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Synopsis 
Traditionally the tuning of DMC-type multivariable controllers is done by trial and 

error.  The APC engineer would choose arbitrary starting values and test the 

performance on a simulated controller.  The engineer would then either increase the 

values to suppress movement more, or decrease them to have the manipulated 

variables move faster.  When the controller performs acceptably in simulation, then 

the tuning is improved during the commissioning of the controller on the plant. This is 

a time consuming and unscientific exercise and therefore often does not get the 

required attention, leading to unacceptable controller behaviour during 

commissioning and sub-optimal control once commissioning is completed. 

 

This dissertation presents a new method to obtain move suppression factors for DMC 

type multivariable controllers.  The challenge in choosing move suppressions lies in 

the multivariable nature of the controller.  Changing the move suppression on one 

manipulated variable will not only change the performance of that manipulated 

variable, it will also change the performance of every other manipulated variable with 

models to the same controlled variables.  In the same way, changing the steady state 

cost of a manipulated variable or the equal concern error of a controlled variable will 

also affect the behaviour of every other manipulated variable with shared models. 

 

There have been attempts to calculate the required move suppression factors 

mathematically.  Some methods used an approach that is based on the premise that 

move suppression factors that present a well-conditioned controller matrix will 

provide a well behaved controller in terms of tuning. Some other methods focussed on 

providing parameters that will cause desirable controlled variable response, either by 

determining tuning parameters offline, or by re-tuning the controller in real time. 

 

The method described in this paper uses a Nelder Mead (Nelder and Mead, 1965) 

search algorithm to search for move suppressions that will provide acceptable control 

behaviour.  Acceptable behaviour is defined by characterising the dynamic move plan 

calculated by the controller for each of the manipulated variables, or by characterising 

the controlled variable path that will result from the manipulated variable moves.  The 

search algorithm can change the move suppressions, the steady state costs, or the 

move suppression multipliers as used in DMC type controllers. 
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List of Symbols 
δCV   -  Change in controlled variable 

A  - Dynamic unit step response model 

∆MV  - Change in manipulated variable 
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Wt  - Controlled variable error weight 
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1. Introduction 
Model based multivariable control using the method now known as DMC or MPC 

was developed in industry in the early 1970’s with the first application in 1973 (Cutler, 

1983, Qin & Badgwell, 2003) and Prett and Gilette(1980) presenting the first 

application of DMC on a FCC unit.  Numerous advances have been made such as 

non-linear controllers, matrix conditioning, real time gain scheduling etc. (Qin & 

Badgwell, 2003). The one part of the technology that is still largely without a 

scientific base has been the selection of move suppressions to tune the controller 

behaviour.  To this day the acceptable approach in industry is to use trial and error to 

find tuning values that will provide acceptable controller behaviour in an offline 

simulation.  These values are then refined during the commissioning of the online 

controller.  Using trial and error on a small (4 manipulated variable) controller is 

already time consuming, and there are controllers in the field with more than 100 

manipulated variables.  Using this approach is bound to lead to oversights that will 

lead to difficulty during the commissioning of the controller.  During the 

commissioning, the problems that do occur are often addressed by over-suppressing 

the manipulated variable movement, leading to a badly tuned controller. 

 

The challenge in choosing or guessing move suppressions lies in the multivariable 

nature of the controller.  Changing the move suppression on one manipulated variable 

will not only change the behaviour of that manipulated variable, it will also change 

the behaviour of every other manipulated variable with models to the same controlled 

variables.  In the same way, changing the equal concern error of a controlled variable 

will also affect the behaviour of every manipulated variable with shared models.  This 

makes the iterative approach as used throughout industry even more time consuming 

and unscientific. 

 

Another challenge is that the “right” behaviour in a DMC controller is very ill-defined 

and is often based on the practitioner’s personal experience and preferences.  More or 

less aggressive controller behaviour is the outcome of the engineer’s aversion to risk.  

Should the engineer make the controller too aggressive, circumstances such as model 

error may cause the controller to produce unwanted cycles on the plant.  On the other 

hand, too little aggression in tuning may result in a controller that is sluggish and does 

not control the process properly. 

 

A further level of complexity is added by the model-based nature of a DMC controller.  

If the model is an exact match of the plant behaviour, very aggressive tuning may be 

used.  Should factors like non-linearity, process response changes or process noise 

lead to substantial plant/model mismatch, aggressive tuning will once again lead to 

undesired controller behaviour and performance. 

 

In order to address these complexities several metrics were defined to describe 

desirable controller behaviour.  These metrics are based on either the dynamic move 

plan calculated for the manipulated variables over the control horizon of the controller, 

or they are based on the dynamic response of the controlled variables that result from 

the manipulated variables’ move plan. Subsequently a method was developed to find 

tuning parameters that will provide behaviour that will satisfy the metrics in an 

unconstrained DMC controller.   
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2. Background 
DMC controllers are also called model predictive controllers.  The technology is 

based on linear models that describe the process behaviour.  At the heart of DMC lies 

the equation: 

 

MVACV ∆= *δ …………………. 2.1 

 

which is used to calculate how the controlled variables will change, based on 

controller input changes, or to calculate how to manipulate the manipulated variables 

in order to obtain the desired controlled variable response. 

 

This study is concerned with the dynamics of the controller.  In calculating the 

dynamic move plan for the manipulated variables, δCV is the desired controlled 

variable response, or the change in controlled variable value for each prediction 

interval of the controller. ∆MV is the dynamic move plan to be calculated or the 

change in manipulated variable for each control interval calculated by the controller, 

as shown in equation 2.7.  A is the controller model expressed as the unit step 

response model for each manipulated variable, controlled variable pair, shown in 

equation 2.6. 

 

A DMC type controller executes periodically.  At every execution cycle the controller 

will: 

• Calculate the open loop prediction for each controlled variable. 

• Decide on steady state values for all manipulated variables and controlled 

variables. 

• Calculate a move plan for each manipulated variable. 

• Implement the first move of the move plan 

 

2.1. Open loop prediction 

During the open loop prediction, the controller will update a vector holding the future 

open loop prediction for each controlled variable by considering the changes in all 

controller inputs (manipulated variables and feedforward variables).  The controller 

model will be used as in equation 2.1, multiplied by the most recent changes in inputs, 

and superimposed on the previous prediction of each controlled variable.   

 

Feedback is applied by comparing the current value of each controlled variable with 

the predicted value from the previous execution cycle, and the new prediction will be 

shifted to start from the current controlled variable value. 
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2.2. Steady state values 

Knowing what the open loop behaviour of the controlled variables will be, the 

controller must now calculate what to do with the manipulated variables to get the 

controlled variables to their desired values.  The next step is therefore to use the: 

• steady state gain information from the controller matrix 

• the controlled variable setpoints or high and low limits 

• manipulated variable high and low limits 

• economic cost factors on manipulated variables and/or controlled variables 

to determine the desired end values for all manipulated variables and controlled 

variables.   

 

These optimisation considerations impact control action and control tuning by 

maximising or minimising manipulated variables, moving them in directions that can 

have a negative impact on control in the short term, and often running manipulated 

variables against high or low limits.  Therefore this tuning method assumes that all 

manipulated variables are unconstrained and can participate in the control action.  It 

also only considers control action, not the effect of superimposed optimisation action 

as well. Because this study assumes that we are dealing with an unconstrained 

multivariable controller, the intricacies of determining end values will not be 

discussed. 

 

Because of these assumptions, the tuning provided by the method will need to be 

improved during commissioning, but as the method is aimed at providing initial 

tuning values pre-commissioning, this is acceptable.  The tuning provided will have to 

be improved on the online controller to accommodate issues like non-linearity, valve 

sticktion and measurement noise regardless of how the starting values were obtained.  

 

2.3. Move plan calculation 

Next the controller must determine how to move the manipulated variables from their 

current positions to the end positions.  This path that the manipulated variables will 

follow is called the move plan of the controller.  This move plan will be determined 

by calculating a number of future moves for each manipulated variable. 
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Figure 2.1 Open loop prediction for a controlled variable 

 

If a single manipulated variable/ controlled variable pair is considered, with an open 

loop prediction for the controlled variable as shown by the prediction curve in figure 

2.1, then the controller must find the optimal move plan for the manipulated variable 

to change the controlled variable behaviour from the open loop prediction to the 

setpoint. A move plan must therefore be found that will cause the controlled variable 

to respond like the mirror image of the open loop prediction around the setpoint (the 

desired change curve in figure 2.1) (Cutler, 1982). If this desired change can be 

induced in the controlled variable, and this change is added to the open loop 

prediction, a vector that is equal to the setpoint will result. 
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2.3.1. Minimising controlled variable error 

As such a move plan is often physically impossible, a move plan must be found that 

causes that closest fit with this behaviour.  The controlled variable error (e) is defined 

as the difference between setpoint and the open loop prediction.  As the change 

affected by the manipulated variable movement is A*dMV, the residual error will be 

 

r = A * ∆MV – e……………………………………………….. 2.2 

 

The best possible setpoint tracking will be found at the minimum amount of residual 

error.  In order to find the absolute minimum the residual error is squared. 

 

r
T
r = (A * ∆MV – e)

T
(A * ∆MV – e)…………………………..2.3 

 

The minimum will then be found at 

 

( )
z

MV

rrT

=
∆∂

∂
……………………………………………………………..2.4 

 

Where z is a vector of zeros with the same dimensions as ∆MV 

 

Using the matrix identities (AB)
T
 = B

T
A

T
, (A + B)

T
 = A

T
 + B

T
 and  

 

( ) ( )
A

B

AB

B

BA TT

=
∂

∂
=

∂
∂

 this leads to the minimum being at 

 

∆MV = [A
T
A]

-1
A

T
e ……………………………………………………2.5 

 

In equation 2.5, using a 2x2 controller with 4 model coefficients, that will calculate 2 

manipulated variable moves at execution cycles 1 and 3 as example: 
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where ai,j,k is the unit step response between controlled variable i and manipulated 

variable j at time interval k. 
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where  ∆MVi,j is the movement calculated for manipulated variable i at control 

interval j. 

 

and 
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2.3.2. Minimising manipulated variable movement 

Finding this minimum will calculate the most aggressive setpoint tracking possible.  It 

will make the largest manipulated variable moves needed to theoretically keep the 

controlled variables as close to setpoint as possible.  In practise, this is a bad idea as 

the smallest amount of model error will lead to the controller starting a cycle on the 

plant.  Even if the models are perfect, or adapted to prevent this, physical constraints 

and final control element wear make such aggressive control undesirable. 

 

For this reason the equation 

 

K* ∆MV = 0 ……………………………………………………….2.9 

 

is added to the  A matrix in equation 2.5.  This adds an opposing objective, namely to 

minimise manipulated variable movement to the existing objective which is to 

minimise residual controlled variable error. 
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In our 2x2 example, equation 2.5 remains the same, but the components change as 

follows: 
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where Ki is the move suppression for manipulated variable i. 
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If equation 2.5 is solved with these components a much more conservative move plan 

will result, depending on the size of Ki.  This is because now a new objective, namely 

minimise manipulated variable movement, is added to the existing objective, 

minimise residual controlled variable error.  By increasing the value of Ki, more 

emphasis is placed on minimising manipulated variable movement, increasing move 

suppression at the expense of minimisation of controlled variable error.  

 

2.3.3. Relative controlled variable importance 

Some controlled variables are more important than others.  For instance, violating a 

tubeskin temperature on a furnace may cause the tube to fail, resulting in loss of 

equipment or loss of life.  On the other hand, violating a product specification will 

cause additional cost to rework the product, or the product will have to be sold as 

second grade.  It is quite obvious that it is more important to ensure that the tubeskin 

temperature stays below the high limit than keeping product in specification.  

 

For this reason, the error on all controlled variables is multiplied by a weight, making 

the error more or less, depending on the importance of the variable.  In DMC, this 

weight is the inverse of a tuning parameter called the equal concern error if a linear 

program is used to minimise error. If a quadratic program is used, the weight is equal 

to the inverse of the square of the equal concern error.  Therefore the error matrix 

becomes: 

 

 

 

 

 

 

 

 

 

 

 

………………………………………………………2.12 

 

 

 

 

 

 

 

 

 

 

 

where Wti is the inverse or the square of the inverse of controlled variable i. 
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2.3.4. Enforcing steady state values 

The last consideration in determining the move plan for a controller is that nominal 

stability results if the manipulated variables are forced to move to their steady state 

values as determined by the steady state module that executes before the dynamic 

control module. (Genceli and Nikolau, 1993).  This is done by once again adding to A 

and e in the following manner. 
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where L is a very large number.  The error matrix becomes: 
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This will force the move plan to take the manipulated variables to the steady state 

values calculated by the steady state optimisation module, ensuring nominal stability. 

 

2.3.5. Other DMC tuning constants 

The investigation was expanded to include other tuning constants than just move 

suppressions.  Other tuning constants that will have an impact on a DMC controller 

are move suppression multipliers. 

 

Move suppression multiplier 

A move suppression multiplier is a factor that is multiplied to the last couple of move 

suppressions in the A matrix. If k is used for the move suppression multiplier then, 

from the sixth move to the final move in the plan, the move suppression is increased 

in a linear fashion from the value of K to a value of K * k.  For a SISO controller that 

will calculate 8 control moves, equation 2.13 will be replaced by: 































































∆

∆

=

2

1

26,2

25,2

24,2

23,2

22,2

21,2

16,1

15,1

14,1

13,1

12,1

11,1

0

0

0

0

*

*

*

*

*

*

*

*

*

*

*

*

MV

MV

Wte

Wte

Wte

Wte

Wte

Wte

Wte

Wte

Wte

Wte

Wte

Wte

e

 
 
 



11 

 

 

 

 

 

The default of the move suppression multiplier is 2.  As an example, if 8 control 

moves are calculated, and a move suppression of 1 is used with a move suppression 

multiplier of 5 is used, the K1 values as shown in equation 2.13 will be 

1,1,1,1,1,2.33,3.67,5.  This will place a higher penalty on moves later in the control 

horizon. 
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Steady state costs 

There are two types of manipulated variables in DMC, Min Cost and Min Move 

variables.  If a manipulated variable is defined as Min Cost, the optimisation 

algorithm will either minimise or maximise this variable, depending on the LP cost 

that is set for that specific variable.  If the manipulated variable is defined as Min 

Move, the optimisation algorithm will minimise the movement of that variable.   

 

If a manipulated variable is defined as min cost, the steady state optimisation module 

in DMC will minimise a LP with a linear objective function: 

 

)*( ii MVSSCost ∆Σ=Θ ………………………………………………..…………..2.16 

 

or a QP with a quadratic function: 

 
2))*(( rofitMaxPMVSSCost ii −∆Σ=Θ ……………………………….…………..2.17 

 

MaxProfit is the maximum amount by which the LP or QP function Θ can be 

minimised if controlled variable limits are ignored and only manipulated variable 

limits are enforced. 

 

Using an LP or QP will ensure that the controller minimises or maximises the 

variables according to the relative steady state costs, and the sign of the costs of the 

manipulated variables. 

 

If the manipulated variables are defined as Min Move manipulated variables, the LP 

objective function is changed to: 

 

MoveMinjjCostMinii MVabsSSCostMVSSCost ))(*()*( ∆Σ+∆Σ=Θ ..............................2.18 

 

and to 

 
2)Pr))(*()*(( ofitMaxMVabsSSCostMVSSCost MoveMinjjCostMinii −∆Σ+∆Σ=Θ ….2.19 

 

if a QP is used.  Therefore, if a manipulated variable is defined as a Min Move 

variable, the steady state cost becomes a penalty on the total movement of the 

manipulated variable to steady state. 

2.4. Tuning DMC controllers 

2.4.1. Traditional DMC tuning 

Traditional DMC tuning is done by first choosing the equal concern errors for all 

controlled variables.  If a LP is used in the optimisation, the control weight (W) used 

in eq.2.12 and 2.14. will be set to the inverse of the equal concern errors. If a QP is 

used, then the weight is set to the inverse of the square of the equal concern error.  

The equal concern errors are values that indicate a comparable value of controlled 

variable error.  It is a good way of comparing controlled variables with dissimilar 

units of measure, like temperatures and pressures.  The values are often chosen by 

asking the question “What magnitude of controlled variable violation would cause 
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operator distress?” and using this value as the equal concern error.  In other words, if 

a violation of 2 kPa on a pressure would get the operators’ attention, and a violation 

of 5 
o
C on a temperature would have a similar effect, these are good values for equal 

concern errors.  The values are chosen in an arbitrary fashion, but represent the 

comparative value of keeping the controlled variables within limits. 

 

After step testing control engineers often have a very good feel for these values, as 

they have probably caused severe operator discomfort during the entire step testing 

process. 

 

Next the move suppression values (Ki in 2.13 and 2.15) must be chosen for all 

manipulated variables. Traditionally this is a non-scientific, laborious affair of trial 

and error (Iglesias, Sanjuán and Smith, 2006) where initial move suppression values 

are chosen and the controller response to upsets and setpoint changes simulated.  The 

move suppressions are then adapted until the engineer is satisfied with the rate of 

change on the manipulated variables when controlled variable error exists in the 

simulation.  Next the controller is commissioned on the plant and the tuning 

parameters refined by observing the controller response (Qin & Badgwell, 2003).   

 

There are two major shortcomings with this approach.  Firstly the definition of a 

“reasonable” response has never been defined and is left to the judgment of the 

control engineer.  This will lead to the result that two engineers will tune the same 

controller and come up with very different tuning parameters that are based on 

experience and personality.   

 

Secondly, the methodology is made difficult due to the multivariable nature of the 

tuning.  If the move suppression of one manipulated variable is increased, this will 

cause the controller to allow less movement in that manipulated variable, which will 

inevitably lead to more controlled variable error as well as more movement on all 

manipulated variables that have models to the same controlled variables.  

 

These points were proven by asking eight control engineers to tune the same two 

controllers and by comparing the chosen move suppression values.  Details regarding 

the processes are shown in Appendix C.  They all followed the traditional trial and 

error approach.  No guidance was given regarding acceptable tuning, they had to use 

their own discretion and experience.  The experience of the engineers varied from 2 to 

more than 10 years in APC as shown in table 2.1 
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Table 2.1 Experience of participating engineers 
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Engineer 1 10+ 25 25+ 

Engineer 2 2-5 25+ 25+ 

Engineer 3 2-5 10-25 10-25 

Engineer 4 5-10 10-25 10-25 

Engineer 5 2-5 5-10 10-25 

Engineer 6 2-5 5-10 10-25 

Engineer 7 5-10 10-25 10-25 

Engineer 8 2-5 20 10-25 

   

 

The different tuning results are shown in table 2.2 and 2.3. 

 

Table 2.2 Move Suppression values chosen for Distillation plant 
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SupMov1 10.0 10.0 7.0 100 3 0.02 1 1 16.5 36.1 

SupMov2 1.0 5.0 8.0 5 10 0.25 0.1 1 3.8 3.9 

SupMov3 5.0 5.0 5.0 5 20 0.25 0.1 5 5.6 6.7 
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Table 2.3 Move suppression values chosen for Reactor 
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SupMov1 6.0 2.5 5.0 3 5 6 4 8.5 5.0 1.4 

SupMov2 12.0 5.0 6.0 3 12 12 1 14 8.1 4.7 

SupMov3 15.0 5.0 4.0 3 12 12 1 15 8.0 5.1 

SupMov4 5.0 2.0 3.0 3 6 6 1 11 4.8 2.2 

SupMov5 1.0 2.0 5.0 9 7 7 1 20 7.1 4.3 

 

The variation between the different move suppression values obtained by trial and 

error is shown clearly in graphical format in figures 2.2 and 2.3.   

 

 

 
Figure 2.2 Tuning constants for distillation plant 

This is an indication of the current situation in industry, with initial controller tuning 

varying according to the experience and personality of the control practitioner. 
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Figure 2.3 Tuning for Reactor 

 

The different graphs clearly show a wide variance in the tuning constants chosen by 

the engineers.  As previously discussed, this is because there is no clear definition of 

how a well performing controller should behave, as well as the personal preferences 

and experience of the engineers. 

 

 

2.4.2. Recent developments in DMC tuning 

There have been attempts to calculate the required move suppression factors 

mathematically.  Shridar and Cooper (1998) noted that move suppression factors 

serve a dual purpose in DMC.  Increasing the move suppressions will decrease 

manipulated variable movement, but will also decrease the matrix conditioning 

number.  They used an approach that is based on the premise that these two effects are 

interrelated.  They deduced that move suppression factors that present a well-

conditioned controller matrix will provide a well behaved controller in terms of tuning 

and developed a tuning strategy that will calculate move suppressions to provide a 

predefined matrix conditioning number.   

 

Other authors (Iglesias, Sanjuán and Smith, 2006) report that this method leads to 

unacceptably aggressive tuning.  They developed a method of simulating the control 

behaviour and minimising a cost function.  The cost function is the integral of the 

controlled variable error added to the integral of the manipulated variable movement 

multiplied by a weighting factor or: 

 

 

 

dttmdttePP ∫∫
∞∞

Γ+=
00

)()( …………………………………………2.1 
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where: 

• PP = Cost function 

• e(t) is the controlled variable error 

• m(t) is the manipulated variable moves 

Γ is the weighting factor placed on the manipulated variable movement . 

 

 Increasing the weighting factor will decrease manipulated variable movement.  

Analysis of variance was then used to find the significant variables to calculate a 

tuning equation.  The tuning equation developed provides significantly larger values 

of move suppression, with the shortcoming that it will only provide tuning values for 

SISO systems with first order models, severely limiting its use in industry. 

 

Kai Han et al (2006) proposed a min-max algorithm that will select tuning parameters 

that will cause controlled variables to move sharply to steady state values with 

slightly oscillatory behaviour as shown in figure 2.4. 

 

 

 
Figure 2.4 Han method controlled variable response 
 

Ghazzawi, A et al. (2010) introduced an online tuning strategy that will re-tune the 

controller in real time, based on the predicted closed loop controlled variable response.  

The tuning will be based on the dynamic response to setpoint changes or how well 

disturbances are rejected. Acceptable dynamic limits are set on setpoint changes and 

disturbance rejection as shown in figure 2.5. The authors claim that this approach will 

work in a constrained multi-variable controller.   
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Figure 2.5 Examples of time domain performance specifications 

 

While it is true that this approach will keep retuning the controller to handle 

controlled variable deviations consistently even when manipulated variables are 

constrained, this also introduces the risk that the control action will become 

excessively aggressive when all primary manipulated variables are constrained and 

the controller must use secondary relationships to bring a controlled variable to 

setpoint.  As it is often difficult to obtain good models for these weaker relationships, 

this approach may then lead to unacceptable controller behaviour due to model error. 

 

This risk is mitigated by placing upper and lower bounds on the move suppressions.  

Choosing the upper and lower bounds on the move suppressions brings the engineer 

back to the arbitrary choice of move suppression values and could significantly 

decrease the value obtained by using this approach. 
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3. Problem Statement 
As should be apparent in the overview presented in the previous chapter, choosing 

move suppressions for DMC is not a trivial exercise.  Because of the multi-variable 

nature, the different tuning parameters all interact with each other, making it a 

difficult exercise (Garcia, E. and Morari, M., 1985).  If the tuning is not done properly, 

the controller will behave unacceptably on a live plant, with possible loss of 

production time, product, equipment, or in the worst case, loss of life. 

 

3.1. Multivariable tuning 

Changing the move suppression of one manipulated variable will change the rate at 

which the controller will manipulate this variable.  Increasing the move suppression 

will slow it down, leading to less manipulated variable movement, with the obvious 

trade-off of more controlled variable error.   

 

Because of the formulation of the DMC algorithm, changing one move suppression 

value will not only influence the movement of that manipulated variable, it will also 

affect the movement of all other manipulated variables that have models to the same 

controlled variables.  Thus slowing down one manipulated variable will place a larger 

burden on the other manipulated variables to get rid of the controlled variable error.  It 

will also lead to a slower rejection of disturbances or a slower change to a new 

setpoint on controlled variables. 

 

This leads to a well-known truth, jokingly called the law of conservation of variability.  

Control engineers cannot get rid of variability; they can only move it between 

variables.  If you suppress movement on manipulated variables, more variability will 

remain in the controlled variables and vice versa.  If you remove variability on one 

manipulated variable by increasing the move suppression, it will increase variability 

on the other manipulated variables and all associated controlled variables. 
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3.2. Non-linear nature of DMC tuning. 

In tuning a typical DMC, the control engineer will find that if increasing a move 

suppression by a certain amount will make the manipulated variable move slower, 

then increasing the move suppression again by the same amount will then have much 

less of an impact on the response.  DMC tuning seems to be quite non- linear. 

 

In figure 3.1 the move plan for one manipulated variable is shown, with move 

suppressions ranging from 1 to 10.  This is one manipulated variable in a 6 by 6 

controller.  The move suppressions on the other manipulated variables were kept 

constant. 

 

 
Figure 3.1 Effect of move suppression on manipulated variable movement 

 

Figure 3.2 shows the response of the controlled variable on the difference in tuning. 
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Figure 3.2 Effect of move suppression on controlled variable response 

This clearly shows that changing the move suppression from 1 to 5 has a much larger 

impact on the manipulated variable than changing it from 9 to 13.  The effect on the 

controlled variable is similar, but less pronounced as the other manipulated variables 

are called on to do more or less work. 

 

3.3. The effect of model error 

If perfect models exist, the tuning exercise will merely be a choice of where to place 

the process variability.  Manipulated variables may be tuned so that valves move as 

fast as is acceptable, load and energy changes happen at a rate that operators are 

comfortable with, and that will suffice.  The controller should control the plant well 

and instability should not occur. 

 

However, perfect models are generally not the norm (Garcia & Morari, 1985).    

Process non-linearity is a major source of model/plant mismatch.  Plants also change 

constantly, heat exchangers foul, catalyst degrade, pumps and valves wear out.  

(Cutler and Perry, 1983) There is often also noise and process drift as well as 

unmeasured disturbances present during step testing that will cause model error. 

 

Model error can exist in the dynamics as well as the model gains.  If the model gain is 

too big, the controller will make initial manipulated variable moves that are too small.  

Feedback will show that the moves were too small and in time the controller will 

increase the moves until the controlled variables reach their steady state targets.  This 

will lead to a sluggish controller that will move manipulated variables too slowly and 

excessive controlled variable error will be seen. 

 

Should the model gains be smaller than the real plant response, a much more serious 

situation will exist.  The initial move plan will contain manipulated variable moves 

that are too large, and should the model mismatch be large enough, the first couple of 

moves may be enough to cause the controlled variables to overshoot their targets.  If 

they overshoot by the same amount as the initial error, a sustained cycle will result.  If 

the overshoot is larger than the initial error, the cycle will grow.  This is an example 

of controller induced instability or input-output instability. (Nikolaou, 2001)  

 

The same is true of error in the dynamics of the model.  If the controlled variables 

respond faster than the controller expects them too, it will decrease the manipulated 

variable movement accordingly, leading to a sluggish response.  If the plant reacts 

slower than the controller predicts, the controller will increase manipulated variable 

movement that may lead to cycling if the model error is large enough. 

 

The effect of model error that may start a cycle on the plant is moderated by correct 

tuning.  If very aggressive manipulated variable movements are made by the 

controller, feedback will come too late and a cycle is likely.  Should the controller 

make slower moves, a cycle may be avoided. 

 

On the other hand, if model error exists that will lead to a sluggish controller, this may 

be exaggerated by slow controller tuning.  It must be stressed that it is far better for 

the control engineer to err on the sluggish side, rather than to have to explain why a 

cycle was started on the plant. 
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3.4. Lack of definition of acceptable control 
performance 

During a tuning exercise, comments like “That manipulated variable is moving too 

fast” or “This manipulated variable is making moves that are too big” is often heard.  

These comments are based on the experience and personal likes and dislikes of the 

individual engineer, with no common language that can be used to compare the level 

of aggressiveness of the chosen tuning variable values.  This will result in controllers 

that are tuned aggressively or not, depending on who did the project initially.   

 

It is also not possible to compare the tuning between different controllers or even 

different manipulated variables in one controller with each other.  Because the relative 

size of the equal concern errors that were chosen for the controlled variables is played 

off against the relative size of the move suppressions on the manipulated variables, 

there can be no absolute guideline of an acceptable range for move suppression values. 

 

Many control engineers focus on magnitude of manipulated variable movement when 

tuning a controller and are indeed taught this way in advanced control courses in 

industry. The problem with this approach is that the magnitude of the manipulated 

variable movement is dependant on the size of the controlled variable error.  As is 

intuitively clear, if the controlled variable is far from the desired steady state value, 

the manipulated variable will have to move over a larger range to make this possible.  

Therefore the magnitude of the controlled variable error must first be set before 

evaluating the manipulated variable movement. Choosing the magnitude of 

manipulated variable movement as indication of tuning aggression can therefore be 

misleading. In figure 3.3 it is shown that doubling the size of the controlled variable 

error will double the size of the manipulated variable movement in a linear fashion. 

 

 
Figure 3.3 Effect of increasing controlled variable error 

 

In the days of 8 bit controlled variable and manipulated variable values, it was 

common practise to scale all manipulated variables and controlled variables to get 

model gains that fall within a narrow range of each other.  This was done to prevent 

loss of resolution on manipulated variable moves, but more importantly, to prevent LP 

errors in the DMC calculations.  This practise is not enforced in most new DMC 
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implementations as higher resolution variables are available. The effect of not scaling 

input variables also has a large impact on the choice of tuning variables, making a 

guideline for an acceptable range for tuning variables even more unattainable. 

 

For these reasons, and also the non-linear nature of DMC tuning as discussed in 

section 3.2, it cannot be said that a controller with move suppressions below 1.0 is 

tuned fast and a controller with move suppressions above 10.0 will be slow.   
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4. Proposed Solution 

4.1. Description of method developed 

4.1.1. Characterisation of acceptable control 
behaviour – manipulated variable overshoot 

As stated in section 3, many engineers place a large emphasis on magnitude of 

manipulated variable movement when tuning a controller.  This will lead to variable 

results as the magnitude of the manipulated variable movement will be a function of 

controlled variable error.  What is clear in figure 3.3 though is that even if the 

controller has to double the magnitude of the manipulated variable movement in order 

to address the controlled variable error, the shape of the move plan does not change.  

This remains true for different values of move suppressions.  This fact can be 

exploited to define aggressiveness of DMC tuning.   

 

If a manipulated variable is tuned very slowly, it will rise (or fall) steadily over the 

control horizon, almost in a linear fashion.  The controlled variable will typically 

respond by moving slowly to the desired steady state value.  More aggressive tuning 

will cause the manipulated variable to rise quite sharply to the steady state value, 

causing the controlled variable to rise quicker to its steady state target.  If the move 

suppression is decreased more, the manipulated variable will tend to go beyond its 

steady state value, then return to it at the end of the control horizon. This will 

typically cause the controlled variable to go to its steady state target quickly, in some 

cases even crossing it before settling to it at steady state. 

 

The effect of a manipulated variable to go beyond its steady state value to then change 

direction to settle at the steady state value will be called manipulated variable 

overshoot. The magnitude of the overshoot will be calculated as shown in figure 4.1. 

 

 

 
Figure 4.1 Calculating manipulated variable overshoot 
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If overshoot is defined as the magnitude of movement of the manipulated variable 

beyond the steady state value, shown by o in figure 4.1, with the steady state value 

shown as ss, then: 

ssoOvershootMVPercentage /)100*(= …………………………………………4.1 

 

As shown before the percentage overshoot is not dependent on the controlled variable 

error, but it is a good indication of the level of aggression of tuning.  

 

If the 6 by 6 controller example in section 3.2 is considered again, it can be seen how 

the level of manipulated variable overshoot changes with the different move 

suppression values.  

 

Table 4.1 Manipulated variable overshoot as function of move suppression 

Move suppression  Manipulated variable overshoot 

1 30.7% 

5 7.0% 

9 1.3% 

13 0.0% 

 

Table 4.1 clearly shows how manipulated variable overshoot decreases when the 

move suppression values are increased.  It is also apparent that this is not a linear 

relationship. 

 

The response in table 4.1 is not only dependent on the move suppression of the 

manipulated variable, it also depends on the specific model and the move 

suppressions of the other manipulated variables. It is also interesting to note that not 

only does increasing the move suppression value decrease the amount of overshoot, it 

also moves the occurrence of the overshoot to later in the calculated move plan. 

 

The use of manipulated variable overshoot is equivalent to the use of manipulated 

variable overshoot in PID or SISO tuning (King, 2011).  It is used in Lambda tuning 

first developed by Dahlin (1968). Lambda tuning is a form of internal model control 

and Chien (1988) and later Chien and Fruehauf (1990) developed tuning methods 

using direct synthesis.  In PID tuning manipulated variable overshoot is also seen as a 

measurement of acceptable tuning aggression.  

 

It is therefore suggested that in multivariable control manipulated variable overshoot 

can also be used as an indication of aggression of tuning and the metric that can be 

used to quantify this behaviour is simply the manipulated variable overshoot as shown 

in equation 4.1. 

4.1.2. Characterisation of acceptable controller 
behaviour – first order manipulated variable 
movement 

Table 4.1 shows that at large values of move suppression, manipulated variable 

overshoot goes to zero, and increasing move suppression more will not affect this, 

even though manipulated variable movement will still slow down.  If a controller is 

desired with tuning that is less aggressive than tuning that will cause manipulated 

variable overshoot, another indication of tuning is if the chosen parameters cause the 
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manipulated variables to gently go to their steady state values, moving along a first 

order path.   

 

In a typical DMC controller the control horizon is 0.5 times the time to steady state 

chosen for the controller model. This is the time over which the manipulated variable 

must move to its steady state value.  A controller that is tuned to follow a first order 

manipulated variable move plan will be quite robust when there is significant model 

uncertainty, but will still react fast enough to provide reasonable control performance. 

 

The metric that was developed to characterise a manipulated variable that follows a 

first order path is to calculate the sum of the squared error between a first order move 

plan and the actual manipulated variable movement. The time constant for the first 

order response  must be chosen so that the manipulated variable reaches its steady 

state value at the end of the control horizon. The software for this study was designed 

with a control interval of 15 controller cycles as explained in section 4.3, therefore the 

time constant was set at 3.5 controller intervals.  

 

∑ −=
movescontrol

pathMVactualpathMVorderfirsterrormetricorderFirst 2)( ……4.2 

 

In the 6 by 6 controller example of section 3.2, a move suppression of 17 will cause 

the manipulated variable to follow a first order path to its steady state value.  Many 

simulations have consistently shown that move suppression values must be increased 

to go from behaviour that shows overshoot to first order behaviour. 

 

4.1.3. Characterisation of acceptable controller 
behaviour – first order controlled variable movement 

Another possibility of characterising controller behaviour is to attempt to pick move 

suppressions that will cause controlled variables to follow a first order response to 

their steady state targets.  This is usually a quite desirable way for a control system to 

behave and should be a reasonable measurement of successful tuning.  This is 

opposed to previous attempts to use some measure of overshoot or overshoot and 

decay in the controlled variable response as this will lead to a very aggressively tuned 

controller that will misbehave when there is model error or non-linearity present.  

 

However, factors like deadtime or inverse response in the controlled variable response 

make first order controlled variable movement a difficult goal to attain.  Simply 

calculating the squared error between a typical first order response and the actual 

controlled variable movement will fail if deadtime or inverse response exists.   

 

For this reason it was decided to characterise the controlled variable response only by 

firstly choosing at which prediction interval the controlled variable should be at 75% 

of the steady state value (PI75).  The squared error between the actual value at PI75 and 

75% of the setpoint value and the squared error between the actual steady state value 

and the setpoint is added to calculate the metric that will characterise the success of 

the tuning to produce first order movement in the controlled variable.  
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22

75 )()*%75( SPCVactualSPCVactualerrorCVorderFirst SSPI −+−=  ……4.3 

where: 

First order CV error  =  metric to characterise deviation of controlled variable 

from first order response. 

CVactualPI75  = Actual controlled variable value at PI75  

SP   = Setpoint of controlled variable 

CVactualSS  = Actual controlled variable value at steady state 

 

 

In widely used DMC algorithms the prediction horizon is 1.5 times the time to steady 

state chosen for the controller model. If the manipulated variable under consideration 

tends to have models that reach steady state in a shorter time than the chosen 

controller time to steady state, it will be impossible to use tuning to let the controlled 

variables reach their steady state values over the full control horizon.  For this reason 

a move suppression value of 50 for the 6 by 6 controller example was unable to slow 

down the controlled variable response enough to attain the goal of moving along a 

first order path to steady state.  Simulations have consistently shown that larger move 

suppressions are required to cause a first order controlled variable response than those 

required to cause a first order manipulated variable move plan. 

 

4.2. Description of method developed 

Once a decision regarding which metric to use was made, a search algorithm can be 

used to find the multiple tuning constants that will provide the desired behaviour in 

the control action.  

 

A Visual Basic macro was written in Microsoft Excel that will read in an existing 

DMC controller configuration file and the model file.  The user can then choose 

which metric of tuning behaviour must be used.   

 

Measuring manipulated variable overshoot is simply done as described in equation 4.1.  

The square of the difference between the desired overshoot and the actual overshoot is 

taken as the metric error.  In appendix B the measurement and definition of 

manipulated variable overshoot is explained and expanded to manipulated variables 

that do not move as shown in figure 4.1. 

 

If the desired behaviour is a first order manipulated variable path, a first order move 

from zero to the manipulated variable steady state value is calculated.  The squared 

difference over all control intervals is then taken as the metric error. 

 

Because the model deadtime or inverse response plays a large role in controlled 

variable response, the difference between actual controlled variable response and a 

first order response to the controlled variable target value does not provide a 

meaningful measure of success.  For this reason the user is given the option to 

determine at which time interval the controlled variable must have risen to 75% of the 

steady state value. The metric error was then defined as the squared difference in the 

controlled variable response at the user defined time and 75% of the steady state value. 

To this was added the squared difference between the controlled variable at steady 

state, and the steady state target of the controlled variable. 
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For the purpose of this study, the Nelder-Mead or downhill simplex method (Nelder 

and Mead, 1965) was used as search algorithm. Once the metric error has been chosen 

and measured, Nelder-Mead is used to minimise the sum of the metric error over all 

manipulated and/or controlled variables by adjusting the move suppression, and 

optionally the move suppression multipliers. 

 

4.2.1. Implementing Nelder-Mead using an Excel 
spreadsheet 

The Excel spreadsheet contains multiple worksheets: 

• Main 

• Model 

• MV detail 

• CV Detail 

• AMatrix 

• Conditions 

• MVMoves 

• CVResponse 

• ErrorMatrix 

• SS 

• Results 

• Notes 

• NelderSetup 

• Nelder 

 

Main 

The different macro modules can be started from this worksheet.  There are five 

different command buttons that can be selected to run the different modules.  These 

will be described in detail in the next section. 

 

Model 

The DMC model file is read into this worksheet.  It is displayed in matrix form. This 

is done mostly for troubleshooting and to visually inspect the model matrix. 

 

MV detail 

All pertinent manipulated variable details are stored in here when the DMC 

configuration file is read.  These include: 

• move suppressions 

• typical manipulated variable move sizes 

• move suppression multipliers 

• steady state costs 

 

These values can be edited before the calculation modules are run. 

 

CV Detail 

The high and low equal concern errors are read in from the controller configuration 

page and displayed here. 
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AMatrix 

During the DMC calculation, the A matrix is constructed and displayed here.  This is 

done mostly for troubleshooting purpose.  

 

Conditions 

During macro execution, the user must specify under which conditions the program 

must run.  This user input is stored here.  The residual error that will be minimised to 

search for the optimal tuning values is based on these input values and is also 

calculated in this worksheet. 

 

MVMoves 

The manipulated variable moves calculated by the DMC calculation will be stored in 

this worksheet.  Several metrics that are used to characterise the manipulated variable 

move plan are also calculated here. The manipulated variable move plan can also be 

represented and inspected graphically. 

 

CVResponse 

The controlled variable response calculated by the DMC calculation is stored in this 

worksheet.  A metric is calculated to define the rise time of all the controlled variables.  

The controlled variable response can also be represented and inspected graphically. 

 

ErrorMatrix 

The e matrix as used by the DMC calculation is stored here. 

 

SS 

A small part of the DMC steady state optimisation module is duplicated here. The end 

values for all manipulated variables are calculated based on the steady state costs and 

the controlled variable error. This is required to enforce the steady state end values on 

the manipulated variables and controlled variables in calculating the manipulated 

variable move plan. 

 

Results 

This worksheet is used to store different tables when a macro module is used to find 

different metric errors over a wide range of move suppression values. 

 

Notes 

This worksheet was used to keep developers notes. 

 

NelderSetup 

This worksheet is used when a macro module finds the minimum metric error while 

stepping through a range of move suppression values.  This minimum may be used as 

a starting position for the search algorithm later. 

 

Nelder 

The Nelder-Mead search algorithm uses this worksheet to store its output. 
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4.2.2. Visual Basic macro 

The macro execution is done using common building blocks that are used by the 

different modules.  The modules are: 

• Read ccf 

• Run Once 

• Run Nelder-Mead 

• Get SupMov Table 

• Get Starting Values 

 

Read ccf 

In this module, Excel will open a DMC controller configuration file to obtain: 

• The number of manipulated variables 

• The number of controlled variables 

• The existing tuning values 

o Manipulated variable move suppression 

o Manipulated variable move suppression multiplier 

o Manipulated variable steady state cost 

o Manipulated variable typical move size 

o Controlled variable equal concern errors 

• Number of model coefficients 

• Name of the model file 

These values are stored in the different worksheets as described above. 

 

It will then open the corresponding model file and read the models into a worksheet. 

 

Run Once 

In this module Excel will read the parameters that were loaded from the files or edited 

in Excel into Visual Basic variables.  An input window will be displayed  as shown in 

figure 4.2. In the top half, it will then ask the user which metric for the 

characterisation of acceptable behaviour must be used, and what amount of overshoot 

would be required.  In the bottom half, the user may specify which tuning parameters 

may be adjusted to attempt to decrease the metric error. 

 

 
Figure 4.2 Excel macro input 
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The user is also able to specify if the search algorithm must: 

• search for optimal values of the move suppression multipliers 

• set the steady state cost to be the same value as the move suppression 

• search for the optimal values of the steady state cost. 

 

Even though these options are chosen, only the option to set the steady state cost to 

the same value as the move suppressions will influence the program execution in Run 

Once mode.  The other options are only used when the solver is run.  

 

The macro will then run the DMC calculations (equation 2.5) to find the manipulated 

variable move plan and the corresponding controlled variable responses.  It will first 

determine the steady state values for all manipulated variables and controlled 

variables, based on the steady state costs.  It will then calculate the manipulated 

variable move plan based on the move suppressions and move suppression multipliers. 

 

The metrics and metric error will be calculated in the worksheets based on the 

response chosen. 

 

 

Run Nelder-Mead 

In this module Excel would read the parameters that were loaded from the files or 

edited in Excel into Visual Basic variables.  It would then ask for the definition of 

behaviour that must be measured, and what amount of overshoot would be required as 

shown in figure 4.2. 

 

The user is also able to specify if the search algorithm must: 

• search for optimal values of the move suppression multipliers 

• set the steady state cost to be the same value as the move suppression 

• search for the optimal values of the steady state cost. 

 

Based on which variables are selected to be optimised, the macro will then use the 

current values for move suppression, move suppression multipliers and steady state 

cost as starting values for the Nelder-Mead search algorithm. It will run the DMC 

calculations to find the manipulated variable move plan and the corresponding 

controlled variable responses.  It will calculate the error based on the response chosen 

and pass the error to Nelder-Mead, which will search for the minimum error.  Once 

Nelder-Mead has converged, it stops and places the optimised variables in the correct 

worksheet. 

 

Get SupMov table 

This module was developed to obtain multiple error values over a wide range of move 

suppressions.  It will step through different move suppression values, run the DMC 

calculation, calculate the associated error and place it in a table.  The table can be 

used to visually inspect the search plane that Nelder-Mead must optimise on. 

 

Get Starting Values 

If a Nelder-Mead search is started far away from the optimum point, it will take very 

long to converge.  This module was written to step through multiple move 

suppressions, calculate the associated error and find a good starting position for 
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Nelder-Mead.  It will then place the move suppressions that provide the smallest error 

value into the correct worksheet.    

 

This approach is especially necessary if manipulated variable overshoot is desired.  If 

the search is started where the overshoot is zero, the search algorithm will fail because 

there will be no change in error providing a flat search plane with no improvement in 

any direction.   

 

4.3. Current limitations of software 

As the software was developed to illustrate a concept, it was decided to not cater for 

all possible variations of controllers.  Therefore certain software limitations were 

deemed acceptable. 

4.3.1. Integrators 

Currently the DMC calculation in the software is not capable of handling integrating 

models.  This is definitely a suggested enhancement that will be considered in future.   

 

4.3.2. Model coefficients 

The current software will only accept models with 30 model coefficients and 8 control 

intervals, calculated at intervals 1,2,3,4,5,7,11 and 14. 
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5. Analysis of performance of method 

5.1. Comparison of different definitions of optimal 
tuning 

5.1.1. Controller performance with no model error 

To compare the performance of the different tuning constants obtained by using the 

definitions of acceptable control, two simulated plants and controllers were used.  

Details regarding the processes, a distillation plant and reactor, are shown in 

Appendix C.  The different metrics for acceptable DMC tuning as described in section 

4.1 were applied and the program shown in Appendix A found move suppression 

values that will cause the behaviour as defined by the metrics.  

 

The different move suppression values were loaded in the online controller and 

controller setpoints were changed.  Data was collected on all controller variables to 

compare the performance.  To demonstrate the change in manipulated variable move 

plans and controlled variable responses, one manipulated variable and one controlled 

variable of the reactor controller are shown in figures 5.1 and 5.2 and a manipulated 

variable and controlled variable of the distillation process are shown in figures 5.3 and 

5.4. 

 

 

 
Figure 5.1 Reactor MV1 movement without model error 
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Figure 5.2 Reactor CV1 movement without model error 

 

Figure 5.1 shows how the manipulated variables of the reactor controller move to 

their steady state value faster when the more aggressive tuning metrics like 50% 

overshoot are used.  The controlled variables also move to setpoint faster as seen in 

figure 5.2.  Using a first order move plan for the manipulated variables as metric and 

using a first order response path for the controlled variables provide much slower 

tuning as shown.  

 

In figure 5.3 and 5.4 the effect of the ill-conditioned controller matrix can be seen, 

especially with the more aggressive tuning parameters.  Because all controlled 

variables are controlled to a setpoint, slight numerical differences between the 

controller prediction and the simulation response cause the cycle. 
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Figure 5.3 Distillation plant MV1 movement with no model error 

 

Figure 5.4 Distillation plant CV1 response with no model error 
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5.1.2. Controller performance with model error 

 

Model error was created by changing the model gains on the simulations.  If the plant 

or simulator response is smaller than the prediction created by the controller models, 

this will lead to a sluggish controller. While this is not optimal, it is much less 

destructive than when the plant or simulator response is much larger than the 

prediction.  This will lead to the controller cycling, especially if aggressive move 

suppressions were used. 

 

For this reason all gains on the reactor simulator were increased by 100% to simulate 

and test the controller response with different tuning constants under worst case 

conditions.  These responses are demonstrated by showing the movement of the first 

manipulated variable and controlled variable of the reactor in figures 5.5 and 5.6. 

 

 

 
Figure 5.5 Reactor MV1 movement with model error 

 
 
 



37 

 

 
Figure 5.6 Reactor CV1 movement with model error 

 

The data clearly shows that the more aggressive tuning has much more of a tendency 

to start a cycle on the process, with the less aggressive tuning not cycling at all.  What 

is interesting to note is that the absolute movement over the control horizon of the 

manipulated variable also changes when model error is introduced.  This is because 

the controller starts compensating for the model error by also moving the other 

manipulated variables, causing all manipulated variables to move away from the 

steady state values initially predicted. 
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Even with no model error, the distillation controller already had performance issues 

caused by ill-conditioning as shown in section 5.1.1.  All gains for the bottoms 

temperature on the distillation simulator were increased by 100%.  This further 

hampered controller performance as shown in figures 5.7 and 5.8. 

 

Figure 5.7 Distillation plant MV1 movement with model error 
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Figure 5.8 Distillation plant CV1 response with model error 

 

Once again the slower tuning constants showed less of a tendency to cause unstable 

behaviour. 
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5.2. Analysis of search plane 

The success of this method rests very strongly on the assumption that a global 

minimum will exist for varying move suppressions for each of the metrics.  To 

determine if this holds, an array of metric errors was calculated for various move 

suppression values.  In order to visually display the search plane, the reactor plant 

from section 5.1 was used and only the first two move suppressions were varied over 

a range.  The other move suppression values were held at the value which would 

provide the lowest error for each metric. 

 

5.2.1. Overshoot metric 

In figure 5.9 it can be seen that the 20% overshoot metric does show a global 

minimum if move suppressions 1 and 2 are varied.  The same result is found if any 2 

other move suppressions are used, or if a 50% or 10% overshoot is used as target for 

the search algorithm.  

 

 

 

 
Figure 5.9 Residual error from 20% overshoot 
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5.2.2. First order manipulated variable move plan 

If the same is done with the first order manipulated variable move plan metric, the 

result shown in figure 5.10 demonstrates that this metric also has a global minimum. 

 

 

 
Figure 5.10 Residual error from first order manipulated variable movement 
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5.2.3. Smooth controlled variable response 

The search plane for the smooth controlled variable response showed a problem.  The 

error rapidly decreases as the move suppression values increase, causing the 

controlled variables to move slower towards the steady state values.  At a certain 

stage, the error does not decrease significantly, but it also does not start increasing 

again.  This behaviour is caused by the imposition of the steady state values on the 

manipulated variable move plan.  Because the steady state values are enforced, the 

controlled variable movement cannot go much slower than a first order path towards 

the steady state value, even if very large move suppression values are chosen. 

 

Once the search plane levels off, figure 5.11 shows that small local minima and 

maxima form.  The search algorithm will then find one of these local minima, and 

will not find a repeatable solution as the starting values will determine which local 

minimum will be found.  For this reason it is suggested that the smooth controlled 

variable response not be used.    

 

 

 
Figure 5.11 Residual error from smooth controlled variable response 
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5.3. Comparison with traditional tuning 

As stated in section 2.4.1, several APC engineers in industry were asked to tune 2 

simple plants in simulation mode in order to compare the tuning metric results with 

traditional tuning.  Details regarding the processes are shown in Appendix C.  They 

all followed the traditional trial and error approach.  No guidance was given regarding 

acceptable tuning, they had to use their own discretion and experience.  The 

experience of the engineers varied from 2 to more than 10 years in APC as shown in 

table 5.1 

 

Table 5.1 Experience of participating engineers 
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Engineer 1 10+ 25 25+ 

Engineer 2 2-5 25+ 25+ 

Engineer 3 2-5 10-25 10-25 

Engineer 4 5-10 10-25 10-25 

Engineer 5 2-5 5-10 10-25 

Engineer 6 2-5 5-10 10-25 

Engineer 7 5-10 10-25 10-25 

Engineer 8 2-5 20 10-25 

   

 

The initial tuning values that the engineers decided on using trial and error as shown 

in section 2.4.1 were compared with the results obtained from applying the different 

metrics and using Nelder Mead to minimise metric error as described in section 4.1. 

The different results are shown in table 5.2 and 5.3. 
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Table 5.2 Results of different tuning methods for Distillation plant 
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SupMov1 1.2 2.5 3.4 17.6 21.6 10.0 10.0 7.0 100 3 0.02 1 1 

SupMov2 9.2 14.4 16.7 442 34.8 1.0 5.0 8.0 5 10 0.25 0.1 1 

SupMov3 7.9 14.2 18.4 58.2 51.4 5.0 5.0 5.0 5 20 0.25 0.1 5 

 

Table 5.3 Results of different tuning methods for Reactor 
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SupMov1 1.8 3.0 3.8 57 115 6.0 2.5 5.0 3 5 6 4 8.5 

SupMov2 9.6 11.4 12.8 100 39.9 12.0 5.0 6.0 3 12 12 1 14 

SupMov3 11 13.5 15.6 76 7.2 15.0 5.0 4.0 3 12 12 1 15 

SupMov4 6.6 8.8 9.7 404 69.0 5.0 2.0 3.0 3 6 6 1 11 

SupMov5 1.0 1.8 1.9 9.8 21.8 1.0 2.0 5.0 9 7 7 1 20 

 

The variation between the different tuning metrics and the trial and error approach is 

shown clearly in graphical format in figures 5.1 and 5.2.   
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Figure 5.1 Tuning constants for distillation plant 

 

 

On both graphs the y axis was stopped at 20 as the first order and especially the 

smooth controlled variable response metrics tend to provide ridiculously large move 

suppression values. 

 

 

 
Figure 5.2 Tuning constants for reactor 

 

 

As expected, the tuning method results show less aggressive behaviour as the amount 

of manipulated variable overshoot is decreased.  Tuning for a first order movement in 

the manipulated variables or a smooth controlled variable response yields much larger 

move suppressions. 
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6. Conclusion 
Historically the tuning of multi-variable or dynamic matrix controllers have been a 

matter of personal taste of the engineer and trial an error methods were used to tune 

controllers that influence multi-million dollar processes.  The same goes for 

controllers that have an impact on environmental and safety issues.  The problem was 

compounded by the lack of agreement of what acceptable controller behaviour is, 

with the level of aggressiveness of controller tuning depending on the judgement of 

the engineer.  It also meant that comparing different tuning constants was vague and 

unscientific. 

 

Using the shape of the predicted manipulated variable move plan or the shape of the 

controlled variable response as an indication of tuning aggressiveness addresses this 

problem. 

 

It was found that using the controlled variable response may lead to convergence 

issues with the solver algorithm. Enforcing the steady state values on all manipulated 

variables will cause the controlled variable movement to follow a path that will be 

very close to a first order, regardless of larger move suppressions.  This leads to the 

search plane levelling off at large move suppressions, instead of the metric error 

increasing. 

 

Using the amount of manipulated variable overshoot as an indication of tuning 

aggressiveness provides more satisfying results.  The amount of overshoot can vary 

from zero if a first order path is chosen, to any positive value chosen by the engineer.  

Using a solver algorithm to find the desired amount of overshoot in a manipulated 

variable can be used to find good starting values for tuning parameters. 

 

Using the amount of manipulated variable overshoot is a valid way to characterise 

aggressiveness of tuning.  By using it as a metric it is possible to compare different 

tuning values.  

 

Even though the different metrics that have been introduced have the potential to 

enable APC practitioners to compare the aggressiveness of tuning parameters, this 

will by no means close the book on the subject.  Other major considerations when 

choosing move suppressions are: 

• Conditioning number of the controller matrix 

• Quality of process models 

• Non-linear process responses 

• Severity of disturbances  

• Consequences of controlled variable limit violation. 

• The number of controller execution cycles from the time when a 

disturbance manifests and when the effect of the disturbance causes 

unacceptable behaviour in the controlled variables. 

 

Taking these factors into consideration, it is recommended that the APC engineer 

obtains move suppression values that will provide 20% manipulated variable 

overshoot and tuning that will provide a first order move plan for the manipulated 

variables.  Interpolation between these values can be done to use 20% manipulated 
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variable overshoot for aggressive tuning, and moving towards the first order 

manipulated variable moves if less aggressive tuning is required if issues like ill-

conditioning or model uncertainty exist.  As per best practises, these tuning values 

will have to be refined by observing the actual controller response during the project 

commissioning phase. 

 

The value in using manipulated variable overshoot is not that it will provide ideal 

tuning values for a live controller.  It will firstly provide a way to characterise 

aggression of tuning, and a way to compare different sets of tuning values.  Secondly 

it will provide a good set of initial tuning values for online controllers that will save 

the engineer time and process upsets during commissioning. 
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Appendix A - Excel Macro 
Module 1 
Option Base 1 
'  DMC Tuner by GZ Gous 2008 
 
Option Explicit 
Global ModelFile As String 
Global CCFile As String 
Global Coefficient() As Double 
Global dGain() As Double 
Global IndependentTag() As String 
Global DependentTag() As String 
Global NumberOfIndependents As Integer 
Global NumberOfMVs As Integer 
Global NumberOfDependents As Integer 
Global NumberOfCoefficients As Integer 
Global SteadyStateTime As Double 
Global NumberOfMoves As Integer 
Global RampStatus() 
Global SupMov() As Single 
Global SupMlt() As Single 
Global Cst() As Single 
Global dMV() As Single 
Global TypMov() As Single 
Global CVError() As Single 
Global ErrorMatrix() As Single 
Global HiECE() As Single 
Global LoECE() As Single 
Global AMatrix() As Single 
Global FileRead As Boolean 
Global ATAIAT() As Single 
Global fmovt() As Integer 
Global EndWeight As Single 
Global MVMoves() As Single 
Global SolveSupMults As Boolean 
Global DoOnce As Boolean 
Global CVPath() As Single 
Global MovTgt() As Single 
Global SolveMV1st As Single 
Global SolveRatio As Single 
Global SolveCVSmooth As Single 
Global SolveMVOvershoot As Single 
Global MVOvershoot As Single 
Global CVTime As Single 
Global UseMV() As Single 
Global UseCV() As Single 
Global SetCstToSupMov As Boolean 
 
Sub Master() 
    ReadCCF 
    ReadModelFile 
    DisplayModelMatrix 
End Sub 
Sub GetSS() 
 
Dim SolvTarget As String 
Dim SolvChange As String 
 
'SetCstToSupMov = True 
If SetCstToSupMov Then 
    For i = 1 To NumberOfIndependents 
        Cst(i) = SupMov(i) 
        Worksheets("MV Detail").Cells(5 + i, 5) = Cst(i) 
    Next i 
Else 
    For i = 1 To NumberOfIndependents 
        Cst(i) = Worksheets("MV Detail").Cells(5 + i, 5) 
    Next i 
End If 
Worksheets("SS").Select 
Range("A1:Z300").ClearContents 
Cells(1, 1) = "CV" 
Cells(1, 2) = "MV" 
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Cells(1, 3) = "Gain" 
Cells(1, 4) = "dMV" 
Cells(1, 5) = "dCV" 
Cells(1, 6) = "dCVtot" 
Cells(1, 7) = "Target" 
Cells(1, 8) = "Err^2" 
For i = 1 To NumberOfDependents 
    Cells((i - 1) * NumberOfIndependents + 2, 1) = DependentTag(i) 
    For j = 1 To NumberOfIndependents 
        Cells((i - 1) * NumberOfIndependents + j + 1, 2) = IndependentTag(j) 
        Cells((i - 1) * NumberOfIndependents + j + 1, 3) = Worksheets("Model").Cells(8 + (i - 1) * 
NumberOfIndependents + j, 33) 
        Cells((i - 1) * NumberOfIndependents + j + 1, 5).FormulaR1C1 = "=RC[-2]*RC[-1]" 
    Next j 
    Cells(i * NumberOfIndependents + 1, 6) = "=sum(E" & Format((i - 1) * NumberOfIndependents + 2, "##") & ":E" _ 
            & Format(i * NumberOfIndependents + 1, "##") & ")" 
    Cells(i * NumberOfIndependents + 1, 7) = 1  'target for cv at ss 
    Cells(i * NumberOfIndependents + 1, 8).FormulaR1C1 = "=(1000000*(RC[-1]-RC[-2]))^2" 
Next i 
Cells((i - 1) * NumberOfIndependents + 2, 1) = "Cost" 
Cells(i * NumberOfIndependents + 1, 6) = "=sum(E" & Format((i - 1) * NumberOfIndependents + 2, "##") & ":E" _ 
            & Format(i * NumberOfIndependents + 1, "##") & ")" 
Cells(i * NumberOfIndependents + 1, 7) = 0 
Cells(i * NumberOfIndependents + 1, 8).FormulaR1C1 = "=(RC[-1]-RC[-2])^2" 
For j = 1 To NumberOfIndependents 
    Cells(j + 1, 4) = 1 
    Cells((i - 1) * NumberOfIndependents + j + 1, 2) = IndependentTag(j) 
    Cells((i - 1) * NumberOfIndependents + j + 1, 3) = Cst(j) 
    Cells((i - 1) * NumberOfIndependents + j + 1, 5).FormulaR1C1 = "=RC[-2]*abs(RC[-1])" 
Next j 
Cells(NumberOfIndependents + 2, 4).Select 
ActiveCell.Formula = "=D2" 
Selection.Copy 
For j = 1 To (NumberOfDependents) * NumberOfIndependents - 1 
    Cells(ActiveCell.Row + 1, 4).Select 
    ActiveSheet.Paste 
Next j 
Application.CutCopyMode = False 
Cells(2, 8).FormulaR1C1 = "=sum(R[1]C:R[200]C)" 
 
SolvTarget = "$H$2" 
SolvChange = "$D$2:$D$" & Format(NumberOfIndependents + 1, "##") 
SolverReset 
SolverOptions MaxTime:=1000, Iterations:=5000, Precision:=0.000001, _ 
    AssumeLinear:=False, StepThru:=False, Estimates:=2, Derivatives:=1, _ 
    SearchOption:=1, IntTolerance:=5, Scaling:=False, Convergence:=0.0001, _ 
    AssumeNonNeg:=False 
SolverOk SetCell:=SolvTarget, MaxMinVal:=2, ValueOf:="0", ByChange:=SolvChange 
SolverSolve (True) 
ReDim dMV(NumberOfIndependents) 
For j = 1 To NumberOfIndependents 
    dMV(j) = Cells(j + 1, 4) 
Next j 
End Sub 
 
Sub ReadCCF() 
    Dim iFile As Integer            ' Model file handle 
    Dim sBuf As String              ' Temporary buffers 
    Dim i As Integer, _ 
        j As Integer, _ 
        k As Integer, _ 
        p As Integer, _ 
        dependent As Integer, _ 
        independent As Integer 
    Dim IsFF As Single 
 
     
'Worksheets("MV Detail").Cells(1.1) = 0 
    ' Get the name of the Model file 
  CCFile = Application.GetOpenFilename("CC Files (*.ccf), *.ccf") 
     
    ' Load the file... only if the user selected one 
  If (ModelFile <> "False") Then 
     
        ' Read & Store the model file header 

 
 
 



50 

 

         
     ' Open the model file 
    iFile = FreeFile() 
    Open CCFile For Input As #iFile 
 
     
    Do 
            Line Input #iFile, sBuf 
    Loop Until Left(sBuf, 7) = ".IPMIND" 
    sBuf = Mid(sBuf, InStrRev(sBuf, "~~~", Len(sBuf) - 3) + 3, 20) 
    NumberOfIndependents = Val(Left(sBuf, Len(sBuf) - 3)) 
    Do 
            Line Input #iFile, sBuf 
    Loop Until Left(sBuf, 7) = ".IPNDEP" 
    sBuf = Mid(sBuf, InStrRev(sBuf, "~~~", Len(sBuf) - 3) + 3, 20) 
    NumberOfDependents = Val(Left(sBuf, Len(sBuf) - 3)) 
    Do 
            Line Input #iFile, sBuf 
    Loop Until Left(sBuf, 7) = ".IPXNCI" 
    sBuf = Mid(sBuf, InStrRev(sBuf, "~~~", Len(sBuf) - 3) + 3, 20) 
    NumberOfCoefficients = Val(Left(sBuf, Len(sBuf) - 3)) 
     Do 
            Line Input #iFile, sBuf 
    Loop Until Left(sBuf, 7) = ".MDLNAM" 
    sBuf = Mid(sBuf, InStrRev(sBuf, "~~~", Len(sBuf) - 3) + 3, 20) 
    ModelFile = Left(sBuf, Len(sBuf) - 3) 
     
    ReDim SupMov(NumberOfIndependents) 
    ReDim SupMlt(NumberOfIndependents) 
    ReDim Cst(NumberOfIndependents) 
    ReDim TypMov(NumberOfIndependents) 
    ReDim HiECE(NumberOfDependents) 
    ReDim LoECE(NumberOfDependents) 
    ReDim IndependentTag(NumberOfIndependents) 
    ReDim DependentTag(NumberOfDependents) 
    ReDim Coefficient(NumberOfIndependents, NumberOfDependents, NumberOfCoefficients) 
    ReDim RampStatus(NumberOfDependents) 
    ReDim dGain(NumberOfIndependents, NumberOfDependents) 
 
 
     
    Worksheets("MV Detail").Select 
    Worksheets("MV Detail").Range("a1", "IV65536").Select 
    Selection.ClearContents 
    Selection.Interior.ColorIndex = xlNone 
    Worksheets("MV Detail").Range("a1").Select 
    Worksheets("MV Detail").Range("a5") = "MV Name" 
    Worksheets("MV Detail").Range("b5") = "SUPMOV" 
    Worksheets("MV Detail").Range("c5") = "TYPMOV" 
    Worksheets("MV Detail").Range("d5") = "SUPMLT" 
    Worksheets("MV Detail").Range("e5") = "SS Cost" 
     
    For independent = 1 To NumberOfIndependents 
        SupMlt(independent) = 2 
         Do 
            Line Input #iFile, sBuf 
        Loop Until Left(sBuf, 4) = ".CST" 
            sBuf = Mid(sBuf, InStrRev(sBuf, "~~~", Len(sBuf) - 3) + 3, 20) 
            Cst(independent) = Val(Left(sBuf, Len(sBuf) - 3)) 
        Do 
            Line Input #iFile, sBuf 
        Loop Until Left(sBuf, 5) = ".ISFF" 
        IsFF = 1 - Val(Mid(sBuf, 25, 1)) 
        If IsFF = 1 Then 
            Do 
                Line Input #iFile, sBuf 
                If Left(sBuf, 7) = ".SUPMLT" Then 
                    sBuf = Mid(sBuf, InStrRev(sBuf, "~~~", Len(sBuf) - 3) + 3, 20) 
                    SupMlt(independent) = Val(Left(sBuf, Len(sBuf) - 3)) 
                End If 
            Loop Until Left(sBuf, 7) = ".SUPMOV" 
                sBuf = Mid(sBuf, InStrRev(sBuf, "~~~", Len(sBuf) - 3) + 3, 20) 
                IsFF = Val(Left(sBuf, Len(sBuf) - 3)) 
            Do 
                Line Input #iFile, sBuf 
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            Loop Until Left(sBuf, 7) = ".TYPMOV" 
                sBuf = Mid(sBuf, InStrRev(sBuf, "~~~", Len(sBuf) - 3) + 3, 20) 
                TypMov(independent) = Val(Left(sBuf, Len(sBuf) - 3)) 
        End If 
        Worksheets("MV Detail").Range("a5").Offset(independent, 1) = IsFF 
        Worksheets("MV Detail").Range("a5").Offset(independent, 2) = TypMov(independent) 
        Worksheets("MV Detail").Range("a5").Offset(independent, 3) = SupMlt(independent) 
        Worksheets("MV Detail").Range("a5").Offset(independent, 4) = Cst(independent) 
        SupMov(independent) = IsFF 
    Next independent 
     
    Worksheets("CV Detail").Select 
    Worksheets("CV Detail").Range("a1", "IV65536").Select 
    Selection.ClearContents 
    Selection.Interior.ColorIndex = xlNone 
    Worksheets("CV Detail").Range("a1").Select 
    Worksheets("CV Detail").Range("a5") = "CV Name" 
    Worksheets("CV Detail").Range("b5") = "Hi ECE" 
    Worksheets("CV Detail").Range("c5") = "Lo ECE" 
        For dependent = 1 To NumberOfDependents 
        Do 
            Line Input #iFile, sBuf 
        Loop Until Left(sBuf, 7) = ".ECECML" 
        sBuf = Mid(sBuf, InStrRev(sBuf, "~~~", Len(sBuf) - 3) + 3, 20) 
        LoECE(dependent) = Val(Left(sBuf, Len(sBuf) - 3)) 
        Do 
            Line Input #iFile, sBuf 
        Loop Until Left(sBuf, 7) = ".ECECMU" 
        sBuf = Mid(sBuf, InStrRev(sBuf, "~~~", Len(sBuf) - 3) + 3, 20) 
        HiECE(dependent) = Val(Left(sBuf, Len(sBuf) - 3)) 
        Worksheets("CV Detail").Range("a5").Offset(dependent, 1) = HiECE(dependent) 
        Worksheets("CV Detail").Range("a5").Offset(dependent, 2) = LoECE(dependent) 
    Next dependent 
 
     
    Close #iFile 
  End If 
 
End Sub 
 
Sub ReadModelFile() 
    Dim iFile As Integer            ' Model file handle 
    Dim bDMCplus As Boolean         ' True = DMCplus 
     
    Dim sComment As String          ' Model Comment 
    Dim sTag As String              ' Tag name 
    Dim sUnits As String            ' Engineering units 
        
    Dim sBuf As String              ' Temporary buffers 
    Dim i As Integer, _ 
        j As Integer, _ 
        k As Integer, _ 
        p As Integer, _ 
        dependent As Integer, _ 
        independent As Integer, _ 
        interval As Integer         ' Loop counters 
    Dim holdMVs As Integer 
    Dim bNewStyle As Boolean 
     
    holdMVs = NumberOfIndependents 
        
    ' Get the name of the Model file 
    'ModelFile = Application.GetOpenFilename("Model Files (*.mdl), *.mdl") 
     
    ' Load the file... only if the user selected one 
    If (ModelFile <> "False") Then 
     
        ' Read & Store the model file header 
         
     ' Open the model file 
    iFile = FreeFile() 
    Open ModelFile For Input As #iFile 
     
    ' Comment 
    Line Input #iFile, sBuf 
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    sComment = Trim(sBuf) 
         
    ' Number of files and the file names 
    Line Input #iFile, sBuf 
    For i = 1 To Val(sBuf) 
        Line Input #iFile, sBuf 
    Next i 
         
    ' Number of independents 
    Line Input #iFile, sBuf 
    NumberOfIndependents = Val(sBuf) 
         
    ' Number of dependents 
    Line Input #iFile, sBuf 
    'NumberOfDependents = Val(sBuf) 
         
    ' Number of coefficients 
    Line Input #iFile, sBuf 
    'NumberOfCoefficients = Val(sBuf) 
         
    ' Time to steady-state 
    Line Input #iFile, sBuf 
    Line Input #iFile, sBuf 
    SteadyStateTime = Val(sBuf) 
         
    ' DMCplus model style flag 
    Line Input #iFile, sBuf 
    If Val(sBuf) = 9896# Then bNewStyle = True 
     
    ' Re-dimension global arrays as necessary 
     
    ReDim IndependentTag(NumberOfIndependents) 
    'ReDim DependentTag(NumberOfDependents) 
    ReDim Coefficient(NumberOfIndependents, NumberOfDependents, NumberOfCoefficients) 
    'ReDim RampStatus(NumberOfDependents) 
    ReDim dGain(NumberOfIndependents, NumberOfDependents) 
     
    ' read tagnames 
    For independent = 1 To NumberOfIndependents 
        Line Input #iFile, sBuf 
        IndependentTag(independent) = Trim(Mid$(sBuf, 37, 12)) 
    Next independent 
         
    For dependent = 1 To NumberOfDependents 
        Line Input #iFile, sBuf 
        DependentTag(dependent) = Trim(Mid$(sBuf, 37, 12)) 
    Next dependent 
                    
    For dependent = 1 To NumberOfDependents 
             
        ' Read & thrash the next dependent variable header: save the ramp status 
          Line Input #iFile, sBuf 
          RampStatus(dependent) = Val(Mid$(sBuf, 27, 9)) 
          For i = 1 To 10 
            Line Input #iFile, sBuf 
          Next i 
 
         
          For independent = 1 To NumberOfIndependents 
                     
             ' Read & Store the next independent variable curve 
             ' Tagname, Eng Units, and double precision SS gain 
             Line Input #iFile, sBuf 
             If bDMCplus Then 
                dGain(independent, dependent) = Val(Mid$(sBuf, 27, Len(sBuf))) 
             End If 
     
             ' Model coefficients 
             sBuf = "" 
             For interval = 1 To NumberOfCoefficients 
               If sBuf = "" Then 
                 Line Input #iFile, sBuf 
                 sBuf = Trim(sBuf) 
               End If 
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               p = InStr(sBuf, " ") 
               If p = 0 Then 
                 Coefficient(independent, dependent, interval) = Val(sBuf) 
                 sBuf = "" 
               Else 
                 Coefficient(independent, dependent, interval) = Val(Left(sBuf, p)) 
                 sBuf = Trim(Mid(sBuf, p + 1, Len(sBuf))) 
               End If 
             Next interval 
     
             If Not bDMCplus Then 
                If RampStatus(dependent) = 0 Then 
                  dGain(independent, dependent) = Coefficient(independent, dependent, NumberOfCoefficients) 
                Else 
                  dGain(independent, dependent) = Coefficient(independent, dependent, NumberOfCoefficients) - 
Coefficient(independent, dependent, NumberOfCoefficients - 1) 
                End If 
             End If 
             
           Next independent 
 
        Next dependent 
         
        NumberOfIndependents = holdMVs 
        ' Close the model file 
        Close #iFile 
        FileRead = True 
     End If 
      
     For independent = 1 To NumberOfIndependents 
        Worksheets("MV Detail").Range("a5").Offset(independent, 0) = IndependentTag(independent) 
     Next independent 
     For dependent = 1 To NumberOfDependents 
                Worksheets("CV Detail").Range("a5").Offset(dependent, 0) = DependentTag(dependent) 
     Next dependent 
 
    End Sub 
      
 
 
Sub DisplayModelMatrix() 
 
  Dim independent As Integer, dependent As Integer, interval As Integer 
  Dim NumberOfFeedforwards As Integer 
  Dim FirstMV As Integer 
  Dim FeedforwardRange As String 
  Dim FeedforwardsNotEntered As Boolean 
  Dim tempplace As Integer 
   
   
  FirstMV = 1 
'----- Clear gain matrix 
 
  Worksheets("Model").Select 
  Worksheets("Model").Range("a1", "IV65536").Select 
  Selection.ClearContents 
  Selection.Interior.ColorIndex = xlNone 
  Range("a5").Select 
   
   
 
'----- Store numbers of independents and dependents in spreadsheet 
   
  Worksheets("Model").Range("a4") = ModelFile 
  Worksheets("Model").Range("a5") = NumberOfIndependents 
  Worksheets("Model").Range("b5") = "independents" 
  Worksheets("Model").Range("a6") = NumberOfDependents 
  Worksheets("Model").Range("b6") = "dependents" 
  Worksheets("Model").Range("a7") = NumberOfCoefficients 
  Worksheets("Model").Range("b7") = "coefficients" 
  Worksheets("Model").Range("a8") = "CV Name" 
  Worksheets("Model").Range("b8") = "Ramp Flag" 
  Worksheets("Model").Range("C8") = "MV Name" 
   
  For dependent = 1 To NumberOfDependents 
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    tempplace = (dependent - 1) * NumberOfIndependents 
    Worksheets("Model").Range("a9").Offset(tempplace, 0) = DependentTag(dependent) 
    Worksheets("Model").Range("b9").Offset(tempplace, 0) = RampStatus(dependent) 
    For independent = FirstMV To NumberOfIndependents 
      Worksheets("Model").Range("c9").Offset(tempplace + independent - 1, 0) = IndependentTag(independent) 
      For interval = 1 To NumberOfCoefficients 
        Worksheets("Model").Range("c9").Offset(tempplace + independent - 1, interval) = Coefficient(independent, 
dependent, interval) 
      Next interval 
    Next independent 
  Next dependent 
 
   
End Sub 
 
 

Module 2 
Option Base 1 
'  DMC Tuner by GZ Gous 2008 
 
Option Explicit 
 
Sub RunDMCOnce() 
    Application.ScreenUpdating = False 
    ReadCCFInfo 
    ReadModelMatrix 
    GetConditions 
    SetError 
    DMCCalc 
    Application.ScreenUpdating = True 
End Sub 
Sub GetSupMovTable() 
 
Dim sm1 As Integer, sm2 As Integer, sm3 As Integer, i As Integer 
 
    Worksheets("Results").Select 
    Range("A1", "IV65536").Select 
    Selection.ClearContents 
    Selection.Interior.ColorIndex = xlNone 
    Cells(1, 1).Select 
    Cells(1, 1) = "SupMov1" 
    Cells(1, 2) = "SupMov2" 
    Cells(1, 3) = "SupMov3" 
    Cells(1, 4) = "Total Error" 
    Cells(1, 5) = "Error from smooth CV Response" 
    Cells(1, 6) = "Error from move size ratio" 
    Cells(1, 7) = "Error from MV 1st order response" 
    Cells(1, 8) = "Error from minimise CV Error" 
     
    ReadCCFInfo 
    ReadModelMatrix 
    GetConditions 
    SetError 
    For sm1 = 1 To 15 
        If sm1 = 1 Then SupMov(1) = 0.1 Else _ 
        SupMov(1) = SupMov(1) * 2 
        Worksheets("MV Detail").Cells(6, 2).Value = SupMov(1) 
        For sm2 = 1 To 15 
            If sm2 = 1 Then SupMov(2) = 0.1 Else _ 
            SupMov(2) = SupMov(2) * 2 
            Worksheets("MV Detail").Cells(7, 2).Value = SupMov(2) 
            For sm3 = 1 To 15 
                If sm3 = 1 Then SupMov(3) = 0.1 Else _ 
                SupMov(3) = SupMov(3) * 2 
                Worksheets("MV Detail").Cells(8, 2).Value = SupMov(3) 
                DMCCalc 
                WriteResults 
            Next sm3 
        Next sm2 
    Next sm1 
End Sub 
Sub GetStart() 
    Application.ScreenUpdating = False 
    ReadCCFInfo 
    ReadModelMatrix 
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    GetConditions 
    SetError 
    NelderOne 
    CycleSupMov 
    Application.ScreenUpdating = True 
End Sub 
Sub ReSolver() 
    ReadCCFInfo 
    ReadModelMatrix 
    GetConditions 
    SetError 
    SetUpNelder 
    'Call stepSupMov(1) 
    StartVertXs 
    startNM 
End Sub 
Sub StartVertXs() 
Dim i As Integer, j As Integer, k As Integer, temp As Integer 
 
Application.ScreenUpdating = False 
For i = 1 To searchDim 
    For j = 1 To NumberOfIndependents 
        VertX(i, j) = Worksheets("MV Detail").Range("B5").Offset(j, 0).Value 
        SupMov(j) = Worksheets("MV Detail").Range("B5").Offset(j, 0).Value 
    Next j 
    If SolveSupMults Then 
        For j = NumberOfIndependents + 1 To searchDim 
            VertX(i, j) = Worksheets("MV Detail").Range("D5").Offset(j - NumberOfIndependents, 0).Value 
            SupMlt(j - NumberOfIndependents) = Worksheets("MV Detail").Range("D5").Offset(j - 
NumberOfIndependents, 0).Value 
        Next j 
    End If 
    If i <= NumberOfIndependents Then 
        VertX(i, i) = Worksheets("MV Detail").Range("B5").Offset(i, 0).Value * 1.2 
        SupMov(i) = Worksheets("MV Detail").Range("B5").Offset(i, 0).Value * 1.2 
    Else 
        VertX(i, i) = Worksheets("MV Detail").Range("D5").Offset(i - NumberOfIndependents, 0).Value * 1.2 
        SupMlt(i - NumberOfIndependents) = Worksheets("MV Detail").Range("D5").Offset(i - NumberOfIndependents, 
0).Value * 1.2 
    End If 
    DMCCalc 
    VertX(i, 0) = Worksheets("MV Detail").Range("F5").Value 
Next i 
For j = 1 To searchDim 
     If j <= NumberOfIndependents Then 
        VertX(i, j) = Worksheets("MV Detail").Range("B5").Offset(j, 0).Value * 1.2 
        SupMov(j) = Worksheets("MV Detail").Range("B5").Offset(j, 0).Value * 1.2 
    Else 
        VertX(i, j) = Worksheets("MV Detail").Range("D5").Offset(j - NumberOfIndependents, 0).Value * 1.2 
        SupMlt(j - NumberOfIndependents) = Worksheets("MV Detail").Range("D5").Offset(j - NumberOfIndependents, 
0).Value * 1.2 
    End If 
Next j 
DMCCalc 
VertX(i, 0) = Worksheets("MV Detail").Range("F5").Value 
Application.ScreenUpdating = True 
 
 
 
 
'to be deleted 
For i = 1 To NoVertXs 
    temp = searchDim + 2 
    For j = 0 To searchDim 
           Worksheets("Nelder").Cells(5 + VertXOrder(i), temp) = VertX(VertXOrder(i), j) 
           temp = j + 2 
    Next j 
Next i 
End Sub 
Sub CycleSupMov() 
Dim i As Integer, j As Integer, k As Integer 
Dim Smallest As Single, smallSupMov As Single 
 
For i = 1 To NumberOfIndependents 
    'For j = 1 To NumberOfIndependents 
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    '    UseMV(j) = False 
    'Next j 
    'UseMV(i) = True 
    Smallest = 1000000 
    smallSupMov = 0.1 
    SupMov(i) = 0.05 
    For j = 1 To 12 
        SupMov(i) = SupMov(i) * 2 
        Worksheets("MV Detail").Cells(5 + i, 2) = SupMov(i) 
        DMCCalc 
        Worksheets("NelderSetup").Select 
        For k = 1 To NumberOfIndependents 
            ActiveCell.Offset(0, k - 1) = SupMov(k) 
        Next k 
        ActiveCell.Offset(0, k - 1) = Worksheets("MV Detail").Range("F5").Value 
        If Worksheets("MV Detail").Range("F5").Value < Smallest Then 
            Smallest = Worksheets("MV Detail").Range("F5").Value 
            smallSupMov = SupMov(i) 
        End If 
        Cells(ActiveCell.Row + 1, 1).Select 
    Next j 
    SupMov(i) = smallSupMov 
    Worksheets("MV Detail").Range("B5").Offset(i, 0) = SupMov(i) 
Next i 
Worksheets("MV Detail").Select 
End Sub 
Sub stepSupMov(i As Integer) 
Dim j As Integer 
 
    For j = -1 To 2 
        SupMov(i) = 10 ^ j 
        'Worksheets("MV Detail").Cells(5 + i, 2) = SupMov(i) 
        If i < NumberOfIndependents Then Call stepSupMov(i + 1) 
        DMCCalc 
        Worksheets("NelderSetup").Select 
        For k = 1 To NumberOfIndependents 
            ActiveCell.Offset(0, k - 1) = SupMov(k) 
        Next k 
        ActiveCell.Offset(0, k - 1) = Worksheets("MV Detail").Range("F5").Value 
        Cells(ActiveCell.Row + 1, 1).Select 
        If Worksheets("MV Detail").Cells(5, 5) < VertX(VertXOrder(1), 0) Then 
            For k = 1 To NumberOfIndependents 
                VertX(VertXOrder(1), k) = SupMov(k) 
            Next k 
            VertX(VertXOrder(1), 0) = Worksheets("MV Detail").Cells(5, 5) 
        End If 
        OrderVertXs 
    Next j 
    SupMov(i) = 10 ^ j 
End Sub 
Sub WriteResults() 
    Worksheets("Results").Select 
    Cells(ActiveCell.Row + 1, 1).Select 
    ActiveCell.Value = SupMov(1) 
    ActiveCell.Offset(0, 1).Value = SupMov(2) 
    ActiveCell.Offset(0, 2).Value = SupMov(3) 
    ActiveCell.Offset(0, 3).Value = Worksheets("conditions").Range("B30") 
    ActiveCell.Offset(0, 4).Value = Worksheets("conditions").Range("B31") 
    ActiveCell.Offset(0, 5).Value = Worksheets("conditions").Range("B32") 
    ActiveCell.Offset(0, 6).Value = Worksheets("conditions").Range("B33") 
    ActiveCell.Offset(0, 7).Value = Worksheets("conditions").Range("B34") 
     
End Sub 
Sub CVResponse() 
 
Dim i As Integer 
 
ReDim CVPath((1.5 * NumberOfCoefficients - 1) * NumberOfDependents, 1) 
 
 
Call MultArray(AMatrix, MVMoves, CVPath, (1.5 * NumberOfCoefficients - 1) * NumberOfDependents, 
NumberOfMoves * NumberOfIndependents, 1) 
Worksheets("CVResponse").Activate 
  Worksheets("CVResponse").Range("A1", "IV65536").Select 
  Selection.ClearContents 
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  'Selection.Interior.ColorIndex = xlNone 
  Range("a5").Select 
  For i = 1 To (1.5 * NumberOfCoefficients - 1) * NumberOfDependents 
        Worksheets("CVResponse").Range("a5").Offset(i, 1) = CVPath(i, 1) 
  Next i 
  For i = 1 To NumberOfDependents 
        Worksheets("CVResponse").Range("a5").Offset(i * (NumberOfCoefficients * 1.5 - 1) - 44 + CVTime, 0) = 0.75 
        Worksheets("CVResponse").Range("a5").Offset(i * (NumberOfCoefficients * 1.5 - 1) - 44 + CVTime, 
3).FormulaR1C1 = "=((RC[-2]-RC[-3])/RC[-3])^2" 
        Worksheets("CVResponse").Range("a5").Offset(i * (NumberOfCoefficients * 1.5 - 1), 0) = 1 
        Worksheets("CVResponse").Range("a5").Offset(i * (NumberOfCoefficients * 1.5 - 1), 2).FormulaR1C1 = 
"=((RC[-1]-RC[-2])/RC[-2])^2" 
  Next i 
 
Worksheets("CVResponse").Range("a5").Offset(0, 2).FormulaR1C1 = "=average(R[1]C:R[300]C)" 
Worksheets("CVResponse").Range("a5").Offset(0, 3).FormulaR1C1 = "=average(R[1]C:R[300]C)" 
 
Worksheets("Conditions").Range("A30") = "Total Error" 
Worksheets("Conditions").Range("B30").Formula = "=B34" 
If Worksheets("conditions").Range("B4") = 1 Then Worksheets("Conditions").Range("B30").Formula = 
Worksheets("Conditions").Range("B30").Formula + "+B31" 
If Worksheets("conditions").Range("B3") = 1 Then Worksheets("Conditions").Range("B30").Formula = 
Worksheets("Conditions").Range("B30").Formula + "+B32" 
If Worksheets("conditions").Range("B6") = 1 Then Worksheets("Conditions").Range("B30").Formula = 
Worksheets("Conditions").Range("B30").Formula + "+B33" 
If Worksheets("conditions").Range("B7") = 1 Then Worksheets("Conditions").Range("B30").Formula = 
Worksheets("Conditions").Range("B30").Formula + "+B35" 
 
Worksheets("Conditions").Range("A31") = "Error from smooth CV Response" 
Worksheets("Conditions").Range("B31").Formula = "=Conditions!B4*CVResponse!D5" 
Worksheets("Conditions").Range("A32") = "Error from move size ratio" 
Worksheets("Conditions").Range("B32").Formula = "=Conditions!B3*MVMoves!G5" 
Worksheets("Conditions").Range("A33") = "Error from MV 1st order response" 
Worksheets("Conditions").Range("B33").Formula = "=Conditions!B6*MVMoves!H5" 
Worksheets("Conditions").Range("A34") = "Error from minimise CV Error" 
Worksheets("Conditions").Range("B34").Formula = "=Conditions!B4*CVResponse!C5" 
Worksheets("Conditions").Range("A35") = "Error from optimise MV Overshoot" 
Worksheets("Conditions").Range("B35").Formula = "=Conditions!B7*MVMoves!K5" 
 
Worksheets("MV Detail").Range("F5").Formula = "=Conditions!B30" 
 
End Sub 
 
Sub WriteMoves() 
 
Dim i As Integer, j As Integer 
Dim movacc As Single 
Dim CellStr As String 
Dim currRow As Integer 
 
 
ReDim MovTgt(NumberOfMoves * NumberOfIndependents, 1) 
   
For i = 1 To NumberOfIndependents 
    MovTgt((i - 1) * NumberOfMoves + 1, 1) = 0.249 * TypMov(i) 
    MovTgt((i - 1) * NumberOfMoves + 2, 1) = 0.435 * TypMov(i) 
    MovTgt((i - 1) * NumberOfMoves + 3, 1) = 0.575 * TypMov(i) 
    MovTgt((i - 1) * NumberOfMoves + 4, 1) = 0.76 * TypMov(i) 
    MovTgt((i - 1) * NumberOfMoves + 5, 1) = 0.865 * TypMov(i) 
    MovTgt((i - 1) * NumberOfMoves + 6, 1) = 0.924 * TypMov(i) 
    MovTgt((i - 1) * NumberOfMoves + 7, 1) = 0.968 * TypMov(i) 
    MovTgt((i - 1) * NumberOfMoves + 8, 1) = 0.986 * TypMov(i) 
Next i 
  Worksheets("MVMoves").Select 
  Worksheets("MVMoves").Range("a1", "V65536").Select 
  Selection.ClearContents 
  'Selection.Interior.ColorIndex = xlNone 
  Range("a5").Select 
   
   
  Worksheets("MVMoves").Range("A4") = "MVMoves" 
  Worksheets("MVMoves").Range("B4") = "Typical Moves" 
  Worksheets("MVMoves").Range("C4") = "1st Order" 
  Worksheets("MVMoves").Range("D4") = "Abs(MV)" 
  Worksheets("MVMoves").Range("E4") = "dMVx/dMV1" 
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  Worksheets("MVMoves").Range("F4") = "TypMovx/TypMov1" 
  Worksheets("MVMoves").Range("G4") = "Err^2" 
  Worksheets("MVMoves").Range("H4") = "1st Order Err^2" 
  Worksheets("MVMoves").Range("I4") = "Overshoot" 
  Worksheets("MVMoves").Range("J4") = "Err" 
  Worksheets("MVMoves").Range("K4") = "Err^2" 
   
  For i = 1 To NumberOfIndependents 
  movacc = 0 
    For j = 1 To NumberOfMoves 
        movacc = movacc + MVMoves((i - 1) * NumberOfMoves + j, 1) 
        Worksheets("MVMoves").Range("a5").Offset((i - 1) * NumberOfMoves + j, 0) = movacc 
        Worksheets("MVMoves").Range("a5").Offset((i - 1) * NumberOfMoves + j, 1) = MovTgt((i - 1) * NumberOfMoves 
+ j, 1) 
        If Abs(movacc) > 0 Then Worksheets("MVMoves").Range("a5").Offset((i - 1) * NumberOfMoves + j, 
7).FormulaR1C1 = "=((RC[-7]-RC[-5])/RC[-5])^2" 
    Next j 
    For j = 1 To NumberOfMoves 
        Worksheets("MVMoves").Range("a5").Offset((i - 1) * NumberOfMoves + j, 2) = MovTgt((i - 1) * NumberOfMoves 
+ j, 1) * movacc / TypMov(i) 
    Next j 
  Next i 
   
  For i = 1 To NumberOfIndependents * NumberOfMoves 
    Cells(5 + i, 4).FormulaR1C1 = "=abs(RC[-3])" 
  Next i 
   
  'calculate overshoot 
  For i = 1 To NumberOfIndependents 
    For j = 1 To NumberOfMoves 
        currRow = 5 + (i - 1) * NumberOfMoves + j 
        Cells(currRow, 9).Formula = "=max(D" & Format(currRow - j + 1, "##") & ":D" & Format(currRow, "##") _ 
            & ")-D" & Format(currRow, "##") & "+D" & Format(5 + i * NumberOfMoves, "##") 
    Next j 
  Next i 
   
ActiveWorkbook.Names.Add Name:="FirstMV", RefersTo:="=MVMoves!$A$13" 
'Move ratio of Typical Move 
For i = 1 To NumberOfIndependents 
    CellStr = "E" & Format(i * NumberOfMoves + 5, "##") 
    Range(CellStr).FormulaR1C1 = "=abs(RC[-4]/FirstMV)" 
Next i 
For i = 1 To NumberOfIndependents 
    CellStr = "F" & Format(i * NumberOfMoves + 5, "##") 
    Range(CellStr).Formula = "='MV Detail'!C" & Format(i + 5, "##") & "/'MV Detail'!C6" 
    CellStr = "G" & Format(i * NumberOfMoves + 5, "##") 
    Range(CellStr).FormulaR1C1 = "=(RC[-1]-RC[-2])^2" 
Next i 
' Optimise MV Overshoot 
For i = 1 To NumberOfIndependents 
    If UseMV(i) Then 
        CellStr = "I" & Format(i * NumberOfMoves + 5, "##") 
        Range(CellStr).FormulaR1C1 = "=max(R[-7]C:R[-1]C)/RC[-5]" 
        CellStr = "J" & Format(i * NumberOfMoves + 5, "##") 
        Range(CellStr).FormulaR1C1 = "=(RC[-1]-1)*100" 
        Range(CellStr).Formula = Range(CellStr).Formula + "-'Conditions'!B8" 
        CellStr = "K" & Format(i * NumberOfMoves + 5, "##") 
        Range(CellStr).FormulaR1C1 = "=(RC[-1])^2" 
    End If 
Next i 
 
 
Worksheets("MVMoves").Range("G5").FormulaR1C1 = "=sum(R[1]C:R[2500]C)" 
Worksheets("MVMoves").Range("H5").FormulaR1C1 = "=sum(R[1]C:R[2500]C)" 
Worksheets("MVMoves").Range("K5").FormulaR1C1 = "=sum(R[1]C:R[2500]C)" 
 
 
End Sub 
Sub CalcMoves() 
 
Dim AT() As Single 
Dim ATA() As Single 
Dim ATAI() As Single 
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ReDim AT(NumberOfMoves * NumberOfIndependents, NumberOfMoves * NumberOfIndependents + (1.5 * 
NumberOfCoefficients - 1) _ 
        * NumberOfDependents + NumberOfIndependents) 
ReDim ATA(NumberOfMoves * NumberOfIndependents, NumberOfMoves * NumberOfIndependents) 
ReDim ATAI(NumberOfMoves * NumberOfIndependents, NumberOfMoves * NumberOfIndependents) 
ReDim ATAIAT(NumberOfMoves * NumberOfIndependents, NumberOfMoves * NumberOfIndependents + (1.5 * 
NumberOfCoefficients - 1) _ 
        * NumberOfDependents + NumberOfIndependents) 
ReDim MVMoves(NumberOfMoves * NumberOfIndependents, 1) 
 
Call Transpose(AMatrix(), AT(), NumberOfMoves * NumberOfIndependents + (1.5 * NumberOfCoefficients - 1) _ 
                         * NumberOfDependents + NumberOfIndependents, NumberOfMoves * NumberOfIndependents) 
Call MultArray(AT(), AMatrix(), ATA(), NumberOfMoves * NumberOfIndependents, NumberOfMoves * 
NumberOfIndependents + (1.5 * NumberOfCoefficients - 1) _ 
        * NumberOfDependents + NumberOfIndependents, NumberOfMoves * NumberOfIndependents) 
 
 
Call InverseArray(ATA(), ATAI(), NumberOfMoves * NumberOfIndependents) 
Call MultArray(ATAI(), AT(), ATAIAT(), NumberOfMoves * NumberOfIndependents, NumberOfMoves * 
NumberOfIndependents, NumberOfMoves * _ 
                         NumberOfIndependents + (1.5 * NumberOfCoefficients - 1) * NumberOfDependents + 
NumberOfIndependents) 
Call MultArray(ATAIAT(), ErrorMatrix(), MVMoves(), NumberOfMoves * NumberOfIndependents, NumberOfMoves * 
_ 
                         NumberOfIndependents + (1.5 * NumberOfCoefficients - 1) * NumberOfDependents + 
NumberOfIndependents, 1) 
 
 
 
End Sub 
Sub CalcDMV() 
Dim i As Integer, j As Integer, k As Integer, l As Integer, m As Integer 
Dim SupMltJ As Single 
 
NumberOfMoves = 8 
' Current code only handles 8 moves, set at times 1,2,3,4,5,7,11,14 
EndWeight = 1000 'Enforce end condition weighting 
 
ReDim AMatrix(NumberOfMoves * NumberOfIndependents + (1.5 * NumberOfCoefficients - 1) _ 
     * NumberOfDependents + NumberOfIndependents, NumberOfMoves * NumberOfIndependents) 
ReDim ErrorMatrix(Int(1.5 * NumberOfCoefficients - 1) * NumberOfDependents + NumberOfIndependents * 
NumberOfMoves + NumberOfIndependents, 1) 
 
'fill the errormatrix 
  Worksheets("ErrorMatrix").Select 
  Worksheets("ErrorMatrix").Range("a1", "IV65536").Select 
  Selection.ClearContents 
  Selection.Interior.ColorIndex = xlNone 
  Range("a5").Select 
For i = 1 To NumberOfDependents 
    For j = 1 To Int(1.5 * NumberOfCoefficients - 1) 
        ErrorMatrix(j + (i - 1) * Int(1.5 * NumberOfCoefficients - 1), 1) = CVError(i, j) / HiECE(i) 
        Worksheets("ErrorMatrix").Range("a5").Offset(j + (i - 1) * Int(1.5 * NumberOfCoefficients - 1), 0) = CVError(i, j) / 
HiECE(i) 
    Next j 
Next i 
 
For i = 1 To NumberOfIndependents * NumberOfMoves 
    ErrorMatrix(NumberOfDependents * Int(1.5 * NumberOfCoefficients - 1) + i, 1) = 0 
    Worksheets("ErrorMatrix").Range("a5").Offset(NumberOfDependents * Int(1.5 * NumberOfCoefficients - 1) + i, 0) = 
0 
Next i 
 
For i = 1 To NumberOfIndependents 
    ErrorMatrix(NumberOfDependents * Int(1.5 * NumberOfCoefficients - 1) + NumberOfIndependents * 
NumberOfMoves + i, 1) = dMV(i) * EndWeight 
    Worksheets("ErrorMatrix").Range("a5").Offset(NumberOfDependents * Int(1.5 * NumberOfCoefficients - 1) + 
NumberOfIndependents * NumberOfMoves + i, 0) = dMV(i) * EndWeight 
Next i 
 
Worksheets("AMatrix").Select 
    Worksheets("AMatrix").Range("a1", "IV65536").Select 
    Selection.ClearContents 
    Worksheets("AMatrix").Range("a1").Select 
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For i = 1 To Int(NumberOfCoefficients * 1.5 - 1) * NumberOfDependents + NumberOfMoves * 
NumberOfIndependents + NumberOfIndependents 
    For j = 1 To NumberOfMoves * NumberOfIndependents 
        AMatrix(i, j) = 0 
        Worksheets("AMatrix").Range("a1").Offset(i - 1, j - 1) = 0 
    Next j 
Next i 
        
' Current code only handles 8 moves, set at times 1,2,3,4,5,7,11,14 
ReDim fmovt(8) 
fmovt(1) = 1 
fmovt(2) = 2 
fmovt(3) = 3 
fmovt(4) = 4 
fmovt(5) = 5 
fmovt(6) = 7 
fmovt(7) = 11 
fmovt(8) = 14 
 
'controller models 
For l = 1 To NumberOfDependents 
    For i = 1 To NumberOfIndependents 
        For j = 1 To NumberOfMoves 
                For k = 1 To Int(NumberOfCoefficients * 1.5) - fmovt(j) 
                    If k > NumberOfCoefficients Then 
                        m = NumberOfCoefficients 
                    Else 
                        m = k 
                    End If 
                    AMatrix((l - 1) * (1.5 * NumberOfCoefficients - 1) + k + fmovt(j) - 1, j + (i - 1) * NumberOfMoves) = 
UseMV(i) * Coefficient(i, l, m) 
                    Worksheets("AMatrix").Range("a1").Offset((l - 1) * (1.5 * NumberOfCoefficients - 1) + k + fmovt(j) - 2, j + 
(i - 1) * NumberOfMoves - 1) = UseMV(i) * Coefficient(i, l, m) 
                Next k 
        Next j 
    Next i 
Next l 
'move suppressions 
For i = 1 To NumberOfIndependents 
    SupMltJ = 0 
    For j = 1 To NumberOfMoves 
        If j > 5 Then 
            SupMltJ = 1 + (j - 5) * 0.333333333 * (SupMlt(i) - 1) 
        Else 
            SupMltJ = 1 
        End If 
        AMatrix(Int(1.5 * NumberOfCoefficients - 1) * NumberOfDependents + j + (i - 1) * NumberOfMoves, j + (i - 1) * 
NumberOfMoves) = SupMov(i) * SupMltJ 
        Worksheets("AMatrix").Range("a1").Offset(Int(1.5 * NumberOfCoefficients - 1) * NumberOfDependents + j + (i - 
1) * NumberOfMoves - 1, j + (i - 1) * NumberOfMoves - 1) = SupMov(i) * SupMltJ 
    Next j 
Next i 
'end condition 
For i = 1 To NumberOfIndependents 
    For j = 1 To NumberOfMoves 
        AMatrix(NumberOfMoves * NumberOfIndependents + (1.5 * NumberOfCoefficients - 1) * NumberOfDependents 
+ i, (i - 1) * NumberOfMoves + j) = EndWeight 
        Worksheets("AMatrix").Range("a1").Offset(NumberOfMoves * NumberOfIndependents + (1.5 * 
NumberOfCoefficients - 1) * NumberOfDependents + i - 1, (i - 1) * NumberOfMoves + j - 1) = EndWeight 
    Next j 
Next i 
  
End Sub 
 
Sub SetError() 
Dim i As Integer, j As Integer 
 
ReDim CVError(NumberOfDependents, Int(1.5 * NumberOfCoefficients)) 
For i = 1 To NumberOfDependents 
    For j = 1 To Int(1.5 * NumberOfCoefficients) 
        CVError(i, j) = HiECE(i) 
    Next j 
Next i 
End Sub 
Sub GetConditions() 
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    Dim independent As Integer, dependent As Integer 
    Dim i As Integer 
    Dim rowi As Integer 
     
     
             
    ReDim UseMV(NumberOfIndependents) 
    ReDim UseCV(NumberOfDependents) 
   
    Worksheets("Conditions").Select 
    Range("a1").Select 
    For i = 1 To NumberOfIndependents 
        Cells(1 + i, 4).Value = IndependentTag(i) 
        Cells(1 + i, 5).Value = 1 
        UseMV(i) = 1 
    Next i 
    For i = 1 To NumberOfDependents 
        Cells(1 + i, 7).Value = DependentTag(i) 
        Cells(1 + i, 8).Value = 1 
        UseCV(i) = 1 
    Next i 
    If NumberOfIndependents >= 1 Then GetVars.MV1.Text = IndependentTag(1) 
    If NumberOfIndependents >= 2 Then GetVars.MV2.Text = IndependentTag(2) 
    If NumberOfIndependents >= 3 Then GetVars.MV3.Text = IndependentTag(3) 
    If NumberOfIndependents >= 4 Then GetVars.MV4.Text = IndependentTag(4) 
    If NumberOfIndependents >= 5 Then GetVars.MV5.Text = IndependentTag(5) 
    If NumberOfIndependents >= 6 Then GetVars.MV6.Text = IndependentTag(6) 
    If NumberOfIndependents >= 7 Then GetVars.MV7.Text = IndependentTag(7) 
    If NumberOfIndependents >= 8 Then GetVars.MV8.Text = IndependentTag(8) 
    If NumberOfIndependents >= 9 Then GetVars.MV9.Text = IndependentTag(9) 
    If NumberOfIndependents >= 10 Then GetVars.MV10.Text = IndependentTag(10) 
    If NumberOfIndependents >= 11 Then GetVars.MV11.Text = IndependentTag(11) 
    If NumberOfIndependents >= 12 Then GetVars.MV12.Text = IndependentTag(12) 
   If NumberOfDependents >= 1 Then GetVars.CV1.Text = DependentTag(1) 
    If NumberOfDependents >= 2 Then GetVars.CV2.Text = DependentTag(2) 
    If NumberOfDependents >= 3 Then GetVars.CV3.Text = DependentTag(3) 
    If NumberOfDependents >= 4 Then GetVars.CV4.Text = DependentTag(4) 
    If NumberOfDependents >= 5 Then GetVars.CV5.Text = DependentTag(5) 
    If NumberOfDependents >= 6 Then GetVars.CV6.Text = DependentTag(6) 
    If NumberOfDependents >= 7 Then GetVars.CV7.Text = DependentTag(7) 
    If NumberOfDependents >= 8 Then GetVars.CV8.Text = DependentTag(8) 
    If NumberOfDependents >= 9 Then GetVars.CV9.Text = DependentTag(9) 
    If NumberOfDependents >= 10 Then GetVars.CV10.Text = DependentTag(10) 
    If NumberOfDependents >= 11 Then GetVars.CV11.Text = DependentTag(11) 
    If NumberOfDependents >= 12 Then GetVars.CV12.Text = DependentTag(12) 
 
 
    If NumberOfIndependents < 2 Then GetVars.MV2.Visible = False 
    If NumberOfIndependents < 3 Then GetVars.MV3.Visible = False 
    If NumberOfIndependents < 4 Then GetVars.MV4.Visible = False 
    If NumberOfIndependents < 5 Then GetVars.MV5.Visible = False 
    If NumberOfIndependents < 6 Then GetVars.MV6.Visible = False 
    If NumberOfIndependents < 7 Then GetVars.MV7.Visible = False 
    If NumberOfIndependents < 8 Then GetVars.MV8.Visible = False 
    If NumberOfIndependents < 9 Then GetVars.MV9.Visible = False 
    If NumberOfIndependents < 10 Then GetVars.MV10.Visible = False 
    If NumberOfIndependents < 11 Then GetVars.MV11.Visible = False 
    If NumberOfIndependents < 12 Then GetVars.MV12.Visible = False 
    If NumberOfIndependents < 2 Then GetVars.MV2st.Visible = False 
    If NumberOfIndependents < 3 Then GetVars.MV3st.Visible = False 
    If NumberOfIndependents < 4 Then GetVars.MV4st.Visible = False 
    If NumberOfIndependents < 5 Then GetVars.MV5st.Visible = False 
    If NumberOfIndependents < 6 Then GetVars.MV6st.Visible = False 
    If NumberOfIndependents < 7 Then GetVars.MV7st.Visible = False 
    If NumberOfIndependents < 8 Then GetVars.MV8st.Visible = False 
    If NumberOfIndependents < 9 Then GetVars.MV9st.Visible = False 
    If NumberOfIndependents < 10 Then GetVars.MV10st.Visible = False 
    If NumberOfIndependents < 11 Then GetVars.MV11st.Visible = False 
    If NumberOfIndependents < 12 Then GetVars.MV12st.Visible = False 
     
    If NumberOfDependents < 2 Then GetVars.CV2.Visible = False 
    If NumberOfDependents < 3 Then GetVars.CV3.Visible = False 
    If NumberOfDependents < 4 Then GetVars.CV4.Visible = False 
    If NumberOfDependents < 5 Then GetVars.CV5.Visible = False 
    If NumberOfDependents < 6 Then GetVars.CV6.Visible = False 
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    If NumberOfDependents < 7 Then GetVars.CV7.Visible = False 
    If NumberOfDependents < 8 Then GetVars.CV8.Visible = False 
    If NumberOfDependents < 9 Then GetVars.CV9.Visible = False 
    If NumberOfDependents < 10 Then GetVars.CV10.Visible = False 
    If NumberOfDependents < 11 Then GetVars.CV11.Visible = False 
    If NumberOfDependents < 12 Then GetVars.CV12.Visible = False 
    If NumberOfDependents < 2 Then GetVars.CV2st.Visible = False 
    If NumberOfDependents < 3 Then GetVars.CV3st.Visible = False 
    If NumberOfDependents < 4 Then GetVars.CV4st.Visible = False 
    If NumberOfDependents < 5 Then GetVars.CV5st.Visible = False 
    If NumberOfDependents < 6 Then GetVars.CV6st.Visible = False 
    If NumberOfDependents < 7 Then GetVars.CV7st.Visible = False 
    If NumberOfDependents < 8 Then GetVars.CV8st.Visible = False 
    If NumberOfDependents < 9 Then GetVars.CV9st.Visible = False 
    If NumberOfDependents < 10 Then GetVars.CV10st.Visible = False 
    If NumberOfDependents < 11 Then GetVars.CV11st.Visible = False 
    If NumberOfDependents < 12 Then GetVars.CV12st.Visible = False 
 
     
    GetCond.Show 
    SolveSupMults = GetCond.SupMult 
    SolveRatio = False 'GetCond.MVRatio 
    SolveCVSmooth = GetCond.SmoothCV 
    SolveMVOvershoot = GetCond.MVOver 
    SetCstToSupMov = GetCond.SSCost 
    MVOvershoot = GetCond.MVPct 
    CVTime = GetCond.CVTime 
    SolveMV1st = GetCond.MV1st 
     
    'If Not GetCond.UseAllVars Then 
    '    GetVars.Show 
    'End If 
     
    If Not GetVars.MV1st Then Cells(2, 5) = 0 
    If Not GetVars.MV2st Then Cells(3, 5) = 0 
    If Not GetVars.MV3st Then Cells(4, 5) = 0 
    If Not GetVars.MV4st Then Cells(5, 5) = 0 
    If Not GetVars.MV5st Then Cells(6, 5) = 0 
    If Not GetVars.MV6st Then Cells(7, 5) = 0 
    If Not GetVars.MV7st Then Cells(8, 5) = 0 
    If Not GetVars.MV8st Then Cells(9, 5) = 0 
    If Not GetVars.MV9st Then Cells(10, 5) = 0 
    If Not GetVars.MV10st Then Cells(11, 5) = 0 
    If Not GetVars.MV11st Then Cells(12, 5) = 0 
    If Not GetVars.MV12st Then Cells(13, 5) = 0 
    If Not GetVars.CV1st Then Cells(2, 8) = 0 
    If Not GetVars.CV2st Then Cells(3, 8) = 0 
    If Not GetVars.CV3st Then Cells(4, 8) = 0 
    If Not GetVars.CV4st Then Cells(5, 8) = 0 
    If Not GetVars.CV5st Then Cells(6, 8) = 0 
    If Not GetVars.CV6st Then Cells(7, 8) = 0 
    If Not GetVars.CV7st Then Cells(8, 8) = 0 
    If Not GetVars.CV8st Then Cells(9, 8) = 0 
    If Not GetVars.CV9st Then Cells(10, 8) = 0 
    If Not GetVars.CV10st Then Cells(11, 8) = 0 
    If Not GetVars.CV11st Then Cells(12, 8) = 0 
    If Not GetVars.CV12st Then Cells(13, 8) = 0 
    For i = 1 To NumberOfIndependents 
        UseMV(i) = Cells(i + 1, 5) 
    Next i 
     For i = 1 To NumberOfDependents 
        UseCV(i) = Cells(i + 1, 8) 
    Next i 
     
    Range("A2").Value = "Solve SupMlts" 
    Range("A3").Value = "Solve for MV Move size ratio of TypMov" 
    Range("A4").Value = "Solve for smooth CV response" 
    Range("A5").Value = "Time for CV to reach 75%" 
    Range("A6").Value = "Solve for MV 1st order response" 
    Range("A7").Value = "Solve for Mv overshoot" 
    Range("A8").Value = "Percent Mv overshoot" 
    Range("B2").Value = SolveSupMults 
    Range("B6").Value = Abs(SolveMV1st) 
    Range("B3").Value = Abs(SolveRatio) 
    Range("B4").Value = Abs(SolveCVSmooth) 
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    Range("B5").Value = CVTime 
    Range("B7").Value = Abs(SolveMVOvershoot) 
    Range("B8").Value = MVOvershoot 
         
    Worksheets("Conditions").Range("A11") = "FF Name" 
    Worksheets("Conditions").Range("B11") = "Size" 
    rowi = 0 
    For i = 1 To NumberOfIndependents 
        If SupMov(i) = 0 Then 
            rowi = rowi + 1 
            Worksheets("Conditions").Range("A11").Offset(rowi, 0) = IndependentTag(i) 
        End If 
    Next i 
End Sub 
 
Sub ReadCCFInfo() 
      
     Dim dependent As Integer, _ 
         independent As Integer 
     
    NumberOfIndependents = Worksheets("Model").Cells(5, 1) 
    NumberOfDependents = Worksheets("Model").Cells(6, 1) 
    NumberOfCoefficients = Worksheets("Model").Cells(7, 1) 
     
    ReDim SupMov(NumberOfIndependents) 
    ReDim SupMlt(NumberOfIndependents) 
    ReDim TypMov(NumberOfIndependents) 
    ReDim Cst(NumberOfIndependents) 
    ReDim HiECE(NumberOfDependents) 
    ReDim LoECE(NumberOfDependents) 
    ReDim IndependentTag(NumberOfIndependents) 
    ReDim DependentTag(NumberOfDependents) 
    ReDim Coefficient(NumberOfIndependents, NumberOfDependents, NumberOfCoefficients) 
    ReDim RampStatus(NumberOfDependents) 
    ReDim dGain(NumberOfIndependents, NumberOfDependents) 
 
 
     
    Worksheets("MV Detail").Select 
    Worksheets("MV Detail").Range("a1").Select 
    'Worksheets("MV Detail").Cells(1.1) = 0 
    For independent = 1 To NumberOfIndependents 
        IndependentTag(independent) = Worksheets("MV Detail").Range("a5").Offset(independent, 0) 
        SupMov(independent) = Worksheets("MV Detail").Range("a5").Offset(independent, 1) 
        TypMov(independent) = Worksheets("MV Detail").Range("a5").Offset(independent, 2) 
        SupMlt(independent) = Worksheets("MV Detail").Range("a5").Offset(independent, 3) 
        Cst(independent) = Worksheets("MV Detail").Range("a5").Offset(independent, 4) 
    Next independent 
     
    Worksheets("CV Detail").Select 
    Worksheets("CV Detail").Range("a1").Select 
        For dependent = 1 To NumberOfDependents 
        DependentTag(dependent) = Worksheets("CV Detail").Range("a5").Offset(dependent, 0) 
        HiECE(dependent) = Worksheets("CV Detail").Range("a5").Offset(dependent, 1) 
        LoECE(dependent) = Worksheets("CV Detail").Range("a5").Offset(dependent, 2) 
    Next dependent 
     
End Sub 
 
Sub ReadModelMatrix() 
 
  Dim independent As Integer, dependent As Integer, interval As Integer 
  Dim NumberOfFeedforwards As Integer 
  Dim FeedforwardRange As String 
  Dim FeedforwardsNotEntered As Boolean 
  Dim tempplace As Integer 
   
   
  Worksheets("Model").Select 
   
   
  For dependent = 1 To NumberOfDependents 
    tempplace = (dependent - 1) * NumberOfIndependents 
    DependentTag(dependent) = Worksheets("Model").Range("a9").Offset(tempplace, 0) 
    For independent = 1 To NumberOfIndependents 
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      IndependentTag(independent) = Worksheets("Model").Range("c9").Offset(tempplace + independent - 1, 0) 
      For interval = 1 To NumberOfCoefficients 
        Coefficient(independent, dependent, interval) = Worksheets("Model").Range("c9").Offset(tempplace + 
independent - 1, interval) 
      Next interval 
    Next independent 
  Next dependent 
 
   
End Sub 
 
 
Sub Transpose(ByRef AT() As Single, ByRef BT() As Single, i, j) 
Dim k As Integer, l As Integer 
' i = number of rows in AT, j = number of columns in AT 
For k = 1 To i 
    For l = 1 To j 
        BT(l, k) = AT(k, l) 
    Next l 
Next k 
 
End Sub 
 
Sub MultArray(ByRef A() As Single, ByRef B() As Single, ByRef C() As Single, i As Integer, j As Integer, n As Integer) 
' C = A*B, i,j = dim of A 
'          j,n = dim of B 
'          i,n = dim of C 
Dim k As Integer, l As Integer, m As Integer 
 
For k = 1 To i 
    For l = 1 To n 
        C(k, l) = 0 
        For m = 1 To j 
            C(k, l) = C(k, l) + A(k, m) * B(m, l) 
        Next m 
    Next l 
Next k 
 
End Sub 
 
Sub InverseArray(ByRef A() As Single, ByRef B() As Single, i As Integer) 
'B = A^-1 
 
Dim k As Integer, l As Integer, m As Integer 
Dim C() As Single 
Dim temp As Single 
 
 
ReDim C(i, i) 
 
For k = 1 To i 
    For l = 1 To i 
        B(k, l) = 0 
        C(k, l) = A(k, l) 
    Next l 
    B(k, k) = 1 
Next k 
 
 
For k = 1 To i 
    temp = C(k, k) 
    For l = 1 To i 
        C(k, l) = C(k, l) / temp 
        B(k, l) = B(k, l) / temp 
    Next l 
    For l = k + 1 To i 
        temp = C(l, k) 
        If temp <> 0 Then 
            For m = 1 To i 
                C(l, m) = C(l, m) / temp - C(k, m) 
                B(l, m) = B(l, m) / temp - B(k, m) 
            Next m 
        End If 
    Next l 
Next k 
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For k = i To 1 Step -1 
    For l = k - 1 To 1 Step -1 
        temp = C(l, k) 
        For m = 1 To i 
            C(l, m) = C(l, m) - C(k, m) * temp 
            B(l, m) = B(l, m) - B(k, m) * temp 
        Next m 
    Next l 
Next k 
 
     
End Sub 
 

Module 3 
Option Base 1 
'  Nelder Mead solver by GZ Gous and B de Jongh 2010 
 
Option Explicit 
 
Global order() As Integer 
Global VertX() As Double 
Global VertXOrder() As Integer 
Global searchDim As Integer, NoVertXs As Integer 
Global i As Integer, j As Integer, k As Integer 
Global TheCowsComeHome As Boolean 
Global Alpha As Double 
Global Gamma As Double 
Global Rho As Double 
Global Sigma As Double 
Global Centroid() As Double 
Global NewPoint() As Double 
Global ExpandPoint() As Double 
Global ContractPoint() As Double 
Global ReducedPoint() As Double 
Global Cycle As Integer 
Sub SetUpNelder() 
 
Alpha = 1 
Gamma = 2 
Rho = 0.5 
Sigma = 0.5 
Cycle = 0 
searchDim = NumberOfIndependents 
If SolveSupMults Then searchDim = searchDim * 2 
NoVertXs = searchDim + 1 'no of points on simplex 
TheCowsComeHome = False 
ReDim VertXOrder(1 To NoVertXs) 
ReDim VertX(1 To NoVertXs, 0 To searchDim) 'Number of vertex, number of dimension of vertex 
ReDim NewPoint(0 To searchDim) 
ReDim ExpandPoint(0 To searchDim) 
ReDim ContractPoint(0 To searchDim) 
ReDim ReducedPoint(0 To searchDim) 
 
Worksheets("NelderSetup").Select 
Range("A1:IV65000").Select 
Selection.ClearContents 
Range("A1").Select 
 
For i = 1 To NoVertXs 
       VertX(i, 0) = 1000000 
       VertXOrder(i) = i 
Next i 
Worksheets("Nelder").Select 
Range("A5", "Z50").Select 
Selection.ClearContents 
Range("A5").Select 
Cells(5, 1) = "Vertex number" 
For i = 1 To NoVertXs 
    Cells(5, 1 + i) = "Dim" & Str(i) 
    Cells(5 + i, 1) = i 
Next i 
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Cells(6 + NoVertXs, 2).Formula = "=(max(B6:B" & Format(5 + NoVertXs, "##") & ")-min(B6:B" & Format(5 + NoVertXs, 
"##") & "))/min(B6:B" & Format(5 + NoVertXs, "##") & ")" 
Cells(6 + NoVertXs, 2).Select 
Selection.Copy 
For i = 2 To searchDim + 1 
    Cells(6 + NoVertXs, ActiveCell.Column + 1).Select 
    ActiveSheet.Paste 
Next i 
Cells(6 + NoVertXs, 1).Formula = "=max(B" & Format(5 + NoVertXs + 1, "##") & ":" & Chr(64 + searchDim + 1) & 
Format(5 + NoVertXs + 1, "##") & ")" 
Cells(5, 1 + NoVertXs) = "F(x)" 
'Worksheets("Nelder").Cells(20, 1) = "Reflected Point" 
'Worksheets("Nelder").Cells(21, 1) = "Expanded Point" 
'Worksheets("Nelder").Cells(22, 1) = "Contracted Point" 
Worksheets("Nelder").Cells(5, searchDim + 3) = "Order" 
Worksheets("Nelder").Cells(5, searchDim + 4) = "Cycle" 
End Sub 
Sub NelderOne() 
Alpha = 1 
Gamma = 2 
Rho = 0.5 
Sigma = 0.5 
Cycle = 0 
searchDim = 1 
NoVertXs = searchDim + 1 'no of points on simplex 
TheCowsComeHome = False 
ReDim VertXOrder(1 To NoVertXs) 
ReDim VertX(1 To NoVertXs, 0 To searchDim) 'Number of vertex, number of dimension of vertex 
ReDim NewPoint(0 To searchDim) 
ReDim ExpandPoint(0 To searchDim) 
ReDim ContractPoint(0 To searchDim) 
ReDim ReducedPoint(0 To searchDim) 
 
Worksheets("NelderSetup").Select 
Range("A1:IV65000").Select 
Selection.ClearContents 
Range("A1").Select 
 
For i = 1 To NoVertXs 
       VertX(i, 0) = 1000000 
       VertXOrder(i) = i 
Next i 
Worksheets("Nelder").Select 
Range("A5", "Z50").Select 
Selection.ClearContents 
Range("A5").Select 
Cells(5, 1) = "Vertex number" 
For i = 1 To NoVertXs 
    Cells(5, 1 + i) = "Dim" & Str(i) 
    Cells(5 + i, 1) = i 
Next i 
Cells(6 + NoVertXs, 2).Formula = "=(max(B6:B" & Format(5 + NoVertXs, "##") & ")-min(B6:B" & Format(5 + NoVertXs, 
"##") & "))/min(B6:B" & Format(5 + NoVertXs, "##") & ")" 
Cells(6 + NoVertXs, 2).Select 
Selection.Copy 
For i = 2 To searchDim + 1 
    Cells(6 + NoVertXs, ActiveCell.Column + 1).Select 
    ActiveSheet.Paste 
Next i 
Cells(6 + NoVertXs, 1).Formula = "=max(B" & Format(5 + NoVertXs + 1, "##") & ":" & Chr(64 + searchDim + 1) & 
Format(5 + NoVertXs + 1, "##") & ")" 
Cells(5, 1 + NoVertXs) = "F(x)" 
'Worksheets("Nelder").Cells(20, 1) = "Reflected Point" 
'Worksheets("Nelder").Cells(21, 1) = "Expanded Point" 
'Worksheets("Nelder").Cells(22, 1) = "Contracted Point" 
Worksheets("Nelder").Cells(5, searchDim + 3) = "Order" 
Worksheets("Nelder").Cells(5, searchDim + 4) = "Cycle" 
End Sub 
Sub startNM() 
 
Dim temp As Integer 
Dim Big As Single, Small As Single 
'Dim DeltaSum As Single 
 
For i = 1 To NoVertXs 
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    temp = searchDim + 2 
    For j = 0 To searchDim 
           Worksheets("Nelder").Cells(5 + VertXOrder(i), temp) = VertX(VertXOrder(i), j) 
           temp = j + 2 
    Next j 
Next i 
 
Do 
Cycle = Cycle + 1 
Worksheets("Nelder").Select 
Application.ScreenUpdating = True 
Worksheets("Nelder").Cells(6, searchDim + 4) = Cycle 
Application.ScreenUpdating = False 
OrderVertXs 
FindCentroid 
Reflect 
'Evaluate 
If (NewPoint(0) < VertX(VertXOrder(2), 0)) And (NewPoint(0) >= VertX(VertXOrder(NoVertXs), 0)) Then 
    '  use reflected point 
    temp = searchDim + 2 
    For j = 0 To searchDim 
        VertX(VertXOrder(1), j) = NewPoint(j) 
        Worksheets("Nelder").Cells(5 + VertXOrder(1), temp) = NewPoint(j) 
        temp = j + 2 
    Next j 
ElseIf NewPoint(0) < VertX(VertXOrder(NoVertXs), 0) Then 
        ' expansion 
        For j = 1 To searchDim 
            ExpandPoint(j) = Centroid(j) + Alpha * (Centroid(j) - VertX(VertXOrder(1), j)) 
            If j <= NumberOfIndependents Then 
                SupMov(j) = ExpandPoint(j) 
            Else 
                SupMlt(j - NumberOfIndependents) = ExpandPoint(j) 
            End If 
            'Worksheets("Nelder").Cells(21, j + 1) = ExpandPoint(j) 
        Next j 
        DMCCalc 
        ExpandPoint(0) = Worksheets("MV Detail").Cells(5, 6) 
        If ExpandPoint(0) < NewPoint(0) Then 
            temp = searchDim + 2 
            For j = 0 To searchDim 
                VertX(VertXOrder(1), j) = ExpandPoint(j) 
                Worksheets("Nelder").Cells(5 + VertXOrder(1), temp) = ExpandPoint(j) 
                temp = j + 2 
            Next j 
        Else 
            temp = searchDim + 2 
            For j = 0 To searchDim 
                VertX(VertXOrder(1), j) = NewPoint(j) 
                Worksheets("Nelder").Cells(5 + VertXOrder(1), temp) = NewPoint(j) 
                temp = j + 2 
            Next j 
        End If 
    Else 
        '  contraction 
        For j = 1 To searchDim 
            ContractPoint(j) = VertX(VertXOrder(1), j) + Rho * (Centroid(j) - VertX(VertXOrder(1), j)) 
            'Worksheets("Nelder").Cells(22, j + 1) = ContractPoint(j) 
            If j <= NumberOfIndependents Then 
                SupMov(j) = ContractPoint(j) 
            Else 
                SupMlt(j - NumberOfIndependents) = ContractPoint(j) 
            End If 
        Next j 
        DMCCalc 
        ContractPoint(0) = Worksheets("MV Detail").Cells(5, 6) 
        If ContractPoint(0) < VertX(VertXOrder(1), 0) Then 
            temp = searchDim + 2 
            For j = 0 To searchDim                                                       '  check 000 
                VertX(VertXOrder(1), j) = ContractPoint(j) 
                Worksheets("Nelder").Cells(5 + VertXOrder(1), temp) = ContractPoint(j) 
                temp = j + 2 
            Next j 
        Else 
            'reduction 
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            For i = 1 To searchDim 
                For j = 1 To searchDim 
                    VertX(VertXOrder(i), j) = VertX(VertXOrder(NoVertXs), j) + Sigma * (VertX(VertXOrder(i), j) - 
VertX(VertXOrder(NoVertXs), j)) 
                    Worksheets("Nelder").Cells(5 + VertXOrder(i), j + 1) = VertX(VertXOrder(i), j) 
                    If j <= NumberOfIndependents Then 
                        SupMov(j) = VertX(VertXOrder(i), j) 
                    Else 
                        SupMlt(j - NumberOfIndependents) = VertX(VertXOrder(i), j) 
                    End If 
                Next j 
                DMCCalc 
                VertX(VertXOrder(i), 0) = Worksheets("MV Detail").Cells(5, 6) 
                Worksheets("Nelder").Cells(5 + VertXOrder(i), NoVertXs + 1) = VertX(VertXOrder(i), 0) 
            Next i 
        End If 
End If 
 
If (Worksheets("Nelder").Cells(6 + NoVertXs, 1) < 0.05) Or (Cycle > 2000) Then TheCowsComeHome = True 
Loop Until TheCowsComeHome 
For i = 1 To searchDim 
    If i <= NumberOfIndependents Then 
        Worksheets("MV Detail").Cells(5 + i, 2) = VertX(VertXOrder(NoVertXs), i) 
        SupMov(i) = VertX(VertXOrder(NoVertXs), i) 
    Else 
        Worksheets("MV Detail").Cells(5 + i - NumberOfIndependents, 4) = VertX(VertXOrder(NoVertXs), i) 
        SupMlt(i - NumberOfIndependents) = VertX(VertXOrder(NoVertXs), i) 
    End If 
     
Next i 
DMCCalc 
Worksheets("MV Detail").Select 
Application.ScreenUpdating = True 
End Sub 
 
Sub OrderVertXs() 'from greatest to least 
 
Dim temp As Integer 
 
For i = 1 To NoVertXs 
    VertXOrder(i) = i 
Next i 
For i = 1 To NoVertXs 
    For j = i To NoVertXs 
        If VertX(VertXOrder(i), 0) < VertX(VertXOrder(j), 0) Then 
            temp = VertXOrder(i) 
            VertXOrder(i) = VertXOrder(j) 
            VertXOrder(j) = temp 
        End If 
    Next j 
Next i 
 
For i = 1 To NoVertXs 
    Worksheets("Nelder").Cells(5 + VertXOrder(i), searchDim + 3) = i 
Next i 
End Sub 
 
Sub FindCentroid() 
 
ReDim Centroid(1 To searchDim) 
' Set centroid at second worst point 
For j = 1 To searchDim 
      Centroid(j) = VertX(VertXOrder(2), j) 
Next j 
'calc centroid up in dimensions 
If NoVertXs > 2 Then 
    For i = 3 To NoVertXs 
        For j = 1 To searchDim 
            Centroid(j) = Centroid(j) + (VertX(VertXOrder(i), j) - Centroid(j)) / (i - 1) 
        Next j 
    Next i 
End If 
End Sub 
 
Sub Reflect() 
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For j = 1 To searchDim 
     NewPoint(j) = Centroid(j) + Alpha * (Centroid(j) - VertX(VertXOrder(1), j)) 
     If j <= NumberOfIndependents Then 
        SupMov(j) = NewPoint(j) 
    Else 
        SupMlt(j - NumberOfIndependents) = NewPoint(j) 
    End If 
     'Worksheets("Nelder").Cells(20, j + 1) = NewPoint(j) 
Next j 
DMCCalc 
NewPoint(0) = Worksheets("MV Detail").Cells(5, 6) 
 
End Sub 
 
Sub DMCCalc() 
    GetSS 
    CalcDMV 
    CalcMoves 
    WriteMoves 
    CVResponse 
End Sub 
 

Worksheet Main 
 
 
Private Sub CommandButton1_Click() 
GetStart 
End Sub 
 
Private Sub GetSMTable_Click() 
    DoOnce = True 
    GetSupMovTable 
End Sub 
 
Private Sub resolve1_Click() 
    DoOnce = True 
    ReSolver 
End Sub 
 
Private Sub RunOnce_Click() 
    DoOnce = True 
    RunDMCOnce 
End Sub 
 
Private Sub Start_Click() 
    DoOnce = False 
    Master 
End Sub 
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Appendix B – Different manifestations of 
manipulated variable overshoot. 

 

 
Figure B.1 Negative manipulated variable overshoot 

Figure B.2 Dynamic manipulated variable overshoot 
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Appendix C – Plants and models used in tuning 
exercises. 

Reactor simulation 

The plant consists of 4 continuous stirred tank reactors in series, or one reactor with 4 

chambers, with a preheated feed undergoing an exothermic reaction.  Each of the 4 

chambers has a cooling water coil with an associated flow controller.  The feed flows 

into the first chamber, and from there overflows into the next.  Product is let out of the 

last chamber under level control. 

 

 
Figure C1 Reactor process flow diagram 

 

An increase in feed into the reactor increases the exotherm. 
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Figure C2. Reactor models 

 

 

Distillation Simulation 

This is a normal distillation column with 3 MVs and 3 CVs.  MVs are feed, steam and 

reflux cooling water.  CVs are top and bottom temperature, and column dP.  The 

model is shown below.   

 

This model was specifically chosen because of the ill conditioning that exists between 

the top and bottom temperature and the feed and steam manipulated variables.  The 

topic of ill-conditioning will not be pursued here.  For the purpose of this dissertation, 

it will suffice to say that the slightest model error will lead to very bad controller 

behaviour if ill-conditioning exists. 
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Figure C3 Distillation plant models 
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