
A Hybrid Heuristic-Exhaustive
Search Approach for Rule

Extraction

in the Faculty of Natural & Agricultural Sciences

University of Pretoria

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

The topic of this thesis is knowledge discovery and artificial intelligence based

knowledge discovery algorithms. The knowledge discovery process and

associated problems are discussed, followed by an overview of three classes of

artificial intelligence based knowledge discovery algorithms. Typical

representatives of each of these classes are presented and discussed in greater

detail. Then a new knowledge discovery algorithm, called Hybrid Classifier

System (HCS), is presented. The guiding concept behind the new algorithm was

simplicity. The new knowledge discovery algorithm is loosely based on schemata

theory. It is evaluated against one of the discussed algorithms from each class,

namely: CN2, C4.5, BRAINNE and BGP. Results are discussed and compared. A

comparison was done using a benchmark of classification problems. These

results show that the new knowledge discovery algorithm performs satisfactory,

yielding accurate, crisp rule sets. Probably the main strength of the HCS

algorithm is its simplicity, so it can be the foundation for many possible future

extensions. Some of the possible extensions of the new proposed algorithm are

suggested in the final part of this thesis.

Opsomming

Die tema van hierdie tesis is kennisontginning en kennisontginningsalgoritmes

gebaseer op kunsmatige intelligensie. Die kennisontginningsproses, en

geassosieerde probleme word bespreek, gevolg deur 'n oorsig van drie klasse

kunsmatige intelligensie kennisontginningsalgoritmes. Tipiese verteenwoordigers

uit elke klas word aangebied en in detail bespreek. 'n Nuwe

kennisontginningsalgoritme, genaamd Hybrid Classifier System (HCS), word dan

aangebied. Dit word ook geevalueer teen een algoritme uit elk van die

bespreekte klasse, naamlik: CN2, C4.5, BRAINNE en BGP. Resultate word

bespreek en vergelyk. Vergelykings word gemaak deur gebruik te maak van 'n

toetsbed van klassifikasie probleme. Hierdie resultate toon aan dat die nuwe

kennisontginningsalgoritme bevredigend presteer, en akkurate, eenvoudige

reelversamelings lewer. Die hoofvoordeel van HCS is die eevound van die

algoritme, wat dit as fondamet laat vir verdere uitbreidings. Moontlike

uitbreidings van die voorgestede algoritme word voorgestel.

Acknowledgments

Let him who seeks not cease

from seeking until hefinds

A friend

This thesis would probably not materialised, if it were not for the following people, to

whom I extend my deepest gratitude:

My supervisor, Dr A.P. Engelbrecht, for his time, advice and PATIENCE.

My parents, for instilling a culture of learning since my childhood.

My family, especially grandma for all her prayers.

My beloved girlfriend, for all her support.

My friends, especially colleagues and partners at work, for all their

support.

I owe you much.

1. Chapter 1 - Introduction 1

2. Chapter 2 - Different Approaches to Knowledge Discovery 4

2.1 Introduction to Knowledge Discovery 4
2.1.1 Knowledge Representation Schemes 7

2.1.2 Knowledge Extraction 11
2.1.3 Knowledge Discovery Process 14

2.2 Connectionist Based Rule Extraction Algorithms 19
2.2.1 Introduction to Artificial Neural Networks 20
2.2.2 Key Features of ANN's 22
2.2.2.1 Types of Supervised ANN's 29
2.2.3 Backpropogation ANN 34
2.2.4 Rule Extraction Algorithms 39
2.2.5 KT Algorithm 44
2.2.5.1 Definitions for the KT Algorithm 44
2.2.5.2 Algorithm Classification 45
2.2.5.3 KT Algorithm Overview 45
2.2.5.4 Heuristics 48
2.2.6 BRAINNE Algorithm 52
2.2.6.1 Overview of the BRAINNE Algorithm 52
2.2.6.2 Extracting Conjunctive Rules 54
2.2.6.3 Extracting Disjunctive Rules 56
2.2.6.3 Handling Discrete and Continuous Values 58

Evolutionary Computing Based Rule Extraction
Algorithms

2.4.2.3 Heuristics Used by CN2 97

3. Chapter 3 - Hybrid Classifier System 100

3.1 Introduction to the Schemata Theory 101

3.2 HCS Overview 102

3.3 Initial Rule Population 103

3.4 Rule pruning System 104

3.5 Rule Expansion System 106

3.6 Extension of HCSfor Discrete and Continuous Values 108

4. Chapter 4 - Experimental Results 112

4.1 Rule Extraction Algorithms Evaluation Criteria 112

4.2 Data Sets Used for Comparison of Algorithms 115

4.2.1 Monks Dataset 115

4.2.2 Iris Plants Dataset 117

4.2.3 Pima Diabetes Dataset 117

4.3 Results 118

4.3.1 Accuracy of Extracted Rules 119

4.3.2 Comprehensibility of Extracted Rules 121

5. Chapter 5 - Discussion 125

5.1 Conclusion 125

5.2 Suggestions for Future Research 126

6. Appendix A - Artificial Neural Networks Notation 131

7. Appendix B - Bibliography 132

List of Figures

Number Description Page

Figure 1 Semantic Nets Knowledge Representation 8

Figure 2 An Artificial Neuron 22

Figure 3 Step Function 24

Figure 4 Ramp Function 24

Figure 5 Sigmoid Function 25

Figure 6 Modular ANN 32

Figure 7 Illustration of the KT Algorithm 48

Figure 8 BRAINNE Modification of an ANN 53

Figure 9 Genetic Programming Crossover 81

Figure 10 Decision Tree Example 87

Figure A.1 Typical ANN 131

Number Description Page

Table 3.1 Truth Table for Boolean function (A AND B) OR (A AND NOT C) 103

Table 3.2 Initial Population and Its Fitness Values 106

Table 3.3 Fitness Values of a New Generation 107

Table 4.1 Accuracy on Training Sets 120

Table 4.2 Accuracy on Validation Sets 120

Table 4.3 Average Number of Extracted Rules 122

Table 4.4 Average Number of Conditions per Rule 122

Table 4.5 ANSSERResults on Monks Datasets 123

Chapter 1

Introduction

Since its invention, the computer has proven to be a useful tool. Computers were

amongst the first tools that could help mankind with intellectual labour, as

opposed to tools that were used, from the dawn of consciousness, to ease

mechanical labour. Computers have been very successful in automation of many

repetitive, computationally extensive, and mostly sequential tasks. The initial

successful applications of computers gave a hope to optimism, expressed in the

fifties, that soon computers would be able to mimic the way humans think. From

this optimism the term "Artificial Intelligence" has been coined. Fifty years later, it

is still a big question if true artificial intelligence is ever going to be a reality, or if

it will stay a dream of computer scientists, as "elixir of wisdom" was to

alchemists in the Middle Ages. Instead, computers were used to automate more

and more complex tasks. Computers work perfectly when handling data in a

well-defined procedure. However, many problems require solutions that are not

well defined. Instead of following well-defined procedures, more often than not,

there are only guidelines on how to achieve solutions to these problems. For

most of such problems, previous experience and intuition of human experts are

invaluable. Previous experience and intuition can be loosely labelled as

knowledge about the problem domain.

Nowadays, a vast amount of data is captured and stored. Within that data lies an

abundance of embedded knowledge. However, because of vast quantities of

data, the extraction of knowledge can not be done efficiently by human experts.

What is required is intelligent tools to extract the knowledge. Various algorithms

have been designed to solve these types of problems. Only the artificial

intelligence based knowledge discovery algorithms are considered in this thesis.

Three main classes of the knowledge discovery algorithms based on artificial

intelligence are: Artificial Neural Networks, Evolutionary Computing and Classical

Machine Learning Algorithms. Many tools were developed based on algorithms

from those classes. To name but a few: GA-Miner[25], C4.5 [54], CN2 [14] and

DMT [4]. Each of the tools has its own advantages and disadvantages. None of

the tools is superior at all time and in all applications. Some of the tools can not

even be applied to certain classes of problems, for example problems with

continuous values attributes, or correlated features.

In this thesis, a new knowledge discovery algorithm, called Hybrid Classifier

System (HCS), is proposed. It is called hybrid because it employs both heuristic

and exhaustive search methods. In each iteration, HCSexplores the search space

exhaustively and then uses heuristics to prune some of the candidate rules. The

new algorithm is not based on any previously established algorithm, although it

has its basis in schemata theory [37]. The new algorithm is then evaluated

against a representative from each of the three above-mentioned classes of

algorithms, namely CN2, C4.5, BGPand BRAINNE. The main characteristic of the

algorithm is its simplicity, making it a good candidate for embedded, real-time

applications. Despite the simplicity of the algorithm, HCS shows promising

results, and its simplicity offers a lot of space for future improvement.

The rest of this thesis is outlined as follows: The process of knowledge discovery

is defined in chapter 2. In the same chapter, some of the approaches to

automated knowledge extraction are presented, with a detailed description of a

typical representative for each of the different approaches. The new classifier

system, HCS, is proposed in chapter 3. Chapter 4 presents the results of

application of some of the algorithms presented in chapter 4, as well as HCS, to

some of the benchmark problem domains. Finally, in chapter 5, a conclusion and

suggestions for further research are discussed.

Chapter 2

Different Approaches to Knowledge Discovery

This chapter gives an introduction to knowledge discovery, the steps of a typical

data mining process and the methods used during this process. The most

frequently used methods of knowledge discovery, namely, connectionist,

evolutionary and classical machine learning are then discussed.

Since the advent of computers, vast amounts of data were compiled and stored.

That data from those early days were transformed into information, and human

experts then extrapolated knowledge from such information. In other words,

computers were used to prepare information for the human experts. With almost

an exponential rise in the computing and storage capacity of modern computers

that we have been witnessing in the last two decades, the amount of information

also increased at an equal rate.

In this abundance of information lies a vast amount of knowledge that needs to

be discovered, or made available to non-experts. The extrapolation of knowledge

from human experts is a well-known problem [41].

While knowledge extrapolation from human experts is not within the scope of

this thesis, a few problems associated with knowledge extrapolation problems

will, however, be mentioned next.

Human experts often express their knowledge about a problem domain in terms

of exceptions, common sense and a "gut feeling". These concepts are extremely

difficult, and sometimes even impossible, to implement in terms of computer

instructions. Other avenues for automated knowledge extraction thus had to be

explored. Several techniques have been proposed, including statistical analysis

[2], data clustering [11,12], visualization [35,12], nearest neighbour approaches

[9] and artificial intelligence based techniques. This thesis concentrates on

knowledge extraction techniques from the field of artificial intelligence.

The last decade has witnessed an outburst in applications of knowledge

discovery, as well as the development of numerous data mining techniques. In

order to define knowledge discovery, the thesis first defines what is meant by the

term knowledge. There are many definitions of knowledge, including:

• a collection of interesting and useful patterns in a database [1],

• a strategic resource for gaining a competitive advantage [44], and

• the body of truth, information, and principles about a system of

interest [67].

However, computing devices, such as computers, do not operate directly with

knowledge; humans do. Computers operate with binary coded data. But, the

binary coded data alone does not mean much to humans.

Information can be represented through the combination of a symbolic

representation of some concept with data. Such a symbolic representation

transforms the one-dimensional scalar values that represent data into a two-

dimensional vector representation of information consisting of value of data and

symbolic representation. A combination of information into a rule representation,

understandable to humans, represents knowledge discovered from the

underlying data.

The format in which knowledge is represented should adhere to the following

two conditions:

• The knowledge representation format must be complex enough to

describe relationships in data (condition 1)

• The format should, however, be easily understood by humans

(condition 2).

Symbolic knowledge representation satisfies the second condition. Some of the

symbolic knowledge representations are easier to understand than others. For

example, the production rule format is generally easier to understand by humans

than relational algebra, but both the above mentioned representations are much

easier to understand than non-symbolic knowledge representation schemes, such

as numerical weights as used by ANNs. Various knowledge representation

schemes are discussed in the next section, with reference to the two stated

conditions.

2.1.1 Knowledge Representation Schemes

Various schemes have been developed to represent knowledge. This section

reviews production rules, semantic nets, numerical weights (of Artificial Neural

Networks (ANNs)), relational algebra and first order logic. The different

representation schemes are criticised with reference to complexity and

comprehensibility.

• Production Rules

The production rule format is one of the most frequently used knowledge

representation schemes. The following expression is an example

production rule:

if Al and A2 then C

where A1 and A2 are attributes (information or values that describe or

characterise the value of the concept C) and C is the concept. The

production rule format satisfies both conditions; it can be used easily to

represent the relationship between information (A1 ,A2) and the concept

(C) and it is easily understood by humans, because humans tend to think

in terms of rules and exceptions to rules.

It is noteworthy to mention that most expert systems, especially expert

systems that are required to provide an explanation facility, use the

production rules knowledge representation format [41].

• Semantic Nets

Semantic nets are graphs where nodes are objects of the real world, and

edges connecting nodes represent relationships between real-world

objects [47,7] .. In a semantic network, each path, for example, Nadel ta

Nade2 via EdgeA, can be read as: Object Nadel is in relationship A with

Object Nade2. Figure 1 is an example semantic net, describing the object

"MyDog":

Semantic Nets do satisfy, to a great extent, the first condition (noted on

page 5 before section 2.1.1) in that they provide a model complex enough

to describe the relationship between data in an easy to follow graphical

representation of knowledge. While semantic nets are easily followed and

understood by humans (satisfying the second condition), they do become

less comprehensible with increasing size and connectivity of the network.

Some of the expert systems use the semantic nets or semantic nets based

knowledge representation format, i.e. CENTAUR[67].

• Numerical weights

Numerical weights are the primary knowledge representation format for

connectionist models, for example ANNs (see section 2.2). In ANNs,

knowledge is represented by the numerical weights learned by the

networks .. The first condition is satisfied, in that the numerical weights

give an accurate approximation of the relationship between information

and the concept. The numerical weights are extremely difficult to

comprehend. In order to make the knowledge embedded in the weights

understandable, the numerical knowledge must be converted into a

symbolic form, usually in the form of production rules. In this case output

units represent the concept, or action, while the hidden and input units

represent the conditions in the production rules. Algorithms that

transform numerical weights to production rules are referred to as rule

extraction algorithms.

• Relational Algebra

The Greek philosopher Plato described relational algebra in its basic

form,

Vo E U : conditionl(o) ~ 0 E C

The former expression is read as: if an object 0 from a set U, satisfies

condition conditionl, then object 0 is a member of class C. Relational

algebra satisfies the first condition of symbolic knowledge, because sets

can be viewed as relationships between the members of the set and vice-

versa. While people with a mathematical background easily understand

relational algebra, it is not the case for general knowledge discovery

practitioners.

• First order logic

First order logic is an extension of relational algebra, represented in

a format more acceptable to computers. The isfather relation below is an

example of first order logic knowledge representation:

isfather(John, Jack)

The expression above is read as: John is related to Jack via function

isfather. Knowledge representation in first order logic format is similar to

that of semantic nets, and, thus satisfies both criteria of good knowledge

representation. However, semantic nets are more easily read than long

lists of logic relations, in case of complex relationships between data. First

order logic is the main knowledge representation scheme for certain non-

linear programming languages, such as PROLOG[10].

Each of the above mentioned knowledge representations have their own

advantages and disadvantages. For the purpose of this thesis, the production

rules representation of knowledge is assumed. In other words, only algorithms

that, as the final result, produce production rules are considered in this thesis.

The process of finding information from data is referred to as knowledge

extraction. There are various definitions of knowledge extraction, of which the

following is the most comprehensive:

n•••a nontrivial process of identifying valid, novel, potentially useful and

ultimately understandable knowledge from data" [1].

If the production rules representation format is used, the definition of

knowledge discovery can be simplified to:

\\Process of converting data to a set of consistent production rules'~

Knowledge discovery is a relatively new and very active research field in

computer science. It is not surprising that only recently this area is experiencing

major growth in industry. There are numerous causes for this growth, of which

the two most important ones are listed below:

• The business sector has accumulated an enormous amount of data in

their corporate databases, wherein lies a vast potential source of

information that can be used to increase business profitability. This

kind of knowledge discovery is sometimes referred to as data mining.

At the first knowledge discovery conference in Montreal 1995, it was

proposed that the term "data mining" referred only to the discovery

stage of the knowledge discovery process. For the purpose of this

thesis, the terms knowledge discovery and data mining will be

interchangeable. In this thesis, the term knowledge discovery also

refers to the data-mining phase of the complete knowledge discovery

process, which is of pertinence to this thesis.

• Increase in cheap computing power. Knowledge discovery techniques

are reasonably heavy on computer resources. Thus, the enormous

increase of readily available computing power, that was characteristic

of the last decade, has encouraged research in this area. Numerous

new techniques appeared.

Rule extraction algorithms have been successfully applied to extract production

rules from artificial neural networks (ANNs), for example the KT algorithm [27]

and the n-of-m algorithm [65].

Evolutionary computing has also been used successfully to extract knowledge

from data. Genetic algorithms have been used to develop one of the first

evolutionary knowledge extraction tools, now frequently used as benchmark,

namely SCS-1 [29]. Other more recent GA knowledge discovery tools include

GABIL [19], GIL [42] and GAMINER [25]. Genetic programming has also been

used to evolve decision trees [58].

Classical machine learning research has resulted in the development of several

decision tree and rule induction algorithms. In decision tree algorithms (e.g. ID3

[53], AQ [49] and C4.5 [54]), production rules are directly read from the induced

trees, whereas rule induction algorithms (e.g. CN2 [14]) directly induce

production rules using a beam search. As mentioned above, this branch of

artificial intelligence is relatively new, thus there are, understandably, many areas

that are not thoroughly explored and researched. In the following section, the

whole process of knowledge discovery is presented and explored in greater

detail, while sections 2.2, 2.3 and 2.4 present a detailed overview of classes of

knowledge discovery algorithms. The process of knowledge discovery is often

long and laborious, usually consisting of the following six principal stages [1].

• Data Selection

Data selection concerns the selection of the relevant parameters (or

attributes) and exemplars, from a larger data base, to solve a specific

problem. Several tools can be used to determine the relevance of

attributes, collectively referred to as feature selection tools. (give

examples). The question of the number of exemplars remains an open

question, with current research attempting to find a solution [22]. The

problem is how much data is sufficient to extract valid knowledge. Too

much data unnecessarily increase the computational complexity of

knowledgediscovery.

• Cleaning of the Data

More often than not, data is in an inconsistent format. Alternatively, we

can say that data is polluted. Commonpollution causesincludeduplication

of data, lackof domain consistencyand data capturing errors.

For example, consider an attribute that represents the age of a person in

the number of years. Assumefor a particular example that the value for

age is not available and entered as zero. The value zero can, however,

represent the age of infants. This is an example of a lack of domain

consistency. The purpose of the data cleaning stage is to eliminate such

pollution as much as possible. Automated tools have been developed to

clean data from inconsistencies, for example GritBot [60].

• Data Enrichment

Enrichment is a process in which data is enriched by acquiring

additional sources of data, for example census figures, geographical

information data, or any other data that may have some relevance to the

data being enriched. The actual merging of the data may present a

problem due to pollution and different referencing (indexing) systems.

Sometimes, a merge is not even possible without loss of data.

• Data Coding

The data coding stage transforms the representation of the data into a

form acceptable for the chosen data mining technique.

Quite often, in order to speed-up the processing of the data, or perhaps

because the chosen data mining technique does not support the original

format of the data, a different coding needs to be applied to the data. One

of the most common techniques is discretisation, which transforms

continuous values to discrete values.

• Data Mining

The data mining process is a process of extracting knowledge from the

data. Numerous artificial intelligence data mining techniques exist, and

have been applied successfully. These techniques are broadly categorized

in the following classes: connectionist based algorithms, evolutionary

computing based algorithms and classical machine learning based

algorithms. These classes of algorithms are discussed in sections 2.2, 2.3

and 2.4 respectively. The data mining phase is the main topic of this

thesis.

• Reporting

Reporting can be viewed as a support function with the main purpose

serving as the input point for further analysis, either by a human or a non-

human expert.

Further on, this chapter presents a classification of rule extraction algorithms and

overviews specific algorithms within each class. Rule extraction algorithms are

divided into three classes according to the classifying method used by these

algorithms:

• Connectionist Based Algorithms

The knowledge learned by an ANN is represented by the numerical weights

(section 2.1.1) of the ANN. The numerical weights of an ANN are the coefficients

of a non-linear function that represents the mapping between input and output

space. Since the number of coefficients for real world problems is usually very

high, it is almost impossible for humans to understand (and use for explanation)

this numerically encoded knowledge. Additional algorithms are required to

convert the numerically encoded knowledge into a comprehensible format, for

example production rules.

There are basically two classes of rule extraction algorithms for ANNs, namely

decompositional and pedagogical. Rule extraction algorithms are divided into

these two classes according to the classification scheme proposed by Andrews et

al [5]. Decompositional rule extraction algorithms view the ANN as being

transparent, in the sense that knowledge about the topology of the ANN, i.e the

number of weights and units, is available and necessary to extract rules.

Pedagogical algorithms regard the ANN as a black box. Rules are extracted using

only the mapping of input units to output units, without knowledge about the

topology of the network. There are numerous rule extraction algorithms, for

example: M-of-N [65], Rule-As-Learning [15], KT algorithm [27], and RULEX[6].

The M-of-N, KT and RULEX algorithms are examples of the decompositional

approach, while Rule-As-Learning is a combination between the two approaches

(decompositional and pedagogical).

• Evolutionary Computing Based Algorithms

Since the early works of Holland [36], with his proposed Classifier System 1 (CS-

1) based on a genetic algorithm, many other evolutionary based, and especially

genetic algorithm based, rule extraction algorithms have been developed.

Evolutionary computing encapsulates genetic algorithms, genetic programming,

evolutionary strategies and evolutionary programming. It is important to note

that knowledge is represented uniformly throughout all the paradigms that make

evolutionary based computing. For example in genetic algorithms, knowledge is

encoded in chromosomes or specimen (section 2.3). In genetic programming,

knowledge is encoded in a decision tree. Evolutionary based rule extraction

algorithms include sCs-1 [29], GABIL [18, 19], GA-Miner [25], BGP [58].

• Classical Machine Learning Based Algorithm

Classical machine learning based rule extraction algorithms represent one of the

earliest knowledge discovery paradigms, usually used as benchmark tests against

any new knowledge discovery paradigms. Machine learning algorithms include

the decision tree algorithms ID3 [53], AQ [49] and C4.5 [54] and the rule

induction algorithm CN2 [14]. Other commercially available machine learning

algorithms include CART [61], and WizWhy [73].

From each of the three abovementioned approaches, two algorithms will be

explained in greater detail. The connectionist approach is discussed covering

the KT algorithm [27] and BRAINNE (Building Representation for AI using Neural

Networks) [21] in detail. Section 2.3 discusses the evolutionary programming

approach, covering the SCS-1 algorithm [29]' and BGP [58] in detail. The classical

machine learning based approach is discussed in section 2.4. The C4.5 [54]

decision tree algorithm and the CN2 [14] rule induction algorithm are discussed

in detail.

This section reflects on general features of artificial neural networks. The term

'connectionist' comes from the property of ANNs as being constructed of nodes

(units) with multiple weighted connections between them. As mentioned in

section (2.1.1), the knowledge encapsulated in trained weights is not an ideal

representation of knowledge. On the contrary, it is, more often than not, rather

difficult to transform the numeric values of weights into symbolic knowledge.

Furthermore, according to our working definition of knowledge, symbolic

knowledge is the desired end product of a rule extraction (knowledge discovery)

algorithm.

Section 2.2.1 proVides an introduction to artificial neural networks. Section 2.2.2

and 2.2.3 present, in detail, the backpropagation neural network (BP ANN). BP

ANN is by far the most used ANN, thus making it a good choice for comparison

purposes. Section 2.2.4 classifies the different rule extraction algorithms for

ANNs. While section 2.2.5 discusses the KT algorithm developed by Fu [27],

section 2.2.6 discusses BRAINNE [21]. KT and BRAINNE both rely on the BP ANN

and that was one of the selection criterion that resulted in the choice of KT and

BRAINNE for this study.

In the last decade, artificial neural networks (ANNs) have gone through a

renaissance. Initial research was done in the 1950's but was, more or less,

neglected until the 1980's. The idea behind ANNs came from the research of

biological neurons and the interaction between them. There is a loose analogy

between biological neurons and nodes in ANNs. Although current ANNs are

nowhere near the complexity of the brain, ANNs and the brain exhibit similar

features, namely parallelism, capability to learn, high level of redundancy and

interconnection, fault tolerance and graceful degradation. Since the revival of

ANNs, ANNs have been successfully applied to various problem domains such as

classification [48], pattern recognition [17], adaptive control [17], data mining

[27,63] and natural language processing [15], to name but a few.

An ANN implements a function y(z,w,A), where y is a function that maps inputs

z to its output, according to parameters w (weights) and architecture A (i.e. the

115f6 ?;::> 0 to t?~

6 16 "'- "'1~o 0 '3>

varying in topology, the number of layers, methods of learning, triggering

functions and so forth. In the following section some of the most common

topologies, methods of learning and triggering functions are presented. The

backpropagation ANN (BP ANN) is then explained in detail.

This section introduces key features of ANNs and compares various

implementations of these features. Figure 2 illustrates a typical artificial neuron.

An artificial neuron behaves as follows:

An artificial neuron receives I input values Zl .. ZI of which input ZI serves as the

bias for that neuron. To each connected input is associated a weight value

which strengthens or depletes the input signal. The artificial neuron uses a

triggering function to compute an output signal.

At this point it is interesting to draw an analogy between a typical artificial

neuron (perceptron) and a biological neuron. Rosenblatt [59], the early

researcher of ANNs said the following:

Perceptrons are not intended to serve as detailed copies of any actual

nervous system. They're simplified networks, designed to permit the study

of lawful relationships between the organization of a nerve net, the

organization of its environment, and the 'psychological' performances of

which it is capable. Perceptrons might actually correspond to parts of

more extended networks and biological systems; in this case, the results

obtained will be directly applicable. More likely they represent extreme

simplifications of the central nervous system, in which some properties are

exaggerated and others suppressed. In this case, successive perturbation

and refinements of the system may yield a closer approximation.

In the remainder of section 2.2.2, the key components and features such as

triggering functions, learning methods and learning rules of an ANN are

discussed in greater detail. Various types of ANNs are also presented in the

remainder of this section.

I
net = L Zi wi

i=l

{
1 ifnet ~ 0

f(net) = o ifnet < 0

f(net) = {
a , ifnet~ a
net , if Ine~< a
-a ,ifnet~ a

_L~t
o

f(net) =--
1+ enet

• Learning Methods

It has been noted fairly early in ANN research that the single neuron (also

called the perceptron) has serious limitations, especially when trying to solve

non-linear separable problems (such as the mapping of the XOR function)

[50]. Combining multiple neurons into ANNs solved this limitation. The early

work of Hebb [34] provided the theoretical background that was used for

learning ANNs. Hebb's rule is discussed in more detail later in this section.

Learning (or training) uses input data in order to adjust weights between

layers. There are three main learning paradigms:

o Supervised Learning, where the objective is to minimize the error

between the actual output of the ANN and the given desired output.

Probably the most common approach and very acceptable if we have

historical data that we can use in preparation of the training set. In

other words, there are training examples consisting of input and

desired output vectors. Supervised learning is also called learning by

example. The SPANN discussed in section 2.2.3 is an example of

supervised learning algorithms.

o Unsupervised Learning, also known as clustering, is based on the

idea to leave it to the ANN to discover patterns or features within the

where tkCP) represents the k-th target output for training pattern p, and fkCp)

represents the actual calculated k-th output of the network for the same

pattern. The goal of the learning rule is to minimise this error. However, if

the ANN is overtrained, the network cannot generalise well. In other words,

the ANN is too specifically trained for recognition of the training set, and

when presented with input that is not contained within the training set, the

network cannot correctly classify this new input. For the purpose of this

study, we will concentrate on classification problems, although ANNs are

widely used for approximation of functions as well. This problem is also

known as overfitting of the training set. The minimization of the error is

achieved through weight adjustments by applying suitable optimisation

algorithms. The most popular optimisation algorithm used for ANN training is

gradient descent (explained in section 2.2.3). Other optimisation techniques

commonly used include scaled conjugate gradient [51] and second-order

methods [8]. Feedforward ANNs trained using gradient descent optimisation

are referred to as backpropagation ANNs. Other well-known training rules,

with their weight adjustments demonstrated on a case of a perceptron, are:

• Generalised Delta Learning Rule

This learning rule assumes a differentiable (continuous in most of the

cases) activation function. Let that activation function be the unipolar

sigmoid function of equation (2.2) then

Of/ 8net = f(1 -f) and 8E/ OWi= -2(d - f)f(1-f)Xi

where E is the squared error, d is target (derived output), Wi is weight of

the input Xiand Xiis the value of the i-th input.

• Error Correction Learning Rule

This rule assumes a discontinuous binary valued activation function (e.g. a

step function). Weights are then adjusted only when (d-f) = 1 or (d-f) =-1,

using Wi(t) = w{t-1) + 211(d- f) Xi.

where the notation is as in the example above and 11is the learning rate.

• Widrow-Hoff learning Rule

For this rule, as proposed by Widrow and Hoff [71], the activation function

is a linear function, and, furthermore, f = net. Then, Of / 8net = 1 and

&/OWj = -2(d - f)Xj

weights are updated using Wj(t) = wj(t-1) + 211(d- f) Xi

where E is the squared error, d is target (derived output), Wi is weight of

the input Xiand Xiis the value of the i-th input 11is the learning rate ..

2.2.2.1 Types of Supervised ANNs

There are various types of ANNs in existence, differing in the way neurons are

interconnected, and the way that the net input signal is computed.

In feedforward ANNs input signals are fed from the input layer through the

hidden layer to the output layer, with no feedback connections. Recurrent ANNs

have feedback connections from hidden and/or output layers to serve as

additional inputs [28]. This enables ANNs to learn temporal characteristics of

data. Feedforward and recurrent ANNs are by no means the only possible types

of ANN. Functional Link ANNs are of the feedforward type, where the input layer

is expanded to include a number of "functional links", or higher-order

combinations of inputs [40]. Another alternative to the feedforward network is

product unit ANNs where the net input to a neuron is calculated as a weighted

product of input signals, instead of a weighted sum [20].

ANNs also differ according to architecture. ANNs can have one or more layers.

The simplest one layer ANN consists of only one neuron. This ANN is referred to

as the perceptron. The perceptron was the first proposed ANN, and was subject

to much analysis [50, 62]. Shortcomings of a perceptron have become apparent

fairly early in research of ANNs [50] and the next step was a the construction of

networks consisting of more than one node. A typical multilayered ANN consists

of one input layer, one output layer and a number of hidden layers. There is no

theoretical limit on the number of layers, but it has been proven that ANNs which

have only one hidden layer can learn any continuous mapping if there are

enough units in its hidden layer [16]. Choosing the right architecture poses a

formidable problem when designing the ANN. If the number of neurons and

connections are not sufficient, it may happen that the ANN is not capable of

learning the desired mapping. However, if there are too many neurons and

.connections, the ANN may overfit the training data and waste time and memory

resources. There is no general solution to the architecture selection problem,

although various heuristics have been proposed. Some of the recent proposed

solutions include:

• Regularisation

In the regularisation approach, a penalty term is added to the objective

(error) function to penalize the complexity of the ANN architecture [72]. The

modified objective function is then given as:

E = SSE+ ",C

where SSE is the standard sum squared error, '" regulates the influence of the

penalty term and C is the penalty (regularisation) term. Examples of

regularisation are weight decay and softweight sharing [52].

• Modularity

In research done relatively early, in ANN research terms, it has been noted

that an increased number of ANN inputs leads to an increased complexity and

a deterioration in performance [45]. Various solutions were proposed, and

many of which involved modularity. The two main techniques used for the

modularity approach are decomposition and replication. Decomposition is a

way of dealing with complex problems by means of breaking it into many less

complex problems (sometimes called sub-problems). Replication is a

technique used for knowledge reuse. Once the module is successfully applied

and tested, it can be safely replicated. For each of these techniques, there is

an equivalent in biological organisms. For example, replication can be seen by

the fact that humans have two eyes, and both of which are functionally

identical. Decomposition is often the way that many tasks are performed in

nature, and some authors [62] see it as a sign of intelligent behaviour. One of

the simplest proposed architectures involves using ANNs as building blocks

instead of neurons. The output of these building block ANNs is then

presented to the last layer in this architecture. The last layer is also an ANN.

Figure 6 illustrates a modular ANN.

The figure above illustrates the case when a network is presented with a total

of kn input values. The problem is solved by presenting each of k sub-ANNs

(ANN1 - ANNk) with n inputs. The outputs of these sub-ANNs are then

presented (all k of them) to a decision ANN.

• Pruning

The objective of pruning is to reduce the number of input and/or hidden unit

weights (and, in most cases, consequently, the number of connections).

Pruning starts with an oversized architecture, and prune irrelevant

parameters. For this purpose a measure of parameter relevance is used. One

measure of relevance is the significance of network parameters (which can be

input units, weights or hidden units) to the output. There are various

approaches to measuring significance such as:

o Sensitivity analysis with regard to the objective function.

In this approach, saliency is calculated for each parameter, resulting in a

measure of sensitivity of the parameter change to the objective function,

which is a measure of the ANN's approximation accuracy. Parameters with

low saliency are then removed. Some of the better known techniques are

"optimal brain surgeon" [31,32] and "optimal brain damage" [30,46].

o Sensitivity analysis with regard to ANN output function.

Sensitivity analysis of the output function concerns a study of the

sensitivity of output units to changes in input units, hidden units or

weights. Two sensitivity relevance measures have been developed: (1)

parameter significance, which is simply a norm computed from the

parameter sensitivities over the training set [74,23], and (2) variance

nullity, which is based on the premise that parameters with an

approximately zero variance in sensitivity can be pruned.

The backpropagation ANN (BP ANN) is of the feedforward type where weights

are adjusted using the gradient descent optimisation algorithm. Therefore,

weights are adjusted by minimising the error between the actual network output

and the expected output. The minimisation proceeds by moving towards the

negative gradient of the error function. The BP ANN thus operates in two

distinctive phases. In the first phase, referred to as the feedforward phase, the

output of the network is computed for each of the presented patterns. This is

done by presenting input patterns to the input layer and calculating the

activation of each neuron in the succeeding layers, using the current weight

values. The second phase, referred to as the error back propagation phase,

adjust weight vectors as a function of the error made by the network. First the

error in prediction, i.e. the difference between actual output and target output, is

computed. This error is used to adjust the weights between the last hidden layer

and the output layer. The error is then propagated back to previous layers and

an accumulated error over all internal nodes is calculated. This accumulated

error is then used to adjust the weights in preceding layers. The resulting

learning rule is referred to as delta learning (section 2.2.2).

The backpropagation algorithm consists of four main parts: (1) initialisation, (2)

repetitive cycles of feedforward pass and (3) backpropagation of an error, and

(4) testing of stopping criterion. A brief algorithmic description of the

backpropagation learning method is presented first and then all necessary

calculations that are required.

BP ANN:

1. The connection weights are initialised to small random numbers.

2. Feedforward pass: input signals are fed from the input layer through the

hidden layer to the output layer. The sigmoid function is used as triggering

function.

3. Backpropagation of the error:

a) The weights between the output and hidden layer are adjusted

according to:

Wkj(t) = Wkj(t-1) + l1wkj(t)

where Wkj(t) is the weight between output unit Okand hidden unit Yjat

time t (or the t-th iteration) and !lwkj is the weight adjustment.

The weight adjustment is calculated as:

!lWkj = -118okYj

where 11is a trial independent learning rate (0 < 11< 1) and 80k is the

error gradient at k-th output unit Ok'

b) The weights between hidden and input layer are adjusted according

to:

Vji (t) = Vji (t - 1) + !lVji(t)

where Vji(t) is the weight between hidden Yj and input unit Zi at time t

and !lVji is the weight adjustment.

The weight adjustment is calculated as:

!lVji(t) = -118yjZj

where and 8yj is the accumulated backpropagated error.

4. Steps 2 and 3 are iterated until anyone of the follOWing stopping

criteria is satisfied:

• The error is acceptable (the mean squared (or sum squared)

error)

• The maximum number of epochs has been exceeded

• The network starts to overfit the training data

t -1[(net) = (1 + e -ne)

1
Ok = fOk (netok) = t

1 + e -ne Ok

Yj=fy.(nety.)= 1 t
1 1 1 + e-pe ~

J

Ka 1 "'ii;"' (2
- (- L. tk - Ok)) = - (tk _ ok)
aOk 2 k=l

6y.= ~ = 8E~
J 8 nety. 8 Yj 8 nety.

J J

8Y'
~ = (I-Y')Y'
8 net J Jy.

J

K
o y. = (1 - Yj) Y)" .L oOk wk j) k=l

extraction from trained ANNs comes at a cost, in terms of the resources (i.e.

computer time and memory), and the additional effort of implementing the rule

extraction algorithms. The question arises, then, if the rules extracted from an

ANN, and presumably used in some other classifier mechanism (such as expert

systems), offer any real advantage over the ANN itself? The answer is yes; the

rule extracting algorithms do present definite advantages. Firstly, by using a rule

extraction algorithm, an explanation capability is added to the ANN, although not

as powerful as in ESs. For example, in a multilayered ANN concepts can be

related to the input layer and output layer neurons as symbolic knowledge.

Defining the relationship between these concepts in production rule format,

transform the embedded knowledge into symbolic knowledge, and that is a

highly desirable trait. Another advantage is that by extracting rules from a once

trained ANN, better understanding of an ANN's behaviour is achieved. Probably

the most important advantage is that, by using ANN rule extraction, a knowledge

base for use with a symbolic system (typically an ES) is obtained, or the

knowledge within an existing knowledge base is refined. It has become possible

to build a hybrid system that will have "the best of both worlds': i.e. the

explanation facility of ESsand the robustness of ANNs.

There are two main approaches to rule extraction from ANNs, depending on

whether prior knowledge about the domain is available or not. If prior knowledge

is available, it is possible to design an ANN in such a manner that the

architecture reflects that knowledge. Such networks are referred to as knowledge

based ANN (KBANN) [27]. The ANN is then biased towards prior knowledge. The

ANN is then supplemented with additional hidden units (and consequently

additional connections), creating a fully connected network. The goal of the

additional connections is to extract additional characteristics (new rules, or a

refinement of the existing rules) that were not reflected in the prior knowledge

used for constructing the ANN. Once supplemented, the ANN is trained using

available (preferably new) data, and, when training is complete, a rule extraction

algorithm is applied to the trained ANN. Refined rules, or even new rules, can

then be extracted from the trained ANN. It is possible to use these extracted

rules to design a new ANN, and thereby repeating the process (closing the loop).

Effectively, with this process the approximation of the desired function is

improved, thus improving the performance of the ANN. It is also important to

mention that this approach can be used for dynamic tuning of the ANN in

situations where the target function changes with time.

Sadly, more often than not, prior knowledge is not available for most real-world

applications. In this case, the process starts with an ANN designed using some of

the heuristics and architectures as mentioned in section 2.2.2. The ANN is

trained using the available data. Once trained, a rule extraction algorithm is

applied to the trained ANN. Knowledge extracted (in the form of rules) can now

be presented to some other classifier mechanism (e.g. an expert system). This

approach is appropriate when the knowledge gained about the target function is

static. In other words the target function should not be time dependent.

This section presents a classification of ANN rule extraction algorithms based on

the level of abstraction of the ANN [5].

• Taxonomy of Rule Extraction Algorithms from ANN

The first group of rule extraction algorithms is the decompositional rule

extraction algorithms that view the ANN transparently, in the sense that the

values of weights are available to the algorithm. The second group of

algorithms view the ANN as a black box. This group of algorithms extract

rules using only the behaviour of the ANN. Algorithms in this group are called

pedagogical algorithms. The third group of rule extraction algorithms is the

set of eclectic algorithms that are combinations of the first two approaches.

o Decompositional Rule Extraction Algorithms

The main characteristic of the decompositional rule extraction approach is

the focus on extracting rules at the level of individual (hidden and output)

units within the trained ANN. A basic requirement for the algorithms in this

category is that the computed output from each hidden and output unit must

be mapped into Boolean values. Some of the algorithms in this group are the

KT algorithm by Fu [27], RULEX [6] and the Subset algorithm by Towell and

Craven [65].

o Pedagogical Rule Extraction Algorithms

While the decompositional approach assumes transparency of the ANN, the

pedagogical approach views the ANN as a "black box". Techniques of the

"Pedagogical" approach aim to extract rules that map inputs directly into

outputs. Such techniques are usually used together with a symbolic learning

algorithm. The VIA algorithm, developed by Thrun [64], is an example of the

pedagogical algorithm.

o Eclectic Rule Extraction Algorithms

Eclectic rule extraction algorithms are combinations of "pedagogical" and

"decompositional" approaches. "Rule extracting as learning': by Craven and

Shavlik [6], is an example of the eclectic rule extraction class.

Two ANN rule extraction algorithms, both of them decompositional, are discussed

in this thesis. The KT algorithm is discussed in section 2.2.5, while BRAINNE is

discussed in section 2.2.6. BRAINNE is also used for experiments in chapter 4,

where different classes of algorithms are compared.

This section describes the KT algorithm developed by LiMin Fu [27]. Section

2.2.5.1 lists the definitions necessary for better understanding of the algorithm.

Section 2.2.5.2 classifies this algorithm using the classification scheme proposed

by Andrews et al [5]. Sections 2.2.5.3 gives a short algorithmic description and

example of the working of the KT algorithm. Section 2.2.5.4 discusses the

heuristics used by the KT algorithm.

• Attributes - Attributes can be either input or hidden units.

Attributes are denoted as Ai , i = 1..I (in the case of input units) or Aj , j =

1.,] (in case of hidden units.

• Concepts - Concepts can be either hidden or output units.

Concepts are denoted as Cj, j = l..J (in the case of hidden units) or Ck, k =

l..K (in the case of output units).

• Pos-att - A Pos-att for the concept C is an attribute designating a node which

directly connects to the node C with a positive connection weight.

• Neg-att - A Neg-att for the concept C is an attribute designating a node which

directly connects to the node C with a negative connection weight.

• Non-conflicting attributes - Two attributes are non-conflicting if they are not

negatively correlated.

• Rule - A rule generated from an ANN has the form if

Ai +, A2+, ... ,NOT Ai-, NOT A2-,..., then Ck (or NOT Ck)

where Aj+ is an attribute in the positive form, Aj- is an attribute in the negative

form, and Ck is the concept. The rule is called a confirming rule if the concept

C is not negated, and disconfirming if the concept C is negated.

2.2.5.2 Algorithm Classification

The algorithm works without prior knowledge about the problem domain. The KT

algorithm is a "decompositional" rule extraction algorithm, which assumes

transparency of the ANN. This means that the algorithm has access to all the

attributes of all the neurons and the links between them. The KT algorithm does

not, in its original form, accept continuous input values. This algorithm has been

developed for solving problems with binary values as inputs.

2.2.5.3 KTAlgorithm Overview

A short algorithmic description of the KT Algorithm is given on the next page:

1. For each hidden and output unit, search for a set Sp of pos-atts whose

summed weights exceed the threshold of that unit. In other words, which

combination of pos-atts that will trigger the unit. The threshold is the bias

value for the unit. The algorithm at this point tries to find a confirming

rule, represented as the activated unit that represent that concept.

2. For each element p of the set Sp:

a) Search for a set Sn of neg-atts n, such that the summed weight of

element p and negated weight of the member of set Sn (element n) and

summed weights of the remaining neg-atts not included in set Sn, exceed

the threshold on the unit.

b) With each element n of the set Sn,form a rule "if p and NOT n then

the concept designated by the unit", In other words, if all remaining neg-

atts (attributes with negative weights) are activated, the sum of pos-atts

and negated weights of neg-atts will still be greater than threshold -

activation level.

3. For each hidden and output unit, search for a set Snn of neg-atts, whose

summed weights do not exceed the threshold of the unit; in other words,

which combination of neg-atts will prevent triggering of the unit. The

algorithm at this point tries to find disconfirming rule.

4. For each element n of the Snnset:

a) Search for a set Snpof pos-atts p, such that the summed weight of

p and weight of the member of set Snn(element n) and summed weights

of remaining pos-atts not included in set Snp,do not exceed the threshold

of the unit

b) With each element p of the set Snpset, form a rule "if n and NOT p,

then NOT the concept designated by the unit". In other words, the

combination of neg-atts that prevent triggering of the unit form the

antecedent of the rule. The algorithm at this point tries to find a

disconfirming rule.

To illustrate the KT algorithm, assume pos-atts A1 (weight 3.7), A2 (weight 3.5)

A3 (weight 0.5), ~ (weight 1.5), concept (1 (actually a hidden layer unit) and a

bias unit of the concept (or threshold) with weight 3.6.

The algorithm starts with an empty set of potential rules (which can be seen as

the root of the tree) and then creates a set of new rules by including only one

attribute in each potential rule. Each combination of pos-atts represents a node

in the search tree. A potential rule, which involves A1, becomes a proper rule,

because the weight of the attribute A1 is greater than the threshold of (1. That is

- --q:;;5
\

G:>
I

A.1 (vveight 3.7)/ Pe (vveight 3.5)
A.:3 (vveightO.5), ~(weight 1.5)

cmcept (I (threshold 3.6).

to minimise the search space, the KT algorithm implements the following

heuristics:

• Hi: Given a combination G of g pos-atts, which form a node in the

search tree, if the summed weights of these attributes and any other k - g

strongest, non-conflicting pos-atts are not greater than the threshold on the

concept node, then prune combination G (k is the maximum number of

attributes forming a rule).

To illustrate this heuristic, assume pos-atts A1 (weight 1.1), A2 (weight 2.0)

and A3 (weight 0.5), ~ (weight 1.5), concept C1 (hidden or output layer

unit) and the bias unit of the concept with weight 3.7. Assume that k is 3.

Combination {A1, A3} will be pruned, because the sum of the weights of the

attributes in that combination is 1.6. The strongest pos-att (assume it is

non-conflicting) is A2 with the weight 2.0. The sum of the weights of A1, A3,

A2 is 3.6, which is still less than the threshold of 3.7. Therefore,

combination {A1, A3} is pruned.

• H2: Given a combination of pos-atts, if the summed weights of these

attributes and all non-conflicting neg-atts, are greater than the threshold on

the concept node, then keep the combination, but stop generating its

successors. This is actually not proper pruning: when the process of

generating the successors of this combination is stopped, it means that the

given combination represents a valid rule, and it is sensless to further

expand that combination.

To illustrate this heuristic, assume pos-atts A1 (weight 1.1) and A2 (weight

3.0), neg-atts A3 (weight -0.5) and A4 (weight -1.5), concept (1 and the bias

unit of the concept with weight 2.0. For combination {A1, A2}, the algorithm

will stop creating successors because the sum of the weights of the

attributes A1 and A2 is 4.1, and the sum of the weights of the neg-atts is -

2.0. In other words, if attributes A1 and A2 are triggered, even if the neg-

atts are triggered, the sum is still greater than the threshold, so the concept

is true (1.1 + 3.0 - 0.5 - 1.5 > 2.0). The combination then becomes a rule.

• H3: Given a combination of pos-atts and negated neg-atts, if the

summed weights of the pos-atts and non-conflicting neg-atts not in the

combination, are greater than the threshold on the concept node, then the

combination is kept, but if it does not, generate its successors. Again, this is

not actually pruning in the typical meaning of the word. When the process

of generating the successors of this combination is stopped, it means that

the given combination represents a valid rule.

To illustrate this heuristic, assume pos-att Ai (weight 1.1) and neg-atts A2

(weight -3.0), A3 (weight -0.5) and A4 (weight -1.5), concept (1 and the

bias unit of the concept with weight 2.0. For combination {Ai, rvA2} (read

rvA2 as not A2, i.e. a negated neg-att) the algorithm stops to create

successors, and the combination becomes a rule, because the sum of the

weights of the attributes Ai and A2 is 4.1, and the sum of the weights of the

neg-atts is -2.0. In other words, if attributes Ai and A2are triggered, even if

the neg-atts are triggered, the sum is still greater than the threshold. The

concept is therefore true (1.1 + (- (-3.0)) - 0.5 - 1.5 > 2.0) .

Heuristics H1 and H2 are applied to steps 1 and 3 of the algorithm, while H3 is

applied to steps 2 and 4.

As mentioned in the introduction, KT can handle only binary valued attributes.

One way of solving this problem would be to use a discretisation technique to

divide the range of continuous values into finite number of intervals. Membership

of a particular interval would then be encoded as a binary value. This approach

would increase computational cost of the whole algorithm. Furthermore, there is

an additional problem of determining interval boundaries which would have to be

addressed.

This section describes the Building Representation for AI using Neural Networks

(BRAINNE) algorithm [21]. Section 2.2.6.1 gives an overview of the algorithm

and classifies this algorithm using the classification scheme proposed by Andrews

et al [5]. Sections 2.2.6.2, 2.2.6.3 and 2.2.6.4 respectively examine the way in

which conjunctive rules are extracted, the way disjunctive rules are extracted

and how continuous values are handled. It is important to keep in mind that

sections 2.2.6.2 and 2.2.6.3 consider only binary inputs. The extension of the

algorithm to discrete and continuous values is presented in section 2.2.6.4.

2.2.6.1 Overview of the BRAINNE Algorithm

The BRAINNE algorithm extracts rules using both single layered and multi

layered ANNs at the same time. In BRAINNE, a standard BP ANN is modified by

adding extra input nodes, as depicted by figure 8. The modified ANN architecture

is organised such that the input layer consists of I+K units, with Zi+l, ,ZI+k

representing the k output units. The first part of the modified ANN consists of a

standard BP ANN (multi-layered ANN with gradient descent learning rule), while

the second part of modified ANN, consist of extended input units Zi+l, ...• ,ZI+k ,

hidden layer units Yl, ... ,YJ and the links between. The second part can be viewed

as a single layer network, trained using Hebb's learning rule. This representation

was chosen to establish a direct association between input and output neurons.

Direct correlation is obtained by using Hebb's learning rule [34] that states:

"When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic change

takes place in one or both cells such that A's efficiency as one of the cells firing B

The Hebbian learning rule therefore specifies how much the weight of the

connection between two neurons should be adjusted (increased or decreased) in

proportion to the product of their activations. The result is a direct correlation

between input and output neurons in the case of the single layered network.

Presenting inhibitory examples, in the case of binary values - negated inputs,

creates inhibitory links in a single layered ANN. See figure 8 for illustration:

If A1 [AND Air then B

Where Ai are attributes (representing either input or hidden units), [AND Air

Where Wkjand Vijfollow usual notation, namely weights between output unit k

and hidden unit j and input unit i and hidden unit j respectively.

3. Train a single layer ANN using Hebb's rule and inhibitory examples (negated

original inputs) to get the inhibitory links between input and output neurons.

4. BRAINNE uses a measure to quantify the significance of input neurons to

output neurons, as the product of the weights of inhibitory links between the

input and output neurons and the measure SSEik. The creators of the

BRAINNE algorithm refer to the criterion as "product'~ The product is defined

as:

Productik = Weightik * SSEik

Where Weightik is the weight of the inhibitory (negative) link between input i

and output k determined by Hebb's rule.

This product actually combines two measures (inhibitory link measurement

and SSE measurement) into a single metric. Once all the measurements on

input-output couples are done, the products are sorted from maximum to

minimum. A cut off point is determined to separate relevant products from

irrelevant ones. All the input attribute products above the cut-off point are

declared "not so relevant" to the output and input attributes whose products

are below the cut off point are declared "relevant" to the output. The cut-off

point is defined as the point where the product value between two

consecutive input attribute products differ in magnitude of the two to three

times.

Consider the following example:

ProdUct12= 4.5, Product22= 3.9,

Product32= 0.4, ProduC42= 0.25,

Then the cut off point is between Product22and Product32, so input attributes

3 and 4 are considered relevant to output 2.

It is not clear why this order of magnitude was selected. Intuitively, the cut-off

point is problem dependent.

To finish the process of extracting conjunctive rules (in form of production

rules) all that need to be done is to connect the relevant attributes with

connective AND the resulting rule for our example is:

If (Z3AND Z4») then 02

Disjunctive rules have the following form:

If Ai [OR AiJ* then B

where Ai are attributes (either input or hidden units), [OR Ai]* denotes

conditional repetition, and B is a concept (either a hidden or an output unit).

For the purpose of extracting disjunctive rules, the training example set is divided

into multiple subsets, each of them corresponding to one of the output classes.

Each of these subsets is then subdivided into more subsets, until each subset

can be described by one conjunctive rule. Once that is achieved, all the

conjunctive rules that describe each subset are identified. If the subsets are from

the same initial set (in other words, corresponding to the same output class),

then their conjunctive rules are combined using disjunctive OR.

The most frequently used attribute (or agroup of attributes) is used as an initial

point to divide the training set into subsets. These attributes are selected

according to their product values. The attribute with the smallest product value is

selected and the training example set is divided into two subsets. Assume Z2is

the attribute with the smallest product value. The one subset consists of all

examples that contain true values of Z2, while the other contains all examples

that contain false values of Z2,i.e. NOT Z2.

The process is summarised in a form of a recursive algorithm:

1. Let the example set A consist of K possible outputs (classes).

2. Let A1, A2, .., AK denote K subsets of A, each corresponding to one

output (class). Thus, A = A1 uA2 u ... uAK and A1 ~ A, Al ~ A, ... AK ~ A.

Now for each Ak, k = 1 .. K

2.a) Select an attribute with a minimum product value from the list

of attributes and subdivide Ak into two subsets Bkl and Bk2by

dividing according to the value of the selected attribute. The

property that Bk1(l Bk2= {} must hold. For each S=Bkj,

• Form one conjunctive rule describing Skj by collating the list

of attributes selected so far.

• If the rule uniquely describes Skjstop the further expansion

of the rule, and process the next subset at step 2.a or next subset

at step 2.

• If the rule does not uniquely describe Skj, does the rule

select a contradictory attribute for Skj? If yes, further expansion of

the rule is stopped and the next subset at step 2.1 or next subset

at step 2 is processed.

If a contradictory attribute is not selected, further specialise the

subset Skjby letting 5 = Skjand repeating step 2.a.

SRAINNE defines rules as a list of attributes and their values. In the case of

discrete data it is a simple task to check the value against possible attribute

values for a particular rule.

Two simple rules define if a presented pattern 5 is covered by a rule. For

example:

a) If all of the attribute values of rule R are present in sample 5, then rule

R covers sample 5 (1)

b) If all of the attribute values of rule R are not present in sample S, then

rule R does not cover sample S. (2)

To illustrate this, assume a rule that consists of two attributes, a binary attribute

and a discrete attribute, say colour. The attribute values for which the rule holds

are (1, Green). Now if samples (1, Solid, Red) and (1, Liquid, Green) are

presented, a simple comparison is done according to rules (1) and (2) above.

Only the second example (1, Liquid, Green) is covered by the rule.

The solution to the problem of dealing with continuous values is not that simple.

One of the most common approaches to handling continuous values is to convert

continuous values into discrete values. The BRAINNE algorithm follows this

approach. When constructing a rule, which contains a continuous-valued

attribute, BRAINNE divides the continuous values of that attribute into two sets.

The first set of continuous values contains those that satisfy the rule and the

other set contains the values that do not satisfy the rule. The set of attribute

values that satisfies the rule is defined as an interval limited by a lower and an

upper bound.

In other words, if the attribute value is in between those boundaries, then the

rule holds. The process of constructing the rule that handles continuous values

consists of three steps that are explained in detail:

1. Determining the error between an example and the rule

2. Choosing the threshold that defines coverage by the rule

I 2
SD = ~ (ri- SJ

1=1

where MinA and MaxA are the lower and upper boundaries of attribute value A

for which the rule holds (the same applies for attribute B).

Consider sample 5 defined as (0.8,0.2,1), then the SD is (1-0.8)2 + (0 - 0.2)2 +

(1-1)2 = 0.04 + 0.04 + 0 = 0.08.

The second step is to determine the threshold. Once the error is quantified, it is

compared to a threshold (in the case of the first sample, the threshold has a

predetermined default value) to check if the rule covers the example. If the error

is bigger than the predetermined threshold, the rule does not cover the example,

otherwise the rule covers the sample. The threshold in BRAINNE is dynamically

increased, if necessary, after the introduction of another continuous attribute to

a set of attributes that forms a rule. The reason for this increase is that by

introducing more continuous attributes, the error will grow. In the case of binary

and discrete values this is not the case since the error between two binary and

discrete attributes is always either 0 or 1. The increase in threshold value is

guided by the heuristic:

If the rules obtained by introducing the new attribute into the original rule

set do not cover the same, or "sufficiently" same number of examples as

the original rule, increase the threshold.

The third and final step is to determine the lower and upper bounds of

continuous attributes for which the rule holds. The calculation of these

boundaries is fairly simple, calculating the SD for all examples and determining

which ones are covered by the rule (i.e. those rules that have their SD less than

the threshold). Once calculations are done, the values of the continuous attribute

are examined over all covered examples to find the minimum and maximum

values. The minimum and maximum values obtained for each of the continuous

attributes are then taken as the lower and upper boundaries of the intervals of

attribute values for which the rule holds.

This completes the method of handling the continuous values as employed by

the BRAINNE algorithm. This method assumes existence of an interval for which

a continuous attribute satisfies the condition of a rule. If the values that satisfy

the condition of a rule can be grouped in two or more intervals, then this method

would fail. In this case, a different approach is necessary. For example, instead

of dividing the set of continuous attribute values into two subsets, the

continuous values can be discretised. In other words, the continuous values are

divided into smaller intervals until all the values in an interval either satisfy the

rule or not.

The exhaustive process of finding optimal solutions is very resource heavy for

complex problems. All of the approaches discussed in this thesis employ some

form of heuristics in order to minimise the search space. Evolutionary computing

is the broad term for various paradigms that employ a similar type of heuristics

based on natural evolution. The predominant idea behind evolutionary heuristics

is the survival of the fittest, the same principle that is behind the theory of

natural evolution. In an applied sense of evolutionary computing, this reads as

the survival of the best of "near optimal" solutions.

• Genetic Algorithms

The genetic algorithm (GA) was the first paradigm to fit into the

evolutionary computing area. This paradigm is of special interest to this

thesis, since most data mining and knowledge discovery algorithms from

the evolutionary computing group are based on the GA paradigm.

Algorithms that use a GA for knowledge extraction are also referred to as

genetics based machine learning (GBML) in order to distinguish between

"Classical" Machine Learning algorithms and GA based algorithms. The

former are described in section 2.4. The GA concentrates on evolving

genotypes that present encoded solutions. In the terms of rule extraction,

an evolving genotype presents a potential rule. The theory behind GA and

GBML was provided by Holland [37] in his pioneering work. His schemata

processors paradigm effectively gave birth to the whole, previously

unexplored, field of GBML. It took some time for the field to gain

momentum, but despite this, the first genetic algorithm (GA) classifier

system was presented and applied in 1978 [38]. This system was called

Cognitive System Level One (CS-1). It was trained to learn a two-

dimensional maze running problem. Since 1978 a number of different GA

based classifier systems have been developed, with variable success on

various problem domains. One of the GA based algorithms is presented in

section 2.3.3.

• Genetic Programming

Genetic programming (GP) can be viewed as a specialisation of GAs. The

main difference between GAs and GP lies in the interpretation of the

genotype. In the standard GA paradigm a candidate solution is

represented as a bitstring, whereas GP uses a tree representation to

represent an executable program. In terms of rule extraction, GP

represents a candidate solution as a decision tree. Executing a genotype,

and evaluating its effectiveness, obtains a given genotype's (program's)

fitness function. A GP approach to rule extraction is discussed in section

2.3.4.

• Evolutionary Programming

The evolutionary programming (EP) paradigm is substantially different

from both GAs and GP. EP emphasise on behavioural evolution instead of

genetic evolution. Evolutionary programming evolves behaviour from the

space of behavioural models instead of a genotype. EP therefore

implements only mutation and no crossover. EP has not been used (yet)

for rule extraction, and therefore falls outside the scope of this thesis.

• Evolutionary Strategies

The evolutionary strategies paradigm is based on the evolution of

evolution [55]. This approach combines both the behavioural (as in

evolutionary programming) and the genotypic (as in GA and GP). The

evolutionary strategies paradigm is also controlled by a set of strategies

that is devised to improve the population. In a sense it is less random

than other paradigms. There has been no implementation of this

paradigm in the knowledge discovery problem domain, and is therefore

not within the scope of this thesis.

Section 2.3.1 presents an overview of general characteristics of an evolutionary

algorithm, while section 2.3.2 discusses evolutionary operators in general. The

simple classifier system level one (SCS-1), is discussed in section 2.3.3, while a

GPapproach, BGP,is discussed in section 2.3.4

This section discusses the general characteristics of evolutionary algorithms. A

pseudo code of a generalised evolutionary algorithm is given and the

evolutionary operators discussed.

The typical evolutionary algorithm (EA) is an optimisation technique where a

fitness function (discussed later in this section) is the function to be optimised.

An EA operates on n-tuples (usually binary valued), which represent the

encoding of n application parameters. The n-tuple is usually referred to as a

parameter string, or chromosome. Each n-tuple represents a potential solution to

the optimisation problem. The set of chromosomes or individuals is referred to

as the population. For rule extraction applications a chromosome, or an

individual, represents a potential rule, or rule set. One of the first obstacles for

the successful implementation of an EA is that an EA works much better with

binary values, but a vast majority of real-world problems include continuous-

valued attributes. This obstacle can be overcome with either discretising initial

continuous values, or by using some way of encoding (which is usually

computationally expensive), like converting floating point into a binary

representation.

An EA searches for an optimal individual from a population of potential solutions,

rather than from a single solution that needs to be approved. The optimisation

performed by an EA is done through iterations that are called generations. One

way of thinking in natural evolution terms is the gradual improvement of the

population. The best specimen (or their genome) have more chance to stay in

the population, while the worst specimen are taken out of the population in

analogy with the natural principle: survival of the fittest. The quantifier for quality

of a specimen is some kind of payoff function, which will reward the more

promising individuals and punish the less promising individuals in a population.

The ideal payoff function needs to measure the distance from the optimal (or

nearly optimal) solution to an individual. The payoff function is usually referred to

as the fitness function.

In order to move from one population to another (a transition known as a

generation), an EA uses a set of probabilistic genetics-based operators such as

reproduction, mutation and crossover (which are discussed in section 2.3.2).

2. Reset generation counter (g = 0)

3. While no stopping criterion is satisfied

a. Evaluate the fitness FEA(Cg,p) of each individual (p = 1 ..P)

in the population Cg

b. Perform crossover:

c. Select two individuals Cg,i and Cg,j using one of the

selection methods as described in section 2.3.2

d. Produce offspring from individuals Cg,i and Cg,j

4. Perform mutation:

a. Select an individual Cg,n

b. Mutate Cg,n according to mutation probability

5. Select the new generation Cg+! from existing population using

fitness function

6. Increase the generation counter g = g + 1

7. Repeat steps 3 to 6 until a stopping criterion is satisfied

The stopping criterion can be defined in terms of:

• A Solution has been found that is sufficiently close to the optimum.

• No improvement on either the maximum or the average fitness function

has been achieved after a certain period.

• The maximum number of predetermined generations has been

exceeded.

• Some other resource-restricted threshold has been exceeded (e.g. time,

implicitly stated in number of generations).

Each individual in the population is a potential solution. Since each individual is a

potential solution, each individual is encoded with parameters that represent the

parameters of a solution. The set of parameters that encode an individual is

called a chromosome or a genome. These parameters are also known as the

characteristics of an individual. For different evolutionary algorithms, a

chromosome represents different things. For a GA, a chromosome is usually a set

of binary encoded values (Boolean, integer, even discretised real numbers), for a

GP, a chromosome represents a set of instructions for program execution. An

evolutionary programming chromosome encodes real numbers.

The fitness function is used to quantify how close a potential solution is to the

optimum. Usually, it is a mapping from n-dimensional space (the n parameters of

the chromosome) into scalar space. The choice of the fitness function is crucial

to the success of evolutionary algorithms and, understandably choosing the right

fitness function is often not a trivial task. If the fitness function does not

encompass all the criteria for the optimal solution, it is highly unlikely that even

the best-implemented evolutionary algorithm will produce satisfactory results.

When choosing the initial population, it is possible to take into account any prior

knowledge about the problem domain, by encoding existing knowledge and

making it a part of the initial population. This choice can lead to faster

convergence towards an optimal solution, but it can also bias towards a certain

area of the search space, which in turn can lead to premature convergence to a

local minimum. A more popular choice of the initial population is a complete

random initialisation of the individuals.

In this section, the evolutionary operators (the operators that simulate natural

evolution) are presented and discussed. Evolutionary operators can be broadly

divided into two groups: one group is used for reproduction and the other is

used for selection.

The main idea behind evolutionary algorithms is that, using evolutionary

techniques, the population moves towards an optimal solution. It can be said

that the population "evolve" towards an optimal solution. Evolution progresses

from one generation to another. The population evolves through reproduction

from one generation to another. For the purposes of reproduction, the

evolutionary algorithm applies two operators to the population:

• Crossover

Crossover is the process of generating offspring, or new solutions, by

combining genetic material of two parent individuals. The easiest way of

implementing this technique is the so called 1-point crossover, where

chromosomes of the parents are divided into two parts, and then new

chromosomes (individuals) consist of the one part belonging to one parent

and the other part belonging to the other parent.

To illustrate this technique, consider two chromosomes

A: 10010011 and B: 01110111

and assume that the crossover point is at position 3 (for chromosome A,

the value is 0 and for chromosome B, 1). The offspring chromosomes C

and Dare:

C: 10110111 and D: 01010011

• Mutation

Mutation is a technique used to inject new "possibilities" into an existing

gene pool, thereby increasing the diversity of the population. Mutations

are random changes of a genome. In a sense mutation increases the

search space. This process also closely mimics natural processes. If there

are too many mutations, it may happen that the best specimen from the

population gets affected, which can degrade the "quality" of the whole

population. There are different propositions on how to prevent this,

ranging from a very low mutation rate to the prohibition of the mutation

process to successful individuals (the individuals that show promise, i.e.

usually the fittest individuals in the population).

The objective of selection operators is to ensure that the population is evolving

towards a better solution. Selection operators award a better specimen with

bigger chances for reproduction, prevent extensive mutations on those better

specimen, and, in certain cases, ensure that the fittest members are

automatically qualified as members of the next generation (using the elitism

operator). The selection operator usually uses the fitness function to select the

best individuals. Fitness values are transformed in one of two ways before used

in any selection process, namely:

• Explicit Fitness Remapping

The calculated fitness value of each individual is scaled into a new range

(usually [0,1]). This new scaled value is then used as fitness measure for

selection.

• Implicit Fitness Remapping

The fitness value of each individual is used with no transformation.

Several selection methods have been developed, of which the most frequently

used are reviewed below:

• Random Selection

Random selection is by far the simplest method of selection. The main

disadvantage of random selection is that it does not discriminate between

"good" (higher quality) individuals and "bad" (lower quality) individuals.

• Elitism

Elitism is more of a strategy and an idea, than a clear selection criterion.

The idea is that the selected best specimen are automatically included into

the next generation, thereby ensuring that the best individuals survive to

the next generation. The number of chosen specimen is often referred to

as the generation gap. The choice of the specimen is usually based on its

fitness.

This section presents and discusses the Simple Classifier System 1 (SCS-1),

developed by Goldberg [65]. SCS-1 is one of the earliest genetic algorithms and

one of the most popular textbook examples of evolutionary computing algorithms

used for rule extraction. SCS-1 is a classifier algorithm that incorporates a

genetic algorithm to search for rules. SCS-1 operates under the premise that it

receives stimuli from the environment (in other words, input data), tries to

classify the stimuli using a population of potential classifying rules, and then

rewards the successful rules and punishes the unsuccessful rules. SCS-1 consists

of three main components, namely a message system (discussed in section

2.3.3.1), an apportionment of credit system (discussed in section 2.3.3.2) and a

genetic algorithm (discussed in section 2.3.3.3). The main function performed by

the message system· is pattern matching between messages and potential rules.

The apportionment of credit system provides the SCS-1 with a clean, if

somewhat complicated, means of evaluating the potential rules. The

apportionment of credit system bears similarity to a blackboard architecture

framework [33], as used by certain expert systems, namely HEARSAY[24] and

881[43]. The genetic algorithm in SCS-1 has as its sole purpose to inject new

rules into an existing set of rules, that are then evaluated via the apportionment

of credit system component. SCS-1 executes a predetermined number of cycles,

each cycle representing a new generation. A cycle consists of sequential

execution of all its components, starting with the rule message system and

ending with the genetic algorithm.

The rule and message system is the pattern-matching part of the 5C5-1

algorithm. A message is a term used by the author of 5C5-1, and in a sense, can

be either a sample presented to the 5C5-1 system, or a consequent of a rule.

The 5C5-1 can handle only binary messages, where a message is defined as:

<message> ::= {O,l}n

In other words, a message corresponds to a binary input pattern.

A classifier is defined as a production rule of the form:

The classifier is a potential rule, and can be thought of as an If-Then statement.

If the condition is satisfied (in our case, an incoming message matched against a

condition pattern), then the classifier message is posted. The condition is a

sample pattern recognition device, with the wild card character '#' added to the

existing alphabet {O,l}.

Once the classifier condition is matched, the classifier is posted to the qualifying

list of classifiers. Then the message is evaluated against the conditions of all the

qualified classifiers, according to the strength of each of the classifiers. The

stronger classifier is chosen over the weaker classifier.

To illustrate the working of the rule and message system, assume a message

(sample pattern) from outside of the SCS-l to be encoded as 1100, and assume

two classifiers: 01##:0010 and #100:0011.

The message is not matched by the first rule, but it is matched by the second

rule. The second rule then posts the message: 0011.

In order to distinguish between potential good and bad (useful and useless)

classifiers, some kind of reward and punishment system is desired. The reward

and punishment system increases or decreases the fitness values. The most

prevalent method of awarding successful classifiers is the "bucket brigade"

algorithm. This algorithm consists of two main components: an "auction"

component and a "clearinghouse" component. When the classifiers from the

qualifying list are matched, they do not directly post their messages. Instead,

they compete for the right to post a message by bidding only a predetermined

(parameter driven value, usually 10%) percentage of their strength. Initially, all

the individuals in the population of classifiers have the same strength. The

highest bidder (the most successful rule so far, i.e. the one with the highest

number of successfully matched messages) then posts its message. The

message, as posted by the winning classifier, is then evaluated against a training

example, and, if it matches, then the classifier was successful. The classifier is

then awarded by extra strength points, which will make it more successful in

securing future bids. The highest bidder must then clear (divide) its payment

(payment is the sum of all bids posted by qualifying classifiers) through the

process referred by Holand [65] as a clearinghouse, where the bid payment is

distributed in some manner amongst the matching classifiers in the qualifying

list. This distribution of the payoff helps to ensure that different rules can coexist

in the population. The distribution mechanism does not award all the strength to

only one rule, thus preventing the creation of one super rule, covering most of

the examples.

The apportionment of the credit system ensures a clean procedure for rewarding

(and punishing) classifiers. Since the initial population of potential rules is

randomly created, there is no guarantee that these potential rules are sufficiently

good rules. Therefore, we must find a way of enriching the variety of the rules

population. This is the role of the genetic algorithm. It enriches the rules

population by means of standard genetic algorithm techniques, such as mutation

and crossover. The genetic algorithm employed in 5C5-1 is the standard genetic

algorithm with both 1 point crossover and mutation implemented (as explained in

section 2.3.1.2). Roulette wheel selection, as described in section 2.3.1.3, is

used.

For more information on 5C5-1, the reader is referred to the work of Goldberg

[29].

The building block approach to genetic programming (BGP), developed by

Rouwhorst and Engelbrecht [58], combines decision trees and evolutionary

computing. One of the unusual characteristics of this algorithm is that, unlike

typical EAs, it uses a direct representation of the solution. Individuals, or

candidate solutions, are represented in the form of decision trees. The search

space is then the space of all possible decision trees, given a finite set of input

parameters and conditions. The BGPalgorithm starts with an initial population of

simple individuals, consisting of only one building block. Individuals grow in

complexity during the evolutionary process through the addition of new building

blocks when the simplicity of the candidate solutions can not describe the

complexity of the underlying data. This is contrary to standard GP approaches to

evolve decision trees, which start with complex initial individuals representing

entire decision trees. Section 2.3.4.1 discusses the decision tree representation

used by BGP and section 2.3.4.2 discusses the implementation of the genetic

operators.

Each individual in the BGPalgorithm is represented as a decision tree. Each node

in the decision tree represents one building block, which consists of three parts,

namely an input attribute, a relational operator and a threshold. Input attributes

are allowed to be of any type, e.g. discreet, nominal, binary or continuous. The

relational operators == and <> are used for all attribute types, while the

operators <, <=,>,>= are used for continuous valued attributes only. The

threshold can be a numerical value, or another input attribute. The inclusion of

attributes as thresholds add the ability to extract rules of the form

If A1 < A2 then c1assl

Each tree is parsed from the root to the leaf nodes. Each node is a condition,

except for the leaf nodes. A leaf node corresponds to a class. The path from the

root to a leaf represent a rule.

cJ1 P~l

x .~~~ssover
pomt

4 z

Mutations are implemented on three different levels. The first one is a mutation

on the attribute value itself (data level) and the other two are mutation on the

condition level (meta data level) and mutation of the threshold (meta data level).

• Mutation on attribute level is implemented as replacing of an attribute

by randomly choosing another attribute, not changing the attribute

value itself. This operation is under the restriction that the semantics of

the rule still must be satisfied. For example, it is prohibited to replace a

binary-valued attribute with a continuous-valued attribute.

• Mutation on the condition level is of such a nature that it takes the

condition operator to a newly allowed one from the set {==,!=, >=,

<=, <, > }. In other words, this mutation randomly selects a new

relational attribute, while still adhering to operator type constraints.

• Mutation of threshold can be in one of two ways, depending on the

threshold type:

a) If the threshold is a value, then a new value is selected randomly.

b) If the threshold is another attribute, that attribute is replaced with

randomly selected attribute or value.

The pruning operator is another form of mutation. This operator randomly

selects a non-leaf node, detects the corresponding subtree and replaces the non-

leaf node with a leaf node indicating the class that are mostly covered by the

corresponding rule.

The BGPalgorithm evolves decision trees from a training set, and determine the

generalisation abilities from a test set of data patterns not seen during training.

A pseudo code algorithm for BGPis given below:

1. Read training data and randomly initialise a population of simple

decision trees

2. While the best tree is still not "optimal enough" (error is higher than a

predetermined error threshold) repeat:

a) if more nodes can be added (if there are attributes available

for subdivision) then add nodes to the trees in the current

population;

b) for the whole population do tournament selection of candidates

in the population and apply evolutionary operators (as described

in 2.3.4.2).

3. If a new best tree has been found, then declare it the new best tree,

and repeat step 2.

4. Once an "optimal enough" tree is found, extract the rules from it.

After initialisation, the algorithm starts with a population of trees that consist of

only one bUilding block. The copy of the "best tree so far" (measured in terms of

the number of examples correctly covered) is stored separately. Each cycle starts

with a test to see if the current best tree can be accepted as satisfactorily, and to

terminate the evolutionary process. The following test is used for this purpose:

IF (MinRuleAcc > e (c (trainsize / T(O» - C(trainsize/T(t») THEN OPTIMAL TREE

where MinRuleAcc is the accuracy of the worst rule in the tree, c is a parameter

of the algorithm and train size is the number of training instances. T(t) is the

temperature function that is implemented as :

T(t) = T(D) - t

where T(D) is the initial temperature, and t denotes the generation number.

For more information on BGP,the reader is referred to work of Rouwhorst et al

[58].

The decision tree based algorithms by Hunt et al [39] were probably the first

attempts to solve the rule extraction problem. Decision tree algorithms are

similar to already established techniques used in solving problems, namely

"divide and conquer", as well as the recursive approach to problem solving. It is

therefore not surprising that this class of algorithms was historically first. For

many years (it is important to remember that connectionist-based and genetic-

based rule extraction algorithms reappeared only in the late eighties), rule

extraction algorithms based on decision trees were the only AI based tools for

rule extraction. For the above stated reason, this thesis uses the term "Classical

Machine Learning" for the group of decision tree rule extraction and rule

induction algorithms.

Section 2.4.2 presents some general characteristics of classical machine learning

algorithms. Section 2.4.3 explores decision tree algorithms, and discusses the

C4.5 algorithm developed by Quinlan [54]. Section 2.4.3 presents the CN2 rule

induction algorithm.

Although there are many variations of the basic machine learning algorithms a

set of general characteristics of decision tree algorithms can be defined. Both

algorithms used in this study (C4.5 and CN2), share the general characteristics of

the basic machine learning algorithm.

• The algorithm assumes that samples have target classes. Decision trees and

rule induction are therefore algorithms from the supervised learning algorithm

class.

• The algorithm produces as a result a "logical" classification model. In other

words, the output (or the rule) is in the form of a logical expression.

The general decision tree algorithm works as a classifier and produces an output

that is a rule. In other words, the algorithm sorts the input into discrete,

delineated classes, rather than into a continuous value.

The decision tree is a widely used format for representing rules. A decision tree

has distinctive node types: If a node does not have any descendants, then it is a

leaf node which represents a class. If the node has descendants, then it

represents a condition which is referred to as a branch node (see figure 10).

Figure 10 illustrates a decision tree with three embedded rules:

• If (A < 0.5 AND B = 1) then Class 1

• If (A > 0.5 AND B <> 1) then Class 2

• If (A > 0.5) then Class 3

Decision tree based algorithms are based on ideas that go back to the late

1950s, to the work of Hunt and Hoveland [39]. Hunt published his experiments

and proposed algorithms in his pioneering book "Experiments in Induction" [39],

where several implementations of the "concept learning systems" (CLS) were

described. Other researchers followed the initial research by Hunt, culminating in

a few methods and algorithms similar to the Hunt method. The CART system

[61], ID3 [53], and ASSISTANT [13] are examples of such decision tree

algorithms. One of the most prolific researchers in this arena is Quinlan. Quinlan

developed one of the most popular decision tree algorithms of the earlier years

(before the late 1980s), namely ID3 [53]. ID3 was successful at two levels:

firstly, it performed satisfactory, and secondly, it was simple enough to allow for

modifications easily. AQ is another example of a "first generation" decision tree

algorithm. ID3 and AQ, both early decision tree algorithms, formed the

foundation for the next generation of decision tree algorithms such as C4.5 by

Quinlan [39]. C4.5 evolved from the idea behind the ID3 algorithm. Since this

study uses C4.5 for experimental results, C4.5 is discussed in detail in the next

section.

The C4.5 algorithm shares the general characteristics of the basic machine

learning algorithm for rule extraction (see section 2.4.1). C4.5 creates a decision

tree, which embeds rules describing the data. Leaf nodes indicate a class, and

decision nodes indicate logical tests (conditions of a rule) to be applied on an

attribute value.

The decision tree induction process consists of two phases, namely the

construction of the decision tree and the pruning of the decision tree. After

construction and pruning of the decision tree, an additional phase transforms the

rules represented in the tree into a human friendly format of IF-THEN rules.

2.4.1.3 Constructing Decision Trees

C4.5 uses Hunt's method to construct decision trees [39], which is discussed

next.

Let T denote the set of training cases and let Cn denote one of the n discrete

classes. Considering training set T, there are three possibilities:

• If T contains one or more cases, all belonging to the same class C1,

then the decision tree for the training set T consists of one leaf that

identifies C1.

• If T is empty, then the decision tree for the training set is one node

that does not denote any of the categories. In this case, we can say

that the training set does not provide enough information to determine

a class.

• If T contains cases that belong to more than one class, the algorithm

uses the well-known "divide-and-conquer" strategy to proceed. At this

point, the algorithm chooses a conditon applicable to a single attribute

to divide the training set T into n subsets T1,..,Tn according to n

possible outcomes of the test, for n~2. This process is repeated on

each of the subsets.

K
info(T) = - L freq(Cj' 1) x log 2 (freq~~ I' 1))

i=1 1 TI

niT; 1

infox(T) = - L -I _1 1 X info ell)
i=1 T

the information gained by applying a test that divides training set T into n

disjunctive sets, T1 .. T n, is expressed as the weighted sum over subsets T1 ..T n'

I T I and I Tj I denote the cardinalities of sets T and Tj respectively where i =

l..n.

The C4.5 algorithm uses a modified version of the ID3 criterion, referred to as

the gain ratio criterion. The gain criterion used by ID3 favours tests with many

outcomes. This can potentially lead to an "overfitting" of the rules and to large

decision trees with a high branching factor. The term "overfitting" refers to a

situation where a rule is not general enough. In other words it is fine-tuned to fit

only a specific example. To illustrate the overfitting problem, all individuals within

a specific database can be classified (using any classification scheme) using

his/her identity number. But bUilding a classifier system that classifies n

individuals according to some classification scheme will require the compilation of

n rules (each of them having only one attribute - identity number), which is

clearly not desirable.

The gain ratio criterion used by the C4.5 algorithm is expressed as the gain

divided by the potential information generated by dividing T into n subsets:

gainratio (X) = gain(X) / splitinfo(X) (2.22)

I't' f (T) ~ IIII I (,Ill I)
sp I In Ox = - t,TTT X °92 TTT

There are two basic approaches to pruning. The first is based on a test that will

stop expanding the decision tree at some point, for example, if the number of

conditions in a rule exceeds a predetermined value. This method is often referred

to as pre-pruning (or stopping) [54]. The second approach is where expansion of

the tree is always allowed, and after the expansion, certain branches are

removed from the tree and replaced by leaves or less complex branches. This

approach is referred to as post-pruning. The C4.5 algorithm adopts the post-

pruning strategy.

The heuristic used for pruning by C4.5 is based on a reduced-error pruning

technique that assesses the error rate between the pruned and the non-pruned

tree, based on the set of separate cases [54]. The heuristic used by C4.5 is

illustrated with the following example:

Let N denote the number of training cases, from the training set T that are

covered by a leaf C (a class) and let E denote the set consisting of cases from

the training set T that are incorrectly classified as members of leaf C (class C). E

is a subset of N. Let CF be a confidence level. Then, the upper level on the

probability of error is found from the confidence limits for the binomial

distribution. C4.5 then uses this upper level as the predicted error rate and

compares this rate for the leaf (pruned and unpruned tree) and for the subtree.

If the predicted error rate of a subtree is higher than that for the leaf, the leaf

replaces the subtree.

The output of the C4.5 algorithm is a pruned decision tree. The decision tree can

be viewed as a flowchart to be followed in order to classify certain examples.

This works very well, but it is not always easy to see the rules in the decision

tree, especially in complex tree structures.

Rules are very simply extracted from the decision tree. Each path from the root

to a leaf represents one rule. All intermediate nodes form the condition part of

the rule, while the leaf node represents the rule consequent (or a class).

All the rules created using this method are then evaluated, and if possible,

simplified. The simplification process uses a similar heuristic to heuristics

employed by the pruning method used by the main part of the C4.5 algorithm.

After the simplification process, all rules denoting the same class are then sifted

in order to remove rules that do not contribute to the accuracy of the entire rule

set, or to remove subsumed rules.

Finally, the sets of rules are ordered according to the class they represent. The

default class is then selected as the class with the most cases in the training set.

The final output is then a set of if-then rules that are usually as accurate as the

original decision tree, but they are presented in a human friendly format.

The most widely used rule induction algorithm is the CN2 algorithm. The CN2

algorithm was developed by Clark [14], by combining the best characteristics of

ID3 and the AQ [49] algorithms. For example, ID3's ability to deal with noisy

data was preserved in CN2. The CN2 algorithm employs the beam search

approach of the AQ algorithm, where each beam direction is a direction to a

single class. The AQ algorithm identifies all the rules applying to one class and

then moves on to another class. The objective of the CN2 algorithm is to improve

the AQ algorithm, in such a manner that CN2 is not so sensitive to specific

examples and that the rule search space is increased by means of allowing rules

to remain in consideration, even if they do not perform perfectly on training

examples. CN2 employs, as most machine learning algorithms, heuristics to

guide the search, namely entropy (to quantify the goodness of a rule) and

significance (to express the reliability of a rule). Both of these are explained in

the next section, as is the basic CN2 learning algorithm.

In order to understand the CN2 algorithm, consider the following definitions:

• Selector. A test on an attribute is called a selector. The allowed test

operations are defined as the set {=, ~, >, =;;}.

• Complex. The conjunction of two or more operators is called a complex. This

is the condition part of a rule.

• Cover. The disjunction of two or more selectors is called cover.

• Rules. Rules generated by CN2 are of the form:

If <complex> then <class>

1. Initialise the rule list to empty. Initialise the complex set to non-

specialised.

2. Find the best complex BESTCOMPLEX:

a) Specialise all the complexes in the current complex set by

intersecting the complex with all the selectors available. Store the

results in the new complex list.

I
Entropy = - :L Pi log 2(Pi)

1=1

Both algorithms, C4.5 and CN2, presented in section 2.4 are used for the

experimentsin chapter 4.

Chapter 3

Hybrid Classifier System

This chapter presents a new rule extraction approach, namely Hybrid Classifier

System (HCS) [56]. HCS combines both heuristic and exhaustive search. The

search space is the set of all possible rules that can be formed from a

combination of all possible conditions on a finite set of attributes. The algorithm

follows a building blocks approach to construct rules. HCS starts with a set of

potential rules that contain a minimum number of attributes, i.e. one attribute.

Rules are then expanded by adding one attribute at a time. This is similar to

building block approach, where individuals improve in complexity when their

simplicity cannot account for the complex relationships between attributes. The

expansion of rules is exhaustive, but as soon as a new rule is produced, it is

evaluated against a fitness function. If the potential new rule is not promising

enough (e.g. if it does not exceed a certain parameterised and dynamic

threshold), it is taken out of the population. By changing the parameters of the

fitness function, the "exhaustiveness" of the algorithm can be adjusted. In other

words, through adjustment of these parameters, upper and lower bounds are

determined, thus controlling the accuracy and complexity. If the upper bound is

set too low, accuracy is lowered. If the lower bound is too high, possible rules

can be discarded too soon.

The HCS is loosely based on schemata theory [36], presented in section 3.1.

Schemata theory leads to a building block approach, which should lead to the

most general rules, and enable the algorithm to construct satisfactory results

sooner.

Schemata theory [36] is based on the fact that the search that exploits

similarities in the patterns is very efficient. It is this concept of a similarity

template, or schema, which leads to the building block approach.

A schema is a similarity template describing a subset of strings with similarities at

certain string positions. To illustrate, by example, consider the binary alphabet

{O,l}. Adding the wild card character '#' to the binary alphabet results in the

extended alphabet {O,l,#}. Assume a maximum string length of four. Using this

extended alphabet, it is possible to create strings (schemata) over the ternary

alphabet {O,l,#}, using the schema as a pattern-matching device. For instance,

the schema 0*00 matches two strings, namely {DODO,0100}. The schema ##11

matches four strings, namely {DOll, 0111, 1011, 1111}.

The wild card character '#' is just a device that enables the description of all

possible similarities among strings of a particular length and alphabet. This

notational device explicitly recognises all the possible similarities in a population

of strings.

Each schemata has two attributes:

• Schema Order, o(H)

Schema order is the number of fixed positions present in the similarity

template. For example, 0(011*1**) = 4 and 0(0*****) = 1

• Defining length, d(H)

Defining length is the distance between the first and last specific string

position. For example, d(Ol1 *1 **) = 4 because the last specific

position is 5, and the first one is 1.

Schemata that are highly fit, according to the chosen fitness function, and with

short defining length are referred to as the building blocks [26].

The objective of HCS is to build such schemata through a hybrid exhaustive and

heuristic search strategy.

In this section, an overview of the main parts of the HCS algorithm is given, as

well as an example that is used to illustrate the working of HCS. The example in

this section is used for the remainder of this chapter.

As noted in the introduction of this chapter, the HCS algorithm consists of two

main parts:

• A rule pruning system, which evaluates the potential rules in the list of rules

and prunes them accordingly (see section 3.2).

• A rule expansion system, which expands the surviving rules (the promising

rules, not removed in the pruning process) (see section 3.3) by adding a new

building block.

The HCSis illustrated using the following example:

Rules to be extracted are given by the Boolean function (A AND B) OR (A AND

NOT C). The complete set of possible values for the three variables and the

corresponding output of the Boolean function are taken as the training set for

this example is listed in table 3.1.

A B C (A AND B) OR (A AND NOT C)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

The initial rule population consists of a complete set of rules with only one

attribute initialised to either 0 or 1. If there are n attributes, the initial population

therefore consist of 2n rules, with one attribute having a value, all other

attributes have a value of #. For the example above, the initial population is:

{ 1##, 0##, #1#, #0#, ##1, ##O}

where '#' represents the wild card symbol in the sense of Holland's schemata

theory [36]. It is also important to note that this example covers only binary

values. The extension of HCS for discrete and continuous values is presented in

section 3.4.

The rule pruning system is the heart of the algorithm. Rules must be pruned,

because the first part of the system is exhaustive. If rules are not pruned the

algorithm reverts to a pure exhaustive search, which, due to the computational

cost, is not desirable. Each rule is evaluated against the training samples, and

the fitness value of that rule is calculated as the success rate in predicting the

class of the matched samples. Three different scenarios can occur:

• If the rule matches the pattern of a particular class in more than the

parameterised minimum percentage (supplied by the user), the rule is kept

for future expansion.

• If the rule matches the pattern of a particular class in more than the

parameterised maximum percentage (supplied by the user), the rule is

declared as a valid rule and is taken from the rule population and no further

children of the rule are created.

• If the rule matches the pattern of a particular class in less than the

parameterised minimum percentage (supplied by the user), the rule is taken

out from the rule population, i.e. the rule set is pruned by removing an

irrelevant rule.

From this description it is easy to conclude the importance of the parameterised

minimum and maximum acceptance percentage. If the minimum percentage is

too low, the algorithm will be more resource costly, and if it is too high, potential

rules may be discarded before they are expanded into valid ones. The algorithm

starts with a small minimum acceptance percentage, which is increased with

every pass. Similarly, for the maximum acceptance percentage: if the percentage

is too low, less accurate rules are extracted, and, if too high, the rules are too

specific. An additional disadvantage of the rules extracted in this manner is that

they would be very resource costly to arrive at.

Individual Fitness Individual Fitness

1## 75% 0## 0%

#1# 50% #0# 25%

##1 0% ##0 50%

If the initial minimum acceptance percentage is 50% and the maximum

acceptance percentage is 90%, the following potential rules survive to the next

iteration to be expanded in the next step:

{ 1##, #1#, ##O}

The rule expansion system represents the exhaustive part of the algorithm. Each

candidate rule is expanded by an additional attribute in the following manner: A

copy of each individual is made. The value of the next unused attribute is set to

o for the one copy and to 1 for the second copy. This process further specializes

each of the rules.

Continuing with the example, the rules are expanded to:

After the expansion phase, the new population is passed through to the rule set

pruning phase. For the next pruning phase the fitness values are:

Individual Fitness Individual Fitness

11# 100% 10# 50%

1#1 50% 1#0 100%

#10 50% #11 50%

In this pass, the minimum percentage is greater than 50%, so rules 10#, 1#1,

#10 and #11 are discarded, and rules 11# and 1#0 are declared valid rules, and

are taken out of the population. The population is now empty and the process

stops because there are no new possible rules to create.

1. Initialise the population as described in section 3.3.

2. While there is a potential rule in the current population, remove the

potential rule from the current population and expand it with an

additional, previously unused attribute for all allowed values of that

attribute.

a) If the new potential rule is above the rule threshold, declare it a rule.

b) If the new potential rule is below pruning threshold, prune it

c) If the new potential rule is between the rule and pruning thresholds,

make it member of the new population

3. If there are more potential rules in the population repeat step 2, if not

make new population of the current population.

4. Repeat steps 2-3 until a stopping criterion is satisfied. The stopping

criterion is satisfied if the current population is empty, or if all of the

attributes are used.

This concludes the example of the working of the HCS algorithm. In next section,

mechanism for handling the discrete and continuous values is presented and

discussed.

In order to handle discrete and continuous values, the HCS algorithm requires

minor modification. The pattern matching process and heuristics that guide the

pruning of a potential rule are exactly the same. The first part of the algorithm

(initialisation of the population) is modified in such a manner that it caters for all

possible values for a discrete attribute. For example, consider the discrete

attribute TrafficLight. The attribute TrafficLight can have three values (Red,

Orange, Green) that can be encoded as (1, 2, 3). Then the initialisation of the

TrafficLight attribute (assume TrafficLight is the second encoded attribute, and

there are only three possible attributes) would yield the following initial

population:

{ #1#, #2#, #3#}

The second part of the HCS algorithm, the rule pruning system stays unchanged.

The third and final part of the algorithm, the rule expansion system, requires

only minor modifications that are similar to the modifications done to the first

part of the algorithm: The rule expansion system expands each attribute to all

possible values.

When presented with continuous valued attributes, HCS employs a simple

discretisation technique. The range of continuous values for an attribute is

divided into a parameterised number of intervals. The default value for the

number of intervals is six. The default was chosen intuitively and proper method

that applies to a certain set of discrete values should be investigated. In the

case of a rule that applies to the range of continuous values of an attribute, the

HCS algorithm converts the rule into a rule that applies to certain set of a

discrete values of that attribute. Once that is achieved it is a simple task to check

the value against valid attribute values for a particular rule. To illustrate this

technique, consider the following example:

The minimum attribute value is 0.5 and the maximum 3.5. Assume that the

attribute for a training sample has a value of 2.7, and the attribute range for a

rule is from 2.5 to 3.0.

The first step is to divide the range of the continuous values for the attribute into

six intervals. The size of the interval 51 is defined as:

51 = (MaxAttrValue - MinAttrValue) / Nolntervals

where MaxAttrValue is the maximum value for the considered attribute,

MinAttrValue is the minimum value for the considered attribute and Nolntervals is

the parameter that defines the number of intervals.

51 = (3.5 - 0.5) / 6 = 3 / 6 = 0.5

The discrete attribute value is calculated as:

DV = (CV - MinAttrValue) DIV 51

where CV is original continuous value of the considered attribute and the DIV

operator is a division between the integers.

Following our example, the discrete value for the considered attribute is:

DV = (2.7 - 0.5) DIV 0.5 = 2.2 DIV 0.5 = 4

The rule from this example is valid for the following discrete values:

DVl = (2.5 - 0.5) DIV 0.5 = 2.0 DIV 0.5 = 4 and

DV2 = (3.0 - 0.5) DIV 0.5 = 2.5 DIV 0.5 = 4

The rule in our example is valid only for one discrete value, namely 4. In our

example, the rule applies to the training sample because its attribute value is the

same as the valid rule attribute value (in other words, the rule covers the

sample).

This method has shortcomings that are mentioned, together with some of the

ideas on how to alleviate them, in section 5.2. The method used, however,

performs satisfactorily, especially when the number of intervals is high, because

it leads to a finer differentiation between the attribute values which are valid for

the rule and attribute values which are not valid for the rule. But more intervals

increase the complexity, since more expansions need to be performed. There is

therefore a trade-off between accuracy of the rules in terms of number of

examples correctly covered, and complexity of the search process.

If the HCS is presented with a problem with continuous outputs, some pre-

processing would be necessary. Specifically, the output should be discretised into

discrete levels (classes) by the expert of the field.

In this chapter, the HCSalgorithm was presented and briefly discussed. In the

next chapter, the HCSalgorithm is compared with representatives from each of

the preViously discussed classes of algorithms. Comparisons are done using well-

known benchmark problems.

Chapter 4

Experimental Results

Various criteria to evaluate rule extraction algorithms are presented in this

chapter, followed by the actual experimental results obtained from the algorithms

chosen for comparison. The algorithms chosen in this study are: BRAINNE

(section 2.2.6), representing the connectionist approach-based algorithms, BGP

(section 2.3.4), representing the evolutionary programming approach-based

algorithms, C4.5 (section 2.4.1) an example of decision tree approach-based

algorithms, CN2 (section 2.4.2) as a representative of the rule induction

algorithms, and, lastly, the HCSalgorithm proposed in this thesis (chapter 3). All

of the above-mentioned algorithms were tested on three benchmark data sets,

namely: Monks, Iris and Diabetes [66].

Rule extraction algorithms can be evaluated according to the efficiency of the

algorithm, and according to the quality and the consistency of the extracted

rules:

• Efficiency of the algorithm

The majority of rule extraction algorithms suffer from being computationally

expensive. For example, in the case of decompositional ANN rule extraction

algorithms, the need to explore most of the links between the neurons; or

for decision tree based algorithms, the vast number of branches in the tree

adds to complexity of the search process. Heuristics are usually employed

to limit the size of a search space. In most cases, when we talk about

efficiency of a rule extraction algorithm, we are talking about efficiency of

its heuristics.

• Consistencyof the extracted rules:

A set of rules is consistent if there are no contradicting rules within it. In

terms of contradiction, it is meant when there are two or more applicable

rules, if applied, will classify an example as a member of different classes.

• Quality of the extracted rules

One of the first rule quality evaluation criteria was proposed by Towell and

Shavlik [65]. The proposed measurement for rule quality comprises of:

o Accuracy: A set of rules created by a rule extraction algorithm is

accurate if unknown (or previously not presented) examples are

classified correctly.

o Fidelity: Fidelity is present if the extracted set of rules imitates the

behaviour of the original classifier system from which those rules are

extracted. This evaluation criterion, however, is not applicable for all

rule extraction algorithms. It is applicable for most algorithms that use

knowledge embedded in ANNs, genetic algorithms and decision trees.

o Comprehensibility: The comprehensibility of a set of extracted rules can

be quantified by (1) the number of rules in the rule set and (2) the

number of antecedents per rule.

The efficiency of rule extraction algorithms is not considered a measurement

criterion in this thesis, although observations of the execution time will be

mentioned in the conclusion (section 4.3.3). All algorithms, in their original form

or with minor adjustments, produce rules in the form of production rules (section

2.1.1). Therefore, the readability of the rules will not be used as a measurement

criterion. In the experimental results, no contradictory rules were detected

(except in the case of the Monks dataset using BRAINNE, but those were

discarded), so the emphasis is on the quality of the extracted rules. In the

reminder of this chapter, algorithms are compared according to accuracy of the

extracted rules (section 4.3.1), the number of extracted rules (section 4.3.2) and

the number of the antecedents per rule.

All data sets used for the purpose of this thesis were downloaded from the data

repository of University of California, Irvine, Department of Information and

Computer Sciences [66]. The following data sets were chosen because they are

considered as benchmarks: the Monks data set has been "agreed" upon as a

benchmark test, while the Iris data set is probably the most used data set in the

area of machine learning, and finally, the diabetes data set is a well known and

used data set.

All datasets were split into 30 training and validation sets. The details on

numbers of samples used in each set are discussed in the appropriate sections

below. At this point it is important to mention that the implementation of the

BRAINNE algorithm in the Data Mining Tool (DMT) application [4], unfortunately,

does not allow for training sets with more than 300 samples. This limitation has

created serious problems with some datasets.

The monks dataset consists of three artificial datasets that share attributes and

values. The only difference between the datasets is the rule used for

classification of those datasets. The output can be either of two classes: "Monk"

and "Not Monk". An instance of each monk dataset consists of six attribute

values (AI, ..A6). Attributes A3 and A6 are binary valued attributes with values

{1,2}, while attributes AI , Az and ~ are discretised attributes with a range of

three discrete values, {1,2,3} . Attribute As is also a discretised attribute but with

a range of four discrete values, {1,2,3,4}.

The rule for the first of the MONK'S problems (Monk1) is

if Ai = A2or As = 1 then Monk

The rule for the second of the MONK'S problems (Monk2) is

if EXACTLYTWO OF

Ai = 1, A2 = 1, A3 = 1, A4 = 1, As = 1, A6 = 1 then Monk

The rule for the third and last of the MONK'S problems (Monk3) is

if (As = 3 and ~ = 1) or (As;j:. 4 and A2;j:.3) then Monk

It is important to note that the MONK'S problem was the basis of the first

international comparison of learning algorithms [64]. The whole data set consists

of 432 instances. The data set was divided into two subsets: a randomly chosen

set of 132 instances was used as a validation set and the remaining 300 were

used as a training set. At this point it should be noted that BRAINNE failed to

extract any rules from the monks databases due to abnormal application

termination.

The iris dataset is probably one of the most used datasets in the machine

learning related research. The data set contains 3 classes of 50 instances each,

where each class refers to a type of iris plant. Each instance consists of four

continuous attributes, namely: sepal length, sepal width, petal length and petal

width. It is important to notice that one class is linearly separable from the other

two. The other two are not linearly separable from each other. There are 150

instances in the whole set. They were divided into two groups: 50 were randomly

chosen for the validation set, while the remaining 100 were used as a training

set.

This dataset consists of 768 instances. Several constraints were placed on the

selection of these instances from a larger medical database [52]. In particular,

all patients here are females of at least 21 years old and have a Pima Indian

heritage. Each instance consists of eight continuous attributes, namely: number

of times pregnant, plasma glucose concentration in an oral glucose tolerance

test, diastolic blood pressure (mm Hg), triceps skin fold thickness (mm), 2-Hour

serum insulin (mu U/ml), body mass index (weight in kg/(height in mi),

diabetes pedigree function and age (years). The output can be one of two

a ± 1.S60 a (1 - a)
n

Tables 4.1 and 4.2 show the mean accuracy on the training and validation sets

over 30 runs for each algorithm, respectively. The CN2 algorithm consistently has

the highest score for each of the tasks, which can be explained by the large

number of rules, compared to other algorithms, that reach good accuracy with

much less rules (refer to table 4.3). The BRAINNE algorithm, as implemented in

DMT [4], could not run on any of the original Monk problems. The DMT

application crashed repeatedly. Even a modified Monk dataset, when using a

reduced number of possible attribute values for attribute Al, i.e. with two

attribute values instead of three, did not perform well with the implementation of

BRAINNE algorithm of DMT. Using the modified Monk dataset, the DMT

application executed successfully in approximately 70% of run instances, but the

results were disappointing. The extracted rules were contradictory in nature.

The Monks results for the BRAINNE algorithm are, hence, omitted. The BRAINNE

algorithm also performed unsatisfactorily on the Pima diabetes dataset, but these

results were, nevertheless, included (the application at least executed every

time). An explanation for this can be the reduced number of training samples,

due to the restriction on the maximum number of samples allowed by BRAINNE.

It is important to note that various parameter settings were tried, but the results

were still not satisfactory.

Problem BGP CN2 C4.5 BRAINNE HCS
Domain
Monkl 0.994 ± 0.026 1.000 ± 0.000 0.999 ± 0.008 N/A 1.000 ± 0.000
Monk2 0.715 ± 0.161 0.992 ± 0.030 0.769 ± 0.150 N/A 0.813 ± 0.139
Monk3 0.934 1.000 0.951 N/A 0.758
Iris 0.967 + 0.064 0.987 + 0.040 0.982 + 0.047 0.944 ± 0.082 0.974 ± 0.057
Pima 0.766 + 0.152 0.887 + 0.113 0.855 + 0.126 0.482 + 0.179 0.877 ± 0.117

Problem BGP CN2 C4.5 BRAINNE HCS
Domain
Monkl 0.993 ± 0.029 1.000 ± 0.000 1.000 ± 0.000 N/A 1.000 ± 0.000
Monk2 0.684 ± 0.166 0.626 ± 0.173 0.635 ± 0.172 N/A 0.789 ± 0.145
Monk3 0.972 0.907 0.963 N/A 0.631
Iris 0.941 ± 0.085 0.943 + 0.083 0.945 + 0.082 0.923 + 0.049 0.925 ± 0.096
Pima 0.725 ± 0.160 0.739 ± 0.157 0.734 ± 0.158 0.391 ± 0.175 0.682 ± 0.167

All the algorithms executed on different hardware (although all were Intel PC

based) and software platforms, so accurate comparison of the execution time is

not possible. However, an observation is given. The HCS algorithm had a typical

execution time on all problem datasets of less than a second. The execution time

of CN2 and C4.5 algorithms were equally fast. The other two algorithms,

depending on the dataset, required an execution time of up to 200 times longer.

The longer execution time for these two algorithms is attributed to the fact that

BRAINNEfirstly trains an ANN and this is done over multiple iterations, while BGP

also evolves an optimal specimen over multiple generations, where each

population consists of a number of decision trees.

In table 4.3, the average number of extracted rules is listed. This comparison is

not very favourable for the HCS algorithm, especially in the case of continuous

values, because HCS, in its current form, does not support relational operators.

All other compared algorithms support relational operators. However, results for

HCS are included, although it is a comparison of two very different categories of

rules. The extension of HCSto include relational operators would be fairly simple,

and it is discussed in the section dealing with suggested future research, but it

goes against the basic idea of the HCS, which is a simple, fast, pattern matching

Problem BGP CN2 C4.5 BRAINNE HCS
Domain
Monkl 4.70 18.00 21.50 N/A 4.00*
Monk2 6.00 122.80 13.90 N/A 61.13*
Monk3 3.00 22.00 12.00 N/A 102.70*
Iris 3.73 5.33 4.10 5.00 88.16*
Pima 3.70 35.80 12.73 12.72 280.30*

Problem BGP CN2 C4.5 BRAINNE HCS
Domain
Monkl 2.22 2.37 2.73 N/A 1.75
Monk2 2.96 4.53 3.01 N/A 4.23
Monk3 1.67 2.17 2.77 N/A 3.89
Iris 2.02 1.64 1.60 3.71 2.13
Pima 1.97 2.92 3.90 5.39 2.44

Problem Domain Accuracy on Validation Number of Extracted
Set Rules

Monkl 0.970 4
Monk2 0.633 50.75
Monk3 0.938 22.67

In this chapter, a comparison was made between different algorithms, using well-

known datasets. All algorithms, with the exception of BRAINNE, performed

satisfactorily. BRAINNE, as implemented in DMT [4], did not execute on the

Monks datasets, and underperformed on the Pima diabetes dataset. At this stage

it is not clear if the performance of the BRAINNEalgorithm was inadequate

because of the implementation specifics or because the algorithm is flawed. The

HCSalgorithm faired well in most comparisons, except on the number of

extracted rules. HCScould be further improved by simple modifications, which

are presented, together with the conclusion, in the next chapter.

Chapter 5

Discussion

In this chapter, a brief overview of what the main objective of this thesis was, is

presented, followed with an evaluation of what was achieved. The remainder of

this chapter consists of a discussion of suggested future research.

The main objective of this thesis was to propose a new knowledge discovery

algorithm, HCS. A secondary objective was to present and compare different,

artificial intelligence based approaches to the knowledge extraction problem. A

representative from each of the three main classes of knowledge extraction

algorithms was chosen for comparison with the HCS, namely: BRAINNE, BGP,

C4.5 and CN2. The comparison was done using well-known benchmark datasets,

namely: Monks datasets, Iris dataset and the Pima diabetes dataset. The

algorithms were judged according to the accuracy of the extracted rules, both in

terms of training error and generalisation, the number of rules per dataset and

the number of antecedents per rule.

The BRAINNE algorithm, as implemented in the DMT application, performed

extremely badly and some of the results obtained by BRAINNE had to be

discarded because the extracted rule sets were contradictory. HCS, CN2, C4.5

and BGP performed well, extracting clean, crisp rule sets. The main idea behind

HCS was simplicity, and that lead, as expected, to a very fast rule extraction

algorithm. CN2 and C4.5 executed equally fast, while BGP and BRAINNE needed

much longer execution time. All algorithms, except BGP, which was fine-tuned,

used their default parameter values. The HCS performed satisfactorily, and

because of its simplicity, it can serve as an excellent foundation for further

development. Some of the ideas for future research are presented in the next

section.

HCS is a very simple algorithm, and as such offers numerous possibilities for

expansion. Some of them are outlined below:

• Parallelism

The HCS algorithm could be, with modification, easily executed in parallel.

The modification would be simple enough. For example, when the

algorithm perform rule expansion, it would be a simple task to spawn a

new process that can execute in parallel for each of the candidate rules.

As an effect, execution time would be reduced significantly. This saving, in

turn, can be used for finer discretisation of continuous valued attributes,

resulting in greater accuracy of the rules extracted.

• Hardware Embedding

Because of its simple pattern matching nature, the HCS algorithm could

be relatively easy implemented, as a whole or only its pattern matching

part, on a hardware level using simple logical circuits. The

implementation of the HCS algorithm on a hardware level would increase

speed tremendously, making it a prime candidate for real time

autonomous systems that require fast rule extraction and classification

subsystems. It can be employed even as a control system, with the

ability to learn, for control of real time autonomous systems.

• Different Approach to Handling of Continuous Values

The HCS algorithm uses a very simple discretisation technique when

handling continuous values. Although the technique performed

satisfactorily on most of the datasets used in this thesis, it could be

improved to include criteria such as the standard deviation and the

probability distribution when considering the interval boundaries. This

improvement should increase overall performance of the whole algorithm

whenever continuous valued attributes are present in a dataset.

• Different Rule Quality Measurement

The HCS algorithm uses a simple quality measurement when making a

pruning decision. The method used does not take into account the

number of samples covered by a rule. This can be easily rectified using a

different rule evaluation criterion, for example, entropy as used in CN2

algorithm. The computational overhead would be marginal, and pruning

would be more effective. For example, assume two rules at an early

stage of expansion:

Rule A: ###1## and Rule B: ###2##

with the same observed accuracy of 20%. However rule A covers 1

sample, and a rule B covers 10 samples. Assume a pruning threshold of

20%. It would make sense to try to keep rule B, because, potentially, it

is more significant than rule A. That could be achieved by modifying the

pruning criteria to include entropy.

• Implementation of Relational Operators

As currently implemented, the HCS algorithm uses only the equality

operator in the condition part of a rule. This is a heritage of the simple,

pattern matching origins of the algorithm. The pattern matching

approach works well when handling binary and discrete valued

attributes, but in the case of continuous valued attributes, it creates a

few problems. The main problem is that for a range of values, for which

the rule holds, HCS creates a number of rules, depending on the size of

the intervals used for discretisation of a continuous value. The

modification of the HCS algorithm should not be too difficult, and it is

envisaged that it would take a form of post-processing. Once the rules

are extracted, rules could be processed and then the intervals, if

applicable, could be combined to form a range of rules. To illustrate the

method envisaged, consider the following example:

A sample consists of four attributes. The range of the values for the

second attribute is from 1 to 6 and the interval size is 1. Consider the set

of extracted rules for class A: { #2##, #3##, #4##, #5## }. The

rules are read as:

If A2 = 2 then ClassA,

If A2 = 3 then ClassA,

If A2 = 4 then ClassA,

If A2 = 5 then ClassA,

(Condition A2 = 2 reads as: if the value of attribute A2 of a sample is

between 2 and 3 (see section 3.6) then the sample belongs to class A.)

All the rules from our example can be combined using operational

operators in one rule:

If A2 > 2 then ClassA

This modification should dramatically reduce the number of extracted rules

extracted by the HCS algorithm, and make the comparison with other

algorithms more favourable when considering the number of extracted

rules (see table 4.3).

To sum, although in its basic form the HCS algorithm performs satisfactorily, it

can be easily expanded and definitely warrants further research. Also further

empirical analysis is needed to confirm the results and conclusions of this thesis.

(;)-

Q-

Zj the ith input unit

Yj the t hidden unit

Ok the kth output unit

APPENDIX B Bibliography

1. Adriaans P., Zantinge P.; Data Mining; Addison-Wesley; 1996. (ISBN 0-

201-40380- 3)

2. Afifi A., Azen S~;Statistical Analysis: A Computer Oriented Approach;

Acad Press, New York; 1979.

3. Aikins J.5.; Prototypical knowledge for Expert Systems; Artificial

Intelligence; Vol 20; pp163-210.

4. AKT Systems PTY.LTD, Data Mining Tool, User Manual, Version 4.0

5. Andrews R., Diederich J., Ticke A.B; A Survey And Critique of Techniques

For Extracting Rules From Trained Artificial Neural Networks;

Neurocomputing Research Centre; Brisbane, Australia; 1995.

6. Andrews R., Geva S.; Rule extraction from a constrained error back

propagation MLP; Proceedings 5th Australian Conference on Neural

Networks; pp9-12; 1994.

7. Barr A., Feigenbaum E.A. (eds): The Handbook of Artificial Intelligence;

Vol 1; William Kaufmann, Inc; Los Altos; 1981.

8. Battiti R.; First- and Second-Order Method for Learning: Between Steepest

Descent and Newton's Method, Neural Computation, Vol 4, pp 141-166;

1992.

9. Bishop, CM.; Neural networks for pattern recognition; Oxford University

Press; 1995.

10. Bratko 1.; Prolog Programming for Artificial Intelligence; Addison-Wesley,

Wokingham, England; 1986.

11. Buhmann J.; Data Clustering and Learning; in Arbib M. (ed): Handbook of

Brain Theory and Neural Networks; Bradfort Books/MIT Press; 1995.

12. Buhmann J.M.; Stochastic Algorithms for Exploratory Data Analysis: Data

Clustering and Data Visualization; in Jordan M. (ed): Learning in

Graphical Models; Kluwer Academics; 1997.

13.Cestnik B., Kononenko I., Bratko I.; ASSISTANT-86 A knowledge

elicitation tool for sophisticated users; Progress in machine learning ; Bled

Yugoslavia; 1987.

14.Clark P., Niblett R.; The CN2 Induction Algorithm; Machine Learning, Vol

3; pp 261 - 284; 1989.

15.Craven M W., Shavlik J W.; Using sampling and queries to extract rules

from trained neural networks; Machine Learning: Proceedings of the

Eleventh International Conference; 1994.

16.Cybenko G. ; Approximation by Superposition of a Sigmoidal Function;

Mathematical Control Signals Systems 2, pp 303, 1989.

17. Dayhoff J.E.; Neural Network Architectures: An Introduction; Van

Nostrand Reinhold; 1990.

18. De Jong K. A., Spears W. M.; Learning Concept Classification Rules using

Genetic Algorithms; Proceedings of the 12th International Joint

Conference on Artificial Intelligence; pp651-656; 1991.

19. De Jong K. A., Spears W. M., Gordon D.F.; Using genetic algorithms for

concept learning. ; Machine Learning Journal, 13(2-3): November-

December; pp 161-188; 1993.

20. Durbin R., Rumelhar D.E.; Product Units: A Computationally Powerful and

Biologically Plausible Extension to Backpropagation Networks.

21. Engelbrecht A. P.; Computational Intelligence, An Introduction; Graduate

Course, Department of Computer Science, University of Pretoria, South

Africa, 2000

22. Engelbrecht A. P.; Data Generation Using Sensitivity Analysis;

International Symposium on Computational Intelligence, Kosice, Slovakia;

2000.

23. Engelbrecht A. P., Cloete I,; A Sensitivity Analysis Algorithm for Pruning

Feedforward Neural Networks ; IEEE International Conference in Neural

Networks, Washington, Vol 2; pp 1274-1277; 1996.

24. Erman L.D., London P.E., Fickas S.F.; The design and example use of

HEARSAY-III; Proceedings of the National Conference on Artificial

Intelligence, pp 409-415; 1983.

25. Flockhart I. W.; GA-MINER Parallel Data Mining with Hierarchical Genetic

Algorithms ; Report; University of Edinburgh; 1995.

26. Forrest S., Mitchell M.; Relative building-block fitness and the bUilding-

block hypothesis, ; in D. Whitley (ed.): Foundations of Genetic Algorithms

2; Morgan Kaufmann, San Mateo, CA;1996.

27. Fu L. M.; Neural Networks in Computer Intelligence; McGraw Hill; 1994.

28. Giles C. L., Kuhn G. M., Williams R. J.; Dynamic Recurrent Neural

Networks: Theory and Applications; IEEETransactions on Neural

Networks, Vol 5, Num 2; 1994.

29. Goldberg D. E., Genetic Algorithms in Search, Optimisation and Machine

Learning' ; Addison-Wesley; 1989.

30. Gorodkin J., Hansen L.K., Krogh A., Svarer A.; A Quantitative Study of

Pruning by Optimal Brain Damage ; International Journal of Neural

Systems, Vol 4, pp 159-169; 1993.

31. Hassibi B., Stork D.G.; Second Order Derivatives for Network Pruning:

Optimal Brain Surgeon; in Lee Giles c., Hanson SJ., Cowan J.D.(eds):

Advances in Neural Information Processing Systems, Vol 5, pp 164-171.

1993.

32. Hassibi B., Stork D.G, Wol G.; Optimal Brain Surgeon: Extensions and

Performance Comparisons; in Cowan J.D., Tesauro G., Alspector J.(eds):

Advances in Neural Information Processing Systems, Vol 6, pp 263-270;

1994.

33. Hayes-Roth B.; Blackboard architecture for control. Artificial Intelligence,

chapter 26, pp 251-321.

34. Hebb D.O.; The Organization of Behavior, John Wiley & Sons; New York;

1949.

35. Held M., Puzicha J., Buhmann J.M.; Visualizing Group Structure;

Advances in Neural Information Processing Systems 11 (NIPS'98), pp.

452-458, MIT Press, 1999.

36. Holland J.H.; Adaptation in natural and artificial systems; University of

Michigan Press; 1975.

37. Holland J.H.; Outline for a logical theory of adaptive systems; Journal of

the Association for Computing Machinery, Vo13,pp 297-314; 1962.

38. Holland J.H., Reitman J.S.; Cognitive Systems Based on Adaptive

Algorithms; in Waterman D.A., Hayey-Roth F. (eds.): Pattern Directed

Inference Systems, pp. 313 -329; Academic Press, New York; 1978.

39. Hunt E.B., Marin J., Stone PJ.; Experiments in Induction; Academic

Press; New York; 1966.

40. Hussain A., Soraghan JJ., Durbani T.5.; A new neural network for non-

linear time series modelling; NeuroVest Journal, January, pp 16-26; 1997.

41.Jackson P.; Introduction to Expert Systems; Introduction to Expert

Systems; Addison-Wesley; 1990. (ISBN 0-201-17578-9)

42. Janikow C. Z.; A knowledge-intensive genetic algorithm for supervised

learning. Machine Learning, 13(2-3): November-December; pp 189-228,

1993.

43.Johnson M.V., Hayes-Roth B.; Integrating Diverse Reasoning Methods in

the BBl Blackboard Control Architecture, Technical Report No KSL 86-76.

Knowledge Systems Laboratory, Stanford University.

44. Khosla R., Dillon T.; Engineering Intelligent Hybrid Multi-Agent; Kluwer

Academic Publishers; 1997. (ISBN 0-7923-9982-X)

45. Kohonen T., Barna G., Chrisley R.; Statistical pattern recognition with

neural networks: benchmarking studies.; Proceedings of IEEE

International Conference on Neural Network; pp 61-67; San Diego; 1988.

46. Le Cun Y., Denker J.S., Solla S.A.; Optimal Brain Damage; in Touretzky

D. (ed): Advances in Neural Information Processing Systems, Vol 2, 1990.

47. Lehmann F.(ed): Semantic Networks; Part of International Series in

Modern Applied Mathematics and Computer Science, Vol 24; 1992. (ISBN:

0-08-042012-5)

48. Masters T.; Practical Neural Network Recipes in C++, Academic Press,

1990.

49. Michalsk R.S.; Discovering classification rules using variable valued logic

system; Third International Joint Conference on Artificial Intelligence, Vol

1, pp 162-172; 1973.

50. Minsky M., Papert S.; Perceptrons, An Introduction to Computational

Geometry; MIT Press; Cambridge, MA; 1969.

51. Moller M.F.; A scaled conjugate gradient algorithm for fast supervised

learning; Neural Networks, Vol 6, pp 525-533; 1993.

52. National Institute of Diabetes and Digestive and Kidney Diseases, Pima

diabetes set extracted by Sigillito V. Research Center, RMI Group Leader,

Applied Physics Laboratory, The Johns Hopkins University

53. Quinlan J.R.; Induction of deciscion trees; Machine learning, Vo11,pp 81

-106; Kluwer Academic Publishers; 1986.

54. Quinlan J.R.; C4.5: Programs for Machine Learning ; Morgan Kaufmann;

1992.

55. Rechenberg 1.; Evolution Strategy in Zurada, J.M. Marks II R., Robinson C.

(eds): Computational Intelligence - Imitating Life; pp 147 - 159; IEEE

Press; 1994.

56. Rodich D., Engelbrecht A.P.; A Hybrid Exhaustive and Heuristic Rule

Extraction Approach; In Proceedings on the International Conference on

Artificial Intelligence ICAI99, Vol 1, pp 25-29; 1999.

57. Rouwhorst S. E.; Searching the Forest: A Building Block Approach to

Genetic Programming for Classification Problems in Data Mining; Masters

Thesis, Vrije Universiteit, Amsterdam, 2000.

58. Rouwhorst S.E., Engelbrecht A.P.; Searching the Forest: Using Decision

Trees as Building Blocks for Evolutionary Search in Classification

Databases; Proceedings on the 2000 Congress on Evolutionary

Computation, CEC2000, Vol. 1, pp 633-638; 2000.

59. Rosenblatt F.; Principles of Neurodynamics: Perceptrons and the Theory

of Brain Mechanisms; Spartan books; Washington D.C; 1962.

60. RuleQuest (Web Site) www.rulequest.com accessed on 03/12/1999

61. Salford Systems (Web Site) www.salford-systems.com accessed on

21/11/1999

62. Schmidt A., Bandariasted Z.; Modularity a Concept for new Neural

Network Architectures ; International Conference Computer Systems and

Applications - CSA '98; Irbid, Jordan; 1998.

63. Sestito S., Dillon TS.; Automated Knowledge Acquisition; Prentice Hall;

1994.

http://www.rulequest.com
http://www.salford-systems.com

64. Thrun S.B., Bala J., Bloedorn E., Bratko 1., Cestnik J., De Jong K., Dzeroski

S., Fahlman S.E., Fisher D., Hamann R., Kaufman K., Keller S., Kononenko

1., Kreuziger J., Michalski R.S., Mitchell T., Pachowicz P., Reich Y., Vafaie H.,

Van de Weide W., Wenzel W., Wnek J., Zhang J.; The MONK's Problems - A

Performance Comparison of Different Learning algorithms; Technical

Report CS-CMU-91-197, Carnegie Mellon University.

65. Towell G., Shavlik J.; The extraction of refined rules from knowledge

based neural networks; Machine Learning; Vol 131 ; pp71-101; 1993.

66. UCI Machine Learning Repository:

http://www.ics.ucLedu/l.Vmlearn/MLRepository.htmlaccessed on

14/08/1998.

67. University of Maryland (Web site) http://ctsm.umd.edu/v&v/s3.htm,

accessed on 01/02/2000.

68. Viktor H.L., Cloete 1.; Improved Generalisation using Cooperative Learning

and Rule Extraction; IEEE International Joint Conference on Neural

Networks; Washington DC ; 1999.

69. Viktor H.L., Engelbrecht A.P., Cloete 1.; Incorporating Rule Extraction from

ANNs into a Cooperative Learning Environment; Neural Networks & Their

Applications, pp 336-391; Marseilles, France; 1995.

70. Viktor H.L., Engelbrecht A.P., Cloete 1.; Reduction of Symbolic Rules from

Artificial Neural Networks using Sensitivity Analysis; Proceedings of IEEE

International Conference on Neural Networks ICNN'95, pp 1788-1793 ;

Perth, Australia; 1995.

71. Widrow B., Winter., Baxter.; Learning phenomena in layered neural

networks. First 1st Int. Conference Neural Nets, San Diego, volume 2, pp

411. I have this.This gives a nice description of training linear units and

the ideas of linear separability; 1987.

72. Williams P.M.; Bayesian Regularization and Pruning Using a Laplace Prior,

Neural Computation; Vol 7, pp 117-143; 1995.

http://www.ics.ucLedu/l.Vmlearn/MLRepository.htmlaccessed
http://ctsm.umd.edu/v&v/s3.htm,

73.WizWhy for Windows User Guide. Wizsoft; 1996.

74. Zurada J.M., Malinowski A., Cloete A.; Sensitivity Analysis for Minimization

of Input Data Dimension for Feedforward Neural Network ; IEEE

International Symposium on Circuits and Systems; London, May 30 - June

3; 1994.

75. Lessons in Neural Network Training: Overfitting May be Harder than

Expected, ; Proceedings of the Fourteenth National Conference on

Artificial Intelligence AAAI-97; pp 540-545; AAAI Press, Menlo Park;

1997.

	FRONT
	Title page
	Abstract
	Opsomming (Afrikaans)
	Acknowledgements
	Contents
	List of figures
	List of tables

	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	APPENDICES
	BIBLIOGRAPHY

