

New tools for comparative genomics based on oligonucleotide compositional constraints and single nucleotide polymorphisms

 $\mathbf{b}\mathbf{y}$

Hamilton Ganesan

Submitted in partial fulfillment of the requirements for the degree Philosophiae Doctor (Bioinformatics) in the Faculty of Natural and Agricultural Sciences Bioinformatics and Computational Biology Unit Department of Biochemistry University of Pretoria Pretoria June 2009

© University of Pretoria

Declaration

I, Hamilton Ganesan, declare that this thesis/dissertation, which I hereby submit for the degree Philosophiae Doctor at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution.

Publications relevant to this thesis

The following manuscript has been published :

Ganesan, H.; Rakitianskaia, A. S.; Davenport, C. F.; Tümmler, B. & Reva, O. N. (2008) The SeqWord Genome Browser: an online tool for the identification and visualization of atypical regions of bacterial genomes through oligonucleotide usage. BMC *Bioinformatics* **9**, 333.

Acknowledgments

I would first and foremost like to thank the Lord Jesus Christ without whom, I would accomplish nothing. ALL my successes i owe to You.

My family (Mum, Dad, Dane and Alida) who always loved and supported me in all things, I don't have the words that can fully express my thanks.

My supervisor Oleg, Thanks for going the extra-mile and helping me see this work through to completion. Your ever open doors and welcome are truly appreciated. I am indebted to you.

To my co-supervisor Fourie, thanks for all your efforts, friendliness and ever helpful attitude. You have made my PhD an enjoyable endevour.

To all my past and present colleagues at the Pretoria bioinformatics unit (Ayton, Charles, Corne, Oliver, Pieter, Tjaart), you guys have been an awesome bunch and I feel privileged to have worked with you all.

Tuberculosis is one of the leading causes of mortality globally. Although this disease has been around for many generations, treatment and management of the disease remains a daunting challenge. M. tb, is one of the most famous tuberculosis causing organisms, however there are many other mycobacterial strains and species that are also responsible for human mortality, globally. Not all mycobacterial species, however, are disease causing. It is only a few strains such as M. tb H37Rv, M. tb CDC1551, M. tb F11 and M. bovis which are responsible for causing disease. The rest are relatively harmless. What are the genetic differences between these virulent and avirulent strains that dictate a strain's behavior? The answers to these and many other questions lie hidden within the genomes of these organisms. Due to the great advances in DNA sequencing techniques, it is now now possible to more quickly and cheaply, sequence whole bacterial genomes in a single experimental run (High-throughput sequencing). Comparative genomics is therefore extremely relevant and important to be able to handle the dubious amounts of genomic data being poured into our public databases. Several comparative genomics environments already exist on the web today, however the goal of this project is to produce a web-based, comparative genomics environment which not only incorporates basic comparative genomics functions but also, novel tools such as the Seqword Genome Browser (SWGB) and the Mycobacterial Comparison Project (MCP). Using these tools, some interesting comparative genomics findings regarding certain strains of Mycobacteria are made. We reveal several genomic islands within M. avium and M. tb H37Rv. It is shown that certain genes which are usually found to be conserved among other bacteria, tend to be rather divergent among the mycobacteria. 'Mutational hotspots' containing many DNA replication genes are observed to have higher mutation rates relative to the rest of the genome which perhaps accounts for the slow-growth rate of these bacteria. By looking at the genetic profile of PE-PGRS genes in mycobacteria it was shown that M. tb H37Rv and M. tb F11 were actually closer for several genes than when compared to strain H37Ra. The finding was unexpected as H37Ra is known to be derived from H37Rv. These findings are extremely important in the area of TB research as it is of extreme importance to be able to trace areas of greater or lower selection within mycobacteria. Automated sequence comparison such as this is also important for tracking drug resistance markers and other features within mycobacteria so that more focused research can be carried out. The built system was tested and validated with mycobacteria, however, the system is flexible and designed with the intent of inclusion of any prokaryotic organism. It is hoped that systems such as these, and other advances in sequence comparison technology in the future, will provide the understanding needed to better control and cure diseases in the future.

Contents

1	Introduction			1
	1.1	1 What is Comparative Genomics?		1
	1.2	1.2 Sequencing technologies and the need for comparative genomics \ldots \ldots \ldots		2
	1.3	Comm	on Methods used in Comparative Genomics	3
		1.3.1	Sequence Alignment & BLAST	3
		1.3.2	Genome Alignment	5
		1.3.3	Synteny	8
		1.3.4	Gene-by-gene comparative genomics	11
		1.3.5	Single Nucleotide Polymorphism analyses in comparative genomics	12
		1.3.6	Phylogenetic Analyses	14
		1.3.7	Regulatory Motif Discovery	17
	1.4	A Nov	el Comparative Genomic Technique using Oligonucleotide usage pattern	
		profilir	1g	18
		1.4.1	Codon Usage Bias	18
		1.4.2	Oligonucleotide Usage Bias	21
	1.5	Conclu	isions	23
	1.6	6 Problem Statement		24
	1.7	Aims		25
2	An	integra	ated comparative genomics environment	26
	2.1	Introd	uction	26
	2.2	FunGI	MS	27
		2.2.1	Overview of FunGIMS	27
		2.2.2	Model	27
		2.2.3	View	28
		2.2.4	Controller	28
	2.3	Examp	bles of comparative genomics environments and what they have to offer \ldots	29
	2.4	Requir	ements	30
		2.4.1	User interface requirements	30

	2.4.2 Analysis Requirements
	2.4.3 Data structure requirements
2.5	Design Principles
	2.5.1 User interface requirements
	2.5.2 Data structure requirements
	2.5.3 Software components and technologies employed
2.6	Model-View-Controller Architecture and integration
	2.6.1 Model-View-Controller Pattern
	2.6.2 Integration of the various components under the M-V-C design pattern
	2.6.2.1 The Model Laver
	2.6.2.2 The View Laver
	2.6.2.3 The Controller Layer
97	Technical implementation datails
2.1	2.7.1 Database implementation
	2.7.2 Graphical User Interface (GIII)
	2.1.2 Graphical Oser Interface (OOI)
ົງຂ	Implementation of a general comparative generatics environment
2.0	2.8.1 DNA sequence alignment
	2.0.1 Dive sequence alignment with Blast 7
	2.0.2 Genome angminent with Diast Z
<u>م</u> م	2.0.5 r hylogeny analyses
2.9	
3 Th	e Seqword Genome Browser
3.1	Introduction
3.2	Background
3.3	$\operatorname{Results}$
3.4	Identification of divergent genomic islands
3.5	Scientific Investigation – Application to mycobacteria $\ldots \ldots \ldots \ldots \ldots \ldots$
3.6	Discussion
4 Th	e Mycobacterial Comparison Project
4.1	Introduction
4.2	Tuberculosis
4.3	The Mycobacterial genome
4.4	Comparative genomics of Mycobacteria
	The Mycobacterial Comparison Project in context
4.5	
$4.5 \\ 4.6$	Data pre-processing
$4.5 \\ 4.6$	Data pre-processing
$\begin{array}{c} 4.5\\ 4.6\end{array}$	Data pre-processing

5	Con	cludin	ng Discussion	97
	4.11	Discus	ssion	95
		and th	neir role in virulence	84
	4.10	A com	parative genomics investigation of key genomic loci in mycobacterial gene	omes
	4.9	Workf	low summary	84
	4.8	Graph	nical User Interface requirements	83
	4.7	Datab	ase requirements	82
		4.6.5	Gene island data	82
		4.6.4	SNP Data	82

vii

Abbreviations

BLAST	:	Basic Local Alignment Search Tool
CAI	:	Codon Adaptation Index
\mathbf{CF}	:	Cystis Fibrosis
CFTR	:	Cystic Fibrosis Transmembrane Conductance Regulator
D	:	Distance
DNA	:	Deoxy Ribo Nucleic Acid
FuGE	:	Functional Genomics Experiment
FunGIMS	:	Functional Genomics Information Management System
GC	:	Guanine Cytosine
GCS	:	Guanine Cytosine Skew
GRV	:	Global Relative Variance
HTGE	:	Horizontally Transferred Genomic Elements
HTML	:	Hyper Text Mark-up Language
HTTP	:	Hyper Text Transfer Protocol
KB	:	Kilobase
MB	:	Megabase
MSP	:	Maximal Scoring Pair
MUMmer	:	Multiple Unique MatchER
MVC	:	Model-View-Controller
nsSNP	:	non-synonymous Single Nucleotide Polymorphism
ORM	:	Object Relational Mapper
OU	:	Oligonucleotide Usage
PIP	:	Percentage Identity Plot
\mathbf{PS}	:	Pattern Skew
RNA	:	Ribo Nucleic Acid

RPC	: Remote Procedure Call
rRNA	: ribosomal Ribo Nucleic Acid
RSCU	: relative synonymous codon usage (RSCU)
RV	: Relative Variance
SNP	: Single Nucleotide Polymorphism
SQL	: Structured Query Language Abbreviations
sSNP	: synonymous Single Nucleotide Polymorphism
XML	: eXtensible Mark-up Language

ix

List of Figures

1.1	Large-scale synteny between $T.$ annulata (TA) and $T.$ parva (TP) chromosomes	9
1.2	Percent identity plots (PIP) for region immediately upstream of $CFTR/Cftr$ exon	
	1 (nucleotides $5,425-19,425$)	11
1.3	Polymorphisms and genomic organization of ACHE	13
1.4	Of the 5 nsSNPs (namely ACHE:c.169G4A; ACHE:c.1031A4G and ACHE:c.1057- $$	
	C4A) were even able to be mapped directly onto the protein structure (Hasin et	
	al., 2004).	14
1.5	Maximum likelihood phylogenetic tree depicting the relationships between the T .	
	pallidum subspecies	16
1.6	Values of RSCU and w for codons in very highly expressed genes from E. coli and	
	yeast (Sharp <i>et al.</i> , 1987)	19
1.7	GC contents of 1,294 $E.~coli$ genes. Gray bars denote native genes and black bars	
	denote genes that are supposedly acquired by horizontal transfer (Lawrence $et \ al.$,	
	1997)	20
1.8	Plot of CAI vs χ^2 of codon usage for 1,189 E. coli genes	21
1.9	Graph depicting the total counts of biased words	22
1.10	10 most over-represented and under-represented heptanucleotides found in the	
	datasets. Ranked by decreasing z values therefore, the most biased words are	
	found at the top of the list (Rocha <i>et al.</i> , 1998)	23
2.1	Main base classes within FuGE. Newly developed classes developed within FunGIMS	
	inherit from these classes (Pizarro <i>et al.</i> , 2006).	28
2.2	Screenshot of Sybil's synteny gradient	29
2.3	Figure illustrating the MVC design pattern in the context of Turbogears. Numbers	
	represent the order of events subsequent to a user making a server request from	
	the browser.	36
2.4	UML class diagram showing some of the major classes used in the database and	
	the relationships between them	38

xi

LIST OF FIGURES

2.5	An example of a typical view that a user sees. Everything visualized on the page is essentially HTML generated by KID. The 'ALIGN' button is the users way of communicating with the controller and in-turn, the underlying data. Javascript is	
2.6	responsible for user-input validation	40
	screen	42
$2.7 \\ 2.8$	Sample page showing the ClustalW alignment results	$\frac{43}{44}$
2.9	A successful BlastZ job submission will direct users to this page. Here, users may	
	check the progress of their jobs by clicking the 'CHECK PROGRESS' button	45
2.10	Main result page of a BlastZ submission	46
2.11	Graphical display of alignment results using the Laj applet.	47
2.12	Neighbor-joining tree result page	48
3.1	General view of the web-based SWGB	55
3.2	Identification of divergent genomic regions on the 'Gene Map' view	56
3.3	The 'Diagram' view of SWGB	58
3.4	Identification of divergent genomic regions by plotting and highlighting	59
3.5	Filtering genomic regions by multiple parameters. Click the 'Filter' button to open a dialog as shown in the figure. Setting up border values of multiple OU	
	statistical parameters allows more precise localization of regions of interest	61
3.6	Command-line interface of the OligoWords program.	63
3.7	RV, GRV and D gene diagram plot for <i>M. tb</i> H37Rv	64
$3.8 \\ 3.9$	RV, GRV and D dot-plot generated for Mycobacterium avium K10 SWGB view for genomic region 87000-892000 (highlighted). An arrow marks	64
	nramp (in red) on the border of the highlighted region.	65
3.10	RV, PS and GC gene diagram plot for <i>M. tb</i> H37Rv	66
3.11	Global evolutionary changes in mycobacterial genomes as revealed by SWGB dot plots. Each dot corresponds to the calculated oligonucleotide usage pattern for an	
	8kb sliding window of step size 2kb	68
3.12	SNP distribution in homologous loci of M . tb H37Ra and M . tb H37Rv	69
4.1	Experimental results where growth was monitored in $BALB/c$ mice of strain INH34	74
4.2	Early comparison of $M. tb$ and the vaccine strain M. bovis BCG based on IS6110	
10	Circular man of M the H27Der characteries	() 70
4.3	Ourse of the general encoding in the control of the second	10
4.4	Overview of the genomic organization in the corresponding regions proximal to the origin of replication in BCG Pasteur and M . tb H37Rv, revealed by BAC	
	mapping, PCR and hybridization experiments (Brosch <i>et al.</i> , 2000).	78

xii

LIST OF FIGURES

4.5	Overview of the GenoMycDB user interface. Note the available options for search-	
	ing and displaying (Catanho et al., 2006).	80
4.6	Schema of the mycobacterial comparison project database.	83
4.7	dnaB gene details for $M. tb$ H37Rv and its homologues.	86
4.8	dnaK gene details for $M.~tb~H37Rv$ and its homologues.	87
4.9	$mmpL4_1$ gene details for <i>M. avium ssp paratuberculosis</i> K10 and its respective	
	homologues	88
4.10	gyrB gene details of <i>M. avium ssp paratuberculosis</i> K10 and its homologues	89
4.11	Genome atlas of $M. tb$ H37Rv. Note the abundance of repeat regions especially	
	in regions 3.9 – 4.0 MB (13).	92
4.12	Genome atlas of M . avium K10 (13)	93
4.13	A Region of $M. tb$ CDC1551 that appears to lack annotation information and B	
	the corresponding region in M . tb H37Rv	94

List of Tables

1.1	$Comparison \ of \ BLASTZ \ alignment \ results \ to \ other \ contemporary \ programs \ (Scwartz$	
	$et \ al., \ 2003) \ \ldots \ $	7
3.1	Sliding window size and OU pattern types (oligomer lengths) selected for sequences	
	of different length present in the SeqWord database.	53
3.2	Coordinates and annotations of the gene islands in the genome of M . avium K10.	65
3.3	Coordinates and annotations of the gene islands in the genome of $M.\ tb$ H37Rv.	67
4.1	Table showing general order of events and options available to users when in the	
	mycobacterial comparison project.	84
4.2	Coordinates and annotation of the genes islands in the genome of M . avium K10.	85
4.3	Summary of absence/presence of dna genes of $M.~tb~H37 { m Rv}$ in $M.~avium~K10.$	87
4.4	Annotations for the outlined genomic fragments for the $M.~tb~H37Rv$ plot (Figure	
	3.10)	90
4.5	Summarised table showing cross-species comparison of loci $333437-3950263$ of M .	
	tb H37Rv	91