

Molecular detection and characterization of tick-

borne pathogens of dogs

By

Paul Tshepo Matjila

Submitted in fulfillment of the requirements for the degree Doctor of Philosophy in the Faculty of Veterinary Science, University of Pretoria

June 2008

© University of Pretoria

Acknowledgements

My sincerest gratitude goes to Prof Banie Penzhorn, for taking me under his wing, from day one, helping, mentoring, guiding and nurturing my development in the art of science.

My supervisor, Prof Banie Penzhorn and co-supervisors, Profs Frans Jongejan and Andrew Leisewitz, for their hands-on approach, scientific inputs and building of this thesis to completion.

My HOD, Prof Koos Coetzer, for his unwavering support, patience and valuable advice throughout the years.

My colleagues and friends in the department of Veterinary Tropical Diseases for their immeasurable contributions: Raksha Bhoora, for her friendship, assistance and advice in the laboratory; Ard Nijhof, for his friendship, making my stay in the Netherlands as pleasantly possible and for all the scientific inputs; Prof "Oom" Horak, Marinda Oosthuizen, Darshana Morar, Kgomotso Sibeko, Milana Troskie, Nicola Collins and AnnaMarie Bosman for their expert advice during research difficulties. I thank Prof Peter Thompson for the statistical analysis and Rhulani Nkuna for running the *Trypanosoma* PCR/RFLP.

Special thanks to all the clinicians, Dr M Böhm, Dr E Scheepers and Dr A Goddard, who generously made their clinical reports available for our use. Thanks to Sr Riani de Kock

for uploading the clinical reports. The staff at the SPCAs, OVAH and private clinics, who helped with the collection of blood samples.

My beautiful soul mate and partner Mmabatho Moeketsi, for your love, encouragement, patience, and being my pillar of strength.

My sisters and brothers: ausi Poppy, June, Thabo and Beni, for their unfaltering friendship and support.

My mother, for your sacrifices, love and pride in knowing that education is the key.

Dedicated to the memory of my grandmother, Morongwa Ellen Mdluli.

This work was financially supported by the Utrecht/Delta scholarship, Thuthuka NRF fund and the institutional collaboration agreement (95401) between the Institute of Tropical Medicine, Antwerp, Belgium, and the Department of Veterinary Tropical Diseases, University of Pretoria.

Table of Contents

Acknowledgments	ii
Table of Contents	iv
List of Figures	xi
List of Tables	xiii
Thesis summary	XV
Chapter 1: General Introduction	1
1.1. Background	1
1.2. Tick-borne pathogens	1
1.2.1. Zoonotic tick-borne infections	2
1.2.2. Co-infection	4
1.2.3. Babesia vectors	5
1.3. Canine babesiosis	7
1.3.1. Canine babesiosis in South Africa	10
1.3.2. Pathogenesis of babesiosis and malaria	11
1.3.3. Sequestration	12
1.4. Ehrlichiosis and Anaplasmosis	13
1.4.1. Pathogenesis of Ehrlichiosis and Anaplasmosis	15
1.5. Hepatozoonosis	16
1.6. Theileriosis	17
1.7. Molecular detection and analysis	18
1.8. Objectives of the study	20

1.9. Overview of the thesis	20
1.10. References	24
Chapter 2: Confirmation of occurrence of <i>Babesia vogeli</i> in domestic	
dogs in South Africa	39
2.1. Abstract	39
2.2. Introduction	40
2.3. Materials and Methods	42
2.3.1 Collection of samples	42
2.3.2. DNA extraction	42
2.3.3. PCR	43
2.3.4. Reverse line blot hybridisation	44
2.3.5. Sequence analysis	45
2.4. Results	46
2.5. Discussion	47
2.6. Conclusion	49
2.7. Tables	50
2.8. References	52
Chapter 3: Molecular detection of tick-borne protozoal and ehrlichia	ıl
infections in domestic dogs in South Africa	55
3.1. Abstract	55
3.2. Introduction	56
3.3. Materials and Methods	57
3.3.1. Collection of samples	57

3.3.2. DNA extraction	58
3.3.3. PCR	59
3.3.4. Reverse line blot hybridisation	60
3.4. Results	60
3.5. Discussion	61
3.6. Conclusion	64
3.7. Figures and Tables	66
3.8. References	71
Chapter 4: Preliminary evaluation of the <i>BrEMA</i> 1 gene as a tool for	
correlating Babesia rossi genotypes and clinical manifestation of	
canine babesiosis	76
4.1. Abstract	76
4.2. Introduction	77
4.3. Materials and Methods	79
4.3.1. Sample origin and grouping	79
4.3.2. DNA extraction and PCR	80
4.3.3. Sequencing, phylogenetic and statistical analysis	82
4.3.4. Nucleotide sequence accession numbers	82
4.4. Results	83
4.4.1. Genetic analysis of <i>B. rossi</i> isolates	83
4.4.1.1. Diversity of BrEMA1 genotypes	83
4.4.1.2. Phylogenetic relationship of BrEMA1 sequences	84
4.4.1.3. Occurrence of <i>BrEMA</i> 1 genotypes among all samples	84

4.4.2. Occurrence of BrEMA1 genotypes among OVAH samples	85
4.4.2.1. Analysis of BrEMA1 genotype and clinical parameters	85
4.4.2.2. Occurrence of BrEMA1 genotypes in complicated cases	85
4.4.2.3. Occurrence of BrEMA1 genotypes in SOC cases	86
4.4.2.4. Occurrence of BrEMA1 genotypes in fatal cases	86
4.4.2.5. Correlation between BrEMA1 genotypes and	
clinical signs	86
4.5. Discussion	87
4.6. Conclusion	89
4.7. Figures and Tables	90
4.8. References	100
Chapter 5: Autochthonous canine babesiosis in the Netherlands	103
5.1. Abstract	103
5.2. Introduction	104
5.3. Materials and Methods	105
5.3.1. Collection of samples	105
5.3.2. DNA extraction	106
5.3.3. PCR	106
5.3.4. Reverse line blot hybridisation	107
5.4. Results	107
5.5. Discussion	108
5.6. Conclusion	112
5.7. Figures and Tables	114

5.8. References	119
Chapter 6: Detection of <i>Theileria</i> sp. infections in dogs in South Africa	123
6.1. Abstract	123
6.2. Introduction	124
6.3. Materials and Methods	127
6.3.1. Collection of samples	127
6.3.2. DNA extraction	127
6.3.3. PCR	127
6.3.4. Reverse line blot hybridisation	128
6.3.5. Sequencing	128
6.3.6. Phylogenetic analysis	130
6.4. Results	130
6.5. Discussion	132
6.6. Conclusion	136
6.7. Figures and Tables	137
6.8. References	139
Chapter 7: Molecular characterization of <i>Babesia gibsoni</i> infection	
from a pit-bull terrier pup recently imported into South Africa	144
7.1. Abstract	144
7.2. Introduction	145
7.2.1. Case history	147
7.3. Materials and Methods	149
7.3.1. Collection of samples	149

7.3.2. DNA extraction	149
7.3.3. PCR	149
7.3.4. Reverse line blot hybridisation	150
7.3.5. Sequencing	150
7.3.6. Phylogenetic analysis	150
7.4. Results	151
7.5. Discussion	151
7.6. Conclusion	154
7.7. Figures and Tables	156
7.8. References	159
Chapter 8: General discussion	165
8.1. General discussion	165
8.1.1. Babesia rossi	165
8.1.2. Babesia vogeli	166
8.1.3. Babesia gibsoni	166
8.1.4. Babesia canis	167
8.1.5. <i>Theileria</i> sp.	169
8.1.6. Ehrlichia / Anaplasma species	169
8.1.7. Multiple infections	171
8.2. Conclusion	172
8.2.1. Control measures	173
8.2.2. Scope for future research	175
8.3. References	178

Scientific publications connected with this thesis

List of Figures

Figure 3.1: Map of South Africa, indicating provinces where blood samples were
collected
Figure 4.1: Field polymorphism of <i>B. rossi</i> strains in South Africa evidenced by the PCR
amplification of BrEMA1 repeats region with primers FrepBrEMA1/RrepBrEMA1. PCR
products were loaded on a 1.5% agarose gel. PCR profiles of the most encountered
genotypes are indicated on the picture
Figure 4.2: Cluster algorithm tree, showing the phylogenetic relationship between
various genotypes based on the BrEMA1 gene sequences
Figure 4.3: Occurrence of <i>B. rossi BrEMA</i> 1 genotypes among all samples (141
dogs)
Figure 4.4: Occurrence of <i>B. rossi BrEMA</i> 1 genotypes among (a) total (b) complicated (c)
S.O.C. and (d) fatal cases
Figure 4.5: Relationship between occurrence of fatalities and occurrence of
SOC-cases
Figure 5.1: Map of the Netherlands indicating the two locations where cases of canine
babesiosis were detected
Figure 5.2: RLB results displaying 11 species-specific oligonucleotides of the 18S rRNA
gene in the horizontal lanes and PCR products in the vertical lanes. From left to right are
shown: 18 canine blood samples from clinical cases, Babesia plasmid positive control,
4 tick specimens, 11 positive Babesia sp. DNA controls and a second Babesia plasmid
positive control

List of Tables

Table 2.1: Dogs positive for Babesia vogeli and Babesia rossi in South Africa by reverse
line blot
Table 2.2: Species-specific oligonucleotides from large canine Babesia species
Table 3.1: The number of samples collected from dogs, by province and locality, in South
Africa
Table 3.2: List of organisms and their corresponding probe sequences used to detect
pathogen DNA
Table 3.3: Pathogen species detected from domestic dogs using the RLB
Table 4.1: Consensus amino acid sequence of the 13 BrEMA1 genotypes.
Sequencing of the repetitive region of the gene was performed on 141 dogs
diagnosed with <i>B. rossi i</i> nfections
Table 4.2: Frequency of <i>B. rossi BrEMA</i> 1 genotype identified from blood samples and
clinical outcomes of dogs presented at OVAH97
Table 4.3: Clinical signs from complicated cases with solid organ complications and
their associated <i>BrEMA</i> 1 genotypes
Table 5.1: Twenty-three confirmed cases of autochthonous babesiosis caused by Babesia
canis in the Netherlands in 2004
Table 5.2: Composition of the <i>Babesia</i> plasmid control with three fragments
(A, B and C) each containing four RLB-probe sequences flanked by the
restriction enzyme recognition sequence for sticky-end cloning
Table 5.3: RLB-probes incorporated in the Babesia plasmid control

Table 6.1: Reverse line blot hybridization results of dogs positive for only <i>Theileria</i> sp.
and for mixed infections of <i>Theileria</i> sp. and <i>E. canis</i>
Table 7.1: Haematological report indicating full blood counts 2 weeks prior to
treatment of the dog with a combination of atovaquone and azithromycin

Thesis summary

This thesis focuses on the molecular characterization of tick-borne parasites of dogs in South Africa. Emphasis is placed on *Babesia*, *Erhlichia*, incidental and novel parasite infections that may cause morbidity or mortality in infected dogs. An outbreak of canine babesiosis in the Netherlands is also reported in this thesis. Molecular techniques were employed to isolate, amplify and characterize genomic DNA of these parasites to species level. During preliminary screening of blood samples collected from various sites in the country, that included the Onderstepoort Veterinary Academic Hospital, SPCAs and private clinics throughout seven provinces in South Africa, it was discovered that domestic dogs harboured a wide variety of tick-borne pathogens.

The most frequently encountered parasites in South Africa were *Babesia rossi*, a novel *Theileria* species of dogs, *B. vogeli* and *Ehrlichia canis* respectively. The parasites occurred as single or mixed infections. Incidental infections that included *B. gibsoni* and *Trypanosoma congolense* were also detected using PCR. Although it was anticipated that zoonotic Ehrlichial infections of dogs would be detected, none were found. *Babesia vogeli* was reported for the first time in South Africa although, without any clinical significance. An outbreak of autochthonous canine babesiosis in the Netherlands was confirmed to have been caused by *Babesia canis*. *Dermacentor reticulatus* was implicated in the transmission of the parasite to naïve dogs. Clinical significance of *B. rossi* and the novel *Theileria* sp. of dogs was evaluated. *Babesia rossi* was found to be of significant clinical importance. Genotyping of *B. rossi* isolates revealed that parasite

genotypes could be correlated to disease phenotype. Additionally, specific genotypes could also be associated with fatalities. Although the characterization of the *Theileria* sp. in dogs was a first report in South Africa, the clinical significance of this infection in dogs appeared to be poorly resolved. The dangers of having non-endemic species becoming established in South Africa was highlighted with the incidental finding of a *B. gibsoni* infection in an imported dog.

The results of this thesis have shown therefore that populations of dogs that live in tickendemic areas are exposed to single or multiple tick-borne pathogens. These pathogens continue to cause morbidity and mortality in susceptible dogs. Correct diagnosis (supported by molecular diagnostic tools) followed by appropriate treatment offers a better understanding and management of these tick-borne pathogens. Preventative measures should be fully evaluated and applied to prevent these tick-borne pathogens from adversely affecting the canine population in South Africa and elsewhere.