
Department of Computer Science
University of Pretoria
Pretoria
South Africa

Migrating to a Real-Time Distributed

Parallel Simulator Architecture

by

Bernardt Duvenhage

June 18, 2008

Submitted in partial fulfilment of the requirements for the degree
Masters of Science (Computer Science) in the Faculty

of Engineering, Built Environment and Information Technology

University of Pretoria
Pretoria, South Africa

Superviser: Professor D. G. Kourie

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Acknowledgements

I would like to thank my supervisor and adviser, Professor Derrick G. Kourie.
His support and excellent critical review of my research have brought me
much appreciated insight and have certainly improved on the contents of
this dissertation.

Many thanks to the my colleagues at the Council for Scientific and In-
dustrial Research (CSIR)—especially Jan Roodt, Cobus Nel and Herman
le Roux—with whom I have had many discussions surrounding modelling
and simulation, our simulation capability and the various simulators that
we have worked on. Herman le Roux is the technical team leader for the
Systems Modelling simulation group and I would like to single him out and
thank him for what I have learned from him.

The funding provided by the Armaments Corporation of SA (ARM-
SCOR), the South-African DoD, the CSIR, the University of Pretoria and
the National Research Foundation is very much appreciated. Without their
funding the research would not have been possible.

Special thanks goes out to the modelling and simulation community for
the work they are all doing and for their gargantuan shoulders that have
helped me to reach where I am now.

Finally, I would like to thank my very lovely wife with all my heart for
her patience and understanding while I was working long hours to finish off
this dissertation. Also to the rest of my family and my friends, I would like
you to know that I will be resurfacing in society soon and look forward to
seeing you all more often.

3

Abstract

The South African National Defence Force (SANDF) currently requires a
system of systems simulation capability for supporting the different phases
of a Ground Based Air Defence System (GBADS) acquisition program. A
non-distributed, fast-as-possible simulator and its architectural predecessors
developed by the Council for Scientific and Industrial Research (CSIR) was
able to provide the required capability during the concept and definition
phases of the acquisition life cycle. The non-distributed simulator implements
a 100Hz logical time Discrete Time System Specification (DTSS) in support
of the existing models. However, real-time simulation execution has become
a prioritised requirement to support the development phase of the acquisition
life cycle.

This dissertation is about the ongoing migration of the non-distributed
simulator to a practical simulation architecture that supports the real-time
requirement. The simulator simulates a synthetic environment inhabited by
interacting GBAD systems and hostile airborne targets.

The non-distributed simulator was parallelised across multiple Commod-
ity Off the Shelf (COTS) PC nodes connected by a commercial Gigabit Eth-
ernet infrastructure. Since model reuse was important for cost effectiveness,
it was decided to reuse all the existing models, by retaining their 100Hz
logical time DTSSs.

The large scale and event-based High Level Architecture (HLA), an IEEE
standard for large-scale distributed simulation interoperability, had been
identified as the most suitable distribution and parallelisation technology.
However, two categories of risks in directly migrating to the HLA were iden-
tified. The choice was made, with motivations, to mitigate the identified
risks by developing a specialised custom distributed architecture.

In this dissertation, the custom discrete time, distributed, peer-to-peer,
message-passing architecture that has been built by the author in support of
the parallelised simulator requirements, is described and analysed. It reports
on empirical studies in regard to performance and flexibility. The architecture
is shown to be a suitable and cost effective distributed simulator architecture

5

6

for supporting a speed-up of three to four times through parallelisation of
the 100 Hz logical time DTSS. This distributed architecture is currently in
use and working as expected, but results in a parallelisation speed-up ceiling
irrespective of the number of distributed processors.

In addition, a hybrid discrete-time/discrete-event modelling approach and
simulator is proposed that lowers the distributed communication and time
synchronisation overhead—to improve on the scalability of the discrete time
simulator—while still economically reusing the existing models. The pro-
posed hybrid architecture was implemented and its real-time performance
analysed. The hybrid architecture is found to support a parallelisation speed-
up that is not bounded, but linearly related to the number of distributed pro-
cessors up to at least the 11 processing nodes available for experimentation.

Contents

I Introduction, Background and Literature 15

1 Introduction 17

1.1 Background . 17

1.2 Introduction to the Literature 23

1.3 Research Question and Approach 24

1.4 Dissertation Roadmap . 25

2 M&S, Principles and Practice 29

2.1 Levels of System Knowledge and Specification 30

2.2 Framework for Modelling and Simulation 32

2.2.1 Entities of framework 33

2.2.2 Relationships among entities 36

2.2.3 Model Characterisation, Validation, Verification and
Qualification . 38

2.2.4 A Taxonomy for Classifying Military Simulation Types 40

2.2.5 A Simulation Time Management Taxonomy 40

2.3 Modelling Formalisms and System Specifications 42

2.3.1 General Dynamical Systems 43

2.3.2 The Discrete Time System Specification (DTSS) 44

2.3.3 The Discrete Event System Specification (DEVS) . . . 45

2.3.4 Interconnection of a DEVS and a DTSS 46

2.3.5 Universality of the DEVS 48

2.4 Parallel and Distributed Simulation 49

2.4.1 DEVS and DTSS Coupled Extensions 50

2.4.2 Distributed Time Management 51

2.4.3 Basic Hardware Infrastructures 54

2.4.4 The High Level Architecture 57

2.5 In Summary . 60

7

8 CONTENTS

3 Risks in Migrating to a DEVS 61
3.1 Simply Embedding a DTSS within a discrete event architecture 62
3.2 Viability of Interoperability Standards 63
3.3 Mitigating the Risks . 63
3.4 In Summary . 64

4 Using UML and CSP 65
4.1 Unified Modelling Language 65
4.2 Communicating Sequential Processes 68

4.2.1 Fundamental Language Constructs 69
4.2.2 Parallel Operators . 71
4.2.3 Using CSP to Describe Discrete Time and Discrete

Event Simulators . 72
4.3 In Summary . 73

5 Introduction to the GBAD System Model 75
5.1 The GBAD System of Systems (of Sub-Systems) 75
5.2 GBADS Benchmark Scenarios 81
5.3 In Summary . 82

II The Discrete Time Simulator 83

6 The Discrete Time Simulator 85
6.1 Publish-Subscribe Simulation Model 86

6.1.1 The Publish-Subscribe Object Communication Frame-
work . 87

6.1.2 The Synthetic Environment Services 90
6.2 Peer-to-Peer Message Passing and Node Synchronisation . . . 90

6.2.1 Messaging Implementation of Publish-Subscribe 91
6.2.2 Peer-to-Peer Node Synchronisation 91

6.3 TCP Message Passing Implementation 91
6.4 The GBADS Simulation Object Model 93
6.5 In Summary . 94

7 Performance Results and Analysis 97
7.1 Initial Messaging Experiments and Results 97

7.1.1 Initial Client-Server Experiments 97
7.1.2 The Current Hardware Infrastructure 101
7.1.3 Characterisation of the TCP Gigabit Ethernet Infra-

structure . 101

CONTENTS 9

7.1.4 Initial Peer-to-Peer Scalability Test 103
7.2 Benchmark Scenarios, Experiments and Results 105
7.3 Analysis and Preliminary Conclusions 109

III Migrating to a Hybrid Discrete-Event/Discrete-
Time Modelling Approach and Simulator 111

8 A Hybrid Modelling Approach 113
8.1 Aggregation of Sub-System Models 114
8.2 Output Quantisers and Quantised Integrators 117

8.2.1 Output Quantiser and Quantised Integrator Pairs . . . 117
8.2.2 Dead-Reckoning . 118
8.2.3 Implications of Quantisation 119

8.3 Efficient Discrete Event Time Management 121
8.4 Implementation for Running the Benchmark Scenarios 122
8.5 In Summary . 123

9 Hybrid Simulator Analysis and Results 125
9.1 Benchmark Experiment Results 125
9.2 Analysis and Preliminary Conclusions 128

IV Conclusion, Future Work and Final Remarks 129

10 Conclusion 131

11 Future Work 137

12 Dissertation Self Evaluation 141

Glossary: List of Abbreviations
and Definitions

Below is a list of abbreviations and often used definitions. It is intended to
serve as a quick reference list.

• AFAP (As-Fast-As-Possible)

• C4I (Command, Control, Communications, Computers, Intelligence)

• COTS (Commodity Off The Shelf)

• CSIR (Council for Scientific and Industrial Research)

• CSP (Communicating Sequential Processes)

• Dead-reckoning - Also referred to as active quantisation. Usually ap-
plied in the quantisation of the position, velocity, etc. of a body of
mass under forced motion.

• DEDS (Discrete Event Dynamical System)

• DESS (Differential Equation System Specification)

• DEVS (Discrete Event System Specification)

• DIS (Distributed Interactive Simulation)

• DPSS (Defence, Peace, Safety and Security)

• DTSS (Discrete Time System Specification)

• Dynamical System - The dynamical system concept is a mathematical
formalization for any fixed rule which describes the time dependence
of a point’s (could be a real number) position in its ambient space.
Examples include the mathematical models that describes the swinging
of a clock pendulum, the flow of water in a pipe, and the number of
fish that may be found each spring in a lake.

11

12 CONTENTS

• Experimental Frame - A specification of the conditions—due to the
modelling objectives and outcome measures—under which the system
is observed or experimented with. See Section 2.2.

• FOM (Federation Object Model)

• FU (Fire Unit)

• GBAD(S) - (Ground Based Air Defence (System))

• Hybrid simulator/modelling-approach - In this dissertation the mean-
ing of hybrid with regards to a simulator or modelling approach implies
that the simulator applies a mixture of discrete time and discrete event
concepts. Hybrid does not refer to—as is sometimes the case—a sim-
ulator or modelling approach that integrates discrete and continuous
models.

• HIL (Hardware In the Loop)

• HLA (High Level Architecture)

• IEEE (Institute for Electrical and Electronic Engineers)

• LOS (Line Of Sight)

• MCM (Mathematical and Computational Modelling Research Group
of the CSIR)

• Model - An executable specification of a system at a certain specifica-
tion or knowledge level, within a certain experimental reference frame
and to a certain degree of validaty. Discussed in Chapter 2.

• M&S (Modelling and Simulation)

• Object - An instance of a model or component of a model. Some-
times referred to as the simulator if only one model is involved in the
simulation.

• OEM (Original Equipment Manufacturer)

• OIL (Operator In the Loop)

• PADS (Parallel and Distributed Simulation)

• Parallelisation Speed-Up, S.

S(p) = Execution time using single processor system

Execution time using a multiprocessor with p processors

CONTENTS 13

• PDES (Parallel Discrete Event Simulation)

• Platform - Has two meanings: Firstly, a computing platform or a
processing platform generally refers to a computing machine or PC.
Secondly, platform refers to a stationary or moving object in the syn-
thetic environment which might carry a sensor, weapon or other item
of interest.

• Relation - connection between things: a meaningful connection or asso-
ciation between two or more things, e.g. one based on the similarity or
relevance of one thing to another [Encarta World English Dictionary,
North American Edition].

• SANDF (South African National Defence Force)

• Scenario - In the case of the GBADS simulation, a scenario is a col-
lection of interacting ground based air defence systems—composed of
sub-systems—deployed in such a way within the environment as to de-
fend against an expected threat scenario. A threat scenario may be a
collection of incoming airborne targets such as aircraft and missiles.

• SDK (Software Development Kit)

• Scalability - maximum attainable parallelisation speed-up, S, given an
infinite supply of nodes.

• Simulation - The combined input traces, output traces and object state
transitions of the simulator during an execution run.

• Simulation Frame - Similar to the image frame in a cartoon strip, a
simulation frame is a snapshot of the simulation and the state of its
simulator at a specific instance in time. Also sometimes referred to as
just a frame

• Simulation Time - The synthetic environment has its own notion of
time i.e. the simulation time according to which the virtual inhabitants
play out the action. The simulation time need not progress at the same
second-to-second pace as real-time and may for example be paused or
restarted as required.

• Simulator - A computing system that executes the executable specific-
ation of each model instance and couples the instances’ input ports to
output ports

14 CONTENTS

• SOM - (Simulation Object Model)

• TCP/IP (Transport Control Protocol/Internet Protocol)

• Time Frame - Same as Simulation Frame

• Time Complexity - The number of steps that it takes to solve an in-
stance of a problem as a function of the size of the problem. Model time
complexity refers to the number of computational steps to update by
one unit the internal time of a model instance of size n—size possibly
measured by the number of interacting sub-systems

• UML (Unified Modelling Language)

• VGD (Virtual GBADS Demonstrator)

Part I

Introduction, Background and
Literature

15

Chapter 1

Introduction

The introduction to this dissertation provides an overview of the dissertation
topic, the technology involved and the applicable literature for the devel-
opment of a new distributed parallel battlefield simulator. The literature
includes recent work on the need for modelling and simulation within the
South African National Defence Force (SANDF). The discussion of the topic
background identifies certain problems in the development of the simulator
and the hypothesised solution is then formulated as a research question. The
dissertation road map is finally presented.

1.1 Background

The Oxford English Dictionary (1989) describes simulation as “The technique
of imitating the behaviour of some situation or system (economic, mechanical,
etc.) by means of an analogous model, situation, or apparatus, either to gain
information more conveniently or to train personnel”.

The SANDF requires decision support and tactical doctrine develop-
ment during the different phases of their Ground-Based Air Defence System
(GBADS) acquisition program to gain information more conveniently. Ac-
cording to Pretorius[1], Baird and Nel[2] this need offered an opportunity
to establish an indigenous and credible Modelling and Simulation Support
capability within the South African Defence Acquisition environment. The
broad requirement of the capability is to simulate a GBADS battery of ex-
isting and still to be acquired (possibly still under development) equipment
and their related human operators at a system of systems level. A pilot
systems simulation capability, provided by the Mathematical and Computa-
tional Modelling (MCM) research group of the CSIR’s Defence Peace Safety
and Security (DPSS) operating unit, was established during 1998 to 2003 in

17

18 CHAPTER 1. INTRODUCTION

Figure 1.1: The System Life Cycle[3]

support of the concept and definition phases of the acquisition life cycle [3],
which is part of the system life cycle shown in Figure 1.1. During this time
the family of simulator architectures discussed by le Roux[4], also known as
the Virtual GBADS Demonstrator (VGD), providing the systems simulation
capability evolved as the value of modelling and simulation became better
understood and as the project requirements also evolved. A GBADS deploy-
ment, such as shown in the map view scenario planning tool in Figure 1.2,
consists of a layered air defence. The outer layer typically consists of eight
very short range missile systems, each having a virtual operator and an ac-
companying buddy with a wide angle pair of binoculars. The second layer
has four gun systems, each consisting of two guns, a tracking radar, a des-
ignation radar, a fire control system and at least three operators to operate
the guns. The inner layer of defence usually has two short range missile
systems, each consisting of a ground based launcher, a designation sensor,
a fire control system and a few virtual operators. The deployment defends
some Vulnerable Point (VP) against an airborne threat scenario—the GBAD
system is discussed in more detail in Chapter 5. A selection of the models
was derived from high fidelity engineering models, some developed by OEMs,
that were based on direct numerical method solutions. The models were then
developed further within a 100Hz logical Discrete Time System Specification
(DTSS) that simplified the time and causality management.

The 2003 version of the architecture had its roots set in the High Level
Architecture (HLA), an IEEE standard for large scale distributed simulation
interoperability, but finally settled on a single process DTSS simulator ar-
chitecture with a TCP message passing interface to the outside world. The

1.1. BACKGROUND 19

Figure 1.2: A Typical GBADS Deployment

tightly integrated single process architecture is, in a way, the HLA’s arch-
nemesis, but the history leading up to its adoption is explained below.

The HLA is introduced in the book by Kuhl et al.[5]. It is a software
architecture and development process for creating distributed computer sim-
ulations out of component objects or other simulations, while ensuring com-
ponent reuse and simulation interoperability of HLA compliant simulations
as defined in the IEEE standard 1516[6][7]. In the late 1990s, the United
States (US) Department of Defence (DoD) developed the HLA and man-
dated its use for all of its modelling and simulation activities. According to
Page and Smith[8], the idea of interconnecting distributed simulation began
to take shape in the mid 1970s and Straßburger[9] states that from a cor-
porate perspective the demand for the HLA is a very clear business case in
minimising duplication of effort and reducing expenditure. The design goals
of the HLA standard are that resulting systems should have the following
characteristics:

1. it should be possible to decompose a large simulation into smaller parts
that are easier to define, build correctly and verify,

2. it should be possible to combine the resulting smaller simulations into
a larger simulation system,

20 CHAPTER 1. INTRODUCTION

3. it should be possible to combine the smaller simulations with other,
perhaps unanticipated simulations to form a new simulation system,

4. those components that are generic to component-based simulation sys-
tems should be separable from specific simulations and reusable from
one simulation system to the next, and

5. the interfaces between the simulations and the generic infrastructure
should insulate the simulations from the changes in the technology used
to implement the infrastructure, and insulate the infrastructure from
technology in the simulations.

The key characteristics of the HLA are:

1. the HLA is a layered architecture, each layer providing services to the
layer above it and serving as a client to the layer below it,

2. the HLA is a data abstraction architecture, where the architecture’s
infrastructure is unaffected by the changes in the simulation and vice
versa, and

3. the HLA is an event based architecture, where a simulation compon-
ent broadcasts one or more events, which other interested simulation
components may associate with a procedure or function to execute on
receiving the message.

As mentioned, one of the earlier simulation architectures that was in use
in 2002 did implement a logical time DTSS simulator within the HLA. This
was done to help promote the HLA in South-Africa and get in line with
international trends in the military modelling and simulation community in
terms of simulation interoperability. This architecture, shown in Figure 1.3,
supported distributed parallel small-scale real-time and as-fast-as-possible
simulation using an in-house HLA SDK. As a capability demonstration, the
architecture was integrated with a commercial flight simulator to provide
realistic reactive human behaviour to the simulation. During the definition
phase of the acquisition life cycle (around the beginning of 2003), accur-
ate time-line analysis and Monte-Carlo experiments became increasingly im-
portant while supporting real-time execution, as the simulation capability
evolved, lowered in priority. The unfortunate lack of a near-future integra-
tion requirement with other local simulators and the fact that pre-recorded
repeatable flight profiles, requiring no run-time human interaction, had to be
used for the Monte-Carlo type batch experiments, also made supporting the
HLA for current and new models an unnecessary expense.

1.1. BACKGROUND 21

Figure 1.3: The High Level Architecture

To meet project time-line constraints, the statistical analysis results of
the simulation runs had to be available for analysis in a timely fashion.
This meant doing the batch runs of simulations in as an efficient manner
as possible. It was proposed that the simulation be stripped of the HLA
interface and HLA SDK code in an effort to remove from the architecture the
overhead associated with the unused features and services of the HLA. This
allows an undistributed simulator to, for example, execute one simulation job
in a much shorter time than it would take an eight-machine-cluster to execute
eight distributed (each job decomposed across all machines) jobs. Eight non-
distributed simulators is therefore more efficient in executing many batch
jobs—also referred to as replicated trials[10]—than an eight-machine-cluster
spending all resources on one job at a time.

The resulting architecture, shown in Figure 1.4, employed a simple non-
distributed logical and conservative (as opposed to real-time and optimistic,
described further in Chapter 2) discrete time management scheme within a
single process to interface the simulation objects directly with each other
through their C++ interfaces. A TCP message passing interface served as
the communication mechanism to an external 2D viewer and a human beha-
vioural component.

In the beginning of 2004, entering the development phase of the acquisi-
tion life cycle, renewed interest in real-time simulation execution developed.
This was due to a growing realisation of the positive impact of realistic
human-simulation interaction when doing tactical doctrine development. Hu-
man interaction became a prioritised requirement and was to happen through
an Operator In the Loop (OIL) console. The possibility of then recording the
operator’s actions to be re-used in statistical simulation runs when and as re-

22 CHAPTER 1. INTRODUCTION

Figure 1.4: Tightly Integrated Non-Distributed Architecture

quired also existed. Within the MCM development team, the author had the
responsibility of developing and implementing the distributed parallel simu-
lator that is currently in use and capable of distributing the computational
load across multiple PC’s. The simulator is capable of reaching at least soft
real-time performance through parallel execution. Reusing as many compon-
ents as possible, including the C++ models and their 100Hz logical discrete
time management, from the previous simulation was a necessity for cost ef-
fectivity. An important related requirement that impacted the hardware
infrastructure supporting the simulator architecture was that the simulator
must be transportable to field deployments. This requirement necessitated a
dedicated infrastructure and the cost implications of new hardware limited
the technologies that may be employed in the construction of the hardware
infrastructure.

The design goals and required characteristics of the new discrete time sim-
ulator architecture were very similar to those mentioned above in relation to
the HLA. Given this similarity and the international trends in distributed
military simulator architectures, the HLA was identified as the ideal can-
didate for the distributed simulation capability. The HLA is, however, a
discrete event architecture which promotes the use of Discrete Event System
Specification (DEVS) modelling formalisms for efficient execution. From ex-
perience in applying the HLA and from documented case studies and other
literature on embedding a DTSS within an interoperability standard, some
technical and economic viability risks were identified in directly migrating to
the HLA. The risks are discussed in Chapter 3. An alternative architecture

1.2. INTRODUCTION TO THE LITERATURE 23

which would mitigate the migration risks had to be found. Even though the
new architecture was not to be HLA, it nevertheless had to be a flexible,
distributed, parallel simulator architecture.

1.2 Introduction to the Literature

Considerable work is currently being done on the need for modelling and sim-
ulation within the SANDF’s GBADS and Joint Air Defence System (JADS)
domain. Research feedback is being presented to, among others, the South
African Joint Air Defence Symposium (SAJADS)[11], the European[4] and
Fall[3][12] Simulation Interoperability Workshops(SIWs), and the European
Air Defence Symposiums[13][2]. The article by Roodt et al.[14] looks forward—
past GBAD and JADS—to what a system-of-systems simulation architecture
for command & control at the joint operations level should look like.

However, to develop, instantiate and further research the simulation cap-
ability to address these needs and even just to form a shared vision of, and
communicate about the required capability, necessitates the study of a set of
core disciplines.

The theory of modelling and simulation is the first of the set of core dis-
ciplines and is discussed by Zeigler et al. [15] in an authoritive textbook style.
Systems theory is introduced as the mathematical formalism for specifying
and understanding dynamical systems. System specification formalisms, of
which the DEVS modelling formalism and the DTSS modelling formalism
are two, are discussed in great detail by Zeigler et al. A summary of the
applicable literature, theory, and principles and practice of modelling and
simulation may be found in Chapter 2. A framework for modelling and sim-
ulation is discussed and shown to contain a source system, an experimental
frame, a system model and a simulator. Modelling formalisms are then used
to specify the different classes of system models. The simulator’s architec-
ture is dependent on the above mentioned aspects, but also on the target
computational infrastructure. Section 2.4 discusses distributed simulation
and the basic hardware infrastructures. The modelling formalism and time
management approach most suitable to efficient distributed simulation is
identified to be the DEVS modelling formalism and optimistic time manage-
ment. Chapter 16 of Zeigler et al. provides a very good and comprehensive
finale on the “DEVS Representation of Systems”.

Kuhl et al.’s book [5] provides a simulation builders view of the HLA
and Chapter 2 concludes by elaborating on the brief introduction to the
HLA given earlier. The referenced suite of IEEE 1516 standards that further
detail the HLA and some recommended practices in its use may be found in

24 CHAPTER 1. INTRODUCTION

[6].
Chapter 3 exposes the reader to:

• The MCM group’s previous experience with the HLA,

• case studies on the use of the HLA and similar architectures in high
resolution and logical discrete time management applications,

• a PhD (published as a book) by Straßburger on advances in simulation,
and

• an article by Taylor et al.[16] on the potentials and pitfalls of distributed
simulation.

Two categories of risks in migrating to a standardised discrete event interop-
erability architecture such as HLA, namely technical and economic viability,
are then derived from these sources and the implications discussed.

The notations that are used to further describe and present the system
specifications, their simulators and the proposed architectures are Commu-
nicating Sequential Processes (CSP), presented by Roscoe in [17], and the
Unified Modelling Language (UML), presented in [18]. Chapter 4 discusses
CSP and UML for use in the description and visual representation of the
system specifications and simulator architectures.

Within the above mentioned literature chapters, in particular Chapter 3,
a gap is shown to exists between a single process high resolution DTSS sim-
ulator and a large scale parallelisation of the high resolution logical time
DTSS. A DEVS is desirable for its documented advantages in building an
efficient distributed simulator. A DTSS simply embedded within a discrete
event interoperability architecture is however shown to be possible, but not
efficient because the high resolution logical discrete time system has a high
communication overhead between distributed nodes. The HLA and DIS are
shown from case studies to hit a discrete time simulation frame rate ceiling
of 25Hz-30Hz. Part II discusses the discrete time simulator that is currently
in use to fill the gap in distributively parallelising the 100Hz logical time
simulation.

1.3 Research Question and Approach

This chapter has thus far provided the background to the required simula-
tion capability and briefly made reference to the applicable literature and the
motivations behind the current custom discrete time simulator. This simu-
lator, discussed fully in Part II of the dissertation, is in use and working as
expected.

1.4. DISSERTATION ROADMAP 25

However, the limits in the architecture’s continued and future use needed
to be determined, specifically in terms of scalability. From the HLA and DIS
case studies mentioned in Chapter 3 it is expected that the high simulation
frame rate is a major scalability limiting factor. This is thought to be mostly
due to the sequential nature of the inter-node communication channels. In
response to these research issues the scalability limits of the existing discrete
time simulator is experimentally analysed and the results discussed in Part II
of the dissertation.

A further research question is whether the simulator’s scalability can be
improved by somehow following a different modelling approach instead of the
current discrete time approach? And, if so, can this be done with the same
model reuse economies as was required from the discrete time simulator?

Mention has been made of the large scale and event-based HLA inter-
operability standard and of the success of the DEVS modelling approach.
An investigation has been carried out into whether a DEVS modelling ap-
proach may somehow be married to the current discrete time simulator to
improve its scalability. A hybrid discrete-event/discrete-time simulator is
therefore proposed, discussed and its performance analysed in Part III of the
dissertation.

To summarise, this dissertation will follow a research approach of:

• Doing the relevant background study and, in doing so, describing the
current distributed parallel simulator within the newly explored—but
well known within the international military simulation community—
body of knowledge,

• experimenting with, and analysing the current discrete time simulator,

• proposing and implementing a hybrid discrete-event/discrete-time sim-
ulator, and

• experimenting with, and analysing the proposed architecture, leading
to various conclusions and future work proposals.

1.4 Dissertation Roadmap

The starting point for this dissertation is a requirement for a simulation cap-
ability within an air-defence context. The dissertation discusses the appro-
priate literature and the analysis of the requirements, design and implement-
ation of the simulation architecture to support the capability as described.

The dissertation is laid out in three parts and a conclusion as follows:

26 CHAPTER 1. INTRODUCTION

Part 1: Introduction, Background and Literature. Readers that have read
the introduction and are familiar with the mentioned core disciplines and the
SANDF GBADS domain may skip the remaining chapters of this part.

• The introduction to this dissertation has thus far provided an overview
of the dissertation topic, the technology involved and the applicable
literature. A gap is shown to exists between a single process high resol-
ution DTSS simulator and a large scale parallelisation of the simlator.
An allusion is made to the specialised discrete time simulator that is
currently implemented and discussed later in Part II. The future scalab-
ility of the discrete time simulator is under question in this dissertation
and the hypothesised scalability solution is formulated as a research
question.

• Chapter 2 gives an introduction to the principles and practice of model-
ling and simulation. An understanding of the theory, relevant concepts
and a common M&S framework is required to generate a shared vision
of the simulation capability between the parties involved such as system
engineers, users and developers. Setting the description of the current
discrete time simulator within a commonly known and used framework
also allows and is absolutely necessary for applying existing theorems
and corollaries in further research. The chapter leads up to and then
does a proper introduction of the DTSS, the DEVS and, of importance
for this dissertation, the advantages, in terms of the simulator, of using
the DEVS modelling formalism for the specification of the system to
be simulated. Basic distributed hardware infrastructures and the HLA
are also discussed in more detail.

• Chapter 3 researches the risks involved in migrating from a specialised
discrete time simulator to a DEVS and discrete event simulator. Once
the migration risks are understood, an educated decision may be made
on the way forward in migrating to a discrete event simulator.

• Chapter 4 gives an introduction to the notations used to formally de-
scribe and visually present the simulator processes. This is given to
the level required for the analysis, design and implementation of the
respective simulator architectures.

• Chapter 5 returns the focus to the GBAD domain. The intention is to
now build a clear picture of the GBAD system of systems (of subsys-
tems) such that the simulator may be properly analysed in terms of the
system model scale. Representative scenarios are identified for use in

1.4. DISSERTATION ROADMAP 27

analysing the performance of both the current discrete time simulator
and the proposed hybrid DEVS/DTTS simulator.

Part 2: The Current Discrete Time Simulator

• Chapter 6 describes the layered simulator architecture. The publish-
subscribe simulation model, the Synthetic Environment within which
the model instances interact with each other and the lower level mes-
saging are described. The GBADS simulation object model within
which the GBADS simulation is implemented is then described.

• Chapter 7 analyses the simulation model and discrete time architecture
performance results.

Part 3: Migrating to a Hybrid Discrete-Event/Discrete-Time Modelling Ap-
proach and Simulator

• Chapter 8 looks at applying a hybrid discrete-event/discrete-time mod-
elling approach to increase the scalability of the simulator.

• Chapter 9 analyses the new hybrid modelling approach and simulator,
and then presents the comparative performance results.

This dissertation thus, from existing research, builds up to a detailed
description of the design and implementation of a new discrete event simu-
lator and then subsequently finds resolution in the critique of the architec-
ture as improving on the scalability of the current discrete time simulator.
Chapters 10 and 11 respectively provide the conclusion to the dissertation
and discuss the planned and potential future work. Chapter 12 contains a
self examination of the dissertation.

Chapter 2

Modelling and Simulation,
Principles and Practice

This chapter gives an introduction to modelling and simulation as an under-
standing of the theory, relevant concepts and technology involved is required
to properly understand, specify and implement a simulation capability. As
mentioned in the introduction, setting the description of the current simu-
lator architecture within a commonly known and used framework also allows
and is absolutely necessary for applying existing theorems and corollaries in
doing further research.

The book by Zeigler et al. [15] introduces key concepts that underlie
the theory, principles and practice of modelling and simulation. Although
there are many references to most of these concepts in the literature, [19,
20, 21, 22, 23, 24, 10, 25] among others, the book by Zeigler, et al. is used
as the authorative textbook reference and often referred to as only Zeigler,
et al. in this dissertation. The most basic concept is that of mathematical
systems theory. The theory provides a fundamental, rigorous mathematical
formalism for representing dynamical systems. Only once it is understood
how these dynamical systems may be represented can their simulators be
built. The two main and orthogonal aspects to the theory are:

• Levels of system specification—These are differentiated levels of know-
ledge at which a system may be known and at which system behaviour
can be described.

• System specification formalisms—These are the modelling formalisms
that modellers can use to specify the models of dynamical systems.

Systems theory therefore distinguishes between the system’s structure and
its behaviour. An important structural and system specification concept

29

30 CHAPTER 2. M&S, PRINCIPLES AND PRACTICE

is that of decomposition and composition. These indicate how a system
may be broken down into component systems and how component systems
may be coupled together to form a larger system. The system specification
formalisms allow the specification of the structure and behaviour of dynam-
ical systems at various levels of knowledge and system specification—as dis-
cussed in Section 2.3.1. Subclasses of dynamical systems such as Discrete
Event Dynamical Systems (DEDS) and Discrete Time Dynamical Systems
(DTDS) may however be defined with each having their own unique sys-
tem specification formalism. Essential to distributed simulation, is the fact
that systems theory—and each subclass of dynamical systems—is closed un-
der composition. This allows hierarchical composition of systems with well
defined structure and behaviour. The theme of atomic versus composed sys-
tems is revisited throughout the chapter.

The rest of this chapter does, however, not discuss the mathematics of sys-
tems theory and system specification formalisms in depth. Readers who are
interested in this aspect are referred to [26][27][19][15]. This chapter rather
attempts to establish a basic M&S framework based on systems theory within
which the current discrete time simulation capability may be described and
researched, and within which the SANDF, modellers and simulator builders
can effectively communicate and align their future modelling and simulation
efforts.

The levels of system knowledge and specification are introduced, followed
as promised by a M&S framework that is well known within the international
military simulation community. The system specification formalisms are in-
troduced to provide insight into the different types of model specifications
and their simulators. The focus is then narrowed slightly to parallel and dis-
tributed simulation and the simulators’ architectural intricacies. The links
to the HLA, which is a discrete event interoperability architecture, are also
covered here.

2.1 Levels of System Knowledge and Specific-

ation

The difference between decomposed and non-decomposed systems may be
phrased, within the M&S context, in terms of levels of system knowledge
as discussed by Klir[28] and levels of system specification as discussed by
Zeigler et al.[15]. According to these levels the decomposed system is at a
higher level of knowledge and specification than the undecomposed system
since more information is provided about the structure of the system.

2.1. LEVELS OF SYSTEM KNOWLEDGE AND SPECIFICATION 31

Table 2.1: Klir’s Levels of System Knowledge[15]

Level Name What is known at this level

3 Structure Components (at lower levels) coupled together to
form a generative system

2 Generative Means to generate data in a data system

1 Data Data collected from a source system

0 Source What variables to measure and how to observe
them

The four basic levels of system knowledge recognised by Klir is shown
in Table 2.1. At each level some important things that were not know at
lower levels become known. The source level identifies a portion of the world
that is going to be modelled and how to observe it. The data level is the set
of observations made for the source system. The generative level contains
the means to generate the same data again which is knowledge that did not
exist in the data level, for example. The concepts identified at this level are
usually referred to as models of the system. At the top level, structure level,
a special case generative system exists in which it is known how to generate
the data observed at Level 1 through the interactions of the identified sys-
tem components. These components are chosen to reflect what is believed
to be the system’s real underlying structure that generates (or leads to) the
observed behaviour. This is again knowledge that possibly did not exist at
the lower knowledge levels.

Klir’s framework is useful in the sense of providing perspective on what
is usually considered to be distinct concepts. Klir also reasons that, when
moving to a lower level no new knowledge is generated, but what is implicit
in the description already available is only made explicit. The reverse applies
when moving to higher levels and is referred to as inferring new knowledge.
There are therefore only three basic kinds of problems dealing with systems:
systems analysis, systems inference and systems design. In systems analysis,
the goal is to understand the behaviour of an existing or hypothetical system
based on its known structure, moving from higher to lower knowledge levels.
Systems inference tries to guess a black-box system’s structure from obser-
vations, moving from lower to higher knowledge levels. Thirdly, in systems
design, alternative structures for instantiating a certain system specified at
the data level is investigated, in effect moving from lower to higher knowledge

32 CHAPTER 2. M&S, PRINCIPLES AND PRACTICE

levels.
The levels (hierarchy) of systems specifications formulated by Zeigler in-

clude the concept of a dynamical system, and therefore time, which is more
oriented towards the M&S context than Klir’s knowledge levels. The sys-
tems are also viewed as having defined input ports and output ports through
which they interact with other systems in a modular way. A system receives
stimuli ordered in time—an input trajectory—on each of its input ‘ports’
and places a time-indexed response—an output trajectory—on each of its
output ports. The system specification hierarchy, shown in Table 2.2, has an
observation frame specification, I/O behaviour and I/O function specifica-
tions, a state transition specification and a coupled component specification.
Table 2.2 also shows to which Klir level of system knowledge each of the
system specifications correspond.

The Observation Frame specifies how to stimulate the system, which vari-
ables to measure and how to observe them against a time base. The decisions
on what observation frame to use is dependent on the modelling choices made.
These modelling choices are specified by the choice of an experimental ref-
erence frame which is explained in Section 2.2:Framework for Modelling and
Simulation.

All the observed input trajectories along with their associated output
trajectories are called the IO Behaviour of a system. If a method exists by
which the IO behaviour of a system can be predicted, knowledge at the next
level of the system, the IO Function, would have been attained. The IO
function includes knowledge of the initial state and can determine a unique
output for every input stimulus.

At the State Transition level of system specification, knowledge is gained
of the system’s (as a whole) state transitions as it responds to the input
trajectories. The next level of system specification, Coupled Components,
opens up the system to reveal more than just the system’s aggregated state.
At this specification level the system is composed of interacting components.
The components may in turn be specified at levels 1 to 3 (or even at level 4)
and are coupled using their input and output ports.

2.2 Framework for Modelling and Simulation

The framework presented in this subsection is done so that everyone involved
in a simulation exercise—model developers, simulator developers and users
alike—may use it to communicate effectively with each other and the wider
military simulation community, and to align their research and development
efforts. The system specification hierarchy (Section 2.1) provides the basis

2.2. FRAMEWORK FOR MODELLING AND SIMULATION 33

Table 2.2: System Specification Hierarchy[15]

Level Specification
Name

Corrosponds
to Klir’s

What is known at this level

4 Coupled com-
ponent

Structure
system

Components and how they are
coupled together. The compon-
ents can be specified at lower
levels or can even be structure
systems themselves - leading to
hierarchical structure.

3 State transition Generative
system

How states are affected by inputs;
given a state and an input what
is the state after the input stim-
ulus is over; what output event is
generated by a state.

2 I/O function Knowledge of initial state; given
an initial state, every input stim-
ulus produces a unique output.

1 I/O behaviour Data system Time-indexed data collected from
a source system; consists of in-
put/output pairs.

0 Observation
frame

Source sys-
tem

How to stimulate the system with
inputs; what variables to measure
and how to observe them over a
time base.

for the framework. The entities of the framework are introduced in the
subsection below, followed by the relationships between them in a subsequent
subsection.

The next subsection describing the framework then briefly introduces
concepts related to model characterisation, validation, verification and qual-
ification and links them to the framework. Finally, the different aspects
of simulation time management and a classification for military simulation
types are discussed.

2.2.1 Entities of framework

The basic entities of the framework, shown in Figure 2.1, are the source
system, the experimental frame, the model and the simulator. The basic re-
lationships between the entities, also shown, are the modelling and simulation

34 CHAPTER 2. M&S, PRINCIPLES AND PRACTICE

Figure 2.1: The basic entities of an M&S framework and their
relationships[15]

relationships.

The Source System is the environment that is of interest to the modeller;
the source of the observable data. The system behavioural database contains
the data that has been gathered by experimenting and observing the source
system. The source system corresponds to level 0 of Klir’s hierarchy, and the
system behavioural data base corresponds to level 1 of Klir’s hierarchy (the
data system).

The behavioural data base is acquired within an Experimental Frame of
interest to the modeller. The experimental frame is a specification of the
conditions under which the system is observed or experimented with. Many
experimental frames may be defined for the same source system and a single
experimental frame may apply to many systems just as the same system may
be modelled with respect to different objectives and different systems may
be modelled with respect to the same objective.

The statement of objectives serves to focus model construction on partic-
ular issues. Such a statement should be formulated as early as possible in the
model development process so that parties involved may agree on their goals
and align their efforts. These objectives may then be translated into more
precise experimentation conditions for the source system or its models. The
result of this translation, outlined in Figure 2.2, is the experimental frame.

The modelling objectives typically concern system design, in which case
the outcome measures are measures of effectiveness in evaluating the system’s
design alternatives. In air defence system simulations, outcome measures are
typically ‘the number of threats successfully engaged before they could reach

2.2. FRAMEWORK FOR MODELLING AND SIMULATION 35

Figure 2.2: Transforming objectives into experimental frames[15]

their weapon release line’ or possibly ‘the percentage hits of a particular
weapon system’. In order to compute the relevant outcome measures the ap-
propriate output variables must be defined, which in turn drive the modelling
effort within the specific experimental frame.

As suggested, a Model may be defined as a system specification at any of
the levels in Table 2.2. In the traditional context of M&S, though, the system
specification is usually done at levels 3 and 4, corresponding to Klir’s generat-
ive and structure levels. These models are typically instructions or equations
for generation of IO behaviour. A typical Air Defence System consists of a
number of subsystem models specified at level 3 which are coupled together
to specify more complex system structure models at level 4. The various sys-
tem models may then be coupled together to specify a more complex system
of systems structure model, also at level 4.

As sets of instructions or equations, the model instances require a third
party to execute the instructions or to evaluate the equations and to manage
the coupling of output ports to input ports. This third party ‘computing sys-
tem’ is the Simulator. The simulator is the final entity of the M&S framework
and the focus of this dissertation. According to Zeigler et al., separating the
model and simulator concepts provides a number of benefits for the frame-
work, namely:

• The same model, expressed in a formalism, may be executed by differ-
ent simulators, thus opening the way for portability and interoperability
at a high level of abstraction, and

36 CHAPTER 2. M&S, PRINCIPLES AND PRACTICE

• simulator algorithms for the various formalisms may be formulated and
their correctness rigorously established.

2.2.2 Relationships among entities

According to Zeigler et al., the entities—system, experimental frame, model,
simulator—become truly significant only when properly related to each other.
As was seen in the previous section, a model of a system is built within a
certain experimental frame according to certain objectives and it is critical
for the success of the simulation that certain relationships hold. The two
most fundamental are the Modelling and Simulation relations, also shown
in Figure 2.1, as these ensure the validity of the model and the simulator’s
correctness respectively. A third relation that is important for understanding
modelling and simulation work is Modelling as Valid Simplification. These
three relations are now discussed.

Modelling Relation

As shown, in Figure 2.1, the Modelling Relation refers to a relation between a
system, the experimental frame and the model. In other words, the modelling
relation, in effect model validity, describes to what degree a model faithfully
represents the system being modelled within the experimental frame chosen.
The degrees of validity that are differentiated here are:

• Replicative validity

• Predictive validity

• Structural validity

Replicative validity holds if, for all the experiments possible within the chosen
experimental frame, the IO behaviour (observed input/output trajectories)
of the model and system agree to within an acceptable tolerance. Replic-
ative validity, therefore, holds if the model and the system are equivalent
at a system specification level of 1. Predictive validity is a stronger form of
validity which requires not only replicative validity, but also the means to
predict behaviour not observed yet. This requires that the model and system
be equivalent at the next system specification level of 2 which is on an IO
function level.

Structural validity is the strongest of the degrees of validity differentiated
here. As the name implies it “looks inside” the system and requires that the
model and the system be equivalent at a system specification level of 3 (or

2.2. FRAMEWORK FOR MODELLING AND SIMULATION 37

4). This allows the model to not only replicate or/and predict the system’s
behaviour, but to mimic on a system level (or sub-system/component level)
the state transitions of the system.

The term fidelity is often used and it refers to combination of both model
validity and model detail. Detail refers to the depth in terms of the number
of output variables that the experimental frame requires the system to be
probed and is therefore highly dependent on the modelling objectives. It is
important to note, though, that high detail alone does not imply high fidelity.
High fidelity also requires the modelling relation to hold to the appropriate
degree.

Simulation Relation

As shown, in Figure 2.1, the Simulation Relation is a relation between the
simulator entity and the model entity of the M&S framework being described.
According to Zeigler, a simulator correctly simulates an instance of a model,
if, given the object’s initial state and input trajectory, the simulator gen-
erates the expected output trajectory. Simulator correctness thus requires
agreement at, at least, the IO function specification level. If, however, the
model was specified at a state transition or coupled component system spe-
cification level then, depending on the modellers interest in the detail, the
simulator correctness might require agreement at the system state transition
or the coupled component levels respectively.

Modelling As Valid Simplification

The modeller should constantly keep in mind the limited resources of the
currently existing simulators. A model might have to be simplified to be
simulated within a reasonable time period. The simplified model must still
represent the modelled system to the required degree of validity within the
chosen experimental frame, though. The detailed (valid for a large set of
experimental frames) model is referred to as a Base Model and the simplified
model as a Lumped Model. The lumped model is typically valid for a small set
of experimental frames or a single experimental frame, but it is important to
note that the lumped model is just as valid within these specific experimental
frames as the base model. In Chapter 13 of [15], Zeigler et al. discuss the
concept of a morphism for judging the equivalence of base and lumped models
with respect to a specific experimental frame, and how to construct such
morphisms.

38 CHAPTER 2. M&S, PRINCIPLES AND PRACTICE

2.2.3 Model Characterisation, Validation, Verification
and Qualification

This subsection briefly deals with the error in the relations between the
entities in the M&S framework. Verification and validation concepts from
Zeigler et al.[15] are discussed to address the error in the simulator and model
respectively. These concepts are then integrated with the characterisation,
validation, verification and qualification cyclical modelling process used by
Sargent[29][30] which has already been studied within the GBADS modelling
domain.

Zeigler et al. discuss verification as the attempt to test that the simulation
relation (discussed earlier) holds between a simulator and a model. The
simulation relation in effect establishes error free simulator correctness while
verification is the process to evaluate the errors introduced by the process of
building the simulator.

Validation, in turn, attempts to test whether the modelling relation (model
validity) holds. The modelling relation establishes that an error free model
faithfully represents reality to a certain degree of validity within the chosen
experimental frame while the validation effort evaluates the faithfulness of
the representation taking into account the errors introduced during the mod-
elling process.

Model verification and validation, along with model characterisation and
qualification, is a significant part of the modelling process from beginning
to end. The modelling process, used by Sargent[29][30], shown in Figure 2.3
is built around these aspects. The process has already been investigated
within DPSS’s M&S team by Roodt[31] and is reiterated specifically within
the GBADS and M&S support domain by Pretorius[1].

The qualification aspect of the modelling process makes the cyclic link
between Figure 2.1 and Figure 2.2 taken from Zeigler et al. During the
modelling process qualification in effect evaluates whether the chosen exper-
imental frame represents reality in such a way that the outcome measures,
and therefore the objectives, are satisfied.

The specific verification and validation techniques and processes are not
discussed in this dissertation. The interested reader is referred to [29], in
which Sargent continues with validation techniques for each of the above
mentioned aspects, and also [31], in which Roodt continues to propose a
verification, validation and accreditation (VV&A) process. The viewpoint
in the above two references seems to be that model validity may be inferred
when there is failure to reject the model. Zeigler at al.[15] however follow a
more formal approach and attempt to prove validity and simulator correct-
ness in Chapters 12, 13 and 14 of their book.

2.2. FRAMEWORK FOR MODELLING AND SIMULATION 39

Figure 2.3: Model characterisation, validation, verification and qualification
within the simplified modelling process (Adapted from [31])

Accreditation is also referred to as certification of a model. This is usually
done by a third party (accreditation agent), possibly making use of subject
matter experts. According to Roodt[31], the accreditation agent’s final as-
sessment may result in:

• Full accreditation—-simulation produces results that are sufficiently
credible to support the application,

• limited or conditional accreditation—constraints are placed on how the
simulation can be used to support the application,

• modification of the simulation is needed—simulation capabilities are
insufficient to support an accreditation decision which requires modi-
fications and subsequent V&V to correct,

• additional V&V information is needed—requires supplemental V&V,
and

• no accreditation - the simulation is not fit to support the application.

Sargent [29] is of the opinion that accreditation is most viable (due to cost)
when done in parallel with the model development process such that it facilit-
ates the appropriate quality and quantity of V&V efforts during development.

40 CHAPTER 2. M&S, PRINCIPLES AND PRACTICE

2.2.4 A Taxonomy for Classifying Military Simulation
Types

The taxonomy most often used for classifying the different military simulation
types is described by Page and Smith[8]. This live, virtual and constructive
classification scheme originated from the US DOD during their early simu-
lation efforts. The three classes are officially described as:

• live simulation refers to a real simulation involving real people operat-
ing real systems.

• virtual simulation refers to a simulation involving real people operating
simulated systems. Virtual simulations inject human-in-the-loop in a
central role by exercising motor control skills (e.g. flying an aeroplane),
decision skills (e.g. committing fire control resources to action), or
communication skills (e.g. as members of a C4I team).

• constructive simulation refers to a simulation that involves simulated
people operating in simulated systems. Real people stimulate (make
inputs to) such simulations, but are not involved in determining the
outcomes.

The simulation type taxonomy aids the people involved in creating a com-
mon understanding of the typical use cases of the simulation which guides the
people involved in aligning their efforts in regard to the required experimental
frames, potential simulator architectures, simulation logistics, etc.

2.2.5 A Simulation Time Management Taxonomy

The synthetic environment has its own notion of time i.e. the simulation
time according to which the virtual inhabitants play out the action. Simula-
tions and simulators may be distinguished based on their time management
strategies. Logical time management requires the simulation to execute every
simulated clock tick, stepping the entire system from one state to the next in
a deterministic manner. Logical time simulation is also known as, As-Fast-
As-Possible (AFAP) simulation as there is no implicit synchronisation of the
simulation time with a real world clock. Such a simulation takes as long as
is required to simulate any given scenario.

Real-time simulation, on the other hand, actively tries to keep its simula-
tion time synchronised with an external real world (wall) clock. A real-time
simulation continually jumps forward in time as far as is needed to keep
executing at real-time. All partaking models and external constructive and

2.2. FRAMEWORK FOR MODELLING AND SIMULATION 41

Table 2.3: A Simulation Time Taxonomy

Logical Time Real-Time

Locally
Managed

Type 0 (Not possible) Type 1

Globally
Managed

Type 2 Type 3

virtual components must support this time jump behaviour for real-time
simulation to be successful. The bigger the time jumps, however, the harder
it becomes to ensure causality of simulation messages and events within a
certain time resolution, until at some point when either real-time execution
must be sacrificed or causality is lost along with the credibility of the simu-
lation. A logical time simulation may of course ensure, within performance
limits, that its execution is throttled so that it does not exceed real-time.
Even in such cases, the differences between logical time and real-time simu-
lation remains in that the former simulation still executes a state transition
on each and every simulated clock tick. A logical time simulation that cannot
be simulated fast enough to keep up with real-time will fall behind the wall
clock.

Time can also be managed either locally or globally across the coupled
component models. Global time management implies that there is some
explicit time synchronisation mechanism between the coupled components.
This is not required for local time management since each component runs
at a predefined execution rate. Combining the local/global time dimension
with the real-time/logical time dimension results in a Time Taxonomy shown
in Table 2.3.

A simulation of Type 0 can not be built as there is by definition no
mechanism to synchronise the time between the logical time models. Logical
time models execute AFAP or apply a best effort to keep to a predefined
ratio of real-time. A global mechanism is required to block the execution of
models that get ahead of others. Within this time taxonomy, the discrete
time simulator discussed in this dissertation, and currently in use, is of type
2. It is a distributed simulator, whose processing nodes each execute AFAP
(logical time) and the global synchronisation mechanism tracks node progress
and pauses the execution of nodes that get ahead of the others It is worth
noting that the previously mentioned simulation type taxonomy is a use case
view, while the time taxonomy is an implementation view further down the
development cycle of the simulator.

42 CHAPTER 2. M&S, PRINCIPLES AND PRACTICE

Table 2.3 does however not indicate the mechanisms of global time syn-
chronisation. Global time management is further differentiated into con-
servative and optimistic global time management. Conservative time man-
agement is how we intuitively expect the coupled components to behave in
that causality violations are strictly avoided. Avoiding causality violations is
done by processing the input messages in strict increasing time order which
is called the local causality constraint.

Optimistic time management, on the other hand, lets a component as-
sume that it is safe to process the events at its inputs although future events
may violate the local causality constraint. The object may, however, only
operate under this optimistic assumption if it is capable of backtracking its
own execution should a message that is older than its current internal time
arrive at its input so that causality may be repaired when detected. Optim-
istic time management ensures that components do not wait unnecessarily
for each other or for time advance requests from the simulator. In scenarios
where this does not lead to excessive backtracking, such optimistic time man-
agement leads to improved simulation performance. Fujimoto experimentally
demonstrated the improved performance of optimistic time management in
[10] and Zeigler et al. further argues that under typical conditions excessive
backtracking does indeed not happen.

2.3 Modelling Formalisms and System Spe-

cifications

A system specification formalism (or modelling formalism) is a notation with
which to articulate the specification of a system to be modelled. Every sub-
class or type of system has its own modelling fomalism with which to art-
icluate the system specification. Each system subclass implies constraints in
terms of description of dynamic behaviour and time management. Zeigler
et al. does also distinguish between basic and coupled system specification
formalisms for the spesification of atomic and coupled component models
respectively. As mentioned at the onset of this chapter, the system specifica-
tion formalisms are not discussed in a formal mathematical manner and the
interested reader is referred to the work by Zeigler et al. The basic system
specification formalisms (basic system subclasses) are introduced to provide
insight into the different types of models and their simulators that may be
used to instantiate and breathe life into a simulation capability. The coupled
extensions to the basic formalisms will be differentiated in the next section.

The basic DTSS is discussed followed by the basic DEVS. The Differen-

2.3. MODELLING FORMALISMS AND SYSTEM SPECIFICATIONS 43

tial Equation System Specification (DESS) modelling formalism is a third
basic modelling formalism discussed by Zeigler et al. The DESS modelling
formalism is not explicitly required for this dissertation and therefore not
discussed. Many of the existing GBADS sub-system models do however in-
clude sets of differential equations which is currently numerically analysed in
discrete time models, but could be articulated using the DESS formalism.

Interconnection between a DTSS and a DEVS is then discussed and the
DEVS modelling formalism is finally presented as being universal in the sense
that it includes the DTSS modelling formalism, and any other, modelling
formalisms. This knowledge further facilitates a common language between
M&S groups and allows sensible reuse of models and interconnection of differ-
ent simulation types. The fact that DTSS specified models may be interfaced
to and embedded within a DEVS is also critical to this dissertation. The hy-
brid DEVS/DTSS simulator proposed to address the research question and
discussed in Part III is built upon this knowledge.

2.3.1 General Dynamical Systems

A dynamical system has a time base that orders all dynamical changes. Dy-
namical systems may also be specified or described at the various knowledge
levels or system specification levels discussed in Section 2.1. At the IO obser-
vation frame system specification level—source system knowledge level—the
dynamical system my be specified as the structure IO = (T,X, Y), where
T is the time base, X is the input values set and Y is the output values
set. At the IO behaviour system specification level—data system knowledge
level—the I/O relation observation of the dynamical system is specified as
the structure IORO = (T,X, Ω, Y, R), where Ω is the set of allowable input
segments, R is the I/O relation and the rest are as before. The I/O relation,
R, is the set of all input and corresponding output segment pairs, for every
and all allowable input segments in Ω.

At the I/O function system specification level the I/O relation, R, is
replaced with a set of functions F = {f1, f2, ...fi...} and the I/O function
observation (IOFO) of the system is specified as the structure IOFO =
(T,X, Ω, Y, F). This allows the correct output segment to be chosen from
the set of output segments for a specific input segment given that the system’s
initial state and in effect which function fi to use is known.

At the state transition system specification level the set of functions, F ,
is replaced with a set of states, Q, a global state transition function, ∆, and
an output function, Λ. At this level the dynamical system may be specified
as S = (T,X, Ω, Y, Q, ∆, Λ). The global transition function, ∆, describes the
state-to-state transition caused by the input segments. The output function,

44 CHAPTER 2. M&S, PRINCIPLES AND PRACTICE

Figure 2.4: Discrete Time System Specification

Λ, describes the state-to-observable-output mapping. The output function
may be a function of state and input (Mealy-type system) or of only state
(Moore-type system).

The subclasses of dynamical systems represented in the next two subsec-
tions are of similar structure. Certain constraints have however been imposed
on the systems. These constraints define the subclass boundaries.

2.3.2 The Discrete Time System Specification (DTSS)

The class of discrete time dynamical systems exist as snapshots at discrete
instances in time. Figure 2.4 shows an output trace s represented within
discrete time slots. Each e represents which state the system is in and the
value is sampled at each time slot, t. With each new time instance the
system’s internal state may be updated based on its state history and input
history up to and including the previous time instance. This offers a simple
and easily understood way to enforce causal simulation progression. The time
steps are generally of a fixed time length and there is an inverse correlation
between the time step frequency and the lumped model’s simplification. The
Discrete Time System Specification (DTSS) formalism—known as an atomic
or basic formalism—is proposed as a formalism for specifying discrete time
dynamical systems.

The mathematical structure for expressing a DTSS is formally described
in Zeigler et al., but the differences from a general dynamical system is min-

2.3. MODELLING FORMALISMS AND SYSTEM SPECIFICATIONS 45

imal. The important difference is that the time base, T , is constrained to the
set of multiples of the time step value. The time step value is also known as
the discrete time frame length.

Systems specified at the coupled component level require mechanisms to
synchronise the discrete time increments across the components. The step-
wise execution required by discrete time systems is akin to conservative global
time management previously discussed. The coupled component extensions
to the basic modelling formalisms, and the different time and causality man-
agement algorithms are discussed further in Section 2.4 on distributed sim-
ulation.

2.3.3 The Discrete Event System Specification (DEVS)

In contrast to a discrete time dynamical system of which the input, state
and output traces exist at globally announced—and often equally spaced—
instances in time, a discrete event dynamical system exists as a time stamped
history of important events and actions. It involves a mind shift from time
focussed to event—a distinct value level of a trace—focus. According to Zei-
gler et al.[26], DEVS—also known as an atomic or basic formalism—may
be viewed as a shorthand to specify dynamical systems whose input, state
and output trajectories are—or may with acceptable fidelity be modelled
as—piecewise constant. The step-like transitions in the trajectories are then
identified as discrete events and the system as belonging to the class of dis-
crete event dynamical system. Zeigler et al.[15] refer to the process of finding
distinct level segments as quantisation. Figure 2.5 shows the event dimension
view of the same output trace s as before. Each vertical bar represents an
event and the transition of the system to a new state. The time dimension
of the output variable is indicated by a t and the event dimension by an e in
Figure 2.4 and Figure 2.5.

This modelling formalism therefore only specifies the intercommunication
of events that are important to the simulation. This method, according to
Zeigler et al., provides a good fit to the current bandwidth-to-computation
ratio of modern digital computers and interconnect infrastructures. Zeigler
et al. also presents a hierarchical simulation algorithm/protocol for DEVS
models. Further, theoretical and experimental evidence suggests that DEVS
is not only efficient in terms of communication overhead, but also model
time complexity. This will be discussed further in the next section when
introducing the coupled component extensions of DTSS and DEVS.

The mathematical structure for expressing a DEVS is formally described
in Zeigler et al., but the differences from a general dynamical system is min-
imal. The important difference is, as mentioned, that the input, output and

46 CHAPTER 2. M&S, PRINCIPLES AND PRACTICE

Figure 2.5: Discrete Event System Specification

state trajectories are constrained to be piecewise constant.
Systems specified at the coupled component level again require mechan-

isms to synchronise their internal time and execution across the components.
This may be done conservatively as was the case for a DTSS, but a DEVS
also more naturally supports optimistic time management. The coupled com-
ponent extensions to the basic modelling formalisms, and the different time
and causality management algorithms are discussed further in Section 2.4 on
distributed simulation.

2.3.4 Interconnection of a DEVS and a DTSS

As already shown in Figure 2.4 and Figure 2.5, a DTSS specified model may
be viewed from a discrete event dimension. Figure 2.6 completes the descrip-
tion of the DTSS versus the DEVS by showing the top view of the output
trace which results from combining Figure 2.4 and Figure 2.5. A DTSS and
a DEVS are therefore argued to be two different projections (viewpoints) of
the same system trace.

Interconnecting a DEVS with a DTSS involves either projecting the dis-
crete time view onto a discrete event view or vice versa. If the output of a

2.3. MODELLING FORMALISMS AND SYSTEM SPECIFICATIONS 47

Figure 2.6: DTSS vs. DEVS

Figure 2.7: Output Signal Quantisation

DTSS system is connected to the input of a DEVS system, the DTSS sys-
tem is projected to a discrete event view. The conventional DEVS approach
involves generating a time stamped discrete event for each time slot trace
value. This may be optimised by grouping consecutive time steps that are
of similar value into a single event—a process known as quantisation or the
quantised DEVS approach. Figure 2.7 shows this more clearly. The continu-
ous output signal that have been quantised is shown on the left and the final
output after combining similar output values into events are shown on the
right.

If the output of a DEVS specified system is connected to the input of
a DTSS specified system, the DEVS system is projected to a discrete time
view. This, in turn, involves sampling the most recent discrete event at the
time slot granularity of the DTSS system to generate time slot trace values.

48 CHAPTER 2. M&S, PRINCIPLES AND PRACTICE

Figure 2.8: The DEVS BUS concept[15]

Care must be taken to not sample at a too large time slot granularity as
short duration events may be missed.

2.3.5 Universality of the DEVS

Kim et al.[24] and Zeigler et al. introduce the DEVS BUS concept primar-
ily for facilitating interoperation between diverse discrete event modelling
formalisms. DEVS BUS is an encapsulation of models within DEVS wrap-
pers. When modelling formalisms are mixed—for example by connecting a
DTSS model to a DEVS model as mentioned in the previous subsection—it is
known as multi-formalism modelling, heterogeneous simulation or embedding
one modelling formalism into another. Zeigler et al. have shown that the
DTSS formalism may be successfully embedded within the DEVS formalism
and further that the DEVS BUS concept may be used to interoperate discrete
time and discrete event system model instances as shown in Figure 2.8.

Discrete Event System Specification (DEVS) is referred to as a univer-
sal formalism for a DEDS [26]. The universality of the DEVS modelling
formalism in being able to include/encapsulate other modelling formalisms
provides the basis for distributed simulator architectures and reusable model
implementations.

In other words, the DEVS formalism is the underlying protocol of the
DEVS BUS[24]. The centralised coordinator largely corresponds to the sim-
ulator, being responsible for running the overall simulation loop—i.e. for
doing the time management and for acting as the communication switch for
connecting object inputs to outputs. The DEVS BUS and interoperability
concepts are also extended to the DESS, but as mentioned before, the DESS
modelling formalism and class of systems is discussed in this dissertation.

Kim et al. [24] goes further to define DEVS compliance of a model as
the model obeying the DEVS BUS protocol—which is in effect the DEVS

2.4. PARALLEL AND DISTRIBUTED SIMULATION 49

hierarchical simulation protocol. The disadvantage of DEVS BUS is however
20-25% slower execution[24] compared to DEVS—at least when not distrib-
uted such as in DEVSim++. This is due to DEVS BUS’ centralised time
management- and message-controller.

A distributed simulation built using the HLA, mentioned before and dis-
cussed further at the end of the next section, may apply the DEVS BUS
concepts to achieve the same type of model interoperability.

2.4 Parallel and Distributed Simulation

The previous section distinguished between basic and coupled modelling
formalisms. Coupled modelling formalisms are associated with the system
structure concepts of composition and decomposition. These concepts have
been mentioned at the beginning of and throughout this chapter. This link-
age comes to the fore when a system model needs to be simulated in a par-
allel and/or distributed fashion: an atomic model of the system is typically
decomposed into smaller parts which are then coupled together using the ap-
propriate modelling formalism operators. Note that distributed simulation
refers to the coupling of model instances executed jointly by different pro-
cessing nodes in order to capitalise on the benefits of sharing computational
or model resources. According to Fujimoto[10], parallel simulation may be
distinguished from distributed simulation by referring to the balance between
two basic objectives. These are:

• increased simulation throughput; and

• sharing in geographically distributed simulator and model resources—
which typically increases the coupling’s communication latency.

The former objective is generally more strongly associated with parallel sim-
ulation, and the latter, with distributed simulation. Achieving the combined
objectives simultaneously is typically technically difficult due to latency and
bandwidth limitations (resulting in a time overhead) when communicating
between distributed physical locations.

For the purposes of this dissertation, parallel simulation is however re-
garded as being a special case of distributed simulation—referred to as dis-
tributed parallel—geared more towards increased simulation throughput than
the resource sharing that distributed simulation provides, but limited by the
distributed hardware infrastructure that will be described in this section and
in Chapter 7. Discussions around distributed simulation therefore include
distributed parallel simulation, unless otherwise stated.

50 CHAPTER 2. M&S, PRINCIPLES AND PRACTICE

A brief overview of the coupled extensions to the DEVS and DTSS mod-
elling formalisms that are relevant to distributed and also, more specifically,
distributed parallel simulators is given below. This is followed by an intro-
duction to the different distributed time management strategies. Distributed
and distributed parallel simulation architectures and infrastructures found
in the literature are also highlighted. The section ends with a more in depth
discussion of the HLA.

2.4.1 DEVS and DTSS Coupled Extensions

The DEVS BUS concept has been introduced to facilitate interoperability
between different modelling formalisms. However, as already mentioned,
within the DTSS and DEVS formalisms there are sub-formalisms (extensions
of the basic modelling formalisms) to facilitate model coupling. The coupled
extensions mentioned below expand the classes of system models that can
be represented in the DTSS and the DEVS formalisms to distributed and
parallel systems.

The Discrete Event Specified Network (DEVN) formalism facilitates mod-
ular construction of discrete event models that are more naturally suited to
distributed simulation. Using DEVN (also known as DEVS coupled model
specification) components are DEVS specified systems. In DEVN, these are
couple by means of their input/output ports alone. The components may
be classic DEVS systems or Parallel DEVS (PDEVS) systems. PDEVS is
an extension of DEVS. The major difference being that in classic DEVS,
only one component is activated at any time, while in the PDEVS class of
dynamical systems any number of components may be activated at the same
time, allowing parallelisation of execution.

The Discrete Time Specified Network (DTSN) formalism similarly facil-
itates modular construction, but of discrete time models. Multicomponent
DTSS (multiDTSS) is the DTSS extension that allows DTSS system decom-
position and coupling. Zeigler et al. shows that multiDTSS is well suited to
parallel execution. That is, the system state at time t + 1 may be arrived at
by each component independently, and in any order, processing only its own
input trace and state at time t.

As seen previously, the basic(atomic) modelling formalisms allow systems
to be specified at level 3 and lower of Zeigler’s system specification hierarchy.
The coupled modelling formalisms informally described above, in turn, allow
systems to be specified at the highest system specification level—level 4 in
Table 2.2—which is the coupled component level. The modelling formalisms
therefore mirror Zeigler’s system specification hierarchy which allows models
to be implemented at every level of system knowledge and specification. The

2.4. PARALLEL AND DISTRIBUTED SIMULATION 51

mathematical structure for specifying a modular coupled component network
is formally described in Zeigler et al.

It is important to note here that even though multiDTSS is well suited
to parallelised execution, Zeigler et al. offer a further conjecture at the
end of Chapter 16 of [15]. They argue from the developed theory and case
studies that, in the coupled and distributed simulation context, the efficiency
of quantised DEVS is never less than that of DTSS to achieve the same
accuracy. In this conjecture, efficiency is related to communication overhead
(recall Figure 2.7), but model time complexity is also included in a stronger
version of the conjecture. This is the main motivation within this dissertation
for using the DEVS and the DEVS BUS concept in developing the new hybrid
distributed simulator.

The main reason for the efficiency of quantised DEVS lies in its applica-
tion of a process called quantisation which reduces state update transmission.
A sound theoretical foundation for the quantised system approach [27][19][15]
to discrete event representation of discrete time systems has been developed.
Theoretical and experimental evidence, discussed in [15][23] among other lit-
erature sources, again suggests that DEVS is not only efficient in terms of
communication overhead, but also computational time complexity. Nutaro
et al.[23] note that potential speed advantages with DEVS are to be ex-
pected for partial differential equation systems—and in general dynamical
systems—that are characterised by heterogeneity in their time and value
space behaviour. Zeigler, et al.[22] also presents some nice examples of vari-
ous complex adaptive systems that have been successfully and efficiently
modelled by making use of this quantised discrete event approach.

The quantised DEVS concepts will be discussed further in Chapter 8 when
applying them in the proposed hybrid simulator. It will be seen that DEVS
uses output quantiser and quantised integrator pairs to respectively quantise
and reconstruct the signal as required. The second order extrapolators used
in dead-reckoning are more advanced versions of signal quantisation.

2.4.2 Distributed Time Management

Distributed time management is important for maintaining causality among
all the coupled components. Such time management may be done either
conservatively or optimistically, as mentioned in the Section 2.2.5. The
conservative and optimistic time management approaches are discussed fur-
ther below. Only conservative time management is considered in relation to
discrete-time simulation. Both conservative and optimistic management is
considered in relation to discrete-event simulation.

52 CHAPTER 2. M&S, PRINCIPLES AND PRACTICE

Distributed Conservative Discrete-Time Time Management

Zeigler et al., discuss a hierarchical simulator for a coupled DTSS in [15].
The peer-to-peer structure of the discrete time simulator under study in this
dissertation will be discussed against this reference hierarchical simulator in
Part II.

Section 2.4.1 pointed out that multiDTSS is well suited to distributed
and parallel execution. The hierarchical simulator discussed by Zeigler et
al. defines a simulator protocol to accomplish the time management and
coupling of components required for multiDTSS. This simulator protocol is
discussed briefly here. A coordinator controls the protocol and establishes
the hierarchical nature of the simulator. In every simulation cycle, at time
t, a *-message is sent to all objects. Each object then computes its output
based on its current state and sends the output as a y-message back to the
coordinator. The coordinator will act on the y-messages by sending each
object an x-message containing the object’s input at time t. The objects
respond by updating their internal state to the next discrete time step.

Simply put, there are two types of models. A Mealy-type model has
outputs that depend on the object’s current state and its most recent input.
A Moore-type model, on the other hand, has outputs that depend only on
the object’s current internal state. The internal state of an instance of a
Moore-type model may of course be updated from inputs, but doing a state
update and generating the object’s outputs are two independent processing
steps.

From such a perspective, the simulation cycle may be split into updates to
firstly all Moore-type model instances followed by a second phase of recursive
updates to the remaining Mealy-type model instances until all the Mealy-type
model instances have been activated and have sent their y-messages back to
the coordinator. This allows zero delay couplings between components given
that the coupled component network is acyclic and therefore of type Moore.

In Chapter 6 it will be seen that the current discrete time simulator
implements a variation of the above. The current simulator requires that all
coupled components be Moore-like. This results in a simpler simulator which
does not require the recursive updates to Mealy-type model instances. The
reader may at this stage be wondering how information flows across Moore-
type only model instances. The brief answer is that the Mealy-type models
in the network are converted to Moore-like models by not allowing delay-less
connections between coupled components. The models are aware of the link
delays and the simulator has an order independent execute phase followed
by an input update—gather—phase within each discrete time frame.

2.4. PARALLEL AND DISTRIBUTED SIMULATION 53

Distributed Conservative and Optimistic Discrete Event Time Man-
agement

Conservative and optimistic time management techniques exist for the dis-
crete modelling formalism. Basic conservative time management will be dis-
cussed followed by an optimistic time management technique. As mentioned
in section 2.2.5, optimistic time management improves simulation perform-
ance under most circumstances.

Chandy and Misra propose in [32] the use of null-messages to conservat-
ively manage the time advance synchronisation of a discrete event simulator.
The basic discrete event simulation algorithm works within an important as-
sumption that a model instance will generate output events that are time
stamped and ordered chronologically. A model instance is assigned a unique
input port for every output to which it is connected, and each input port has
a message FIFO queue. The simulation algorithm continually processes the
earliest time stamp message—obeying the local causality constraint—for as
long as all input ports have at least one message queued. However, if any
input port has zero messages queued, then the algorithm waits. The reason
for this is that the empty input port might still receive a message that is
earlier than the earliest messages at the other input ports.

However, such an unqualified wait condition can lead to deadlock. This is
solved by a requirement that each model instance should send null messages,
indicating time advance, to all its output ports. A null-message effectively
announces a time into the future that is the lower bound on the message time
stamp arriving at an input port and guarantees that the earliest message may
always be chosen among the input ports of a model instance. Even if the
earliest message is a null-message it does at least update the object’s simula-
tion time. The null-messages therefore has the effect of continually breaking
any deadlock that might have existed, but breaking deadlock fundamentally
relies on lookahead to timestamp the null-messages into the future.

Lookahead is the capability of a model instance to know that it will not
generate any output for a certain time into the future. As mentioned, this
allows null-messages to be time stamped a lookahead time into the future.
Lookahead includes at least the output to input link delays of the coupled
component network. The component network must be of type Moore—
acyclic or no zero link delay loops—to be simulatable and such a set of
link delays is also a solution of the minimum link lookaheads for deadlock
avoidance. Zeigler et al. provides the proofs that this type of null-message
with lookahead conservative time management does not violate causality and
is deadlock free. More realistic and accurate lookahead beyond the link delay
decreases the number of times a null-message is the earliest message amongst

54 CHAPTER 2. M&S, PRINCIPLES AND PRACTICE

the input ports. Therefore realistic lookahead minimises the time synchron-
isation network overhead.

Due to the difficulty of calculating accurate lookahead times, the null-
message overhead can however be large compared to event execution when
event-message traffic is low and lookahead small. In chapter 11 of Zeigler
et al., the performance characteristics of conservative time management is
described. Zeigler et al. argue that the null-message overhead makes con-
servative time management unlikely to become of general use for simulation
systems.

One technique, proposed by Jefferson and Sowizral[33], to do distributed
optimistic discrete event time management is Time Warp. It is more complex
to implement than conservative time management, but has less overhead than
strict causality preservation by null-messages. Optimistic time management,
as described earlier, executes in a less controlled way than conservative time
management. It does not strictly enforce causality, but rather tries to detect
causality violations—on message arrival—and then correct them. To do the
correction Time Warp requires the capability to roll-back the execution of a
model instance to a time trollback. This in turn requires the state information
history, output trace and input trace to be stored to respectively:

• roll back the object state,

• undo the outputs that happened since trollback, and

• redo the inputs after trollback to finally create the updated output trace.

The information history must at least be kept to as far back as what is called
the roll-back time horizon. This horizon is the time beyond which the sim-
ulator will certainly not be rolled-back. The time horizon is also called the
global virtual time. The potential irregular time jumps of a discrete event
simulation and especially the roll-back nature of optimistic time management
unfortunately makes the use of hardware interfaces and OIL interfaces gener-
ally difficult. The difficulty is due to most hardware systems and humans—to
a lesser extent though—expecting a realistic—strictly increasing and linear—
flow of time. Some research is being done by McLean and Fujimoto[34] to
bridge this gap between conservative and optimistic time management—or
analytical and real-time simulation as McLean and Fujimoto refers to it.

2.4.3 Basic Hardware Infrastructures

The simulator architectures are, for the purpose of this dissertation, divided
into two paradigms. The first is called the manager-worker (server-client)

2.4. PARALLEL AND DISTRIBUTED SIMULATION 55

Figure 2.9: The Manager-Worker Structure

paradigm and the second, the peer-to-peer paradigm. A second dimension
to the simulator architectures is the communication channel between the
processing nodes. The channels may be as diverse as, for example, low latency
shared memory to high latency long distance ISDN lines.

The manager-worker architecture allocates one processing node to man-
age the task distribution to the other processing nodes—the workers. The
workers are then responsible for the actual task execution. The manager-
worker structure is indicated in Figure 2.9a. Any communication between
nodes happens via the server. The manager-worker may also be structured
more hierarchically such that a manager becomes the coordinator of its clients
to a higher level manager as shown in Figure 2.9b. Magee and Kramer[35]
calls this the supervisor-worker architecture. According to them, one of its
characteristic features is that the workers may operate completely independ-
ently of each other and this architectural pattern is typically suitable in
domains where workers with this characteristic is present. If a high level of
worker interaction is required, then Magee and Kramer do not advocate this
pattern.

A Peer-to-Peer architecture is shown in Figure 2.10a. Each processing
node is responsible for managing and executing a subset of the tasks to be
executed. The communication between processing nodes happens directly
with each processing node typically having a communications connection to
every other node. The current discrete time architecture, discussed in Part II,
employes a peer-to-peer architecture. The peer-to-peer nodes may also be
structured hierarchically, so that one processing node serves as a coordinator
between two peer-to-peer networks, as shown in Figure 2.10b.

The communication channels between the processing nodes may be char-
acterised by bandwidth and latency. Bandwidth is defined as the number
of pending bytes per second that a receiver can continually remove from
a channel, and latency (also referred to as lag) is the delay from the time
that data enters into the channel until it becomes pending at the receiver

56 CHAPTER 2. M&S, PRINCIPLES AND PRACTICE

Figure 2.10: The Peer-to-Peer Structure

Table 2.4: Bandwidth versus Latency of Example Communication Channels.

Lower Latency Higher Latency

Lower
Band-
width

IEEE1394 (Firewire) Gigabit Ethernet

Higher
Band-
width

Shared Memory Posting a stack of DVDs to
someone

side. Table 2.4 gives some example communication channels with different
bandwidth and latency characteristics. Note that the latency of a communic-
ation channel is typically related to the actual physical separation between
processing nodes, but also by design to the potential physical separation.

In general, lower latency communication between processing nodes en-
hances the responsiveness of a system, while higher bandwidth communica-
tion aids in alleviating congestion in a busy system. In terms of distributed
parallel simulation architectures low latency communication is therefore ab-
solutely required for a high discrete time simulation frame rate[10], while
higher bandwidth promotes simulation scalability. Furthermore, the phys-
ical separation of processing nodes can be expected to influence the frame
rate ceiling of the distributed simulation. There is however a bandwidth to
message size trade off characteristic, shown in Figure 2.11, of each communic-
ation technology. This affects the simulation scalability ceiling by imposing
a messages per second ceiling that results in an actual bandwidth that is
lower than the potential maximum bandwidth. This characteristic curve was
measured on the Gigabit Ethernet network infrastructure of the current dis-
crete time simulator. Similar graphs will be shown and used in Chapter 7—in

2.4. PARALLEL AND DISTRIBUTED SIMULATION 57

Figure 2.11: Bandwidth to Message Size Trade-Off of a TCP Communication
Channel

Part II—when analysing the performance of the current discrete time archi-
tecture.

The bandwidth and short message latency characteristics of a commu-
nication technology is related to its cost. In the current context it might
therefore be argued that it would have been economically sensible to make
use of existing shared computing resources, such as the Centre for High Per-
formance Computing (CHPC) located in Cape Town. However, the field
deployability requirement—in support of field exercises—of the current cap-
ability necessitated a dedicated infrastructure which can be disassembled,
transported and assembled quite easily. The cost implications of such a
dedicated infrastructure unfortunately limits the technologies that may be
employed in support of the architecture. For this reason the current discrete
time simulator, discussed in Part II, uses standard Pentium 4 desktop PCs
as processing nodes. The communication backbone is a commercial Gigabit
Ethernet infrastructure.

2.4.4 The High Level Architecture

Chapter 1 introduced the HLA as an IEEE standard for simulation interoper-
ability and presented its design goals and key characteristics. This subsection
continues with the introduction to the HLA. The history behind the HLA,
the incentive for introducing it and its simulation reuse and interoperabil-

58 CHAPTER 2. M&S, PRINCIPLES AND PRACTICE

ity design goals are presented below. This is followed by indicating how
the use of a common object model supports these interoperability and reuse
characteristics.

History Behind HLA

According to Page and Smith[8], the most popular and thoroughly analysed,
simulation technologies within the military domain seem to be Distributed
Interactive Simulation (DIS) and the High Level Architecture (HLA). These
simulation technologies support the DEVS BUS concept and DEVS mod-
elling formalism as described in [19][20][15][24][36]. The HLA is a general-
isation and extension of DIS and the Aggregate Level Simulation Protocol
(ALSP), both of which evolved from the Simulator Networking (SIMNET)
project.

SIMNET was developed by the Defence Advanced Research Projects
Agency (DARPA) of the US in 1983. It is, according to Page and Smith
[8], the first meaningful attempt to interoperate and reuse military simulat-
ors within the United States’ Department of Defence. From the US DoD’s
corporate perspective, according to Straßburger[9], the demand for an inter-
operability standard has a very clear business case. SIMNET successfully
demonstrated the viability of reusing and interoperating distributed training
simulators, where these simulators were of a type that created a synthetic
environment for training military personnel.

SIMNET was followed by DIS which is a set of standards (IEEE Std
1278.1-1995) for general simulation interoperability[37]targeted at entity level,
real-time simulations. According to Page and Smith[8], ALSP in turn built
on the concepts of reuse, interoperability and a general protocol for applica-
tion to aggregate level and logical time simulations. Dead reckoning is used
to reduce the number of entity state messages sent over the network.

The HLA is the latest interoperability standard, IEEE Std 1516-2000. It
is defined for wide application domain and consists of the following three
components:

• a common set of rules governing compliance with the architecture.

• common services describing the HLA runtime environment and

• an object model template—a specification of the common format and
structure for documenting HLA object models,

The HLA is based on the concept of a federation which is a collection
of federate objects that together create the unified simulation environment.

2.4. PARALLEL AND DISTRIBUTED SIMULATION 59

The rules governing compliance of a federate to the HLA are discussed in
IEEE Std 1516-2000[6] along with details about the other components. An
HLA Runtime Infrastructure (RTI) manages federation execution and in-
formation exchange by providing an implementation of the runtime services.
IEEE Std 1516.1-2000[38] details these standard services and the interfaces
to them.The IEEE Std 1516.2-2000[39] documents the HLA Object Model
Template (OMT). The primary objective for proposing this template is to
facilitate simulation interoperability and component reuse. IEEE Std 1516.3-
2003 [40] presents a recommended practice for the processes and procedures
that should be followed to develop and execute federations. This recommen-
ded practice is given in the form of a high level Federation Development and
Execution Process (FEDEP) to meet the requirements of a federation user or
sponsor. The FEDEP promotes the development of models that interact with
a DEVS view of their surrounding environment. Such a model compliments
the DEVS BUS’ wrapper concepts often underlying HLA-based simulations.
The process consists of seven steps and is also recommended for simulations
that are not HLA based.

DEVS/HLA[41] is an HLA-compliant M&S environment formed by map-
ping of the DEVS-C++ system to the C++ version of the DMSO RTI. This
allows the development and execution of DEVS simulations under the HLA.
DEVS/HLA supports quantisation and model composability over TCP/IP
and other networks

Facilitating Interoperability and Reuse through Common Object
Models

Although DEVS and DEVS BUS concepts may be applied in the design of
an HLA-based universal simulator, the semantic side of the interoperability
must still be standardised among interacting models. The HLA OMT is the
standardised documentation structure of HLA object models. This provides
a commonly understood mechanism for specifying the types of objects and
interactions that can be exchanged and what each attribute represents for
the exchange of data and general coordination among federates.

An HLA object model called the Federation Object Model (FOM) is con-
structed in accordance with the HLA OMT. The constructed FOM provides
the federate specification as well as the structure of the runtime interaction
between federates within a specific federation[5].

A second HLA object model, the Simulation Object Model (SOM), spe-
cifies the encompassing simulation capability of a specific federate. The
federation’s FOM may be constructed from the union or set difference, as
appropriate, of the SOMs of the participating federates.

60 CHAPTER 2. M&S, PRINCIPLES AND PRACTICE

Several reference FOMs have been developed in an attempt to further
facilitate interoperability. This allows independent development of models
as federates in a federation. These federates have the shared semantics and
they operate within the boundaries of the reference FOM. Using a reference
FOM (as opposed to not using one, therefore has the added advantage that
no preparation time and effort is required to liaise on and construct a com-
mon FOM. According to Straßburger[9], the most known and most discussed
reference FOM is the Real-time Platform Reference FOM (RPR-FOM) which
was mainly developed for users of the former DIS community. A second ref-
erence FOM is the FOM for Synthetic Natural Environment (SNE) which
includes dynamic terrain, ocean, atmosphere and space capabilities.

2.5 In Summary

This chapter has given an introduction to the principles and practice of mod-
elling and simulation. The main reason for including this chapter is to estab-
lish the required background to be able to describe and interpret the current
discrete time simulator within a known framework. Only once this has been
accomplished, can existing theorems and corollaries be applied in doing fur-
ther research. To this end the five levels of Zeigler’s system specification
hierarchy have firstly been differentiated based on the depth of knowledge
required of the system being modelled.

The system specification levels and the common framework for doing
modelling and simulation then serve as a primer when thinking and talking
about the existing models, the discrete time and proposed hybrid simulator
and the entire process of modelling. The system specification modelling form-
alisms adds further depth to the discussions of models and their simulators,
and provides the basic theoretical tools for further research.

The distributed and parallel aspects of models and their simulators have
also been presented which provides the last cog in the machine, so to speak,
for describing, analysing, understanding and designing the discrete time and
proposed new distributed parallel simulators in Part II and Part III of this
dissertation.

Beyond retaining the above summary, the post-chapter echo that should
remain in the reader’s ear is: Using a quantised system approach to discrete
event representation of a discrete time system is potentially more efficient
than a DTSS—or in the very least of similar efficiency.

Chapter 3

Risks in Migrating to a
Discrete Event System
Specification

This chapter investigates the risks involved in migrating from a specialised
discrete time simulator to a discrete event simulator. The existing models
can not be respecified and rebuilt within the DEVS modelling formalism for
economic reasons. The migration therefore involves embedding the existing
discrete time models in a discrete event system specification such as the
DEVS BUS and possible using a discrete event interoperability standard
such as the HLA. These risks that are discussed are incurred, whether the
migration is from a non-distributed (single process) discrete time simulator
or from a distributed discrete time simulator. Only once the migration risks
have been identified, can an educated estimate be made of the viability of
migrating to a discrete event modelling approach.

The technical viability of simply embedding the discrete time simulator
within a discrete event interoperability architecture is studied and identified
as the first category of migration risks. The second category of risks relates
to the economic viability of using distribution and interoperability standards.
The question of how to mitigate the risk within the proposed hybrid discrete-
event/discrete-time simulator is discussed. Finally, the question of whether
or not to use interoperability standards is considered.

61

62 CHAPTER 3. RISKS IN MIGRATING TO A DEVS

3.1 Simply Embedding a DTSS within a dis-

crete event architecture

A survey of the literature suggests that the two most popular and thoroughly
analysed, distributed simulation technologies within the military domain [8]
are DIS and the HLA, both of which may implement DEVS or similar mod-
elling formalisms. Ogata et al. [42] tested the real-time performance of DIS
and different versions of the so-called HLA RTI-NG provided by the US De-
fense Modeling and Simulation Office (DMSO), where NG stands for “Next
Generation”. In the case of both the DIS and the HLA implementations,
their real-time vehicle model simulation within a 3D graphical environment
reached a frame rate ceiling of around 30Hz.

The HLA’s real-time performance, for the RTI-NG implementation, is
also studied by Jolibois et al. [43] in the context of a beyond visual range air
to air combat simulation. The performance was shown to be less than ideal
for 10Hz and higher simulation frame rates. This was due to message latency,
object time advance latency and message deliveries leaking into adjacent
simulation time steps.

Fujimoto and Hoare [44] investigated an alternative for the current ver-
sions of the HLA RTIs that can achieve latencies that are suitable for high
simulation frame rates, but these are based on a low latency Gigabit Myrinet
[http://www.myricom.com/myrinet/overview/] hardware layer and special-
ised RTIs. When Fujimoto and Hoare analysed the latency for DMSO RTI
over an Ethernet TCP and UDP implementation it was found to be in the
order of 10ms, which is too large to sustain a 100Hz simulation frame rate.
They also found that the DMSO RTI supports a time advance frequency of
more than 2000Hz between two nodes, but for three and more nodes the time
advance frequency unfortunately dropped sharply to values as low as 10Hz
with even only a few objects per node.

Watrous et al. [45] explain that in the HLA, and in fact in any distrib-
uted algorithm, a time management scheme (such as the logical time DTSS
modelling formalism) which requires contributions from all other nodes, is
relatively expensive. For this reason the HLA allows federates (simulation
components) to employ their own unconstrained time management to avoid
the time synchronisation overhead. In such an unconstrained case each model
instance synchronises itself against its simulator’s wall clock without explicit
synchronisation with other model instances, or between simulators, but at
the risk of loosing message causality.

The MCM research group also has experience in using the HLA, as men-
tioned in the introduction and as discussed by le Roux[4]. The HLA-based

3.2. VIABILITY OF INTEROPERABILITY STANDARDS 63

simulator developed by the group could achieve a maximum real-time frame
rate of 10Hz for small GBADS scenarios during the earlier phases of the
life cycle. The simulator included an HLA gateway to a human behavioural
component—that ran on proprietary process control software—and executed
on computing technology which included a 10/100Mbit ethernet infrastruc-
ture.

Further, according to Fujimoto[10] the network latency requirement for
the DIS standard for even tightly coupled interactions is a large 100 milli-
seconds. This would result in a maximum discrete time frame rate of 5 -
10Hz since a discrete time synchronisation would require at least one round-
trip message resulting in a maximum rate of 5 - 10 round-trip messages per
second.

3.2 Viability of Interoperability Standards

It has been mentioned that from the US DoD’s corporate perspective the
demand for an interoperability standard such as the HLA has a very clear
business case. However, in pointing this out, Straßburger[9] also states that
use of a standard such as the HLA, at least in its early phase, is often seen as
a risk to individual program managers who have tight budgets and schedules.

According to Taylor et al. [16], the HLA and other interoperability
standards are only economically viable if they are supported as part of a
nation-wide simulation reusability and interoperability drive. A nation-wide
simulation interoperability drive would ensure that simulations have a com-
mon SOM or at least use a shared FOM on their external interfaces making
the possible reuse of simulators and models an attractive incentive for using
standards. Simulation interconnection within South Africa has not been a
present priority though, and therefore a national interoperability drive has
not been established. Schulze et al. [46], however, did some research in the
advantages of applying HLA within the civilian simulation domain. The ci-
vilian domain is similar to the South African military domain in that the use
of a common interoperability standard has not been a national mandate.

3.3 Mitigating the Risks

The case studies have shown that it is possible, as Zeigler et al. theorised, to
simply express a logical and discrete time system specification using a dis-
crete event formalism while still ensuring message causality. This is known
as embedding the DTSS within a DEVS. The case studies have also shown

64 CHAPTER 3. RISKS IN MIGRATING TO A DEVS

though, that it is technically difficult to reach and maintain a scalable per-
formance of a 100Hz discrete time simulation frame rate, when adhering to
interoperability standards (as embodied, for example, in DIS or the HLA) .

However, the interoperability standards provide generalised services—
services which might not be required in a specialised case. Furthermore,
interoperability standards that are written into code may introduce execution
overheads which may well be shed when a specialised custom architecture is
implemented.

Nevertheless the existing interoperability architectures are used in this
study as the DTSS-embedded-within-DEVS benchmark because case studies
are readily available and these studies illustrate that nothing significant is
gained—compared to the current specialised discrete time architecture—by
simply embedding the DTSS within a discrete event architecture.

3.4 In Summary

Following Zeigler et al.’s argument on the efficiency of a DEVS versus that
of a DTSS, as discussed at the end of Section 2.3, it seems that a smarter
way of migrating to a DEVS modelling formalism is critical in order to fully
exploit the higher efficiency of a DEVS—smarter, that is, than simply em-
bedding a logical and discrete time system specification within a discrete
event formalism. The object of the present study is precisely to explore this
assertion.

The situation surrounding the economic viability of interoperability stand-
ards does not change when migrating to a DEVS modelling formalism and
it still does make the use of such a standard a financial burden as discussed.
This is not studied further or taken into account in the comparative study
within this dissertation, but the future simulation builder wanting to use a
DEVS should weigh the cost of using a standard against the added com-
plexity of building a custom DEVS simulator. The work done by Schulze
et al.[46] in applying HLA in the civilian domain may possibly be used as a
starting point.

The proposed smarter way to embed a DTSS within a discrete event
modelling formalism—without respecifying and rebuilding the existing dis-
crete time models—is captured in the hybrid discrete-event/discrete-time
modelling approach and simulator discussed in Part III of this dissertation.

Chapter 4

Using UML and CSP

This chapter gives an introduction to two notations used to represent and un-
derstand the composed GBADS models and their distributed deployment as
well as the simulator processes to the level required to analyse the design and
implementation of the respective simulator architectures. The two notations
are the Unified Modelling Language (UML) and Communicating Sequential
Processes (CSP). The rationale behind this selection is that UML and CSP—
slightly less so than UML—is already known within the GBADS simulation
development team.

The author proposes that applying UML and CSP to visualise and un-
derstand the existing composed nature of the GBAD system models, their
application domain, distributed deployment and simulators can be accom-
plished by differentiating a system representation into the following views:

• The system use cases,

• the static coupled component structure,

• the dynamic component interactions, and

• the distributed deployment and operation of the simulator.

The last two views include the model and simulator time management as-
pects. Subsets of UML and CSP are used to complement each other in
representing the different views of the system and simulator.

4.1 Unified Modelling Language

The UML is a visual language for modelling systems and for communicating
information about systems. It relies on diagrams and supporting text[18].

65

66 CHAPTER 4. USING UML AND CSP

Figure 4.1: UML Use Case Diagram of Simple Gun Model

This dissertation applies UML 1.0, as the modelling tool being used does not
yet support UML version 2.0. The UML 2.0 diagram that could in future
add value is the Composite Structure Diagram.

The system use case diagrams capture the functionality of a system. In
the context of this dissertation it captures the use of the system model within
the chosen experimental frame. Figure 4.1 shows an example UML use case
diagram of a simple gun model. The actors—stick men and 〈〈actor〉〉 boxes—
are users with which the system model interacts. A user may be a human or
virtual operator represented by a stick man, or it may be another external
system represented by an 〈〈actor〉〉 box. Each ellipsoid shape is a disjunct
use case. It describes a functional requirement from the perspective of a
user of the system. The rectangle surrounding the use cases represents the
boundary of the system. The communication associations between the actors
and use cases are indicated by the line connectors. The navigation arrow on
an association indicates from which direction an interaction is initiated. No
arrow on a line connector would indicate that either the actor or the system
may initiate the communication.

The system’s static coupled component structure view is represented us-
ing UML component and deployment diagrams. The UML component dia-
gram shows the implemented elements of the system and the dependencies
between them. The UML deployment diagram in turn shows the implement-
ation environment of the system, how the different components are deployed
and therefore the resources required by the system. An example component
diagram nested within its deployment diagram of the same simple gun model
mentioned above is shown in Figure 4.2. The nested way of displaying these
two diagrams is used throughout.

The 3D box shapes represent the nodes of the deployment diagram and
the solid lines between the boxes represent the communication associations
between the deployed nodes. In this context of a distributable simulator,

4.1. UNIFIED MODELLING LANGUAGE 67

Figure 4.2: UML Component Diagram (nested within a deployment diagram)
of the Simple Gun System Model

a deployment diagram node represents a virtual processing node. It is vir-
tual in the sense that it is assumed that each virtual processing node has
the potential of being distributed to a physical processing node of its own
or that is shared by other virtual nodes. A deployment diagram will indic-
ate deployment of components on virtual processing nodes unless otherwise
stated. The deployment diagram is also used to indicate the communication
requirements between nodes.

The components—elements of the system—are represented by the boxes
with bi-protrusions that are drawn within the deployment diagram nodes.
The dashed lines between the components indicate their inter dependencies.
The only type of dependency that is shown, is the use dependency. A use
dependency from a client component to a supplier component indicates that
the client component uses or depends on the supplier component. For ex-
ample, in Figure 4.2 the simple gun component uses both the target interface
ITarget and the burst model interface IBurst to accomplish its use cases. The
deploy dependency type is implicit in the node location of a component. In
other words, if a component is drawn within a node, then it is deployed on
that node.

The dynamic component interaction view of the system is represented by
UML sequence diagrams. For the purposes of this dissertation, the dynamic
component interaction is represented at the level of the simulator architec-
ture. A UML sequence diagram shows the components of the system as they
interact over time. It is important to note that, in general, such a sequence
diagram represents a snapshot, depicting one of possibly many permissible
sequences of interactions between the relevant components. Figure 4.3 con-
tains an example UML sequence diagram of the simple gun system. The sys-
tem components—Target, Simple Gun and Burst—are arranged horizontally
with each component having a vertical dashed lifeline. Time flows along the

68 CHAPTER 4. USING UML AND CSP

Figure 4.3: UML Sequence Diagram of the Simple Gun System Model

lifelines of the components in a downward direction. The activation peri-
ods of a component during its lifetime is indicated by the thin rectangles
along its lifeline. To fully understand Figure 4.3 it is important to note that
within the example the system components may receive input at any time,
but the input messages are cached until the start of a fresh activation period.
In addition, within this example, the disrete time components only produce
output at the end of each activation period.

As seen, in addition to representing the different model views, the UML
diagrams are used to represent the distributed deployment of the discrete
time and proposed hybrid simulators. The distributed operation and time
management aspects of the simulators may also be represented by making
use of CSP as discussed in the next section.

4.2 Communicating Sequential Processes

CSP is, as mentioned, somewhat familiar to individuals within the develop-
ment team. Its use in describing the operation of the distributed simulators
is preferred because of CSPs powerfull set of operators and concise textual
notation—which might in future be used with positive effect—and as a per-
sonal preference. Its usefullness for the description of distributed simulators

4.2. COMMUNICATING SEQUENTIAL PROCESSES 69

is however also evaluated within this dissertation.
Roscoe[17] refers to CSP as a notation and calculus to help us understand

interactions between concurrent processes. It is also referred to as a process
algebra. The more recent CSP version by Roscoe is used instead of the
original version by Hoare[47]. According to Roscoe, the second version is
focussed a lot more on concurrent systems. Roscoe’s book covers the theory,
but also practical issues surrounding the use of CSP.

CSP can complement UML in depicting the behavioural and, to a certain
extent, the structural views of a system. The value of CSP for the task at
hand is however that it is by design a notation for interacting concurrent
processes. Such a notation may, to aid understanding, effectively present the
dynamic interactions between the distributed processing platforms of the
simulators. To this end CSP is used alongside UML sequence diagrams.

As mentioned CSP is a notation for concurrent process interaction, but a
set of fundamental language constructs is firstly presented. These allow the
creation or description of simple sequential processes within the constraints
of various communication patterns. Parallel operators are then introduced
to deliver on the promise that CSP creates or describes concurrent processes.

4.2.1 Fundamental Language Constructs

The communication events are assumed to be drawn from a set Σ—an al-
phabet of events—which contains all possible communication events for the
processes in the application domain under consideration. Roscoe refers to
a communication event as a transaction or synchronisation between two or
more processes rather than a transmission of data. An event is seen as being
instantaneous and takes place with hand-shaken communication—ie. both
sides agree to act. Given an event a in Σ and a process P , a → P is the
process that is initially willing to communicate a with the environment and
will wait indefinitely for this a to happen. After a, a → P behaves like P .
This is known as prefixing.

The recursion language construct allows a process to go on performing a
sequence of events indefinitely. For example P1 = a → P1 and P2 = a → b →
P2 define recursive processes which indefinitely engage in the events a in the
case of P1, and a then b in the case of P2 respectively. Mutual recursion is also
possible between two or more processes, as in Pa = a → Pb and Pb = b → Pa.
Here, the process Pa behaves like the process P2 in the previous sentence. A
diagram depicting recursion and mutual recursion is shown in Figure 4.4.

The guarded alternative language construct allows the environment to
choose any one of n events a1...an of a process P . Depending on the choice
of event, P may then behave like any one of a number of processes P1...Pn.

70 CHAPTER 4. USING UML AND CSP

Figure 4.4: A Diagram of Recursion and Mutual Recursion

Figure 4.5: A Diagram of a Guarded Alternative combined with
Recursion[17]

This is written as P = (a1 → P1|...|an → Pn). Another example, P = (a →
P |b → Q) and Q = (a → P |b → STOP), which combines the guarded altern-
ative construct with recursion and mutual recursion is drawn in Figure 4.5.
STOP is a process that does nothing and may be used as a representation
for deadlock.

Roscoe also uses a system of counter processes as a more complex example
of combining the guarded alternative construct with recursion. The system,
shown in Figure 4.6 may be defined as COUNT0 = up → COUNT1 and
COUNTn = (up → COUNTn+1|down → COUNTn−1)∀(n > 0).

If A ⊆ Σ is a set of events and, for each x ∈ A, we have defined a process
P (x), then ?x : A → P (x) defines the process which accepts any event a in
A and then behaves like the appropriate P (a). This construct is known as
prefix choice. Initialise =?n : N0 → COUNTn for example initialises the
system of counter processes by accepting a non-negative integer n and then
behaves like COUNTn.

A generalisation of the guarded alternative construct is the external choice
operator, �. P�Q is the process which offers the environment the choice of

4.2. COMMUNICATING SEQUENTIAL PROCESSES 71

Figure 4.6: A Diagram of a System of Counter Processes[17]

the first events of P and of Q. Guarded alternative and external choice
agree in that if the first event chosen is from P then P�Q behaves like P
would have, after engaging in that event. Similarly if the first event is chosen
from Q then P�Q behaves like Q would have, after engaging in that event.
However, external choice allows P and Q to have initial events in common.
After the first in common event has been chosen, P�Q non-deterministically
behaves like either P or Q would have, after engaging in that event.

4.2.2 Parallel Operators

Parallel operators allow the description of concurrent processes. Such con-
currency occurs inherently in parallel and distributed simulators. The main
goal is to be able to describe the behaviour of processes which are distributed
across multiple computing platforms, which may operate independently and
which may interact when necessary.

The synchronous parallel operator is the simplest in that it insists that
processes agree on all events that occur. In effect, a synchronous parallel
process ?x : A → P (x) || ?x : B → Q(x), composed of the two processes
?x : A → P (x) and ?x : A → Q(x), is equivalent to the process ?x : A∩B →
(P (x)||Q(x)).

|| is symmetric in that (P ||Q) = (Q||P), associative in that (P ||Q)||R =
P ||(Q||R) and distributive over external choice, so that P ||(Q�R) = (P ||Q)�
(P ||R).

A more general version of the parallel operator is the alphabetised parallel
operator. If X and Y are subsets of Σ, P X ||Y Q is the combination where P
is allowed to communicate in the alphabet X, Q is allowed to communicate
in the alphabet Y and the two processes must synchronise on the events in
X ∩ Y . It easily follows that P Σ||Σ Q = P ||Q.

Yet another parallel operator is the generalised parallel or interface paral-
lel operator. Written as P

||
XQ, where all the events in X must be synchronised

and events outside X may proceed independently.
Parallel composition by interleaving behaves almost opposite to the par-

allel operators discussed so far. P interleaved with Q, written as P |||Q, is

72 CHAPTER 4. USING UML AND CSP

equal to P
||
{}Q. This states that P and Q executes strictly independently of

each other. It touches on another aspect about parallel operators which has
not been mentioned yet. That is, P

||
XQ implies that an event outside of X

that are within both P and Q’s alphabets can never be communicated simul-
taneously and P |||Q implies that no event within P and Q’s shared alphabet
may be communicated simultaneously by both P and Q.

This survey of selected CSP operators is necessarily very brief. A full
treatment of CSP, its various operators, its complete semantics under so-
called traces, failures and divergences, respectively, the various algebraic laws
that hold for the different operators, etc, may found in Rosco [17].

4.2.3 Using CSP to Describe Discrete Time and Dis-
crete Event Simulators

Normal untimed CSP, where exact times of interaction events are unimport-
ant, is differentiated from Timed CSP. According to Roscoe, Timed CSP
uses a continuous model of time and has a mathematical theory quite dis-
tinct from untimed CSP. However, for practical reasons Roscoe rather places
a timed interpretation on the untimed language. The passage of time may
be signalled by the regular occurrence of a specific generalised synchronous
event tock.

This is ideally suited to this dissertation and Roscoe even gives an ex-
ample of how a discrete time system may be thought about and depicted in
CSP. The discrete time CSP includes the event tock on which all processes
synchronise. This is similar in nature to the behaviour of a simulator for the
multiDTSS formalism. (This formalism was described in Section 2.4.1 which
dealt with the coupled extensions to the DTSS and DEVS formalisms.) Fig-
ure 4.7 shows an example of modelling discrete time across three processing
nodes A, B and C. The functioning of node J (where J = A, B, C) may be
described in CSP as J = executeDoneJ → tock → J . The overall system in
the figure can be expressed as A

||
{tock}B

||
{tock}C. This means that the events

executeDoneA, executeDoneB and executeDoneC can occur in any order,
and that only after all have occurred can the three subsystems A, B and C
engage in their common tock event. Thereafter, A, B and C recommence
with their respective execute events.

In a similar manner, Chapter 6 applies the discrete time CSP to depict
the current discrete time simulator. The use of Timed CSP for description
of discrete event simulators may possibly prove useful and should in future
be investigated, but for this dissertation only untimed CSP is considered.

4.3. IN SUMMARY 73

Figure 4.7: A CSP Diagram of Modelling Discrete Time

4.3 In Summary

The chapter has given an introduction to UML and CSP to represent—and
in this way aid understanding of—the composed GBADS models and the
current and proposed simulators. UML has been presented for the repres-
entation of:

• The system model use cases (the experimental frame to some extent)
through UML Use Case Diagrams,

• the static coupled component/model structure through UML Compon-
ent and Deployment Diagrams,

• the dynamic component interactions, and

• the distributed deployment and operation of the simulator.

CSP has also been presented for the representation of distributed sim-
ulators as CSP is a powerful notation and calculus to aid understanding of
interactions between concurrent processes. CSP has therefore been presented
specifically for representation of the last two system views in the above list.
CSP is also supported by a large variety of tools that support the modelling
and checking validity aspects such as proneness to deadlock. A CSP tool has
been used in exactly this way in Chapter 6 to show that the current discrete
time simulator architecture is deadlock free.

Chapter 5

Introduction to the Ground
Based Air Defence (GBAD)
System Model

In this chapter, the focus is returned to the GBAD domain. The intention is
to build a clear picture of the GBAD system of systems (of subsystems). The
GBADS model is characterised in terms of system scale. This is done to facil-
itate the identification of the model parameters that impact on performance
when the system is scaled up.

Once such a sensitivity analysis is done, the system model and simu-
lator may be appropriately instrumented to analyse its behaviour in terms
of the system scale and simulator distribution. Representative scenarios are
created for use in analysing the performances of the current discrete time
simulator for small to large scale systems and distributions. These scenarios
are then used to analyse the performance of the proposed hybrid discrete-
event/discrete-time simulator and as the benchmark scenarios for comparing
the performance of the proposed simulator to that of the current discrete
time simulator.

5.1 The GBAD System of Systems (of Sub-

Systems)

The GBAD system was introduced briefly in Section 1.1. This section dis-
cusses in greater detail the air defence system’s various components—system
of systems and subsystems as decomposed for the purpose of modelling—and
the interactions between them.

The air defence system is deployed to defend some vulnerable point or

75

76 CHAPTER 5. INTRODUCTION TO THE GBAD SYSTEM MODEL

Figure 5.1: UML Use Case Diagram of the Target

valuable asset—the defended asset—against one of several possible threat
scenarios, whose description is included in an expected set of airborne threat
scenarios. A threat scenario may be composed of a number of incoming fixed
wing aircraft, rotary wing aircraft, UAV and cruise missile targets. The
munitions released by incoming aircraft are considered as targets in their
own right. Each target may be simulated by either an airborne entity model
or controlled via a pilot flight seat integrated with the simulation. In the
first case, the targets’ approach paths and weapon release times are pre-
planned and fixed. In the second case a real pilot sits in the flight seat and
may perform evasive manoeuvres against the ground based weapons. With
tactical doctrine governing the operational behaviour of the ground crew
weapon and other equipment operators, the target positions and velocity
vectors may be seen as the action triggers for the rest of the simulation. For
this dissertation only pre-planned targets are considered. The target model’s
use case is shown in Figure 5.1 and as discussed the preplanned targets have
no inputs to stimulate reactive behaviour.

The ground based deployment relies on sensor information to gauge and
engage the incoming threat scenario. The sensors that are valuable in this
regard are search radars, radar- and optical trackers, and the human oper-
ators’ eyes. Each sensor is simulated by a sensor model which requires as
input up to date target state information. Sensors may be differentiated into
two types namely, search or scanning sensors and tracking sensors. A search
sensor is responsible for detecting all targets within its detection range and
normally has a very wide Designated Region Of Interest (DROI). A tracking
sensor is responsible for detecting and accurately tracking one to a small
number of targets within a much smaller DROI.

The use case of a generic sensor is shown in Figure 5.2. Multiple tar-
get information sources—multiple target objects— may be connected to the
sensor. The Fire Control System (FCS) provides the DROI.

The output of a tracking radar is a sequence of state updates of the
tracked targets (position, velocity, etc). This sequence is characterised as
having a high time resolution. The target detections returned by a search
radar, on the other hand, are typically updated once every four seconds as

5.1. THE GBAD SYSTEM OF SYSTEMS (OF SUB-SYSTEMS) 77

Figure 5.2: UML Use Case Diagram of the Sensor

the radar repeatedly scans its horizon. The Air Picture Sensor is a special
sensor that uses data fusion to combine the outputs of a number of different
sensors into a consolidated view of the surrounding airspace.

To be able to locate targets and accurately guide munitions to them as
required, the weapon system may be reliant on the search radar’s detections,
or on the tracking radar’s, or on both. The weapon system as referred to
here consists of two parts:

• the weapon’s Fire Control System (FCS); and

• the launcher and its munition.

The weapon FCS is responsible for receiving designations—which air pic-
ture tracks to prioritise—and engagements—which priority tracks to launch
at. These orders are generated by the Fire Control Officer (FCO), which is a
single operator that is responsible for the GBADS deployment’s fire control.
The FCS may also have associated with it, additional operators, such as the
Fire Unit Commander (FuCmdr) and gunner. Such operators are specialised
for the specific type of weapon. These details are however not discussed and
the FCS may be seen as containing these helper operators. The FCS model
requires the sensor data, the Fire Control Officer (FCO) commands and
launcher/munition status as inputs, and provides launcher/munition com-
mands, sensor DROI commands and operator feedback as output.

The FCS’s use case diagram is shown in Figure 5.3. It is clear that the
FCS intelligently interfaces the launcher and munitions to the air picture,
the sensor and the FCO. The combination of weapon system’s sub-systems
and the designation sensor sub-system are referred to as a Fire Unit (FU)
which is a GBAD system level component.

Each type of weapon has a unique physical configuration of its launcher
and munitions, one being the gun example in the previous chapter. The

78 CHAPTER 5. INTRODUCTION TO THE GBAD SYSTEM MODEL

Figure 5.3: UML Use Case Diagram of the FCS

munitions may be ballistic or guided, and the launcher may be be able to
engage one or multiple priority targets. What is common is that the launcher
and munition models require the sensor data—possibly provided via the FCS
model—to engage the target. Secondly the actual target state information
is required for the model to test for a hit or miss of the munition. The FCS
and operators within the FCS, such as the FuCmdr and gunner, provide the
required translations of the FCS’s designate and engage commands to the
launcher and munitions as applicable to the specific weapon’s designation and
launch requirements. The use case diagram of the launcher and munitions is
shown in Figure 5.4.

The weapon and FCS operators may be played by real operators inter-
acting with mock-ups of the equipment terminals interfaced to the simula-

5.1. THE GBAD SYSTEM OF SYSTEMS (OF SUB-SYSTEMS) 79

Figure 5.4: UML Use Case Diagram of the Launcher and Munitions

tion. However, the behaviour of most operators is based on known tactical
doctrine. As a result, their standard behaviour can be modelled and their
presence virtualised as required. For the benchmark scenario however, only
virtual operators will be used.

Tactical data and voice communication networks are responsible for con-
necting radars and operators to the weapon systems. These communication
networks are simulated by a network model. The objective of adding a com-
munication network model is to simulate transmission delays and possibly
transmission failures due to aspects such as line of sight restrictions, range
restrictions on radio communication and network congestion. A simple dis-
tributed per-receiver network model is currently being used. This model
shifts the responsibility of simulating the communication delays and failures
to the receiver of a message. Such a simple model cannot include effects such
as network congestion, but it has the advantage of being encapsulated within
the GBAD system and sub-system models discussed.

Figure 5.5 depicts a minimal GBADS deployment with one target (c) and
one FU (b). Figure 5.5a depicts the components shared among all FUs. The
shared components are:

• The FCO in that it controls the fire of all the FUs,

80 CHAPTER 5. INTRODUCTION TO THE GBAD SYSTEM MODEL

Figure 5.5: UML Component Diagrams (nested within their deployment
diagrams) of the building blocks of a GBAD system of systems deployment

• the Threat Evaluation and Weapon Assignment (TEWA) system which
provides fire control suggestions to the FCO, and

• a small number of designation sensors that are deployed for use by all
the FUs.

A threat scenario would typically consist of multiple targets and the
GBAD system of multiple FUs. The components of the deployment shown in
Figure 5.5 are therefore the basic building blocks of a GBADS deployment.

Note that, although the figure represents a specific instance of a de-
ployment, some of the components are still generalised to component type
rather than specified in terms of exact components. An example of an actual

5.2. GBADS BENCHMARK SCENARIOS 81

GBADS deployment is given in Chapter 7 when the simulator performance
is analysed.

The number of targets and the number of FUs are two system model
parameters. These two parameters define the scale of the deployment. As
the number of FUs increases, the systems’s execution performance is im-
pacted by the cost of distributing the target information to more and more
FUs. Alternatively, as the number of targets increases the performance is
impacted by the cost of distributing more and more targets to each FU and
then processing the targets. Adding targets therefore increases the global
communication overhead and the computational requirements of the FUs.

The shared Air Picture, TEWA and Virtual FCO components impact
the execution performance further as each of these are internally sequential
and, according to Amdahl’s law[48], decrease the potential parallelism of the
system model. Amdahl’s law states that: The speed-up of a program using
multiple processors in parallel is limited by the sequential fraction of the
program. It should be noted here though, that in the current discrete time
simulator, the sub-systems within each FU are also distributable across dif-
ferent physical nodes. No preferred way of distributing the model instances
across a number of processing nodes currently exists and the default ap-
proach has been to distribute the model instances randomly between the
processing nodes. Duvenhage and Nel [49] have, however, done some pre-
liminary analysis—on small scale distributions—which shows that a random
distribution typically, for the GBADS scenarios, comes to within 85% of the
best case distribution. This behaviour is expected to change for larger dis-
tributions as the communication overhead becomes a more significant part
of the simulation execution time.

5.2 GBADS Benchmark Scenarios

The goal of constructing the benchmark scenarios is to analyse the distributed
scalability behaviour of the simulators populated with instances of the actual
existing models and not simplified or generic versions of them. Using the
actual models gives credibility to the results. Furthermore it is easy to get
representative behaviour and performance. The disadvantage is, of coarse,
that the analysis of the reasons behind the execution performance can become
more difficult. The analysis of the execution performance is done in Chapter 7
and Chapter 9 for the respective simulators.

The GBADS model’s number of targets and number of FUs were chosen
to define the system scale. The GBADS benchmark scenarios are further very
much based on the deployment in Figure 5.5. What remains to be defined is

82 CHAPTER 5. INTRODUCTION TO THE GBAD SYSTEM MODEL

the number of targets, the number of FUs and the exact weapon and sensors
to use for each scenario.

A single weapon type is used and for this purpose a 35mm gun Close In
Weapons System (CIWS) FU type is chosen. It is considered to be permiss-
able to use a single weapon type, as the FUs are independent of each other.
An example of an actual GBADS deployment is given in Chapter 7.

For the purpose of this dissertation the distributed execution performance
of the GBADS model should be analysed over one to many processing nodes.
This should be done for a number of scenarios with varying number of FUs
and targets. However, to decrease the number of free variables in such an
analysis the number of targets is fixed to two per FU. The two free variables
in the performance analysis, that is done in Chapter 7 and Chapter 9, are
therefore the number of FUs in each scenario and the number of processing
nodes that the scenario is distributed over.

5.3 In Summary

The aim of this chapter was to build a clear picture of the composed nature
of the GBAD system of systems (of subsystems) models. This was done
by making use of UML diagrams as presented in Chapter 4. The potential
distributed deployments of the models were also shown.

The basic—aggregated—building blocks of a GBAD system model was
then identified and the scale of a GBADS defined. Scenarios, representative
of small to large scale deployments, can now be created using the identified
building blocks. These scenarios are used in Chapter 7 and Chapter 9 for
the scalability analysis of the current discrete time simulator and an imple-
mentation of the proposed hybrid simulator.

Part II

The Discrete Time Simulator

83

Chapter 6

The Discrete Time Simulator

The discussion on the current publish-subscribe simulator architecture is
structured around the layered architecture of the simulator (shown in Fig-
ure 6.1), which includes a publish subscribe simulation layer, a message
passing implementation of the simulation model and at the bottom layer
a low latency TCP messaging protocol for Gigabit Ethernet.

The attraction of the layered architecture was the separation of concerns,
in terms of design, between the simulation model as designed into the top
layer and the distributed execution thereof, a concern delegated to the bot-
tom two layers. An additional advantage is of course the ability to change
the implementation of the bottom layers without affecting the top layer sim-
ulation application.

In Chapter 2 it was mentioned that the current simulator does not support
zero delay links between coupled components. All output to input links
between coupled components have, by design, one simulation time frame
delay and this is taken into account in the modelling. More formally, each
feedback cycle in the GBADS model has at least one Moore-type system
(usually an aircraft object) or a Mealy-type system that is modified to become
Moore during the modelling process. One example of a modified Mealy-type
system would be a missile control system’s target state predictor model that
predicts to time tFuture + dt instead of tFuture as its internal deduced target
state is limited to only having a non-delay-less link to the sensor input data.
Its internalised sensor track data is therefore one time step in the past. That
is, the predictor has received sensor track data up to t − dt, where t is the
current simulator time.

The resulting coupled component network is guaranteed to be solvable or
simulatable by numerical methods. Just as important however, the coupling
still allows the much required output to input feedback cycles within the
GBADS model which is described in Chapter 5. The gun tracking system

85

86 CHAPTER 6. THE DISCRETE TIME SIMULATOR

Figure 6.1: Layered Peer-to-Peer Simulator Architecture

and a missile control system are two examples that require feedback cycles
to be modelled.

The current simulator however also forbids pure (un-Moore’ed) Mealy-
type components altogether. This has additional advantages: firstly, it en-
sures that the execution of the components become order independent; and
secondly, it then allows the distribution of the coupled components across
the computing platforms to be independent of their coupling to one another.
The order independence allows for an elegant increment-publish-gather sim-
ulation update cycle in the top layer of the architecture. This is somewhat
similar to the MultiDTSS simulator described in Chapter 2.

6.1 Publish-Subscribe Simulation Model

The top layer simulation model encompasses a number of aspects, which in-
clude the simulation time management, the system specification modelling
formalism, the object communication framework and the synthetic environ-
ment services.

As mentioned, the pre-existing models—before the current discrete time
simulator—had been implemented within a conservative logical time manage-
ment scheme and a discrete time modelling formalism. It was decided to keep
these aspects unchanged within the now current simulator to simplify the re-
use of the existing models. The object communication framework that is un-
der investigation for the simulation model is a specialised publish-subscribe
framework to be discussed next. Discussions on the synthetic environment
services then follow.

6.1. PUBLISH-SUBSCRIBE SIMULATION MODEL 87

6.1.1 The Publish-Subscribe Object Communication
Framework

The publish-subscribe paradigm is well known as a means to regularly ac-
quiring information. For example, someone subscribes to a magazine on his
or her topic of interest in order to receive the information on a regular basis.
Each magazine within one’s topic (category) of interest has a title and a
regular interval at which the categorical information is made available (pub-
lished). The subscriber may request that the information be delivered to
one’s doorstep in the form of, say, a weekly or a monthly magazine issue.

The publish-subscribe simulation framework is a direct analogy to the
magazine example. An instance of a simulation model (an object) may ex-
press its desire to receive information within a certain category of interest,
e.g. aircraft positions, by adding the category (and title name, if known)
to its Subscription Wish List. An object may also express its willingness
to share information within a certain category, such as its own position, by
adding a title (name and category) to its Owned Title List. A subscribing
object has no guarantee that any object will share information under the
title category or name in which it is interested. Similarly a publisher object
has no guarantee that any other objects will be interested in the information
that it is willing to share. At simulation start-up each object’s owned title
list is made known to the rest of the simulation. The titles are then processed
against the objects’ wish list subscriptions. Each title matching a wish list
subscription generates a subscription which is sent back to the title owner to
be added to the title’s subscriber list.

At simulation run-time each processing node goes through regular incre-
ment, publish and gather cycles. The increment phase updates each object’s
internal state from its cached inputs. The publish phase generates each ob-
ject’s output issues. Each issue is sent to the messaging layer addressed to
the appropriate subscriber or subscribers if there are multiple. The gather
phase follows, during which each object (now in role of subscriber) receives
the published issues from all other objects via the messaging layer, thereby
refreshing the subscriber’s input cache.

Consider three discrete time processing nodes A, B and C. For process
A (visually shown in Figure 6.2):

AIncrement = incrementDoneA → APublish

APublish = publishDoneA → AGather

AGather = frameDoneA → AIncrement

88 CHAPTER 6. THE DISCRETE TIME SIMULATOR

Figure 6.2: A CSP Diagram of the Increment Publish Gather Cycle composed
of A and Async

Async = (publishDoneB → publishDoneC → frameDoneA → Async |
publishDoneC → publishDoneB → frameDoneA → Async)

Similarly for process B:

BIncrement = incrementDoneB → BPublish

BPublish = publishDoneB → BGather

BGather = frameDoneB → BIncrement

Bsync = (publishDoneA → publishDoneC → frameDoneB → Bsync |
publishDoneC → publishDoneA → frameDoneB → Bsync)

and for process C:

CIncrement = incrementDoneC → CPublish

CPublish = publishDoneC → CGather

CGather = frameDoneC → CIncrement

6.1. PUBLISH-SUBSCRIBE SIMULATION MODEL 89

Csync = (publishDoneA → publishDoneB → frameDoneC → Csync |
publishDoneB → publishDoneA → frameDoneC → Csync)

A = initialise → AIncrement is the mutual recursive increment, publish
and gather cycle of processing node A. For B and C defined similarly to A,
the parallel composition (A || Async) || (B || Bsync) || (C || Csync) describes
the way in which the three processes jointly interact with one another. The
composition is the description of the discrete time architecture and it can
be shown that the overall interaction between the processes is deadlock-
free. This has in fact been done by re-expressing the above CSP in its FSP
equivalent and applying the LTSA analyser provided along with the book by
Magee and Cramer[35].

An object is incremented every n’th discrete time simulation frame where
n is the object’s trigger frame period. Each wish list subscription, and there-
fore each subscriber in a title’s subscriber list, is also associated with its own
trigger frame period. During publish, each subscriber entry of each owned
title is visited and an issue sent to the subscriber object if it is the subscrip-
tion’s trigger frame. An important publish rule that is required to ensure
consistent issues is that the contents of a title issue may only be updated
during the publisher’s increment cycle. Objects may during the simulation
run express their wish to share a new category of information or a new title
within an existing category. This is done by submitting a run-time title to
the communication framework. Similarly objects may express interest in cat-
egories (or titles within categories) of information during the simulation run
by submitting a late subscription.

An object has an issue pigeon hole for each of its wish list subscriptions.
When an issue is received from the messaging layer, during the gather phase,
it is placed in the appropriate pigeon hole. A pigeon hole may have subscrip-
tion history turned off or on. If history is off then a newer version of an issue
replaces all old issues that may remain in the pigeon hole. If history is turned
on then issues are added to the pigeon hole in chronological order. The ob-
ject may then read issues and manually delete them as required during its
increment phase. Turning history on for a specific wish list subscription is
typically required when a subscriber doesn’t want to miss any important up-
dates (events) for that subscription. Having history off allows the subscriber
to always have access to the current issue without the overhead of always
caching and processing a subscription’s recent history. The populated issue
pigeon holes serve as the input cache, mentioned at the beginning of this
chapter, which stores the inputs until the next increment cycle.

90 CHAPTER 6. THE DISCRETE TIME SIMULATOR

6.1.2 The Synthetic Environment Services

The two types of simulation services supported are, firstly, low level services
that are built into the simulation model and, secondly, high level services
that run on top of the simulation model as simulation objects. The only low
level service currently implemented is that of delayed issues. An issue may be
given a future delivery time by the publisher or the subscriber may delay the
processing of an issue. Such an issue is, however, delivered to the subscriber
immediately, but once there it resides in a delayed issue list until the time of
delay has passed at which point the issue is put into the appropriate pigeon
hole of the subscriber. Delayed issues are handy if transmission delays of
messages within the synthetic environment are to be modelled. In the current
simulator the message delays of the tactical communication network model
are implemented by making use of delayed issues.

High level synthetic environment services subscribe to titles of which the
issues contain information such as object position. Environmental informa-
tion services such as Line Of Sight (LOS) and terrain engines to then give
each object individual feedback on its height, which objects it can see. To ac-
complish the personalised feedback a service advertises what is called a stem
or differentiatable title. Each time a subscription is made to a stem title the
simulator automatically differentiates the stem title to a personalised title
and subscription for the subscriber. The service may then use the created
titles to publish to individual objects.

A service need not always publish data back to the simulation, though.
Logging, for example, is a high level service that accumulates object states
and other information. The logging service may then apply user configured
data analysers to the accumulated data and log the results to disk.

6.2 Peer-to-Peer Message Passing and Node

Synchronisation

The publish-subscribe communication framework and the simulator syn-
chronisation is implemented by means of a peer-to-peer message passing ar-
chitecture. A peer-to-peer architecture is specifically preferred above a client-
server architecture to avoid the double latency that exists when a sender ma-
chine communicates via a server to a receiver machine. The double latency
may be avoided if the sender communicates directly with the receiver. The
messaging implementation of the publish-subscribe communication frame-
work is presented, followed by the implementation of the simulation syn-
chronisation.

6.3. TCP MESSAGE PASSING IMPLEMENTATION 91

6.2.1 Messaging Implementation of Publish-Subscribe

The publish-subscribe framework naturally translates to a messaging archi-
tecture containing only three message types.

• A title may be advertised as a title message containing all the title and
publisher details.

• A wish list subscription may similarly be a message containing the
details of the wish list subscription and the subscriber.

• The third message type is an issue message that contains the sub-
scriber’s node-number delivery address, the targeted wish list subscrip-
tion pigeon hole and the actual issue payload.

The messaging implementation has a local/global filter (see Figure 6.1)
that loops a node’s self addressed messages back to be cached for the next
simulation frame without passing anything down to the TCP layer.

6.2.2 Peer-to-Peer Node Synchronisation

The peer-to-peer synchronisation scheme is shown in Figure 6.3. As men-
tioned in the previous section, each simulation frame has three phases. Within
the publish phase, the published issues are not messaged directly, but are
grouped per destination node and sent in message bundles to optimise band-
width usage. The publish phase must be followed by a time-stamped pub-
lishDone message to each peer node to signify that all the issues for the cur-
rent simulation frame have been sent. The publishDone messages perform
a similar function as Chandy-Misra null messages [32] do—in conservative
distributed discrete event simulation—in terms of dead-lock avoidance. A
simulator node waits in the gather phase until it has received and processed
a publishDone message from each of the other simulator nodes. Having re-
ceived the publishDone messages from all the other nodes guarantees that
all messages for the current simulation frame have been received. The node
may now start with the increment phase of the next simulation frame in
effect having generated a frameDone message.

6.3 TCP Message Passing Implementation

The communication setup requires a process to process connection on top of
Ethernet. The IP protocol, machine to machine, is used with the possibility
of either UDP or TCP for providing the process to process communication.

92 CHAPTER 6. THE DISCRETE TIME SIMULATOR

Figure 6.3: UML Sequence Diagram of Peer-to-Peer Message Passing and
Simulation Synchronisation

TCP was chosen over UDP for TCP’s already built-in reliable and stream
based nature. TCP therefore guarantees message delivery and further that
messages are received in the same order they were sent in. The TCP mes-
saging implementation consists of two components. The first is an address
translation from destination node number to destination IP and port before
any message can be sent via TCP. This translation is pre-configured and
fixed for each distribution configuration.

A disadvantage of using TCP instead of UDP is of coarse its higher com-
munication overhead in terms of both bandwidth and latency. The second
component of the TCP messaging implementation is therefore a two-tiered
approach to lowering TCP message bandwidth and latency overhead. The
first tier is to ensure that as much as possible of the TCP send and receive

6.4. THE GBADS SIMULATION OBJECT MODEL 93

overhead happens in parallel to the node execution. This is accomplished
by increasing TCP’s send and receive buffers to an adequate size such that
the buffers have enough space for two simulation frames worth of data. This
ensures that all TCP sends are non-blocking. It also facilitates the use of
CPU time, spare CPU cycles or from a second CPU, to transport the data
across the network to the appropriate TCP receive buffers for quick retrieval
when needed.

The second tier takes control of the TCP message send times. TCP’s
Nagle algorithm tries to optimise bandwidth usage by accumulating sent
messages in the send buffer until it is large enough to fill a TCP packet
or until a certain time-out is reached. The unfortunate side effect of the
Nagle algorithm is that control over message latencies is lost. To give control
over the message latency back to the simulator the Nagle algorithm can be
optionally and currently is disabled.

6.4 The GBADS Simulation Object Model

This section describes the common GBADS simulation object model within
which the GBADS simulation is implemented. The base object class of the
GBADS simulation is Object. The following paragraphs will discuss how Ob-
ject differentiates into the child objects shown in Figure 6.4. The child objects
then represent and implement the different aspects of the GBADS model as
discussed in Section 5.1. The time synchronisation, the object increment,
and the publish- and subscribe-logic is implemented in and inherited from
the base Object. The child objects then add the properties and behaviour of
the actual models.

Model is the base for all equipment and target platforms. Model generally
defines every type of object that has a position, orientation and a GBADS
type description. Model therefore adds some properties, but no behaviour
yet and is in fact, like Object, a C++ pure virtual class. The child classes
of Model implements, as shown in Figure 6.4, the additional properties and
concrete behaviour required, for example, by the Target class of objects.

Service implements the high level simulation services such as hight above
terrain, line of sight and data logging as mentioned earlier in this chapter.
Console is the base for all OIL interfaces and also the gateway interfaces to
other systems and simulators such as a flight seat.

94 CHAPTER 6. THE DISCRETE TIME SIMULATOR

Figure 6.4: Simple UML Class Diagram of the GBADS Simulation Object
Model

6.5 In Summary

The current discrete time architecture was presented. This includes:

• An overview of the layered architecture,

• the modelling approach in terms of Mealy and Moore type models,

• the publish-subscribe simulation model—including the communication
framework and a CSP expression of it—layer,

• the peer-to-peer message passing and node synchronisation layer along
with its TCP implementation, and

• the existing GBADS simulation object model.

The main goal of presenting the above was to familiarise the reader with
the current discrete time architecture. The architecture—and simulation
model—supports only Moore type models to allow a time synchronisation
strategy which is independent of the execution order and node distribution
of the models. The approach to modelling the GBAD system therefore takes
this into account. The communication framework of the publish-subscribe

6.5. IN SUMMARY 95

simulation model was discussed as a general distributed simulation commu-
nication framework. The distributed framework was also expressed using
CSP and shown to be deadlock free with the aid of a CSP tool.

The peer-to-peer message passing implementation of the communication
framework and the discrete time node synchronisation was then discussed
with the aid of a UML Sequence Diagram. The details of the TCP messaging
implementation and how strict control over message latency may be achieved
was also given.

The discussion of the current architecture leads into the experimental
analysis of the architecture’s potential parallelisation speed-up—scalability—
found in the next chapter.

Chapter 7

Performance Results and
Analysis

This chapter analyses the performance and scalability of the current discrete
time simulator. Initial TCP messaging and simulator architecture experi-
ments were carried out during the design of the current discrete time simu-
lator and new experiments were done for this dissertation after the simulator
was implemented. The experimental setup and results of the performance
analysis against the benchmark scenarios—discussed in Section 5.2—are then
given. Some conclusions on the scalability of the current simulator are finally
drawn.

7.1 Initial Messaging Experiments and Res-

ults

A performance test of a client-server distributed discrete time simulator was
carried out during the early design of the current architecture. This had
been done before the current hardware infrastructure was acquired. For the
purpose of this dissertation, after acquisition of the current infrastructure,
the inter-node communication was also characterised and is reported on. A
synthetic peer-to-peer scalability stress test was also done and is reported
on. The hardware infrastructure itself is also described.

7.1.1 Initial Client-Server Experiments

Initial TCP messaging tests that were done have been reported in Duvenhage
and le Roux[50]. The tests included up to 6 computing nodes. These tests
were done before the implementation of the current architecture and also

97

98 CHAPTER 7. PERFORMANCE RESULTS AND ANALYSIS

before the acquisition of the hardware infra-structure currently in use. A
client-server discrete time simulator architecture was used.

At the start of each discrete time frame the server sends a work package
of a certain size down to each of the six client nodes. The processing of the
work package has a fixed execution time of 0.005 seconds which is 50% of the
100Hz discrete time frame, effectively leaving room for a 50% communication
overhead. Once a node has finished its work it sends a result package, of the
same size as the work package, back to the server. Communication overhead
is defined here as all time spent before and after processing a work package. If
the communication overhead stays below 50% of the frame—in other words,
takes less than 0.005 seconds—then the discrete time frame can be executed
within 0.01 seconds and the simulation may run at 100Hz or higher.

It is worth noting that the server and one node were co-located in a lab
while the other five nodes were located in offices outside the lab. The server
and first node were connected via the lab’s local switch to the building’s
LAN while the other five nodes were connected directly to the building’s
LAN. The experiments were executed on a 100Mbit Ethernet infrastructure.
The actual communication overhead, as a fraction of the measured execution
time for a single discrete time frame, is shown in Figure 7.1. As long as
this fraction is below 0.5 the communication overhead takes less than 0.005
seconds and the 100Hz frame rate can be achieved as explained in the previous
paragraph. The graphed results show that this is indeed the case for work
package messages smaller than 3kBytes.

For six nodes and a 3kByte work package the bandwidth from the server
amounts to 6 ∗ 3kBytes/0.01s = 18kBytes/0.01s = 1800kBytes/s on av-
erage. Similarly, the bandwidth back to the server is also an average of
1800kBytes/s. The required server bandwidth of 1800kBytes/s in each dir-
ection is well within the bandwidth performance of 100Mbit Ethernet (i.e.
100Mbit/s > 10MB/s > 3600kB/s(half-duplex) > 1800kB/s(full-duplex))
and it was thought that the 3kBytes per simulation frame would have been
more than enough for the GBADS scenarios simulated at the time.

In the GBADS simulation, however, the result package of a node would
contribute to the contents of a future work package of not simply one node,
but potentially of many nodes. The decision to rather implement a peer-
to-peer architecture was, therefore, made on the idea that a peer-to-peer
architecture would prevent a future bandwidth bottleneck at the server and,
more importantly, avoid the double latency of communicating a result via a
server to a destination node.

7.1. INITIAL MESSAGING EXPERIMENTS AND RESULTS 99

Figure 7.1: TCP Communication Overhead as Fraction of Time Frame
against the Number of Clients and the Message Size[50]

100 CHAPTER 7. PERFORMANCE RESULTS AND ANALYSIS

Figure 7.2: The Hardware Infrastructure for the Current Distributed Discrete
Time Simulator

The relatively constant positive gradients of each of the overhead against
number of nodes graphs—ignoring the first node that had a direct connection
to the server—indicate the communication overhead will rise to 0.005 seconds
at points which are dependent on the work package size and the number of
nodes. The locus—set of all (number of nodes, overhead) pairs/points—
at which this happens is known as the real-time scalability ceiling of the
simulator.

It is important to note that a trade-off exists between the work package
size and the number of distributed processing nodes that may be used. De-
termining the maximum work throughput of such a simulator is therefore an
optimisation problem of the number of nodes versus the work done per node.

7.1. INITIAL MESSAGING EXPERIMENTS AND RESULTS 101

Figure 7.3: Messages/second to Message Size Trade-Off of a TCP Commu-
nication Channel

7.1.2 The Current Hardware Infrastructure

The hardware infrastructure that was finally acquired for the distributed
discrete time simulator consists out of a transportable cabinet, shown in
Figure 7.2, with seven rack mounted processing nodes. Each processing node
is a standard PC with a 3.0 GHz Pentium 4 CPU and 2GB of memory.
The processing nodes are clustered with a commercial off the shelf Gigabit
Ethernet infrastructure. The Gigabit switch with the lowest latency of the set
of commercial switches analysed was chosen. A 24-port network switch was
chosen to support the connection of OIL and HIL systems and for potential
future expansion of the cluster.

With the custom simulation communication layer and simulator architec-
ture, but commodity hardware, the cluster may be classified as a cost-effective
class 1 Beowulf cluster running Windows XP sp2 as the operating system.

7.1.3 Characterisation of the TCP Gigabit Ethernet
Infrastructure

The performance of the current Gigabit Ethernet network infrastructure is
characterised. The characterisation is done between two of the processing
nodes—A and B—connected with TCP and using the same message structure
that was used in the initial client-server tests. The messaging architecture
is also similar to what is used in the current simulator architecture. Each
message has a 4 byte header which contains the message size and is followed
by the message payload. This message structure necessitates that the receiver
reads the message header first to get the payload size. The message’s actual

102 CHAPTER 7. PERFORMANCE RESULTS AND ANALYSIS

Figure 7.4: Bandwidth to Message Size Trade-Off of a TCP Communication
Channel

payload is then read as soon as the entire payload has arrived in the TCP
read buffer.

The characterisation results were arrived at by sending a message from
node A to B. Once B has received the message it is bounced back to A.
Before sending another message, A waits until it has received the previous
message back. For this experiment A starts with a small message size and
incrementally increases the size of the message by 100 bytes until a maximum
of 7 kBytes at which point the experiment ends.

To get good statistical results, for each message size, the messages per
second value (i.e. performance) is derived by measuring the time taken to
transmit 1000 messages. Figure 7.3 shows A’s sent messages per second
throughput against message size. Figure 7.4 shows the related bandwidth—
also only measuring the sent messages from A—against message size.

The performance of the differently sized messages show good local sim-
ilarity in that the performance results of one message size to the next is
always very similar. Due to this local similarity the results are expected
to be a fairly good statistical sample—containing little noise. The trend
of the performance graphs is therefore expected to be due to the operation
and implementation of the TCP stack—possibly the flow and congestion
control—and the Ethernet hardware.

It should be noted that the round trip test was specifically set up to
characterise single message times. Sending bursts of messages would have
similar bandwidth performance to sending larger messages since, for example,
a second and third message in a burst may potentially be concatenated to the
first and be sent before the response on the first message is received back.
However, communication patterns such as request-reply and those within

7.1. INITIAL MESSAGING EXPERIMENTS AND RESULTS 103

coupled component networks can in general not take advantage of this for all
message types.

The goal of the TCP messaging layer of the discrete time simulator now
comes down to transporting a certain number of messages per simulation
frame between the processing nodes. Figure 7.3 shows that to reach a certain
number of messages per second the message size cannot exceed a certain
value. The figure also shows that the messages per second throughput of a
node has an upper limit irrespective of the message size. This upper limit
is about 4100 messages per second—or just 41 messages equally spaced over
the 100Hz simulation frame. This presents a very hard scalability ceiling and
is imposed by the communication hardware in use.

In both Figure 7.3 and Figure 7.4 the dotted line graph shows the res-
ults with the TCP Nagle algorithm enabled, while the solid line graph shows
the results with the Nagle algorithm disabled. As mentioned in the previ-
ous chapter, the Nagle algorithm caches short messages to be sent once a
TCP packet is filled or once a certain time out is reached. The TCP packet
size is 1.5kByte. It is only once packet sizes exceed this threshold that the
TCP connection with the Nagle algorithm enabled starts having significant
throughput. This is the reason why the Nagle algorithm is disabled in the
current simulator. The drawback of disabling the Nagle algorithm is that
poorer bandwidth efficiency results for bursts of individual small messages
due to the TCP, IP and Ethernet package header overhead. The simulator
may however take control of message grouping—and in fact does so—to over-
come this drawback.

7.1.4 Initial Peer-to-Peer Scalability Test

A second set of scalability performance tests was also done on the current
discrete time simulator. Instances of a test model were distributed over 1 to
7 processing nodes. The instances were fully connected with one another—
i.e. the output of each test model was connected to the input of every other
model. The number of objects per node were limited so that system execution
performance is always just within real-time. The details are described by
Duvenhage and Kourie[51], but the main result is shown in Figure 7.5.

Two graphs appear in the top part of Figure 7.5. For each of a given
number of processing nodes ranging from 1 to 7, the bottom graph indicates
the maximum number of objects per node that still achieve real-time execu-
tion and the top graph indicates the resulting total number of objects in the
cluster. The solid lines show actual measured data and the dashed lines show
an extrapolation of the measured data beyond 7 nodes.

104 CHAPTER 7. PERFORMANCE RESULTS AND ANALYSIS

Figure 7.5: Number of objects and resulting performance multiplier against
the number of processing nodes[51]

7.2. BENCHMARK SCENARIOS, EXPERIMENTS AND RESULTS 105

The measured maximum objects per node showed that, to add a node,
the number of processes per node had to be, on average, decreased by 0.5
to still stay within real-time performance. This trend is stepwise linearly
extrapolated—i.e. a decrease of 1 object per node for every two nodes
added—to sixteen nodes under a simple assumption based on Amdahl’s
law[48] and the sequential nature of each node’s communication channel1.
The extrapolation of the objects per node results in the extrapolated total
objects trend shown. The step-like nature on the total objects trend is due
to the objects per node being equal across all nodes and also the stepwise
extrapolation of the objects per node trend which is believed to be realistic.

The graph in the bottom part of Figure 7.5 shows the resulting so-called
performance multiplier (also called the parallelisation speed-up) of the sim-
ulator for each distribution size. The parallelisation speed-up is defined by
Wilkenson and Allen[52] to be

S(p) =
Execution time using single processor system

Execution time using a multiprocessor with p processors
.

For this arrangement of test objects (i.e. where model instances were fully
connected with one another), a maximum parallelisation speed-up of 5.5 to 6
times is attained. This maximum parallelisation speed-up is reached on 9 to
11 nodes—adding more processing nodes would decrease performance, due
to the added communication and time management overhead.

7.2 Benchmark Scenarios, Experiments and

Results

The benchmark scenarios’ building blocks were identified in Chapter 5. It
was suggested there that the scale of each benchmark scenario finally be
measured on the number of FUs in the scenario. Table 7.1 shows the list of
objects in two of the smaller benchmark scenarios. The graph resulting from
plotting the parallelisation speed-up against the number of nodes is expected
to follow the same trend as the result of the initial synthetic test shown in
Figure 7.5. The version of the discrete time architecture used was version
194 (8 June 2006; According to the root History.txt).

As already mentioned within Chapter 5 the model instances are currently
distributed across the processing nodes in a random fashion, but assigning an
equal number of objects to each node. The static load balancing experiments

1Amdahl’s law states that: The speed-up of a program using multiple processors in
parallel is limited by the sequential fraction of the program.

106 CHAPTER 7. PERFORMANCE RESULTS AND ANALYSIS

Table 7.1: List of Objects in Two of the Smaller Benchmark Scenarios

Scenario A Scenario B

AIR PICTURE BOX AIR PICTURE BOX

TEWA BOX TEWA BOX

OIL OIL

PERFECT DR1 PERFECT DR1

Gun1 Barrel1 Gun1 Barrel1

Gun1 Barrel2 Gun1 Barrel2

GFCS1 GFCS1

PERFECT TR1 PERFECT TR1

- Gun2 Barrel1

- Gun2 Barrel2

- GFCS2

- PERFECT TR2

Target Waypath1 Target Waypath1

Target Waypath2 Target Waypath2

- Target Waypath3

- Target Waypath4

done by Duvenhage and Nel [49] indicate that a random distribution of a typ-
ical GBADS scenario comes, on average, within 85% of the best performing
distribution.

However, in the analysis of the proposed hybrid modelling approach, to
be discussed in Part III, the value of intelligently grouping the model in-
stances into aggregated model types according to subsystems of systems will
be demonstrated. (Model instances will be grouped into Fire Units (FUs),
for example.) For this reason, the analysis of the current architecture is
also done with objects being logically grouped into FUs before being distrib-
uted. The objects in the first 8 rows of Table 7.1 are typically instances of
very computationally intensive models. These objects were placed on a pro-
cessing node of their own to ensure that enough processing power is available
to prevent them from causing a processing bottleneck. The FUs within each
scenario are then distributed randomly to the remaining processing nodes.

The analysis of the benchmark scenarios was carried out with the con-
tained objects distributed over 1 to 11 similar processing nodes. The first
7 processing nodes were located in the cabinet shown in Figure 7.2 and an
additional 4 processing nodes were set up in the laboratory—directly connec-
ted to the cabinets 24-port network switch—for the purpose of these tests.

7.2. BENCHMARK SCENARIOS, EXPERIMENTS AND RESULTS 107

Figure 7.6: Measured Maximum Scenario Sizes for Real-Time Execution

The number of FUs that were allocated per node was set up to keep the
distributed execution performance to just within real-time. Note, however,
that in all experiments, whenever a scenario was amended by adding an FU,
two additional targets were also inserted into the scenario as discussed in
Section 5.2.

This resulted in the number of FUs against number of nodes real-time
performance graph shown in Figure 7.6. The number of FUs per node across
all the nodes were kept as similar as possible when adding FUs to each
distribution. A maximum number of 16 FUs could be executed in real-time.
This was achieved over 8 processing nodes. Using an FU count above the
real-time performance line would result in slower than real-time performance
and using an FU count below the real-time performance line would result in
a faster than real-time performance.

The execution time of a scenario is however not linearly related to the
number of FUs. The execution times for scenario sizes of 0 to 27 FUs were
measured on a single processing node. These measured times were scaled by
the duration of the scenario in simulation time to determine the so-called
computational load of each scenario—i.e.

ComputationalLoad =
Execution time of the scenario on a single node

Duration of scenario in simulation time
.

Figure 7.7 shows the results obtained. See Section 2.2.5 for a discussion of
simulation time.

108 CHAPTER 7. PERFORMANCE RESULTS AND ANALYSIS

Curve fitting on the data obtained suggests the following approximate
relationship between computational load and number of FUs in a scenario::

ComputationalLoad =

(

FuCount

8.11

)2

.

This means that a node loaded with a scenario of 8 FUs runs the given
scenario approximately in real-time; a node loaded with a scenario of 16
FUs runs approximately 4 times slower than real-time; a node loaded with
a scenario of 4 FUs runs approximately 4 times faster than the real-time
requirement; etc. The quadratic nature of the relation is plausibly explained
by the following: increasing a scenario by one unit means adding an FU and
two targets—see Section 5.2; furthermore each FU in a scenario is required to
process all the targets in the scenario. In effect, in a scenario of n FUs, these
n FUs process 2n targets resulting in a performance relation proportional to
2n2.

The computational load value is exactly the parallisation speed-up, S,
that real-time execution of the scenario would require. To see that this is
indeed the case, observe that:

• if a scenario is executing in real-time on p processors, then the duration
of scenario in simulation time exactly corresponds to the scenario’s
execution time using p processors; and

• under these circumstances, the values for parallelisation speed-up and
computational load as defined above, are identical.

It should be noted that the current GBADS simulation capability need never
support more than around 15 FUs during real-time execution. This require-

ment translates to a required parallelisation speed-up of
(

15

8.11

)2
= 3.42.

Using the quadratic computational load relation in Figure 7.7 allows the
computational load, shown in Figure 7.8, of each real-time distribution to be
estimated from the FU load of each distribution in Figure 7.6. Figure 7.8 is
similar to Figure 7.5 in that both depict a performance trend that reaches
a ceiling at a certain number of nodes (about 8 nodes in each case) before
exhibiting decreased performance with increased number of nodes. This sim-
ilarity validates to a certain degree the linear objects per node extrapolation
used to derive Figure 7.5 as discussed in Section 7.1.4. Figure 7.8 shows
that the maximum parallelisation speed-up—the scalability—achievable in
the benchmark scenarios is about 4. Distributions over more than eight
nodes do indeed, as expected from the initial scalability results shown in
Figure 7.5, become less efficient.

7.3. ANALYSIS AND PRELIMINARY CONCLUSIONS 109

Figure 7.7: The Computational Load of Increasing Scenario Sizes

It is possibly important to emphasise here that the maximum parallelisa-
tion speed-up is only applicable to the real-time simulation of a scenario. 11
nodes can indeed handle larger scenarios than 8 nodes—albeit at below real-
time—due to the 11 machines collectively having more memory and hard
disk space for example. The current hardware infrastructure has however
been configured with more than adequate memory and hard disk resources
on each processing node to make the sharing of processor power for real-time
execution the primary concern.

7.3 Analysis and Preliminary Conclusions

Figure 7.8 shows not only the measured scalability performance of the cur-
rent discrete time simulator, but also the theoretical scalability performance
of the ideal distributed simulator. An ideal distributed simulator has a paral-
lelisation speed-up of S(p) = p and an unbounded scalability given an infinite
number of processing nodes. The difference between the current architecture
and the ideal distributed architecture is due to the communication and time
management overhead. The initial synthetic scalability test and the final
benchmark results indicate that the current discrete time architecture does
have a scalability ceiling. For the GBADS benchmark scenarios the scalab-
ility ceiling for real-time execution is a parallelisation speed-up of around 4.
This ceiling is reached on a distribution of eight processing nodes.

Duvenhage and Kourie[51] argue that the scalability ceiling is due to the
sequential communication channel of each processing node. One limit of

110 CHAPTER 7. PERFORMANCE RESULTS AND ANALYSIS

Figure 7.8: The Computational Load of Each Real-Time Distribution vs.
The Computational Load of An Ideal Distributed Architecture

the sequential nature of the communication channel is the 41 message per
simulation frame upper limit identified earlier in this chapter. A second limit
is the bandwidth upper limit of the underlying network technology which is
in the order of 100 Mbytes/sec for Gigabit Ethernet. A question the reader
might ask is whether installing multiple network cards into a PC will improve
the scalability of the simulator.

The answer is: Yes, multiple network cards may be installed into each
PC, effectively connecting each node to its peers with two, three, four or
more disjoint networks. This solution will improve the available bandwidth
between peers by two, three, four or more times, but the number of network
cards that may be installed into a standard PC—especially with a technology
like Gigabit Ethernet that requires a lot of system resources—is often limited
to three or less. The proposed hybrid discrete-event/discrete-time architec-
ture discussed in the next chapter aims instead, drastically to improve the
pattern of use of the sequential communication resources in order to steer
the scalability behaviour towards the ideal distributed simulator case.

Part III

Migrating to a Hybrid
Discrete-Event/Discrete-Time

Modelling Approach and
Simulator

111

Chapter 8

A Hybrid Modelling Approach

This chapter looks at applying a hybrid discrete-event/discrete-time mod-
elling approach to increase the scalability of the current GBADS real-time
simulation capability. In other words this chapter will—given an infinite
supply of processing nodes—attempt to increase the size of scenarios that
will run real-time to beyond the parallelisation speed-up limit of 4 that the
current discrete time architecture was shown to have in Chapter 7.

Based on the technical risk identified in Chapter 3, the hybrid modelling
approach does more than just embed the discrete time models within a dis-
crete event architecture or DEVS BUS-like concept. For the implementation
of the hybrid approach, this chapter revisits:

• the aggregation of,

• inter-object connections and

• time synchronisation between objects

to improve on the scalability of the discrete time simulator. The theoretical
concepts have already been discussed in Chapter 2. In particular, a quantised
system approach to discrete event representation of a dynamical system was
mentioned. It was shown that such an approach is potentially more efficient
than a DTSS (or at the very least, of similar efficiency) both in terms of the
communication overhead and in terms of the model time complexity. It has
also been shown that, in typical synthetic environment scenarios, optimistic
time management has lower overhead than conservative time management.

A restriction of the proposed hybrid architecture is however, as men-
tioned, that the current conservative and discrete time models have to be
reused in an economical way. For this reason, the following restrictions will
be adhered to in the design of the proposed hybrid architecture:

113

114 CHAPTER 8. A HYBRID MODELLING APPROACH

• The internal system specification of each existing model will continue
to be a DTSS, since re-articulating some or all of the models as DEVSs
(or similar) would be prohibitively expensive.

• Conservative time management is kept, since the addition of roll-back
to the current models in support of optimistic time management, im-
plies changes to these models. This would complicate the migration
process and increase its cost.

Beyond the aggregation and enveloping of the sub-system models into
system level models, the migration of the modelling approach will therefore
concentrate on—as discussed in the rest of this chapter—the following two
discrete event aspects for potential application in the proposed hybrid archi-
tecture:

• The discrete event like quantisation of selected discrete time outputs in-
cluding the application of advanced extrapolation such as dead-reckoning,
and

• conservative discrete event time management instead of the current
conservative discrete time time management.

8.1 Aggregation of Sub-System Models

The typical layout of a GBAD system of systems (of sub-systems) deploy-
ment was described in Chapter 5. Most of the current GBADS models are
at the level of GBAD sub-systems of systems, such as the gun or FCS sub-
systems of the FU. These models are typically modelled at a state transition
system specification level or higher. At the GBAD system level the sub-
system models are brought together to create system level models—FUs—at
a coupled system specification level as shown in Figure 8.1. The GBAD
system models are then coupled again to create a GBAD system of systems
level model—the GBADS deployment—also at the coupled component sys-
tem specification level.

The nature of the system of systems simulation experiments typically re-
quires objectives and outcome measures at the GBAD system level—FU level.
In such an experimental frame the output variables of sub-systems within
the GBAD system level coupled component models (the system structural
knowledge) is hidden from the simulation analyst. It is therefore argued that
access to the output variables of sub-system models—the system structural
knowledge—is superfluous when analysing only the system level outputs. An

8.1. AGGREGATION OF SUB-SYSTEM MODELS 115

Figure 8.1: Double Structure Level of Discrete Time Simulator

Figure 8.2: Double Structure Level of Discrete Time Simulator with Aggreg-
ation Wrapper Indicated

aggregated structure for the GBADS simulator with the superfluous struc-
tural knowledge hidden in a wrapper is shown in Figure 8.2. The quantised
discrete event nature of the wrapper will be discussed in the next section.

It should be noted that the same sequential communication components
that were shown to exist in the discrete time simulator also exist in a discrete
event simulator. The aim is however to avoid activating these sequential
components unnecessarily. Aggregation of the DTSS models is the act of
explicitly hiding the double layer of intermediate GBAD system structural
information within a discrete event model. The new GBAD system level
discrete event model—the aggregated FU—is then a state transition system
specification envelope which shields the model interconnect infrastructure
from the communication overhead of the internal structure.

This aggregation of GBAD sub-system models into system level models
has already logically been done in anticipation of the discrete event envelop-
ing during the analysis of the discrete time architecture. This was done to be

116 CHAPTER 8. A HYBRID MODELLING APPROACH

Figure 8.3: UML Component Diagrams (nested within their deployment
diagrams) of the building blocks of a GBAD system of systems deployment

able to compare the scalability of the discrete time simulator with the scalab-
ility of the proposed discrete event simulator using similar GBADS scenarios
in both. Figure 8.3—a reproduction of Figure 5.5—shows the UML compon-
ent diagram of the aggregated system levels GBADS building blocks. The
use dependencies—indicated by the dashed arrows—between system level
building blocks indicate communication paths that could potentially result
in network communication.

8.2. OUTPUT QUANTISERS AND QUANTISED INTEGRATORS 117

8.2 Output Quantisers and Quantised Integ-

rators

In the previous section, aggregation was proposed to remove some of the in-
ternal FU communication overhead from the system model. The remaining
system level communication—use dependencies—can be classified into two
types: events (be it voice network events or data); and state-like information
such as platform position, velocity and orientation. Events are already quant-
ised. However, the discrete time state information—discrete time sampling
of what would in reality be a continuous variable—may often be quantised
further.

The approach followed is to wrap the aggregated system level models
in discrete event envelopes, as was mentioned at the end of Section 2.4.1.
Below, a discussion is provided of how an output quantiser and quantised
integrator pair is used to connect each discrete time output to be quantised
to each of its neighbouring inputs. More advanced second-order quantiser
and integrator pairs may be used for outputs describing bodies in motion
that have gravitational and other—possibly time varying—forces acting on
them. Dead-reckoning—sometimes referred to as active quantisation—is also
discussed.

Zeigler[27] and Zeigler et al.[15] define a Quantised System (QS) as having
the same behaviour as a system—discrete time or continuous—sandwiched
between input and output quantisers. According to Kofman et al. [21] a
Quantised State System (QSS) is differentiated from a QS by the quantisa-
tion being performed using hysteresis. The hysteresis acts on the thresholds
that define the triggers of significant events in order to ensure that a newly
quantised dynamical system may be represented by a DEVS model[21]. Hys-
teresis has the effect of delaying the reversal of an event, limiting each event
to represent a change during a finite time interval. A time discretised dy-
namical system has the required hysteresis for DEVS representation.

Additional discussions on the theory of quantised systems and related
topics may be found in [19, 20, 26, 53, 21, 22, 23]. All of these resources also
make note of the efficiency of a quantised system approach to the discrete
event representation of a dynamical system.

8.2.1 Output Quantiser and Quantised Integrator Pairs

The primary goal of quantisation is to lower communication bandwidth us-
age. To accomplish this a model’s inputs are fitted with quantised integrators
and their outputs with quantisers to create a QS. Each communication chan-

118 CHAPTER 8. A HYBRID MODELLING APPROACH

Figure 8.4: A signal modelled time discretised, then quantised and recon-
structed by means of a QQIP

nel between a sender and a receiver of information is therefore fitted with
a Quantiser and Quantised Integrator Pair (QQIP). A signal, time discret-
ised and then quantised and reconstructed by means of a QQIP is shown in
Figure 8.4.

The baseline for quantisation is what is called non-predictive quantisation.
In the most basic case the quantiser uses pre-setup quantum boundaries that
trigger boundary crossing events. The quantised integrator then reconstructs
the input to a piecewise constant value. This type of reconstruction is ad-
equate for discrete time sampled input.

Predictive quantisation[19][27] may be employed to further optimise a
discrete event model’s time complexity. Applying predictive filtering should
therefore be considered in future when developing discrete event and DEVS
models, but will not be discussed further here.

8.2.2 Dead-Reckoning

The goal of the dead-reckoning technique is to trade accuracy for lower com-
munication bandwidth usage. This is, of course, similar to quantisation.
However, dead-reckoning attains its goal in a smarter active way. Dead-
reckoning is usually applied in the quantisation of the position—and possibly
its velocity and acceleration—of a body in inertial or non-inertial motion.

8.2. OUTPUT QUANTISERS AND QUANTISED INTEGRATORS 119

The main difference from basic quantisation is that the quantised integ-
rator also receives the algorithm to reconstruct/predict the input—to the
quantiser—in between update events.

The dead-reckoning QQIP may apply a first order quantisation for follow-
ing first order changes to a variable. An example is a body of mass following
an inertial path. Second order quantisation may be applied for description
of a body of mass under the influence of constant or time varying forces.
One such an example is a ballistic munition that has a certain initial muzzle
velocity and then gravity and drag forces act on it throughout its flight,
giving it a curved ballistic path. Second order QQIPs is often used in the
dead-reckoning.

An aircraft—for example—will, along with its position, make known to
the radar how to best predict its path of motion up to x seconds into the
future. The radar may then calculate for itself the aircraft’s position as
frequently as required. The aircraft will however keep track of where the
radar thinks the aircraft is, as the aircraft knows what prediction algorithm
the radar is using. As soon as the aircraft’s actual and predicted positions
are outside a predefined error boundary of each other, the prediction at the
receiver has become stale. Once this happens the aircraft actively refreshes
its current position and prediction method to the radar—the aircraft sends
a path update event. Both the original discrete time sampling and also the
dead-reckoning error threshold result in the required hysteresis in generating
quantised events to ensure a valid DEVS model.

In the process of correcting the error between the predicted and actual
aircraft state, a path update event may possibly cause a discontinuity—a
jump—in the aircraft’s position or its time derivatives at the receiver. The
first time derivative of position is velocity, for example. Such a discontinuity
may be tolerated by the receiver’s model of the world or may be hidden
from the receiver by a continuous—to any number of derivatives—transition
between the stale path and the freshly predicted one. The aircraft’s path
update events to ALL subscribers may be synchronised if the error threshold
is the same for all subscribers.

8.2.3 Implications of Quantisation

Quantisation lowers communication bandwidth and potentially model time
complexity at the price of a potential increase in the accumulated error of the
simulation. Zeigler[27] and Zeigler et al.[15] have derived the upper bound
on the accumulated error of closed loop DTSS simulation and also closed
loop quantised DEVS simulation from the theory of quantised systems. The
same accumulated error results have also been arrived at experimentally by

120 CHAPTER 8. A HYBRID MODELLING APPROACH

Zeigler et al.[54] and Wainer and Zeigler[53], among others, who have done
a cost/benefit analyses of reduced communication bandwidth and increased
error due to quantisation.

The currently existing discrete time models have been conceptualised and
developed with high resolution discrete time management in mind. Many of
the models have therefore been validated within the 100Hz frame rate of the
discrete time simulator. This makes them particularly sensitive to the errors
introduced by QQIPs.

Many of the sensor models, for example, were built and evolved to rely on
a 100Hz target update rate. The models of the tracking filters within each
sensor were, as mentioned in the introduction, based on actual engineering
text book and numerical method solutions. The 100Hz target data made it
possible to build these types of real world solutions instead of the often more
daunting behavioural solutions.

For the purpose of this dissertation the quantum levels that will be used
for the quantisation as well as the threshold values for the dead-reckoning path
update events will—as far as possible—be made equal to the quantum levels
that were implicit in the discrete time execution of the models. The high
level behaviour and selected outcome measures of the benchmark scenarios
will be compared to the discrete time execution results to assess the impact
of quantisation on the simulation outcome, but an accurate measure of the
per model and total accumulated error for different quanta is left for future
work. Choosing the quantum levels as discussed above can potentially result
in quanta that are smaller than required which would in turn result in a
sub-optimal bandwidth improvement. The nominated future work would
improve on the optimal choice of quanta for the different communication
channels and therefore optimise the bandwidth usage. It is important to
note that the migration process to a real-time architecture should be driven
by the requirement to achieve the same accuracy as before, but to do it with
greater efficiency.

According to the DEVS literature, the computational time complexity
of quantisation and quantised integration is also relatively small[15]. The
quantisation time complexity overhead for the hybrid simulator is therefore
assumed to be negligible.

8.3. EFFICIENT DISCRETE EVENT TIME MANAGEMENT 121

8.3 Efficient Discrete Event Time Manage-

ment

The current discrete time simulator uses a conservative time management
approach that enforces causality in 100Hz time slots. Within the aggregated
discrete event modelling approach a more efficient conservative time manage-
ment algorithm may be possible. Null-messages with look-ahead—discussed
in Section 2.4.2—is the obvious candidate for the discrete event conservative
time management.

The reason why null-message time management is advantageous is be-
cause of its potential to be more efficient than discrete time management.
To accomplish this does however require accurate lookahead times.

Fujimoto says on page 87 of [10] that development of a simulation and
its models is affected if it is known ahead of time that accurate lookahead
is important. The modelling assumptions are then specifically developed
to be able to give better look-ahead times. The reverse also follows: that
attempting to add lookahead to the existing discrete time simulation and
models will result in a simulation that potentially has a shorter lookahead
capability than possible within the chosen experimental frame. If this is the
case, the null-message overhead will be far from optimal because the efficiency
of null-messages is, as discussed, dependent on the lookahead times.

In the current situation, migrating to a null-message time management
approach has an additional disadvantage. Many of the existing models already
have event-like interactions with each other. If the time management is mi-
grated away from the current discrete time approach then many more models
will have to be updated than the ones identified for output quantisation.

Fujimoto [10] gives a further two disadvantages of using time management
that relies on lookahead predictions:

• Changing the model slightly or adding new components may severely
impact the lookahead calculations and therefore the simulation per-
formance.

• The drive to be able to produce accurate lookahead times also makes
the modelling effort somewhat dependent on the simulator architecture.
This, in general, causes migration difficulties.

The cost for efficiently implementing null-message with lookahead time
management seems prohibitive. For the purpose of migration to and the
analysis of the hybrid architecture the discrete time conservative time man-
agement is therefore kept. This allows the models to only be adapted as
required for quantisation purposes. Additionally, the discrete time frame

122 CHAPTER 8. A HYBRID MODELLING APPROACH

provides a controlled signal to sample efficiently the input of the quantised
integrator for potential path update events.

8.4 Implementation for Running the Bench-

mark Scenarios

The current discrete time architecture was modified to contain quantised
discrete event inputs and outputs to selected models. The discrete time and
conservative time management aspects of the architecture is kept as explained
in the previous section. This migration step towards a DEVS simulator
is therefore similar to a quantised DTSS modelling approach, discussed in
Section 16.4 of Zeigler et al. The quantised DTSS modelling approach has
similar advantages to the DEVS modelling approach—compared to standard
DTSS—in terms of communication overhead. Quantised DTSS does however
not have the model time complexity advantages and accuracy of quantised
DEVS for the same quantum size.

The aggregation boundary of each GBAD system level model—such as the
FU—was kept a logical one as explained in Section 8.1. The state transition
discrete event envelope around each GBAD system level model is therefore
also a logical one, being set up by the aggregation of each GBAD system
level model. The sub-system model inputs and outputs that are on the
boundary of the envelope—such as the FU’s launcher and munition input
use dependency or the TEWA&FCO’s designation sensor output shown in
Figure 8.3—were candidates for quantisation. The communication overhead
between GBAD sub-system level models—within an FU building block for
example—that are located on the same processing node is minimal. This is
due to such communication basically being a memory access.

The only use dependencies—indicated by the dashed UML arrows in Fig-
ure 8.3—that are chosen for application of QQIPs are the dependencies on
the radar state output, the air-picture output and the target model out-
put. These are the dependencies that require the high time resolution state
information links between the aggregated system level models. The target
flight profiles were defined as straight and level. This allowed—for analysis
purposes—a simple piecewise constant QQIP to be applied to each dimension
of the position, velocity and orientation of the state information, but with
position extrapolated by the velocity in between path update events. The
quantised path update events are generated at a fixed 10Hz and reconstructed
at the quantised integrator—receiver—side. The reduction of the informa-
tion update rate from 100Hz to 10Hz allows the quantised use dependencies

8.5. IN SUMMARY 123

to only use 10% of the bandwith of the unquantised use dependencies.

8.5 In Summary

This chapter looked at applying a hybrid discrete-event/discrete-time mod-
elling approach to increase the scalability of the current GBADS real-time
simulation capability. The two aspects finally addressed were:

• The aggregation of the GBADS sub-system level models into system
level models such as FUs and

• the quantisation of selected use dependencies between the aggregate
models.

Figure 8.3 shows the UML component diagram of the aggregated sys-
tem levels GBADS building blocks. The use dependencies—indicated by the
dashed line arrows—between the system level building blocks indicate the
communication paths that could potentially result in network communication
between processing nodes. Piecewise constant QQIPs were finally applied to
the inter-building-block use dependencies for the experimentation with and
analysis of the hybrid architecture. The results of this experimentation and
analysis are reported on in the next chapter.

Chapter 9

Hybrid Simulator Analysis and
Results

This chapter analyses the new hybrid modelling approach and simulator, and
then presents the performance results and some preliminary conclusions. The
high level behaviour and time-line of the scenarios will be compared across
the discrete time and hybrid simulators. The number of targets shot down
will also be compared across the simulators for basic validation purposes.

9.1 Benchmark Experiment Results

The benchmark scenarios are exactly the same scenarios that were used in
Chapter 7. As before, the time taken to run a scenario on a single node is
related to the number of FUs in that scenario approximately by a factor of
(

FuCount
8.11

)2
, referred to as the scenario’s computational load. This means that

a node loaded with a scenario of 8 FUs runs the given scenario approximately
in real-time; a node loaded with a scenario of 16 FUs runs approximately 4
times slower than real-time; a node loaded with a scenario of 4 FUs runs
approximately 4 times faster than the real-time requirement; etc.

The computational load—which is also the parallelisation speed-up values
required for real-time execution of these scenarios—of various FU counts,
are therefore reflected by the same graph found in Chapter 7. This graph is
reproduced here as Figure 9.1 for ease of reference.

The measured maximum number of FUs that could execute at real-time
on various distribution sizes was measured as before. The results, shown
in Figure 9.2, are however different from what was found for the discrete
time simulator, shown in Figure 7.6. Unlike the real-time FU results of the
discrete time simulator, the results of the hybrid architecture show no signs of

125

126 CHAPTER 9. HYBRID SIMULATOR ANALYSIS AND RESULTS

Figure 9.1: The Computational Load of Increasing Scenario Sizes

an upper bound on the number of real-time FUs for at least the 11 processing
nodes available for the experiment. In fact, it is possible to fit a curve of the
form Number of FUs = k

√
Number of Nodes − x0 to the measured data

which, if accurate, has no upper limit.
Again using the quadratic computational load relation shown in Fig-

ure 9.1, allows the parallelisation speed-up—a.k.a. the computational load—
of each real-time distribution to be calculated. The resulting parallelisa-
tion speed-up performance of the hybrid simulator is shown in Figure 9.3.
Note that a parallelisation speed-up ceiling could not be found—see the next
section—over the 11 processing nodes that were available.

Also note that from Figure 9.1 it seems as if beyond scenario sizes of
approximately 27 FUs, the computational load to FU gradient will rise above
45 degrees. This may be gauged from the 45 degree gradient line drawn in
the figure. Beyond a gradient of 45 degrees at least one FU—and potentially
every FU—has a computational load above one. The implications of this are
discussed in the next section.

9.1. BENCHMARK EXPERIMENT RESULTS 127

Figure 9.2: Measured Maximum Scenario Sizes for Real-Time Execution

Figure 9.3: The Computational Load of Each Real-Time Distribution vs.
The Computational Load of An Ideal Distributed Architecture

128 CHAPTER 9. HYBRID SIMULATOR ANALYSIS AND RESULTS

9.2 Analysis and Preliminary Conclusions

Figure 9.3 shows that the hybrid simulator’s performance does indeed ap-
proach that of the ideal distributed simulator. This is the case up to at least
the 11 processing nodes available for the experiment. The maximum meas-
ured parallelisation speed-up is therefore approximately 9.5, but with no sign
of a turning point or scalability ceiling.

The high level behaviour and time-line of the scenarios executed on the
hybrid simulator were validated against that of the results of the discrete
time simulator. The number of targets killed also agreed between the two
simulators allowing a very basic validation of the quantisation approach.

It was mentioned at the end of the previous section that beyond scenario
sizes of approximately 27 FUs, more than one processing node would have to
be added for each additional FU to still support real-time execution. This is
rather important as it implies that one or more FUs would have to be split up
and distributed over multiple processing nodes. Splitting an FU up into its
parts will introduce a tear into the discrete event envelope constructed around
each FU—discussed in the previous chapter. This is expected to change the
parallelisation speed-up results somewhat for scenarios larger than the ones
currently analysed. It in fact points to a potential new stumbling block
when migrating to GBADS scenarios that require a parallelisation speed-up
of above 11.

Part IV

Conclusion, Future Work and
Final Remarks

129

Chapter 10

Conclusion

Distributed simulation is fast becoming the trend in simulation due to the
advantages of sharing simulation resources across large distances and the po-
tential parallelisation speed-up that distributed parallel simulation offers. A
disadvantage of distribution is of coarse, that instead of only having a trade-
off between accuracy and time complexity—as is the case with single machine
numerical methods solutions—a trade-off between accuracy and communica-
tion bandwidth also exists.

The Discrete Time Simulator

The current distributed discrete time architecture was shown to be capable of
providing a real-time GBADS simulation capability by meeting the 15 FU—a
parallelisation speed-up of 3.42—requirement of a typical large GBADS scen-
ario. The analysis results did however also reveal that the architecture has
a maximum parallelisation speed-up of approximately 4—even when given
an infinite supply of processing nodes. The goal of this dissertation was to
overcome this scalability ceiling of 4 as it is just beyond the current use of the
simulator—a little too close for comfort. The goal had to be accomplished
within the constraint of re-using the existing models, though.

Theory of Modelling and Simulation

The M&S framework, principles and theory presented in Chapter 2 were ap-
plied in the description and analysis of the current discrete time architecture.
This made possible the application of existing theories and conjectures from
the M&S community. The current discrete time architecture’s scalability
ceiling was accordingly argued to be due to the high time resolution dis-
crete time approach followed when originally developing the GBAD system
of systems (and sub-systems) models.

131

132 CHAPTER 10. CONCLUSION

It was also shown and mentioned throughout the dissertation that us-
ing a discrete event representation of a discrete time system is potentially
more efficient than a DTSS—or, at the very least, of similar efficiency. To
overcome the scalability ceiling of the current architecture it was therefore
proposed to incorporate the advantages of a DEVS into a new hybrid discrete-
event/discrete-time simulator. Chapter 3 has however raised some risks in
the direct migration to a discrete event interoperability architecture such as
HLA. Simply embedding the discrete time models within a discrete event ar-
chitecture was shown to still bring about a technical risk in maintaining the
discrete time simulator’s high real-time frame rate in distributions beyond
a few processing nodes. Also, re-articulating the GBAD system of systems
models in a DEVS presents an economic risk.

The Hybrid Discrete-Event/Discrete-Time Simulator

The economic risk of using an interoperability standard results from the
fact that there is currently no national interoperability drive. It remains an
issue to be addressed when wanting to apply or migrate to an interoperability
standard such as HLA or DIS and some references on various approaches have
been included. The cost of re-articulating existing models from their DTSS
to a DEVS to fully exploit the advantages of DEVS in a hybrid simulator
is also prohibitively high. To mitigate this risk, a custom hybrid discrete-
event/discrete-time architecture is applied and the existing models are not
re-articulated in a DEVS, but rather aggregated and wrapped in discrete
event envelopes. The technical risk of embedding the high frame rate discrete
time models in discrete event envelopes, for distributions beyond a few nodes,
are addressed by applying a quantised system approach in the discrete event
representation of the envelope interfaces.

The proposed hybrid architecture was implemented, analysed and shown
to have a parallelisation speed-up of approximately 9.5 for distributions over
the 11 processing nodes available. A graph of the parallelisation speed-up is
shown in Figure 9.3. A turning point in the parallelisation speed-up could
not be established over only 11 nodes. It is therefore estimated that the
parallelisation speed-up of the proposed architecture may be increased bey-
ond 9.5 for distributions over more than 11 processing nodes and therefore
that the scalability is 9.5 or higher. Figure 9.3 also shows the parallelisation
speed-up of an ideal distributed simulator. Notice that the hybrid simulator
approaches the performance of the ideal distributed simulator much better
than the current discrete time simulator analysed in Chapter 7. This is due
to the network bandwidth requirement being sufficiently reduced. As a res-
ult, the architecture is processor limited as in the ideal distributed simulator

133

case.

The Next Parallelisation Speed-Up Stumbling Block

It has however been noticed that, for scenario sizes requiring a parallelisation
speed-up of above 11, the GBAD system level aggregation can no longer be
applied. This is due to the quadratic nature of the computational load of a
scenario which implies that at some point the computational load of a single
system level model—such as an FU—will be larger than one and will in itself
require multiple processing nodes to keep up to real-time. It indicates to the
potential existence of a new stumbling block for the real-time execution of
very large scale scenarios—above 27 FUs—where:

• System level models will have to be split up again into their composing
sub-system models—re-exposing to the communication infrastructure
the model detail that was hidden in the discrete event envelopes—and

• sub-system models will possibly have to be split up further into sub-
systems of sub-systems—exposing even more model detail to the com-
munication infrastructure.

Evaluation of UML and CSP

It is the author’s opinion that UML and CSP were both useful in the rep-
resentation of the different aspects of the GBADS model and the simulator
architectures. The UML diagrams offered a comprehensive way to under-
stand and visually communicate the GBAD system, simulation capability
and selected aspects of the simulator architectures. The mathematical and
executable nature of CSP was in turn found very useful for representing spe-
cifically the simulator architectures. Using a CSP-compatible tool it was
possible to automatically prove that the discrete time simulator is deadlock
free.

Hardware Infrastructure Upgrades

From the analysis results, some conclusions may be drawn on the poten-
tial value in terms of the resulting performance increases when upgrading
different aspects of the hardware infrastructure. When the CPUs of the cur-
rent discrete time architecture’s processing nodes are upgraded—say to twice
the processing power—the communication infrastructure will still limit the
scalability of the architecture and the new processors will sit idle, waiting for

134 CHAPTER 10. CONCLUSION

network data. The maximum parallelisation speed-up would in actual fact
decrease, as double the work could then be done on a single node while the
distributed execution performance would not be significantly affected.

Upgrading the communication infrastructure—on the other hand—will
have the effect of lowering the communication overhead and could potentially
increase the scalability of the current discrete time and proposed hybrid ar-
chitectures. Looking at the matter slightly differently: If the parallelisation
speed-up of the simulator resembles that of the ideal distributed simulator—
S(p) = p shown in Figure 7.8 and Figure 9.3—then the communication over-
head is small and upgrading the processing nodes’ CPUs will have greatest
effect. If the trend of the parallelisation speed-up resembles that of the
current discrete time simulator—a bounded S(p) as shown in Figure 7.8—
then upgrading the communication infrastructure will potentially have the
greatest effect.

Migrating to a simulator architecture that has more ideal performance
therefore has the additional advantage: namely, that then upgrading the in-
frastructure’s CPUs will be a relatively inexpensive way of further improving
simulator scalability, compared to upgrading to a new networking technology.

How To Do Simulation

A quantised discrete event approach to modelling has been shown to offer ad-
vantages in terms of time complexity of the model. The quantised approach
has, however, had a significant impact on the scalability of the distributed
GBADS simulator. This is due to the optimised use of the communication
bandwidth between distributed nodes. Such an impact in applying the the-
ory of modelling and simulation clearly indicates that the study of numerical
methods for potential application to simulation is only one of the steps to-
wards the study of how to do simulation.

Further Advantages of the New Hybrid Architecture

This work will create new opportunities within the SANDF simulation cap-
ability to potentially move to very large scale simulation environments and
secondly interoperate these environment with other simulation communit-
ies. The interoperation with other simulators and simulation communities is
facilitated by:

• The addition of discrete event communication capability,

• improved scalability has the side affect of allowing the use of lower
bandwidth connections such as telephone lines, and

135

• this dissertation, which makes clear the common language and M&S
framework used by the global military simulation community which is
essential for interoperation.

Chapter 11

Future Work

Migrating To A New System Specification

The proposed hybrid simulator still employs discrete time models as per
requirement to reuse existing models. This does however mean that the time
complexity of the models and therefore the efficiency and scalability of the
simulator will increase as the discrete time models are internally migrated to
quantised discrete event modelling approaches. Researching a cost effective
way of doing such a migration to a new system specification could lead to
further increases in the simulator’s scalability in future.

Inclusion of Pure DEVS Models

The migration to a new model system specification may be done for all the
models in one re-articulation sweep or it may be done only for new and exist-
ing models that would have a significant impact on simulation performance.
The current implementation of the hybrid simulator that was used for the
benchmark tests in Chapter 9 did however reuse the internal discrete time
management approach of the discrete time simulator. This was done for ease
of implementation, given that only a small set of the discrete time models
required quantisation and the rest could then be reused without any modific-
ation. This implementation resembles that of quantised DTSS. Future work
could look at the best way to include a pure DEVS model into the currently
discretised time line.

The Closed Loop Error Behaviour

A study has not been done in this dissertation on accurately finding the ac-
cumulated sub-system and system of systems model errors—the closed loop
error behaviour—for different quanta. It has been shown from the literature

137

138 CHAPTER 11. FUTURE WORK

that the error behaviour generally improves with smaller quanta. A study
is required on the smallest quanta for which real-time execution is still pos-
sible. This should be addressed before a final decision is made to migrate
the simulation to the proposed hybrid architecture. It should be noted here,
that the simulation has not in the past, and should not in future, sacrifice ac-
curacy for run-time performance. Maintaining accuracy is required because
the simulation results feed into higher level decisions that rely on a certain
level of predictive accuracy. The mind-set behind migration to a real-time
architecture is to achieve the same accuracy as before, but to do it more
efficiently.

Optimistic Time Management

Optimistic time management has been shown to typically lower the time
management overhead in distributed synthetic environments, compared to
conservative time management. The future inclusion of optimistic time man-
agement would however require considerable changes to many of the GBADS
sub-system models to support the necessary model roll-back mechanisms.
An approach where new models incorporate optimistic time management
and roll-back, but the older models still incorporate conservative time man-
agement could, in future, be investigated to migrate to an optimistic time
management scheme.

Optimistic Time Management of HIL and OIL

HIL and OIL interfaces require a strictly increasing and linear flow of time—
at least within the requirement and perception of the systems and humans
to which they are interfaced. Conservative time management makes possible
such a strictly increasing flow of time, but is—as mentioned—not as efficient
as optimistic time management. Optimistic time management, on the other
hand, may cause causality to be violated. Partaking systems are however
expected to tolerate and aid rolling back of their own state, then fixing and
re-executing the simulation time line. More work is required on incorporating
HIL and OIL capabilities into optimistic discrete event simulations.

Collaborative Modelling and Simulation

Collaborative M&S is another important future research direction. This in-
cludes collaborative model construction, composition and collaborative sim-
ulator environments. To accomplish this it might make sense to get acquain-
ted with DEVS programming extensions such as DEVS-C++ or DEVS-Java

139

which aid in and enforce the use of DEVS concepts and the use of HLA when
developing simulations and their partaking models.

Chapter 12

Dissertation Self Evaluation

The process of studying the Principles, Practice and Theory of Modelling and
simulation and then discussing and analysing the current simulator within
this known framework and body of knowledge has in itself given some hints
on the potential simplicity of the solution to the scalability problem. This,
in itself, is already a giant leap within the development group, as now, in
hindsight, the application of a quantised approach seems to be the obvious
choice.

From the literature, the advantages of a discrete event simulator over
that of a discrete time simulator, specifically in terms of distributed parallel
scalability, were already known and well understood. The problem addressed
in this dissertation, however, focussed on how an existing discrete time sim-
ulator could be migrated to a discrete event specification and discrete event
simulator, to increase its scalability. The value addition of the work described
in this dissertation is therefore in:

• Broadening of the knowledge base and capability of the development
team, and

• providing a case study—accessible to the wider simulation community—
of the advantages of migrating an existing discrete time simulator to
one based on a quantised discrete event modelling approach.

Additionally, the hybrid discrete-event/discrete-time simulator results ob-
tained were very encouraging, approaching performance of the ideal distrib-
uted simulator.
This dissertation followed a research approach of:

• Doing the relevant background study and, in doing so, describing the
current distributed parallel simulator within the newly explored—but

141

142 CHAPTER 12. DISSERTATION SELF EVALUATION

well known within the international military simulation community—
body of knowledge,

• experimenting with, and analysing the current discrete time simulator,

• proposing and implementing a hybrid discrete-event/discrete-time sim-
ulator, and

• experimenting with, and analysing the proposed architecture, leading
to various conclusions and future work proposals.

This approach allowed the successful analysis of the discrete time simulator.
It also made possible the application of existing theorems and corollaries in
researching and implementing the hybrid simulator and also in analysing it
as the solution to the scalability problem.

The experimental procedure that was applied to both the discrete time
simulator and the hybrid simulator made a comparative performance study
possible. The performance analysis may be reproduced on a hardware in-
frastructure similar to the one discussed in chapter 7. This would of coarse
only be possible if a discrete time architecture similar to the one discussed
in Chapter 6 was used.

Bibliography

[1] J. Pretorius. Feasibility considerations for a tailored simulation based
acquisition (SBA) approach. Master’s thesis, University of Pretoria,
Pretoria, South-Africa, 2003.

[2] J. Baird and J. Nel. The evolution of M&S as part of smart acquisition
using the SANDF GBADS programme as an example. In Proceedings of
the 12th European Air Defence Symposium, Shrivenham, England, 2005.

[3] S. Naidoo and J. Nel. Modelling and simulation of a ground based
air defence system and associated tactical doctrine as part of acquisi-
tion support. In Proceedings of the 2006 Fall Simulation Interoperability
Workshop, Orlando, Florida, USA, 2006.

[4] W. le Roux. Implementing a low cost distributed architecture for real-
time behavioural modelling and simulation. In Proceedings of the 2006
European Simulation Interoperability Workshop, Stockholm, Sweden,
2006.

[5] F. Kuhl, R. Weatherley, and J. Dahmann. Creating Computer Simula-
tion Systems: An Introduction to the High Level Architecture. Prentice
Hall, Upper Saddle River, NJ, USA, 1999.

[6] IEEE std 1516-2000, IEEE standard for modelling and simulation
(M&S) high level architecture (HLA)—framework and rules. Technical
report, IEEE, 2000.

[7] IEEE 1516 HLA compliance check list. ht-
tps://www.dmso.mil/public/transition/hla/compliancetesting.

[8] E. Page and R. Smith. Introduction to military training simulation:
A guide for discrete event simulationists. In Proceedings of the 1998
Winter Simulation Conference, Miami, Florida, USA, 1998.

143

144 BIBLIOGRAPHY

[9] S. Straßburger. Distributed Simulation Based on the High Level Archi-
tecture in Civilian Application Domains. SCS Publishing House, Ghent,
Belgium, 2000.

[10] R. Fujimoto. Parallel and Distributed Simulation Systems. Wiley-
Interscience, New York, USA, 2000.

[11] J. Baird and J. Nel. Modelling and simulation in support of the SANDF
GBADS acquisition programme - an update. In Proceedings of the 2007
South African Joint Air Defence Symposium, Pretoria, South Africa,
2007.

[12] A. Duvenhage. A state estimation approach for live aircraft engage-
ment in a C2 simulation environment. In Proceedings of the 2007 Fall
Simulation Interoperability Workshop, Orlando, Florida, USA, 2007.

[13] R. Oosthuizen. Doctrine development during systems acquisition and
the importance of modelling and simulation. In Proceedings of the 12th
European Air Defence Symposium, Shrivenham, England, 2005.

[14] J. Roodt, J. Nel, and R. Oosthuizen. A system-of-systems simulation
architecture for command & control at the joint operations level: Pro-
posed synthesis of a test-bed for development of concepts and doctrine.
In Proceedings of the 2007 Land Warfare Conference, Adelaide, Aus-
tralia, 2007.

[15] B. Zeigler, T. Kim, and H. Praehofer. Theory of Modelling and Sim-
ulation, second edition. Academic Press, San Diego, California, USA,
2000.

[16] S. Taylor, A. Bruzzone, R. Fujimoto, B. Gan, S. Straßburger, and
R. Paul. Distributed simulation and industry: Potentials and pitfalls.
In Proceedings of the 2002 Winter Simulation Conference, San Diego,
California, USA, 2002.

[17] A. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall,
1997.

[18] S. Alhir. Learning UML. O’Reilly & Associates, Inc, California, USA,
2003.

[19] B. Zeigler and J. Lee. Theory of quantized systems: formal basis for
DEVS/HLA distributed simulation environment. In Proceedings of SPIE
- Enabling Technology for Simulation Science II, Orlando, Florida, USA,
1998.

BIBLIOGRAPHY 145

[20] H. Sarjoughian and B. Zeigler. Collaborative modeling: the missing
piece of distributed simulation. In Proceedings of SPIE - The Interna-
tional Society for Optical Engineering, Orlando, Florida, USA, 1999.

[21] E. Kofman, J. Lee, and B. Zeigler. DEVS representation of differential
equation systems: Review of recent advances. In Proceedings of the 2001
European Simulation Symposium, Marseille, France, 2001.

[22] B. Zeigler, M. Jamshidi, and H. Sarjoughian. Robot vs robot:
Biologically-inspired discrete event abstractions for cooperative groups
of simple agents. Festschrift Conference in Honor of John H. Holland,
1999.

[23] J. Nutaro, B. Zeigler, R. Jammalamadaka, and S. Akerkar. Discrete
event solution of gas dynamics within the DEVS framework. Lecture
Notes in Computer Science - Computational Science – ICCS 2003, 2660,
2003.

[24] Y. Kim, J. Kim, and T. Kim. Heterogeneous simulation framework using
DEVS BUS. Simulation, 79(1), 2003.

[25] H. Praehofer. System Theoretic Foundations for Combined Discrete-
Continuous System Simulations. PhD thesis, Johannes Kepler Univer-
sity of Linz, Linz, Austria, 1991.

[26] B. Zeigler, H. Song, T. Kim, and H. Praehofer. DEVS framework for
modelling, simulation, analysis, and design of hybrid systems. Lecture
Notes in Computer Science - Hybrid Systems II, 999, 1995.

[27] B. Zeigler. DEVS theory of quantised systems. Technical report, Uni-
versity of Arizona, Tucson, Arizona, USA, 1998.

[28] G. Klir. Architecture of Systems Problem Solving. Plenum Press, New
York, USA, 1985.

[29] R. Sargent. Verification, validation, and accreditation of simulation
models. In Proceedings of 2000 Winter Simulation Conference, Orlando,
Florida, USA, 2000.

[30] R. Sargent. An expository on verification and validation of simulation
models. In Proceedings of 1985 Winter Simulation Conference, Orlando,
Florida, USA, 1985.

146 BIBLIOGRAPHY

[31] J. Roodt. Modelling and simulation verification, validation and accred-
itation process. Technical report, Council for Scientific and Industrial
Research, Pretoria, South-Africa, 2001.

[32] K. Chandy and J. Misra. Distributed simulation: A case study in design
and verification of distributed programs. IEEE Transactions on Software
Engineering, SE-5(5), 1979.

[33] D. Jefferson and H. Sowizral. Fast concurrent simulation using the time
warp mechanism. In Proceedings of the 1985 SCS Distributed Simulation
Conference, San Diego, California, USA, 1985.

[34] T. McLean and R. Fujimoto. Predictable time management for real-time
distributed simulation. In Proceedings of the Seventeenth Workshop on
Parallel and Distributed Simulation, Atlanta, Georgia, USA, 2003.

[35] J. Magee and J. Kramer. Concurrency: State Models & Java Programs.
John Wiley & Sons, New York, USA, 1999.

[36] R. Fujimoto. Distributed simulation systems. In Proceedings of the 2003
Winter Simulation Conference, New Orleans, Louisiana, USA, 2003.

[37] R. Fujimoto. Parallel and distributed simulation. In Proceedings of the
2001 Winter Simulation Conference, Arlington, Virginia, USA, 2001.

[38] IEEE std 1516.1-2000, IEEE standard for modelling and simulation
(M&S) high level architecture (HLA)—federate interface specification.
Technical report, IEEE, 2000.

[39] IEEE std 1516.2-2000, IEEE standard for modelling and simulation
(M&S) high level architecture (HLA)—object model template (OMT)
specification. Technical report, IEEE, 2000.

[40] IEEE std 1516.3-2003, IEEE recommended practice for high level archi-
tecture (HLA) federation development and execution process (FEDEP).
Technical report, IEEE, 2003.

[41] B. Zeigler, S. Hall, and H. Sarjoughian. Exploiting HLA and DEVS to
promote interoperability and reuse in lockheed’s corporate environment.
Simulation, 73(5), 1999.

[42] M. Ogata, A. Higashide, M. Cammarano, and T. Takagi. RTI per-
formance in the distributed real-time vehicle model simulation in a 3-D
graphical environment. In Proceedings of the 2001 European Simulation
Interoperability Workshop, Harrow, England, 2001.

BIBLIOGRAPHY 147

[43] S. Jolibois, T. Joubert, and H. Wentzler. New HLA based technologies
and methods for an advanced air to air combat simulation. In Proceed-
ings of the 2003 European Simulation Interoperability Workshop, Stock-
holm, Sweden, 2003.

[44] R. Fujimoto and P. Hoare. HLA RTI performance in high speed LAN
environments. In Proceedings of the 1998 Fall Simulation Interoperability
Workshop, Orlando, Florida, USA, 1998.

[45] B. Watrous, L. Granowetter, and D. Wood. HLA federation perform-
ance: What really matters? In Proceedings of the 2006 Fall Simulation
Interoperability Workshop, Orlando, Florida, USA, 2006.

[46] T. Schulze, S. Straßburger, and U. Klein. Migration of HLA into the
civil domains. Simulation, 73(5), 1999.

[47] C. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[48] G. Amdahl. Validity of the single-processor approach to achieving large-
scale computing capabilities. In Proceedings of AFIPS 1967, Atlantic
City, New Jersey, USA, 1967.

[49] B. Duvenhage and J. Nel. The contribution of static and dynamic load
balancing to a real-time distributed air defence simulation. In Proceed-
ings of the 2008 SimTecT Conference, Melbourne, Victoria, Australia,
2008.

[50] B. Duvenhage and W. le Roux. TCP simulation architecture investig-
ation. Technical report, Council for Scientific and Industrial Research,
Pretoria, South Africa, 2004.

[51] B. Duvenhage and D. Kourie. Migrating to a real-time distributed paral-
lel simulator architecture. In Proceedings of the 2007 Summer Computer
Simulation Conference, San Diego, California, USA, 2007.

[52] B. Wilkinson and M. Allen. Parallel Programming, second edition. Pear-
son Education, Inc., Upper Saddle River, New Jersey, 2005.

[53] G. Wainer and B. Zeigler. Experimental results of timed cell-DEVS
quantisation. In Proceedings of AIS’2000, Tucson, Arizona, USA, 2000.

[54] B. Zeigler, G. Ball, H. Cho, J. Lee, and H. Sarjoughian. Bandwidth
utilization/fidelity tradeoffs in predictive filtering. In Proceedings of the
1999 Fall SISO Simulation Interoperability Workshop, Orlando, Florida,
USA, 1999.

A Peer-to-Peer Simulation Architecture

Bernardt Duvenhage and Willem H. le Roux

Council for Scientific and Industrial Research

Pretoria, South Africa

Email: bduvenhage,whleroux@csir.co.za

Abstract— A distributed parallel and soft real-time simulation
architecture is presented. It employs a publish-subscribe commu-
nication framework layered on a peer-to-peer Transport Con-
trol Protocol-based message passing architecture. Mechanisms
for efficient implementation and control of information flow
between simulated entities form part of the architecture. A light-
weight base simulation object model is also employed to provide
maximum modularity and extensibility while keeping complexity
manageable. The simulation architecture evolved over time to
allow for the efficient implementation of a system of systems,
virtual simulation. It has been successfully applied in an air
defence simulation as a decision support tool and for standard
operating procedure concept evaluation.

KEYWORDS

Distributed, Parallel, Soft Real-Time, Simulation, Architec-

tures, Peer-to-peer, Publish-Subscribe.

I. INTRODUCTION

In a decision support environment, system of systems level

simulations are applied to provide end-users with the capa-

bilities to identify, define, implement (virtual) and evaluate

concepts that would otherwise be costly, time-consuming or

impractical. Systems of systems level simulators typically

involve multiple modelled entities with complex interactions

and are executed in virtual or constructive simulation modes

[1].

This paper presents a simulation architecture that evolved

over time during decision support to an air defence procure-

ment programme [2, 3]. Although there was no need for a

generic, re-usable architecture – It was to be only used for a

single simulation environment – it still had to provide stan-

dardised interfaces for efficient integration of models, services

and other simulation-logistical functions. It should also support

both constructive and virtual simulations, hence it should at

least be soft real-time compatible when performing operator-

in-the-loop simulations. Operators will mainly interact with

the simulation via integrated mock-up consoles and not full

immersive synthetic environments, which may be supported

by integrated, external systems. Furthermore, it must allow

both distributed and non-distributed simulation execution. The

first is required to maintain soft real-time compliance when

employing the virtual simulation mode if model processing

loads are high. The latter is required for easier test and

debugging as well as batch executions for statistical analyses.

A conservative, discrete stepped time management mode forms

an inherent part of the simulation architecture, as almost all

of the models used in the air defence simulation environment

are discrete time-stepped. To provide an efficient and effective

decision support capability, specifically during system concep-

tualisation and field exercises, the architecture should allow

for quick implementation and integration of new models. The

same holds for the integration of external systems. Interoper-

ability with other simulations is not an absolute requirement,

but should not be excluded by design.

Several peer-to-peer architectures are reported in the liter-

ature, of which some are aimed at internet-based information

sharing, discrete event simulations [4]–[7] or cooperative com-

puting, such as solving processing intensive problems with

ad hoc peer-to-peer networks [8]. Some architectures are also

aimed at massively multi-player online role playing and other

games [9, 10]. Giesecke [11] quantitatively investigated avail-

ability in peer-to-peer systems for prediction and identified

basic characteristics to derive a formal model for describing

architectures. Kotilainen [12] reports on an efficient peer-to-

peer network simulator used to study artificial neural network

algorithms.

Other simulation architectures or frameworks include the

Aggregate Level Simulation Protocol (ALSP) [13], Distributed

Interactive Systems (DIS) [14] and the High Level Architec-

ture (HLA) [15]. The first two are seen as precursors to HLA.

Although all three were developed for the defence community

of the United State of America, HLA was intended to be

adopted by the wider simulation community. The Standard

Simulation Architecture [16] provides an additional framework

to HLA to allow more flexibility, but be more cost-effective

without paying performance penalties. The Open Simulation

Architecture (OSA) [17] is a discrete event simulation archi-

tecture that promises integration of new and existing contri-

butions at all levels. Hawley [18] proposes an object-oriented

simulation architecture that separates the implementation of

the dynamic system being modelled (application layer) from

the simulation management functions (executive layer). The

Extensible Modelling and Simulation Framework (XMSF)

[19] aims to harness web-based technologies to promote in-

teroperable simulations and provides mechanisms for systems

to discover and use web services.

Of these architectures only HLA was evaluated since it is a

fully fledged approach that covers all aspects of the simulation

life cycle. However, in the South African defence environment

it was not the optimal choice at the time. Although HLA pro-

motes interoperability, the federation object model should still

Proceedings 21st European Conference on Modelling and Simulation
Ivan Zelinka, Zuzana Oplatková, Alessandra Orsoni ©ECMS 2007
ISBN 978-0-9553018-2-7 / ISBN 978-0-9553018-3-4 (CD)

be agreed or translated when two simulations are integrated.

This was not always the case, therefore interoperability was

not easily achievable [3].

The simulation architecture presented is not offered as an al-

ternative for the above-mentioned architectures or frameworks,

but rather to highlight the mechanisms used to implement an

efficient architecture against the backdrop of system of systems

simulation criteria. Efficiency in terms of implementation is

required since a very small development team was used. In

terms of simulation execution, soft real-time execution for

multiple entities with update rates of 100Hz are used, requiring

an architecture with low overheads.

II. SYSTEM OF SYSTEMS-LEVEL SIMULATION

ARCHITECTURE NEEDS

This section addresses the specific needs for a simulation

architecture to meet the criteria as outlined in Section I and is

discussed in the following subsections.

A. System of Systems Simulation

Fig. 1: The Systems Hierarchy applied to Modelling and

Simulation (Adapted from [1, 20])

An adapted version of the systems hierarchy is shown in

Figure 1 as applied to modelling and simulation [1, 20].

Systems of systems simulations are typically applicable at the

engagement and tactical levels where entities are modelled at

equipment and individual operator level. Individual entities are

modelled, but forms “systems” when grouped organisationally.

Tactical simulations also require one-on-one engagements,

whereas higher order simulations require strategic actions of

aggregated entities. For mission and theatre simulations enti-

ties are aggregated into units and generally referred to as war-

gaming simulations [1]. Lower system hierarchy simulations

tend to focus more on the function of entities, whereas the

higher levels on the behaviour of entities.

B. Constructive and Virtual Simulation Mode Support

Tactical level simulations (Figure 1) imply that not only

equipment is simulated, but also the use of equipment, in-

cluding standard operating procedures. This again implies that

the human operators, human-equipment and human-human

interactions be modelled, so that it becomes a constructive

simulation. Simulation execution requirements for constructive

simulations tend to be less stringent, but the faster a simulation

executes, the more applicable it becomes as a what-if type

analyses tool, as it allows a simulation user to test and evaluate

scenarios quickly. Virtual simulations need to be at least soft

real-time compliant to maintain realism [21].

C. Distributed and Non-Distributed Simulation

Non-distributed simulations are generally less complex to

test and debug than distributed simulations, as simulation

execution does not have to be traced across multiple processing

nodes. However, non-distributed simulations may be soft real-

time incompatible when model processing loads become too

high for a single processing node.

Distributed simulations on the other hand require efficient

inter-process communication frameworks, such that the inter-

processing node communication overheads do not counter

the advantage of extra processing nodes. Virtual simulations

with multiple entities that are modelled at system of systems

level, typically require distributed simulation to either provide

faster than or real-time compatibility. The ideal simulation

architecture would support both distributed and non-distributed

simulation execution without having to alter the implementa-

tion, but only its configuration.

D. Modularity and Extensibility

Since the simulation architecture is used in a decision sup-

port environment, including the evaluation of system concepts,

it should be efficient to add, maintain and upgrade models

of equipment, operator terminals, external system interfaces

and operators. In addition to the entities that participate in a

synthetic environment, it should also be efficient to extend,

maintain and upgrade the synthetic environment itself. Ser-

vices such as inter-entity line of sight calculations should be

inherently part of the synthetic environment. External system

interfacing should be supported, but note that external systems

may have requirements that cannot be met by the simulation

architecture, such as hard real-time compatibility.

E. Time-stepped Simulation

Conservative time management is an integral part of the

simulation architecture and is enforced by using a discrete

time-stepped mechanism. Spatio-temporal properties play a

pivotal role in any air defence system, therefore time-line

accuracy is of importance in a simulation environment, and

hence architecture.

Although models may internally use predictive event-based

time management, their external interfaces should support

conservative time management. This is necessary as both

predictable and non-predictable events occur in an air defence

simulation environment, of which the non-predictable events

may violate causality, if non-conservative time management is

used.

Most of the external systems that will be integrated, produce

spatio-temporal data, be it in the form of positions of an

aircraft from a flight simulator, or time-stamped detections

from a sensor such as a radar. External systems that may be

integrated includes equipment, data sources and simulators.

III. HIGH-LEVEL SIMULATION ARCHITECTURE DESIGN

In order to meet the needs as identified in Section II, a

simulation architecture evolved from a single application to

a fully distributed simulation architecture. After providing

a short overview of the present architecture, each part is

carefully explained in subsequent subsections.

The simulation architecture is based on an inter-process

communication (IPC) framework using the Transfer Control

Protocol (TCP). Processing nodes are fully connected in a

peer-to-peer fashion and message-passing is managed via a

publish-subscribe mechanism. Processes that need to commu-

nicate within the simulation architecture are:

• Models - Models of equipment, humans and operator

consoles (interfaces).

• Services - Includes line-of-sight, terrain elevation and

peripheral services such as data loggers.

• Consoles or Gateways - All external systems that need

to be integrated with the simulation architecture is im-

plemented via a gateway which in effect translates the

protocol of the external system into the simulation object

and spatial reference models of the simulation architec-

ture. Mock-up operator consoles are also integrated via

this mechanism.

Fig. 2: Base Simulation Object Model

The above list of items is grouped under a base object

to form the simulation object model of the architecture as

indicated in Figure 2. An economical simulation object model

(SOM) has been designed to curb implementation complexity.

A. Publish-Subscribe Object Communication Framework

All models, services and consoles (hereafter collectively re-

ferred to as objects) should be able to communicate efficiently

in a distributed environment. Furthermore, it should be easy

to establish and manage the communication channels between

objects. A layered approach will reduce future migration effort

to other IPC frameworks: keep the object implementation and

communication logistics of an object separate. The object

communication framework should also hide the underlying

distributed implementation from the user of the framework and

not dictate model fidelity or simulation granularity. The frame-

work should allow distributed and non-distributed execution

for easier test and debugging without requiring implementation

changes of the framework or client software.

The publish-subscribe mechanism employed in the object

communication framework is analogous to magazine subscrip-

tions and also similar to object management in HLA [22]:

• Different publishers advertise their sets of titles available

for subscription.

• Subscribers may subscribe to titles of their choice when

they would like to.

• Publishers will then publish issues at regular intervals,

which all subscribers will receive.

• All subscribers receive identical copies of an issue of a

title.

• Publishers may also add titles at any given time to their

collections. Cancellation of titles is not supported at

present.

• A subscriber can read a copy of an issue as many times

as they would like until a new one arrives.

• A subscriber may also elect to ignore old issues and only

read the latest. Note that this is one of two supported

modes, the second is an extension to the analogy (See

next list).

• A publisher cannot change the content of an issue once

it has been published and received by its subscribers.

The implementation of the publish-subscribe mechanism is

somewhat extended over the analogy to allow more flexibility:

• Subscribers can select at what interval (rate) they want

to receive issues. The maximum update rate is limited by

the smallest time increment (frame) of the simulation.

• Subscribers can select if they want all issues of a given

publisher, or just selected titles, without subscribing sep-

arately to each title.

• The subscriber may select what will happen with copies

of issues that are received but not read. If kept, all copies

from the oldest to the most recent have to be read to get

to the latest issue. If not kept, the most recent copy is

always available to be read. An in between mode is not

supported.

• A specialised extension to support modelled communica-

tions between objects (modelled equipment or operators,

not IPC related communications) is provided with ad-

ditional parameters to support transmission functionality

(status, delays, sender/receiver identification, etc.). Mes-

sages destined for transmission are passed immediately

to the receiver where they are delayed in a cache to

model the correct transmission delay, until delivery. The

minimum transmission delay of a message is limited by

the minimum time increment of the simulation. Messages

are also rather delayed at the receiver than the transmitter,

as the receiver knows, implicitly, its own position and,

from the issue meta-data, the sender’s position which are

both required by the communications model.

Functionality as listed in the above two lists, are directly

supported in the simulation architecture as part of the base

object model and the simulation backbone, which is a set of

classes and functions providing the necessary mechanisms.

B. Peer-to-peer Processing Node Architecture

A peer-to-peer processing node architecture was ultimately

selected above the client-server architecture, as the server may

form a bottleneck due to the double latency and bandwidth

usage for messages transmitted from a client to the server and

then to the receiving client from the server (Figure 3(a)).

To minimise traffic at a server, an intermediate layer of

servers were considered before using the peer-to-peer archi-

tecture. The intermediate servers (Figure 3(b)) have less traffic

to route, and will only transmit messages to other intermediate

servers via the top-level server if a receiving client requires

it. The scheme is efficient, but has one major drawback: The

architecture is not domain independent, as the clustering of

clients per intermediate server requires prior knowledge of

clients that can be grouped by type or anticipated traffic.

Note that the peer-to-peer architecture will result in a single

latency for messages passed between nodes (indicated as peers

in Figure 3(c)), but IPC connections have to be brokered

or configured in some way before a simulation execution

starts. In the client-server case, all clients connect to the

same server. The peer-to-peer architecture suffers from the

same domain knowledge challenge as the intermediate server

solution, i.e. which models may be grouped for acceptable

execution performance. The ultimate architecture would allow

for both the automatic distribution of models across processing

nodes, as well as automatically introducing intermediate server

layers for optimal execution performance. Each processing

node executes a subset of all objects (models, consoles and

services). In the case where a single processing node is

used, all objects are executed on it. As conservative time

management is used in a time-stepped fashion, the slowest or

most processing intensive object governs the global execution

performance of the simulation. Load balancing is therefore

necessary and is supported either as a static configuration

or with dynamic load management [23]. The latter requires

passing of objects in-process between processing nodes during

run-time.

The peer-to-peer architecture is fully connected, thus each

node is connected to each other node at start-up using TCP.

This results in
n(n−1)

2
connections, where n is the number of

nodes (peers). For the client-server case the number of con-

nections equals the number of clients. Connections between

objects are made using a proprietary, binary-packed protocol,

irrespective if objects are on the same processing node or not,

or if only one processing node is used.

C. TCP Implementation Details

Specific TCP implementation tweaks to ensure lower mes-

sage latency between nodes are discussed in this subsection.

TCP messages are grouped per destination node and sent off

together instead of sending each message separately. Message

latency still turned out to be a problem due to TCP’s Nagel

algorithm [24]. The Nagel algorithm usually improves band-

width (saves on message header overhead) by caching short

messages for a certain time-out or until they are big enough to

fill a complete data packet before sending the data. Typically

message groups were much smaller than the normal packet

size of 1.5 kilobyte. Turning off the Nagel algorithm gave

the simulation architecture complete control over message

sending times which decreased latencies considerably. The

communication model would cause a node to send information

to every other node once every simulation time increment

which means that the shorter the latencies the faster the

simulation can execute.

The TCP sending buffer was also made bigger than the

default to allow the simulation architecture to push messages

into the sending buffer without blocking to allow the simula-

tion to continue processing while the TCP operating system

thread continues sending. This approach saves the overhead of

implementing the simulation’s TCP sending code in a separate

processing thread.

To start a distributed simulation, all the nodes except the

first node may be started up in any order. As soon as the first

node is started it makes connections to all the other nodes,

which in turn make connections to each other and finally start

the simulation.

IV. RESULTS

Initial experiments with a non-distributed and intermediate

server-client (see Section III) architecture showed that in order

to execute large enough simulations, distributed processing

would be required to maintain soft real-time compatibility

[25]. Approximately 6-8 processing nodes were estimated for

real-time compliance, but less could be used, as the model

loading metrics were very conservative. Between 40 and 100

objects, with varying levels of fidelity were anticipated. With

the actual architecture, a fully populated scenario translates

to 177 entities that require processing. The architecture is still

efficient enough to execute this at approximately soft real-time.

Of the entities, 160 are models, 8 consoles and 9 services.

Soft real-time execution is maintained by synchronising

with the local processing node clock. Processing time is

yielded not to exceed real-time. However, this only works

when the processing nodes are not overloaded, i.e. able to

process all models within a simulation time frame, otherwise

extra processing nodes may be added. If this still does not

help, soft real-time compatibility cannot be maintained.

Distributed performance tests were done with a process-

ing intensive test object that takes exactly 1ms PC time to

increment and publishes a single title which is a text string

of length 512 bytes. Each test object subscribes to the titles

of all the other test objects, including its own title. The

communication setup is thus fully connected over all objects.

A 100Hz closed loop distributed simulation is run over one

to six machines in as fast as possible mode. Simulation

distribution and communication overhead results are presented

in Table I. The simulation frames are 10ms in length, equating

to a 100Hz update rate, giving ten 1ms slots for a maximum

of ten models per node to sustain soft real-time execution. It

can be seen that a single node is very efficient, running at

Fig. 3: Client-Server (a) Intermediate-Server (b) and Peer-to-Peer (c) Processing Node Architectures

99% of real time with 10 models which translates to a 1%

communication overhead. Table I also shows that:

1) to run up to 9 test objects real time at least 1 node is

required;

2) to run up to 18 test objects real time at least 2 nodes

are required;

3) to run up to 24 test objects real time at least 3 nodes

are required;

4) to run up to 32 test objects real time at least 4 nodes

are required;

5) to run up to 35 test objects real time at least 5 nodes

are required;

6) to run up to 42 test objects real time at least 6 nodes

are required.

To run 42 test objects at real time at least 6 nodes are

required running 7 objects each. This translates to an average

communication overhead of just under 30%. Network usage

was measured by using Windows XP’s task manager network

performance window. Note that the tests performed are worst

case scenarios. All objects subscribe to all other objects and

themselves (n2 subscriptions) and the issue size is 512 bytes

which is big enough for 21 double precision 3D coordinate

triplets or a list of approximately 64 English words.

The simulation architecture has been successfully applied

in an air defence simulation as a decision support tool and for

standard operating procedure concept evaluation. It has been

applied in extensions of the air defence simulation that include

satellite-based optical and radar sensors for maritime surveil-

lance concept development. It was also used for integration

with various external systems, including situational air picture

systems, operator console mock-ups, air traffic radars, flight

simulators and similar simulations.

V. FUTURE WORK

A key challenge with soft real-time simulations is what

should be done if the simulation slips on world-time? This

often occurs, as models tend to have spurious high processing

requirements. What techniques should be used to catch up

again on world-time, specifically when a simulation is con-

nected to external systems, such as a flight simulator or air

picture systems? One solution is to use innovative schemes in

console implementations to external systems to cater for data

that arrives at the wrong-time, i.e. too late, or to too early. In

the first case, prediction algorithms are necessary and in the

latter buffering schemes.

Future work includes conducting comparative studies be-

tween peer-to-peer, intermediate server and client-server archi-

tectures. There is also ample opportunity for load balancing

research: How to measure model loading per processing node

efficiently and effectively, and load balancing algorithms.

VI. CONCLUSION

The ability to execute an entire simulation in an all-in-one

mode on a single processing node (desktop computer) is a

key advantage in how the simulation architecture is used. It

is efficient and quick to configure scenarios for simulation,

and to visually verify them using peripheral two and three

dimensional viewers. Similar techniques are used to verify and

validate newly integrated models, consoles or services. It is

then merely a matter of changing a configuration to execute

the simulation distributed to achieve soft real-time execution.

The simulation architecture is suitable for parallel execution

on a small to medium scale infra-structure.

The publish-subscribe architecture is very flexible in terms

of objects and connection management. However, care should

be taken to adhere to a standard way of implementing objects

and not to abuse the flexibility.

The soft real-time performance figures obtained with worst-

case object loadings indicate that the architecture is adequate

for a small number of nodes with less than 10 objects per node.

It is expected that network overheads will limit scalability to

less than 100 objects in total, and therefore, the architecture

is not considered to be scalable for large simulations (100’s

of objects), requiring soft real-time performance.

AUTHOR BIOGRAPHIES

BERNARDT DUVENHAGE has been with the CSIR

within the Mathematical and Computational Modelling Re-

search Group, that’s part of the Defence, Peace, Safety and

Security (DPSS) Research Group, since January 2004. Past

responsibilities have included the development of a distributed

simulation architecture, development of an optimized Line of

TABLE I: Distribution and Communication Overhead Results

Number
of
Nodes

Objects
per
Node

Issue
Size

Percentage
Real-
Time

Network
Utiliza-
tion

Total
Objects

1 7 512
bytes

142% 0% 7

2 7 512
bytes

132% 6% 14

3 7 512
bytes

126% 12% 21

4 7 512
bytes

117% 16% 28

5 7 512
bytes

110% 20% 35

6 7 512
bytes

102% 25% 42

1 8 512
bytes

124% 0% 8

2 8 512
bytes

116% 7% 16

3 8 512
bytes

110% 14% 24

4 8 512
bytes

100% 18% 32

5 8 512
bytes

92% 23% 40

6 8 512
bytes

85% 27% 48

1 9 512
bytes

110% 0% 9

2 9 512
bytes

104% 8% 18

3 9 512
bytes

99% 15% 27

4 9 512
bytes

90% 21% 36

5 9 512
bytes

81% 26% 45

6 9 512
bytes

75% 27% 54

1 10 512
bytes

99% 0% 10

2 10 512
bytes

93% 9% 20

3 10 512
bytes

88% 17% 30

4 10 512
bytes

77% 23% 40

5 10 512
bytes

70% 28% 50

6 10 512
bytes

60% 32% 60

Sight (LOS) algorithm and LOS service, development of a

terrain attitude and altitude service, development of models in

cooperation with OEMs and development of a 3D analysis tool

based on the Open source Scene Graph (OSG). He completed

his BSc(hons) in Computer Science in 2005 and is currently

pursuing an MSc in Computer Science on real time simulation

architectures.

HERMAN LE ROUX has been with the South African

Council for Scientific and Industrial Research since April

1998 and is at present a Principal Engineer in the Mathe-

matical and Computational Modelling Research Group. He

is involved in Modelling and Simulation-based Acquisition

Decision Support, specifically for the South African National

Defence Force. Interests include information fusion, biomet-

rics, artificial intelligence and software engineering. Le Roux

completed a Masters Degree in Computer Engineering at the

University of Pretoria in 1999 and is currently pursuing a PhD

in Information Fusion.

ACKNOWLEDGEMENTS

The authors would like to thank Dr Jackie Phahlamohlaka,

Cobus Nel, Anita Louis and Arno Duvenhage, all colleagues at

the CSIR, for their valuable inputs, as well as the Armaments

Corporation of South Africa for supporting this work.

REFERENCES

[1] DOD, “Department of Defense: Modelling and Simulation Master Plan,”
Under Secratary of Defense for Acquisition and Technology, DoD
5000.59-P, Alexandria, VA, October 1995.

[2] J. J. Nel and H. J. Baird, “The evolution of M&S as part of smart
acquisition using the SANDF GBADS programme as example,” in
Twelfth European Air Defence Symposium, Shrivenham, June 2005.

[3] W. H. le Roux, “Implementing a low cost distributed architecture for
real-time behavioural modelling and simulation,” in Proceedings of the

2006 European Simulation Interoperability Workshop. Stockholm:
Simulation Interoperability Standards Organization, June 2006.

[4] S. Naicken, A. Basu, B. Livingston, S. Rodhetbhai, and I. Wake-
man, “Towards yet another peer-to-peer simulator,” FOURTH INTER-
NATIONAL WORKING CONFERENCE PERFORMANCE MOD-
ELLING AND EVALUATION OF HETEROGENEOUS NETWORKS,
West Yorkshire, September 2006.

[5] A. Montresor, G. D. Caro, and P. E. Heegaard, “Architecture of the sim-
ulation environment,” Information Society Technologies, Italy, Project
Report IST-2001-38923, January 2004.

[6] S. Cheon, C. Seo, S. Park, and B. P. Zeigler, “Design and implementation
of distributed DEVS simulation ina peer to peer network system,” in Pro-

ceedings of the 2004 Military, Government and Aerospace Simulation

Symposium, Virginia, April 2004.

[7] B. Gedik and L. Liu, “A scalable peer-to-peer architecture for distributed
information monitoring applications,” IEEE Transactions on Computers,
vol. 54, no. 6, pp. 767–783, June 2006.

[8] G. D. Costa, “Peer-to-peer simulation,” Presentation at the Federal
University of the Rio Grande Do Sul, Porto Alegre, 2002.

[9] Y. Kawahara, H. Morikawa, and T. Aoyama, “A peer-to-peer message
exchange scheme for large scale networked virtual environments,” Pro-
ceedings of the 8th IEEE International Conference on Communications
Systems (ICCS 2002), Amsterdam, April 2002.

[10] S.-P. A. van Houten and P. H. M. Jacobs, “An architecture for distributed
simulation games,” in Proceedings of the 2004 Winter Simulation

Conference, R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters,
Eds., Washington DC, December 2004.

[11] S. Giesecke, T. Warns, and W. Hasselbring, “Availability simulation of
peer-to-peer architectural styles,” in Proceedings of the 2005 workshop

on Architecting dependable systems (WADS 2005). Waterloo: ACM
Press, 2005, pp. 1–6.

[12] N. Kotilainen, M. Vapa, T. Keltanen, A. Auvinen, and J. Vuori,
“P2prealm peer-to-peer network simulator,” in Proceedings of the

11th Intenational Workshop on Computer-Aided Modeling, Analysis and

Design of Communication Links and Networks, June 2006, pp. 93–99.
[13] R. Weatherly, D. Seidel, and J. Weissman, “Aggregate Level Simulation

Protocol,” Presented at the 1991 Summer Computer Simulation Confer-
ence, Baltimore, July 1991.

[14] “IEEE standard for information technology - protocols for distributed
interactive simulations applications,” IEEE Std 1278-1993, 1993.

[15] F. Kuhl, R. Weatherly, and J. Dahmann, Creating Computer Simulation

Systems: An Introduction to the High Level Architecture, ser. Artificial
Intelligence. Upper Saddle River: Prentice Hall, 1999.

[16] J. S. Steinman and D. R. Hardy, “Evolu-
tion of the standard simulation architecture,”
http://www.modelingandsimulation.org/issue10/SISO/steinman.html,
vol. 3, nr. 2 , issue 10, April-June 2004, Accessed 16 January 2007.

[17] O. Dalle, “OSA: an open Component-based architecture for Discrete-
event Simulation,” INRIA, Tech. Rep. RR-5762, February 2006, avail-
able from http://www.inria.fr/rrrt/rr-5762.html.

[18] P. A. Hawley and T. J. Urban, “An object-oriented simulation archi-
tecture,” AIAA Modeling and Simulation Technologies Conference and
Exhibit, Providence, August 2004.

[19] D. Brutzman, M. Zyda, J. M. Pullen, and K. L. Morse, “Ex-
tensible modeling and simulation framework (XMSF) challenges
for web-based modeling and simulation,” TECHNICAL CHAL-
LENGES WORKSHOP, STRATEGIC OPPORTUNITIES SYMPO-
SIUM, www.movesinstitute.org/xmsf, San Diego, October 2002.

[20] J. H. S. Roodt, L. Berglund, and P. Klum, Worksession between FOI
and CSIR, Linköping, 2001.

[21] M. R. Macedonia, M. J. Zyda, D. R. Pratt, P. T. Barham, and S. Zeswitz,
“NPSNET: A network software architecture for large scale virtual
environments,” Presence, vol. 3, no. 4, 1994.

[22] “High Level Architecture interface specification: Version 1.3,” U.S.
Department of Defense, April 1998.

[23] B. Duvenhage, “The contribution of static and dynamic load balancing
in a real-time distributed air defence simulation,” 2007, to be submitted
to the Summer Computer Simulation Conference, San Diego.

[24] B. A. Forouzan, TCP/IP Protocol Suite, 2nd ed., ser. Forouzan Network-
ing. Boston: McGraw-Hill, 2003.

[25] B. Duvenhage and W. H. le Roux, “MobADS: TCP-based distributed
simulation architecture investigation,” Council for Scientific and Indus-
trial Research, Tech. Rep. DEFT-MSADS-00151, July 2004.

Migrating to a Real-Time Distributed Parallel Simulator Architecture

Bernardt Duvenhage and

Derrick G Kourie (Role of Masters degree supervisor)

Espresso Group, University of Pretoria

bduvenhage@csir.co.za and dkourie@cs.up.ac.za

Keywords: peer-to-peer, parallel simulation, discrete time

step simulation, publish-subscribe, high real-time frame-rate

Abstract
A legacy non-distributed logical time simulator is migrated

to a distributed architecture to parallelise execution. The ex-

isting Discrete Time System Specification (DTSS) modelling

formalism is retained to simplify the reuse of existing mod-

els. This decision, however means that the high simulation

frame rate of 100Hz used in the legacy system has to be re-

tained in the distributed one—a known difficulty for existing

distribution technologies due to inter-process communication

latency.

A specialised publish-subscribe simulation model is used

for the new simulator architecture. The simulation model, in-

cluding the process synchronisation, is implemented using a

low latency peer-to-peer TCP messaging protocol. The TCP

send and receive buffers and TCP’s Nagle algorithm are also

tweaked to ensure low latency communication. Gigabit Eth-

ernet is used at the hardware layer. A parallelised execution

speed-up of four to five times is reached with six to eight ma-

chines at a simulation frame rate of 100Hz.

1. INTRODUCTION
The South-African National Defence Force’s (SANDF’s)

need for decision support and concurrent tactical doctrine

development within a Ground Based Air Defence System

(GBADS) acquisition program offered an ideal opportunity

to establish an indigenous and credible modelling and simu-

lation capability within the South-African defence acquisition

environment [1][2]. The broad requirement of the capability

is to simulate a GBADS battery of existing and still to be ac-

quired (possibly still under development) equipment and their

related human operators at a system of systems level within

a realistic Synthetic Environment (SE). During the concept

and definition phases of the acquisition life cycle [3] the ca-

pability was successfully provided by a non-distributed sim-

ulator and its architectural predecessors [4]. A selection of

the models were derived from high fidelity engineering mod-

els, some by OEMs, and developed within a 100Hz logical

Discrete Time System Specification (DTSS) [5] that simpli-

fied the time and causality management. The non-distributed

simulator evolved within this 100Hz logical time DTSS mod-

elling formalism and was implemented to run As Fast As Pos-

sible (AFAP).

Real-time simulation execution became a prioritised re-

quirement during the development phase of the acquisition

life cycle due to the realised impact of realistic human-

simulation interaction when doing tactical doctrine develop-

ment. Human interaction would happen through an Operator

In the Loop (OIL) console with the possibility to record the

operator’s actions to be re-used in statistical simulation runs

when and as required. To support the real-time requirement it

was decided to parallelise the simulator across multiple Com-

mercial Off the Shelf (COTS) PC nodes connected with Gi-

gabit Ethernet.

For simplicity in the economical reusability of all the ex-

isting models it was also decided to retain the 100Hz logical

time and DTSS modelling formalism. To achieve real-time

execution, the parallelised logical time DTSS simulator is run

AFAP, but the execution is throttled to not exceed real-time.

To guarantee causal message delivery for the discrete time

execution though, severe real-time constraints is placed on

the minimum required inter-node communication latency as

each simulation frame is a mere 10ms. The next section intro-

duces existing distributed and parallel simulator technologies

and their applicability to a 100Hz DTSS modelling formal-

ism. The following sections then pose a research question on

a new simulator architecture and develop the proposed archi-

tecture to inform the research question through analysis. The

paper finds resolution in the flexibility and performance anal-

ysis of the new architecture and a concluding assessment of

the architecture’s suitability as a distributed parallel, high res-

olution logical time, DTSS simulator.

Within the Mathematical and Computational Modelling

(MCM) Research Group of the Defence, Peace, Safety and

Security (DPSS) operating unit of the South-African Council

for Scientific and Industrial Research (CSIR) the main author

had the responsibility of developing the new distributed par-

allel simulation architecture. This architecture is under inves-

tigation as part of an MSc project in Computer Science with

the co-author (role of the Masters degree supervisor) from

The University of Pretoria.

2. EXISTING DISTRIBUTED AND PARAL-
LEL SIMULATOR TECHNOLOGIES

This section introduces existing distributed and parallel

simulator technologies and their applicability to a 100Hz log-

SCSC 2007 575 ISBN # 1-56555-316-0

ical time DTSS modelling formalism. Specifically technolo-

gies suitable for deployment on a distributed COTS PC in-

frastructure are discussed.

Looking at the literature, the most popular and thoroughly

analysed, distributed simulation technologies within the mil-

itary domain [6] seem to be Distributed Interactive Simula-

tion (DIS) and the High Level Architecture (HLA), which im-

plement Discrete Event System Specifications (DEVS) rather

than a DTSS. The HLA is a generalisation and extension of

DIS and the Aggregate Level Simulation Protocol (ALSP),

both of which evolved from the Simulator Networking (SIM-

NET) project. SIMNET is, according to Page and Smith [6],

the first meaningful attempt to interoperate military simula-

tors within the United States’ Department of Defence.

DTSS may however be embedded [5] within DEVS. Ogata,

et al. [7] tested the real-time performance of DIS and different

versions of the RTI-NG HLA Run-Time Infrastructure (RTI).

Their real-time vehicle model simulation within a 3D graphi-

cal environment reached a frame rate ceiling of around 30Hz

with both DIS and HLA implementations.

The HLA’s real-time performance, for both RTI-NG and

DMSO RTI implementations, is also studied by Jolibois, et al

[8] in the context of a beyond visual range air to air combat

simulation. The performance is shown to be less than ideal

for 10Hz and higher simulation frame rates. This is due to

message latency, object time advance latency and message

deliveries leaking into adjacent simulation time steps.

Fujimoto and Hoare [9] investigated an alternative for

the current versions of the HLA RTIs that can achieve

latencies that are suitable for high simulation frame

rates, but these are based on a low latency Gigabit

Myrinet [http://www.myricom.com/myrinet/overview/] hard-

ware layer and specialised RTIs. When Fujimoto and Hoare

analysed the latency for DMSO RTI1.3 over an Ethernet TCP

and UDP implementation it was found to be in the order of

10ms, which is too large to sustain a 100Hz simulation frame

rate. They also found that the DMSO RTI supports a time

advance frequency of more than 2000 per second between

two nodes, but for three and more nodes the time advance

frequency unfortunately dropped sharply to values as low as

10Hz with even only a few objects per node.

Watrous, et al. [10] explain that in the HLA, and in fact in

any distributed algorithm, a time management scheme, such

as the logical time DTSS modelling formalism, which re-

quires contributions from all other nodes are relatively ex-

pensive. For this reason the HLA allows federates (simula-

tion components) to employ their own unconstrained time

management to avoid the time synchronisation overhead. In

such an unconstrained case each model will synchronise itself

against its simulator’s wall clock without explicit synchroni-

sation with other models, or between simulators, but at the

risk of loosing message causality.

A recent distributed parallel simulator architecture is the

Aurora master/worker architecture [11]. According to Park

and Fujimoto the goal of Aurora is to harness available com-

putation time from a large number of machines rather than

strictly achieving high speed-ups on dedicated hardware. Au-

rora is unique among its class of distributed parallel architec-

tures in the fact that it is aimed at parallel discrete event sim-

ulation (PDES) and, for example, includes simulation time

management. It is unfortunately, like HLA, not well suited to

tightly coupled high resolution discrete time simulations.

From the indicated examples it is clear that using exist-

ing distributed and parallel technologies such as HLA or DIS

for implementation of a logical time DTS parallel simulator

might introduce technical risks in getting the frame rate to

or beyond 100Hz while still ensuring message causality. It is

worth noting that this is purely due to HLA, DIS and similar

architectures not being designed for high resolution logical

time communicating parallel processes. These architectures,

in particular HLA, seem rather to be aimed at providing sim-

ulation development efficiency, economical interoperability

and geographical distribution, typically implementing a Dis-

crete Event System Specification (DEVS) modelling formal-

ism [5].

An important architecture driver is that of simulator in-

teroperability. It is not a present or foreseeable priority [4]

within this specific acquisition environment and is not a na-

tional imperative at this stage. According to Straßburger[12]

these factors further decrease the drive behind and thus via-

bility of the use of interoperability standards.

3. RESEARCH QUESTION

Can a peer-to-peer publish-subscribe simulator architec-

ture implement a logical time DTSS modelling formalism to

support a four to five times parallelised 100Hz closed loop

simulation?

The research question firstly enquires whether or not a

publish-subscribe simulation model can provide the required

flexibility to support the simulation capability. Secondly it en-

quires whether or not a TCP message passing implementation

of the simulation model and simulation synchronisation can

maintain real-time execution of the 100Hz logical time DTSS

at increased levels of parallelisation.

The publish-subscribe paradigm is chosen for its simplic-

ity and familiarity. The TCP message passing implementa-

tion is chosen for TCPs stream based and reliable nature and

the fact that COTS PCs with Gigabit Ethernet Network Inter-

face Cards (NICs) and a commercial switch will be used at

the physical and data-link layers. Initial TCP messaging tests

[13] also revealed that a Gigabit TCP connection could quite

possibly support the required low message latencies.

ISBN # 1-56555-316-0 576 SCSC 2007

Figure 1. Layered Peer-to-Peer Simulator Architecture

4. THE PUBLISH-SUBSCRIBE DIS-
TRIBUTED PARALLEL SIMULATOR
ARCHITECTURE

The discussion on the new publish-subscribe simulator ar-

chitecture is structured around the layered architecture of the

simulator (shown in Figure 1), which includes a publish sub-

scribe simulation layer, a message passing implementation of

the simulation model and at the bottom layer a low latency

TCP messaging protocol for Gigabit Ethernet.

The attraction of the layered architecture was the separa-

tion of concerns, in terms of design, between the simulation

model and the distributed execution thereof. An additional ad-

vantage is of course the ability to change the implementation

of the bottom layers without affecting the top layer simulation

application.

4.1. Publish-Subscribe Simulation Model

The top layer simulation model encompasses a couple of

aspects, which include the simulation time management, the

system specification modelling formalism, the object commu-

nication framework and the synthetic environment services.

As mentioned, the pre-existing models have been im-

plemented within a conservative logical time management

scheme and a DTSS modelling formalism. It was decided to

keep these aspects unchanged to simplify the reuse of the ex-

isting models. The object communication framework that is

under investigation for the simulation model is a specialised

publish-subscribe framework to be discussed next. Discus-

sions on the synthetic environment services will then follow.

4.1.1. The Publish-Subscribe Object Communication

Framework

The publish-subscribe paradigm is well known to anyone

that has ever needed to organise to get information, for ex-

ample a magazine, on his or her topic of interest on a regular

basis. Each magazine within your topic (category) of inter-

est has a title and a regular interval at which the categori-

cal information is made available (published). You, the sub-

scriber, may request that the information be delivered to your

doorstep in the form of, say, a weekly or a monthly magazine

issue.

The publish-subscribe simulation framework is a direct

analogy to the magazine example. An instance of a simula-

tion model (an object) may express its desire to receive infor-

mation within a certain category of interest, e.g. aircraft posi-

tions, by adding the category (and title name, if known) to its

Subscription Wish List. An object may also express its will-

ingness to share information within a certain category, such

as its own position, by adding a title (name and category) to

its Owned Title List. A subscribing object has no guarantee

that any object will share information under the title category

or name in which it is interested. Similarly a publisher object

has no guarantee that any other objects will be interested in

the information that it is willing to share. At simulation start-

up each object’s owned title list is made known to the rest of

the simulation. The titles are then processed against the ob-

jects’ wish list subscriptions. Each title matching a wish list

subscription generates a subscription which is sent back to

the title owner to be added to the title’s subscriber list.

At simulation run-time each object will go through regular

increment, publish and gather cycles. Within the DTSS mod-

elling formalism an object is incremented every n’th discrete

time simulation frame where n is the object’s trigger frame.

Each wish list subscription, and thus each subscriber in a ti-

tle’s subscriber list, is also associated with a trigger frame.

During a simulation frame, each subscriber of each owned ti-

tle will be visited and an issue sent to the subscriber if it is the

subscription’s trigger frame. An important publish rule that is

required to ensure consistent issues is that the contents of a

title issue may only be updated during the publisher’s incre-

ment cycle.

Objects may at simulation run-time express their wish to

share a new category of information or a new title within an

existing category. This is done by submitting a run-time ti-

tle to the communication framework. Similarly objects may

express interest in categories (or titles within categories) of

information at run-time by submitting a late subscription

An object has an issue pigeon hole for each of its wish

list subscriptions. When an issue is received (gather phase) it

is placed in the appropriate pigeon hole. A pigeon hole may

have subscription history turned off or on. If history is off then

a newer version of an issue replaces all old issues that may

remain in the pigeon hole. If history is turned on then issues

will be added to the pigeon hole in chronological order. The

object may then read issues and manually delete them as re-

quired during increment cycles. Turning history on for a spe-

cific wish list subscription is typically required when a sub-

scriber doesn’t want to miss any important updates (events)

for that subscription. Having history off allows the subscriber

to always have access to the current issue without the over-

head of always caching and processing a subscription’s recent

SCSC 2007 577 ISBN # 1-56555-316-0

history.

4.1.2. The Synthetic Environment Services

The two types of simulation services supported are, firstly,

low level services that are built into the simulation model and,

secondly, high level services that run on top of the simulation

model as simulation objects. The only low level service cur-

rently implemented is that of delayed issues. An issue may

be given a future delivery time by either the publisher, or the

subscriber upon delivery. Such an issue would be delivered

to the subscriber immediately, but once there it resides in a

delayed issue list until the time of delivery arrives at which

point the issue is put into the appropriate pigeon hole of the

subscriber. Delayed issues are handy if transmission delays

of messages within the SE are to be modelled. In the cur-

rent simulator the issue delays of tactical communication sub-

scriptions are, when required, calculated by a radio and cable

network model.

High level synthetic environment services subscribe to the

objects’ state titles and then apply environmental tools such

as Line Of Sight (LOS) and terrain engines to give each ob-

ject individual feedback on its height, which objects it can

see, etc. To accomplish the personalised feedback a service

advertises what is called a differentiated title. Each time a

subscription is made to a differentiated title the simulator au-

tomatically creates a personalised title and subscription for

the subscriber. The service may then use the created titles to

publish to individual objects.

A service need not always publish data back to the simula-

tion, though. Logging, for example, is a high level service that

accumulates object states and other information. The logging

service may then apply user configured data analysers to the

accumulated data and log the results to disk.

4.2. Peer-to-Peer Message Passing and Node
Synchronisation

The publish-subscribe communication framework and the

simulator synchronisation is implemented with a peer-to-peer

message passing architecture. A peer-to-peer architecture is

specifically preferred above a client-server architecture to

avoid the double latency that exists when communicating via

a server to a third machine. The messaging implementation

of the publish-subscribe communication framework is pre-

sented, followed by the implementation of the simulation syn-

chronisation.

4.2.1. Messaging Implementation of Publish-

Subscribe

The publish-subscribe framework naturally translates to a

messaging architecture containing only three message types.

A title may be advertised as a title message containing all

the title and publisher details. A wish list subscription may

Figure 2. Peer-to-Peer Message Passing and Simulation

Synchronisation

similarly be a message containing the details of the wish list

subscription and the subscriber. The third message type is an

issue message that contains the subscriber’s node-number de-

livery address, the targeted wish list subscription pigeon hole

and the actual issue payload. The messaging implementation

has a local/global filter (see Figure 1) that will loop a node’s

self addressed messages back to be cached for the next simu-

lation frame without passing anything down to the TCP layer.

4.2.2. Peer-to-Peer Node Synchronisation

The peer-to-peer synchronisation scheme is shown in Fig-

ure 2. Each simulation frame has three consecutive execu-

tion phases. Within the first phase, which is the increment

phase, all the objects are put through their increment-publish

cycles. The published issues are not messaged directly, but

are grouped per destination node and cached until the sec-

ond, so called publish, phase. The cached issue groups may

now be sent to their respective destination nodes. The pub-

lish phase must be followed by a time-stamped end-of-frame

message to each peer node to signify that all the issues for the

current simulation frame have been sent. The end-of-frame

messages perform a similar function as Chandy-Misra null

messages [14] for dead-lock avoidance and time management

in DEVS implementations. A simulator node will wait in the

gather phase until it has received and processed an end-of-

ISBN # 1-56555-316-0 578 SCSC 2007

frame message from each of the other simulator nodes after

which it starts with the increment phase of the next simulation

frame.

4.3. TCP Message Passing Implementation

The TCP messaging implementation consists of two com-

ponents. The first of which is an address translation from

destination node number to destination IP and port before

any message can be sent via TCP. This translation is pre-

configured and fixed for each distribution configuration.

The second component is a two-tiered approach to lower-

ing TCP message latency. The first tier is to ensure that as

much as possible of the TCP send and receive overhead hap-

pens in parallel to the node execution. This is accomplished

by increasing TCP’s send and receive buffers to an adequate

size such that the buffers have enough space for two simu-

lation frames worth of data. This ensures that all TCP sends

are non-blocking. It also facilitates CPU time, from a second

CPU or hyper-thread or that’s not used by the simulation, to

be used to transport as much data as possible from the nodes’

send buffers across TCP to their receive buffers for quick re-

trieval when needed.

The second tier takes control of the TCP message send

times. TCP’s Nagle algorithm tries to optimise bandwidth us-

age by conglomerating sent messages in the send buffer until

it is large enough to fill a TCP packet or until a certain time-

out is reached. The unfortunate side effect of the Nagle algo-

rithm is that control over message latencies is lost. To give

control over the message latency back to the simulator the

Nagle algorithm is disabled.

5. ANALYSIS AND RESULTS

The two aspects of the simulator architecture to be anal-

ysed in support of the research question are, firstly, the sim-

ulator’s applicability to a 100Hz DTSS modelling formalism

and, secondly, the flexibility of the publish-subscribe simula-

tion model and its suitability for a system of systems tactical

and SE simulation.

5.1. Experimental Setup

The simulator nodes are similar Pentium 4 3.2GHz ma-

chines with 2GB of dual-channel RAM each and WindowsXP

SP2. The network infrastructure is, as mentioned, Gigabit

Ethernet with a D-Link DGS-3324SR managed switch. Each

node has an Intel D945PAW mother board with an on-board

Intel Pro/1000 PM Gigabit Ethernet network card.

The simulator nodes will be populated with instances of a

“test” model. The test model has a fixed processing require-

ment of 1ms per 10ms simulation frame and an owned title

with a fixed issue size of 512 bytes. Furthermore each in-

stance of the test model subscribes to every other instance,

Figure 3. Total Object Performance of 100Hz Peer-to-Peer

Simulator

creating the worst case communication scenario of a fully

connected communication graph.

5.2. Applicability of the Peer-to-Peer Simula-
tor to a 100Hz DTSS Modelling Formal-
ism

The proposed architecture’s real-time performance is anal-

ysed over distributions of one to six simulator nodes on the

target infrastructure. With each node configuration the num-

ber of objects per node will be limited to achieve a real-

time frame-rate. Finally a simple predictive model for the dis-

tributed performance behaviour is derived from the analysis

data and used to do a first order estimate of the simulator’s

scalability to seven and more nodes. Accurate evaluation over

more nodes should however be part of the future work section

to verify the speculation about the simulator’s scalability.

The performance result that is recorded is the maximum

number of objects per node (see Figure 3) such that the sim-

ulation can still reach real-time. If the total number of ob-

jects are increased above the “Total Objects” graph, the per-

formance will drop below real-time. Conversely, if the total

number of objects are decreased below the “Total Objects”

graph, the performance will grow beyond real-time. Both the

total number of objects and the performance speed-up graphs

are derived from the measured objects-per-node graph (Fig-

ure 3 and Figure 4).

Quantifying the measured communication overhead it

seems that each time a simulator node is added, the num-

ber of model instances per node must be decreased by an

average of 0.5 to maintain real-time which is a 0.5% over-

head of the 10ms simulation frame. The explanation of these

results is quite likely not a simple task, see the Section 7.

on future work, as it may be dependent on multiple factors

such as message structure and grouping. However, assuming

for the purpose of first order performance predictions, that

the results do indeed indicate a linear distribution overhead

SCSC 2007 579 ISBN # 1-56555-316-0

Figure 4. Real-Time Performance Speed-Up of 100Hz Peer-

to-Peer Simulator

of 5% for each simulator node added, such a linear overhead

would most probably be in the receive loop of each simulation

frame. Amdahl’s Law [www.wikipedia.org] specifies that the

speed-up attainable by parallel execution is limited by the se-

quential components of the system which in this case is a sin-

gle NIC and thus a single, though full-duplex, communication

channel per simulator node.

A linear performance might seem counter intuitive to what

is expected of an n node and fully connected peer-to-peer

structure where the total number of connections grows by n2.

The linear nature does however make sense if one remembers

that the processing is done by n nodes resulting in a process-

ing time of n2

c.n
which is proportional to n and therefore linear.

In other words, each node must receive data from each of the

other nodes in turn, limiting the potential parallelisation.

The first order objects-per-node performance for seven and

more nodes is estimated by linearly extrapolating the mea-

sured objects-per-node curve (Figure 3) under the previous

assumption. The spikiness of the performance graphs is due

to the granularity of the objects which, in general, leaves a

fragmented processing slot (idle time) on each node. The lin-

ear extrapolation provides an estimate for the scalability of

the simulator, but as the number of nodes increases to beyond

10 the total number of objects eventually start to decrease

which implies that the communication bandwidth will also

decrease again. Around this point it is expected that the lin-

ear nature of the objects-per-node curve might change which

requires, as mentioned, analysis over more nodes to draw ac-

curate scalability conclusions beyond 10 nodes.

5.3. Suitability and Flexibility of the Publish-
Subscribe Simulation Model

The flexibility of the publish-subscribe simulation model

and its suitability for a DTSS system of systems tactical and

SE simulation is analysed to resolve the first part of the re-

search question. The publish-subscribe simulation model is

Table 1. Successful Application Domains of the Peer-to-

Peer Publish-Subscribe Simulator Architecture

Application

Domain

Description

GBADS Ground Based Air Defence System Per-

formance Analysis

MobADS Mobile Air Defence System Performance

Analysis

Navy

SBADS

Concept Demonstrator for Developing

Tactical Doctrine for Naval Air Defence

Scenarios

Sensor Webs

(Awarenet)

Concept Demonstrator for value of ad-

ditional coastal surveillance in creat-

ing situational awareness when patrolling

South-Africa’s fishing zones

shown to be suitable for the implementation of a DTSS mod-

elling formalism and the simulator synchronisation to be free

of deadlock which is sometimes a problem for distributed

simulators. Finally the measure of flexibility of the simulation

model is defined and demonstrated as the range of application

domains within which the simulator have been successful.

The publish-subscribe simulation model sets up virtual

communication channels between the objects. These channels

provide a way for a subscriber to sample the publisher’s state

periodically as required within the DTSS modelling formal-

ism [5]. This is accomplished by the subscriber periodically

receiving the current issue of a certain title of the publisher.

The end of frame notifications are a special case of the

Chandy-Misra null messages [14] with a fixed look ahead

equal to the discrete time step. The simulation model may

thus, according to Chandy-Misra, be shown to be dead-

lock free. An advantage of the DTSS implementation of

null messages is that the number of null messages is lim-

ited to only one per simulator node per simulation frame.

This improves on the typical null-message overhead within

DEVS implementations which may generate excessive null-

messages [15].

The flexibility of the simulation model is defined as the

range of application domains, (see Table 1), within which

this publish-subscribe simulation model and parallel peer-to-

peer simulator have been successful. Each of these applica-

tion domains has been validated against reality by running

experiments that analyse various aspects of the system of sys-

tems. For each experiment the systems’ simulated emergent

behaviour is compared against the pre-defined expected be-

haviour and motivated, or corrected, by subject matter experts

or from what is already known of the system. A list of exter-

nal systems successfully integrated with the simulator may be

found in Table 2.

ISBN # 1-56555-316-0 580 SCSC 2007

Table 2. External Systems Successfully integrated with the

Peer-to-Peer Publish-Subscribe Simulator Architecture

External

System

Description

Simulation

Viewers

Integration with 2D and 3D online and of-

fline visual analysis tools

OIL Con-

soles

Integration with mock-up OIL consoles

for realistic real-time operator-equipment

interaction

Hardware

In the Loop

(HIL) Track-

ing Sensor

Integration with a Mechanised Optical

and Radar Tracker (MecORT) for real

sensor input when doing system analysis

and validation

HIL Air Pic-

ture Sources

Integration with civilian and military air

pictures supported by run-time simulated

aircraft generation

Flight Simu-

lator

Integration with a flight simulator for

inclusion of realistic reactive pilot be-

haviour when doing system analysis.

6. CONCLUSION

The new 100Hz logical time DTSS publish-subscribe peer-

to-peer simulator architecture achieves a measured speed in-

crease, due to execution parallelisation, of above 4.5 when

distributed over six simulator nodes. This equates to a dis-

tribution efficiency of 75%. The wide success of the appli-

cation of the simulator architecture is used to motivate the

publish-subscribe simulation model’s suitability as a general

purpose DTSS simulation model. The authors therefore con-

clude that the peer-to-peer publish-subscribe simulator is suit-

able to support the real-time execution of the 100Hz logical

time DTSS simulation requirement.

The simulator’s 100Hz logical time performance is also ex-

plained and modelled in a simple way which provides a first

order estimate on the scalability of the parallelisation. The

simulator is estimated to reach a parallelisation ceiling at a

speed increase of approximately 5.5 which is achieved when

distributed over 10 simulator nodes. This equates to a distri-

bution efficiency of 55%. The scalability of such a high reso-

lution logical time parallel simulator thus seems to be limited

to applications requiring low to medium levels of paralleli-

sation. The limiting factor for the parallelisation is, as men-

tioned, the sequential nature of the network communication.

The DTSS modelling formalism does seem to pose a tech-

nical difficulty in implementing large scale parallelisation

of high resolution logical time simulations. In hind sight it

seems like a good idea to rather develop a hybrid DTSS-

DEVS modelling formalism, that has a DEVS layer envelop-

ing the DTSS layer, to further migrate this specific simulation

capability towards supporting large scale parallelisation. The

two layer approach allows the existing DTSS models to be

grouped and aggregated into systems level models for exam-

ple, which may then be better suited to a DEVS modelling

formalism. The DEVS layer then communicates only what is

required and its parallelisation is not constrained by the un-

derlying DTSS layer’s logical time resolution.

7. FUTURE WORK

The reason for retaining the DTSS modelling formalism

was for ease of reuse of existing discrete time models. In

other words the authors believe that developing this parallel

distributed simulator was more viable than, for example, mi-

grating the entire modelling formalism to DEVS. This is a

valid position for the currently required simulation capabil-

ity, but future work to increase the scalability and usability of

the simulator should include:

• Further investigation and a proper explanation of the

scalability behaviour which might reveal ways of im-

proving that behaviour,

• investigation into the different timings and groupings for

execute-send cycles, possibly interleaving send with ex-

ecute in a different way,

• investigation into using lower overhead UDP message

passing, because in a dedicated and lightly loaded

switched Gigabit Ethernet scenario it is known [16] that

UDP packet losses occur very seldom, and

• investigation into the possible migration of the system

specification modelling formalism to a hybrid DEVS-

DTSS modelling formalism.

8. ACKNOWLEDGEMENTS

The authors would like to thank both the Armaments Cor-

poration (Armscor) of South-Africa and the CSIR for sup-

porting this research. Additionally the authors thank Anita

Louis (CSIR) and Arno Duvenhage (CSIR) for their valuable

review comments.

REFERENCES

[1] Johannes Lodewikus Pretorius. Feasibility considera-

tions for a tailored simulation based acquisition (sba)

approach. Master’s thesis, University of Pretoria, 2003.

[2] Jacques Baird and Cobus Nel. The evolution of m&s

as part of smart acquisition using the sandf gbads pro-

gramme as an example. In Proceedings of the 12th

European Air Defence Symposium, volume 3694, pages

173–182, 2005.

SCSC 2007 581 ISBN # 1-56555-316-0

[3] Shahen Naidoo and Cobus Nel. Modelling and simula-

tion of a ground based air defence system and associ-

ated tactical doctrine as part of acquisition support. In

Proceedings of the 2006 Fall Simulation Interoperabil-

ity Workshop, 2006.

[4] Willem H. le Roux. Implementing a low cost distributed

architecture for real-time behavioural modelling and

simulation. In Proceedings of the 2006 European Simu-

lation Interoperability Workshop, 2006.

[5] Bernard P. Zeigler. Theory of Modelling and Simulation.

Academic Press, 2000.

[6] Ernest H. Page and Roger Smith. Introduction to mili-

tary training simulation: A guide for discrete event sim-

ulationists. In Proceedings of the 1998 Winter Simula-

tion Conference, 1998.

[7] Michihiko Ogata, Akira Higashide, Mike Cammarano,

and Toshinao Takagi. Rti performance in the distributed

real-time vehicle model simulation in a 3-d graphical

environment. In Proceedings of the 2001 European Sim-

ulation Interoperability Workshop, 2001.

[8] Stephane Jolibois, Thierry Joubert, and Herve Went-

zler. New hla based technologies and methods for an

advanced air to air combat simulation. In Proceedings

of the 2003 European Simulation Interoperability Work-

shop, 2003.

[9] Richard Fujimoto and Peter Hoare. Hla rti performance

in high speed lan environments. In Proceedings of the

1998 Fall Simulation Interoperability Workshop, 1998.

[10] Ben Watrous, Len Granowetter, and Douglas Wood. Hla

federation performance: What really matters? In Pro-

ceedings of the 2006 Fall Simulation Interoperability

Workshop, 2006.

[11] Alfred Park and Richard M. Fujimoto. Aurora: An ap-

proach to high throughput parallel simulation. In Pro-

ceedings of the 20th Workshop on Principles of Ad-

vanced and Distributed Simulation, 2006.

[12] Steffen Straßburger. Advances in Simulation. SCS Pub-

lishing House, 2000.

[13] Bernardt Duvenhage and Herman W. le Roux. Tcp

simulation architecture investigation. Technical report,

Council for Scientific and Industrial Research, 2004.

[14] K. Chandy and Jayadev Misra. Distrubuted simulation:

A case study in design and verification of distributed

programs. In IEEE Transactions on Software Engineer-

ing, volume SE-5, 2003.

[15] Richard M. Fujimoto. Parallel and distributed simula-

tion. In Proceedings of the 1999 Winter Simulation Con-

ference, 1999.

[16] Behrouz A. Forouzan. TCP/IP Protocol Suite. McGraw-

Hill, Inc., New York, NY, USA, 2002.

Biography
Bernardt Duvenhage obtained his B.Sc (Honour) degree

in Computer Science from the University of Pretoria in 2005

and is currently pursuing a Masters Degree. While part of the

Mathematical and Computational Modelling Research Group

of the Council for Scientific and Industrial Research (CSIR)

in South Africa, he played a key role in developing the

group’s distributed simulator architecture; the simulation’s

terrain and LOS services; and the 3D visualisation and

analysis tool of the synthetic environment. He is currently

employed in the Optronic Sensor Systems Competency Area

of a division within the CSIR. He intends further research in

virtual environment simulation and visualisation.

Derrick Kourie lectures in the Computer Science depart-

ment at Pretoria University. While his academic roots are

in operations research, his current interests include, but are

not limited to software engineering and algorithm develop-

ment. He is student adviser to some 20 postgraduate students

working in these and related areas. He is editor of the South

African Computer Journal and serves on various national and

international academic committees.

ISBN # 1-56555-316-0 582 SCSC 2007

Migrating to a Real-Time Distributed Parallel Simulator
Architecture

An Update
∗

Bernardt Duvenhage
The Computer Science Department of the University of Pretoria

Pretoria, South Africa
bduvenhage@csir.co.za

Categories and Subject Descriptors
J.7 [Computers in Other Systems]: Command and Con-

trol ; J.7 [Computers in Other Systems]: Military

Keywords
discrete time, DTSS, discrete event, DEVS, distributed par-
allel simulation

ABSTRACT
A legacy non-distributed logical time simulator was previ-
ously migrated to a distributed architecture to parallelise
execution. The existing Discrete Time System Specification
(DTSS) modelling formalism was retained to simplify the
reuse of existing models. This decision, however means that
the high simulation frame rate of 100Hz used in the legacy
system has to be retained in the distributed one—a known
difficulty for existing distribution technologies due to inter-
process communication latency.

The specialised discrete time distributed peer-to-peer mes-
sage passing architecture that resulted to support the paral-
lelised simulator requirements is analysed and the questions
surrounding its performance and flexibility answered. The
architecture is shown to be a suitable and cost effective dis-
tributed simulator architecture for supporting a four to five
times parallelised implementation of a 100 Hz logical time
DTSS modelling formalism.

From the analysis results it is however clear that the dis-
crete time architecture poses a significant technical challenge
in supporting large scale distributed parallel simulations.
This is mainly due to sequential communication components
within the discrete time architecture and system specifica-
tion that cannot be parallelised. A hybrid DTSS/Discrete
Event System Specification (DEVS) modelling formalism

∗SAICSIT 2007 Student Paper - Progress of Masters disser-
tation following on original article[1] by the same name.

and simulator is proposed to lower the communication and
synchronisation overhead between models and improve on
the scalability of the discrete time simulator while still eco-
nomically reusing the existing models.

The proposed hybrid architecture is discussed. Ideas on
implementing and then analysing the new architecture to
complete the author’s masters dissertation are then touched
upon.

1. INTRODUCTION
The South-African National Defence Force’s (SANDF’s) need
for decision support and concurrent tactical doctrine devel-
opment within a Ground Based Air Defence System (GBADS)
acquisition program offered an ideal opportunity to estab-
lish an indigenous and credible modelling and simulation
capability within the South-African defence acquisition en-
vironment [2][3]. The broad requirement of the capability
is to simulate a GBADS battery of existing and still to be
acquired (possibly still under development) equipment and
their related human operators at a system of systems level
within a realistic Synthetic Environment (SE). A GBADS
deployment, shown in Figure 1, usually consists of a layered
air defence. The outer layer typically consists of eight very
short range missile systems, each having a virtual operator
and an accompanying buddy with a wide angle pair of bin-
oculars. The second layer has four gun systems, each consist-
ing of two guns, a tracking radar, a designation radar, a fire
control system and at least three operators to operate the
guns. The inner layer of defence usually has two short range
missile systems, each consisting of a ground based launcher,
a designation sensor, a fire control system and a couple of
virtual operators. The deployment would defend some asset
(vulnerable point) against an airborne threat scenario. A
typical threat scenario would consist of one to many incom-
ing attack aircraft which are the ’targets’ to be engaged by
the air defence system.

During the concept and definition phases of the acquisition
life cycle [4] the capability was successfully provided by a
non-distributed simulator and its architectural predecessors
[5] developed by the CSIR. A selection of the models were de-
rived from high fidelity engineering models, some by OEMs,
and developed within a 100Hz logical Discrete Time System
Specification (DTSS) [6] that simplified the time and caus-
ality management. The non-distributed simulator evolved
within this 100Hz logical time DTSS modelling formalism

Figure 1: A Typical GBADS Deployment

and was implemented to run As Fast As Possible (AFAP).

Real-time simulation execution became a prioritised require-
ment during the development phase of the acquisition life
cycle due to the realised impact of realistic human-simulation
interaction when doing tactical doctrine development. Hu-
man interaction would happen through an Operator In the
Loop (OIL) console with the possibility to record the op-
erator’s actions to be re-used in statistical simulation runs
when and as required. To support the real-time requirement
it was decided to parallelise the simulator across multiple
Commercial Off the Shelf (COTS) PC nodes connected with
Gigabit Ethernet. For economical reusability of all the ex-
isting models it was also decided to retain the 100Hz logical
time and DTSS modelling formalism.

Several case studies of value for embedding a discrete time
modelling approach within existing simulator distribution
technologies, presented by Duvenhage and Kourie [1], showed
that these reach a frame rate ceiling of 20 to 30Hz. A spe-
cialised 100Hz logical discrete time distributed simulator was
developed to bridge the gap from 30Hz to 100Hz and this
simulator is currently in use to provide the required simu-
lation capability. To achieve real-time execution the logical
time simulator’s execution is throttled to not exceed real-
time. Guaranteeing that at least real-time execution can
be reached does place severe real-time constraints on the
inter-node communication latency though, as each simula-
tion frame is a mere 10ms.

The distributed discrete time simulator design is briefly dis-
cussed in the next section followed by some performance ana-
lysis results. The results are discussed and shown to indicate
a technical difficulty in the future scalability of the discrete
time simulator. A hybrid DTSS/Discrete Event System Spe-
cification (DEVS) modelling approach and simulator is then
proposed to improve on the scalability of the discrete time
simulator. Ideas on implementing and then analysing the
new architecture to complete the author’s Masters disserta-
tion is finally presented.

Figure 2: Layered Peer-to-Peer Simulator Architec-

ture

2. THE DISTRIBUTED DISCRETE TIME SIM-

ULATOR
The discussion on the new publish-subscribe simulator ar-
chitecture is structured around the layered architecture of
the simulator (shown in Figure 2), which includes a publish
subscribe simulation layer, a message passing implementa-
tion of the simulation model and at the bottom layer a low
latency TCP messaging protocol for Gigabit Ethernet.

The attraction of the layered architecture was the separa-
tion of concerns, in terms of design, between the simulation
model and the distributed execution thereof. An additional
advantage is of course the ability to change the implement-
ation of the bottom layers without affecting the top layer
simulation application.

2.1 Publish-Subscribe Simulation Model
The top layer simulation model encompasses a couple of as-
pects, which include the simulation time management, the
system specification modelling formalism, the object com-
munication framework and the synthetic environment ser-
vices.

As mentioned, the pre-existing models have been implemen-
ted within a conservative logical time management scheme
and a DTSS modelling formalism. It was decided to keep
these aspects unchanged to simplify the reuse of the exist-
ing models. The object communication framework that is
under investigation for the simulation model is a specialised
publish-subscribe framework to be discussed next. Discus-
sions on the synthetic environment services will then follow.

2.1.1 The Object Communication Framework
The publish-subscribe paradigm is well known to anyone
that has ever needed to organise to get information, for ex-
ample a magazine, on his or her topic of interest on a reg-
ular basis. Each magazine within your topic (category) of
interest has a title and a regular interval at which the cat-
egorical information is made available (published). You, the
subscriber, may request that the information be delivered
to your doorstep in the form of, say, a weekly or a monthly
magazine issue.

The publish-subscribe simulation framework is a direct ana-
logy to the magazine example. An instance of a simulation
model (an object) may express its desire to receive inform-
ation within a certain category of interest, e.g. aircraft pos-

itions, by adding the category (and title name, if known) to
its Subscription Wish List. An object may also express its
willingness to share information within a certain category,
such as its own position, by adding a title (name and cat-
egory) to its Owned Title List.

At simulation run-time each object will go through regu-
lar increment, publish and gather cycles. Within the DTSS
modelling formalism an object is incremented every n’th dis-
crete time simulation frame where n is the object’s trigger

frame. Each wish list subscription, and thus each subscriber
in a title’s subscriber list, is also associated with a trigger
frame. During a simulation frame, each subscriber of each
owned title will be visited and an issue sent to the subscriber
if it is the subscription’s trigger frame.

An object has an issue pigeon hole for each of its wish list
subscriptions. When an issue is received (gather phase) it
is placed in the appropriate pigeon hole. A pigeon hole may
have subscription history turned off or on. If history is off
then a newer version of an issue replaces all old issues that
may remain in the pigeon hole. If history is turned on then
issues will be added to the pigeon hole in chronological order.
The object may then read issues and manually delete them
as required during increment cycles. Turning history on for
a specific wish list subscription is typically required when
a subscriber doesn’t want to miss any important updates
(events) for that subscription. Having history off allows the
subscriber to always have access to the current issue without
the overhead of always caching and processing a subscrip-
tion’s recent history.

2.1.2 The Synthetic Environment Services
The two types of simulation services supported are, firstly,
low level services that are built into the simulation model
and, secondly, high level services that run on top of the
simulation model as simulation objects. The only low level
service currently implemented is that of delayed issues. An
issue may be given a future delivery time by either the pub-
lisher, or the subscriber upon delivery. Such an issue would
be delivered to the subscriber immediately, but once there it
resides in a delayed issue list until the time of delivery arrives
at which point the issue is put into the appropriate pigeon
hole of the subscriber. Delayed issues are handy if transmis-
sion delays of messages within the SE are to be modelled.
In the current simulator the issue delays of tactical commu-
nication subscriptions are, when required, calculated by a
radio and cable network model.

High level synthetic environment services subscribe to the
objects’ state titles and then apply environmental tools such
as Line Of Sight (LOS) and terrain engines to give each
object individual feedback on its height, which objects it can
see, etc. To accomplish the personalised feedback a service
advertises what is called a differentiated title. Each time a
subscription is made to a differentiated title the simulator
automatically creates a personalised title and subscription
for the subscriber. The service may then use the created
titles to publish to individual objects.

A service need not always publish data back to the simula-
tion, though. Logging, for example, is a high level service
that accumulates object states and other information. The

Figure 3: Peer-to-Peer Message Passing and Simu-

lation Synchronisation

logging service may then apply user configured data analys-
ers to the accumulated data and log the results to disk.

2.2 Peer-to-Peer Message Passing and Node Syn-

chronisation
The publish-subscribe communication framework and the
simulator synchronisation is implemented with a peer-to-
peer message passing architecture. A peer-to-peer architec-
ture is specifically preferred above a client-server architec-
ture to avoid the double latency that exists when communic-
ating via a server to a third machine. The messaging imple-
mentation of the publish-subscribe communication frame-
work is presented, followed by the implementation of the
simulation synchronisation.

2.2.1 Messaging Implementation of Publish-Subscribe
The publish-subscribe framework naturally translates to a
messaging architecture containing only three message types.
A title may be advertised as a title message containing all
the title and publisher details. A wish list subscription may
similarly be a message containing the details of the wish list
subscription and the subscriber. The third message type is
an issue message that contains the subscriber’s node-number
delivery address, the targeted wish list subscription pigeon
hole and the actual issue payload. The messaging imple-
mentation has a local/global filter (see Figure 2) that will
loop a node’s self addressed messages back to be cached for
the next simulation frame without passing anything down
to the TCP layer.

2.2.2 Peer-to-Peer Node Synchronisation
The peer-to-peer synchronisation scheme is shown in Fig-
ure 3. Each simulation frame has three consecutive exe-

cution phases. Within the first phase, which is the incre-

ment phase, all the objects are put through their increment-
publish cycles. The published issues are not messaged dir-
ectly, but are grouped per destination node and cached until
the second, so called publish, phase. The cached issue groups
may now be sent to their respective destination nodes. The
publish phase must be followed by a time-stamped end-of-
frame message to each peer node to signify that all the issues
for the current simulation frame have been sent. The end-of-
frame messages perform a similar function as Chandy-Misra
null messages [7] for dead-lock avoidance and time manage-
ment in DEVS implementations. A simulator node will wait
in the gather phase until it has received and processed an
end-of-frame message from each of the other simulator nodes
after which it starts with the increment phase of the next
simulation frame.

2.3 TCP Message Passing Implementation
The TCP messaging implementation consists of two com-
ponents. The first of which is an address translation from
destination node number to destination IP and port before
any message can be sent via TCP. This translation is pre-
configured and fixed for each distribution configuration.

The second component is a two-tiered approach to lower-
ing TCP message latency. The first tier is to ensure that as
much as possible of the TCP send and receive overhead hap-
pens in parallel to the node execution. This is accomplished
by increasing TCP’s send and receive buffers to an adequate
size such that the buffers have enough space for two simula-
tion frames worth of data. This ensures that all TCP sends
are non-blocking. It also facilitates CPU time, from a second
CPU or hyper-thread or that’s not used by the simulation,
to be used to transport as much data as possible from the
nodes’ send buffers across TCP to their receive buffers for
quick retrieval when needed.

The second tier takes control of the TCP message send
times. TCP’s Nagle algorithm tries to optimise bandwidth
usage by conglomerating sent messages in the send buffer un-
til it is large enough to fill a TCP packet or until a certain
time-out is reached. The unfortunate side effect of the Nagle
algorithm is that control over message latencies is lost. To
give control over the message latency back to the simulator
the Nagle algorithm is disabled.

2.4 Analysis and Results
The proposed architecture’s real-time performance is ana-
lysed over distributions of one to six simulator nodes on
the target infrastructure. With each node configuration the
number of objects per node will be limited to achieve a real-
time frame-rate. Finally a simple predictive model for the
distributed performance behaviour is derived from the ana-
lysis data and used to do a first order estimate of the simu-
lator’s scalability to seven and more nodes. Accurate evalu-
ation over more nodes should however be part of the future
work section if such accuracy is required.

For the experimental setup the simulator nodes are similar
Pentium 4 3.2GHz machines with 2GB of dual-channel RAM
each and WindowsXP SP2. The network infrastructure is,
as mentioned, Gigabit Ethernet with a D-Link DGS-3324SR
managed switch. Each node has an Intel D945PAW mother

Figure 4: Total Object Performance of 100Hz Peer-

to-Peer Simulator

Figure 5: Real-Time Performance Speed-Up of

100Hz Peer-to-Peer Simulator

board with an on-board Intel Pro/1000 PM Gigabit Ether-
net network card. The simulator nodes will be populated
with instances of a “test” model. The test model has a fixed
processing requirement of 1ms per 10ms simulation frame
and an owned title with a fixed issue size of 512 bytes. Fur-
thermore each instance of the test model subscribes to every
other instance, creating the worst case communication scen-
ario of a fully connected communication graph.

The performance result that is recorded is the maximum
number of objects per node (see Figure 4) such that the
simulation can still reach real-time. If the total number
of objects are increased above the “Total Objects” graph,
the performance will drop below real-time. Conversely, if
the total number of objects are decreased below the “Total
Objects”graph, the performance will grow beyond real-time.
Both the total number of objects and the performance speed-
up graphs are derived from the measured objects-per-node
graph (Figure 4 and Figure 5).

Quantifying the measured communication overhead it seems
that each time a simulator node is added, the number of
model instances per node must be decreased by an average
of 0.5 to maintain real-time which is a 0.5% overhead of the
10ms simulation frame. Assuming for the purpose of first
order performance predictions, that the results do indeed in-
dicate a linear distribution overhead of 5% for each simulator

node added, such a linear overhead would most probably be
in the receive loop of each simulation frame. Amdahl’s Law
[www.wikipedia.org] states that the speed-up attainable by
parallel execution is limited by the sequential components
of the system which in this case is proposed to be the single
NIC, and thus single communication channel, per simulator
node.

A linear performance might seem counter intuitive to what
is expected of an n node and fully connected peer-to-peer
structure where the total number of connections grows by
n

2. The linear nature does however make sense if one re-
members that the processing is done by n nodes resulting

in a processing time of n
2

c.n
which is proportional to n and

therefore linear. In other words, each node must strictly re-
ceive data from each of the other nodes in turn, limiting the
potential parallelisation.

The first order objects-per-node performance for seven and
more nodes is estimated by linearly extrapolating the meas-
ured objects-per-node curve (Figure 4) under the previous
assumption. The spikiness of the performance graphs is due
to the granularity of the objects which, in general, leaves a
fragmented processing slot (idle time) on each node. The
linear extrapolation provides an estimate for the scalability
of the simulator, but as the number of nodes increases to
beyond 10 the total number of objects eventually start to
decrease which implies that the communication bandwidth
will also decrease again. Around this point it is expected
that the linear nature of the objects-per-node curve might
change which requires, as mentioned earlier, analysis over
more nodes to draw accurate scalability conclusions beyond
10 nodes.

From the analysis of the results it seems that the new 100Hz
logical time DTSS publish-subscribe peer-to-peer simulator
architecture achieves a measured speed increase, due to ex-
ecution parallelisation, of above 4.5 when distributed over
six simulator nodes, but not higher than approximately 6
even when distributed over ten and more nodes. This sim-
ulator is currently in use and working as expected, but the
DTSS modelling formalism does seem to pose a technical
difficulty in implementing still larger scale parallelisation of
high resolution logical time simulations due to the sequential
components of the architecture that cannot be parallelised.

3. A HYBRID DEVS/DTSS MODELLING AP-

PROACH
In hind sight it seems like a good idea to rather develop a
hybrid DTSS-DEVS modelling formalism, that has a DEVS
layer enveloping the DTSS layer, to further migrate this
specific simulation capability towards supporting large scale
parallelisation. The two layer approach allows the existing
DTSS models to be grouped and aggregated into systems
level models for example, which may then be better suited
to a DEVS modelling formalism. The DEVS layer then com-
municates only what is required and its parallelisation is
not constrained by the underlying DTSS layer’s logical time
resolution which would require strict high resolution time
synchronisation between nodes.

It is known that a DTSS may be embedded within a DEVS [6].

Figure 6: Double Structure Level of Discrete Time

Simulator

This alone, however, does not improve the scalability of the
simulator. The proposed aspects to improve the scalability
is Aggregating DTSS Models into DEVS Models and Using

Dead-Reckoning Techniques on the remaining high resolu-
tion data links. It is worth noting again here that reusing the
current discrete time models, their publish-subcribe commu-
nication framework and the peer-to-peer messaging on TCP
architecture is still of importance for economical reasons,
minimising duplication of effort.

3.1 Aggregating DTSS Models into DEVS Mod-

els
The typical layout of a GBADS battery was described in the
introduction. Most of the current GBADS models are at the
level of GBAD sub-systems of systems within the battery.
These models are typically modelled at a state transition
system specification level or higher. At the GBAD system
level the sub-system models are brought together to create
system level models at a coupled system specification level
as shown in Figure 6. The GBAD system models are then
coupled again to create a GBAD system of systems level
model also at the coupled component system specification
level.

The nature of the system of systems simulation experiments
requires objectives and outcome measures at the GBAD sys-
tem level. In such an experimental frame the output vari-
ables within the GBAD system level coupled component
models (the system structural knowledge) is hidden from
the simulation analyst and argued to therefore be superflu-
ous. The aim of aggregation of the DTSS models is the act of
explicitly hiding the double layer of intermediate GBAD sys-
tem structural information within a DEVS model. The new
GBAD system level DEVS model is then a state transition
system specification envelope which shields the model inter-
connect infrastructure from the communication overhead of
the internal structure.

3.2 Using Dead-Reckoning Techniques
Some models, such as the incoming aircraft, are already at
a GBAD system level. Nevertheless, these models still com-
municate at a high data rate to some of the other GBAD
systems. The current tracking radar models, for example,
require high time resolution target position input for their
tracking filters to operate properly. This is due to the track-
ing radar, a GBAD sub-system, internally also being mod-
elled at a coupled component level. This requires the cor-
rect external stimulation for all the components to operate
together within the experimental frame for which they were
originally developed.

The aim of the dead-reckoning technique is to trade accuracy
for communication bandwidth, but in a clever way. An air-
craft will, along with its position, make known to the radar
how to best predict its path of motion up to x seconds into
the future. The radar may then calculate for itself the air-
craft’s position as frequently as required. The aircraft will
however keep track of were the radar thinks the aircraft is as
the aircraft knows what prediction algorithm the radar is us-
ing. As soon as the aircraft’s actual and predicted positions
are outside a predefined error boundary of each other, the
aircraft refreshes its current position and prediction method
to the radar.

4. CONCLUSION
The analysis results of the discrete time simulator indicated
that sequential hardware communication components of the
infrastructure limit its scalability. A hybrid discrete time
and discrete event modelling approach is proposed that will
increase the scalability of the simulator by making more effi-
cient use of the communication infrastructure while reusing
the existing discrete time GBAD sub-system and system
level models.

The proposed modelling aspects that will implement the hy-
brid modelling approach is Aggregating DTSS Models into

DEVS Models and Using Dead-Reckoning. However, the
open issues to investigate further are:

• The effect of this modelling approach on the simulation
fidelity eg. the performance of the tracking filters once
dead-reckoning is included, and

• how to compare the scalability of the discrete event
simulator to that of the discrete time simulator.

Main advantage of this work is of course greater scalability
of the real-time simulation capability, but additional advant-
ages of the DEVS based simulator is:

• Improved scalability is the result of making more effi-
cient use of the distribution infrastructure which im-
plies that the simulator may now be distributed over
longer distance lower bandwidth connections, and

• easier migration to The High Level Architecture (HLA),
an IEEE standard for large scale distributed simu-
lation interoperability, which is based on DEVS and
popular within the military simulation domain.

5. REFERENCES
[1] B. Duvenhage and D. Kourie. Migrating to a real-time

distributed parallel simulator architecture. In
Proceedings of the 2007 Summer Computer Simulation

Conference, San Diego, California, USA, 2007.

[2] J. Pretorius. Feasibility considerations for a tailored
simulation based acquisition (SBA) approach. Master’s
thesis, University of Pretoria, Pretoria, South-Africa,
2003.

[3] J. Baird and J. Nel. The evolution of M&S as part of
smart acquisition using the SANDF GBADS
programme as an example. In Proceedings of the 12th

European Air Defence Symposium, Shrivenham,
England, 2005.

[4] S. Naidoo and J. Nel. Modelling and simulation of a
ground based air defence system and associated tactical
doctrine as part of acquisition support. In Proceedings

of the 2006 Fall Simulation Interoperability Workshop,
Orlando, Florida, USA, 2006.

[5] W. le Roux. Implementing a low cost distributed
architecture for real-time behavioural modelling and
simulation. In Proceedings of the 2006 European

Simulation Interoperability Workshop, Stockholm,
Sweden, 2006.

[6] B. Zeigler, T. Kim, and H. Praehofer. Theory of

Modelling and Simulation, second edition. Academic
Press, San Diego, California, USA, 2000.

[7] K. Chandy and J. Misra. Distributed simulation: A
case study in design and verification of distributed
programs. IEEE Transactions on Software Engineering,
SE-5(5), 1979.

Biography
Bernardt Duvenhage obtained his B.Sc (Honours) degree in
Computer Science from the University of Pretoria in 2005
and is currently pursuing a Masters Degree. While part of
the Mathematical and Computational Modelling Research
Group of the Council for Scientific and Industrial Research
(CSIR) in South Africa, he played a key role in developing
the group’s distributed simulator architecture; the simula-
tion’s terrain and LOS services; and the 3D visualisation and
analysis tool of the synthetic environment. He is currently
employed in the Optronic Sensor Systems Competency Area
of a division within the CSIR. He intends further research
in virtual environment simulation and visualisation.

Quantising the Network Communication Between

Discrete-Time Coupled Components

Bernardt Duvenhage and
Derrick G. Kourie

Espresso Group, University of Pretoria, South Africa
bduvenhage@csir.co.za and dkourie@cs.up.ac.za

June 25, 2008

SIMULATION Cover Letter

A coupled-component model of a system of systems (and of sub-systems) is currently in use
to do high level predictive performance analysis. The current distributed parallel simulator
and component models have evolved from a 100Hz discrete and logical time non-distributed
simulation. Thus, the current internal model processing and the inter-model communication are
legacies of an ancestral high resolution discrete time approach.

Experiments indicate that the discrete time simulator cannot support a parallelisation speed-
up above 4—irrespective of the number of processing nodes. The reason for the scalability ceiling
is found to be high communication latency due to the depletion of the giga-bit/s communication
bandwidth that is available between processing nodes.

A quantised system approach to the discrete event representation of the model of a system
of dynamical systems is proposed. Regardless of the benefits of the quantised system approach,
the investment in the existing discrete time components and simulation architecture is a legacy
to be carried forward by the simulator. This limits the feasibility of migrating the simulator
and coupled component model to a fully quantised discrete event representation. (Related to
the work by Zeigler et al.[1] and Kofman et al.[2] on the Theory of Modelling and Simulation
and especially the efficiency of a quantised approach to the discrete event representation of a
dynamical system. Related to the work by Schulze et al.[3] as it and other works by one of the
authors, Straßburger, led to the broader investigation of: 1) the advantages of quantised discrete
event, and 2) the advantages and cost of using a standardised interoperability architecture such
as HLA. Related to the work by Wainer and Zeigler[4] with respect to their investigations of the
closed loop error behaviour of quantised systems.)

In this article the authors have proposed a new approach in which partial quantisation can
be deployed to potentially improve parallelisation speed-up in contexts which do not allow for
full quantisation or, as in the authors’ case, where full quantisation is not economically pos-
sible. This approach was successful in improving the parallelisation speed-up performance by
lowering the required network bandwidth between distributed coupled components. The im-
proved parallelisation speed-up performance approaches that of the ideal simulator, which has
no distribution/communication overhead.

1

References

[1] B. Zeigler, T. Kim, and H. Praehofer. Theory of Modelling and Simulation, second edition.
Academic Press, San Diego, California, USA, 2000.

[2] E. Kofman, J. Lee, and B. Zeigler. DEVS representation of differential equation systems:
Review of recent advances. In Proceedings of the 2001 European Simulation Symposium,
Marseille, France, 2001.

[3] T. Schulze, S. Straßburger, and U. Klein. Migration of HLA into the civil domains. Simula-

tion, 73(5), 1999.

[4] G. Wainer and B. Zeigler. Experimental results of timed cell-DEVS quantisation. In Pro-

ceedings of AIS’2000, Tucson, Arizona, USA, 2000.

Biography

Bernardt Duvenhage obtained his B.Sc (Honours) degree in Computer Science from the Uni-
versity of Pretoria in 2005 and is currently pursuing a Masters Degree. Since being employed
at the Council for Scientific and Industrial Research (CSIR) in South Africa, he has played a
key role in developing a distributed simulator architecture; the simulation’s terrain and line-of-
sight services; and a 3D visualisation and analysis tool. He is currently involved in developing
a physics-based synthetic environment and imaging simulator and intends further research in
virtual environment simulation.

Derrick Kourie lectures in the Computer Science department at Pretoria University. While
his academic roots are in operations research, his current interests include, but are not limited to
software engineering and algorithm development. He is student adviser to some 20 postgraduate
students working in these and related areas. He is editor of the South African Computer Journal
and serves on various national and international academic committees.

2

Quantising the Network Communication Between Discrete-Time Coupled

Components

Bernardt Duvenhage and

Derrick G. Kourie

Espresso Group, University of Pretoria, South Africa

bduvenhage@csir.co.za and dkourie@cs.up.ac.za

(Submitted to the journal SIMULATION, 2008-06-25)

Keywords: peer-to-peer, distributed parallel simulation,

publish-subscribe, discrete-time, high real-time frame-rate,

quantised system, discrete event

Abstract
Ongoing performance analysis experiments have relied on a

coupled-component model of a system of dynamical systems.

High resolution discrete and logical time distributed parallel

components and simulator have previously been developed

for execution of the model on a cluster of PCs. Earlier ana-

lysis of a typical experimental scenario had shown that the

components and simulator were network bandwidth limited

resulting in a parallelisation speed-up ceiling of 4, irrespect-

ive of the number of PCs in the cluster.

This article reports on a quantised system approach to more

efficiently distribute the execution of such a coupled- com-

ponent model. The coupled-components were aggregated into

larger system-level models and coupled via quantiser and

quantised integrator pairs (QQIPs). This new quantised ar-

chitecture was analysed and found to no longer be bandwidth

limited, but processor limited. The new architecture supports

a scalable parallelisation speed-up that is nearly proportional

to the number of processing nodes.

1. INTRODUCTION

A coupled-component model of a system of systems (and of

sub-systems) is currently in use to do high level predictive

performance analysis. Section 2. explains what is meant by

a dynamical system and by predictive performance analysis.

The notion of a coupled-component model is also discussed

in reference to a real world example. The real-time require-

ment stems from the need to incorporate realistic human be-

haviour in the simulation.

The current distributed parallel simulator and component

models have evolved from a 100Hz discrete and logical time

non-distributed simulation. Thus, the current internal model

processing and the inter-model communication are legacies

of an ancestral high resolution discrete time approach. Sec-

tion 3. details what is meant by discrete and logical time, and

gives the definition of real-time as used in the article. The

discrete time simulator is then discussed with extended treat-

ment of the particulars.

Experiments indicate that the discrete time simulator can-

not support a parallelisation speed-up above 4—irrespective

of the number of processing nodes. The discrete time simu-

lator is therefore unable to support the real-time execution of

a large scale system of dynamical systems. Section 4. elab-

orates on parallelisation speed-up. It also discusses the setup

and results of performance experiments regarding the large

scale real-time use case of the discrete time simulator. Again

a real-world example is used. The hardware infrastructure is

a class 1 Beowulf[1] type cluster on a Gigabit Ethernet com-

munication backbone. The reason for the scalability ceiling is

found to be high communication latency due to the depletion

of the giga-bit/s communication bandwidth that is available

between processing nodes.

A quantised system approach to the discrete event repres-

entation of the model of a system of dynamical systems is

proposed. Its advantage is that it requires a lower communic-

ation bandwidth and processing time than the discrete time

coupled component model. Section 5. explains in greater de-

tail what is meant by a quantised system approach, what is

meant by quantised discrete event representation and points

out the associated advantages. Regardless of the benefits of

the quantised system approach, the investment in the exist-

ing discrete time components and simulation architecture is a

legacy to be carried forward by the simulator. This limits the

feasibility of migrating the simulator and coupled component

model to a fully quantised discrete event representation.

However, to improve the parallelisation speed-up ceiling of

the discrete time simulator, a quantised approach to envelop-

ing groups of discrete time models is proposed. The reasoning

behind and implementation of the model aggregation and the

quantising envelopes is discussed in Section 6..

The performance results then indicate that the proposed

modifications to the simulator architecture, changes the par-

allelisation speed-up to now be proportional to the number

of processing nodes. This is because the model aggregation

and the communication quantisation lowers the bandwidth re-

quirements. Section 7. details the performance experiments

and analysis. The results indicate that the updated architec-

ture successfully allows a much larger system of dynamical

systems models to be executed in real-time.

Figure 1. UML Component Diagrams (nested within their

deployment diagrams) of the building blocks of a GBAD sys-

tem of systems deployment

Section 8. concludes and offers suggestions on topics re-

quiring further research.

2. THE COUPLED-COMPONENT MODEL
AND DISTRIBUTED SIMULATOR

The dynamical system concept is a mathematical formaliza-

tion for any fixed rule which describes the time dependence

of a point’s (could be a real number) position in its ambient

space. An example is a mathematical model of the ballistic

path of a projectile under a gravitational force.

According to Zeigler et al’s M&S framework[2], a model

of a dynamical system is only valid within a chosen experi-

mental frame. Such a model is referred to as a lumped model,

in that it is a simplification of the source system and might

have lumped together—simplified—various potentially dif-

ferentiatable aspects of the source system. The experimental

frame therefore represents a subset of reality, but is valid for

the experiments needed to be performed. Doing predictive

performance analysis requires that the lumped model accur-

ately, within the experimental frame, predicts behaviour of

the source dynamical system not observed yet. This requires

predictive validity [2] between the model, experimental frame

and the source system.

An example of a coupled component model of a system

of dynamical systems is shown in Figure 1. This figure de-

picts a coupled component model of a Ground Based Air De-

fence System (GBADS). Each component is a lumped model

of some dynamical system.

The GBADS model is represented as a system of coupled

air defence systems. Typically, each system’s components

are also differentiated into composing sub-systems. Figure 1

shows three system level components, indicated by the (a),(b)

and (c), as groupings of sub-components. The Threat Evalu-

ation and Weapon Allocation (TEWA) component provides

information and potential weapon-to-threat allocations to the

Fire Control Officer (FCO) terminal (or virtual operator). The

TEWA gathers information from a consolidated air picture

which contains the fused information of multiple designation

sensors. The Fire Unit (FU) system level component receives

ordered weapon allocations from the FCO. The generic FU is

itself composed of three subsystems, namely the weapon Fire

Control System (FCS), possibly another local designation

sensor, and a launcher-and-munitions component. The tar-

gets (incoming airborne threats) are each modelled as an in-

dividual component which feeds the other system level com-

ponents with the run-time threat scenario information. The

indicated system level components are the building blocks of

a full GBADS deployment which has one TEWA and FCO,

but typically many FUs and multiple targets. The real-time re-

quirement stems from the need to incorporate realistic human

behaviour in the simulation through mock-up equipment con-

soles of, for example, the FCO’s terminal. The couplings to

the designation sensor outputs, the air picture outputs and es-

pecially the target outputs potentially require relatively high

bandwidth connections.

The coupling of the systems provides structural valid-

ity to the coupled-component model. Structural validity is a

stronger modelling relation than predictive validity and there-

fore also allows predictive performance analysis.

3. THE DISCRETE AND LOGICAL TIME
IMPLEMENTATION

Logical time management requires the simulation to ex-

ecute every simulated clock tick, stepping the entire system

from one state to the next. Logical time simulation is some-

times referred to as, As-Fast-As-Possible (AFAP) simulation,

because there is no need to synchronise the simulation time

with a real world clock—a simulation merely takes as long as

is required to simulate any given scenario.

Real-time simulation, on the other hand, actively tries to

keep the simulation time synchronised with an external real

world (wall) clock. A real-time simulation continually jumps

forward in time as far as is needed to keep executing in real-

time. As the intensity of the simulation increases (in respect

of the number of simulation events and messages that have to

be handled) more processing time is needed before the next

time jump can be made. The size of the time jumps, however,

has a direct relation to the accuracy—or time resolution—to

which simulation causality can be guaranteed. At some point,

Figure 2. A CSP Diagram of the Increment Publish Gather

Cycle composed of A and Async

either real-time execution must be sacrificed or causality is

lost, along with the credibility of the simulation. Neverthe-

less, provided that simulation requirements are not excessive

relative to the available hardware and software, real-time sim-

ulation may be based on logical time management. Such lo-

gical time simulation is designed to ensure, within perform-

ance limits, that its execution is throttled so that it does not

exceed real-time. Whenever real-time is mentioned in the rest

of this article, throttled logical time is implied except when

indicated otherwise.

Discrete and logical time refers to the fact that the clock

ticks of the simulation take place at regular simulation time

intervals. In the case of the 100Hz discrete and logical time

simulation under investigated, the simulation clock ticks hap-

pen every 0.01 seconds in simulation time. In the case of a

coupled-component model, discrete time implies that the in-

teractions between components also happen at regular simu-

lation times—in the present case, at 100Hz.

At simulation run-time, each processing node goes through

regular increment, publish and gather cycles. The increment

phase updates each object’s internal state from its cached in-

puts. The publish phase generates each object’s output issues.

Each issue is sent to the messaging layer, and is addressed to

the appropriate subscriber (or subscribers, if there are mul-

tiple). The gather phase follows, during which each object

(now in role of subscriber) receives the published issues from

all other objects via the messaging layer, thereby refreshing

the subscriber’s input cache.

Such object interaction may be described and analysed us-

ing a formalism such as CSP[3]. To this end, let three interact-

ing objects be represented by three discrete time processing

nodes A, B and C. The CSP description for process A (visu-

ally shown in Figure 2) is:

AIncrement = incrementDoneA → APublish

APublish = publishDoneA → AGather

AGather = f rameDoneA → AIncrement

Async = (publishDoneB → publishDoneC → f rameDoneA → Async |
publishDoneC → publishDoneB → f rameDoneA → Async)

Similarly for process B:

BIncrement = incrementDoneB → BPublish

BPublish = publishDoneB → BGather

BGather = f rameDoneB → BIncrement

Bsync = (publishDoneA → publishDoneC → f rameDoneB → Bsync |
publishDoneC → publishDoneA → f rameDoneB → Bsync)

and for process C:

CIncrement = incrementDoneC →CPublish

CPublish = publishDoneC →CGather

CGather = f rameDoneC →CIncrement

Csync = (publishDoneA → publishDoneB → f rameDoneC →Csync |
publishDoneB → publishDoneA → f rameDoneC →Csync)

A = initialise → AIncrement is the mutual recursive incre-

ment, publish and gather cycle of processing node A. For

B and C defined similarly to A, the parallel composition

(A || Async) || (B || Bsync) || (C || Csync) describes the way in

which the three processes jointly interact with one another.

The composition is the description of the discrete time ar-

chitecture and it can be shown that the overall interaction

between the processes is deadlock-free[4]

Figure 3 shows a UML sequence diagram of the incre-

ment, publish and gather cycles and the frameDone messages.

All messages are passed to the messaging layer that runs on

TCP/IP and Gigabit Ethernet. The TCP/IP Nagle algorithm,

as explained in [5], is disabled to allow the simulator finer

control over message aggregation and therefore more control

over message latencies.

Note that Figure 1 shows processing node components.

These are in fact virtual processing nodes. They may be de-

ployed on individual physical nodes of the cluster or they may

be aggregated in various ways—the groups marked (a), (b)

and (c) being one possible example.

Figure 3. UML Sequence Diagram of Peer-to-Peer Message

Passing and Simulation Synchronisation

4. PERFORMANCE ANALYSIS
The hardware infrastructure for the performance test is a class

1 Beowulf[1] type cluster of 11 PCs on a Gigabit Ethernet

communication backbone. Each PC is a 3.0GHz Pentium 4

with 2GB RAM and an motherboard integrated Gigabit Eth-

ernet NIC. Parallelisation speed-up of the simulation is used

as a performance measure. In [1], parallelisation speed-up of

a simulation on a cluster of p processing nodes, is defined as:

S(p) =
Execution time on one processor

Execution time on p processors

The GBADS’s benchmark scenarios’ building blocks have

been identified in Section 2.. The scale of each benchmark

scenario is measured by the number of FUs in the scen-

ario. Table 1 shows the list of objects in two of the smal-

ler benchmark scenarios that are used. An FU component

consist of a collection of sub-systems such as Gun1 Barrel1,

Gun1 Barrel2, GFCS1 and PERFECT TR1. Scenario A has

one FU, and scenario B has two.

In the various performance analysis experiments, the FUs

within each scenario were distributed approximately equally

to the processing nodes. The number of FUs that were alloc-

ated per node was chosen so as to keep the distributed exe-

cution performance to just within real-time. Note that in the

experiments, whenever an FU is added into a scenario, two

targets are also added into the scenario. It will be seen that

Table 1. List of Objects in Two of the Smaller Benchmark

Scenarios

Scenario A Scenario B

AIR PICTURE BOX AIR PICTURE BOX

TEWA BOX TEWA BOX

OIL OIL

PERFECT DR1 PERFECT DR1

Gun1 Barrel1 Gun1 Barrel1

Gun1 Barrel2 Gun1 Barrel2

GFCS1 GFCS1

PERFECT TR1 PERFECT TR1

- Gun2 Barrel1

- Gun2 Barrel2

- GFCS2

- PERFECT TR2

Target Waypath1 Target Waypath1

Target Waypath2 Target Waypath2

- Target Waypath3

- Target Waypath4

Figure 4. The Computational Load of Increasing Scenario

Sizes

this is indeed also the case for the two scenarios shown in

Table 1.

The measured AFAP execution time of a scenario is not

linearly related to the number of FUs. The AFAP execution

times for various scenarios run on a single processing node

were measured. The scenarios varied in size from 0 to 27

FUs. These measured times were scaled by the duration of

the scenario in simulation time, giving the so-called compu-

tational load of each scenario—i.e.

Comp.Load =
Execution time o f scenario on 1 node

Duration o f scenario in simulation time

Figure 4 shows the results obtained.

Curve fitting on the data obtained suggests the follow-

ing approximate relationship between computational load and

Figure 5. The Computational Load of Each Real-Time Dis-

tribution vs. The Computational Load of An Ideal Distributed

Architecture

number of FUs in a scenario:

ComputationalLoad =

(

FuCount

8.11

)2

This means that a single node loaded with a scenario of 8 FUs

runs the given scenario approximately in real-time; a node

loaded with a scenario of 16 FUs runs approximately 4 times

slower than real-time; a node loaded with a scenario of 4 FUs

runs approximately 4 times faster than the real-time require-

ment; etc.

The computational load value for a scenario containing a

given number of FUs corresponds exactly to the parallisation

speed-up, S, that is required to execute the scenario in real-

time. To see that this is indeed the case, observe that:

• if a scenario is executing in real-time on p processors,

then the duration of scenario in simulation time exactly

corresponds to the scenario’s execution time using p pro-

cessors; and

• under these circumstances, the formulas for parallelisa-

tion speed-up and computational load as defined above,

are identical.

In the rest of the article real-time simulation is implied—

except if otherwise stated—and computational load is used

synonymously with parallelisation speed-up.

Using the quadratic computational load relation in Fig-

ure 4 allows the computational load, shown in Figure 5, of

each measured real-time distribution (measured values not

shown) to be estimated from the number of FUs in the dis-

tribution. Figure 5 shows that the maximum computational

load—the maximum required parallelisation speed-up OR the

scalability—achievable in the benchmark scenarios is about

4. Further, distributions over more than eight nodes become

less efficient.

It is important to emphasise here that the measured paral-

lelisation speed-up ceiling is only applicable to this specific

application—thi specific processing to communication band-

width ratio requirements. The parallelisation speed-up ceiling

does however hold whether the scenario is meant to run real-

time, half-real-time, twice real-time, etc. In other words, any

size scenario will execute in a shorter time on eight nodes

than it would on any other number of nodes.

Figure 5 shows not only the measured scalability perform-

ance of the current discrete time simulator, but also the the-

oretical scalability performance of the ideal distributed sim-

ulator. An ideal distributed simulator has a parallelisation

speed-up of S(p) = p and thus an unbounded scalability as

the number of processing nodes is indefinitely increased. The

difference between the current architecture and the ideal dis-

tributed architecture is due to the communication and time

management overhead.

Duvenhage and Kourie[6] argue that the scalability ceil-

ing of 4 is due to the sequential communication channel of

each processing node. One limit of the sequential nature of

the communication channel is a measured 41 message per

simulation frame limit irrespective of message size. A second

limit is the bandwidth upper limit of the underlying network

technology which is in the order of 100 MBytes/sec for Gig-

abit Ethernet.

One way to overcome this limitation is to install multiple

network cards into each PC, effectively connecting each node

to its peers with two, three, four or more disjoint networks.

This solution will improve the available bandwidth between

peers by two, three, four or more times. However, the num-

ber of network cards that may be installed into a standard

PC—especially with a technology like Gigabit Ethernet that

requires a lot of system resources—is often limited to three or

less. The simulator architecture modifications proposed be-

low aims instead, drastically to improve the pattern of use of

the sequential communication resources in order to steer the

scalability behaviour towards the ideal distributed simulator

case.

5. A QUANTISED SYSTEM APPROACH

As mentioned, a quantised system approach to the discrete

event representation of the model of a system of dynamical

systems, has the advantage of a lower communication band-

width and processing time requirement than provided by the

discrete time coupled component model.

Zeigler et al.[2] describe quantisation as providing a pro-

cess for representing and simulating continuous systems that

is an alternative to the more conventional discretisation of

the time axis. It can also be said that time discretisation

leads to discrete time systems and quantisation leads to dis-

crete event systems. Additional discussions on the theory

of quantised systems and related topics may be found in

[7, 8, 9, 10, 11, 12, 13]. All of these resources also make note

of the efficiency of a quantised system approach to the dis-

Figure 6. A signal modelled time discretised, then quantised

and reconstructed by means of a QQIP

crete event representation of a dynamical system. Zeigler et

al.[2] further say that a Quantised System (QS) can be decom-

posed into, and hence has the same behaviour as, a system—

discrete time or continuous—sandwiched between Quantiser

and Quantised Integrator Pairs (QQIPs).

As mentioned, this article focusses on a quantised system

approach to an existing discrete time representation of a dy-

namical system. The quantisation is therefore only applied on

the coupling of the components through QQIPs as discussed

in the next section.

The primary goal of quantisation the couplings is to

lower communication bandwidth usage. To accomplish this a

model’s inputs are fitted with quantised integrators and their

outputs with quantisers to create a QS. Each communication

channel between a sender and a receiver of information is

therefore fitted with a Quantiser and Quantised Integrator Pair

(QQIP). A signal, time discretised and then quantised and re-

constructed by means of a QQIP is shown in Figure 6.

Quantisation lowers communication bandwidth at the price

of a potential increase in the accumulated error of the simula-

tion. Zeigler[14] and Zeigler et al.[2] have derived the upper

bound on the accumulated error of closed loop DTSS simu-

lation and also closed loop quantised DEVS simulation from

the theory of quantised systems. The same accumulated error

results have also been arrived at experimentally by Zeigler et

al.[15] and Wainer and Zeigler[10], among others, who have

done a cost/benefit analyses of reduced communication band-

width and increased error due to quantisation.

The goal of the dead-reckoning technique[16], for ex-

ample, is to trade accuracy for lower communication band-

width usage. This is, of course, similar to quantisation. How-

ever, dead-reckoning attains its goal in a smarter active way.

Dead-reckoning is usually applied in the quantisation of the

position—and possibly its velocity and acceleration—of a

body in inertial or non-inertial motion. The main difference

from basic quantisation is that the quantised integrator also

receives the algorithm to reconstruct/predict what the input to

the quantiser would have been in between update events.

The dead-reckoning QQIP may apply a first order quant-

isation for following first order changes to a variable. An ex-

ample is a body of mass following an inertial path. Second

order quantisation may be applied to describe a body of mass

under the influence of constant or time varying forces. One

such an example is a ballistic munition that has a certain ini-

tial muzzle velocity and then gravity and drag forces act on it

throughout its flight, giving it a curved ballistic path. Second

order QQIPs is often used in the dead-reckoning.

For example, an aircraft may inform the radar not only of

its current position, but also about how to best predict its path

of motion up to x seconds into the future. The radar then cal-

culates for itself the aircraft’s position as frequently as re-

quired. However, the aircraft also keeps track of where the

radar thinks the aircraft is, since the aircraft knows the pre-

diction algorithm that the radar is using. As soon as the air-

craft’s actual and predicted positions are outside a predefined

error boundary, the prediction at the receiver has become

stale. Once this happens the aircraft actively refreshes its cur-

rent position and prediction method to the radar—the aircraft

sends a path update event. Both the original discrete time

sampling and also the dead-reckoning error threshold result in

the required discrete event hysteresis to ensure a valid DEVS

model.

6. MIGRATING TO A QUANTISED SYS-
TEM APPROACH

It has been mentioned that, regardless of the benefits of the

quantised system approach, the investment in the existing dis-

crete time components and simulation architecture is a legacy

to be carried forward by the simulator. This limits the feasibil-

ity of migrating the simulator and coupled-component model

to a fully quantised discrete event representation. However,

to improve the parallelisation speed-up ceiling of the discrete

time simulator, a quantised approach to grouping and envel-

oping the discrete time models is proposed.

It has also been mentioned that quantisation lowers com-

munication bandwidth and, potentially, the model’s time

complexity, at the price of a potential increase in the accu-

mulated error of the simulation. The existing discrete time

models have been conceptualised and developed with high

resolution discrete time management in mind. Many of the

models have therefore been validated within the 100Hz frame

rate of the discrete time simulator. This makes them particu-

larly sensitive to the errors introduced by QQIPs. Many of the

sensor models, for example, were built and evolved to rely on

a 100Hz target update rate. The models of the tracking filters

of some of these sensor, for example, were based on actual

Figure 7. Double Structure Level of Discrete Time Simu-

lator

engineering text book and numerical method solutions. The

100Hz target data made it possible to build these types of

real world solutions instead of the often more daunting beha-

vioural solutions.

For the purpose of this article the quantum levels that

are used for the quantisation as well as the threshold val-

ues for the dead-reckoning path update events are—as far as

possible—made equal to the typical quantum levels that were

implicit in the discrete time execution of the models. Choos-

ing the quantum levels as discussed above can potentially

result in quanta that are smaller than required which would

in turn result in a sub-optimal bandwidth improvement. The

nominated future work would improve on the optimal choice

of quanta for the different communication channels and there-

fore optimise the bandwidth usage further. It is important to

note that the current migration process to a real-time architec-

ture is driven by the requirement to achieve the same accuracy

as before, but to do so with greater efficiency.

6.1. Aggregation of Sub-System Models
Most of the current GBADS models are at the level of

GBAD sub-systems of systems, such as the gun or FCS sub-

systems of the FU. These models are typically modelled at

a state transition system specification level or higher. At the

GBAD system level the sub-system models are brought to-

gether to create system level models—FUs—at a coupled sys-

tem specification level as shown in Figure 7. The GBAD sys-

tem models are then coupled again to create a GBAD system

of systems level model—the GBADS deployment—also at

the coupled-component system specification level.

The nature of the system of systems simulation experi-

ments typically requires objectives and outcome measures at

the GBAD system level—FU level. In such an experimental

frame the output variables of sub-systems within the GBAD

system level coupled-component models (the system struc-

tural knowledge) is hidden from the simulation analyst. It is

therefore argued that access to the output variables of sub-

system models—the system structural knowledge—is super-

fluous when analysing only the system level outputs. An ag-

gregated structure for the GBADS simulator with the super-

fluous structural knowledge hidden in a wrapper is shown in

Figure 8. Double Structure Level of Discrete Time Simu-

lator with Aggregation Wrapper Indicated

Figure 8. The quantised discrete event nature of the wrapper

will be discussed in the next subsection.

It should be noted that the same sequential communica-

tion components that were shown to exist in the discrete time

simulator also exist in a discrete event simulator. The aim,

however, is to avoid activating these sequential components

unnecessarily. Aggregation of the DTSS models is the act of

explicitly hiding the double layer of intermediate GBAD sys-

tem structural information within a discrete event model. The

new GBAD system level discrete event model—the aggreg-

ated FU—is then a state transition system specification envel-

ope which shields the model interconnect infrastructure from

the communication overhead of the internal structure.

Figure 1 shows the UML component diagram of the ag-

gregated system level GBADS building blocks. The use de-

pendencies—indicated by the dashed arrows—between sys-

tem level building blocks indicate communication paths that

could potentially still result in network communication.

6.2. Output Quantisers and Quantised Integ-
rators

In the previous subsection, aggregation was proposed to

remove some of the internal FU communication over-

head from the system model. The remaining system level

communication—use dependencies—can be classified into

two types: events (be it voice network events or data); and

state-like information such as platform position, velocity and

orientation. Events are already quantised. However, the dis-

crete time state information—discrete time sampling of what

would in reality be a continuous variable—may often be

quantised further.

The only use dependencies—indicated by the dashed UML

arrows in Figure 1—that are chosen for application of QQIPs

are the dependencies on the radar state output, the air-picture

output and the target model output. These are the dependen-

cies that require the high time resolution state information

links between the aggregated system level models. The tar-

get flight profiles were defined as straight and level. This

allowed—for analysis purposes—a simple piecewise con-

stant QQIP to be applied to each dimension of the position,

Figure 9. The Computational Load of Increasing Scenario

Sizes

Figure 10. The Computational Load of Each Real-Time

Distribution vs. The Computational Load of An Ideal Dis-

tributed Architecture

velocity and orientation of the state information, but with po-

sition extrapolated by the velocity in between path update

events. The quantised path update events are generated at a

fixed 10Hz and reconstructed at the quantised integrator—

receiver—side. The reduction of the information update rate

from 100Hz to 10Hz allows the quantised use dependencies

to only use 10% of the bandwith of the unquantised use de-

pendencies.

7. PERFORMANCE ANALYSIS

The benchmark scenarios are exactly the same scenarios

that were used for the discrete time simulator in Section 4..

As before, the time taken to run a scenario on a single node is

related to the number of FUs in that scenario approximately

by a factor of
(

FuCount
8.11

)2
. This factor referred to as the scen-

ario’s computational load. The computational load—which

is also the parallelisation speed-up values required for real-

time execution of these scenarios—of various FU counts, are

therefore reflected by the same graph found in Section 4. This

graph is reproduced here as Figure 9 for ease of reference and

with the addition of a 45 degree reference line.

As in Section 4., using the quadratic computational load

relation shown in Figure 9, allows the required parallelisation

speed-up of each measured real-time distribution (measured

values not shown) to be calculated; the required parallelisa-

tion speed-up is in effect expressed as a function of the num-

ber of FUs. The resulting parallelisation speed-up perform-

ance of the quantised simulator is shown in Figure 10. Note

that a parallelisation speed-up ceiling could not be found over

the 11 processing nodes that were available. Figure 10 shows

that the quantised simulator’s performance does indeed ap-

proach that of the ideal distributed simulator.

Also note that from Figure 9 it seems as if beyond scenario

sizes of at least 27 FUs the computational load to FU gradient

will rise above 45 degrees. This may be gauged from the 45

degree gradient line drawn in the figure. Taking the derivative

of the computational load approximation of,

ComputationalLoad =

(

FuCount

8.11

)2

, to calculate the function gradient in fact gives

2

8.112
FuCount

Solving this for a gradient of 1 results in an FuCount of 32.88.

Beyond a gradient of 45 degrees at least one FU—and poten-

tially every FU—has a computational load above one.

This is rather important as it implies that one or more FUs

would have to be split up and be distributed over multiple

processing nodes. Splitting an FU up into its parts will in-

troduce a tear into the discrete event envelope constructed

around each FU. This is expected to change the parallelisa-

tion speed-up results somewhat for scenarios larger than the

ones currently analysed. It in fact points to a potential new

stumbling block when migrating to GBADS scenarios that

require a parallelisation speed-up of near and above 16.

8. CONCLUSION AND FUTURE WORK
The authors have proposed a new approach in which par-

tial quantisation can be deployed to potentially improve par-

allelisation speed-up in contexts which do not allow for full

quantisation or, as in the authors’ case, where full quantisa-

tion is not economically possible. This approach was success-

ful in improving the parallelisation speed-up performance by

lowering the required network bandwidth between distributed

coupled components. The improved parallelisation speed-up

performance approaches that of the ideal simulator, which has

no distribution/communication overhead. Some issues how-

ever remain to be addressed.

A study has not yet been done on accurately finding the ac-

cumulated sub-system and system of systems model errors—

the closed loop error behaviour—for different quanta. It has

been shown from the literature that the error behaviour gen-

erally improves with smaller quanta. A study is required on

the smallest quanta for which real-time execution is still pos-

sible. This should be addressed before a final decision is made

to migrate the simulation to the proposed hybrid architecture.

It should be noted here, that the simulation has not in the past,

and should not in future, sacrifice accuracy for run-time per-

formance. Maintaining accuracy is required because the sim-

ulation results feed into higher level decisions that rely on

a certain level of predictive accuracy. The mind-set behind

migration to a real-time architecture is to achieve the same

accuracy as before, but to do it more efficiently.

The proposed hybrid simulator still employs discrete time

models as per requirement to reuse existing models. This does

however mean that the time complexity of the models and

therefore the efficiency and scalability of the simulator will

increase as the discrete time models are internally migrated

to quantised discrete event modelling approaches. Research-

ing a cost effective way of also doing such a migration to a

new system specification could lead to further increases in the

simulator’s scalability in future.

Conservative time management—used in the current

simulator—ensures a strictly increasing flow of time, but is

not as efficient as optimistic time management. Optimistic

time management may further improve simulation execution

performance, but causality violations could potentially occur.

When this happens, participating systems are expected to tol-

erate the violation and roll back their own state, and then fix

and re-execute the simulation time line. The Operator In the

Loop (OIL) interfaces, such as the FCO terminal does how-

ever require a strictly increasing and linear flow of time—at

least within the requirement and perception of the systems

and humans to which they are interfaced. More work is pos-

sibly required on incorporating Hardware In the Loop (HIL)

and OIL capabilities into optimistic discrete event simula-

tions before being able to take advantage of its added effi-

ciency.

9. ACKNOWLEDGEMENTS
The authors would like to acknowledge the funding

provided by the Armaments Corporation (ARMSCOR) of

South-Africa, the South-African DoD, the CSIR, the Uni-

versity of Pretoria and the South African National Research

Foundation without which this research would not have been

possible.

REFERENCES
[1] B. Wilkinson and M. Allen. Parallel Programming,

second edition. Pearson Education, Inc., Upper Saddle

River, New Jersey, 2005.

[2] B. Zeigler, T. Kim, and H. Praehofer. Theory of Mod-

elling and Simulation, second edition. Academic Press,

San Diego, California, USA, 2000.

[3] A. Roscoe. The Theory and Practice of Concurrency.

Prentice-Hall, 1997.

[4] B. Duvenhage. Migrating to a real-time distributed par-

allel simulator architecture. Master’s thesis, University

of Pretoria, Pretoria, South-Africa, 2008.

[5] B. Forouzan. TCP/IP Protocol Suite. McGraw-Hill,

Inc., New York, NY, USA, 2002.

[6] B. Duvenhage and D. Kourie. Migrating to a real-time

distributed parallel simulator architecture. In Proceed-

ings of the 2007 Summer Computer Simulation Confer-

ence, San Diego, California, USA, 2007.

[7] B. Zeigler and J. Lee. Theory of quantized systems:

formal basis for DEVS/HLA distributed simulation en-

vironment. In Proceedings of SPIE - Enabling Techno-

logy for Simulation Science II, Orlando, Florida, USA,

1998.

[8] H. Sarjoughian and B. Zeigler. Collaborative modeling:

the missing piece of distributed simulation. In Proceed-

ings of SPIE - The International Society for Optical En-

gineering, Orlando, Florida, USA, 1999.

[9] B. Zeigler, H. Song, T. Kim, and H. Praehofer. DEVS

framework for modelling, simulation, analysis, and

design of hybrid systems. Lecture Notes in Computer

Science - Hybrid Systems II, 999, 1995.

[10] G. Wainer and B. Zeigler. Experimental results of timed

cell-DEVS quantisation. In Proceedings of AIS’2000,

Tucson, Arizona, USA, 2000.

[11] E. Kofman, J. Lee, and B. Zeigler. DEVS representa-

tion of differential equation systems: Review of recent

advances. In Proceedings of the 2001 European Simu-

lation Symposium, Marseille, France, 2001.

[12] B. Zeigler, M. Jamshidi, and H. Sarjoughian. Robot vs

robot: Biologically-inspired discrete event abstractions

for cooperative groups of simple agents. Festschrift

Conference in Honor of John H. Holland, 1999.

[13] J. Nutaro, B. Zeigler, R. Jammalamadaka, and

S. Akerkar. Discrete event solution of gas dynamics

within the DEVS framework. Lecture Notes in Com-

puter Science - Computational Science – ICCS 2003,

2660, 2003.

[14] B. Zeigler. DEVS theory of quantised systems. Tech-

nical report, University of Arizona, Tucson, Arizona,

USA, 1998.

[15] B. Zeigler, G. Ball, H. Cho, J. Lee, and H. Sarjoughian.

Bandwidth utilization/fidelity tradeoffs in predictive fil-

tering. In Proceedings of the 1999 Fall SISO Simula-

tion Interoperability Workshop, Orlando, Florida, USA,

1999.

[16] R. Fujimoto. Parallel and Distributed Simulation Sys-

tems. Wiley-Interscience, New York, USA, 2000.

Biography
Bernardt Duvenhage obtained his B.Sc (Honours) degree

in Computer Science from the University of Pretoria in

2005 and is currently pursuing a Masters Degree. Since

being employed at the Council for Scientific and Industrial

Research (CSIR) in South Africa, he has played a key

role in developing a distributed simulator architecture; the

simulation’s terrain and line-of-sight services; and a 3D

visualisation and analysis tool. He is currently involved

in developing a physics-based synthetic environment and

imaging simulator and intends further research in virtual

environment simulation.

Derrick Kourie lectures in the Computer Science depart-

ment at Pretoria University. While his academic roots are

in operations research, his current interests include, but are

not limited to software engineering and algorithm develop-

ment. He is student adviser to some 20 postgraduate students

working in these and related areas. He is editor of the South

African Computer Journal and serves on various national and

international academic committees.

