The medicinal and chemical aspects of naphthoquinones isolated from *Euclea natalensis* A. DC. on *Mycobacterium tuberculosis*

by

Frank van der Kooy

Submitted in partial fulfillment of the requirements for the degree of Philosophiae Doctor

In the Faculty of Natural and Agricultural Sciences Department of Botany University of Pretoria

> Pretoria January 2007

Promoter: Prof. J.J.M. Meyer

The medicinal and chemical aspects of naphthoquinones isolated from *Euclea natalensis* A. DC. on *Mycobacterium tuberculosis*

by

Frank van der Kooy

Supervisor: Department: Degree: Prof. J.J.M. Meyer Botany Philosophiae Doctor

Abstract

The isolation and antimycobacterial activity of several naphthoquinones from *Euclea natalensis* were previously reported and initiated this study into the occurrence, chemistry and biological activity of this class of compounds. The structure activity relationship of the isolated naphthoquinones, and commercially available derivatives were also studied.

Several plant species were investigated to establish a possible link between their traditional use for chest related symptoms (including tuberculosis infection) and the occurrence of 7-methyljuglone in these plants. The plants were extracted and tested qualitatively with the use of three analytical tools for the presence of 7-methyljuglone or related naphthoquinones.

Due to its commercial unavailability, the chemical synthesis of two of these naphthoquinones, 7-methyljuglone and diospyrin, was attempted with varying degrees of success. The Friedel-Crafts acylation method was used to synthesise 7-methyljuglone from *m*-cresol and maleic anhydride as starting material. The optimisation of the synthesis was also investigated. Through a two-step pathway of epoxidation and steam distillation, diospyrin was

University of Pretoria etd – Van der Kooy, F (2007)

successfully synthesised albeit in small quantities. During the attempts to synthesise diospyrin, two other related compounds were also synthesised. These compounds, neodiospyrin and mamegakinone, are structural isomers of diospyrin.

The stability of some of the naphthoquinones was tested in various carriers in an attempt to explain the influence this will have on the obtained antituberculosis and toxicity data. The BACTEC vial solution, which is widely used to determine potency against *Mycobacterium tuberculosis*, was analysed with HPLC to determine the stability of these compounds in it. In addition the stability in organic solvents especially DMSO, was also tested as this is the solvent of choice for hydrophobic compounds in almost all bioassays.

The antituberculosis activity and/or toxicity of 7-methyljuglone was investigated with three bioassays, to broaden our knowledge on the mechanism of action of naphthoquinones. Vero cells were employed to determine the inhibitory concentration (IC50) of most of the naphthoquinones. Mice experiments were carried out to determine the toxicity of 7-methyljuglone and diospyrin *in vivo*. In addition the lead compound, 7-methyljuglone, was tested on *Musca domestica* (house fly) to establish its toxicity on this organism.

In order to find the pharmacophore of this class of compounds, a preliminary structureactivity relationship was conducted. During this study the active site in the compounds which confers potency and toxicity was partly established.

The mode of action of some of the naphthoquinones was investigated and it was established that the compounds might interfere with the mycobacterial electron transport chain. A fluorinated 7-methyljuglone stops the production of menaquinone which transports electrons from the NADH dehydrogenase complex to the cytochrome bc complex and effectively kills the mycobacterium.

Keywords: diospyrin, electron transport chain, 7-methyljuglone, *Mycobacterium tuberculosis*, structure-activity relationship.

TABLE OF CONTENTS

Chapter 1

Introduction

1.1	General background and introduction	11
1.1.1	Occurrence and treatment of Mycobacterium tuberculosis	11
1.1.2	Natural product chemistry	13
1.1.3	Organic synthesis	15
1.1.4	Stability and solubility of naphthoquinones	16
1.1.5	Toxicity of naphthoquinones	17
1.1.6	Structure-activity relationship	17
1.1.7	Mode of action studies	18
1.2	Objectives of this study	18
1.3	Structure of thesis	19
1.4	References	21

Chapter 2

Literature review

2.1	An introduction to Euclea natalensis	24
2.1.1	Traditional uses	25
2.1.2	Phytochemistry	25
2.2	Occurrence and profiling of 7-methyljuglone in plants	26
2.3	Chemistry and biological activity of naphthoquinones	27
2.3.1	Synthesis of naphthoquinones	27
2.3.2	Biological activity of naphthoquinones	28
2.3.3	Mode of action of naphthoquinones	30
2.4	References	31

Chapter 3

The occurrence and profiling of naphthoquinones in ethnobotanically selected plants

3.1	Introduction	39
3.2	Materials and methods	41
3.2.1	Plant material	41
3.2.2	Preparation of extracts	41
3.2.3	Profiling with TLC	42
3.2.4	Profiling with HPLC	42
3.2.5	Profiling with NMR	42
3.2.6	Fingerprinting Drosera capensis	43
3.3	Results	43
3.3.1	Profiling with TLC	43
3.3.2	Profiling with HPLC	45
3.3.3	Profiling with NMR	45
3.3.4	Fingerprinting Drosera capensis	50
3.4	Discussion and conclusions	51
3.5	References	53

Chapter 4

Synthesis of 7-methyljuglone and diospyrin

4.1	Introduction	57
4.2	Materials and methods	58
4.2.1	Materials	58
4.2.2	Methods	59
4.2.2.1	Synthesis of 7-methyljuglone	59
4.2.2.1.1	Effect of different quantities of reagents on 7-methyljuglone formation	59
4.2.2.1.2	Effect of different quantities of catalyst on 7-methyljuglone formation	60
4.2.2.1.3	Influence of temperature on 7-methyljuglone formation	60

University of Pretoria etd – Van der Kooy, F (2007)

4.2.2.1.4	Effect of altering reaction times	61
4.2.2.2	Epoxidation of 7-methyljuglone	61
4.2.2.2.1	Effect of reaction time on epoxide formation	61
4.2.2.2.2	Influence of time before acidification	61
4.2.2.2.3	Effect of amount of acid on epoxide formation	62
4.2.2.3	Synthesis of diospyrin	62
4.2.2.3.1	Oxidative dimerisation of 7-methyljuglone	62
4.2.2.3.2	Buffered reaction between hydroquinone and 7-methyljuglone	62
4.2.2.3.3	Epoxide condensation	63
4.2.2.3.3.1.	Addition of an Bronsted-Lowry acid to the epoxide	63
4.2.2.3.3.2	Addition of an Lewis acid and steam distillation	63
4.3	Results	64
4.3.1	Synthesis of 7-methyljuglone	64
4.3.1.1	Effect of different quantities of reagents on 7-methyljuglone	64
	formation	
4.3.1.2	Effect of different catalyst ratios	64
4.2.1.3	Influence of temperature on 7-methyljuglone formation	65
4.1.2.4	Effect of altering stirring times	65
4.3.2	Epoxidation of 7-methyljuglone	66
4.3.2.1	Influence of reaction time on epoxide formation	66
4.3.2.2	Effect of time before acidification	66
4.3.2.3	Effect of the amount of acid	67
4.3.3	Synthesis of diospyrin	68
4.3.3.1	Oxidative dimerisation of 7-methyljuglone	68
4.3.3.2	Buffered reaction between hydroquinone and 7-methyljuglone	68
4.3.2.3	Epoxide condensation	68
4.3.2.3.1	Addition of Bronsted-Lowry acid	68
4.3.2.3.2	Addition of Lewis acid and steam distillation	69
4.4	Discussion and conclusions	70
4.5	References	74

Chapter 5

Stability of naphthoquinones

5.1	Introduction	76
5.2	Materials and methods	77
5.2.1	Materials	77
5.2.2	Methods	77
5.2.2.	1 Stability in dimethylsulfoxide	77
5.2.2.2	2 Stability in BACTEC buffer solution	78
5.2.2.	3 Stability in vero cell toxicity bioassay buffer	78
5.2.2.4	4 Stability in 20% DMSO/Agar mixture	78
5.2.2.	5 Stability in broth used for mode of action studies	78
5.3	Results	79
5.3.1	Stability in dimethylsulfoxide	79
5.3.2	Stability in BACTEC buffer solution	82
5.3.3	Stability in vero cell toxicity bioassay buffer	83
5.3.4	Stability in 20% DMSO/Agar mixture	84
5.3.5	Stability in broth used for mode of action studies	84
5.4	Discussion and conclusions	84
5.5	References	87

Chapter 6

Toxicity of naphthoquinones

6.1	Introduction	89
6.2	Materials and methods	89
6.2.1	Materials	89
6.2.1.1	Culturing of Vero monkey kidney cells	89
6.2.1.2	Toxicity of 7-methyljuglone and diospyrin in mice	90
6.2.1.3	Toxicity of 7-methyljuglone in Musca domestica	90

6.2.2	Methods	90
6.2.2.1	Determination of the IC50 of naphthoquinones on vero cells	90
6.2.2.2	Toxicity of 7-methyljuglone and diospyrin in mice	91
6.2.2.3	Toxicity of 7-methyljuglone in Musca domestica	91
6.3	Results	91
6.3.1	Determination of the IC50 of naphthoquinones on vero cells	91
6.3.2	Toxicity of 7-methyljuglone and diospyrin in mice	92
6.3.3	Toxicity of 7-methyljuglone in Musca domestica	93
6.4	Discussion and conclusions	95
6.5	References	98

Chapter 7

Structure-activity relationship of naphthoquinones

7.1	Introduction	100
7.2	Materials and methods	101
7.2.1	MIC determination	101
7.2.2	Toxicity bioassay	103
7.3	Results	103
7.3.1	MIC and toxicity determination	103
7.3.2	Structure-activity relationship	104
7.4	Discussion and conclusions	105
7.5	References	106

Chapter 8

The mode of action of naphthoquinones in Mycobacterium

smegmatis

8.1 Introduction

University of Pretoria etd – Van der Kooy, F (2007)

8.2	Materials and methods	113
8.2.1	Activity against M. smegmatis	113
8.2.2	M. smegamatis cultures	113
8.2.3	Extraction of M. smegmatis cells	114
8.2.4	HPLC analysis	114
8.3	Results	114
8.3.1	Activity against M. smegmatis	114
8.3.2	M. smegamatis cultures	116
8.3.3	HPLC analysis	116
8.4	Discussion and conclusions	118
8.5	References	121

Chapter 9 123

General Discussion and Conclusions

Acknowledgements and Publications	127
-----------------------------------	-----