

In the Name of God, Nost Gracious

An Evaluation of Anti-cancer Activities of *Hyaenanche* globosa Lamb. (Euphorbiaceae) and *Maytenus* procumbens (L.F.) Loes. (Celastraceae)

by SAEIDEH MOMTAZ

Submitted in partial fulfillment of the requirements for the degree of **DOCTOR OF PHILOSOPHIAE**

(Department of Plant Science)

In the

Faculty of Natural and Agricultural Sciences Department of Plant Science, University of Pretoria Pretoria

2012

Supervisor:

Prof. N. Lall

(University of Pretoria)

Co-supervisors:

Prof. M. Abdollahi

Prof. S.N. Ostad

(Pharmaceutical Sciences Research center, Tehran University of Medical

Sciences)

© University of Pretoria

I DEDICATE THIS DISSERTATION TO

MY BROTHER EHSAN; TO HIS

BLESSED SOUL

MY COMPASSIONATE HUSBAND

RAMIN

& MY DEAREST DAUGHTER KIMIA

I declare that the thesis/dissertation, which I hereby submit for the degree of PHILOSOPHIAE DOCTORAL of science at the University of Pretoria and Tehran University of Medical Sciences, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution.

Saeídeh Momtaz 3/04/2012

TABLE OF CONTENT

List of Figures	XI	
List of Tables	XII	
List of Appendices	XV	1
List of Abbreviations	XV	11
Summary	xx	(
Abstract	XI	v

CHAPTER 1: General introduction

1.1. Introduction		1
1.1.1. Cancer		1
1.1.1.1. Types of car	ncer	3
1.1.1.2. Cancer stage	es	4
1.1.2. Carcinogenes	is	6
1.1.3. Metastasis		7
1.1.4. Cell death		8
1.1.4.1. Apoptosis		9

1.1.4.2. Necrosis	9
1.1.4.3. Oncosis	10
1.1.4.4. Autophagy	11
1.1.5. Cancer statistics	13
1.2. Literature review	13
1.2.1. Medicinal plants and human health care	13
1.2.2. Medicinal plants in South Africa	14
1.2.3. Plants-derived anticancer agents	15
1.2.3.1. Alkaloids and anticancer properties	16
1.2.3.2. Coumarins and anticancer properties	18
1.2.3.3. Flavonoids and anticancer properties	19
1.2.3.4. Saponins and anticancer properties	21
1.2.3.5. Terpenes and anticancer properties	22
1.2.3.5.1. Mechanisms of action of terpenes'cytotoxicity	23
1.2.3.5.2. Chemoprevention of terpenes	26
1.3. The genus Hyaenanche	27
1.3.1. Compounds isolated and identified from the genus Hyaenanche	28
1.3.2. Hyaenanche globosa	28
1.4. The genus <i>Maytenus</i>	29

1.4.1. Compounds isolated and identified from the genus <i>Maytenus</i>	30
1.4.2. Maytenus procumbens	31
1.5. Rationale for this study	33
1.6. Aim and hypothesis	33
1.7. Objectives	34
1.8. References	35

CHAPTER 2: Hyaenanche globosa: biological activities

Investigation of the possible biological activities of a poisonous South African plant; *Hyaenanche globosa* (Euphorbiaceae)

2.1. Abstract	••••••	•••••		 48
2.2. Introduction				 49
2.3. Materials and m	ethods			 51
2.3.1. Chemicals and	d reagents …			 51
2.3.2. Preparation of	f plant extracts			 52
2.3.3. Antibacterial b	ioassay			 52
2.3.4. Inhibition of ty	rosinase activity	and DOPA auto-	oxidation	 53
2.3.5. Isolation of ac	tive constituents			 53

2.3.6. Cell culture	54
2.3.7. Cytotoxicity	55
2.3.8. Measurement of radical scavenging capacity (RSC)	56
2.3.9. Preparation of cells for ferric-reducing antioxidant power and lipid peroxidation thiobarbituric acid reactive substance assays	56
2.3.10. Ferric-reducing antioxidant power assay (FRAP)	56
2.3.11. Thiobarbituric acid reactive substance assay (TBARS)	57
2.3.12. Measurement of intracellular reactive oxygen species	57
2.4. Results and discussion	58
2.5. Conclusion	66
2.6. References	71

CHAPTER 3: Maytenus procumbens: biological activities

Growth inhibition and induction of apoptosis in human cancerous HeLa cells by *Maytenus procumbens*

3.1. Abstract			•••••	76
3.2. Introduction				77
3.3. Materials and m	ethods			80
3.3.1. Collection, ide	entification an	nd extraction of plant materials		80

3.3.2. Isolation of bioactive compounds using bioassay-guided fractionation	81
3.3.3. Identification of isolated compounds	82
3.3.4. Cell culture	82
3.3.5. <i>In vitr</i> o cytotoxicity assay	83
3.3.6. Determination of induced apoptosis in HeLa cells by flow cytometry	83
3.3.7. Determination of genotoxicity in HeLa cells by comet assay	84
3.3.8. Measurement of radical scavenging capacity (RSC)	85
3.3.9. Preparation of cells for ferric-reducing antioxidant power (FRAP) and lipid peroxidation thiobarbituric acid reactive substance (TBARS)	05
assays	85
3.3.10. Ferric-reducing antioxidant power assay	85
3.3.11. Thiobarbituric acid reactive assay	86
3.3.12. Measurement of intracellular reactive oxygen species	86
3.3.13. Antibacterial activity	87
3.3.14. Statistical analysis	87
3.4. Results and discussions	87
3.4.1. Identification of compounds from L.M.P	87
3.4.1.1. Spectroscopic analysis of '30-hydroxy-11α-methoxy-18β-olean-12-en -3-one 3'	88
3.4.2. Cell viability	90
3.4.3. Apoptosis detection analysis by flow cytometry	104
3.4.4. Comet assay	106

3.4.5. DPPH scavenging activities of experimental samples	108
3.4.6. Effects of plant samples on HeLa cells FRAP and TBARS	109
3.4.7. Effects of plant samples on HeLa cells ROS level	111
3.4.8. Antibacterial activity of plant samples	111
3.5. Conclusion	115
3.6. References	117

CHAPTER 4: General discussion and conclusions

4.1. Motivations for this study	127
4.2. Biological activities of <i>Hyaenanche globosa</i>	128
4.3. Biological activities of <i>Maytenus procumbens</i>	129
4.4. Future perspectives	131
4.5. References	133

CHAPTER 5: Acknowledgements

5.1. Acknowledgements		134
-----------------------	--	-----

CHAPTER 6: Appendices

APPENDIX A: Hyaenanche globosa	136
APPENDIX B: Maytenus procumbens	145
APPENDIX C: Methods	153
Appendix C.1: Cell culture	154
C.1.1. Transferring cells to 96-well plates	154
C.1.2. Cell counting	154
C.1.3. Mechanism of MTT assay	155
C.1.4. Mechanism of trypan blue	156
Appendix C.2: The flow cytometry assay	157
C.2.1. Mechanisms of Annexin-V and Pl	157
Appendix C.3: The alkaline comet assay	159
C.3.1. Preparation of buffers and agarose	159
C.3.2. Cell culture preparation for comet assay	159
C.3.3. Preparation of slides	160
C.3.4. Electrophoresis	160
Appendix C.4: Measurement of radical scavenging capacity (RSC)	161
C.4.1. Preparation of experimental samples for DPPH antioxidant assay	161
C.4.2. DPPH scavenging antioxidant assay	161

Appendix C.5: Ferric-reducing antioxidant power (FRAP) of HeLa cells	162
Appendix C.6: Thiobarbituric acid reactive substance (TBAR) of HeLa cells	163
Appendix C.7: Antibacterial assay	164
C.7.1. Bacterial culture	164
C.7.2. Preparation of experimental samples for antibacterial assay	164
C.7.3. Agar well diffusion assay (Agar-based cup–plate method)	164
Appendix C.8: Publications and conference presentations	165

LIST OF FIGURES

CHAPTER 1

Figure 1.1: Carcinoma development and invasion. The upper row represents disturbances in growth, differentiation, and tissue integrity that lead to the phenotypes that characterize the different stages of cancer shown in the lower row 3

Figure 1.2: Pathways leading to cell death	12
Figure 1.3: Plant-derived anticancer agents in clinical use	17
Figure 1.4: Chemical structures of some coumarins: coumarin; b) 4-hydroxycoumarin; c) 6,7-hydroxycoumarin and d) bishydroxycumarin	20
Figure 1.5: Classification of terpenoids: (a) hemiterpenoids (b) monoterpenoid sesquiterpenoids (d) diterpenoids (e) sesterpenoids (f) triterpenoids tetraterpenoids and (h) polyterpenoids	s (c) (g) 23
Figure 1.6: Various terpenes with anticancer properties	25
Figure 1.7: Chemoprevention strategies	27
Figure 1.8: Aerial parts of Hyaenanche globosa	29
Figure 1.9: 'Pristimerin' isolated from <i>M. ilicifolia</i> ; '3-oxo-11R-hydroxyolean-12- 30-oic acid (1), 3-oxo-olean-9(11), 12-diene-30-oic acid (2), 3,4-seco-olean-4(23 diene-3,29-dioic acid (20- <i>epi</i> koetjapic acid) (3), koetjapic acid (4)' purified from <i>undata</i>	ene-),12- n <i>M.</i> 32

Figure 1.10: Aerial parts of Maytenus procumbens33

CHAPTER 2

Figure 2.1: Chemical structures of the isolated compounds from the ethanolic extractof F.E (fruits, ethanol extract) of *H. globosa*55

Figure 2.2: The percentage inhibition of 1,2-diphenyl-2-picrylhydrazyl (DPPH) activity after 15 and 30 minutes by; the ethanolic extract of the fruits of *H. globosa* (F.E), vitamin C (standard control) (a); 'tutin 1' and 'hyenanchin 2' (b). Each data point represents the mean of data from three wells (n= 3) **67**

Figure 2.5: Time-response curve for DCF fluorescence in HeLa cells after 90 min exposure to various concentrations of F.E (fruits, ethanol extract), 'tutin 1' and 'hyenanchin 2'. Each data point represents the mean of data from three wells (n= 3)

CHAPTER 3

Figure 3.2: The Infra red (IR) spectra of '30-hydroxy-11α-hydroxy-18β-olean-12-en-

Figure 3	.3: The	¹ H NMR spectra	a of '30-hydroxy	-11α-hydroxy-18β-a	olean-12-en-3-one
3'			••••••		

Figure 3.4: T	⁻ he ¹³ C NMR spectra of '30-hydroxy-11α-hydroxy-18β-olean-12-er	n-3-
one 3 '		94
Figure 3.5: Th	ne HSQC spectra of '30-hydroxy-11α-hydroxy-18β-olean-12-en-3-on	e 3'
	g	95
Figure 3.6: Th	ne COSY spectra of '30-hydroxy-11α-hydroxy-18β-olean-12-en-3-on	e 3'
	g	96
Figure 3.7: T	he HMBC spectra of '30-hydroxy-11α-hydroxy-18β-olean-12-en-3-α	one
3' .	S	97
Figure 3.8: Th	he Infra red (IR) spectra of '30-hydroxy-11α-methoxy-18β-olean-12-	-en-
3-one 5'	g	98
Figure 3.9: Th	ne ¹ H NMR spectra of '30-hydroxy-11α-methoxy-18β-olean-12-en-3-α	one
5'	9)9
Figure 3.10: T	The ¹³ C NMR spectra of '30-hydroxy-11α-methoxy-18β-olean-12-er	า-3-
one 5'	1	100
Figure 3.11: T	Fhe HSQC spectra of '30-hydroxy-11α-methoxy-18β-olean-12-en-3-α	one
5'	1	1 01
Figure 3.12: T	The COSY spectra of '30-hydroxy-11α-methoxy-18β-olean-12-en-3-α	one
5'	1	1 02
Figure 3.13: T	Γhe HMBC spectra of '30-hydroxy-11α-methoxy-18β-olean-12-en-3-	one

Figure 3.14.a: The Annexin V-fluorescein isothiocyanate and propidium iodide (Annexin V-FITC/PI) staining pictures. Induction of apoptosis by compounds **3** and **5**. Live cells are stained blue, apoptotic cells are stained green, and necrotic cells are stained red. The microscopic pictures were taken by fluorescence microscope, enlargement 200X **106**

Figure 3.14.b: Flow cytometric graphs of induction of apoptosis in HeLa cells by '30hydroxy-11α-hydroxy-18β-olean-12-en-3-one 3' and '30-hydroxy-11α-methoxy-18βolean-12-en-3-one 5' using Annexin V-fluorescein isothiocyanate and propidium iodide (Annexin V-FITC/PI) as probes versus control cells. Quadrant 1 (Q1) represents necrosis (Annexin -, PI +), Q2 shows post-apoptosis cells (Annexin +, PI +), Q3 expresses alive cells (Annexin -, PI -), and Q4 describes apoptosis (Annexin +, PI -)

Figure 3.15: Microscopic analysis of HeLa cells 72 h after treatment with '30hydroxy-11α-hydroxy-18β-olean-12-en-3-one **3**' and '30-hydroxy-11α-methoxy-18βolean-12-en-3-one **5**' with alkaline comet assay. The microscopic pictures were taken by fluorescence microscope, enlargement 200X**108**

Figure 3.16: The percentage inhibition of 1,2-diphenyl-2-picrylhydrazyl (DPPH) activity after 15 and 30 minutes by; the ethanolic/acetonic extract of the leaves of *M. procumbens* (L.M.P), vitamin C (standard control) (a); '30-hydroxy-11 α -hydroxy-18 β -olean-12-en-3-one **3**' and '30-hydroxy-11 α -methoxy-18 β -olean-12-en-3-one **5**' (b). Each data point represents the mean of data from three wells (n= 3) 110

Figure 3.17: Time-response curve of increase of relative ROS level (DCF fluorescence) in HeLa cells after 90 minutes exposure to various concentrations of the ethanolic/acetonic extract of the leaves of *M. procumbens* (L.M.P), '30-hydroxy-11 α -hydroxy-18 β -olean-12-en-3-one **3**' and '30-hydroxy-11 α -methoxy-18 β -olean-12-en-3-one **5**'. Each data point represents the mean of data from three wells (n = 3)

LIST OF TABLES

CHAPTER 1

Table 1.1: Classification of terpenes		24
Table 1.1. Olassification of terpenes	*****************	67

CHAPTER 2

Table 2.1: Antibacterial activity of different extracts of <i>H. globosa</i> 60
Table 2.2: Antibacterial activity of different extracts of H. globosa against M.smegmatis62
Table 2.3: Inhibitory activities of mushroom tyrosinase and DOPA auto-oxidation bydifferent extracts of <i>H. globosa</i> 63
Table 2.4: Effect of eight different extracts of <i>H. globosa</i> on the viability of 'HeLacells' using MTT assay64
Table 2.5: Effect of <i>H. globosa</i> (F. E) and its isolated compounds on the viability ofdifferent cancer cell lines by using MTT assay65
Table 2.6: Effect of methotrexate on the viability of different cancer cell lines using

MTT assau	65
wiii assay	 00

CHAPTER 3

Table 3.1: IC_{50} values (µg/ml) of the ethanolic/acetonic extract of the leaves of *M. procumbens* (L.M.P), '30-hydroxy-11 α -methoxy-18 β -olean-12-en-3-one **3**' and '30-hydroxy-11 α -methoxy-18 β -olean-12-en-3-one **5**' against cancer and normal cells **104**

Table 3.3: Average median values (±SD) of the amount of DNA damage induced by'30-hydroxy-11α-methoxy-18β-olean-12-en-3-one 3' and '30-hydroxy-11α-methoxy-18β-olean-12-en-3-one 5'109

Table 3.4: Minimum inhibitory concentrations (MICs) of the ethanolic/acetonic extractof the leaves of *M. procumbens* (L.M.P), '30-hydroxy-11 α -methoxy-18 β -olean-12-en-3-one **3**' and '30-hydroxy-11 α -methoxy-18 β -olean-12-en-3-one **3**' and '30-hydroxy-11 α -methoxy-18 β -olean-12-en-**114**

LIST OF APPENDICES

APPENDIX A: HYAENANCHE GLOBOSA

Appendix A.1: Hexane, ethyl acetate and aqueous fractions of the fruits of <i>H. globosa</i> (F.E) and 14 main fractions (1B-14B) of the hexane fraction137137
Appendix A.2.1: The ¹ H NMR spectra of 'tutin 1' 138
Appendix A.2.2: The ¹³ C NMR spectra of 'tutin 1' 139
Appendix A.3.1: The ¹ H NMR spectra of 'hyenanchin 2'140
Appendix A.3.2: The ¹³ C NMR spectra of 'hyenanchin 2'
Appendix A.4: The schematic presentation of the isolation steps of <i>H. globosa</i> ethanolic extract of the fruits (F.E)142
Appendix A.5: The cytotoxicity effects (MTT assay) of the ethanol extract of the fruits
of <i>H. globosa</i> (F.E) on different cell lines, (mean \pm SD, n=3) 143
Appendix A.6: The cytotoxicity effects (MTT assay) of 'tutin 1' on different cell lines,
(mean ± SD, n=3) 143
Appendix A.7: The cytotoxicity effects of (MTT assay) 'hyenanchin 2' on different cell
lines, (mean ± SD, n=3) 144

APPENDIX B: MAYTENUS PROCUMBENS

Appendix B.1: Twenty six main-fractions collected from Ma of which a pure powder was crystallized from 51-52Ma (compound 3) (a), a pure was precipitated from

XV

fractions 16-37 Mb (compound 5) (b) and collected fractions	17-25 Mc were	combined,
which resulted in a pure powder (compound 4) (c)		145

Appendix B.2: The scher total extract (L.M.P)	natic presentation of the isc	lation steps of <i>M. procumbe</i>	ens 46
Appendix B.3: The ¹ H NM	IR spectra of 'asiatic acid 4 '	1	47
Appendix B.4: The ¹³ C N	MR spectra of 'asiatic acid 4	· 1	48

Appendix B.5: A methoxy group at position C-12 of 'compound 5' 149

Appendix B.6: The cytotoxicity effects (MTT assay) of the acetone/ethanol extract of the leaves of *M. procumbens* (L.M.P) on different cell lines, (mean±SD, n=3) **150**

Appendix B.7: The cytotoxicity effects (MTT assay) of '30-hydroxy-11α-hydroxyl-18β-olean-12-en-3-one **3**' on different cell lines, (mean±SD, n=3) **151**

Appendix B.8: The cytotoxicity effects (MTT assay) of '30-hydroxy-11α-methoxy-18β-olean-12-en-3-one **5**' on different cell lines, (mean±SD, n=3) **151**

LIST OF ABBREVIATIONS

Annexin V-FITC	Annexin V-fluorescein isothiocyanate
АТР	Adenosine triphosphate
¹³ C-NMR	Carbon nuclear magnetic resonance
CoQ	Coenzyme Q
COSY	Correlation Spectroscopy
Da	Dalton
DAPI	4'-6-Diamidino-2-phenylindole
DCF-DA	2,7-Dichlorofluorescin diacetate
dH ₂ 0	Distilled water
DMEM	Dulbecco's Modified Eagle Medium
DMSO	Dimethyl sulphoxide
DNA	Deoxyribonucleic acid
DPPH	1,2-Diphenyl-2-picrylhydrazyl
EDTA	Ethylenediaminetetraacetic acid
EtBr	Ethidium Bromide
EtOH	Ethanol
FasL	Fas ligand
FBS	Fetal bovine serum
FRAP	Ferric-reducing antioxidant power

FSC	Forward scatter
HBSS	Hanks' balanced salt solution
H. globosa	Hyaenanche globosa
1H-NMR	Proton nuclear magnetic resonance
НМВС	Heteronuclear Multiple Bond Coherence
HSQC	Heteronuclear Single Quantum Coherence Spectroscopy
IC ₅₀ Con	centration of an inhibitor that is required for 50% for inhibition of its target
IR	Infra red
LMPA	Low Melting Point Agarose
MDA	Malondialdehyde
мн	Mueller Hinton
MIC	Minimum inhibitory concentration
MLL	Myeloid/lymphoid or mixed-lineage leukemia
M. procumbe	ens Maytenus procumbens
MTT	
NCBI	National Cell Bank of Iran
NCHS	National Cancer for Health Statistics
NCI	National Cancer Institute
NMA	Normal Melting Agarose
NMR	Nuclear Magnetic Resonance Spectroscopy
NOESY	Nuclear Overhauser Effect Spectroscopy
NSAIDs	Non-steroidal anti-inflammatory drugs
OA	Oleanolic acid

ОТМ	Olive tail moment
PI	Propidium iodide
PS	Phosphatidyl serine
RSC	Radical scavenging capacity
ROS	Reactive oxygen species
RPMI	Roswell park memorial institute
SA	South Africa
SCGE	Single cell gel electrophoresis
SD	Sabouraud dextrose
SERM	s Selective estrogen receptor modulators
SO	Synthetic oleanane triterpenoids
SSC	Side scatter
TBA	
TBAR	S Thiobarbituric acid reactive substance
TCA	Trichloroacetic acid
TGF-â	Transforming growth factor
TLC	Thin layer chromatography
ТМ	Tail moment
TNF	Tumor necrosis factor
TRAIL	TNF-related apoptosis inducing ligand
TPTZ	
UA	Ursolic acid
UV	Ultra violet

US	 United State
VCR	 Vincristine
VDS	 Vindesine
VLB	 Vinblastine
VRLB	 Vinorelbine
WHO	 World Health Organization

SUMMARY

AN EVALUATION OF ANTI-CANCER ACTIVITIES OF HYAENANCHE GLOBOSA LAMB. (EUPHORBIACEAE) AND MAYTENUS PROCUMBENS (L.F.) LOES. (CELASTRACEAE)

ΒY

Saeideh Momtaz

Department of Plant Science, Faculty of Agricultural and Natural Science, University of Pretoria, 0002, South Africa

Supervisor: Prof. N. Lall

Department of Plant Science, Faculty of Agricultural and Natural Science, University of Pretoria, 0002, South Africa

Co-supervisors: Prof. M. Abdollahi and Prof. S.N. Ostad

Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

Written records about medicinal plants date back at least 5,000 years to the Sumerians. The objected plants for present investigation were indigenous to South Africa and as explored, only a few biological studies were found on the previous studies on *Hyaenanche globosa* and *Maytenus procumbens*.

Phytochemical studies of the ethanol extract of the fruits of *H. globosa* (F.E) resulted in isolation of two known pure sesquiterpene lactones; 'tutin **1**' and 'hyenanchin **2**'. The crude extract and its isolated constituents were tested on four cancerous and a

normal cell lines. F.E exhibited the highest antiproliferative activity on HeLa cells which followed by Caco-2 cells. None of the isolated compounds were found to be toxic to the cells tested in this experiment. F.E demonstrated potent inhibition of DPPH radical activity similar to vitamin C. 'Tutin 1' and 'hyenanchin 2' were found with marginal antioxidant activity of which 'compound 1' presented more potent activity than 'compound 2'. The amounts of ROS radicals formed by pure compounds (1 and 2) were not significantly higher than those of controls. This is the first report on phytochemical index, anticancer, antioxidant and antibacterial properties of F.E and its purified compounds.

The possible biochemical activities of the acetonic/ethanolic extract of the leaves of Maytenus procumbens (L.M.P), and its isolated compounds were investigated in the present study. L.M.P showed IC₅₀ values of 68.79, 51.22, 78.49, 76.59 and 76.64 µg/ml on Caco-2, HeLa, HT29, NIH3T3 and T47D cells by use of MTT cytotoxicity assay. Bioassay guided fractionation led to the isolation and identification of two new triterpenes: '30-hydroxy-11α-hydroxy-18β-olean-12-en-3-one 3' and '30-hydroxy-11αmethoxy-18β-olean-12-en-3-one 5'. In addition, a known terpenoid: 'asiatic acid 4' was purified. Due to the unavailability of sufficient amount of 'asiatic acid 4', this compound was not tested. Pure compounds 3 and 5 exhibited the most cytotoxicity against HeLa cells and were further investigated for their abilities for induction of apoptosis (at the concentration of their IC₅₀) in HeLa cells using flow cytometric method. Both compounds induced apoptosis up to 73.20%, (compound 3) and 20.40% (compound 5) in HeLa cells versus control group (0.40%). Antioxidant/oxidative properties of L.M.P and its isolated compounds were investigated using extracellular (DPPH), and intracellular reactive oxygen species (ROS) assays. L.M.P and the isolated compounds exhibited marginal DPPH discoloration. Experimental samples represented a time and concentrationdependent function of ROS formation in Hela cells. ROS generation might be a part of the mechanisms by which compounds 3 and 5 induced apoptosis in Hela cells. It can therefore be concluded that the active components in L.M.P might serve as a

XXII

mediator of the reactive oxygen scavenging system and have the potential to act as a prooxidant and an antioxidant, depending on the biological environment of the cells. There is no report until date on phytochemical index, anticancer, antioxidant and antibacterial properties of L.M.P and its isolated compounds.

Keywords: Hyaenanche globosa; Maytenus procumbens; Cytotoxicity; Antioxidant

ABSTRACT

ABSTRACT

A variety of plant species have been identified traditionally as well as in scientific literatures for their cytotoxicity against cancer cells. According to statistics, cancer is the second leading cause of death after cardiovascular diseases worldwide. The inadequacy of current therapies to treat cancer as well as high toxicity, expenses, and mutagenicity of existing anticancer drugs prompted to seek new agents from plants. The purpose of present study was to determine whether *Hyaenanche globosa* Lamb. (Euphorbiaceae) and *Maytenus procumbens* (L.F.) Loes. (Celastraceae) contain constituents that can inhibit the growth of human cancer cells, and therefore, might eventually be useful in the prevention or treatment of cancer.

Ethanol extract of *H. globosa* (fruits) (F.E) and the ethanolic/acetonic extract of *M. procumbens* (leaves) (L.M.P) were evaluated for growth inhibitory activity using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) MTT cytotoxicity assay against different cancer cell lines. F.E showed 50% inhibitory concentration (IC_{50}) values of 50.10, 37.80, 94.30, and 96.80 µg/ml on cancerous cell lines; Human Colorectal adenocarcinoma (Caco-2), Human Cervical adenocarcinoma (HeLa), Human epithelial-like Colon carcinoma (HT29) and Human Breast ductal-carcinoma (T47D), respectively. Besides, F.E reduced growth rate in non-cancerous NIH3T3 (Swiss mouse embryo fibroblast) cells with IC_{50} of 91.80 µg/ml.

F.E exhibited the IC₅₀ of 37.80 μ g/ml on the viability of HeLa cells, thus subsequently was fractionated using phase-partitioning with *n*-hexane, ethyl acetate, and *n*-butanol. The *n*-hexane fraction demonstrated the highest inhibition of cell growth/proliferation (IC₅₀; 56.10 μ g/ml) in the HeLa cells. Therefore, this fraction was subjected to further

XXIV

separation by chromatographic methods. Two pure compounds belonging to sesquiterpene class of compounds known as: 'tutin' (compound 1) and 'hyenanchin' (compound 2), were isolated and their structures were determined by NMR spectroscopic methods. Unpredictably, none of them showed significant (p < 0.05) inhibition on cell viability/proliferation at the highest concentration (100 µg/ml) that were used.

Antioxidant/oxidant activities of *H. globosa* (F.E) and its isolated compounds was determined extracellularly (1,2-diphenyl-2-picrylhydrazyl) (DPPH) antioxidant assay, and intracellularly (in cultured HeLa cells) by three methods; ferric reducing/antioxidant power (FRAP), thiobarbituric acid reactive substances (TBARS) and measurement of intracellular reactive oxygen species (ROS) assays.

H. globosa (F.E) demonstrated potent inhibition of DPPH radical activity similar to vitamin C (positive control). Almost 90% at concentrations ranging from 7.8 to 1000 μ g/ml. Compounds 1 and 2 were found with marginal antioxidant activity of which 'compound 1' showed more potent activity than 'compound 2'. In the present study, it was found that, F.E enhanced the FRAP content in HeLa cells almost 4-fold to that of control group at concentrations of 50-400 μ g/ml (*P*< 0.05). Compounds 1 and 2 exhibited the highest FRAP values of 3.60 and 3.00 mM at 100 μ g/ml versus 1.20 mM in control cells (*P*< 0.05).

As a marker of lipid peroxidation, different concentrations of compounds **1** and **2** were incubated with HeLa cells, consequently variation in cell TBARS were assessed. According to the results obtained, none of experimental samples could enhance the HeLa cells TBARS versus control cells significantly. The level of reactive oxygen species enhanced by F.E was only at 400 μ g/ml (approximately 1-fold), whereas the amount of ROS radicals formed by compounds **1** and **2** were not significantly higher than those of controls.

The antibacterial activities of the extracts of *H. globosa* (ethanol extract) and purified compounds **1** and **2** were assessed using Gram-positive bacteria (*Bacillus subtilis*, *Staphylococcus aureus*), and Gram-negative bacteria (*Escherichia coli & Pseudomonas aeruginosa*). Their antifungal activities were assayed using *Candida albicans* and *Aspergillus niger*.

The minimum inhibitory concentration (MIC) of samples values of ethanol extract of F.E was found to be 1, 1, 8 and 2 mg/ml against *B. subtilis*, *S. aureus*, *E. coli* and *P. aeruginos*, respectively. Amongst pure compounds, only 'compound 1' showed inhibitory activity exhibiting MICs of 400 and 800 μ g/ml for *S. aureus* and *P. aeruginosa*, respectively. None of samples inhibited the growth of fungi tested at the highest concentrations (8 mg/ml for crude extracts and 400 μ g/ml for pure compounds) when tested in present study.

The present study reports for the first time the anticancer, anti/prooxidant, and antibacterial activity of the ethanol extract of *Hyaenanche globosa* and its purified compounds; 'tutin **1**' and 'hyenanchin **2**'.

Secondly, the acetone/ethanol extract of *M. procumbens* (leaves) (L.M.P) was assessed for growth inhibitory activity using MTT cytotoxicity assay against different cancer cell lines. L.M.P exhibited IC_{50} values of 68.80, 51.20, 78.50, 76.60 and 76.65 µg/ml on experimental cell lines; Caco-2, HeLa, HT29, NIH3T3 and T47D, respectively.

L.M.P showed the IC₅₀ of 51.20 μ g/ml on the viability/proliferation of HeLa cells and later bioassay guided fractionation led to the isolation and identification of two new triterpenes: '30-hydroxy-11 α -hydroxyl-18 β -olean-12-en-3-one' (compound **3**) and '30-hydroxy-11 α -methoxy-18 β -olean-12-en-3-one' (compound **5**). In addition, a known terpene: 'asiatic acid' (compound **4**) was purified. Due to the insufficient amount of 'asiatic acid **4**', this compound was not tested for cytotoxicity and mechanistic studies.

XXVI

'Compound **3**' showed IC₅₀ values of 45.50, 44.00, 62.80, 45.75, and 66.10 μ g/ml on experimental cell lines; Caco-2, HeLa, HT29, NIH3T3 and T47D, respectively. Newly isolated 'compound **5**' exhibited the IC₅₀ (μ g/ml) values of Caco-2 (42.70), HeLa (27.60), HT29 (61.40), NIH3T3 (46.00), and T47D (30.60). Both compounds were found to be toxic to the non-cancerous fibroblast NIH3T3 cells. Compounds **3** and **5** have not been isolated before from any plant species and this is a first report of their antiproliferation activities.

Following the MTT assays, the induction of apoptosis by compounds **3** and **5** (at the concentration of their IC_{50}) were investigated in HeLa cells. The affinity of compounds **3** and **5** for Annexin V and PI were determined through microscopic and flow cytometric analysis. Compounds **3** and **5** induced apoptosis in HeLa cells at their IC_{50} concentrations. The percentage of apoptosis elevated up to 73.20% and 20.40% by compounds **3** and **5** in HeLa cells, respectively versus control group (0.40%).

Single gel electrophoresis (comet) method was utilized to highlight the percentage of DNA damaged caused by compounds **3** and **5** *in vitro*. As data exerted, significant elevation of DNA damage in concept of tail moment (TM) were detected in cultured human HeLa cells by compounds **3** and **5**. Additionally, 'compound **3**' significantly increased tail length, comet length, TM and OTM (Olive tail moment) to 12.80%, 30.40%, 4.90%, and 3.00%, respectively when exposed to HeLa cells at its IC₅₀ concentration (44.00 µg/ml) (P< 0.05). The percentage of tail length, comet length, TM and OTM were found to be 3.10%, 25.65%, 0.20% and 0.40% in control group. 'Compound **3**' appeared to be more genetoxic than 'compound **5**'.

Antioxidant/pro-oxidant activity of *M. procumbens* (L.M.P) and their isolated compounds was determined in the same manners as F.E; extracellularly (DPPH antioxidant assay) and intracellularly (in cultured HeLa cells) by three methods; FRAP, TBARS and ROS assays. The rate of DPPH discoloration was < 40% for 'compound **3**' while 'compound **5**' exhibited less than 35% antioxidant activity at all

XXVII

the concentrations tested after 15 and 30 minutes. None of pure compounds showed activity similar to vitamin C (positive control) with regard to DPPH inhibition. The FRAP values were promoted by L.M.P, compounds **3** and **5** as almost 9-fold, 6-fold, and 12-fold, respectively in HeLa cells as compared to control group. As results showed L.M.P, compounds **3** and **5** were not able to elevate the HeLa cells TBARS versus control cells significantly.

The ROS intensity of HeLa cells was elevated by L.M.P (1.5-2 fold) at the concentrations ranging from 50 to 400 μ g/ml during 0-90 minutes (*P*< 0.05). 'Compound **3**' elevated the ROS level up to 5-fold and 8-fold compared to that of control at 50 and 100 μ g/ml, concentrations respectively. The ROS contents rose up by 'compound **5**' to 21-fold to that of control cells at the same concentrations (50-100 μ g/ml). L.M.P, compounds **3** and **5** showed a time and concentration-dependent function of ROS formation *in vitro*.

The antibacterial activities of the *M. procumbens* (acetone/ethanol extract) and compounds **3** and **5** were assessed using Gram-positive bacteria (*Bacillus subtilis* & *Staphylococcus aureus*) and Gram-negative bacteria (*Escherichia coli* & *Pseudomonas aeruginosa*). Their antifungal activities were assayed using *Candida albicans* and *Aspergillus niger*.

L.M.P exhibited the MICs of 2 and 8 mg/ml against *S. aureus* and *P. aeruginosa*, respectively. None of L.M.P or its isolated compounds inhibited the growth of fungi tested at the highest concentration tested in present study (0.5-8 mg/ml for crude extract and 5-400 μ g/ml for pure compounds). The antibacterial/fungal activities of the leaves of *M. procumbens* (acetone/ethanol extract), compounds **3** and **5** have not been reported previously.

The gradual reduction of antioxidant potential of L.M.P, compounds **3** and **5** might be a logical explanation for enhancement of ROS levels at higher concentrations *in vitro*.

XXVIII

Therefore, ROS generation might be a part of the mechanisms by which compounds **3** and **5** induce apoptosis in HeLa cells. Thus, the active components in L.M.P might serve as a mediator of the reactive oxygen scavenging system and have the potential to act as a prooxidant and an antioxidant, depending on the biological environment of the cells. Such a dual-property role for antioxidants has also been reported previously. In addition to genetical changes (as proved by comet assay) and the participation of ROS in mediating apoptosis induced by compounds **3** and **5**, other pathways may also be involved.

This is the first report on the isolation and identification of the chemical structures of two new triterpenes: 'compound **3**', 'compound **5**' and well known 'compound **4**' (asiatic acid) from the acetone/ethanoilc extract of the leaves of *M. procumbens* (L.M.P). Indeed, the current study has also reports for the first time on the biological activities (anticancer, anti/prooxidant activity, antibacterial) of L.M.P and its new isolated triterpenes. According to the positive antiproliferation activity of pure compounds isolated from *M. procumbens* found in this study, these compounds are worth considering for further studies due to their potential as anticancer agents in preclinical studies.