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SUMMARY 

Characterization of a putative pilus assembly and secretion system in 

Pseudomonas aeruginosa DSM1707 


by 

ANTOINETTE V AN SCHALKWYK 

Supervisor: 	 Prof. 1. Theron 
Department of Microbiology and Plant Pathology 
University of Pretoria 

Co-supervisor: 	 Prof. V.S. Brozel 
Department of Microbiology and Plant Pathology 
University of Pretoria 

for the degree M.Sc 

Pseudomonas aeruginosa, an ubiquitous environmental bacterium and an opportunistic 

human pathogen, forms biofilms through a series of interactions between the cells and 

adherence to surfaces. Adherence of P. aeruginosa to surfaces is often mediated by surface 

appendages such as flagella and type IV pili . In this study, a gene cluster in P. aeruginosa 

was identified in silico that encoded predicted protein products with homology to those 

encoded by two recently described novel pilus biogenesis and assembly systems of 

Actinobacillus actinomycetemcomitans and Caulobacter crescentus, respectively. Both these 

systems are involved in the production of a novel class of pili, which, in A. 

actinomycetemcomitans, are associated with the ability of the bacterium to bind non ­

specifically to inert surfaces. The homologous genes in P. aeruginosa, which have not been 

characterized previously, were named htp for homologous to type IV pilus biogenesis genes. 

To determine the functional importance of the htp gene cluster in P. aeruginosa, the htpD, 

htpE and htpDEF open reading frames (ORFs), which are highly conserved in the respective 

pilus biogenesis systems, were targeted for insertional inactivation. Whereas HtpD may 

function as an NTPase, the amino acid sequence of HtpE and HtpF indicate membrane 

localization, but no obvious functions. The respective htp ORFs were inactivated in P. 

aeruginosa strain DSM 1707 by homologous recombination with appropriately constmcted 

allelic exchange vectors to generate mutant strains DSMHtpD, DSMHtpE and DSMHtpDEF. 

The DSMHtpDEF mutant strain was found to be severely growth-impaired and was 

 
 
 



consequently excluded from further analysis. Comparative analysis of the wild-type P. 

aeruginosa DSM1707 and mutant DSMHtpD and DSMHtpE strains revealed that whereas 

the DSMHtpE strain generally resembled the wild-type strain, the DSMHtpD strain was 

impaired in its ability to grow as a biofilm, and electron microscopic studies revealed that the 

cells of DSMHtpD were notably longer compared to the wild-type DSM1707 and mutant 

DSMHtpE cells. Furthermore, two-dimensional gel electrophoretic analysis of the 

extracellular proteins of the wild-type P. aeruginosa DSM1707 and mutant DSMHtpD strains 

revealed differences between the extracellular proteomic profiles. 

Based on the results obtained during the course of this investigation, it can be proposed that 

the newly identified hlp system of P. aeruginosa plays a role in the ability of this bacterium 

to successfully colonize abiotic surfaces. The more severe perturbations resulting from 

inactivation of the hlpD ORF furthermore suggests that the encoded putative NTPase protein 

plays an important role in the putati ve hlp pilus biogenesis/secretion system. Thus, it would 

appear that multiple factors are available to P. aeruginosa to facilitate its binding to various 

surfaces and possibly for interbacterial adhesion. The existence of different attachment 

mechanisms could reflect the complex needs of P. aeruginosa during colonization of diverse 

environmental niches. 
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