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Abstract

The theory of viscosity solutions was developed for certain types of nonlinear first-order

and second-order partial differential equations. It has been particularly useful in de-

scribing the solutions of partial differential equations associated with deterministic and

stochastic optimal control problems [16], [53]. In its classical formulation, see [16], the

theory deals with solutions which are continuous functions. The concept of continuous vis-

cosity solutions was further generalized in various ways to include discontinuous solutions

with the definition of Ishii given in [71] playing a pivotal role. In this thesis we propose a

new approach for the treatment of discontinuous solutions of first-order Hamilton-Jacobi

equations, namely, by involving Hausdorff continuous interval valued functions.

The advantages of the proposed approach are justified by demonstrating that the main

ideas within the classical theory of continuous viscosity solutions can be extended almost

unchanged to the wider space of Hausdorff continuous functions and the existing theory

of discontinuous viscosity solutions is a particular case of that developed in this thesis in

terms of Hausdorff continuous interval valued functions.
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Two approaches to numerical solutions for Hamilton-Jacobi equations are presented. The

first one is a monotone scheme for Hamilton-Jacobi equations while the second is based

on preserving total variation diminishing property for conservation laws.

In the first approach, we couple the finite element method with the nonstandard finite

difference method which is based on the Mickens’ rule of nonlocal approximation [9]. The

scheme obtained in this way is unconditionally monotone.

In the second approach, computationally simple implicit schemes are derived by using

nonlocal approximation of nonlinear terms. Renormalization of the denominator of the

discrete derivative is used for deriving explicit schemes of first or higher order. Unlike the

standard explicit methods, the solutions of these schemes have diminishing total variation

for any time step size.
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