

Development of a laser induced fluorescence

technique for the analysis of organic air pollutants

by

Patricia B.C. Forbes

Submitted in partial fulfillment of the requirements for the degree

PhD (Chemistry)

in the Faculty of Natural & Agricultural Science

University of Pretoria

February 2010

© University of Pretoria

I declare that the thesis that I hereby submit for the degree PhD Chemistry at the University of Pretoria is my own work and has not previously been submitted by me for degree purposes at any other university or institution.

Date

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants which are of concern due to their potential human toxicity. They are formed during numerous combustion processes, including biomass burning and diesel vehicular emissions, which are of relevance in developing countries.

A novel analytical screening method for atmospheric polycyclic aromatic hydrocarbons (PAHs) was developed in this study based on laser induced fluorescence (LIF) of samples on quartz multi-channel polydimethylsiloxane (PDMS) traps. A tunable dye laser with a frequency doubling crystal provided the excitation radiation, and a double monochromator with a photomultiplier tube detected emitted fluorescence. The method allowed for the rapid (<5 min), cost effective analysis of samples. Those yielding interesting results could be further analysed by direct thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS, with limits of detection of ~0.3 ng.m⁻³), as photodegradation was minimal (<10 % over 5 min irradiation). Without any signal optimization, a LIF detection limit of ~1 μ g.m⁻³ was established for naphthalene using a diffusion tube (diffusion rate of 2 ng.s⁻¹) and 292 nm excitation. Gas standards which facilitated the uniform distribution of analyte across each of the 22 PDMS tubes were provided by easily constructed diffusion tubes for naphthalene and by a gas chromatographic fraction collection method for the less volatile target PAHs.

The methods developed were successfully tested in a number of applications which are of relevance to southern Africa, as emissions from sugar cane burning, household fires, diesel vehicles and industries were monitored. The LIF method allowed for the differentiation between impacted and non-impacted industrial sites, and the importance of naphthalene as an indicator for atmospheric PAHs was verified in that this PAH was the most abundant in the various applications which were investigated. The multi-channel silicone rubber traps were also evaluated theoretically and practically in the denuder configuration, in order to monitor PAHs in both the gas and particle phases, which is important in terms of human health effects.

The novel LIF method developed in this study has the potential to serve as a screening tool to avoid the comprehensive and costly analysis of samples which do not contain appreciable levels of PAHs. The experimental procedure is simple and rapid, with acceptably low limits of detection, even with the initial, unoptimized optical arrangement and without extensive time-averaging. LIF also provides selectivity without the need for sample clean-up and separation processes.

The LIF method could be further optimized by improving the laser energy stability, as well as by the investigation of possible time resolution techniques. As equipment cost considerations were important, it is possible that the LIF screening method could find application in a centralized environmental laboratory for the southern African region. This would facilitate the widespread monitoring of atmospheric PAHs in a cost effective manner.

Acknowledgements

The CSIR, National Laser Centre (NLC), National Research Foundation (NRF, Thuthuka programme) and DAAD are gratefully acknowledged for funding provided for this research.

Henk van Wyk from the NLC is thanked whole-heartedly for his invaluable technical input with respect to the LIF setup.

Thanks are extended to my family and the numerous friends and colleagues who assisted me along this life journey, and who motivated me to see it to completion. I would like to make special mention of Dr Erla Harden and Yvette Naudé for their guidance and support, and Andreas Trüe for assisting with the TD-GC-MS analyses.

My supervisor, Professor Egmont Rohwer, was "a rock in the pounding ocean of life" during this time. His patience, guidance and expert mentorship is greatly appreciated.

I would also like to thank my greatest supporter (and harshest critic): my husband Andrew, as well as my daughter Juliet, for their love and for always being there for me.

Table of contents

Abstract	iii
Acknowledgements	v
Abbreviations	ix
List of Tables	xi
List of Figures	xiii
CHAPTER 1 INTRODUCTION	
1.1 Air pollution in developing countries	1
1.2 Hindrances to air pollutant monitoring in developing countries and means by	_
which these are being addressed	3
1.3 Overview of organic air pollutant monitoring in southern Africa	4
1.3.1 Botswana	4
1.3.2 Lesotho	5
1.3.3 Mozambique	5
1.3.4 Namibia	5
1.3.5 South Africa	5
1.3.6 Swaziland	7
1.3.7 Zimbabwe	7
1.3.8 Other African studies	8
1.3.9 Involvement of southern Africa in international conventions	8
1.3.10 Southern African air monitoring campaigns	9
1.4 Use of alternative monitoring methods	9
1.4.1 Passive sampling	10
1.4.2 Indicator compounds	10
1.4.3 Screening methods	11
1.5 Purpose of this study	11
1.6 Structure of the thesis	12
1.7 References	12
CHAPTER 2 THE GENERATION OF TRACE GAS STANDARDS	
2.1 Introduction	15
2.2 Permeation tubes	16
2.2.1 Theory	16
2.2.2 Experimental method	19
2.2.3 Results and discussion	20
2.2.4 Conclusion	24
2.3 Diffusion tubes	25
2.3.1 Theory	25
2.3.2 Experimental method	27
2.3.3 Results and discussion	31

2.3.4 Conclusion	34
2.4 PDMS trap loading via gas chromatographic fraction collection	34
2.4.1 Background	34
2.4.2 Experimental method	35
2.4.3 Results and discussion	39
2.4.4 Conclusion	44
2.5 Overall conclusion	45
2.6 References	47

CHAPTER 3 LASER INDUCED FLUORESCENCE OF ATMOSPHERIC POLYCYCLIC AROMATIC HYDROCARBONS

3.1 Introduction	48
3.1.1 Problem statement and aim	49
3.1.2 PAHs in the environment	50
3.1.3 Fluorescence characteristics of PAHs	57
3.1.4 Literature review of the use of laser induced fluorescence in the	
monitoring of PAHs	60
3.1.5 The role of screening methods in PAH analysis	62
3.1.6 Choice of PAHs to be studied	63
3.1.7 Multi-channel silicone rubber traps	64
3.2 Development of the LIF method	66
3.2.1 Initial method development	66
3.2.2 Repeatability of the method	72
3.2.3 Sensitivity of the method	83
3.2.4 PAH photodegradation	104
3.2.5 Energy experiments	121
3.2.6 Substrate optimization	129
3.3 Overall conclusion	135
3.4 References	136

CHAPTER 4 THE USE OF MULTI-CHANNEL SILICONE RUBBER TRAPS AS DENUDERS

4.1 Introduction	142
4.2 Theoretical considerations	151
4.2.1 Verification of laminar flow	151
4.2.2 Verification of negligible linear velocity arising from longitudinal diffusion	152
4.2.3 Calculation of the efficiency of removal of gaseous components	
by the denuder	154
4.2.4 Calculation of the efficiency of particle transmission by the denuder	157
4.3 Discussion and conclusion	161
4.4 References	162
CHAPTER 5 APPLICATIONS	

5.1 Introduction	165
5.2 Domestic fuel burning	165
5.2.1 Background	165
5.2.2 Experimental method	167

5.2.3	Results and discussion	168
5.3 Diesel ext	naust emissions	170
5.3.1	Background	170
5.3.2	Experimental method	175
5.3.3	Results and discussion	176
5.4 Sugar can	e burning	179
5.4.1	Background	179
5.4.2	Experimental method	182
5.4.3	Results and discussion	183
5.5 Industrial	emissions	187
5.5.1	Background	187
5.5.2	Experimental method	188
5.5.3	Results and discussion	189
5.6 Conclusio	n	191
5.7 Reference	·S	194
CHAPTER (5 CONCLUSION	197
APPENDICI	ES	-1-
Appendix A	Published papers based on thesis work	-2-
A1	Monitoring of trace organic air pollutants – a developing country	
	perspective	-3-
A2	Investigations into a novel method for atmospheric polycyclic aromatic hydrocarbon monitoring	-14-
A3	Laser induced fluorescence of polycyclic aromatic hydrocarbons: An app	roach
	to gas standards	-22-
Α4	Additional outputs based on thesis work	-28-
	T T T T T T T T T T T T T T T T T T T	

Abbreviations

ACGIH	American Conference of Governmental Industrial Hygienists
APINA	Air Pollution Information Network for Africa
AQA	Air Quality Act
ATSDR	Agency for Toxic Substances and Disease Registry
BBO	Beta Barium Borate
BVOC	Biogenic Volatile Organic Compound
CI	Chemical Ionization
CIS	Cooled Injection System
DCM	Dichloromethane
EI	Electron Ionization
EIA	Environmental Impact Assessment
EPA	Environmental Protection Agency
FAGE	Fluorescent Assay by Gas Expansion
FlA	Fluoranthene
FID	Flame Ionization Detector
GAW	Global Atmospheric Watch
GC	Gas Chromatography
HPLC	High Performance Liquid Chromatography
IDLH	Immediately Dangerous to Life and Health
INEC	Infrastructure and Economic Cooperation
LIF	Laser Induced Fluorescence
LOD	Limit of Detection
LOQ	Limit of Quantitation
MS	Mass Spectrometry
MSD	Mass Selective Detector
Naph	Naphthalene
NIOSH	National Institute for Occupational Safety and Health
NIST	National Institute of Standards and Technology
OECD	Organization for Economic Cooperation and Development
OPPO	Optically Pumped Parametric Oscillator
OSHA	Occupational Safety and Health Administration
PAH	Polycyclic aromatic hydrocarbon
PCB	Polychlorinated biphenyls
PCN	Polychlorinated aromatic hydrocarbons
PDMS	Polydimethylsiloxane
PhA	Phenanthrene
PM_{10}	Particulate Matter of size ≤ 10 micron
PM _{2.5}	Particulate Matter of size ≤ 2.5 micron
PMT	Photomultiplier Tube

Ру	Pyrene
POP	Persistent Organic Pollutant
PTFE	Polytetrafluoroethylene
PUF	Polyurethane Foam
RAPIDC	Regional Air Pollution in Developing Countries
RMS	Root Mean Square
SAFARI-92	Southern Africa Fire-Atmosphere Research Initiative of 1992
SAFARI 2000	Southern African Regional Science Initiative of 2000
SEANAC	Southern and Eastern Africa Network of Analytical Chemists
SEP	Sample Enrichment Probe
SIC	Single Ion Current
SIDA	Swedish International Development Cooperation Agency
SPME	Solid Phase Microextraction
STP	Standard Temperature and Pressure
SVOC	Semi-volatile Organic Compound
TD	Thermal Desorption
TDS	Thermal Desorption System
TIC	Total Ion Current
TSP	Total Suspended Particulates
UK	United Kingdom
USA	United States of America
UV	Ultraviolet
VOC	Volatile Organic Compound
WMO	World Meteorological Organization

List of tables

Table 1.1: Existing national monitoring programmes, activities and datasets for	
southern African countries	9
Table 2.1: Permeation rate of analytes through Teflon permeation tubes	21
Table 2.2: Theoretical diffusion rates, for $L = 35 \text{ mm}$	31
Table 2.3: Time required for steady-state conditions to be reached for the	
PAH diffusion tubes	32
Table 2.4: Percentage recoveries for PAHs from GC loading of a 20 ng mixed standard,	
using different traps and different collection times	41
Table 2.5: Percentage recoveries for PAHs from GC loading of a 20 ng mixed standard	
using optimized collection conditions	42
Table 2.6: Breakthrough of PAHs from the primary trap upon GC loading of a 20 ng	
mixed standard with a make-up flow rate of 50 m ℓ .min ⁻¹	42
Table 2.7: Effect of trap cooling on analyte recoveries and repeatability during	
GC loading	43
Table 2.8: Effect of storage of GC loaded traps on analyte recoveries	44
Table 3.1: Main PAHs emitted from various sources, which can be used	
for source fingerprinting	51
Table 3.2: Summary of selected reported atmospheric PAH concentrations	54
Table 3.3: Atmospheric lifetimes of gas-phase PAHs, based on reaction with	
reactive species	56
Table 3.4: Reported fluorescence excitation and emission wavelengths for	7 0
selected PAHs	58
Table 3.5: HPLC fluorescence detection limits of selected PAHs, based on a signal to	50
noise ratio of 2:1	58 50
Table 3.6: Fluorescence lifetimes and quantum yields for PAHs of interest	39
Table 5.7: TD-GC-MS results of repeated 5 minute diffusion tube loading of naphtnatene	76
Onto two different traps	/0
incident laser energies	70
Table 2.0: Average escillescope signals over 60 s for nonbibility leaded onto different	/0
multi channel silicone rubber trans	80
Table 3 10: NIOSH method 5506 I OD and I OO values for PAHs	85
Table 3.11: TD-GC-MS results of diffusion tube loading of nanhthalene onto two trans	05
for different time intervals	97
Table 3 12: Experimental results obtained for different diffusion tube loading flow rates	100
Table 3.13: Comparison of expected versus actual pyrene concentrations on multi-channel	100
silicone rubber traps loaded via gas chromatographic fraction collection	101
Table 3.14: Comparison of expected versus actual phenanthrene concentrations on multi-	
channel silicone rubber traps loaded via gas chromatographic	
fraction collection	103

Table 3.15: Photolytic half-lives (in hours) of the PAHs of interest, including	
the light intensity	108
Table 3.16: Naphthalene LIF photodegradation data with estimated fluorescence signal	
decreases post equilibration	113
Table 3.17: Half-life of naphthalene calculated from the LIF experimental data and first	
order reaction kinetics	114
Table 3.18: Photodegradation products of naphthalene, phenanthrene and pyrene,	
as determined by NIST library comparisons	119
Table 3.19: Energy attenuation by borosilicate glass plates	127
Table 3.20: Variations in silicone rubber manufacture	131
Table 3.21: Effects of solvent rinsing on silicone rubber product	132
Table 4.1: Levels of PAHs sorbed onto a glass fibre filter medium, as a percentage of that	Ţ
found on the primary filter	144
Table 4.2: Winter and summer gas phase and particulate PAH concentrations, derived	
from filter and PUF sampling	144
Table 4.3: Gas phase and particulate PAH concentrations, derived from filter	
and PUF sampling	145
Table 4.4: Gas phase and particulate phase PAH concentrations, derived from filter and	
PUF (primary and backup plug) sampling	145
Table 4.5: Neutral particle transport efficiencies for different particle sizes	160
Table 5.1: Non-PAH products of domestic fuel burning found in the trap and filter	
samples, as determined by NIST library comparisons of the	
TD-GC-MS data	169
Table 5.2: Mean PAH concentrations in class A2 diesel fuel	171
Table 5.3: PAHs extracted from diesel particles from light duty diesel engine exhausts	171
Table 5.4: Percentage distribution of PAHs between the gas and particle phases in	
gasoline and diesel exhausts	174
Table 5.5: Naphthalene concentrations ($\mu g.m^{-3}$) in diesel vehicle emissions	
sampled onto multi-channel silicone rubber traps and quartz fibre	
filters with TD-GC-MS analysis	177
Table 5.6: Non-PAH products of diesel vehicle emission trap and filter samples,	
as determined by NIST library comparisons of the TD-GC-MS data	178
Table 5.7: Sugar cane burn PAH TD-GC-MS results (analysis on 4 September 2006),	
indicating concentrations (for naphthalene) or relative % contributions	
(for the other PAHs)	186
Table 5.8: Sampling conditions for the monitoring of PAHs in industrial	
atmospheric emissions	188
Table 5.9: Industrial monitoring LIF screening and TD-GC-MS naphthalene results	
for the three sampling sites and different sampling volumes	190

List of figures

Figure 1.1: Southern African countries	2
Figure 1.2: A silicone rubber trap containing multiple PDMS channels	7
Figure 2.1: Examples of chlorobenzene permeation tubes	20
Figure 2.2: Usage of permeation tubes	20
Figure 2.3: Mass loss from the chlorobenzene and 1,3-dichlorobenzene permeation tubes	22
Figure 2.4: Mass loss from the two 1,2-dichlorobenzene permeation tubes over	
~26 000 hours	22
Figure 2.5: Mass loss from the short and long 1,2,4-trichlorobenzene permeation tubes	23
Figure 2.6: Mass loss from the 2,4-dichlorophenol permeation tube over ~5500 hours	23
Figure 2.7: Naphthalene diffusion tube	27
Figure 2.8: Naphthalene diffusion tube inside the diffusion tube holder	29
Figure 2.9: Use of the naphthalene diffusion tube to load a silicone rubber trap with	
gaseous phase standard	29
Figure 2.10: Alternative diffusion tube configuration	30
Figure 2.11: Experimental diffusion rate obtained for the naphthalene diffusion tube	32
Figure 2.12: Cross section of the Agilent FID	36
Figure 2.13: Experimental setup for the loading of PAHs onto multi-channel silicone	
rubber traps from the FID outlet	36
Figure 2.14: Liquid nitrogen cooling during gas chromatographic loading	39
Figure 2.15: Recovery of 20 ng of individual PAHs from multi-channel silicone rubber	
traps after gas chromatographic loading of a mixed standard using	
different FID make-up flow rates	40
Figure 3.1: Structure of selected PAHs	49
Figure 3.2: Environmental fate of PAHs	56
Figure 3.3: Chemical structure of Rhodamine 6G	67
Figure 3.4: Initial experimental setup for the dye laser system	68
Figure 3.5: Final experimental setup for the dye laser system	69
Figure 3.6: Fluorescence spectrum obtained for 27 ng of benzo(<i>a</i>)pyrene on a quartz	
multi-channel silicone rubber trap, with 302 nm excitation	70
Figure 3.7: Fluorescence spectrum of (a) a blank quartz silicone rubber trap; (b) a quartz	
silicone rubber trap with laboratory air flowing through it at 580 m ℓ .min ⁻¹ ;	
and (c) a quartz silicone rubber trap containing 30 ng of naphthalene	
(added as a liquid standard)	71
Figure 3.8: Blank trap fluorescence spectra for various traps with 292 nm excitation	17
Figure 3.9: Comparison of the fluorescence spectra of blank trap P11, recorded on	-
different days, with different laser incident energies	/8

Figure 3.10: Naphthalene fluorescence signal at 323 nm after diffusion tube loading onto three different traps in the same manner	79
Figure 3 11: Naphthalene repeatability experiment to determine the effect of slight	17
variations in trap positioning showing consecutive in- and out-of-beam	
neriods	81
Figure 3.12: Second nanothalene repeatability experiment to determine the effect of	01
slight variations in tran positioning showing consecutive in and	
out of beam periods	87
Eigure 2.12: Experimental setup for the LIE breakthrough experiments	02 07
Figure 3.14: Elyperaneous signal at 222 pm (nonhthalana amission) abtained with 202 pm	0/
Figure 5.14: Fluorescence signal at 325 mil (naphthalene emission) obtained with 292 mil	00
excitation as a function of time at a sample spot at the entrance of the trap	90
Figure 3.15: Secondary trap fluorescence at 323 nm during the loading phase of a	00
breakthrough experiment for naphthalene, using a diffusion tube	90
Figure 3.16: Primary, secondary and blank trap spectra obtained after a breakthrough	
loading experiment using a naphthalene diffusion tube and 292 nm	
excitation	91
Figure 3.17: LIF scans of the primary trap after 1 h naphthalene diffusion tube loading at	
480 m ℓ .min ⁻¹ , where spot 1 is at the top of the trap and spots 2 and 3	
are below this	93
Figure 3.18: LIF scans, showing similar concentrations of naphthalene in the primary	
(P1) and secondary (P3) traps after 2 hours of diffusion tube loading	
at 495 m ℓ .min ⁻¹	94
Figure 3.19: Fluorescence at 323 nm of the top portion of the secondary trap during	
2 hour naphthalene diffusion tube loading at 495 m ℓ .min ⁻¹	95
Figure 3:20: Loading profile at the top of the secondary trap with diffusion tube loading	
at 1276 m ℓ .min ⁻¹ for 53 min	96
Figure 3.21: TD-GC-MS results for traps loaded with naphthalene from a diffusion tube	
for different time periods	98
Figure 3.22: TD-GC-MS peak areas for traps loaded with naphthalene from a diffusion	
tube for different time periods at 370 m ℓ .min ⁻¹	99
Figure 3.23: Fluorescence spectra of multi-channel silicone rubber traps containing	
pyrene loaded via gas chromatographic fraction collection, with 292 nm	
incident radiation	101
Figure 3.24. Eluorescence spectra of multi-channel silicone rubber trans containing	101
Phenanthrene loaded using the gas chromatographic fraction collection	
method with 292 nm incident radiation	103
Figure 3 25: Naphthalene 323 nm fluorescence signal upon continued laser irradiation	105
(Test Λ & B)	111
Figure 3.26: Nonbthalana 323 nm fluorescence signal upon continued laser irradiation	111
(Test C)	112
(1050 C) Figure 2 27: Norththelene 222 nm fluerescence signal upon continued loser irrediction	112
(Test D)	110
(1081 D) Eiguna 2.29. Dhananthrong 264 nm fluoregannes signal unan continued loss investigation	112
rigure 5.20. Filenanumene 504 nm nuorescence signal upon commued laser irradiation	115
(200 ng loaded using the gas chromatographic fraction collection method)	113
Figure 5.29. Lif scans of phenanthrene before & after 30 minutes of irradiation at 292 nm $(200 \text{ m} \text{ loc} \text{ loc}$	1
(200 ng loaded using the gas chromatographic fraction collection method)	115

Figure 3.30: First order photodegradation kinetics of 200 ng phenanthrene (loaded using	
the gas chromatographic fraction collection method) with 292 nm	
excitation	116
Figure 3.31: Increase in the chromatogram baseline upon the analysis of a sample	
containing photodegradation products	118
Figure 3.32: Variation in laser energy over time and at various points throughout	
the system	124
Figure 3.33: Repeat experiment: variation in laser energy over time and at various points	
throughout the system	125
Figure 3.34: Energy at the exit of the dye laser after optimization	126
Figure 3.35: Loading of naphthalene onto a silicone rubber trap, prior to energy	
attenuation experiments	126
Figure 3.36: Energy attenuation for naphthalene, with $n = 0 - 3$	127
Figure 3.37: Variation in fluorescence signal with changing incident energy	128
Figure 3.38: Molecular structure of benzoyl peroxide	130
Figure 3.39: Fluorescence spectra of various blank quartz traps, with 302 nm excitation	
provided by the dye laser system	133
Figure 3.40: Fluorescence spectra of various blank quartz traps, with 292 nm excitation	
provided by the dye laser system	133
Figure 4.1: Schematic diagram of a cylindrical denuder from a longitudinal (a) view	
and in cross-section (b)	148
Figure 4.2: Schematic diagram of an annular denuder from a longitudinal (a) view	
and in cross-section (b)	148
Figure 4.3: Laminar flow conditions inside an open tube	153
Figure 4.4: Particle transport efficiency through a silicone rubber trap with respect to	
diffusive losses	159
Figure 5.1: Sampling of diesel vehicle emissions with multi-channel silicone rubber traps	1 - 6
and quartz fibre filters	176
Figure 5.2: Sugar cane (<i>Saccharum officinarum</i>) growing in KwaZulu-Natal,	1 = 0
South Africa	179
Figure 5.3: Particle laden plume arising from a sugar cane burn in KwaZulu-Natal	180
Figure 5.4: Sampling train with pump, located approximately 20 m from the burn front	182
Figure 5.5: a) Multi-channel silicone rubber traps and a quartz fibre filter employed	
in the denuder configuration (b) Dismantled silicone trap system after	
sampling, with no particles evident on the trap, whilst the filter	104
which was downstream of the trap is heavily loaded with particles	184
Figure 5.6: Naphthalene fluorescence spectra of the first and second traps at different	
positions along their lengths (where the top indicates the sample inlet	107
side), and the filter, with excitation at 292 nm	182
Figure 5./: Laser induced fluorescence spectra of a primary trap before and after	101
sampling at site 3	191