes with properties implying redundancies.

Heuristic #10: Avoid multivalued dependencies.

Heuristic #11: Convert associations, and uses relationships in the strongest
containment relationship wherever possible.

Heuristic #12: Avoid contained instances that have to be modified concurrently.

Heuristic #13: All properties of the base class interface must be usable in instances of
its
derived classes in every location where a base class instance is expected.

Heuristic #14: Common properties of instances should be defined in a single location.

Heuristic #15: Instable classes should not be base classes.

Heuristic #16: Do not misuse inheritance for sharing attributes.

Heuristic #17: The overloading should define only differences to the overloaded
method.

Heuristic #18: Avoid case analysis on properties of instances.

Heuristic #19: Prefer typing by attribute before typing by inheritance.

Heuristic #20: A method should use only classes of attributes of its class, classes of its
parameters, or classes of instances locally created.

 135

A.5 Code Smell Taxonomy

The following taxonomy was assembled by [Mantyla 2006].

It can be used to understand how the different code smells impact on different parts of
a system’s design.

Group name Smells in group

The Bloaters

-Long Method
-Large Class
-Primitive Obsession
-Long Parameter List
-DataClumps

Bloater smells represent something that has grown so large that it cannot be
effectively handled.

Primitive Obsession is actually more of a symptom that causes bloats than a
bloat itself. The same holds for Data Clumps. When a Primitive Obsession
exists, there are no small classes for small entities (e.g. phone numbers). Thus,
the functionality is added to some other class, which increases the class and
method size in the software.

With Data Clumps there exists a set of primitives that always appear together
(e.g. 3 integers for RGB colors). Since the data items are not encapsulated in a
class, this increases the sizes of methods and classes.

The Object-
Orientation
Abusers

-Switch Statements
-Temporary Field
-Refused Bequest
-Alternative Classes with Different
Interfaces

The common denominator for the smells in the Object-Orientation Abuser
category is that they represent cases where the solution does not fully exploit
the possibilities of object-oriented design.

For example, a Switch Statement might be considered acceptable or even good
design in procedural programming, but is something that should be avoided in
object-oriented programming. The situation where switch statements or type
codes are needed should be handled by creating subclasses. Parallel Inheritance
Hierarchies and Refused Bequest smells lack proper inheritance design, which
is one of the key elements in object-oriented programming.

 136

The Alternative Classes with Different Interfaces smell lacks a common
interface for closely related classes, so it can also be considered a certain type
of inheritance misuse. The Temporary Field smell means a case in which a
variable is in the class scope, when it should be in method scope. This violates
the information hiding principle.

The Change
Preventers

-Divergent Change
-Shotgun Surgery
-Parallel Inheritance Hierarchies

Change Preventers are smells is that hinder changing or further developing the
software

These smells violate the rule suggested by Fowler and Beck, which says that
classes and possible changes should have a one-to-one relationship. For
example, changes to the database only affect one class, while changes to
calculation formulas only affect the other class.

The Divergent Change smell means that we have a single class that needs to be
modified by many different types of changes. With the Shotgun Surgery smell
the situation is the opposite, we need to modify many classes when making a
single change to a system (change several classes when changing database
from one vendor to another)

Parallel Inheritance Hierarchies, which means a duplicated class hierarchy, was
originally placed in OO-abusers. One could also place it inside of The
Dispensables since there is redundant logic that should be replaced.

The
Dispensables

-Lazy class
-Data class
-Duplicate Code
-Dead Code,
-Speculative Generality

The common thing for the Dispensable smells is that they all represent
something unnecessary that should be removed from the source code.

This group contains two types of smells (dispensable classes and dispensable
code), but since they violate the same principle, we will look at them
together. If a class is not doing enough, it needs to be removed or its
responsibility needs to be increased. This is the case with the Lazy class and
the Data class smells. Code that is not used or is redundant needs to be
removed. This is the case with Duplicate Code, Speculative Generality and
Dead Code smells.

 137

The
Couplers

-Feature Envy
-Inappropriate Intimacy
-Message Chains
-Middle Man

This group has four coupling-related smells.

One design principle that has been around for decades is low coupling (Stevens
et al. 1974). This group has 3 smells that represent high coupling. The Middle
Man smell on the other hand represents a problem that might be created when
trying to avoid high coupling with constant delegation. Middle Man is a class
that is doing too much simple delegation instead of really contributing to the
application.

The Feature Envy smell means a case where one method is too interested in
other classes, and the Inappropriate Intimacy smell means that two classes are
coupled tightly to each other. Message Chains is a smell where class A needs
data from class D. To access this data, class A needs to retrieve object C from
object B (A and B have a direct reference). When class A gets object C it then
asks C to get object D. When class A finally has a reference to class D, A asks
D for the data it needs. The problem here is that A becomes unnecessarily
coupled to classes B, C, and D, when it only needs some piece of data from
class D. The following example illustrates the message chain smell:
A.getB().getC().getD().getTheNeededData()

Of course, I could make an argument that these smells should belong to the
Object-Orientation abusers group, but since they all focus strictly on coupling,
I think it makes the taxonomy more understandable if they are introduced in a
group of their own.

 138

A.6 Refactoring Tool Support Comparison

Comparison compiled by [Refactorit 2006].

	FRONT
	Title page
	Abstract
	Acknowledgements
	List of abbreviations
	Table of Contents
	List of Tables
	List of Figures

	CHAPTER 1
	1.1 Background
	1.2 Motivation
	1.3 Research objectives
	1.4 Overview

	CHAPTER 2
	2.1 Design Heuristics and Design Patterns
	2.2 Software Maintenance
	2.3 Software Evolution
	2.4 Summary

	CHAPTER 3
	3.1 Definition
	3.2 Overview
	3.3 Applicability
	3.4 Motivations
	3.5 Problems
	3.7 Code Review Motivation
	3.6 Tool Survey Motivation
	3.8 Summary

	CHAPTER 4
	4.1 Introduction
	4.2 Founding Work
	4.3 Recent Research
	4.4 Summary

	CHAPTER 5
	5.1 JDK Code Base Statistics
	5.2 Classifying Code Smells
	5.3 Choosing Thresholds in IDEA
	5.4 Java As The Language Of Choice
	5.5 Summary

	CHAPTER 6
	6.1 Unnecessary Code
	6.2 Summary

	CHAPTER 7
	7.1 Introduction
	7.2 Code Review Methodology
	7.3 Locating Duplicates
	7.4 Inheritance Issues
	7.5 Type Code
	7.6 Abstraction Issues
	7.7 Encapsulation
	7.8 Method Metrics
	7.9 Class Metrics
	7.10 Summary

	CHAPTER 8
	8.1 Introduction
	8.2 Poor Method Composition
	8.3 Creational Issues
	8.4 Redundant if Statements
	8.6 IDEA Code Review Conclusion

	CHAPTER 9
	9.1 Filtering Refactorings By Context In Eclipse
	9.2 Productivity Issues
	9.3 Handling Refactoring Complexity
	9.4 Summary

	CHAPTER 10
	10.1 A Statistical View
	10.2 Quick Win Group
	10.3 Strategic Group
	10.4 Low Hanging Fruit Group
	10.5 Avoid Group
	10.6 Removing the Avoid Group
	10.7 Summary

	CHAPTER 11
	11.1 Refactoring Contributions
	11.2 Analysis Results
	11.3 Future Work
	11.4 Final Thoughts

	REFERENCES
	APPENDIX

