
 

The valuation and calibration of convertible bonds 

 

by 

 

Sanveer Hariparsad 

 

 

Submitted in partial fulfillment of the requirements for the degree 

 

 

Magister Scientiae 

 

 

in the Department of Mathematics and Applied Mathematics  

in the Faculty of Natural and Agricultural Sciences 

 

 

University of Pretoria 

Pretoria 

 

 

 

 

 

Feb 2009 

 

 

 
 
 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 ii

 

 

DECLARATION 

 

I, the undersigned, hereby declare that the dissertation submitted herewith 

for the degree Magister Scientiae to the University of Pretoria contains 

my own, independent work and has not been submitted for any degree at 

any other university. 

. 

 

 

 

 

_____________________________ 

 

(Signature of candidate) 

Sanveer Hariparsad 

 

 

 

 

 

____________________Day of _________________________20________________ 

 

 

 

 

 

 

 

 
 
 



 iii

 

 

ABSTRACT 

 

The valuation and calibration and of convertible bonds 

 

Sanveer Hariparsad 

Magister Scientae 

Department of Mathematics and Applied Mathematics 

University of Pretoria 

2009 

 

A convertible bond (CB) is a hybrid security possessing the characteristics of both 

debt and equity. It gives the holder the right to convert the bond into a pre-specified 

number of shares (usually by the same issuer of the CB) until maturity of the bond, 

and may also contain additional features such as callability and putability. CB’s along 

with all hybrid securities are difficult to value due to their uncertain income stream. In 

this dissertation several convertible bond valuation models are suggested, but with 

particular attention to the calibration of the underlying inputs into the model and also 

by taking default risk into account, which is extremely important given the sub-

ordination of convertibles. The models range from the basic component models that 

decompose the CB into a straight bond and an exchange/call option; to more 

sophisticated ones consisting of stochastic interest rates, default risk, volatility 

structures, and even some exotics such as exchangeable and inflation-linked 

convertibles. An important aspect often missed by CB valuation models is the 

presence of negative convexity for extremely low share prices. As such a credit spread 

function dependent upon the underlying share price is introduced into the Tsiveriotis 

and Fernandes, and Hung and Wang models which improve upon the accuracy of the 

original models. Once a reliable model has been developed it becomes necessary to 

take advantage of convertible arbitrage trading strategies if they exist. The typical 

delta hedge, gamma hedge and option strategies that many convertible hedge funds 

employ are explained including the underlying risks with respect to the “Greeks”. 
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1. Introduction 

 

1.1 Objectives 

This dissertation describes the characteristics of convertible bonds from their 

valuation, calibration, underlying risks and finally setting up convertible arbitrage 

trading strategies. The majority of convertible bond models fail to take into account 

the negative convexity present at extremely low share prices. The aim of this 

dissertation is to solve this predicament by implementing a credit spread function into 

the popular Tsiveriotis and Fernandes [69], and Hung and Wang [36] equity models. 

Calibration is also an important consideration as it exogenously incorporates current 

market prices into the valuation model.  

 

The valuation models that will be covered generally fall into two broad categories, 

namely equity valuation models and structural models. Equity models use the 

underlying share price as the independent variable, whilst structural models use the 

unobservable firm value. Equity valuation models are discussed first, beginning with 

simple piecewise models such as the Margrabe European (MEE) and American 

Exchange (MAE) [49] models to the more complex Component Exchange (CompEx) 

[29] models with Vasicek interest rate term structures [70] and forced conversion 

dates. Next, the Quadrinomial tree [52] approach is introduced with stochastic interest 

rates and share prices including parameter sensitivities. In building this Quadrinomial 

tree a calibrated binomial interest rate tree is reviewed by using simple BDT [13] 

calibration and more accurate Arrow Debreu calibration techniques developed by 

Jamshidian [39]. Credit risk is an important factor to consider when valuing 

subordinated instruments as their probability of default increases dramatically if the 

issuing firm is close to insolvency or put under stress. As such credit risk is 

implemented into several models by assuming a constant credit spread, although a 

reduced-form1 approach is examined by using implied default probabilities. The other 

equity models reviewed are the Tsiveriotis and Fernandes (TF) [69] decoupled PDE 

model; the Goldman-Sachs (GS) conversion adjusted discount rate model and the 

Hung and Wang (HW) [36] default risk model. The other popular CB valuation 

                                                 
1 The reduced-form approach and firm value approach is seen as subsets of structural models. 
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method is the firm value approach that uses the firm value as the underlying variable 

and assumes default to occur as soon as the firm value drops below a pre-specified 

barrier. These models were difficult to use in practice due to the unobservable firm 

value, although new models such as the Tan and Cai [68] risk equilibrium model and 

Gheno [31] volatility structure model incorporate some calibration to actual market 

data, thereby improving the estimation process. The CB market has developed 

dramatically over the past few years with some exotic convertibles being issued, such 

as exchangeable convertibles that convert into shares different than that of the issuer 

and inflation-linked convertible bonds that have their principle and coupon adjusted 

by the consumer price inflation index, which are explained briefly in Chapter 8. In 

recent times convertible arbitrage trading has become a popular strategy for many 

hedge funds. In Chapter 9 a detailed explanation of these strategies is discussed by 

focussing on the important underling risks such as delta, gamma, rho, theta, and 

omicron. A few popular hedging strategies are considered such as delta hedging, 

dynamic hedging, gamma hedging and various option strategies. To conclude I 

comment on a few improvements to the current models and summarise the important 

aspects of each of the models. 

 

1.2  General Introduction 

The first issue of a convertible bond (CB) was in 1881 with J.J. Hill [17], the railroad 

magnate, who needed to raise capital for its railroad project but needed some form of 

cheaper financing, other than the ordinary debt issues. Since then the market has 

grown to over $460-billion worldwide2 with even more innovative and exotic types of 

convertible instruments being issued. The United States and Japan have the largest 

convertible bond market in terms of market capitalization but the US is seen as 

relatively more liquid. Japan has a number of small issuers of CB’s but cumulatively 

they account for a substantial share of the market. The European CB market has 

become an important source of financing and also seen as relatively higher credit 

quality to the rest of the markets. 

 

                                                 
2 “The $460bn Global Convertible Bond Market”, Neale Safaty, KBC Financial Products - 25 Jul 2001 

- Originally published in Fixed Income Market Review (http://www.gtnews.com/article/3383.cfm) 
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The CB’s popularity with issuers came about by the fact that it offered a cheap form 

of financing. If managers could not persuade investors to reevaluate the risk in their 

business so that they will invest, then it would cost the firm much more to raise funds 

(higher coupon payments) if it raised straight debt. By issuing CB’s this cost could be 

greatly reduced. Convertibles give the issuer the ability to sell their equity at a 

premium to their market value, thereby extending the payback period3 for the 

investors. 

 

A convertible bond (CB) is a hybrid instrument due to its fixed-income and equity 

like nature. In its plain vanilla form a convertible bond is a bond that pays a frequent 

coupon like any other bond but also entitles the investor the right to purchase a certain 

number of shares of the issuing firm during the life of the bond. It can be viewed as a 

plain vanilla bond with a relatively low coupon and a warrant on the equity of the 

firm. If the investor does exercise the warrant the bond will be replaced by just the 

equity of the firm. So, depending on the performance of the company, if the stock is 

more volatile the warrant/equity part becomes more valuable and the CB behaves like 

equity, on the other hand if the stock is less volatile the bond part is more valuable 

and as such the CB begins to mimic a fixed-income instrument. 

 

The benefits to investors are that the CB provides higher current yield, greater 

downside protection, and seniority over common stock with regard to income 

payments and liquidation but are seen as subordinated debt and thus below senior 

debt. 

 

The factors that affect the bond component are: 

1. Interest rates 

2. Credit rating/Spreads 

3. Coupon, and 

4. Duration 

 

                                                 

3 The payback period is the average amount of time in years it will take the investor to recoup the 

premium paid for the security, in this case the income differential between the coupon on the CB and 

the dividend on ordinary equity. 
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The factors that affect the warrant/option component are: 

1. Share price 

2. Embedded strike price 

3. Common share dividend yield and growth rate 

4. Share volatility, and 

5. Life of warrant/call protection 

 

Convertible securities are seen as management’s eagerness to issue equity in the 

future. It allows the issuer to pay lower dividends/coupons and hence increase its 

interest coverage ratios. They can generally be grouped into two broad categories: 

mandatory conversion and optional conversion. With mandatory conversion the 

investor has no say in the conversion decision, and thus the security is converted 

automatically at maturity into common stock, whereas with optional conversion the 

investor can choose whether or not to convert. With mandatory convertibles the equity 

benefits increase as time to maturity draws closer as the security is progressively 

turning into common stock. In-the-money optional convertibles behave just like 

equity although the investor will choose not to convert, but rather continue to receive 

a fixed coupon stream and then convert only if forced to do so. 

 

1.3 Literature Review 

Generally speaking there are two approaches to valuing convertible bonds, using a 

firm value or “structural” approach where the asset value of the firm is modelled, and 

an equity value approach where the CB is modelled via the issuing firms share price. 

The early developments of the “structural” approach were instigated by Merton [54], 

Black and Cox [11], and Longstaff and Schwartz [45] where they first valued risky 

non-convertible debt. The firm’s debt and equity are seen as contingent claims on the 

firm value, and options on the debt and equity are compound options on the firm 

value. By and large default occurs when the firm value drops to very low levels, such 

that it is unable to meet its financial obligations. It was seen as an attractive 

methodology but suffered the same criticisms as that of Jarrow and Turnbull’s [40] 

risky debt approach. That is to say it is often difficult to measure the value of the firm 

due to the absence of market data, and to make matters worse estimates of the mean 

and volatility of the firm value are also required. Also, any liabilities senior to the 
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convertible bond issue will also have to be modelled, creating more complication. 

One of the advantages of the firm value approach however, is that it takes into 

account the negative convexity4 of the CB price during the distressed debt phase. 

When the share price/firm value drops to extremely low levels the probability of 

default increases dramatically, and due to the sub-ordination of CB’s in the firm’s 

capital structure this causes the CB value to follow suit.  

 

To avoid these complications authors introduced new models that use the underlying 

share price of the issuing firm as the predominant factor. These models are easier to 

implement due to the easy access of share prices, and without incorporating other 

senior claims. An early example of this approach was implemented by McConnell and 

Schwartz [50]. One of the downfalls was the fact that it ignored the possibility of 

bankruptcy, although McConnell and Schwartz [50] accounted for this by using a 

risky discount rate instead of a risk-free rate. Others that consider a trivial risky rate 

are Cheung and Nelken [20], and Ho and Pfeffer [33]. This approach was considered 

better than structural models, but created further complications as the debt and equity 

components embedded in the hybrid CB security were discounted at different rates.  

 

An improvement upon this was to value the CB by splitting it into two separate 

components, that is a vanilla bond component with the same characteristics as the CB 

and an option to convert the bond into a fixed number of shares. This was initially 

made popular by Ingersoll [37] and Brennan and Schwartz [14] with the assumption 

that each component could be traded separately in a perfect and complete market5. 

According to Brennan and Schwartz [14] the value of the CB is dependent upon 

interest rates and the value, risk and capital structure of the firm. This option/warrant 

can be seen as a call option on the assets of the firm, and the firm value is assumed to 

follow a lognormal distribution with Geometric Brownian motion. Closed form 

solutions were found to exist for the non-callable, European CB, but as soon as 

callability, putability and American type conversion were introduced into the model a 

numerical approximation of the PDE had to be used. 

                                                 

4 The concept of negative convexity will be explained in detail in Chapter 6, but at this stage can be 

thought of as the bond price decreasing (below its floor value) for extremely low share prices. 

5 This means that the markets are perfectly liquid without transaction costs and short-sale restrictions. 
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The Margrabe Exchange model6 as defined by William Margrabe [49], which values 

an option to exchange one asset for another asset, was used to price the option 

component while the regular discounting of cashflows was used to value the vanilla 

bond component. Thus, the sums of these two components lead to the value of the 

CB. The option component can be European or American. The American feature can 

be valued using a slight modification7 of the Margrabe Model that relies on finding 

the critical share price for exercising the option to convert using a Barone-Adesi and 

Whaley [8] approximation. 

 

1.3.1  Credit Risk 

What is important to note in using this separation procedure is that the bond 

component is discounted using the risk-free rate plus a credit spread to allow for 

default risk of the issuer, whilst the share is discounted using only the risk-free rate. 

Tsiveriotis and Fernandes [69] suggest that “the equity potential has zero default risk 

as the issuer can always deliver its own stock” whilst coupons, principle, calls and 

puts depend on the issuers availability of cash which introduces credit risk. They 

propose splitting the CB into a “cash only” part, which is subject to credit risk, and an 

equity part, which is not. They have implemented this in their pricing formula by 

using two partial differential equations for each of the components, and combined 

these together using each of their boundary conditions.  

  

A disadvantage of this model is that default is not explicitly modelled, but rather seen 

as an estimated credit spread of the issuer. It assumes that upon default the share value 

jumps to zero and there is no recovery. This assumption is a bit absurd as empirical 

evidence suggests that shares do not instantaneously jump to zero upon default but 

rather involve a gradual erosion of the stock price prior to the default event and then a 

sudden jump8. An improvement since then has been the development of reduced form 

models and structural models that model credit risk explicitly. Jarrow and Turnbull 

[40] introduced a reduced form model using a Poisson jump process to model default. 

                                                 

6 It can be seen as a generalization of the familiar Black-Scholes-Merton European call option model. 

7 The modification is in fact an iterative process (e.g. Newton Rhapson). 

8 This jump is significant but much less than 100%. 

 
 
 



 

 13

In this framework once default occurs the share does not drop to zero, but to a very 

low level, enabling the holder to receive some recovery value. The Merton [54] 

structural model is similar in that it models default using the assets, equity and 

liabilities of a firm to find a default barrier, which once reached imposes the condition 

that the firm is in default. We will use the reduced form approach, as it is difficult to 

gather information upon the firm value. 

  

Tsiveriotis and Fernandes [69] do not mention what happens to the share price in the 

case of default and assume that it is unaffected. Ayache, Forsyth and Vetzal [6] 

improve upon this and define exactly what happens by developing a PDE that 

explicitly models recovery in the case of default using a hazard rate for the probability 

of default. Authors such as Davis and Lischka [26], Takahashi et al. [67], Hung and 

Wang [36] and Anderson and Buffum [3] are others that have applied this approach.  

 

1.3.2  Valuation Models – Lattice 

The process of valuing convertible bonds might seem simple if we decompose it into 

its components and value each item independently, but this approach does not take 

into account interest rate volatility and also makes the incorrect assumption that each 

component can be traded separately. As such a Quadrinomial tree as used by Hull [35] 

and Tsiveriotis and Fernandes [69] that values the share price and interest rate 

movements together provides a more complete and accurate method of valuing CB’s. 

This method can also be adapted to handle various other embedded features that exist 

in CB’s namely, call protection, putability, stepped coupons or sinking funds. 

 

Rubinstein [60] also uses a lattice model to value an exchange option, but due to a 

neat adjustment he develops a binomial tree with 2 outcomes from each node as 

opposed to a Quadrinomial with 4 outcomes. Rubinstein [61] extends this binomial 

method into a 3-dimensional binomial lattice. This bivariate binomial model is 

extremely useful for pricing options with two or more factors and converges much 

quicker than the straight binomial model. American and European type options and 

several embedded options can be handled by either approach. A downfall however of 

these approaches is that default risk is not modelled and only achieved through a 

credit spread in the term structure. 
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1.3.3  Optimal Call and Conversion Strategies 

Most CB’s are issued with a call option that the issuer can exercise during a specified 

interval or throughout the life of the bond. This enables the issuer to control the price 

of the CB and if necessary refinance the debt with a new cheaper issuance. As both 

parties now have options9 this introduces an optimal trading strategy for each of the 

two parties concerned. The firms’ objective is to try and maximize shareholder equity, 

this equates to minimizing the price of the CB, whilst the bondholders’ objective is to 

maximize the price of the CB or minimize shareholder wealth.  

 

This is a two-person zero sum game and is initially dealt with by Sîrbu [65] although 

the CB was assumed to have infinite maturity and so time was not taken into account. 

A companion paper to Sîrbu [65] was Sîrbu and Shreve [63] that did consider time as 

a factor. However a further complication is that the dividend policy of the firm be 

dependent on the CB. As such the CB price reduces to a non-linear second order 

partial differential equation with no closed form solution. Nyborg [56] develops this 

approach by considering the earlier work of Brennan and Schwartz [14] and factoring 

senior debt into the firm value with coupon and dividend payments. 

 

Due to the dual nature of the call option10 optimal trading strategies for both the 

investor and issuer exists. What makes valuing this option difficult is that the 

investors’ optimal conversion strategy depends on the firms call strategy, and vice-

versa. Thus in trying to establish an accurate value of the CB we need to correctly 

define the trading strategies of the parties involved. Brennan and Schwartz [14] show 

that the optimal call strategy is to call the bond as soon as the conversion value 

reaches the call price. One of the assumptions corresponds to the Miller-Modigliani 

[47] assumption of “symmetric market rationality” where neither party can improve 

their position by adopting any other strategy; and that firm value is independent of 

these optimal trading decisions.  

 

                                                 

9 The holder has the option to convert into a pre-specified number of shares 

10 CB’s are usually issued with a call option giving the issuer the right to call the bond and the investor 

the right to convert into equity. 
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There is also the question of instantaneous conversion or a call notice period. In 

reality a call notice period is often issued that introduces additional risk to the firm 

because during the notice period the conversion value might fall below the call price 

causing the issuer to pay more than necessary for the CB. Ingersoll [37] considers 

incorporating a safety premium11 to the conversion price and only calling the CB if it 

is above this new value. 

 

Ingersoll [37] and Brennan and Schwartz [14] argue that it is not optimal to allow the 

investor to convert voluntarily before maturity except immediately before a dividend 

payment. Constantinides [21] on the other hand argues that for a large warrantholder 

it can be optimal to exercise a few warrants before maturity in the absence of 

dividends. His rational is that the exercised warrants will inject new capital into the 

firm. This will increase the volatility of the firm value and in so doing the leftover 

warrants will also increase in value. This increase could potentially offset the loss of 

the converted warrants. However, this only applies to coupon paying CB’s, large 

warrantholders and assuming the firm invests in risky assets. 

 

1.3.4 Phases of Convertible Bonds 

In developing a model it is important to capture all of its phases, so that a true 

reflection of all CB risk factors are taken into account. Below is a chart depicting the 

various phases that the CB price follows: 

 

                                                 
11 The safety premium can for example be 20% of the conversion value. 
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Figure 1– Different phases along the convertible bond track. 

 

1.  Distressed debt - In this region the convertible is close to a default event.  If a 

default event occurs, a sum proportional to the recovery rate R is paid out to the 

holder of a convertible.  The value of the convertible is highly sensitive to the 

credit spread in this region. Due to the sub-ordination of the CB, if the share price 

drops to very low levels, credit risk increases and so the CB value falls below its 

straight bond value, and actually possesses some negative gamma, vega and 

increasing delta with respect to the share price.  

2. Busted Convertible - A term often used to describe a convertible that is out-of-the 

money but above the distressed zone, and shows characteristics similar to a pure 

bond.  

3. Hybrid zone - The convertible displays behaviour akin the stock and a straight 

bond.    

4. Equity zone - The convertible price is more equity-like than debt.  Credit risk 

factors become insignificant since the companies credit rating is high due to the 

high stock value.  
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2. Simple Piecewise Models 

In this Chapter piecewise CB models are discussed, beginning with the simple 

component model that values the CB using a straight bond plus call option technique. 

An improvement on this model by way of a floating strike rate for the call option is 

introduced in Sections 2.2 and 2.3 with the European and American Margrabe 

Exchange models [49] (MEE and MAE) respectively. The parameter sensitivities of 

the component, MEE and MAE models are reviewed in Section 2.4. Section 2.5 

analyses Finnertys’ [29] more advanced component model which incorporates 

embedded call options and default risk, and concludes with a numerical example.  

 

Piecewise models are models that value the convertible bond as two separate 

components, namely a plain vanilla bond and a call option on the conversion value αSt 

with the strike being the vanilla bond value bt of the issuing firm. Thus the price of the 

convertible bond is obtained by adding these two components together. The following 

notation will be applied throughout this dissertation with new notation being 

introduced as required: 
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t current time 

χt fair value of convertible bond 

T maturity 

N face value of convertible bond 

st value of underlying share at time t 

bt bond floor value at time t 

σs,t share volatility at time t 

σb,t vanilla bond volatility at time t 

ρ correlation between b and s 

q continuously compounded dividend yield 

αt conversion ratio (assumed constant) 

αSt conversion value 

rt,T continuously compounded yield/riskless rate from time t to T 

γt,T continuously compounded credit spread from time t to T 

ct call price at time t 

θt safety premium 

η final redemption ratio (% of face value) 

τc1 start of call period 

τc2 end of call period 

τp1 start of put period 

τp2 end of put period 

τα1 start of conversion period   

τα2 end of conversion period 

 

  

2.1  Component Model 

A popular and simplistic model to value convertible bonds is the Component model 

where the convertible bond is valued as a straight, vanilla bond plus a call option with 

a fixed strike rate12. It is however very restrictive in that it assumes that conversion 

only takes place at maturity, which is short-sighted since conversion can take place at 

anytime during the life of CB and so has an American, not a European feature, also 

                                                 
12 This fixed strike rate is usually the Conversion Price = Face Value/Conversion Ratio  
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that the strike rate is fixed. The usual Black-Scholes-Merton (BSM) framework with 

constant interest rates and volatility is applied to value this instrument. 

 

If the share price follows the usual lognormal dynamics 

 

 ,( )
t t T t t t

dS r q S dt S dWσ= − + , (2.1) 

 

with dW being an increment of a standard Brownian motion under the risk-neutral 

probability measure Q, the arbitrage free value for the call option ct with payoff at 

maturity of13 
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and ( ).Φ  is the cumulative standard normal distribution function. Thus the final price 

of the convertible bond is 

 

 t t tc bχ = + . (2.4) 

 

Analysing this approach once more it can be seen that the strike price of the call 

option X=bt is in fact a stochastic process, and as such the future (maturity) strike 

price will not be known for certain as it depends on interest rate and credit spread 

                                                 

13 Note that ( ) ( ,0)Max S B Max S B
T T T T

α α
+

− = −  
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movements. Also the callability and putability features that may exist in some CB 

issues cannot be handled by this pricing approach. 

 

2.2 Margrabe Model – European Exchange 

The Margrabe Model (Exchange Model) as mentioned in [49] is similar to the 

Component Model in terms of its European characteristic. What is different however 

is that this model values an option to exchange one asset for another asset at maturity, 

it can be seen as a generalization of the Black-Scholes-Merton model. Thus we have 

two stochastic processes that have correlated Brownian motions. If we assume that the 

vanilla bond bt follows a Geometric Brownian motion similar to the share we can 

value the CB as the sum of a straight bond and an option to exchange the straight 

bond for αSt shares. 

 

Given that the share follows the following process, 

 

 ,( ) S

t t T t S t tdS r q S dt S dWσ= − + , (2.5) 

 

and the bond a similar process with continuous coupon rate c, 

 

 ,( ) B

t t T t B t tdB r c B dt B dWσ= − + , (2.6) 

 

with risk neutral probability measures W
S and W

B respectively, and correlation 

coefficient ρ, then the fair value of the Margrabe option φt with payoff  

 

( )T T TMax S Bϕ α += − , 

 

is given by,  

 ( ) ( )

1 2( ) ( )q T t c T t
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The value of the straight bond with continuously compound coupon c, credit spread γ, 

face value N and final redemption ratio η is found by computing 

 

 , , , ,( )( ) ( )( )t T t T t T t Tr c T t r T t

tB Ne N e
γ γ

η
− + − − − + −

= + . (2.8) 

  

Thus the value of the CB is once again 

 

 t t tBχ ϕ= + . (2.9) 

 

Analysing the Margrabe European Exchange (MEE) Model [49], it seems a bit more 

realistic than the component model as it accounts for the stochastic nature of the strike 

(bond price) and also includes a correlation coefficient between the share and the 

bond, which is tremendously important as will be discussed in Section 2.4. However, 

the stochastic bond process with Brownian motion may not be a realistic assumption, 

as it does not take mean reverting interest rates into account. Also additional call and 

put features cannot be incorporated into the model. The European payoff is a 

limitation and is not usually associated with CB’s, but as Subrahmanyam [66] 

suggests “it is sub-optimal to exercise a Margrabe [49] option prior to maturity if 

there is a so called “yield advantage”, i.e., the cash flows of the exchangeable 

instrument is greater than the cash flows of the obtained asset at each point.” As such 

it is not advantageous to exercise a Margrabe [49] option prior to maturity as long as 

c<q
14

. This makes sense as the lower discount rate (namely c) will produce a higher 

                                                 

14 CB’s are usually issued with a very low coupon than an otherwise identical vanilla bond 
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present value, and as such holding the bond until maturity will be the most profitable 

decision 

 

2.3 Margrabe Model – American Exchange 

The American version of the Margrabe option is introduced here that builds on the 

previous European option mentioned in the previous section. The difference lies in the 

calculation of the critical share price which controls the conversion of the CB. 

Contrary to Margrabe [49] that American options are not more valuable than their 

European counterparts, Bjerksund and Stensland [10] approximate the value of an 

American Exchange option using Barone-Adesi and Whaley [8] American 

approximation and show that it actually is greater than its European counterpart. The 

American approximation can simply be viewed as a European option adjusted for an 

early exercise premium. 

 

The relevant formula for the American call option Ct with strike X is given by 
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where ct is the European call option, S* is the solution of the equation 
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and the other variables defined as 
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Denoting Ct = AmericanCall (St,X,r,q,σ,T); then the value of the American Margrabe 

option is given as Ct
exchange = AmericanCall (St,bt,q,c,σ,T). 

 

Hence the value of the CB (with American optionality) is given as 

 

 t

t exchange tC Bχ = + , 

 

where Bt is defined as before. In this instance the conversion ratio α is set to 1, but by 

replacing S with S* and αS with αS*, the conversion ratio can be included. Correlation 

is not taken into account and volatility is only assumed for the share, but a slight 

modification using the European Exchange method 

 

2 2

, , , ,2t S t B t S t B tσ σ σ ρσ σ= + − , 

 

for the share volatility input can be made to solve this issue. This is an improvement 

on the European feature, but once again callability and putability features may not be 

used in the model and the stochastic bond process is not ideal. There is also the 

limitation of the constant interest rate and volatility. 

 

2.4 Parameter Sensitivities 

In this section we will compare the sensitivities of the parameters to the American and 

European Margrabe Exchange models, MAE and MEE respectively. We will look at: 
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• The share price 

• Share and bond price volatilities, and 

• The correlation, ρ between the share and bond prices. 

 

We will use Parameter Set 1 in Appendix A1 to view the relations of these 

parameters. Since the MAE model has an American exercise nature, it contains all the 

features of the MEE model including optionality throughout the term. Thus we should 

expect the MAE model to always value the CB at a premium relative to the MEE 

model, which is precisely what we get from the model outputs. Taking the CB price 

for differing share values, we see in Figure 2 that the CB increases monotonically, 

with the MAE model pricing at a higher premium to the MEE model as the share 

increases. The models resort to their bond floor value when the share price gets close 

to zero, indicating that no explicit default risk is taken into account except for the 

additional credit spread γ. It is also interesting to note that for deep in-the-money 

CB’s the MEE model dips a little below its parity value, because of the assumption 

that the embedded conversion option can only be exercised at maturity. This is as a 

result of the time premium decay of the option, which reduces the options’ value as it 

becomes closer to maturity. 
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Figure 2 – MAE and MEE models for differing share values, with ρ=-0.2 and γ=0.25%. 
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As the volatilities of both the share price and bond price increase so to does the CB 

price. This is simply because the embedded options increase in value as the volatilities 

increase. Figure 3 and Figure 4 illustrate the share and bond price volatility 

respectively with the CB price converging to similar values for large volatility 

increases.   
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Figure 3 – MAE and MEE model prices for changes in share volatility with S=40, ρ=-0.2 and 

γ=0.25%. 
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Figure 4 – MAE and MEE model prices for changes in bond price volatility with S=40, ρ=-0.2 

and γ=0.25%. 
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Finally the correlation between share and bond prices is examined to see what effect it 

has on the CB price. If the correlation between the share and bond price increases, 

then the return potential will not be that great, relative to lower correlation, as both the 

assets will move in the same direction offsetting each others gains and losses. In so 

doing, the exchange option in the MAE and MEE models decreases in value resulting 

in a lower CB price. If on the other hand the correlation decreases, then the return 

potential from the embedded exchange option increases, as the gains and losses are 

magnified due to the inverse relationship of the share and bond. As a result the 

exchange option increases in value causing the CB value to become greater. Figure 5 

demonstrates this concept for both the MAE and MEE models. 
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Figure 5 – MAE and MEE CB values for changes in the correlation between the share and bond 

prices with S=40 and γ=0.25%. 

 

2.5 Component Model  

In this section Finnerty’s [29] Component model is discussed, which is an extension 

to the Margrabe Exchange [49] model. It develops a closed-form solution of the 

embedded exchange option by incorporating stochastic risk-free interest rates, credit 

spreads and share prices. Section 2.5.1 introduces the basic structure of the zero-

coupon Component Exchange model with stochastic interest rates and share prices. 

Correlation between the two processes is incorporated with duration and convexity 
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playing a role in the volatility of the CB. Section 2.5.2 takes into account default risk 

by way of a stochastic credit spread and Section 2.5.3 makes mention of discrete 

coupon payments. The optimal conversion time is a major factor in Finnerty’s [29] 

model and as such is discussed in Section 2.5.4 with 2.5.5 expanding on this concept 

and quantifying the loss to the investor for early conversion. Section 2.5.6 

encompasses it with an example and compares the results to the piecewise models 

discussed earlier. 

 

2.5.1 Basic Model 

This method builds on the earlier, basic component model and the Margrabe exchange 

model. It differs in that the strike price of the embedded call option is the market 

value of the CB, not its principal value. If the face value is used, then when the 

conversion price exceeds the stock price15, the warrant strike price is overstated and 

the exchange option and CB are undervalued. 

 

The value of the CB is calculated as the sum of its straight bond value and exchange 

option subject to the issuer’s ability to force early conversion. Early conversion by the 

firm is modelled as a stopping time problem, where the optimal time to force 

conversion is by minimizing the cost of the CB. The short-term riskless interest rate tr  

follows the usual mean-reverting Hull and White [35] model, 

 

 ( )t r r t r r
dr t r dt dZκ σ = Θ − +  , (2.11) 

 

with 
r

κ and 
r

σ constants, 
r

dZ is the increment to a Gauss-Wiener process and mean 

reversion level ( ) /r rt κΘ . The share price follows a similar Geometric Brownian 

motion process 

 ( )t e e

dS
q dt dZ

S
µ σ= − + , (2.12) 

 

                                                 
15 This is the usual occurrence at issuance. 
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with 
t

µ the mean, q the continuous dividend yield and 
e

σ the volatility of the share 

price. There exists some correlation between the two processes16, namely 

 

 12e r
dZ dZ dtρ= . (2.13) 

 

Defining ( ), ,tB r t T to be the price at time t of a zero-coupon bond maturing at time 

Tm, when the short rate is rt. By applying Itô’s lemma twice we get the following 

dynamics for the logarithm of the bond price 

 

 ( ) ( )
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where ( ) ( ) ( )( ), / / 1 /r mT t

m rD t T B r B e
κ κ− −

= − ∂ ∂ = − , is the modified duration at time t 

of a zero-coupon bond maturing at Tm. Finnerty [29] assumes the bond is converted or 

redeemed at 2 mT T≤ , where the investor’s optimal conversion date is *

2 2T T≤ . From 

now onwards the CB price will be a function of T2, which does not depend on the 

straight bond price. Letting the conversion ratio be α, the logarithm dynamics of α 

shares are given as 

 
2

ln
2

e
t t e ed S r q dt dZ

σ
α σ

 
= − − + 
 

. (2.15) 

 

Using the equivalent martingale measure in the risk-neutral framework and B as the 

numeraire, leads to  

 

 
( )2

2

2

q T t
TBt

t T

SS e
E

B B

αα − −  
=  

  
. (2.16) 

 

Letting tE be the value of the exchange option17 with boundary condition 

                                                 

16  The correlation between interest rates and equity values is generally viewed as negative due to the 

dividend/cashflow discount models employed by equity analysts. Just as the inverse relation between 

bond prices and interest rates. 
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 ( )
2 2 2

max ,0T T TE S Bα= − . (2.17) 

 

From the earlier argument it follows that 

 

 ( ) 2

2 2 2

2

max ,0 / max 1,0
TB B

t t T T T t

T

S
E B E S B B B E

B

α
α

  
 = − = −        

. (2.18) 

 

Thus the value of the exchange option is given as  

 

 ( )
1

2

mq T t c z c
T t t

z z

E S e H B H
µ σ µ

α
σ σ

− −    +
= −   

   
, (2.19) 

where H(.) is the standard normal cdf, 
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 (2.20) 
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  
=       

  = + − − − − −   

          (2.21) 

 

 and          
2

12

2
2 e rr

er

r r

ρ σ σσ
λ

κ κ
= + . (2.22) 

 

( ), mD t T is the modified duration at time t, and ( ) ( )2 2 2, mD t T B r B= ∂ ∂  is the 

convexity at time t of a zero-coupon bond maturing at time Tm. 2

zσ is the variance of 

the price ratio ( )2d T t

t tS e Bα − −
. 

                                                                                                                                            

17 That is to exchange the bond for α  underlying shares 
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Ignoring call options and the optional redemption feature to redeem the bonds for 

cash, which issuers typically use to force early conversion, we have that the value of 

the CB at time t is, 

 

 

( )

( )2

2

2

, , , ,

,

t t t m t t

q T t c z c
t t

z z

C r B S T T B E

S e H B H
µ σ µ

α
σ σ

− −

= +

   +
= + −   

   

 (2.23) 

 

with final condition, ( )2, , , , max ,
mt t t m T

C r B S T T F Sα =    and max ,0
m mT T

E NS F = −   

where F 18 is the face value of the bond. Traditional CB’s can be seen from a bond 

investors or equity investors’ perspective. From a bond investors viewpoint it is seen 

as a straight bond plus a warrant giving the holder the right to exchange the bond for a 

pre-specified number of shares. Using put-call parity the equity investors view the CB 

as a long share, European put to sell the shares back to the issuer at maturity in 

exchange for a straight bond and a swap paying the difference between the dividends 

on the underlying share and the coupons from the bond. The holder of the CB has a 

call (put) option on the underlying shares, which he can exercise by exchanging the 

bond (underlying stock) for the stock (bond). This can be seen by substituting into 

(2.23) and rearranging terms to get 

 

 

( )

( ) ( )2 2

2

, , ,

.

t t t m t t

q T t q T tc c z
t t t

z z

C r B S T B E

S e B H S e H
µ µ σ

α α
σ σ

− − − −

= +

   +
= + − − −   

   

 (2.24) 

 

The underlying stock is worth ( )2q T t

t
S eα − −

, due to dividends not been collected 

during[ ], mt T . The CB equals the underlying stock plus the option to exchange the 

stock for a bond currently worth 
t

B . When valuing the CB using the bond plus 

exchange option approach, many investors use the face value as the strike price of the 

embedded call option. Due to the CB always been issued with a conversion price 

                                                 

18 F Nη= to simply the notation a little in this section. 
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premium, this increases the strike price of the option, decreases the call option value 

and thus underestimates the CB price. As can be seen in the above equation the strike 

price is the present value of the forward bond price19. So the call option payoff is the 

share price reduced by the present value of the dividends before the anticipated 

conversion date and the present value of the forward bond price. The option value can 

be either in/out-the-money depending on whether the dividend-adjusted share value is 

greater or less than the present value of the forward bond price.  

 

2.5.2  Default Risk 

Defining 
t

s  to be the short-term credit spread for bonds with the same credit rating as 

the issuers CB, it follows that the credit spread process is represented as 

 

 ( )t s s t s s
ds t s dt dZκ σ = Θ − +   (2.25) 

 

 

Where 13e s
dZ dZ dtρ=  and 23r s

dZ dZ dtρ= . Similarly as with interest rates the credit 

spread process reverts to its long-term mean ( )s st κΘ . Credit spreads are generally 

negatively correlated with equity and treasury yields, thus 13 0ρ <  and 23 0ρ < . 

Assuming now that the bond price B is a function of time, interest rates and credit 

spreads, ( ), ,B t r s  requires us to use Itô’s lemma in order to obtain the logarithm of 

the bond price. Applying Itô’s lemma twice to the bond price gives us the following 

 

                        ( ) ( ) ( )( )ln , , ,t B m r m r r s m s sd B t T dt D t T dZ D t T dZµ σ σ= − + ,            (2.26) 

 

where ( ) ( ) ( ) ( ) ( )
2 22 2

23

1 1
, , , , ,

2 2
B m t r m r s m s r s r m s mt T r D t T D t T D t T D t Tµ σ σ ρ σ σ= − − − , 

( ) ( ) ( )( ), / / 1 /r mT t

r m rD t T B r B e
κ κ− −

= − ∂ ∂ = −  is the modified risk-free interest rate 

                                                 

19 The forward bond price is the present value of the payment schedule after the anticipated conversion 

date. 
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duration and ( ) ( ) ( )( ), / / 1 /s mT t

s m sD t T B r B e
κ κ− −

= − ∂ ∂ = − is the modified credit spread 

duration at time t for a zero-coupon bond with maturity mT . 

 

This new representation of the bond price B assumes that it is now a defaultable zero-

coupon bond due to the credit spread. As such the exchange option equation (2.19) 

has a slight modification to its variance term 2

zσ . The new variance term is 2

Dσ which 

is given in Finnerty [29], and the CB price is once again given by (2.23) with 

2

zσ replaced by 2

Dσ . 

 

2.5.3  Coupon Bearing Bonds 

Introducing coupon-bearing bonds into the calculation requires us to break down the 

scheduled payment stream into a series of defaultable zero-coupon bonds. Assume the 

bond pays c per semi-annual period, and accrued interest is not received when the 

bond is converted. Thus each bond pays cF until the bond is redeemed or converted, 

and (1+c)F on maturity. Defining ( ), , ,t t mB r s t T
∧

to be the value at time t of the m serial 

zero coupon bonds outstanding after the exchange date 2T . tI  is the present value of 

the interest payments to be received between t and 2T . So tB
∧

, where 2t T≤ , is the sum 

of the m serial zero-coupon bonds, 
1

m

j

j

B B
∧

=

=∑ .  

The duration of the coupon-bearing bond is calculated as the market-value-weighted 

average duration of the m serial zero-coupon bonds20. As such the dynamics of B
∧

 are 

 

 
t r r r s s s

d B
r dt D B dZ D B dZ

B

σ σ

∧
∧ ∧

∧

   
= − −   

   
, (2.27) 

 

with the obvious boundary conditions ( ) ( ), , , 1
m mT T m m

B r s T T c F
∧

= +  and 

                                                 

20 The convexity of the coupon bearing bond is also calculated as the market-value weighted average 

convexities. 

 
 
 



 

 33

( ) ( ), , 2 2,
m mT T m

B r s T T F T
∧ ∧

=  which is the bond price at time 2T . 
rD B

∧ 
 
 

and 
sD B

∧ 
 
 

 are 

the modified riskless interest rate duration and credit spread duration of the straight 

coupon-bearing bond due after 2T . Once again using Itô’s Lemma gives us the 

logarithm coupon-bearing bond price in the risk-neutral world 

 

 

2 2

2 21 1 1 1
ln

2 2 2 2
t t r r s s r r r s s sd B r D B D B dt D B dZ D B dZσ σ σ σ

∧ ∧ ∧ ∧ ∧        
= − − − −        

         
. (2.28) 
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 
 

and 

2

sD B
∧ 

 
 

are the riskless interest rate and credit spread convexities 

respectively at time t of a straight coupon-bearing bond paying coupons from 2T to 

mT . With a change of numeraire in equation (2.9) from B to B
∧

, the new value of the 

exchange option tE  with mean ( )2ln /
q T t

c t tS e Bµ α
∧

− − 
=   

 and volatility 2

cσ  given in 

Finnerty [29]. So the value of the coupon-bearing CB is 
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I S e H B H
µ σ µ
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 
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 (2.29) 

where tI  is the present value of the interest payments due between t and 2T
∧

, and 

tt
I B

∧

+  is current price of the bond. So equation (2.29) is the bond value plus the 

exchange option for an otherwise identical but noncallable bond minus the value of 

the firms call option. 

 

2.5.4  Optimal Conversion Time T2  

CB investors have an American exchange option to convert the CB into the 

underlying equity. As such they will choose *

2T  to maximize the value of the CB, and 

so assuming that there is no forced conversion risk, we have that the value of the CB 
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at time t is the maximum of 2, , , , ,t t t t mC r s B S T T
∧ 

 
 

 over all possible future conversion 

dates. Thus *

2T  is the projected voluntary conversion date that maximizes C. 

 

Taking into account the call option held by the issuer, which is also American, allows 

the issuer to force early conversion upon the investor. Defining the effective 

redemption price as the call price plus accrued interest, we have that rational CB 

holders will choose to rather convert if the conversion value is above the redemption 

price, even if they do not receive the full time value of their exchange options. 

 

As such the firm will seek to minimize the cost of the CB by removing the maximum 

option time premium from it. As Finnerty [29] states, “If the firm could redeem the 

bonds instantaneously, then in a perfect market, the issuer would call the CB for 

redemption as soon as the conversion value reaches the effective call price.” The 

option is considered at-the-money and so has a maximum time premium, although this 

strategy does not work in reality due to market imperfections and agency costs. Most 

bond indentures require the issuer to give at least 30 days notice prior to redemption 

date. In practice the issuer usually waits for the bond price to rise above the 

redemption price by about 20 percent as mentioned in Asquith [5] and Asquith and 

Mullins [4]. This redemption cushion is seen as a safety premium to prevent the issuer 

from overpaying for the CB and resulting in a busted forced conversion. 

 

CB’s are usually issued with a call deferment period in which the issuer cannot call 

the bond.21 Observing the income streams it seems obvious that investors of CB’s will 

want to hold the bond up until maturity if the present value of the coupons payments 

is greater than the present value of the dividend stream. Even if the dividend income 

is greater than the interest income, investors will not voluntarily convert as they 

would forgo the time value of the call option and put option value22. Finnerty [29] 

assumes that forced conversion is a stopping time problem, and so assumes the issuer 

                                                 

21 Depending on the maturity of the CB, shorter maturity issues have weak call protection whilst longer 

dated issues have stronger call protection. 

22 Assuming the convertible bond is issued with embedded call and put options. 
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will call the CB at 2T
∧

, when the conversion value 
2T

NS  touches the upper barrier for 

the first time. The upper barrier is equal to the effective redemption price 
t

R  

multiplied by one plus the safety premium θ. Carr, Reiner and Rubinstein [18] 

calculate the first passage time density function for ln
t

NS  to hit the barrier ln
t

Rθ  as, 

 

 ( ) ( )
2
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1
exp

22

t
t

ee

Z
g t Z d t

tt
µ

σπσ

 
 = − − −  

 
, (2.30) 

 

with ( )ln /t t tZ R Sθ α= . The expected forced conversion date is 

 

 

1

2 1 2,                      q

t R mT T Z T T Tµ
∧ ∧

−= + ∀ ≤ ≤ , (2.31) 

 

where RT  is the earliest call date permitted by the bond indenture. As the dividend 

rate increases 2T
∧

also increases, which makes sense according to the payment stream 

argument of Asquith and Mullins [4] by delaying the call date. 

 

 

2.5.5  Loss of Value Due to Forced Early Conversion 

The value lost from the CB because of forced early conversion is the remaining time 

value of the conversion option plus the difference between interest and dividend 

payments between 2T
∧

and *

2T . The firm forces conversion when the CB’s price 

reaches the barrier tRθ . In a risk-neutral world, the expected loss of value to CB 

investors resulting from forced early conversion is 
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 (2.32) 
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This loss value assumes that the firm forces immediate conversion when the effective 

call price first hits the barrier and that the option to force conversion does not affect 

the probability that the bonds are held to maturity and redeemed for cash. The value is 

equal to the difference between the CB value occurring at times 2T
∧

 and *

2T . It can also 

be viewed as the difference between the values of the exchange options23 and the 

present value of interest between  2T
∧

 and *

2T . 

 

The price of the CB equals: 

   The value of the straight bond 

+ The value of the exchange option (assuming voluntary conversion) 

- The value of the firms’ option to force early conversion. 

 

Equation (2.32) combines the last two components into one by using an expected date 

of forced conversion, as opposed to taking the expected bond price across all 

permissible conversion dates. The value of this combined option in (2.29) is a convex 

function of time until forced conversion. As such it tends to overstate the value of the 

forced conversion option and so understate the CB price. 

 

2.5.6 Numerical Example 

To illustrate the differences in each of the piecewise models it makes sense to try out 

an example on the Margrabe European Exchange model (MEE), the Margrabe 

American Exchange model (MAE) and the Component model with Coupon and 

Credit Risk (CompEx). Using the Parameter Set 1 in Appendix A1, Figure 6 shows 

the sensitivity of each of the models to changes in the underlying share price. As 

expected the MAE model is above the MEE model due to the American option 

instead of the European option. For deep in-the-money CB’s the MEE dips below 

parity, this is plausible as the CB can only be converted at maturity of the bond, and 

so loses out on some of its value due to the discounting of its future conversion value. 

The MAE model estimates the convertible price to be quite a bit higher than parity for 

                                                 

23 The exchange option negates any dividends on common stock between  2T
∧

 and 
*

2T . 
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in-the-money CB’s to avoid arbitrage opportunities, with both MEE and MAE models 

reverting to their straight bond value for out-the-money CB’s. The CompEx model 

takes into account stochastic interest rates. As such its bond floor value will vary, 

depending on the term structure of interest rates. For deep in-the-money CB’s its 

value will trade close to parity with a little premium, and for out-the-money CB’s it 

will trade at its straight bond value which is again dependent on the term structure 

which uses a one-factor Vasicek interest rate model for zero-coupon bond prices. 
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Figure 6– Comparison of the piecewise models MEE, MAE and CompEx models for different 

share values. 

 

 

In Chapter 2 the conventional piecewise models were discussed beginning with the 

simple component model, where the embedded option was valued according to a 

BSM European call option with a fixed strike rate. The assumption of a fixed strike 

rate is not plausible, so the Margrabe European and American Exchange (MEE and 

MAE) models were introduced. These models assume that the embedded option is an 

exchange option and can be seen as a generalization of the BSM option pricing model. 

The advantage of this approach over the simple component is that it incorporates a 

floating strike rate although the dubious assumption is that the bond price follows a 

lognormal distribution similar to the share price. The American exchange option uses 

a critical share price adopted from Bjerksund and Stensland [10] to determine optimal 
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conversion. The MAE model would seem to suffice but the constant interest rate 

assumption and default risk by way of a constant credit spread maybe improved upon. 

As such Finnerty’s [29] Component Exchange (CompEx) model is reviewed which 

incorporates stochastic interest rates, credit spreads and share prices. In addition the 

issuing firms call option to purchase the bond is accounted for by using a stopping 

time problem to find the forced conversion date. The numerous inputs required by the 

CompEx model reduce its tractability. 

 

The downfall of using piecewise models is that they assume that each component 

trades separately (i.e. bond + option) which continuously over-estimates the CB’s 

price. Also the embedded call and put options are not easily incorporated, however the 

CompEx model does provide some flexibility in this regard, but estimating the large 

amount of inputs is tricky. The major advantage of piecewise models is that they are 

easy to implement and provide an estimate of the CB’s value. Another important 

property is the inclusion of the correlation coefficient between the share and bond 

price, which was shown in Section 2.4 to be crucial in estimating the convertible. 

This Chapter concludes the piecewise valuation approach but will still be referred to 

throughout this dissertation. The next approach will be equity valuation models but 

before we move onto them in Chapter 5, it is important to introduce the fundamental 

properties of interest rate and share price lattices in Chapter 3 and default risk in 

Chapter 4. 
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3. Binomial Trees 

To solve the more advanced equity valuation models that will be discussed in Chapter 

5 it is important to discuss the construction of the binomial share price and interest 

rate trees. As such Chapter 3 begins with Section 3.1 which sets up the basic binomial 

share tree with the risk-neutral probability framework. From here it is extended to the 

no-arbitrage binomial interest rate tree in Section 3.2. Calibration is critical to the 

construction of the binomial interest rate tree and as such is discussed in Section 3.3 

with a simple calibration scheme, and ends with a more precise Arrow-Debreu 

calibration scheme. 

 

Binomial trees provide a generalized (explicit) numerical method to solve PDEs and 

were first proposed by Cox, Ross and Rubinstein [23] in 1985. It is essentially a 

discrete version of the BSM European option formula under the risk-neutral valuation 

framework, and gives good approximation values for assets without 

dividends/coupons to the BSM model albeit with many time steps. Binomial trees can 

become unstable that lead to sporadic values if the time step is not small enough, but 

their tractability for valuing simple financial instruments with two variables is what 

makes them appealing. Extensions of the lattice can be made to incorporate other 

variables, although this leads to extremely large trees making them unattractive 

relative to other numerical schemes.  

 

3.1 Share Price 

In the Black-Scholes-Merton framework the share price process follows the typical 

SDE under the real world probability measure (P) 

 

 t t t tdS S dt S dWµ σ= + . 

 

When working in an arbitrage-free world the share price process follows a similar 

SDE under the risk-neutral measure (Q) 

 

 t t t tdS rS dt S dWσ= + . 
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This risk-neutral measure (Q) is also referred to as an equivalent martingale measure 

because it allows the share to grow at a constant risk-free rate and as such  

 

 [ ] ( )Q r T t

T tE S S e
−= . 

 

When dealing with a binomial tree it might seem appropriate to adjust the 

probabilities for certain situations which will change the up/down moves of the share 

price. When working under the risk-neutral measure the following set of equations 

can be found24 

 
* *(1 ) r tp Su p Sd Se ∆+ − =

 (3.1) 

 * 2 * 2 * * 2 2(1 ) ( (1 ) )p u p d p u p d tσ+ − − + − = ∆ , (3.2) 

 

where *p is the probability that the share price will move up under the risk-neutral 

measure Q, and 2
tσ ∆ is the variance of the share price returns. Thus, by adjusting the 

probabilities [ ]*   0,1p ε , the corresponding up and down movements of the share 

price can be found by solving equations (3.1) and (3.2). Solving (3.1) for *p we find 

that  

*
r t

e d
p

u d

∆ −
=

−
 

 

Therefore substituting *
p into (3.2) and ignoring terms in 2

t∆ and higher powers of 

t∆ , the following equations for u and d are produced25
 

 

 t
u e

σ ∆=  (3.3) 

 t
d e

σ− ∆= . (3.4) 

 

                                                 

24 This is the Cox, Ross and Rubenstein [23] derivation that uses the variance of share returns as 

V(X)=E(X2)-E(X)2. 

25We assume the Taylor series expansion of  ( ) ( ) ( )2 3 41 2! 3! 4! ...x
e x x x x= + + + + +  
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As can be seen the up and down movements of the share price are dependent on the 

volatility of the share price returns. 

 

3.2 Interest Rates  

Binomial interest rate trees are a bit more difficult to model than share prices, as they 

cannot take on arbitrary values, since this would be inconsistent with the arbitrage 

valuation framework. Due to the presence of bonds in the market a term structure of 

interest rates can be formed and thus calibrated to the binomial interest rate tree. 

 

The study of interest rate models was pioneered by Merton [54] in 1974. The most 

popular models were the ones created by Vasicek [70] and Cox, Ingersoll and Ross 

[22] in1985.The most general model of interest rates takes the following form 

 

 ( , ) ( , )t t t tdr r t dt r t dWµ σ= + ,  

or in discrete time 

 ln ln lnt t t t tr r r t tZµ σ+∆∆ = − = ∆ + ∆ , (3.5) 

 

where Zt is a random variable that takes on the value +1 and -1 with risk-neutral 

probability *q  and  ( )*1 q−  respectively26. The variable Zt can be seen as a random 

walk. Thus there are two movements from each node 
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r t t q

µ σ

µ σ
+∆
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 (3.6) 

 

As a result there is a multiplicative ratio at each time tick in the binomial tree as 

depicted in Figure 7. Generally speaking at time period i there are j possible rates, 
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26 
*q  is the risk-neutral probability associated with interest rates, while 

*p is the risk-neutral 

probability associated with the share price. Both belong to the arbitrage-free measure Q. 
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where ri is the baseline rate and vi is defined as 

 

 2 i tu
i

d

r
v e

r

σ ∆= = . (3.7) 

The volatility can be constant over time or implied from interest caps and floors 

trading in the market. 

 

  

Figure 7– Binomial interest rate tree. 

 

 

3.3 Calibration of Interest Rate Trees 

Calibration is an important factor to consider when building any model; it allows the 

model to give results consistent with what is observed from market prices. When 

dealing with any interest-rate sensitive securities it is vital that the term structure of 

interest rates are some how incorporated into the model to value the security correctly. 

Thus two methods of calibrating binomial interest rate trees is described, the simple 

one-factor calibration and the Arrow Debreu calibration schemes. 
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3.3.1 Simple Term Structure Calibration 

This form of calibration is easy to implement and widely used to value interest-rate 

sensitive securities. The basic variable that is calibrated is the annualised one-period 

short rate. The inputs required for the calibration is a term structure of yields from 

zero-coupon bonds together with their prices, and their volatility structure. The 

volatility can be assumed to be constant for convenience, but using implied volatility 

estimates from interest rate caps and floors provide more accurate results. This is due 

to the fact that mean reversion levels change over time, and so should be represented 

by the volatility structure. 

 

Defining ( )0,m t to be the price of a risk-free zero-coupon bond with maturity t, and rt
 

to be the t-period spot rate. So, if we have the two-year zero-coupon bond price and 

volatility, we can seek out the forward one-year spot rate, 2,dr , by using the binomial 

interest rate tree as described in the previous section. Thus the equation is  
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Similarly, the one-year forward rate in two years time is given as,  
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 (3.9) 

  

As such a recursive formula can be built to find the complete calibrated interest rate 

tree. 

 

3.3.2 Arrow Debreu Calibration 

When calibrating the binomial tree to a term structure, the tree prices have to match 

the observed market prices. There is generally two ways that a binomial tree can be 

calibrated, using forward induction or backward induction. Backward induction is a 
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popular and easy method as described by Black, Derman and Toy [13] but at times 

leads to inaccurate matching of the observed market prices. The forward induction 

method introduced by Jamshidian [39] in 1991 calibrates the tree by considering how 

much a security with a payoff of R1 at that particular node and zero elsewhere will 

cost today. A security that pays R1 in a single state and zero elsewhere is referred to 

as an Arrow Debreu security. The backward induction method is essentially equating 

the implied one-period forward rates to the expected value of the short rates. Defining 

fj to be the implied forward rate in period j, and ri as the base line27 rate in period i 

(Figure 8). Since each short rate ri can occur with probability 
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and solving for rj gives, 
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where 
1

1

j

i

− 
 

− 
 is the shorthand notation for ( ) ( ) ( )( )1 ! ! 1 !j i j i− − −  

                                                 
27 The base line rate is thehighest short rate found at each time tick of the binomial interest rate tree.  
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Figure 8 - Baseline rates using Arrow Debreu forward calibration. 

 

The forward induction method is a little more tedious but produces much better 

calibration. Defining AD(n,s) as the price of an Arrow Debreu security in state s at 

time n, and P(n) as the price of an n-period zero coupon bond that pays R1 in all states 

at time n the following relation occurs 
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Thus, the zero-coupon bond can be seen as a portfolio of Arrow Debreu securities. As 

forward induction is the expected value (under the risk-neutral measure Q) of the 

Arrow Debreu security it can be computed as  
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where m(n,s) is the price of the zero coupon bond maturing at time n in state s and is 

given by ( )( )1 / 1 ,r n s+ , and ( ),n sψ is the risk-neutral probability of an up move from 

state s at time n. If a state is unattainable or non-existent ( ), 0AD n s ≡ . nℑ contains all 

the information of the previous Arrow Debreu securities from time 0 to n28. 

 

As an example if we are at time i with i+1 nodes, given a baseline rate for period i of 

ri, and state prices for a prior period of P1,P2,…,Pi with corresponding rates of 

ri,rivi,…,rivi
i-1 we have to solve for ri=r,  
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++

∑  (3.11) 

 

by some iterative process (e.g. Newton Rhapson). S(i) is the i-period spot (short) rate 

from observed market prices, whilst ri is the baseline rate used in the calibrated 

binomial interest rate tree in Figure 8. 

 

Having discussed the binomial share price and calibrated interest rate trees, the basic 

building blocks into solving the equity valuation PDEs in Chapter 5 have been laid. 

These interest rate trees were assumed to be risk-free rates29, but in reality this may 

not be the case as the majority of CB issuers are not risk-free. As such an extension of 

the binomial trees with credit risk is discussed next in Chapter 4. 

 

 

 

 

 

 

 

 

                                                 

28 Formally it is known as a filtration { }
0

s

n
n≥

ℑ and denotes all the information generated by s on the 

interval [0,n], so that we know the exact path of the Arrow Debreu security. 

29 The interest rates that apply to government issued securities are considered to be risk-free. 
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4. Credit Risk 

By definition credit risk “is the possibility that a bond issuer will default, by failing to 

repay principal and interest in a timely manner. Bonds issued by the federal 

government, for the most part, are immune from default (if the government needs 

more money it can just print more). Bonds issued by corporations are more likely to 

be defaulted on, since companies often go bankrupt. Municipalities occasionally 

default as well, although it is much less common.”30  

 

In Chapter 4 an extension to the binomial interest rate tree is formulated to account for 

risky interest rates. This is a short Chapter commencing with a brief literature review 

of credit risk models in Section 4.1 and a quick review of calibrating a risk-free term 

structure to a binomial tree in Section 4.2. Section 4.3 concludes with the construction 

of the risky interest rate tree from an observed, issuer specific term structure and the 

calculation of the implied (conditional) default probability 

 

4.1 Introducing Default Probabilities 

A recent Moody’s sample between 1970 and 200031 indicated that default rates for 

rated CB issuers are higher than those without CB’s in their capital structure, which is 

why credit risk has to be taken into consideration when valuing CB’s. Traditionally 

default risk has been modelled using two distinct classes, structural-form models with 

the underlying being the asset value of the firm, and reduced-form models where 

default occurs via a specified process with an assumed recovery rate. 

 

The Merton [53] model, which makes use of the Black, Scholes and Merton (BSM) 

European option model, proposes that a company will default when its asset value 

reaches a specific barrier. It is considered the first structural model and assumes that 

default can only happen at maturity of the option. McConnell and Schwartz’s [50] 

model is considered the first reduced form model and usually assumes default to occur 

according to a Poisson process. Its downfall is that it doesn’t take total market value 

                                                 

30 http://www.investorwords.com/1210/credit_risk.html 

31 Hamilton, T., Stumpp, P. and Cantor, R., Moody’s Investor Service (Global Credit Research), 

“Default and Recovery Rates of Convertible Bond Issuers: 1970 – 2000”, July 2001 
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of the firm into account, which obviously precludes bankruptcy as the share price 

always stays above zero. 

 

Generally speaking structural models are harder to implement than reduced form 

models as the underlying variable, firm asset value is unobservable in the market, 

whilst with reduced form models the issuers’ stock price and volatility can be 

observed. When dealing with credit risk, structural models provide a link between the 

credit quality of a firm and the firms’ economic and financial conditions, which 

means that defaults are determined endogenously. However, reduced form models 

derive their value in an explicit manner and hence produce a probability of default 

exogenously. 

 

4.2 Calibrating Risk-Free Interest Rates (Quick Review) 

The binomial risk free interest rate tree is constructed in the usual manner by letting 

the rate go up or down by a constant factor along each time tick with a guaranteed 

amount of 1 being received upon maturity. As such it can be calibrated to any market 

term structure by adjusting the interest rates at the bottom of each time tick. This is 

because the rates above differ by a factor of 4
e

σ , from each node below it as was seen 

in Figure 7. Figure 9 illustrates a 2 year zero coupon bond paying 1 at maturity with 

an associated probability π32 representing the probability that interest rates will move 

up in the next time period. As discussed previously the risk-free interest rate tree can 

be calibrated to any term structure by using the risk-free zero-coupon bonds.  

 

                                                 

32 In section 3 this probability was referred to as
*q , a risk-neutral probability and set to 0.5. Here it is 

the probability for both risk-free and risky interest rates to move up. 
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Figure 9 – Risk-free (non-defaultable) 2-year zero-coupon bond 

 

The risky interest rate tree is determined in a slightly different manner, due to the 

defaultable states included in the tree with a constant recovery if default should occur 

as shown in Figure 10. Similarly these risky zero-coupon bonds can be obtained from 

market prices, making it possible to once again calibrate the risky tree to market data. 

 

4.3 Calibrating Risky Interest Rates (Derivation of λµt)  

To incorporate default risk we will adopt Jarrow and Turnbull’s [40] model for the 

risk-free and risky discount rate process. They combine both processes into one tree 

with λµt  representing the probability that a firm will default during the interval (t-1,t] 

and δ a constant, fractional recovery rate of the nominal amount. A simple two period 

tree is shown in Figure 10 which is a Quadrinomial tree used to value defaultable 

bonds. π is a pseudo probability for interest rates to move up, as mentioned in the 

Section 4.2. Due to its discretisation it can handle issuer calls, investor put options and 

the underlying bond coupons. One of the disadvantages is that for longer maturities 

calculating the implied default probabilities becomes cumbersome due to the complex 

structure of the tree, although writing a recursive programme will do the trick. 

 

Letting ( )* 0,m t be the value of a defaultable zero coupon bond and ( )0,m t a non-

defaultable zero coupon bond both with a t-period maturity. Using the values obtained 

in the market we can derive λµ0 by simply solving the following equation  
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( ) ( ) ( )

( ) ( )

0*

0 0

0 0

0,1 1 1

0,1 1 1 .

r
m e

m

µ µ

µ µ

λ δ λ

λ δ λ

−  = × + − 

 = × + − 

 (4.1) 

 

 

Figure 10 – Risky (defaultable) 2-year zero-coupon bond. 

 

To derive the value of λµ1 requires us to solve a slightly more difficult equation shown 

below 

 

 ( ) ( ) ( ) ( ){ }*

0 0 1 10, 2 0,2 1 1 1m m µ µ µ µλ δ λ λ δ λ δ = + − + −  , (4.2) 

where 

 ( ) ( ) ( ) ( ) ( )1 10
0,2 1u d

r rr
m e e eπ π

− −−  = + −
 

. (4.3) 

 

By continuing this recursive methodology the implied default probabilities for any 

issuer can be derived so long as there are market prices of both defaultable33 and non-

defaultable zero – coupon bonds for the chosen maturities as outlined in [40] 

 

                                                 

33 That is an issuer specific term structure to calculate the risky zero-coupon bonds, and government 

term structure for the risk-free zero-coupon bonds. 
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The important aspect to take away from this Chapter is the construction of the risky 

interest rate tree that can be calibrated to any term structure, if sufficient maturities 

exist. This is of course a generalized credit risk model that can be integrated into any 

discrete valuation model. As such it is included in the Hung and Wang CB model 

(HW) which will be examined in detail in Section 5.4. Now that the pre-requisites of 

equity valuations models have been addressed, the next Chapter will delve into the 

details of this valuation approach. 
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5. Equity Valuation Models 

In this Chapter the popular equity valuation models will be discussed. Section 5.1 

briefly describes the major advantage of these models, beginning with the 

Quadrinomial model in Section 5.2, which incorporates stochastic share prices and 

interest rates, including a correlation coefficient between the two, which is shown in 

Section 2.4 to play a vital role in building an accurate model. The calculation of the 

probabilities is reviewed including the boundary conditions, rollback value and 

parameter sensitivities. Section 5.2 analyses the popular Tsiveriotis and Fernandes 

[69] splitting model (TF) with different discount rates. The model is derived using the 

arbitrage free, probability of default and present value approaches with special 

mention of the boundary conditions including a trivial example. The TF model is seen 

as an improvement to the traditional model34 due to the different discount rates used 

but does not give details about the share price upon default. As such Section 5.3 

assesses the Ayache, Forsyth and Vetsal [6] (AFV) model, which develops upon the 

TF model by specifying what happens to the share price upon default. The basic AFV 

model with and without credit risk is discussed including a derivation of the risky 

bond price and inconsistencies with the TF model. The Goldman-Sachs [32] 

conversion adjusted discount rate model is proposed in Section 5.5 with a quick 

description and example. Section 5.6 applies the credit risk approach of Chapter 4 into 

the TF model by way of the Hung and Wang [36] (HW) default risk model. A 

discretisation of the continuous HW model is setup from the terminal nodes and 

backward induction process to an adjusted risk-neutral measure and practical 

example. Finally a comparison of the various equity models is evaluated in Section 

5.7 with an illustrative example. 

 

5.1 Background to Equity Valuation Models 

Essentially there are two valuation methods, a firm value approach and an equity 

value approach. As with default risk the firm value approach uses the underlying 

value of the firm as the stochastic variable, while the equity value approach uses the 

firms’ share price as the underlying variable. Once again firm value models are 

                                                 

34 The traditional model follows the same procedure as the TF model with the splitting into two 

components, however, only one discount rate is applied, as opposed to the two in the TF model. 
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difficult to implement due to the unobservable value of the firm, which has to be 

estimated. Equity value models enjoy the benefit of having an observable variable, 

namely the share price trading in the market.  

  

5.2  Quadrinomial Model 

The process of valuing convertible bonds might seem simple if we decompose it into 

its components and value each item independently, but this approach does not take 

into account interest rate volatility and also makes the incorrect assumption that each 

component can be traded separately. As such a Quadrinomial tree that values the 

share price and interest rate movements together provides a more complete and 

accurate method of valuing CB’s. It is a slight modification to the method used by 

Cox, Ross and Rubenstein [22] in 1979 to value options using a simple binomial tree. 

This method can also be adapted to handle various other embedded features that exist 

in CB’s namely, call protection, putability, stepped coupons or sinking funds. 

 

5.2.1 Constructing the Quadrinomial Tree  

Just like binomial trees that have two moves from each node a Quadrinomial tree has 

four moves from each node, except the terminal nodes (Figure 11). This is because in 

a binomial tree there is just one underlying factor, the share price, whilst in a 

Quadrinomial tree there are two factors, the share price and interest rate. As a result at 

each time tick there are (n+1)
2 nodes, where n ∈ Ζ is the time tick. Due to the added 

complexity of having four moves from each node, an alternative is to re-number the 

tree so as to decompose it into two binomial trees. This is achieved by numbering the 

nodes according to the number of down moves of each factor, as can be seen in Figure 

12. This method can be a disadvantage as the Quadrinomial tree will at times not 

discretise state space, but this simplifies the procedure and enables us to work in a 

two-dimensional plane. 
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 Figure 11 – Convertible bond tree with stochastic interest rates and share prices. 

 

 

 

Figure 12 - Re-numbering Quadrinomial tree with two binomial trees. 

 

   Period 1 Period 2 

  (S0,r0) 

(Suu,ruu

) 

   

(Su,rd) 
  

(Sd,ru) 

(Sd,rd) 

(Su,ru) 

(Sdd,rdd) 

(Suu,rud) 

(Suu,rdd) 

(Sud,rud) 

(Sdd,ruu) 

(Sdd,rud) 

(Sud,ruu) 

(Sud,rdd) 

   Period 1 Period 2 

  (0,0) 

(0,0) 

   

(0,1) 

  

(1,0) 

(1,1) 

(0,0) 

(2,2) 

(0,1) 

(0,2) 

(1,1) 

(2,0) 

(2,1) 

(1,0) 

(1,2) 

 
 
 



 

 55

The big advantage of this method is that if we wanted to find the children35 of any 

particular node we would just need to add the fundamental moves to that node. The 

fundamental moves are ( 0 , 0 ) ;  ( 0 , 1 ) ; ( 1 , 0 ) ; and ( 1 , 1 ) . To understand the 

notation a little better the node (1,0) would be the node where the share price had one 

down move and the interest rate had zero down moves. As an example if we are at 

node ( 1 , 0 )  and wanted to find out what and where in the tree its children are, we 

would add each of the fundamental moves to the node ( 0 , 1 )  and arrive at the child 

node (e.g. ( 0 , 1 ) + (0 ,1 )= ( 1 ,1 )  for one of the children). 

 

5.2.2  Correlated Rollback Value 

When dealing with a Quadrinomial tree, the two factors that drive the tree might have 

some degree of correlation between them. Since we decomposed the tree into two 

independent binomial trees this correlation was lost. In order to create a correlated 

Quadrinomial tree from these two independent binomial trees, we need to determine 

the expected value of the joint process of S and r (i.e. [ ]QE Sr ). 

 

Defining the rollbackparent in mathematical terms as 

 

 [ ]parentr t Q

parent childrollback e E χ
− ∆

= , 

 

and the children nodes, 
Child
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( ) - ,  node
uu

S ru uChild
χ  
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( ) - ,  node
du

S rd uChild
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( ) - ,  node
dd

S rd dChild
χ . 

 

                                                 

35 The children in this sense refer to the nodes one time step ahead and have a positive 

probability of occurring from the current node. 
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Since we always assumed probabilities 
* *

0.5p q= =  and ( ) ( )* *1 1 0.5p q− = − = , for both 

up and down movements respectively of the share price and interest rate, each of the 

children occurs with probability36 0.25  due to their independence property. 

 

So by definition 

  

 
[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

,

, .

Cov S r E Sr E S E r

E Sr Cov S r E S E r

= −

⇒ = +
 (5.1) 

 

The expected values and variances of S and r are easily found to be 

 

 [ ] [ ]
1

2
u dE S S S= +  (5.2) 

 [ ] [ ]
1

2
u dE r r r= +  (5.3) 

 [ ]
22 1

4
r u dr rσ = −  (5.4) 

 [ ]
22 1

4
S u dS Sσ = − . (5.5) 

 

With the covariance being found using the formula  

 

 [ ], Sr S rCov S r ρ σ σ= . 

 

Substitution of (5.4) and (5.5) into the above equation gives 

 

 [ ] [ ][ ]
1

,
4

Sr u d u dCov S r S S r rρ= − − . (5.6) 

 

Finally after substituting (5.2), (5.3) and (5.6) into (5.1), we arrive at 

 

                                                 

36 P [XY]=P[X]P[Y]  i f  t he  rando m var iab le s  X and  Y are  independen t .  
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 [ ] ( )( ) ( )( )1 1
1 1

4 4

uu dd ud du

Sr child child Sr child childE Sr ρ χ χ ρ χ χ= + + + − + . (5.7) 

 

What is so important about this equation is that the probabilities for each child node 

can explicitly be seen as 

 

 Su Sd 
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1
4

Srρ+  ( )1
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4 Srρ−  ( )
1
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Table 1 - Probability moves for each state in the Quadrinomial tree. 

 

Thus, the rollbackparent, now with correlation, can be given as 

 

 ( ) ( ) ( ) ( )
1 1

1 1
4 4

parent
r t uu dd ud du

parent Sr child child Sr child child
rollback e ρ χ χ ρ χ χ

− ∆
= + + + − +

 
  

. (5.8) 

 

 

5.2.3  Backward Valuation Process 

At maturity of the CB the investor must choose whether to convert the bond into 

equity or receive the redemption value of the bond. If the conversion ratio is α then 

the conversion value is αST and the bonds redemption value is Nη, where N is the par 

value and η is the redemption amount in percentage. Therefore a rational investor will 

choose  

 [ ]max ,T T TS Nχ α η= . (5.9) 

By working backwards through the tree we can arrive at time zero and thus find a 

value of the CB. To obtain the arbitrage-free prices at each parent node we need to 

discount the expected value from each of the children nodes. This value as defined in 

(5.8) is the rollbackparent, so that the value of the CB at time t is 

  

 ( )max min , , ,t parent t t t t trollback c S bχ θ α = +  , (5.10) 
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where 
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bt is the price of a vanilla bond with the same characteristics of the company issuing 

the CB. The price of the CB has to at least be equal to or greater than bt since this 

would create an arbitrage opportunity. The safety premium θt is included due to the 

empirical fact by Ingersoll [37] that firm’s only call when the price of the security is 

above the call price by a certain premium. This is because the issuing firm will want 

to make sure that at the end of the conversion period the price of the CB is still above 

the call price. In this dissertation the safety premium is ignored and set to zero. 

 

 

5.2.4  Parameter Sensitivities 

In this section we will look at what effect changes to some parameters have on the 

value of the convertible bond using the Quadrinomial tree model. We assume the 

following values for the parameters when determining the sensitivities37: 

 

 

 

 

 

 

 

                                                 

37 The yield curve used for the values obtained in this section can be found in the Appendix A4. 
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T = maturity 5 

Share Price 50.00 

N = Par Value 100.00 

Annual Coupon Rate 6% 

∆t = Time Tick 0.125 

q = Dividend Rate 1% 

αt = Conversion Ratio 2 

γt,T = Credit Spread 0.25% 

ct = Call Price 120.00 

θt = Safety Premium 0 

η = Redemption Value 1 

τα1 = Call Start Date 0 

τα2 = Call End Date 5 

 

 

The three important factors that drive the CB price are: 

• The share price 

•  Volatility of the share price, and  

• The correlation between the share price and interest rates.  

 

We compare these three factors against the price of the CB using the Quadrinomial 

(Quad) model with the accompanying graphs. It is strange to see that interest rates are 

not a significant factor, although they become important when the CB is trading deep 

out-the-money in the distressed zone. Credit spread is more of an issue here with the 

result being that a higher credit spread reduces the CB price; likewise a lower credit 

spread increases the price. Brennan and Schwartz [14] looked at the price difference 

between using constant interest rates and stochastic ones for the same CB. They 

concluded that “for a reasonable range of interest rate levels the errors from the 

certain interest rate model are likely to be slight, and therefore, for practical purposes 

it may be preferable to use this simpler model [constant interest rates] for valuing 

convertible bonds.” As such interest rates by themselves are not a major factor; 

however the correlation that exists between the share price and interest rates are 

crucial as explained next. 
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It may seem ignorant to ignore the interest rate volatility, but looking at Figure 13 we 

see that as the interest rate volatility increases the CB price decreases, although not by 

much. As such most researchers suggest that constant interest rates are plausible as 

the net difference is not large enough to warrant the additional complexity. In fact 

Brennan and Schwartz’s [14] claim maybe right for the primary bond market, but in 

the secondary market things are little more complicated. As an example if we have a 

busted, callable CB, which is trading deep out-the-money, with a worthless 

conversion option, then we would expect it to behave like an ordinary callable bond. 

As such it would be ludicrous to value this bond in the normal callable bond market 

without taking stochastic interest rates into account. Thus interest-rate sensitivity for 

CB’s become increasingly important for out-the-money issues.  
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Figure 13 - CB price sensitivity to interest rate volatility using Quadrinomial model with call 

interval [0,5], S=50 and ρ=-0.5. 

 

Another important point overlooked by practitioners and researchers is the correlation 

that exists between interest rates and share prices. In the BSM framework it is 

assumed that the share price follows a lognormal distribution with Brownian motion, 

and grows at the risk-free rate (drift). What this implies is that if interest rates go up 

so do share prices, but everyone knows that interest rates are negatively correlated 
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with the equity market (generally speaking of course), as such the share price will 

initially drop and then grow at a higher drift rate. In so doing negative correlation will 

lead to lower CB prices whereas positive correlation will lead to higher prices. A 

CB’s fixed-income (debt) value can be seen as an average value across all interest rate 

scenarios, with high values when interest rates are low, and low values when interest 

rates are high. If there is positive correlation, the case where interest rates are high 

does not play that significant a role as the higher share price causes a higher 

conversion value, and thus CB price. Figure 14 clearly illustrates the direct 

relationship between correlation and the CB price, with the CB price falling from 

115.75 when ρ=1 to 54.69 when ρ=-1, which is a 53% decrease in value. The bond 

floor is calculated to be 90.85, so if we limit the lower value of the CB price to this 

value, the decrease in the CB price is not as dramatic but still substantial. Thus 

correlation should not be taken lightly. 

 

As mentioned in Section 2.4, the value of the convertible bond when using the 

Margrabe exchange model is extremely elastic to the correlation between the bond 

and share price. Since the Margrabe model deals with share and bond price 

correlation, and the Quadrinomial model deals with share price and interest rate 

correlation, it might seem that the two models contradict each other when reviewing 

their sensitivity on the CB price. This is because an increase in correlation will lead to 

an increase in the CB price when using the Quadrinomial model, but a decrease in CB 

price when using the Margrabe model and vice versa. This is a result of the inverse 

relationship between bond prices and interest rates, and in effect leads to the same 

conclusion, albeit with different underlying variables. 
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Figure 14 – CB price sensitivity to correlation between interest rates and share price using      

Quadrinomial model with call interval [0,5], interest rate volatility of 6% and S=50. 

 

A likeable characteristic of the Quadrinomial model is the negative convexity present 

for low share values. Most CB models do not take this into account and assume that 

the CB takes on its investment/straight bond value, but due its sub-ordination in the 

capital structure of the firm, it should in theory take on a value lower then the straight 

bond floor when in the distressed zone. In Figure 15 the negative convexity becomes 

apparent for share values less than the conversion price of 5038. Negative convexity in 

CB’s will be discussed in more depth in Chapter 9. As mentioned earlier, correlation 

is an important factor to consider as the CB price track for differing values of rho is 

also shown in Figure 15. It can clearly be seen that the higher the correlation, the 

higher the CB price and the lower correlation, the lower the price. It is interesting to 

note that when ρ<1 it always trades below is conversion value. As discussed earlier, 

when the correlation is not exactly 1, there is an initial drop in the share value before 

it starts growing with a higher drift rate39. This initial drop suppresses the CB price, 

                                                 

38 The conversion price is calculated as the face value of the convertible bond divided by its conversion 

ratio. 

39 It will take on a higher drift rate if the correlation is positive, else a lower drift rate if negative 

correlation is present. 
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although in reality the rational investor will convert the CB, which will increase its 

value back to the conversion value and may also include some premium. 
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Figure 15 – CB price sensitivity to share price using Quadrinomial model with call interval [0,5], 

interest rate volatility of 6% and share volatility of 20%. 

 

Finally, looking at Figure 16 we see that low share price volatility leads to low CB 

prices and higher volatility leads to higher CB prices. This is quite intuitive as the 

higher volatility increases the value of the embedded conversion option and call 

option. It is difficult to see which option will increase in value more relative to the 

other, as the call option is to the benefit of the issuer and so decreases the CB price, 

whilst the conversion option is to the benefit of the investor and increases the CB 

price. As such the conversion price is set to 50 to indicate the at-the-money 

approximation of the CB. When S=50 the CB price increases and decreases as the 

share volatility moves higher, but generally tends to increase. When S=40, the CB is 

considered out-the-money, and so increases much more radically40 for higher values 

of volatility. The in-the-money CB does not increase much for higher volatility when 

S=60 and needs a substantially large increase in volatility to achieve greater CB 

                                                 

40 The rate of increase, or first derivative is much higher for the out-the-money CB price when 

volatility increases relative to at/in-the-money first derivatives. 
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prices. This concludes the Quadrinomial model with the discussion moving onto the 

TF model in the next section. 
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Figure 16 – CB price sensitivity to share price volatility using Quadrinomial model with 

call interval [0,5], interest rate volatility of 6% and ρ=-0.5. 

 

5.3 Tsiveriotis and Fernandes 

According to Tsiveriotis and Fernandes [69] CB’s are viewed as derivatives of two 

underlying variables, namely equity and interest rates. As such a Black-Scholes-

Merton model would be an appropriate choice. However due to the small 

enhancement in the model by allowing stochastic interest rates, it is not warranted and 

thus constant rates are used. The BSM model can incorporate credit risk by 

introducing a credit spread into the model although this would be unreasonable since 

the equity portion should not be exposed to credit, only the cash part. As stated by 

Tsiveriotis and Fernandes “the equity upside has no-default risk since the issuer can 

always deliver its own stock [whereas] coupons and principal payments … depend on 

the issuer’s timely access to required cash amounts, which introduces credit risk”. As 

such the CB is split into two components: a cash-only (COCB) part, which is subject 

to default risk and an equity part, which is not. The COCB entitles the holder “to all 
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cash flows41, and no equity flows, that an optimally behaving holder of the 

corresponding CB would receive.” Since the CB is a function of the share, the COCB 

is also a function of the share and thus should also be represented by a BSM equation. 

 

5.3.1 The Model 

 Letting the price of the COCB be v and the price of the CB be g
42, we have that 

( )w g v= − is the value of the CB related to payments from equity43 and as such 

discounted at the risk-free rate r. This leads to a pair of coupled differential equations 

that can be solved to find the value of a CB. 

 

Letting the value of the CB be represented as ( ),g S t  and ( ) f t  be the present value of 

all coupon payments, leads us to the following BSM equation by applying Itô’s 

Lemma, 
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2 2
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2

g g g
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t S S
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+ − + =

∂ ∂ ∂
. (5.11) 

 

Similarly equations for w and v can be expressed as 
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                ( ) ( )
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2
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2
c
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t t S

σ
µ

∂ ∂ ∂
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∂ ∂ ∂
. (5.13) 

 

respectively where rc is the credit spread. Therefore the value of the CB is given by 

g v w= + , which when valued in the usual arbitrage-free setting is set equal to a 

                                                 

41 These cashflows consist of coupon payments, principal value, and cash payments received by 

exercising the embedded put options. 

42 The notation of the CB price was given as χ in Chapter 2. Just to clarify g χ= and is done to 

improve the readability of the forthcoming equations. 

43 The equity payments relate to the conversion value if the CB is converted and the call amount 

received if the embedded call option is exercised by the issuer. 

 
 
 



 

 66

combination of the risk-free and risky interest rates less any future coupon payment 

stream. 
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( )
^

/cs r v g= . As can be seen the interest rate used to discount the CB in equation 

(5.14) is
^

r s
 

+ 
 

. Intuitively this means that as the cash-only part (v) of the CB gains 

value, 
^

s  increases, and so does the interest rate. As the equity component (w) 

increases, 
^

s  decreases and as a result so does the discount rate. This is to be expected, 

because if the CB is in the money it behaves like equity and so its cash flows should 

be discounted at the risk-free rate. On the other hand if the bond is out the money, it 

behaves like debt and as such subject to default risk, which causes the interest rate to 

increase. At first glance it may seem that equation (5.13) is independent of (5.14) but 

they are coupled due to their boundary conditions and American optionality features. 

Reviewing some basic concepts once again we assume that the share price follows the 

usual Geometric Brownian motion 

 

 ,dS Sdt SdWµ σ= +  (5.15)   

 

with µ ,σ  and dW being the drift, volatility and Wiener process respectively. 

Defining some function ( ),F S t  and using Itô’s Lemma gives the familiar44 
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44 o(dt) is the shorthand notation representing all higher order terms involving dt that are a result of the 

Itô’s lemma. 
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The COCB price, v and the CB price, g are financial derivatives dependent only on 

time and the share price with a constant risk-free interest rate, thus ignoring credit 

risk, gives us 
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As mentioned previously v includes g, and v-g is the value arising from convertibility. 

 

5.3.2 Arbitrage Free Approach 

For a small change in time it will make sense to assume that the change in the price of 

the CB be given as in (5.18). If we include credit risk it becomes apparent that the CB 

will lose some of its value due to default and so a portion cr vdt , where cr  is the credit 

spread, will be lost over the small time interval dt. So, adjusting (5.18) to take into 

account the credit spread, we have 
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We need to set up a portfolio and replicate the outcomes in each state to find a fair 

value for the CB. Consider a portfolio π consisting of a long position in one CB, and a 

short position in ∆ shares of stock, i.e. g Sπ = − ∆ . Thus the change in the portfolio is 

given as 

 

 d dg dSπ = − ∆ . (5.20) 

 

Substituting (5.15) and (5.19) into (5.20), and setting /g S∆ = ∂ ∂ , to eliminate the 

Wiener Process dW, gives us 
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In an arbitrage-free world we would expect this portfolio to earn the risk-free rate, so  

 

 d r dtπ π= , (5.22) 

 

Thus, 

 

2 2 2

2

2 2 2

2

2

.
2

c

c

S g g
r dt r v dt

S t

S g g
r r v

S t

σ
π

σ
π

 ∂ ∂
= + − 

∂ ∂ 

∂ ∂
⇒ = + −

∂ ∂

 (5.23) 

Since ( )/g g S Sπ = − ∂ ∂ , we have 
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which can be re-written as 
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. (5.25) 

 

This is the PDE from (5.14); in a similar replicating portfolio with g replaced with v, 

equation (5.13) can also be derived. 

 

5.3.3 Probability of Default Approach 

As with all probability approaches we need to find the convertible PDE using an 

expectations technique; however we need to assume that default risk is diversifiable. 

To define risk and return Markowitz’s [50] first introduced the efficient frontier and 

mean-variance portfolio selection in 1952. Sharpe [63] later expanded on Markowitz’s 

earlier work and developed the famous capital asset pricing model (CAPM) that 

described total risk to be attributable to two elements, systematic and unsystematic 
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risk. Systematic risk (market risk) is the non-diversifiable45 risk that exists in a 

portfolio which an investor is rewarded for. Unsystematic risk (firm-specific risk) is 

the diversifiable risk inherent in a portfolio. It has to do with the idiosyncratic risk of 

the individual asset, which according to Sharpe [63] is not rewarded because it can be 

eliminated through a well-diversified portfolio. As such we need to assume that our 

constructed portfolio π  is well diversified so that default risk (unsystematic risk) is 

eliminated. Thus referring to the previous portfolio π  in equation (5.20) we have, 

 

 d dg dSπ = − ∆ . (5.26) 

 Substituting equations (5.15) and (5.17) into (5.26), and setting /g S∆ = ∂ ∂  gives 
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which assumes no default risk. To introduce credit risk we use a slight modification 

from the arbitrage free approach. We assume that, 

 

• The probability of default in the time interval [ ],t t dt+  is dtγ . 

• Upon default the holder will lose the entire COCB value, v46. 

• The share price is unchanged upon default, which is a little unrealistic but 

assumed so for simplicity. 

 

So, assuming only two outcomes in the next time interval, equation (5.13) becomes 
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This simplifies to47 

                                                 
45 Market convention is to describe this as the beta of the asset. 

46 This cash-only portion can be seen as the loss due to default. 

47 Ignoring terms involving 
2

dt when dt is assumed to be small. 
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We assume that default risk is diversifiable, meaning that we do not get rewarded for 

additional risk, so that the portfolio earns the risk-free rate as follows48, 

 

 ( ) ( )E d r dt r g S dtπ π= = − ∆ . (5.30) 

 

Equating  (5.29) and (5.30) leaves us with the following PDE 
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Assuming that γ  is the credit spread gives us the PDE derived in equation (5.14). 

(5.13) can be derived in a similar fashion. 

 

5.3.4 Present Value Approach 

In this approach the fundamental principle in finance is employed, namely using the 

expected present value method. Taking a future point in time t dt+ , the value of the 

COCB is ( ),v S dS t dt+ + . Assuming that the discount rate for the COCB is ε , then 

the value today is 

 ( ) ( )( )
1

, ,
1

v S t E v S dS t dt
dtε

= + +
+

, (5.32) 

 

rearranging gives us  

 

 ( ) ( )( ) ( ), , ,v S t dt E v S dS t dt v S tε = + + − . (5.33) 

 

Since  

                                                 

48 ( ).E  denotes the expected value of the portfolio. 
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 ( )( ) ( ) ( )( ) ( ) ( ), , , ,E v S dS t dt v S t E v S t dv v S t E dv+ + − = + − = , (5.34) 

 

and 

 ( ) ( ),v S t dt E dvε = , (5.35) 

 

then according to Itô’s Lemma we have, 
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and noting that ( ) 0E dW = , implies that 
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Combining (5.35) into (5.37) gives the familiar looking PDE 
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This is equation (5.13) with ε replaced with ( )cr r+ and no discounted coupon stream 

( )f t . Since this is the risky bond component of the CB it makes sense to include the 

risky rate in the calculation. (5.14) can be derived in a similar manner although it must 

be noted that ( )g v− is the equity component and so should be discounted at the risk-

free rate, r only. 
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5.3.5 Boundary Conditions 

Using the familiar notation in Chapter 2 with τc1 and τp1 being defined as the start date 

for call period and start date for put period respectively, the terminal conditions for w 

and v at expiration are given by49: 
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 (5.40) 

 

Interim boundary conditions due to: 

 

1. Conversion 

 

 ( ) [ ],  0,tw S t S for t Tα≥ ∈  (5.41) 

 

 ( ) [ ], 0   0, ,tv S t if w S for t Tα= ≤ ∈  (5.42) 

 

2. Callability of the CB issuer, where the holder still has the option to convert if 

the bond is called after the call start time 1c
τ  

 

 ( ) ( ) [ ]1, max ,  ,t t cw S t c S for t Tα τ≤ ∈  (5.43) 

 

 ( ) [ ]1, 0   ,t cv S t if w c for t Tτ= ≥ ∈ , (5.44) 

 

3. Putability by the CB holder becomes active after the put start time 1p
τ  

 

                                                 

49 Assuming no coupons for simplicity. If coupons were present then the critical decision would be 

whether the conversion value were greater than the face value plus coupon at maturity. As such the 

critical decision applies only to the face value. 
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 ( ) 1,  ,
t p

w S t p for t Tτ ≥ ∈    (5.45) 

 

 ( ) 1,   ,
t t p

v S t p if w p for t Tτ = ≤ ∈   . (5.46) 

 

A binomial lattice is most commonly used to solve this system of PDEs, although 

other finite difference schemes could be used to improve the accuracy. 

 

5.3.6 Numerical Example 

To solve the continuous TF model a discretisation method is required. The most 

common approach is to discretise both time and state space into a uniform rectangular 

mesh by using finite difference methods (FDM). There are various FDMs that one can 

use, but the simplest is the explicit scheme using a binomial tree, which relies on 

values calculated in a prior time period.  

 

Assume the following values are given for the parameters of the share and bond, with 

no embedded call or put options, 

 

Stock 

Current Share Price 50.00 

Share price volatility 30% 

Risk-free rate 7.00% 

Share uptick move 1.35 

Dividend rate 0% 

Bond 

Face value 100 

Bond yield 10.00% 

Coupon rate 8.00% 

Coupon frequency 1 

Credit Spread 0.50% 

Maturity 3 yrs 

Conversion Ratio 2 

No. of time steps 3 
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Figure 17 gives a discrete 3-period version of the continuous TF model with the 

binomial share price tree overlayed. A,B,C and D for each of the nodes represent the 

share price, equity component, debt (cash-only) component and CB price respectively. 

The CB price is the sum of both the equity and debt components (D=B+C). The 

equity component (B) consists of the conversion value or embedded put option strike, 

whereas the debt component (C) consists of the redemption value or embedded call 

option strike. At time period 3 the CB investor is assumed to be rational and choose 

the maximum of the redemption or conversion value. As such in block B the 

conversion value is 319.60 and the redemption value is 108, so the investor converts 

and the equity component equals 319.60 whilst the debt component equals 0, leaving 

the CB price to be 319.60. The opposite is true for block E where the share price is 

relatively low resulting in a conversion value of 67.88, thus it would be wiser to 

redeem the CB for 108. Therefore the debt component takes on the redemption value 

of 108 and the equity component equals zero giving the CB a value of 108. Moving 

backward through the tree, we need to calculate the expected present value of each 

component. The risk-neutral probability measure is 

 

( )
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1.35
0.5446

1.35 1.35

e
p

−

−

−
= =

−
 

 

 As such blocks F and G are calculated as follows  

F: ( ) ( )0.07 134.99 0.5446 0 1 0.5446 68.54e−  + − =   

G: ( ) ( ) ( )0.07 0.005
0 0.5446 108 1 0.5446 8.00 53.63e

− +  + − + =   

Take note that block G contains the discounted expected present value plus the 

coupon of 8. If the time periods were smaller in size, and a coupon payment occurred 

between the intervals then the discounted coupon would need to be included in the 

debt component for each node in that time interval. It is important to note that the debt 

component (G) is discounted at a higher interest rate50 compared to the equity 

component (F), which is discounted at the risk-free interest rate. This is one of the 

critical points of the TF model that assumes the issuer is always able to deliver its 

                                                 
50 The higher interest rate includes the risk-free rate and credit spread.  
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underlying equity, but when any debt servicing or similarly related cash payment is 

required, an element of risk exists. As such the debt component is discounted by the 

risk-free rate and the credit spread to account for the additional risk. 

  

Figure 18 shows the binomial tree if an embedded call option and put option with 

strikes of 120, are present. As can be seen the price of the CB falls from 128.21 to 

119.24 due to the issuers call option being exercised. Block H is the debt component, 

which has dropped from 8 to 0. This is due to the presence of the call option, which 

the issuer has exercised and forced conversion upon the holder, thereby missing out 

on the coupon. As can be seen blocks I and J are quite different from G and H. The 

value of the CB in the middle node in Figure 17 is given as 122.17, which is higher 

than the call strike of 120. Thus in Figure 18 the issuer exercises the call option 

resulting in the equity component realizing the strike rate and the debt component 

equal to 0. The reason the call value is seen as risk-free is because the issuer is 

purchasing the CB at a price, lower than its market value. The firm can call the CB 

and refinance it with a cheaper issue.  

 

In Figure 17, the lower node at time period 1 gives a CB value of 115.61. The 

corresponding node (block K) in Figure 18 gives a CB value of 120. This is due to the 

holder exercising the put option, as the strike value of 120 is greater than the current 

CB value of 115.61. As such this put value is incorporated into the debt component as 

it indicates some stress on the part of the issuing firm to purchase the CB at price 

higher than market value. The equity component takes on a value of 0. 

 

Using this decoupled PDE approach and valuing each component according to its 

level of risk makes intuitive sense but the subject on default risk does not seem to be 

adequately answered, i.e. what happens to the share price upon default. According to 

Tsiveriotis and Fernandes [69] the share price is unchanged which is not a realistic 

assumption. Thus we address this matter in the next approach with Ayache, Forsyth 

and Vetsal [6]. 
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Figure 17 – 3-period binomial tree of the TF model with the conversion option exercised at 

maturity. The value without a rectangular border is the share price for each node. The first value 

in the border is the equity component, the second is the debt (cash-only) component and the final 

border contains the CB value which is the sum of the two components. 
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Figure 18– 3-period binomial tree of the TF model with conversion option exercised at maturity 

and embedded call and put options with strike values of 120. 
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5.4 Ayache, Forsyth and Vetzal 

As mentioned earlier the assumption that the share value drops instantaneously to zero 

upon default is not a very realistic one. Thus Ayache, Forsyth and Vetzal [7] (AFV) 

adjust the familiar TF model by allowing some recovery value on the share price upon 

default. Ayache et al. [7] show that there are internal inconsistencies in the TF model 

such as cases where an issuer call before expiry causes the CB to be independent of 

the issuers’ credit risk, and also where implied hedging strategies may not be self-

financing. 

 

5.4.1 Basic Model without Credit Risk 

To introduce the structure of the PDE problem we start with a basic model of the 

convertible bond without any credit risk and follow up in the next section by 

introducing credit risk. 

 

Once again assuming the dynamics of the share price follow the SDE in (5.15), we 

have that the value of any claim ( ),g S t is given by 

 

 ( )( ) ( )
2 2

2

2
t SS S

S
g S g r t q Sg r t g

σ 
+ + − − 
 

, (5.47) 

where ( )r t is the deterministic interest rate and q is the dividend yield. Assuming that 

the CB has the usual put provision with price
t

p , call provision with price 
t

c  and 

conversion provision with conversion ratio α with these options being exercisable at 

discrete time points. By considering the cases where 
t t

c Sα≤ and 
t t

c Sα> and letting 

 

 ( )( ) ( )
2 2

2

2
t SS S

S
Lg g S g r t q Sg r t g

σ 
≡ − − + − − 

 
, (5.48) 

 

leads to a CB linear complementary problem given by 
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If 
t t

c Sα> , 

( )( )
( )

( )( )
( )

( )( )
( )

0

  max , 0    Continuation Region

0

0

max , 0    Call Region

0

0

max , 0     Put Region   ,

0

t

t

t

t

t

t

Lg

g p S

g c

Lg

g p S

g c

Lg

g p S

g c

α

α

α

 =
 

− ≥ 
  − ≤ 

 ≥
 

∨ − = 
  − ≤ 

 ≤
 

∨ − ≥ 
  − = 

 (5.49) 

 

And t tc Sα≤  

 g Sα= . (5.50) 

 

The continuation region is when 0Lg = subject to the constraints 

 

( )

( )

max ,

max , .

t

t

g p S

g c S

α

α

≥

≤
 

 

So that neither the call nor put provision are active, or 0Lg ≥ and the put is active or 

0Lg ≤ and the call is active. When 0S = the PDE is 

 

 ( )( )         ;        0tLg g r t g S= − − → , (5.51) 

 

While S → ∞ results in an unconstrained linear solution in S 

 

             ;           SSLg V S≡ → ∞ . (5.52) 

 
The terminal condition is given as 

 

 ( ) ( ), max ,g S t T F Sα= = , (5.53) 

 
with F Nη= being the face value of the bond. 
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5.4.2 Derivation of Risky Bond 

Duffie and Singleton [27] value a simple non-defaultable coupon-bearing bond, which 

Ayache et al. [7] extend to incorporate default risk using simple hedging arguments. 

For ease of explanation we assume that default risk is diversifiable so that real and 

risk-neutral default probabilities will be equal51. Defining the probability of default in 

time period t t dt→ + , conditional on no default in [ ]0, t , to be ( ),S t dtγ where 

( ),S tγ is the deterministic hazard rate. 

 

To begin we start by constructing the hedging portfolio π consisting of a risky 

corporate bond ( )* ,m S t  

 *
m Sπ = − ∆ . (5.54) 

 

In the absence of default, and choosing /g S∆ = ∂ ∂ , gives 

 

 ( )
2 2

* *

2
t SS

S
d m m dt o dt

σ
π

 
= + + 
 

. (5.55) 

 

Making the assumptions that 

 

• The probability of default in t t dt→ + is dtγ  

• The value of the bond immediately after default is RX, where 0 1R≤ ≤ is the 

recovery factor52. 

• The share price is unchanged upon default. 

 

So that equation (5.55) becomes 

 

                                                 

51 This is a rather bold assumption, but it illustrates the point about the introduction of default risk into 

bond valuation. 

52 The value of X can be the face value for coupon-bearing bonds or the accreted value for zero-coupon 

bonds. 
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( ) ( ) ( )

( ) ( )

2 2
* * *

2 2
* * *

1
2

.
2

t SS

t SS

S
d dt m m dt dt m RX o dt

S
m m dt dt m RX o dt

σ
π γ γ

σ
γ

 
= − + − − + 

 

 
= + − − + 
 

 (5.56) 

 

Assuming default risk is diversifiable forces the portfolio to equal the risk-free rate 

under expectation theory as 

 

 ( )E d r dtπ π= , (5.57) 

 

 so that equation (5.56) becomes  

 

 ( ) ( )( )
2 2

* * * * 0
2

t S SS

S
m r t Sm m r t m RX

σ
γ γ+ + − + + = . (5.58) 

 

If we let the hazard rate ( ),S tγ γ= and *
X m= , then the solution to (5.58) for a risky 

zero-coupon bond with face value F at t=T is 

 

 ( ) ( ) ( )( )* exp 1
T

t

m F r u u R duγ
 

= − + − 
 
∫ , (5.59) 

 

which implies a spread of ( )1s Rγ= − . If we consider that the share price jumps to 

zero upon default then (5.56) becomes 

 

 

( ) ( ) ( )

( ) ( )

2 2
* * *

2 2
* * *

1
2

.
2

t SS

t SS

S
d dt m m dt dt m RX S o dt

S
m m dt dt m RX S o dt

σ
π γ γ

σ
γ

 
= − + − − − ∆ + 

 

 
= + − − − ∆ + 
 

 (5.60) 

 

Equating (5.60) to the risk-free rate and substituting /g S∆ = ∂ ∂  gives the following 

PDE for a defaultable zero-coupon bond 
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 ( )( ) ( )( )
2 2

* * * * 0
2

t S SS

S
m r t Sm m r t m RX

σ
γ γ γ+ + + − + + = . (5.61) 

 

What is interesting to note is that the drift and discounting terms include the hazard 

rate γ, which proves that assumptions about the share price on default changes the 

valuation of the risky corporate bond, albeit with the use of a simple example. 

 

5.4.3 Basic Model with Credit Risk 

Using the same notation as defined in Section 5.3, we let S
+ be the stock price 

immediately after the default event, S
−  be the stock price before the default event, 

and κ be the loss on the stock price due to default, such that 

 

 ( )1S S κ+ −= − , (5.62) 

 

where 0 1κ≤ ≤ . The case where 1κ =  is known as the “total default” case (zero 

recovery of the share price), and when 0κ =  it is known as the “partial default” 

case53. As usual, we construct the hedging portfolio π 

 

 g Sπ = − ∆ , (5.63) 

with 
g

S

∂
∆ =

∂
 to eliminate the uncertainty of the Wiener Process. If we assume no 

credit risk ( )0γ = then the change in the portfolio reduces to 

 ( )
2 2

2
t SS

S
d g g dt o dt

σ
π

 
= + + 
 

. (5.64) 

 

To incorporate credit risk we have that 0γ > , and make the following assumptions 

upon default 

 

 

 

                                                 

53 The firm defaults, although the share price is unaffected, which is the assumption made by 

Tsiveriotis and Fernandes, as the name suggests it is a partial default. 
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• The share price jumps according to equation (5.62). 

• The convertible holders have the option of receiving either 

o An amount RX, where 0 1R≤ ≤  is the recovery factor54, or 

o Shares worth ( )1Sα κ− . 

 

So with these assumptions in mind, the change in portfolio value from t t dt→ + is 

 

( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

2 2

2 2

1 max 1 ,
2

max 1 , .
2

t SS

t SS S

S
d dt g g dt dt g S dt S RX o dt

S
g g dt dt g g S dt S RX o dt

σ
π γ γ κ γ α κ

σ
γ κ γ α κ

 
= − + − − ∆ + − + 

 

 
= + − − + − + 
 

            (5.65) 

 

Under the risk-neutral framework, the expected return on the portfolio has to equal the 

risk-free rate, as such we equate (5.65) to the risk free rate over the period dt to give 

 

                           
[ ] ( )

( )( ) ( )

2 2

2

max 1 ,

S t SS S

S
r g Sg dt g g dt dt g g S

dt S RX o dt

σ
γ κ

γ α κ

 
− = + − − + 

 

− +

,                       (5.66) 

 

which simplifies to 

 

         ( )( ) ( )( ) ( )( )
2 2

max 1 , 0
2

t S SS

S
g r t Sg g r t g S RX

σ
γκ γ γ α κ+ + + − + + − = .            (5.67) 

 

A closer inspection of (5.67) reveals that the drift term contains ( )( )r t γκ+ and the 

discounting term contains ( )( )r t γ+ . Letting R=0, 1κ =  will result in the total 

default model with no recovery and reduce to a simple PDE to solve. 

 

Defining 

 

                                                 

54 X can be chosen to be the pre-default value of the Convertible bond or the face value. 
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 ( )( ) ( )( )
2 2

2
t SS S

S
Mg g g r t q Sg r t g

σ
γκ γ

 
≡ − − + + − − + 

 
, (5.68) 

 

we can write (5.67) when the share pays a continuous dividend yield q as 

 

 ( )( )max 1 , 0Mg S RXγ α κ− − = . (5.69) 

 

After arriving at the PDE with credit risk and partial recovery, we are now in a 

position to complete the problem for CB’s with risky debt. 

 

If t tc Sα>  

 

( )( )
( )( )

( )

( )( )
( )( )

( )

( )( )
( )( )

( )

max 1 , 0

  max , 0    Continuation Region

0

max 1 , 0

max , 0    Call Region

0

max 1 , 0

max , 0     Put Region ,

0

t

t

t

t

t

t

Mg S RX

g p S

g c

Mg S RX

g p S

g c

Mg S RX

g p S

g c

γ α κ

α

γ α κ

α

γ α κ

α

 − − =
 
 − ≥
 
 − ≤ 

 − − ≥
 
 ∨ − =
 
 − ≤ 

 − − ≤
 
 ∨ − ≥
 
 − = 

 (5.70) 

 

and t tc Sα≤  

 g Sα= . (5.71) 

 

Although the linear complementarities in equations (5.70) and (5.71) look 

complicated, breaking them down as in (5.49) will explain the basic concept. The 

value of the CB is given as in equation (5.69) subject to the constraints, 

 

 
( )

( )

max ,

max ,  .

t

t

g p S

g c S

α

α

≥

≤
 (5.72) 

 

 
 
 



 

 85

So that we are either in the continuation region, call region or put region as expressed 

in (5.70), or will choose to convert. Due to the hedging of the Brownian motion risk, 

we will refer to equations (5.70) and (5.71) as the basic Hedge model. 

 

5.4.4 Inconsistencies with TF Model 

The TF model uses a similar splitting technique to the AFV model as mentioned in 

Ayache, et al. [6], although there is some discrepancy in their approach due to the 

unclear notion of what happens to the share price upon default, and the decomposition 

of the CB. In this section two undesirable features of the TF model relative to the 

AFV model will be addressed. 

 

For simplicity we will assume that there are no put provisions and coupons, 1α = , the 

only conversion time is at maturity or at the call date where the bond can only be 

called the instant before maturity i.e. t T
−= . If the call price is 

 ,  0 ,  1tc F ε ε ε= − > << , and the bond is called at t T
−= , then according to the TF 

model we have 

 
( ) ( )

( )

*

* *

*

0

, max ,

0

, 0.

Lg m

g S T S F

Lm m

m S T

γ

ε

γ

−

−

+ =

= −

+ =

=

 (5.73) 

 

The solution of *
m  using the last two equations of (5.73) is * 0 ,  m t T −≡ ∀ < , and 

with * 0m = at 0t = , we have that the solution to the CB is 

 

 
( ) ( )

0

, max , .

Lg

g S T S F ε−

=

= −
 (5.74) 

 

This is unusual since the hazard rate does not have any affect on the CB value, as one 

of the constraints in the TF model requires that * 0m =  if tg c= even if the difference 

between the call and bond face value is infinitesimally small. What this is saying is 

that the instant before maturity when the CB is called, the bond becomes independent 

of the issuers credit risk, which is absurd. 
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In the second case we will show how hedging with the TF model in the real world 

leads to a non self-financing portfolio. In the real world we have two measures of 

uncertainty, namely uncertainty in the share price and default risk. To hedge out these 

risks we have to introduce another security into our hedging portfolio, which can be 

another bond by the same issuer. Let this new contingent claim be denoted by ( ),I S t . 

Working in the real world means that default risk is not diversifiable, and so dtλ  is 

the actual probability of default in the interval [ ],t t dt+ , whereas γ dt is the risk-

adjusted value. Using the same arguments as previously done, we construct the 

hedging portfolio 

 'g S I Aπ = − ∆ − ∆ + , (5.75) 

 

where A is the cash portion and is given by ( )'A g S I= − − ∆ − ∆  and '∆ is the number 

of I security’s held. Assuming a real world process of 

 

 ( )dS Sdt Sdz Sdqµ λκ σ κ= + + − , (5.76) 

 

where µ  is the drift rate and the Poisson default process is given by 

 

 
( )

1  ,  with probability 

0  ,  with probabilty 1 .

dt
dq

dt

λ

λ


= 

−
 (5.77) 

 

If we choose 

 ' 0Sg I− ∆ − ∆ = , (5.78) 

 

then by using Itô’s Lemma and equations (5.76) and (5.78) we have 
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 ( )
[ ]

2 2 2 2
'

'

2 2

       

       change in  on default .

SS t SS t

S S
d g g I I dt

S I g rdt

dq

σ σ
π

π

  
= + − ∆ +  

  

+ ∆ + ∆ −

+

 (5.79) 

 

For simplicity we will assume that the recovery rate of the bond component is zero 

(R=0) and that the second contingent claim, I defaults at the same time as the CB. If 

none of the call, put, or conversion options are exercised and default does not occur in 

[ ],t t dt+  then  

 

• The hedge model from (5.67) gives 

 ( ) ( ) ( )
2 2

1
2

t SS S

S
g g r Sg r g S

σ
γκ γ γα κ + = − + − + + −  , (5.80) 

 ( ) ( ) ( )
2 2

' 1
2

t SS S

S
I I r SI r I S

σ
γκ γ γα κ + = − + − + + −  , (5.81) 

 

• The TF model from (5.14) without any coupons gives 

 

 
2 2

*

2
t SS S

S
g g rSg rg m

σ
γ + = − − −  , (5.82) 

 
2 2

'

2
t SS S

S
I I rSI rI m

σ
γ + = − − −  . (5.83) 

 

Where 'α is the number of shares that the claim I will receive upon default and '
m is 

the bond component of I. Assuming that '

S Sg I∆ = − ∆ in all cases, we have that 

 

  
[ ] ( ) ( ) ( ) ( )

( ) ( ) ( )

' ' '

' ' ' '

change in  on default 1 1 1

1 1 .

S S S g I S

S g I S S g I

π α κ κ α κ

α κ κ α κ

= − −∆ − −∆ − − −∆ −∆

= − + −∆ −∆ − − +∆
 (5.84) 

 

Substituting (5.84) into (5.79) gives 
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 ( )( )
( ) ( ) ( )

2 2 2 2
'

' '

' ' ' '

2 2

       

       1 1 .

SS t SS t

S S

S S
d g g I I dt

g I S I g rdt

S g I S S g I dq

σ σ
π

α κ κ α κ

  
= + − ∆ +  

  

+ − ∆ + ∆ −

 + − + − ∆ − ∆ − − + ∆ 

 (5.85) 

 

For the hedge model, using equations (5.80) and (5.81) in (5.85) gives 

 

 

( ) ( )( )

( ) ( ) ( )

( ) ( )( )

( ) ( )( )

' '

' ' ' '

' '

' '

1 1

        1 1

1 1

        1 1 .

S S

S S

S S

d dt Sg g S SI I S

dq S g I S S g I

dt Sg g S SI I S

dq S g S g SI I S

π γ κ α κ κ α κ

α κ κ α κ

γ κ α κ κ α κ

α κ κ κ α κ

 = − − + − − ∆ − + − 

 + − + − ∆ − ∆ − − + ∆ 

 = − − + − − ∆ − + − 

 + − + − − ∆ − + − 

 (5.86) 

 

Setting  

 
( )
( )( )

'

'

1

1

S

S

Sg g S

SI I S

α α

κ α κ

− + −
∆ =

− + −
, (5.87) 

 

will make (5.86) equal to zero, so that the hedging portfolio is risk-free and self-

financing under the real world measure. 

 

Looking at the TF model, and substituting (5.82) and (5.83) into (5.85) we have that 

 

      ( ) ( ) ( )( )* ' ' ' '1 1
S S

d dt m m dq S g S g I SI Sπ γ α κ κ κ α κ = − ∆ + − + − + ∆ − − −  . (5.88) 

 

Setting '∆  as in equation (5.87) and substituting into (5.88) will give 

 

 * ' 'd m m pdtπ  = − ∆  , (5.89) 

 

which shows that the hedging portfolio is no longer self-financing. Imposing another 

restriction on the portfolio, namely [ ] 0E dπ = , and using equations (5.78) and (5.88) 

gives us 
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( )( )

( )( )

*

'

' '

1

1

S

S

S g S g m

I I S S m

λ α η η γ
β

λ η α η γ

− − + − −
=

− − − −
, (5.90) 

 

which is dependent on λ . Choosing 'β as in (5.90) we see that the variance in the 

hedging portfolio is given as 

 [ ] ( )
2

Var d E dπ π =
 

, (5.91) 

 

which is non-zero, and thus not risk-free. The hedge model produces a self-financing 

hedging, zero risk portfolio under the real world measure, unlike the TF model which 

produces a hedging portfolio that is neither risk-free nor self-financing. As mentioned 

at the beginning of this section, the hedge model specifies what occurs on default, 

which keeps it consistent with the default model. 

 

In the next section the Goldman-Sachs conversion adjusted probability model is 

discussed, which introduces a slight variation to the TF and AFV models by using a 

conversion probability lattice.  

 

5.5 Goldman-Sachs 

The Goldman-Sachs [32] model is similar to the Tsiveriotis and Fernandes [69] model 

as it uses a blended discount rate. The difference is that the interest rate is adjusted 

according to the probability of conversion as opposed to the cashflow as in the TF 

model. As such the Goldman-Sachs model uses a weighted risk-free and risky interest 

rate, weighted by the probability of conversion in the discounting of its cashflows. 

Also the Goldman-Sachs model does not use a decoupled PDE approach as 

everything is computed using a single PDE, making computation a little easier.  

 

5.5.1 The Model 

Assuming once again that *p is the probability of an up move of the share price under 

the familiar risk-neutral measure Q as discussed in Chapter 3, we can construct a 

simple conversion probability binomial tree. Letting e(S,T) denote the values at the 

terminal nodes of the conversion probability tree at maturity T, so that  
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 ( )
1 for 

,

0 elsewhere.

B
S

e S T α


≥

= 


 (5.92) 

 

Thus, the conversion probability at time T-1 in state S is given as  

 

 ( ) ( ) ( ) ( ) ( )* *, 1 , , 1 , .Q

u de S T E e S T p e S T p e S T − = = + −   (5.93) 

 

Working backward through the tree gives us a conversion probability for each node to 

be used in calculating the weighted average interest rate for discounting. The 

weighted average interest rate is calculated in a similar manner by constructing a 

binomial tree and calculating the discount rate for each node. As such at time 

( )1T − where ( )0 1T T≤ − <  and state S ∈R the corresponding node is given as  

 

 ( ) ( ) ( ) ( )( ), 1 , 1 , .cr S T re S T r r e S T− = + + −  (5.94) 

 

Once the appropriate discount rate is calculated the usual convertible bond tree can be 

constructed by using the following interim boundary conditions, 

  

 ( ) [ ],    0,tw S t S for t Tα ε≥ , (5.95) 

 ( ) ( ) [ ]1, max ,    ,t t cw S t c S for t Tα ε τ≤ , (5.96) 

 ( ) 1,     ,t t pv S t p if w p for t Tε τ = ≤   , (5.97) 

 

 

with the last two equations being the callability and putability conditions where 1c
τ is 

the call start date and 1p
τ  is the put start date. The CB value at each point in the 

binomial lattice must be discounted using the equivalent interest rate computed 

previously, until time 0 to calculate a fair value for CB.  
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5.5.2 Numerical Example 

A simple example will demonstrate the conversion probability tree and adjusted 

discount rate tree. Letting the parameters be given as 

 

 

Stock 

Current Share Price 50.00 

Share price volatility 30% 

Risk-free rate 7.00% 

Dividend rate 0% 

Bond 

Face value 100 

Bond yield 10.00% 

Coupon rate 8.00% 

Coupon frequency 2 

Maturity 3 yrs 

Conversion Ratio 2 

No. of time steps 3 

 

Then the 3-period conversion probability tree and discount rate tree are shown in 

Figure 19 and Figure 20 respectively. 

 

Point A is calculated as, ( ) ( )1 0.545 0 1 0.545 0.545+ − = , and 

Point B is calculated as, ( ) ( )0.07 0.545 0.1 1 0.545 0.08365+ − =  
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Figure 19 – 3-period conversion probability tree with p
*
=0.545. 

 

 

Figure 20 – 3-period adjusted discount rate tree with q
*
=0.545, r=7% and rc=3%. 

 

1.00 

   Period 1 Period 2 Period 3 

0.545 

0.00 

1.00 

 (Converted) 

0.567 

1.00 

 (Converted) 

0.00 

(Redeemed) 

0.00 

(Redeemed) 

0.793 

0.297 

A 

0.07 

   Period 1 Period 2 Period 3 

0.083 

0.10 

0.07 

(Converted) 

0.083 

0.07 

(Converted) 

0.10 

(Redeemed) 

0.10 

(Redeemed) 

0.076 

0.091 

B 

 
 
 



 

 93

To calculate the final convertible value we construct a binomial tree applying all the 

relevant conditions in (5.95), (5.96) and (5.97). Figure 21 illustrates the share price 

and rollback convertible bond price using the probability adjusted interest rates.  

Point C is calculated as  ( ) ( )( )-0.083e 134.99 0.545  + 104 1-0.545  = 119.20 . 

 

 

Figure 21 – 3-period binomial tree of the share value and the rollback convertible bond price 

using the probability-adjusted discount rates in Figure 20. The first number in each node is the 

share price whilst the second is the rollback CB value. 

 

Embedded calls and puts can easily be handled by the model and due to the blended 

discount rate used, we should expect the value to be less than or equal to the 

Tsiveriotis and Fernandes model for out-the-money CB’s and below the Tsiveriotis 

and Fernandes model for in-the-money CB’s. A comparison and explanation of this 

concept will be discussed in Section 5.7. 

 

5.6 Hung and Wang 

The Traditional model to incorporate default risk into CB pricing is to use binomial 

trees with constant risk-free and risky interest rates and value it with an equity and 

bond component as in Tsiveriotis and Fernandes [69]. The risk-free rates are used to 
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discount the stock whilst the risky rates are used to discount the bond component. As 

many CB’s do not have long maturities they are less prone to interest rate sensitivity 

and as such without much loss of generality keeping interest rates constant is an 

acceptable assumption. An illustration of the Traditional model can be seen in Figure 

22. This helps reduce the complexities of the model as we now have fewer paths to 

travel on the lattice, although a theoretical demonstration with stochastic interest rates 

will be shown. 

 

 

Figure 22 – A simple illustration of the Traditional CB model. 

 

 

5.6.1  Terminal nodes of Traditional CB Tree 

When dealing with binomial trees we start at the terminal nodes to determine the 

payoffs and then rollback through the tree to the present to establish a fair value for 

the CB as before. Since the issuer usually issues the CB with a call option the optimal 

value at each node at maturity has to satisfy the following condition for the 

Traditional model: 

 

Rollback value = max [min (Market Value, Call Price), Conversion Value], 

 

If a put option is also embedded into the CB the value has to satisfy: 

 

Rollback value = max [min (Market Value, Call Price), Conversion Value, Put Price], 
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Turning our attention to the valuation model with stochastic interest rates, things are a 

little more complicated. Jarrow and Turnbull [40] use a single binomial tree to 

account for risky and risk-free interest rates. The risk-free interest rates are stochastic 

and grow according to a binomial tree. The risky rates use the same binomial tree but 

are adjusted by a stochastic default probability λµt (as explained earlier in section 4.3) 

in each period and can be implied from any issuer specific term structure. If the issuer 

were to default, a constant recovery amount in all time periods was assumed.  

 

5.6.2 Default Risk CB Model 

When dealing with stochastic interest rates the tree deals with 3 variables each taking 

on 2 values resulting in 6 branches arising from each node. Thus, the tree becomes 

very large in only a few time steps, which is illustrated partially in Figure 23 with 3 

time steps. The probabilities associated with each branch are illustrated in Table 2. 

 

 

 

Branch Path Probability 

1 Default occurs, r goes up, S=0 1P λπ=  

2 Default occurs, r goes down, S=0 ( )2 1P λ π= −  

3 No-default, r goes up, S goes up ( ) *

3 1P pλ π= −  

4 No-default, r goes up, S goes down ( ) ( )*

4 1 1P pλ π= − −  

5 No-default, r goes down, S goes up ( ) ( ) *

5 1 1P pλ π= − −  

6 No-default, r goes down, S goes down ( )( )( )*

6 1 1 1P pλ π= − − −  

 

Table 2 – Probabilities for states from each node (assuming stochastic interest rates, default 

probabilities and share prices). 
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Figure 23 – Reproduction of the Hung and Wang CB model with stochastic interest rates, default 

probabilities and share prices. 

 

 

5.6.3 Derivation of Risk-Neutral Measure 

Hung and Wang [36] incorporate default risk into interest rates by way of an implied 

default probability. To incorporate default into the associated risk-neutral probabilities 

*
p  for the share price, we need to adjust their probabilities. Chambers and Lu [19] 

improve upon the HW model by introducing a correlation parameter between the 

share price and interest rates, and include the adjusted probability 
~

p for the share 

price. The outputs from their model were not significantly different from the HW 

model but incorporation of the correlation parameter and default probability is a 
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definite advantage of their model. Using the fundamental concept of finance that the 

value of a security ( )z  today is the present value of its expected cash flows, i.e. 

[ ]0 0/Q

Tz E z= ℑ 55 for some time 0T >  under the risk-neutral probability measure Q, 

it is possible to find the probability measure to value this CB. The derivation56 

proposes that the probability 
~

p  for the share price to move up is given as 

 

 
( )~ 1

fr t
e

d
p

u d

λ

∆

− −
=

−
. (5.98) 

 

If we assume that interest rates are constant, which was previously justified, and that 

the only stochastic variables are the share price and default probabilities, the 

calculations become more tractable, with the associated probabilities being given in 

Table 3.  Figure 24 illustrates the new simplified two-period tree. 

 

Branch Path Probability 

1 Default occurs, S=0 
~

1P pλ=  

2 Default occurs, S=0 ( )
~

2 1P pλ= −  

3 No-default, S goes up ( )
~

3 1P pλ= −  

4 No-default, S goes down ( )
~

4 1 1P pλ  
= − − 

 
 

 

Table 3 – Probabilities for states from each node (assuming constant interest rates, stochastic 

default probabilities and share prices). 

 

 

                                                 

55 0ℑ is the filtration on the process 
T

z and contains all the information about z up until time 0. 

56 The derivation can be seen in the Appendix A2. 
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Figure 24 – Hung and Wang CB model with constant interest rates, and stochastic default 

probabilities and share prices. 

 

 

5.7 Numerical Example 

The Tsiveriotis and Fernandes (TF), Goldman-Sachs (GS) and Hung and Wang (HW) 

models, might seem similar due to their adjusted discount rates but a numerical 

example will illustrate the important credit risk aspect brought about by the default 

probabilities in the HW model. Using risk-free zero-coupon bond and risky zero-

coupon bond market data, the λµt’s can be extracted as described in Chapter 4. The 

implied default rates57 as shown in Figure 25 have been used in the calculations to 

follow and the parameters for the models are given in Appendix A1.  

 

As can be seen the curve is not monotone increasing or decreasing, which can be 

expected when using actual market data. Each of the λµt’s is the conditional 

                                                 

57 The implied default rates have been calculated by using a risk-free government curve and a risky 

interpolated issuer specific curve. The absolute values are not important, but the credit spread between 

the two curves is the significant determinant of the default probabilities. 
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probability meaning that given the bond survived t-1 years; the probability that it will 

default in year t is λµt. 
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Figure 25 – Implied conditional default rates extracted from market data. 

 

Figure 26 is a vital graph for the HW model as it clearly illustrates the difference 

between the implied default probabilities in the HW model relative to the TF and GS 

adjusted discount rate models. What is important to note is that as the share price 

reaches very low levels the probability of default increases sharply. Since CB’s are 

lower in seniority than straight bonds, if a firm’s share price were to drop to very low 

levels, then theoretically its CB value should drop below its straight bond (bond floor) 

value as indicated in the Figure 26 for the HW model. For the TF and GS models it 

takes on the same value as its straight bond value for low share values which is not 

entirely correct due to the subordination mentioned earlier. With the HW model, there 

is a bond floor present but due to the additional risk of the subordination, this floor is 

set much lower than that of an equivalent senior vanilla bond. Another interesting 

observation is that the HW model tends to value the CB a little more than the TF and 

GS models for large share prices, which is plausible since the probability of default 

should decrease as the share increases thereby increasing the CB value. The GS model 

 
 
 



 

 100

seems to give lower price estimates than the TF model for increasing share values. 

This is justified since the discount rate used in the GS model is a smoothed rate while 

the discount rate used in the TF model is step like. So, if the CB is in-the-money, 

more often than not the TF model uses the risk-free rate for discounting cash flows, 

whilst the GS model uses a blended rate, which is higher than the risk-free rate, thus 

producing a lower CB value relative to the TF model. When the CB moves out-the-

money, both the TF and GS models use the same risky rate and so equate to the same 

CB prices. 
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Figure 26 – CB values for different share prices for the TF, GS and HW models including the 

bond floor value with and without options. 

 

 

Chapter 5 analysed several equity valuation models including the TF and HW models. 

These models take into account the hybrid nature of CB’s by splitting them into a 

bond and equity component with the HW model catering for credit risk aswell. The 

new generation of CB models should however accommodate the negative convexity 

that becomes apparent for extremely low share prices in the distressed debt phase as 

depicted in Figure 1. As such Chapter 6 introduces a credit spread function dependent 

on the share price and incorporates it into the TF model. 
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6. k-factor Credit Spread Model 

Referring to Figure 1 the CB price track possesses negative convexity whilst in the 

distressed debt phase. The TF and HW models failed to model this aspect. Thus, 

Chapter 6 proposes an improvement to these models by developing a k-factor credit 

spread model which adjusts the credit spread depending on the underlying share price. 

Section 6.1 gives a concise introduction and origins of the k-factor model. 

Implementation of the k-factor into the TF model and a sensitivity analysis of the 

parameters are discussed in Sections 6.2 and 6.3 respectively. The Chapter concludes 

with a suggested calibration of the k-factor variables in Section 6.4. 

 

6.1 Introduction to k-factor model 

As briefly discussed earlier, when the share value of the issuing firm drops to 

extremely low levels58 there is increasing pressure on the firm to repay its 

shareholders. Due to the subordination of CB’s there is a high probability of default 

risk and fractional recovery value of the notional amount. As such the CB will 

experience negative convexity, increasing delta and negative vega for share values 

close to zero. All models to date tend to over-estimate gamma and vega, and under-

estimate delta when the CB is in the distressed zone. This is because the credit spread 

is independent of the share value, which therefore results in overestimation of the CB 

price at these low share prices. A good way of incorporating this trait in any model is 

to adjust the credit spread or risky interest rate used for discounting the debt 

component with the share price. With share values close to zero, a much higher risky 

rate would be used than for CB’s in-the-money. 

 

In this Chapter the k-factor59 credit spread model for convertible bonds will be 

discussed. The model was first proposed by Muromachi [55] in which he studied the 

relation between credit spreads and share values for convertible bonds in the Japanese 

market. He found a functional form similar to equation (6.1), provides a reasonable fit 

                                                 

58 There is usually some pre-specified trigger price, but generally speaking a share value that is very 

close to zero. 

59 The model was described in a research report by Barclays [58] and given the name k-factor credit 

spread model which will be used from now on.   
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for bonds rated BB+ and below with the k-factor historically ranging between -1.2 and 

-2.0. Particular attention to the negative convexity for extremely low share prices will 

be addressed, and an explanation of how to incorporate this into the TF model will be 

discussed. In addition calibration of the model to actual data will be shown, and the 

sensitivities of each of the parameters especially the k-factor will be illustrated. 

 

6.2 Implementation into TF Model 

It is convenient to define the following parameters: 

 

h∞  = Minimum Credit Spread 

0h  = Current Credit Spread 

0S  = Trigger Share Price 

k = Decay Factor 

 

In creating a credit spread function ( )( ),h t S t  dependent on the share value, we 

require that the function ( )( ),h t S t have some basic properties.  

 

• If the share value drops to zero, then the credit spread should go to infinity, i.e. 

0S → then h → ∞ , although the formula can be adjusted to deal with a 

recovery value. 

• The spread should be a monotonic decreasing function of the share price 

because as the equity capitalization of the firm grows, so should its credit 

strength due to improved asset coverage and lower financial gearing. Thus, 

0  ,     > 0
dh

S
dS

≤ ∀  

• There has to exist some positive, minimum credit spread limit h∞  when the 

share price becomes very large, which represents the minimum credit risk 

premium for this level of debt 

h h∞→  as S → ∞  

• The current spread 0h and stock price 0S can be reliably calibrated. 

( )0 0h S h=  where 0h h∞≥ . 
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A simple function that satisfies all these properties with a single factor k is, 

  

 ( ) ( )( )0 0 /
k

h S h h h S S
−

∞ ∞= + − , where 0k ≥  (6.1) 

 

The decay factor k, measures the sensitivity of the credit spread to the share price, a 

higher k-factor increases the dependency and the credit spread, whilst a lower k-factor 

decreases the dependency and hence the credit spread. To implement this k-factor 

credit spread model into the TF model is quite easy. The model is the same with the 

only difference being that the debt component be discounted using the k-factor model, 

instead of the constant credit spread previously employed. 

 

6.3 Parameter Sensitivities 

To illustrate the impact of the k-factor model the spread changes for various values of 

k will be represented graphically, and the effect it has on the TF model.  
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Figure 27 – Credit spread values for changes in the share price and various k-factors. Trigger 

price =20, Min credit spread = 200 bps and Current spread = 400 bps. 
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In Figure 27 it can be seen that an increase in the k-factor increases the sensitivity of 

the credit spread to the share price. When the share value increases beyond the trigger 

price 0 20S = , the credit spread decreases toward the minimum spread 200h∞ = bps. 

For share values less than the trigger price the credit spread increases beyond the 

current spread of 400 bps and for k = 2 this spread increases dramatically, reaching 

extremely high values. 

 

Using Parameter Set 2 in Appendix A3 and incorporating the k-factor credit spread 

into the TF model, we see that the bond floor no longer plays any role in the CB price. 

As soon as the share value drops below the trigger price of 5, the CB experiences 

negative convexity and vega, and positive delta. For share values above the trigger 

price the TF k-factor model seems to give slightly higher values relative to the 

original TF model. Intuitively this makes sense as credit spreads decrease for in-the-

money CB’s, lending to the lower risky discount rate and hence a higher CB price. A 

graphical representation of this can be seen in Figure 28. 
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Figure 28 – Difference between the basic TF model and the TF with k-factor model for various 

share values. Trigger price =5, Min credit spread = 200 bps and Current spread = 400 bps. 
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6.4 Calibration of k-factor model 

To calibrate the k parameter to actual data requires us to find historic data on the 

relationship between the share price and credit spread of the issuing firm. Assuming 

that the other parameters are given, we can regress the function ( )( ),h t S t  on the data, 

and find an implied k-factor. As an example, the convertible bond issued by Barclays 

for the period 16-Mar-2005 to 16-Jan-2008 will be used, giving 1037 daily 

observations with the data obtained from Bloomberg. The details of the bond are as 

follows: 

 

Issuer Barclays Bank PLC 

Underlying Equity TFI FP 

Market of Issue Great Britain, Euro 

Rating AA+ 

Issue Date 24 March 2005 

Maturity Date 24 March 2010 

Annual Coupon 0.5% 

Call/Put None 

Conversion Ratio 3.4321 

 

 

In Figure 29 there seems to be a clear inverse relation between the credit spread and 

underlying share price. The change in spread seems to be quite dramatic when the 

share price drops below €18.90, increasing from around 70 bps to 130 bps. Fitting the 

k-factor model to the following observations by minimizing the sum of squares, we 

get the following parameter values: 

 

0h  = Current Spread 62.6 bps 

h∞  = Min Spread 39.0 bps 

0S  = Trigger Share Price €18.90 

k - Factor 4.8 

 

Table 4 – Calibrated parameters for the Barclays convertible bond issue. 
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Figure 29 – Scatter plot of the credit spread and share price of the Barclays convertible bond, 

issued in Euros for the period 16 March 2005 to 16-Jan-2008. 

 

 

 

The implied k-factor is 4.8 which is quite high given that historically it ranges 

between 0.5 - 2.5 [58]. This is attributable to the fact that the credit spread increases 

sporadically once below its implied trigger price of €18.90, but settles to its min 

spread of 39.0 bps above the implied trigger price. 

 

Volatility plays an interesting role when dealing with the k-factor model. If we use the 

same parameters from Table 4 and assume different values for k, we see that the CB 

price actually decreases for large values of k and share volatility as shown in Figure 

30. 
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Figure 30 – CB values using the TF (k-factor) model with S=30, maturity = 5yrs and using the 

calibrated market values in Table 4. 

 

 

Traditionally, decreasing volatility is considered to be unfavorable to hedgers who 

seek to profit from volatility through delta hedging, as the lower volatility depresses 

the CB price thereby reducing profitability. For extremely volatile stocks, bonds with 

a higher k-factor would outperform those with a lower k in a falling volatility set-up, 

and may even gain value in absolute terms. This may also explain why CB’s have 

lower implied volatility relative to historic share volatility and implied levels from 

other listed options. For example, assuming that the market price of the Barclays 

convertible bond is €120 and referring to Figure 30, we see that for k=0, the implied 

volatility would be around 30%, whereas for k=4.8 it would be closer to 40%. This 

goes to show that when valuing the CB without a stochastic credit spread model, the 

implied volatility could be underestimated. Convertible investors have subjectively 

stated that, for some bonds, they would never pay above a certain level of implied 

volatility, which would agree with the k-factor model, since for large values of k, as in 

the case of k=4.8 the maximum value of the CB is around €120. Further volatility 

increases stifle the CB price and it actually stabilizes to €110. As such convertible 
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investors will not benefit much from purchasing CB’s with high-implied volatility due 

to the low levels of vega. 

 

Convertible investors and hedgers have several methods in which to manage this 

relationship between credit spreads and underlying equity values. They include 

• Shorting more underlying shares than implied by traditional CB models to 

take advantage of the higher delta. 

• Longing put options on the underlying shares to hedge the higher delta and 

negative gamma, and 

• Employing credit protection instruments such as asset or default swaps, to 

reduce exposure to the widening credit spread for low share prices. 

 

The k-factor credit spread can be seen as a general model as with the credit risk model 

in Chapter 4, and in so doing can be adapted to a wide variety of models that possess 

default risk and are dependent upon the underlying share price. Calibration can also 

be incorporated if historic data between the underlying share price and financial 

instrument60 exists. 

 

Having discussed equity valuation models in Chapter 5, the next Chapter introduces 

firm value models with the underlying variable being the value of the firm. It is 

important to review these models as they form the initial building blocks of the 

modern day CB models. The reason for the shift away from firm value to equity 

models is that the latter requires the share price which is more readily available 

whereas the former requires the firm value which has to be estimated thereby creating 

potential errors. 

 

 

 

 

                                                 
60 The financial instrument is the security that is a function of the underlying share which is trying to be 

modeled. 
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7. Firm Value Models 

The initial attempts to model CB’s lead to the creation of firm value models. What 

this entails is that the actual value of the firm (assets and liabilities) is used as the 

underlying variable. To begin with, Section 7.1 gives a quick literature review of firm 

value models and moves onto 7.2 that introduces the Tan and Cai Risk Equilibrium 

model. Two prominent features of this model is the concept of Corporation Market 

Value Allocation (CMVA) and the Risk Burden Ratio, which will be addressed later 

in the Chapter. The parameter sensitivities and Greeks are also reviewed. Section 7.3 

presents the Andrea Gheno volatility structure model that calibrates the term structure 

of interest rates and implied volatilities61 from market data. The model is established 

by setting the boundary conditions, spot rates and asset volatility trees, leading to the 

construction of the asset value and CB price trees. To understand the application of 

the model a numerical example with parameter sensitivities is given at the end. 

 

7.1 Background to Firm Value Models 

The firm value model was first proposed by Black and Scholes [12] in 1973 and 

extended by Merton [53] in a more detailed paper in 1974. The model is essentially a 

simple model for valuing credit risk. It proposes that a company defaults when its 

share price (or firm value) falls below a prescribed barrier. Default can be defined as 

either the first time that the share price hits the barrier, in which case the actual 

dynamics of the share price path become important62, or at the final share price. If the 

share price/firm value is below the barrier then the company is considered to be in a 

state of default. The advantage of the firm value approach is the ability to hedge 

defaults using the counterparty share price. 

 

7.2 Tan and Cai 

Moving on to the assumptions of the model, they are the same as those suggested by 

Merton but for two main differences. The first is that the model assumes that total 

                                                 

61 The implied volatility structure can be obtained from options on the underlying stock that trade in the 

market. 

62 This is called the structural model, whilst the model that considers only the end share value is termed 

the firm value model. 
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market value of the firm follows Geometric Brownian motion whilst Merton does not 

state whether book value or market value is used. The second is that payouts by the 

firm are not of concern and can be relaxed. 

 

7.2.1 Risk-Equilibrium Model 

Letting the total market value of the firm (A) follow a Geometric Brownian motion 

dw, then 

 

 dA Adt Adwµ σ= + , (7.1) 

 

thus representing the CB as χ, to be a function of A and t, and using Itô’s Lemma 

gives us the usual PDE 

 

 2 21

2
t A AA AdC A A dt A dwχ χ µ χ σ χ σ

 
= + + + 
 

, (7.2) 

 

simplifying the equation into 

 

 

2 21

2

    .

t A AA

A

d
dt dw

A A

where

A

χ χ

χ

χ

χ
µ σ

χ

χ χ µ χ σ
µ

χ

χ
σ σ

χ

= +


+ +

=



=


 (7.3) 

 

Constructing a three security portfolio, x with W1 dollars of total firm market value, 

W2 dollars of CB’s, and ( )3 1 2W W W= − + dollars of riskless debt with risk-free rate r, 

we have that the instantaneous dollar return of the portfolio is 

 

 

( ) ( ) ( )

1 2 3

1 2 1 2 .

dA d
dx W W W rdt

A

W r W r dt W W dw
χ χ

χ

χ

µ µ σ σ

= + +

 = − + − + + 

 (7.4) 
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In order for the portfolio to be riskless the dw term needs to disappear. Also since the 

portfolio cost nothing to construct and according to arbitrage theory, the expected 

return of the portfolio has to be zero. Thus we have two equations 

 

 
( ) ( )

1 2

1 2

0                        ,   

0      ,    .

W W Riskless

W r W r No arbitrage

χ

χ

σ σ

µ µ

 + =


− + − =

 

 

A non-trivial solution exists if and only if 

 

 
r r

χ

χ

µ µ
λ

σ σ

− −
= = , 

 

where λ is the risk premium per unit of risk. So we can calculate the return on the CB 

if we have χσ  as follows, 

 

 rχ χµ λσ= + . (7.5) 

 

This means that we have to find χσ .  

 

By using Itô’s Lemma again, the dynamics of ln A and ln χ  are given by 

 

 

( )

( )

2

2 2
2 2 2

2

1
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1

2ln ,
2

t A AA
A A

d A dt dw

A A
A A

d dt dw

µ σ σ

χ χ µ χ σ χ σ χ
χ σ

χ χ χ

  
= − + 
 

   + +  = − + 
   

 (7.6) 

 

Tan and Cai [68] define the Risk Burden Ratio for convertibles as 

 

 ( ), A A
a A t

χ

χ
= . (7.7) 
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It gives an indication of how much risk; convertible investors are willing to take on 

with respect to the total amount of risk of the firm. Referring to equation (7.3) we see 

that the Risk Burden Ratio is  

   

 a
χσ σ= . (7.8) 

   

To calculate a we need some more expressions, so  

 

 

( ) ( )( ) ( )

( )2

2

cov ln , ln cov ,

cov ,

.

d A d dw a dw

a dw dw

a dt

χ σ σ

σ

σ

=

=

=

 (7.9) 

 

So we can calculate the return of the CB by using the following set of equations: 

 

 

( ) ( )( )
2

cov ln , ln

.

d A d
a

dt

a

r

χ

χ χ

χ

σ

σ σ

µ λσ


=




=


= +


 

 

The Risk Burden Ratio is a percentage with respect to the standard deviation of return 

of the total firm market value. When the firm faces bankruptcy (convertible investors 

have first rights onto the assets of the firm so Aχ = ), or when stock price is far above 

conversion price (CB, equity and total market value all have the same return) so a=1 

and the CB has the same risk as the total firm value. If the stock is far below 

conversion price and the probability of bankruptcy of the firm is very small, a=0 

implies the CB takes on no risk and can be treated as risk-free debt. a often lies 

somewhere between 0 and 1. 

 

7.2.2 Theory of Corporation Market Value Allocation 

In the first structural model Merton [53] assumed that total market value of the firm 

followed a Geometric Brownian motion and the capital structure of the firm was 

irrelevant (Modigliani and Miller (MM) Theory [48]) and so exogenous to any 
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allocation between convertible and equity investors. The difference is that with 

Corporation Market Value Allocation (CMVA) there is a clear distinction between 

convertible investors and stock investors, because if convertible investors invest more, 

stock investors have relatively invested less and vice versa. This results in competition 

between the two investors and is caused by rational investors seeking return with the 

lowest possible risk. MM Theory [48] might seem similar to CMVA but whereas MM 

Theory assumes capital structure does not affect firm value, CMVA treats firm value 

as exogenous and divided by different investor types. 

 

In developing the model to value the convertible debt we require a firm value as an 

input. Since this is unobservable we have to use our model and observable data 

implicitly to help in obtaining a CB price. The share price of the issuer is observable 

so we can find total equity market value and propose a CB price. The model assumes 

that CB value is a function of total firm value so 

 

 ( ) [ )  ,      0,A Af X Xχ = ∈ ∞ . 

 

where AX  is a function dependent on the firm value A. 

According to CMVA the claim on the firms’ assets for equity investors is, 

 

 ( )A A AS X X f Xχ= − = − . (7.10) 

 

Since total stock value S* can be observed and firm value is unobservable, substituting 

S
* into equation (7.10) and solving implicitly for XA to get A

*, we have that total 

convertible value is given as * * *A Sχ = − , so that the convertible price is given by 

 

 
* *

* A S

Nχ

χ
−

= , (7.11) 

 

where Nχ is the total number of convertibles issued by the firm. 
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7.2.3 Numerical Example 

Looking at an example might help in explaining what this Risk Burden Ratio is all 

about. If we let the underlying inputs be given as in Table 5 

 

Firm Value 

Firm volatility 20% 

Mean firm return 6.00% 

Equity 

No. of shares issued 20 million 

Risk-free rate 5.00% 

Convertible Bond 

No. of CB’s issued 1 million 

Risky rate 7.00% 

Maturity 3 years 

Face Value 100.00 

Risk Premium 2.00% 

Coupon 8.00% 

Coupon Frequency 2 

No. of time steps 35 

Conversion Ratio 1.00 

 

Table 5 – Inputs to be used for the Tan and Cai Risk Equilibrium model 

 

Observing the CB price track for various share values in Figure 31, we see that the CB 

price actually falls below its straight bond value with the enlargement shown in Figure 

32, indicating the presence of negative gamma for extremely low share values (close 

to 0). As the share value increases so does the convertible bond and trades at a 

premium to its straight bond and conversion value. The Risk Burden Ratio for the CB 

is also included and increases dramatically as the share value approaches 0. During 

the busted phase (when the convertible behaves like a straight bond) the Risk Burden 

Ratio takes on 0, as the firm will not have to payout any major proceeds to the 

investors and so does not have any immediate obligations. Once in the hybrid and 

equity phases the Risk Burden Ratio increases towards 1, indicating that there is 

pressure on the firm to make payments to its CB holders as the investors have a high 

probability of converting. 
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Figure 31 – CB price track using the inputs in Table 5 and the Risk Equilibrium model together 

with the Risk Burden Ratio for CB. 
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Figure 32 – Enlargement of Section A in Figure 31 showing the CB price falling below its straight 

bond value for the Risk Equilibrium model and the rapid increase in the Risk Burden Ratio to 1. 
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The Risk Premium ( )λ  in equation (7.5) is the discount rate applied to the convertible 

bond; as such we would expect the convertible to decrease in value if the Risk 

Premium were to increase. For deep in-the-money CB’s the increase in the Risk 

Premium decreases the CB price but for deep out-the-money issues, the Risk Premium 

does not play a significant roll. This is because the Risk Burden Ratio is close to zero 

implying that χσ  also takes on a small value, so that the discount rate doesn’t change 

by much. A graphical depiction is given in Figure 33.  

 

Figure 34 shows the delta and gamma of the Risk Equilibrium model, and it is 

interesting to note that the delta takes on a shape similar to the Risk Burden Ratio. For 

low share values the delta reverses and heads towards infinity as the share value 

approaches 0, signalling the increased default risk that is present in the firm. The 

gamma reaches its maximum at the conversion price of 100, and falls away to 0 for 

larger share values. For extremely low share values the gamma goes negative 

indicating the decrease in the CB below its straight bond value in the distressed zone. 
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Figure 33 – Convertible bond price for changes in Risk Premium using the Risk Equilibrium 

model. Graphs are given for an in-the-money CB (where share value is 100) and an out-the-

money CB (where share value is 20). 
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Figure 34 – Delta and gamma of the Risk Equilibrium model showing the reversal of the delta 

and negative gamma for extremely low share values. 

 

7.3 Andrea Gheno 

Calibration in CB valuation models is important but as yet not much literature exists 

on calibration. By using stochastic variables such as the risk-free spot rate and firm 

asset value; a two-factor CB valuation model can be constructed. In an earlier paper 

Gheno [31] shows that the CB price is highly correlated to the volatility structure of 

the firms’ asset value returns and weakly correlated to the volatility structure of future 

spot rates. As such we need to develop the volatility structure of the firm asset value, 

and can ignore the volatility structure of future spot rates since this can be implied 

from bond and cap market prices. The following notation will be used throughout 

Section 7.3: 
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V(t) asset value at time t 

χ(t) CB value at time t 

S(t) equity value at time t 

N face value of CB 

I annual coupon rate 

p number of CB’s issued at t=0 

s number of shares at t=0 

α conversion ratio 

c call price 

r(t,tk) interest rate between t and tk 

    

  

7.3.1 Boundary Conditions 

Defining the conversion value at time tj as 

 

 
( )

, 0,1,...,          
jV t

j m
p s

α
α

=
+

, (7.12) 

 

a rational investor will choose to convert if the present value of his coupons and 

principal is less than the conversion value, thus we have 

 

 
( ) ( )( ) ( )( )1 1 1 1, ,

1

  k k k k m m m m

m
j r t t t t r t t t t

k j

V t
F Ie e

p s
α

α
− − − −− − − −

= +

 
> + 

+  
∑ , (7.13) 

 

otherwise the investor will continue to receive the payment stream. If there are any 

call features present then the issuer will call the bond if 

 

 
( )jV t

c
p s

α
α

>
+

, (7.14) 

 

and force early conversion upon the investor. 
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7.3.2 Spot Rates and Asset Value Trees 

The spot rate tree is developed and calibrated by using the Black-Derman-Toy [13] 

(BDT) binomial model. The calibration scheme is the same as the method discussed 

in Chapter 3.  The volatility structure can be obtained from market data and thus a 

calibrated binomial spot rate tree is formed. This tree will be used to find the risk-

neutral probabilities and discount factors when rolling back through the final CB tree. 

 

It is difficult in practice to calculate the asset value of a firm and the asset return 

volatility. Assuming Modigliani-Miller [48] propositions where the capital structure is 

comprised only of debt and equity, we must have that the asset value at time t is given 

as 

 ( ) ( ) ( )V t D t S t= + . (7.15) 

 

where ( )D t  is the market value of debt. A popular method as mentioned in [31] in 

trying to estimate the asset return volatility is to use  

 

 ( ) ( )
22 2 21 2 1 ,V D S S Da a a aσ σ σ ρσ σ= + − + −  (7.16) 

 

where ( ) ( )a D t V t= is the leverage, Dσ  and Sσ  are the debt and stock volatilities 

respectively and ρ  is the correlation between the debt and stock returns. This is seen 

as a little nuisance as we have to estimate three more parameters ρ , Dσ  and Sσ , 

although these values can easily be obtained from market data. Also when a firm pays 

coupons its asset value decreases which results in increasing the asset return volatility. 

Thus the amortisation schedule of the firm is an important factor in determining the 

asset return volatility. 

 

The firm value V(t) is modelled using a binomial tree due to the discrete coupon 

payments at each time tick. It is a non-standard CRR model since the term structure is 

calibrated using a BDT tree with stochastic interest rates ( )1,k kr t t + . Since these 

interest rates and the volatility structure Vσ  are stochastic, the risk-neutral 

probabilities are also stochastic. 
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7.3.3 Asset Return Volatility Tree 

The return volatility tree can be constructed in a similar manner to that used in Black 

and Scholes [13] with discrete dividend payments. To build the tree we require an 

initial estimate of the asset value, which we will assume as given. So the volatility 

returns tree is given by 

 

 

( ) ( )
( )

( ) ( )
1 1

;
, ; , ; 1 ,

; ;

  1,...,   1,...,    ,

k
V Vk k k k

k D k

V t i
t t i t t i

V t i V t i

where k m and i n

σ σ

∼

+ − ∼ ∼
= −

−

= =

 (7.17) 

 

with ( );D kV t i
∼

being the expected present value of the debt payments at time tk in state 

i, ( );kV t i
∼

being the asset value at time tk in state i inferred from the asset value tree 

one period prior and ( ) ( )0 1 0 1, ;1 ,V V Vt t t tσ σ σ= =
∼

. Thus the asset return volatility and 

asset value trees can be built recursively from each other taking into account debt 

related payments via the volatility structure. 

 

7.3.4 Asset Value Tree 

The asset value tree is constructed using a CRR process with stochastic volatility, 

although the numbers of nodes are dramatically increased. In the first step there are 

two nodes, in the second there are eight and in the k
th

 there are 12 4k−× . Defining 

( );kV t i as the asset value at time tk in state i, means that ( )1;*kV t + can take on four 

possible values, namely 

  

 1; 4
4

     0,...,3.

k

i
V t h

where h

+

  
+    

=

 (7.18) 

 

[ ]/ 4i is defined as the integer of / 4i , so for h=0,1 the asset value moves to the lower 

state and for h=2,3 it moves to the upper state. As mentioned earlier the risk-neutral 
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probability used for the rollback value is non-constant due to the stochastic interest 

rates and volatility. Thus the risk-neutral probability at time tk in state i, ( )* ;kp t i  is 
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−
. (7.19) 

 

7.3.5 Convertible Bond Tree 

Stipulating the boundary conditions at maturity we have that the CB value must 

satisfy 
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. (7.20) 

 

Rolling backward through the tree at any time k mt t<  gives us the recognizable 

expected present value algorithm without call provisions, 
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where 

 ( ) ( ) ( )( )
1

; _ ; _ ;
2

k k kRB t i down state t i up state t i= + , (7.22) 

 

and  
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( )1, ;2k kr t t i+ and ( )1, ;2 1k kr t t i+ + are the interest rates at time tk in the lower and upper 

states respectively. Introducing the call provision into the tree produces a slight 

adjustment to the above formula, 

 

 ( )
( )

( )
;

; min ,max ; ;
k

k k

V t i
t i c RB t i IF

p s
χ α

α

  
= +  

+   
, (7.25) 

 

 

with ( );kRB t i , ( )_ ;kup state t i and ( )_ ;kdown state t i as defined previously. Using 

the familiar backward induction approach on a binomial tree gives us our final answer 

( )0C t . 
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7.3.6 Numerical Example 

To illustrate the Gheno model a simple 3 step example showing the various tree 

diagrams will be constructed. Defining the inputs for the underlying variables as 

 

 

Convertible Bond 

F = 100.00 Face Value of CB 

I = 5.00% Annual Coupon Rate 

p = 1.00 No. of CB’s Issued 

tn = 3.00 Maturity 

Firm Value 

s = 10.00 No. of Shares at t=0 

S = 100.00 Share Price at t=0 

σV = 10.00% Asset Value Volatility 

Zero-Coupon Bond 

 Price Volatility 

P(0,1) 97.00 11.00% 

P(0,2) 94.00 13.00% 

P(0,3) 91.00 15.00% 

Embedded Options 

α = 1.00 Conversion Ratio 

Put = 75.00 Put Value 

c = 120.00 Call Value 

 

Table 6 – Variable inputs to be used in the Gheno volatility structure model. 

 

To begin with we need to calibrate the binomial interest rate tree, with the given ZCB 

prices and volatility, which can be obtained from market data. The calibration is 

carried out in the same fashion as in Chapter 3. So using the above data we have a 

calibrated interest rate tree as follows 
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Figure 35 – Calibrated interest rate tree using the simple calibration technique and the given 

market data from Table 6. 

 

The asset return volatility and asset value trees are constructed simultaneously with 

the outputs of the asset value tree used as inputs into the asset return volatility tree in a 

continuous cycle. With the starting asset return volatility given as 10%, the asset 

return volatility tree is shown in Figure 36, and the asset value tree is given in Figure 37 
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Figure 36 – Asset return volatility tree with a starting volatility of 10%. 
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Figure 37 – Asset value tree constructed simultaneously with the asset return volatility tree in 

Figure 36 over 3 time ticks. 
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Once the asset return volatility and asset value trees have been calculated the risk-

neutral probabilities need to be calculated since the volatility and interest rates are 

both stochastic leading to a risk-neutral probability tree illustrated below in Figure 38. 
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Figure 38 – Risk-neutral probability tree constructed with the use of the asset return volatility 

(Figure 36) tree and calibrated interest rate tree (Figure 35). The two cell values in time steps 2 

and 3 correspond to the up and down probabilities. 

 

Finally we can construct the convertible bond tree by using the asset value, risk-

neutral probability and calibrated interest rate trees calculated earlier. The convertible 

bond tree is given in Figure 39 as 
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Figure 39 – Convertible bond tree using the Gheno volatility structure model. 
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7.3.7 Parameter Sensitivities 

In this short section the effects of the asset return volatility, and call and put features 

on the CB value will be undertaken including the delta and gamma of the Gheno [31] 

model. Letting the variable inputs be the same as those given in Table 6, the CB price 

track for different share prices is shown in Figure 40 
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Figure 40 – Convertible bond price using the Gheno model for different share values. 

 

 

Embedded call options are usually of benefit to the issuer and so decrease the 

security’s value, whereas put options are of value to the investor and thus increase the 

security’s price. As such we would expect the same to happen when we incorporate 

these embedded options into the Gheno model. If we let the call value be 150, then we 

see in Figure 41 that the upside gain on the CB is limited to the conversion value since 

for deep in-the-money CB’s the issuer will most certainly force conversion, thereby 

limiting the CB price. For deep out-the-money issues the CB with the call option 

converges to the CB without the call option since the call option becomes worthless.  

Letting the put value equal 120, we can see in Figure 42 the appreciation in the CB 
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price63 for low share values since the investor can exercise the option if it is deep out-

the-money. For deep in-the-money, share values the put option becomes worthless 

and the CB with the embedded put option tracks the CB price without the put option. 
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Figure 41 – Convertible bond price with embedded call option versus no call option with call 

value of 150. The Str Bond (Call) is the value of a straight bond with an embedded call option. 

 

                                                 
63 The appreciation is relative to the CB price without any embedded options. 

 
 
 



 

 130

-

50

100

150

200

250

10 30 50 70 90 110 130 150 170 190

Share Price

C
o

n
v
e
rt

ib
le

 B
o

n
d

 P
ri

c
e

Parity Str Bond (Put) Put No Put Str Bond (No Put)

 

Figure 42 - Convertible bond price with embedded put option versus no put option with put 

value of 150. The Str Bond (Put) value is the value of a straight bond with an embedded put 

option and the Str Bond (No Put) is the value of a straight bond without an embedded put option. 

 

The delta and gamma of the Gheno model take the familiar shape with the delta 

increasing to 1 (using a conversion ratio of 1) as the share price increases and the 

gamma reaching a maximum when at-the-money, and diminishing away to zero when 

in/out-the-money. Theoretically the delta and gamma are considered smooth functions 

but due to the explicit approximation used, there are irregularities in Figure 43, 

although the general shape can be ascertained. 
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Figure 43 – Delta and gamma of the Gheno model without any embedded options. 

 

 

Including call and put options into the Gheno model we see that the delta changes 

somewhat. Inclusion of the call option in Figure 44 shows that the upside delta is lower 

relative to the no call option delta. As mentioned previously this is due to the issuer 

exercising the option when the CB moves in-the-money and decelerates the delta on 

its way towards 1. 

 

The put option delta is interesting since it is always less than the no put option delta in 

Figure 45. The reason behind this is that the CB price with the embedded put option 

reaches its bond floor value much sooner than the CB without the put option. This is 

due to the investor exercising the put option if the CB falls out-the-money. As such 

the rate of change in the CB price is not as large and so the put option delta always 

hangs below the no put option delta64.  

                                                 
64 This only applies if the share price falls below the strike of 150. 
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Figure 44 – Delta of the Gheno model with and without and embedded call option with call value 

of 150. 
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Figure 45 - Delta of the Gheno model with and without and embedded put option with put value 

of 150. 
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When dealing with volatility in any option, it is trivial that an increase in volatility 

will increase the value of the option. This is also true when dealing with firm 

(structural) models that incorporate asset return volatility, so that an increase in asset 

return volatility will lead to an increase in the CB price which is shown in Figure 46. 

The CB price increases dramatically for volatility values greater than 90% and trades 

well above its parity value and bond floor value. If an embedded call option were 

present the issuer would force conversion and the CB would inflect and move down 

towards it parity value for large volatility increases. 

 

-

50

100

150

200

250

300

350

400

450

0% 20% 40% 60% 80% 100%

Asset Return Volatility

C
B

 P
ri

c
e

CB Price Parity Straight Bond

 

 

Figure 46 – CB price for changes in the asset return volatility using the Gheno model. 

 

As already mentioned, the application of firm value models has the major downfall of 

having to estimate the assets and liabilities of the firm, and also modelling them to 

improve the accuracy of the final CB price. In saying this, these models can 

incorporate the negative convexity in the distressed debt phase by using a barrier 

whereas most equity valuation65 models do not. Due to the sophistication and 

                                                 
65 The Quadrinomial, TF and HW models do not possess the negative convexity property but as shown 

in Chapter 6 with the TF model, this is easily solved by the inclusion of the k-factor credit spread. 
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development of the CB market with issuers continually searching for cheaper means 

of financing, many exotic CB’s have become available. Chapter 8 suggests two such 

variations of the vanilla CB, namely the exchangeable CB and the inflation linked CB 

that have been used by issuers of late.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                            

model. The AFV model with credit risk does actually possess negative convexity but also by using the 

k-factor. 
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8. Exotic Convertible Bond Models 

The past few years have shown that convertibles continue to evolve as issuers use 

them for a variety of purposes. This reflects the term “mainstreaming” of the CB asset 

class, as yesterday’s exotic option becomes today’s vanilla product, so to are the 

complexities of CB structures. Section 8.1 describes exchangeable CB’s where the 

underlying equity is not the issuers but that of another firm. Inflation linked CB’s are 

discussed in Section 8.2 where the principal amount is adjusted according to an 

inflation index, which preserves the value of the income stream. The valuation and 

inflation models are discussed together with the boundary conditions. A numerical 

approximation scheme is also suggested to solve the continuous PDEs. 

 

8.1 Exchangeable Convertibles 

Exchangeable CB’s differ from ordinary CB’s in that they allow the holder to convert 

into shares other than the issuers, unlike ordinary CB’s. In this way the holders are 

allowed to exchange the bond for a different entity’s’ equity. Thus holders are 

exposed to the credit risk of the issuer and equity risk of the entity, whereas ordinary 

CB holders are exposed to both equity and credit risk of the issuer. The model that 

will be discussed is by Realdon [59]. 

 

Some comparisons of exchangeable CB’s relative to ordinary CB’s are that even 

when the issuer is experiencing financial distress the “exchange option66” is still 

valuable and worth exercising, whereas with ordinary CB’s the conversion option is 

usually “out-the-money” and worthless. The exchange option can usually be exercised 

at any time and in combination with the pledged shares, which causes the CB to be 

insensitive to the issuer’s credit risk. Higher volatility of the issuer’s assets decreases 

the value of exchangeable CB’s, although it increases the conversion option and in 

doing so increases the ordinary CB’s value. Interestingly the exchangeable CB usually 

decreases in value as the correlation between the pledged shares and issuers assets 

rises. This is to be expected as the credit risk is increased. The major influence for 

issuing exchangeable CB’s is to dispose of the underlying shares, which we assume is 

                                                 
66 The exchange option in this case is the embedded conversion option, but is called an exchange option 

as the bond is exchanged for the underlying shares (from another entity) not the CB issuers’ equity. 
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owned by the issuer. Another motivating factor is that when the call price of the 

exchangeable CB is high and the issuer is under distress, investors know that the CB’s 

are unlikely to be called so there is a higher probability that the underlying shares will 

be disposed. In turn what this means is that the issuer will now have significantly 

lower bankruptcy costs and may even avoid bankruptcy altogether. 

 

8.1.1 The Valuation Model 

The default process of the firm is determined in an explicit way by using a structural 

model for credit risk. Assuming the value of the exchangeable CB is represented as 

( ), ,E V S t , where V is the total value of the issuers’ assets, S the share price of the 

underlying shares which the bond can be exchanged for and t is time. It is also 

assumed that S and V follow the usual lognormal dynamics, 

 

 S SdS rSdt S dWσ= +  (8.1) 

 ( ) V VdV V r q dt V dWσ= − + , (8.2) 

 

where r is the risk-free interest rate, σS and σV are the volatility of the shares and firm 

asset value respectively, q is the issuers’ dividend payout rate, and dWS and dWV are 

the Wiener processes driving the share price and asset value respectively with 

S VdW dW dtρ= . It is assumed that the underlying shares do not pay any dividends 

although the bond coupon payments are paid continuously. This means that default is 

triggered as soon as V reaches the following barrier, 

 

 ( )0 0 1d

IF I F
V

b
τ

+
= −  (8.3) 

 

where τ is the corporate tax rate, I0 and F0 are the coupon rate and face value of the 

exchangeable bond and, I and F are the coupon rate and face value of the other 

outstanding debt of the issuing firm. Using Itô’s lemma we have that the PDE of the 

exchangeable CB is represented as, 
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( ) ( ) ( ) ( )

( )
( )

( )
( )

2 2 2

2 2 2 2

2 2

, , , , , , , ,

, , , ,
, , 0,

V V S S

E V S t E V S t E V S t E V S t
V V S S

t V V S S

E V S t E V S t
r q V rS rE V S t I

V S

σ ρσ σ σ
∂ ∂ ∂ ∂

+ + +
∂ ∂ ∂ ∂ ∂

∂ ∂
+ − + − + =

∂ ∂
               

 (8.4) 

 

subject to the following boundary conditions 

 

 ( ) ( )( ) ( ) ( ), , 1 ,
r T t r T tI

E V S t e Fe O S t
r

− − − −
→ ∞ = − + +  (8.5) 

 ( ) ( )( ), , max , ,
d dd d d t tE V S t R V S S=  (8.6) 

 ( )* *, ,E V S Y t Y= =  (8.7) 

 ( ) ( ), 0, ,E V S t D V t→ →  (8.8) 

 ( ) ( ), , max ,E V S t T S F= = . (8.9) 

 

(8.5) states that if the firm value were extremely high then the exchangeable CB 

would trade as a straight bond. If the firm were to default as in (8.6) then the greater 

of the recovery ( ),
dd tR V S  amount or conversion value would be paid. The issuer 

would force conversion if the share price reached some trigger level *Y as in (8.7). If 

the share price were to reach zero then the exchangeable CB would be valued as a 

seriously discounted straight debt instrument, independent of the share price as in 

(8.8). (8.9) is the usual maturity decision, where the greater of the redemption amount 

or conversion value is paid to the investors. Using the implicit finite difference 

scheme we can rewrite the above PDE , ,i j k∀ ∈�  and [ ]0, 1k n∈ − as67, 

 

                                                 
67 The complete derivation can be found in the paper by Landskroner and Raviv [42], the final result 

has only been shown here. 
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 (8.10) 

 

8.2 Inflation-Indexed Convertible Bonds with Credit Risk 

Inflation-Indexed convertible bonds (IICB) differ slightly in the make-up to ordinary 

convertible bonds. The difference lies in the fact that the principal amount is adjusted 

in accordance to an index, in this particular case the consumer price index or inflation 

rate as it is widely known. As always it is important to incorporate some sort of 

default risk into the model to account for the further financial distress brought about 

by the IICB’s to the issuing firm. Landskroner and Raviv [42] implement two 

approaches to incorporate default risk. The first is the traditional decoupling approach 

of the PDEs into a cash-only (debt) part and an equity part as illustrated earlier by 

Tsiveriotis and Fernandes [69]. The second is by using McConnell and Schwartz [50] 

structural methodology of firm value. 

 

8.2.1 Default Trigger 

As mentioned previously the TF model splits the CB price into an equity component 

and a cash-only component. The equity component is discounted using the risk-free 

rate, so there is no default risk assumed since the issuer can always issue more of its 

equity. This will however cause adverse effects on the price of its equity due to 

dilution and negative market sentiment. The cash-only component is discounted using 

the risk-free rate plus a constant credit spread, as these are obligations that the firm 

has to make. The firm has to pay these cash obligations to its investors, which will 

stress the firm, and as such investors would require a credit spread due to the exposure 

of additional risk. 
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The McConnell and Schwartz [50] (MS) default approach focuses on the capital 

structure of the firm where default is triggered if the firm’s assets fall below its debt 

face value. The firm value is assumed to follow lognormal dynamics, although the 

total firm value is not observable in the market and thus causes a minor drawback to 

the approach. Default risk can also be achieved by adding a constant credit spread to 

the risk-free rate to discount the bond. The downfall is that this method does not 

account for the fact that default risk of the CB varies according to its moneyness68. 

 

8.2.2 Valuation Model 

The stock price and inflation process are assumed to follow the usual lognormal 

dynamics and possess some correlation. The governing PDE and boundary conditions 

have to be stipulated and default risk is incorporated by both the TF and MS 

approaches. Finally the resultant PDE is solved using Rubinstein’s [61] three-

dimensional binomial tree, which is easier to implement than finite difference 

methods. Landskroner and Raviv [42] show that the underlying model can be 

extended to value foreign exchange CB’s by simply replacing the inflation variable by 

a foreign exchange variable. The familiar assumptions of the model are: 

 

• Investors trade continuously in a complete, frictionless and arbitrage-free 

financial market. 

• No transaction costs, restrictions on short selling or taxes. 

• Uncertainty in the economy is given by the probability space ( ), ,F PΩ , where 

Ω is a state space, F is the set of possible outcomes and P is the objective 

martingale measure on ( ), FΩ . 

 

The share price S and inflation process I69 are assumed to follow the usual SDEs 

respectively, 

 

                                                 

68 Moneyness refers to the phase of the CB, whether it is out/at/in-the-money. 

69 The coupons were defined as I in 8.1.1 but change notation to C in this sub-section to avoid 

confusion with the inflation process I. 
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 ( )S S S

dS
q dt dW

S
µ σ= − +  (8.11) 

 I I I

dI
dt dW

I
µ σ= + , (8.12) 

 

where µS is the expected return on the issuers’ stock, q is the continuously 

compounded dividend payout rate, 
I

µ  is the expected inflation rate, σS and 
I

σ  are the 

instantaneous volatility measures of the underlying share and inflation rate 

respectively. dWS and 
I

dW  are the standard Wiener processes with the following 

correlation S I SIdW dW dtρ= . 

 

Looking at a foreign currency analogy, real prices correspond to foreign prices, 

nominal prices relate to domestic prices in local currency, and the CPI relates to the 

spot exchange rate. Garman and Kohlhagen [30] assume that the foreign currency 

follows the same process as the stock with dividend q replaced with the foreign risk 

free rate rf. By the same reasoning the CPI drift must have a similar drift to the foreign 

exchange drift with ( )I Rr rµ = − , where rR is the domestic real interest rate. 

 

Let ( ), ,U S I t be the value of the IICB70 at some time [ ]0,t T∈ , with fixed coupons C 

and principal F that is inflation-adjusted, and convertible throughout its life into α 

shares. In the absence of default risk the value of the IICB is represented as 

 

 

( ) ( ) ( )

( )2 2 2 21
2 ,

2

t S I R

SS S II I IS I S IS

rU f t U U r q S U r r I

U S U I U ISσ σ σ σ ρ

+ = + − + −

+ + +
 (8.13) 

 

where f(t) is the coupon payment function, and Uj and Ujj are the first and second 

order partial derivatives (j=I,S). Incorporating default risk by applying the MS 

approach gives the slightly adjusted PDE 

 

                                                 

70 The IICB price U can be seen as the vanilla CB price χ.   
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( ) ( ) ( ) ( )

( )2 2 2 21
2 .

2

t S I R

SS S II I IS I S IS

r cs U f t U U r q S U r r I

U S U I U ISσ σ σ σ ρ

+ + = + − + −

+ + +
 (8.14) 

 

where cs is the credit spread of the issuers pari passu-convertible debt, relative to a 

similar maturing treasury bond. 

 

By incorporating default risk using the TF approach requires us to decompose the 

PDE in (8.14) into a debt-only part and an equity part. Letting V represent the debt-

only part, it can be considered a contingent claim with the stock being its only 

underlying variable. As such V should follow the BSM equation with the credit spread 

being as defined above. The equity part being represented as (U-V) is considered as 

the CB payments related to equity and as such should be discounted using the risk-

free rate. The respective equations of each part are given as: 

 

CB price: 

 ( ) ( ) ( ) ( )2 21

2
t SS S Sr U V r cs V f t U U S U r q Sσ− + + − = + + −  (8.15) 

  

Debt – Only:  

 ( ) ( ) 2 21

2
t SS S Sr cs V f t V V S V rSσ+ − = + + . (8.16) 

 

To find the IICB PDE we have to take into account the CPI from (8.13) and add all 

the CPI terms to each of the above equations, which leaves us with 

 

 

( ) ( ) ( ) ( )

( )

2 2

2 2 2 2

1

2

1
2

2

t SS S S

SS S II I IS IS S I

r U V r cs V f t U U S U r q S

U S U I U SI

σ

σ σ ρ σ σ

− + + − = + + −

+ + +

 (8.17) 
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 (8.18) 
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8.2.3 Boundary Conditions 

As always we have to stipulate boundary conditions for the PDEs, although in this 

simple model we ignore callability and putability. At maturity the boundary 

conditions for the debt-only part, V and CB price, U are, 

 

 ( )
( )

( )

0

0

,

, ,

,

T

T

I
S S F C

I
U S I T

I
F C elsewhere

I

α α
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 +
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 (8.19) 
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T

T
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I
V S I T

I
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I

α
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

= 
 +


                       

          

 (8.20) 

 

where I0 is the CPI value on the issue date of the CB. As the CB is convertible 

throughout its life it contains free moving boundary conditions. To the upside it has to 

satisfy 

 [ ], 0,U S t Tα≥ ∀ ∈                  (8.21) 

 [ ]0 , 0,                 V t T= ∀ ∈  (8.22) 

 

When using the MS model the boundary conditions are condensed into equations 

(8.19) and (8.21).  

 

The equations in (8.17) and (8.18) are very general, and so in that sense may seem a 

little complex. This can be simplified by letting some of the variables tend to zero.  

 

• If q=0 and cs=0, then the underlying asset pays no dividends and credit risk is 

eliminated from the model. Since the asset pays no dividends and the investor 

holds an American call option to exchange the CB for equity, it would never 

be optimal for the investor to exercise his call option prior to maturity. As such 

this model will revert to the Margrabe [49] exchange option model. 
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• cs=0 reduces the model to Rubenstein [60] for valuing American options 

dependent on two correlated assets. 

• σ1→0 and r=rR switches off the inflation process and the models revert to the 

usual TF and MS models. 

• σ1→0 , r=rR , cs=0 reduces the two factor model into the one factor Cox-

Ross-Rubenstein (CRR) model. 

 

8.2.4 Numerical Approximation 

As the previous equations have no closed form solutions a numerical approximation 

needs to be implemented. TF use explicit finite differences, which is a little easier to 

implement than Crank-Nicholson or implicit methods, although the explicit method 

can become conditionally unstable meaning that the time steps have to be really small 

for accurate results. In so doing we construct a Rubinstein [61] three-dimensional 

binomial tree with the stochastic variables being the CPI process and the share price. 

As with all binomial tree methods a recursive backward in time algorithm is applied 

to calculate the present value of the IICB. Splitting the time interval [0,T] into n sub-

intervals ∆t of equal length which will be denoted by i (i=0,1,…,n).  

 

The four possible moves from each node are A=uu, B=ud, C=du and D=dd for each 

of the processes S and I that each have an equal probability of up and down moves. 

The combined probabilities are, 
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 (8.23) 

 

where ( ) 2 / 2I R Ir rϖ σ= − − . For the lattice to recombine we have to impose the 

condition AD=BC. If A C and B D≠ ≠   it becomes possible to construct non-zero 

correlation between the two processes. 
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From any node (i,S,I), the lattice progresses to four nodes, namely, 

( )1, ,i Su IA+ , ( )1, ,i Su IB+ , ( )1, ,i Sd IC+  and ( )1, ,i Sd ID+ , where IA, IB, IC and ID 

are the different values that the CPI takes at each of the new nodes. The CPI at each 

node, any time period i, with j up moves of the share price, is equal to 

 

 ( )
( ) ( )( )22 1 2

0, ,
I I SI SIi t t j i k i

I i j k I e
ϖ σ ρ ρ ∆ + ∆ − + − −  = , (8.24) 

 

where  k=0,1,…,i. 

 

The four nodes are assumed to occur with probability 0.25, and at each time tick there 

are 2i+1 distinct nodes with a total of (i+1)
2 nodes throughout the entire tree. 

 

At maturity the investor is faced with the decision to either redeem/hold the bond or 

convert by applying condition (8.19) and (8.20). If the investor chooses to hold the 

bond it is denoted as , ,i j k
UH  and if the investor chooses to convert, the value of the 

CB is denoted as , ,i j k
UC . Thus the rollback CB value is , , , , , ,max ,

i j k i j k i j k
U UH UC =   . 

 

To incorporate credit risk into the model using TF we need to discount the debt-only 

part using a risky interest rate, ( )* , 1i i
r

+
 that of the issuer, and a risk-free rate ( ), 1i i

r
+

 to 

discount the equity part , ,i j k
E . Therefore at each node the CB price is equal to 

, , , , , ,i j k i j k i j k
U V E= +  which is the sum of the two components. Using MS to include 

credit risk requires a minor adjustment whereby the risk-free rate and credit spread are 

used to discount the debt-only part and the equity part. At maturity the holding value 

and conversion value are given by equations (8.25) and (8.26) below, 

 

 , ,

j N j

N j kUC Su dα −=  (8.25) 

 ( )
( ) ( )( )22 1 2

, ,

I I SI SIi t t j i k i

N j kUH F C e
ϖ σ ρ ρ ∆ + ∆ − + − −  = + . (8.26) 

 

In doing so the equity part at maturity is given as 
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                           ,
 (8.27) 

 

     and the debt part is 
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Due to the equal probability of each of the four possibilities occurring, the rollback 

holding value is calculated as per usual using discounted expected value. The credit 

risk (according to TF) is factored into the model by discounting the components using 

different interest rates. This leads us to the following equation, 
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As previously mentioned the conversion value at any time prior to maturity is 
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Finally, the rollback debt-only and equity parts are also obtained using discounted 

expected values. Thus at time [ ]0,k n∈ and [ ], 0, 1i j n∀ ∈ − , we have that the equity 

part is calculated as  
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If conversion takes place the debt-only part takes on zero, else it is computed similarly 

to the equity component although with a risky interest rate, 
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To take into account coupons, the coupon is inflation adjusted by multiplying the 

nominal coupon by equation (8.24) at the appropriate time tick and adding it to the 

debt-only part. If a coupon flow occurs between two time ticks the present value is 

obtained using the risky interest rate. 

 

The valuation of vanilla CB’s is by no means a simple task as has been outlined in this 

dissertation. Trying to model exotic CB’s will pose an even greater challenge, but as 

the market becomes more sophisticated and valuation methodologies advance, this 

will hopefully improve the accuracy of the models. 

 

In step with the growth in the convertibles market there has been a rapid increase in 

the participation of hedge funds for CB issuance, continually looking to exploit 

arbitrage opportunities. Therefore the next Chapter gives a detailed description of the 

underlying risks of CB’s and many popular trading strategies employed by hedge 

funds. 
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9. Convertible Bond Arbitrage Strategies 

As the appetite for alternative investments grow (especially non-cyclical assets) so too 

will the complexity of the trading strategies. Hedge funds have become major players 

in the CB space and in doing so have constructed several arbitrage strategies which 

will be analysed in this Chapter. Section 9.1 establishes the underlying risks of CB’s 

with respect to their “Greeks”. Once the basic risks have been introduced the various 

hedging strategies are proposed, beginning with the delta hedge in Section 9.2, 

dynamic hedge in 9.3, gamma hedge in 9.4 and option hedge in 9.5. Included in each 

of the hedging strategies are simple examples showing the potential profit or loss. 

 

9.1 Convertible Bond “Greeks” 

When trading, hedging or investing in convertible bonds it is important for any 

valuation model to take into account the underlying risks, or parameter sensitivities. 

Generally speaking the measures of risk of CB’s (or any option) are referred to as 

“The Greeks”. In its simplistic form it gives the investor or arbitrageur an estimate of 

the change in value of the CB for a given change in an underlying variable. An 

arbitrageur by definition is a person who attempts “to profit by exploiting price 

differences of identical or similar financial instruments, on different markets or in 

different forms. The ideal version is riskless arbitrage.”71  

 

9.1.1 Delta (∆) 

The most important measure has to be the CB price sensitivity to changes in the 

underlying share price, i.e. Sχ∂ ∂ , where χ is the CB price. The delta is used by 

arbitrageurs to determine the number of shares to short against the long position in the 

CB to create a delta-neutral hedge. The delta is however not constant and varies 

according to whether the CB is in/out-the-money. For high grade CB issuers the delta 

usually moves between 0 and the conversion ratio, and is seen as positively correlated 

with the share price. When the CB is deep in-the-money the delta approaches the 

conversion ratio rapidly, whilst if it is out-the-money, the delta moves closer to 0. 

When the share price drops to extremely low levels close to 0 for low grade issuers or 

CB’s in the distressed debt phase; the delta can actually move back up towards the 

                                                 

71 http://www.investorwords.com/245/arbitrage.html 
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conversion ratio due to the negative convexity (explained in Chapter 6 and clearly 

illustrated in the distressed debt zone in Figure 1) due to the increased bankruptcy risk 

of the issuer. The risky delta is the apparent delta that takes the negative convexity 

into account, whereas the normal delta is the delta from the model assuming the 

convertible reverts to its straight bond value for low share values.  Thus, assuming the 

CB reverts to its straight bond value for low share values can be costly to the arbitrage 

hedge if the risky delta proves to be correct.   

 

Figure 48 illustrates the modified delta for the TF, TFk, HW and GS models. The 

actual graphs are not as smooth as Figure 47 due to the approximation of the delta, but 

the shapes are similar. It is interesting to note that the only model to emphasize the 

change in direction of the delta is the TFk model, which follows the path of the risky 

delta. All the others possess regular deltas, implying that credit concern is not a 

problem for low share values. 
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Figure 47 – Typical Delta for a convertible bond and Risky Delta for a convertible bond 

displaying negative convexity (gamma) across the various share price ranges. 
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Figure 48 – Delta for TF, TFk, HW and GS models. 

 

9.1.2 Gamma (Г) 

As can be seen the delta and risky delta are not constant and change according to the 

moneyness of the CB, as such it becomes important to look at the rate of change of 

the delta (i.e. gamma) 

 

The rate of change of delta with respect to the share value is known as gamma and is 

computed as S∂∆ ∂ , also as the second-order partial derivative 2 2Sχ∂ ∂ . It is 

basically the convexity of the CB price track. For arbitrageurs a spot gamma will help 

in determining an appropriate stock range to hedge their position. The higher the 

gamma, the more delta changes and the more the hedge needs to be rebalanced. The 

gamma is at a maximum when the CB is at its conversion price, and progressively 

decreases to 0 when it moves in/out-the-money. Thus, there is upside gamma and 

downside gamma. Upside gamma is seen as the change in delta for an upward move 

in the share price, and similarly downside gamma is the change in gamma from a 

downward move in the share price. The downward gamma allows the arbitrageur the 

opportunity to capture additional profits if the share drops without much risk 

(assuming there is no negative gamma) and hedging with fewer shares if the downside 

gamma is less than the upside. As mentioned earlier for high grade issuers the delta is 
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viewed as positive and so is the gamma, however for low grade issuers or any CB in 

the distressed phase, the CB breaks down to its liquidation value, the delta reverts to 

its conversion ratio and the gamma becomes negative. This is important when 

considering neutral hedges, but also requires a solid understanding of the credit 

quality of the issuer. 

 

Figure 49 shows the usual gamma for a convertible bond and the risky gamma for 

models incorporating the negative gamma. The negative gamma comes into effect 

when the CB is in the distressed zone, and can cause serious damage to an 

arbitrageur’s hedge profile if not taken into consideration, as he will continuously 

underestimate the delta and so not achieve his optimal hedge strategy. Figure 50 

shows the approximate values of the gamma achieved by the TF, TFk, HW and GS 

models. Once again the curves are not smooth as in Figure 49 due to the estimation, 

but they give the same results with the TF, HW and GS models all displaying regular 

gamma’s whilst the TFk model expresses the negative gamma and so represents the 

risky gamma. The gamma is highest at the conversion price with the HW model 

giving the greatest value for gamma due to the reduction in default risk once the CB 

moves in-the-money.  
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Figure 49 - Typical Gamma for a convertible bond and Risky Gamma for a convertible bond 

displaying negative convexity (gamma) across the various share price ranges. 
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Figure 50 – Gamma for TF, TFk, HW and GS models. Maximum gamma is achieved at the 

conversion price, except for the TFk model which achieves maximum gamma at a higher share 

value and also displays negative gamma for low share values. 

 

9.1.3 Vega (v) 

The sensitivity of the CB price to changes in implied volatility is referred to as vega 

risk ( )χ σ∂ ∂ .  Generally speaking an undervalued CB trades with a lower implied 

volatility than what the arbitrageur is anticipating. The vega gives an estimate of the 

change in price for a unit change in implied volatility. Volatility is mean reverting but 

the mean is non-constant and the reversion time may vary, giving way to trading 

opportunities. To help estimate the volatility, the arbitrageur can look at historical 

volatility changes and the volatility of volatility. This is a cause for concern as implied 

volatility is forward looking not historically traded, as such if there are options on the 

underlying stock available, those would be more accurate estimates to use in the 

valuation model. As with gamma, vega is at its highest near the “hybrid” zone or 

conversion price, as the CB is continually moving in/out-the-money. Vega risk is 

important when hedging, as most strategies are long volatility, although this can be 

reduced to a certain extent by investing in put options on the CB so that if the 

volatility were to fall, the options would be in-the-money and counter the lost value in 

the CB price. 
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Figure 51 shows the regular vega for CB’s without credit spread sensitivity, and risky 

vega for CB’s that take credit spread sensitivity into account. The vega is similar to 

the gamma graph since it reaches its maximum at the conversion price and falls away 

towards zero for deep in and out-the-money convertibles. It is worthwhile to take a 

look at Figure 52, which shows that all the models possess some negative vega in the 

distressed zone, indicating a risky vega. Although the TFk model also shows negative 

vega for increases in volatility. This was discussed in Section 6.4, in that the k-factor 

is relatively large and so suppresses the CB price for large increases in volatility. 
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Figure 51 - Typical Vega for a convertible bond and Risky Vega for a convertible bond 

displaying negative convexity (gamma) across the various share price ranges. 

 

 

Distressed 

/ Busted 

Hybrid Equity 

 
 
 



 

 153

-0.6 

-0.4 

-0.2 

0.0

0.2

0.4

0.6

0.8

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 110% 120% 130% 140% 150% 160% 170% 180% 190% 200%

Share Volatility

V
e
g

a

T&F T&F k-factor Hung Wang Goldman-Sachs

 

Figure 52 – This graph is slightly different to Figure 51 in that it plots vega against share 

volatility as opposed to share price. The TF, TFk, HW and GS models display negative vega for 

extremely low share volatility, with the TFk model giving negative vega for high volatility aswell. 

The maximum vega is attained at 50% share volatility in this case. 

 

9.1.4 Theta (τ) 

Changes in the value of the CB price to changes with respect to maturity (time to 

maturity) is referred to as theta ( )tχ∂ ∂ . Theta is generally72, positively related to the 

option maturity, so that as the maturity of the option increases, the option value also 

increases, and vice versa. There exists time-premium decay which eats away at the 

embedded option premium as the CB draws closer to maturity, although this is a little 

more complicated with CB’s since a portion of the CB is affected by the maturity date 

and the exercisable call option of the issuer. Unlike regular options, CB’s that are out-

the-money with no call protection and a low coupon payment will most likely remain 

outstanding by the issuer, thus being exposed to very little theta risk. However if 

interest rates were to decrease, the issuer will be tempted to refinance the issue with a 

new, cheaper one having a lower coupon payment, thereby increasing the theta risk of 

                                                 

72 The theta of an option also depends on whether the option is out-the-money or in-the-money, with 

the latter having a greater theta relative to the out-the-money option. To keep matters simple, in this 

dissertation the use of bond carry for theta is ignored. 
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the existing issue. Theta risk should also be recalculated with respect to implied 

volatility, as the volatility influences the embedded option value and thus the amount 

of theta risk. Theta risk varies according to the degree of moneyness of the CB as 

indicated in Figure 53, which shows the theta time decay. For in-the-money issues 

there is little theta risk as there is not much conversion premium to lose due to the 

equity behaviour of the CB, but any remaining conversion premium will evaporate in 

the last few months before maturity. At-the-money issues have the greatest theta risk 

as the conversion premium is the greatest and the CB price is trading above par value 

and call price, incentivizing the issuer to call the bond, and thus eliminating the CB’s 

entire conversion premium. As with in-the-money issues the theta risk accelerates 

during the last few months before maturity. Out-the-money issues have very low theta 

risk except for the pull to par effect at maturity, driving the bond to its par value. Call 

protection also plays a role in pricing the CB as the longer the call protection is, the 

higher its value and the higher the theta risk when the CB’s call protection expires. 

 

Figure 54 emphasizes the high theta risk for at-the-money convertibles and the low 

theta risk for in/out-the-money issues. It is important for the arbitrageur to monitor the 

theta risk of his position since this can erode away any potential profits if not taken 

into consideration, albeit not as dramatic as delta, gamma or vega, but still a factor.  
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Figure 53 – Theta time decay using the TFk model for in-the-money, at-the-money and out-the-

money convertible bonds. 

 

Share Price

C
B

 P
ri

c
e

T
h

e
ta

CB Price Theta 

 

Figure 54 – Theta risk for convertible bonds illustrating the significant risk at the conversion 

price for at-the-money Convertibles. 
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9.1.5 Rho (ρ) 

Also referred to as duration risk when dealing with straight bonds, the change in CB 

value to changes in interest rates is known as rho ( )rχ∂ ∂ . As is commonly known, an 

increase in interest rates decreases the value of the CB due to its decrease in straight 

bond/investment value, but unlike regular bonds this can be offset by the gain in the 

option value. Generally speaking rho is negative for most share price ranges along the 

CB price track. Deep in-the-money issues have very little rho risk, whilst out-the-

money issues experience the highest level of rho risk due to the lower investment 

value. Rho is at its maximum for an out-the-money issue when the embedded option 

is worth very little. When the CB price moves into the distressed area however, there 

is very little rho risk present as the dominant factors affecting the CB are the issuers’ 

credit worthiness and probability of bankruptcy. In the distressed region macro factors 

play very small roles in computing the CB value; business related factors take full 

control of valuation. The typical rho risk assumes parallel yield curve shifts, which at 

times can be misleading but educates the arbitrageur on the sensitivity of the hedge to 

interest rates. Rho2 risk for in-the-money CB’s relate to the short end of the yield 

curve for risk-free government bonds, whilst Rho1 risk relates to the corporate yield 

curve, or credit spread widening. This is important for arbitrageurs at a portfolio level 

who need to be aware of both measures in calculating their cost of capital from the 

short end and hedge on margins. 

 

The convertible bond price for changes in interest rates can be seen in Figure 55 with 

an out-the-money issue having the greatest sensitivity to interest rates due to its debt 

component taking on a straight bond value. Figure 56 (plotted on a negative scale) is 

confirmation of the highest rho risk for an out-the-money convertible. The decrease in 

the rho for higher interest rates is attributable to the convexity73 of the bond 

component in the CB, becoming inelastic to increasing rates.  

 

This rho risk may seem contradictory because earlier it is mentioned that stochastic 

interest rates are not a dominant factor in CB valuation models. What is meant by this 

                                                 

73 We assume that positive convexity is only possible in this simplistic example. If negative convexity 

is assumed for convertibles trading in the distressed zone, the rho risk would increase dramatically (that 

is to say becoming more negative) as the credit spread would widen substantially. 
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is that interest rate volatility does not play a significant role in CB prices as 

demonstrated with the Quadrinomial model. It does however improve the accuracy of 

the valuation model but given its additional complexities, assuming constant interest 

rates with zero volatility will produce a more tractable model. 
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Figure 55 – Convertible price for changes in interest rates. The convexity of the debt component 

in the CB is evident with an out-the-money issue illustrating the steepest slope and hence the 

greatest interest rate sensitivity. 
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Figure 56 – Rho risk of a convertible bond on a negative scale with the out-the-money issue 

possessing the greatest risk. 

 

9.1.6 Omicron (ο) 

Omicron ( )χ ο∂ ∂  measures the change in CB price to changes in the credit spread of 

the issuer. As was mentioned in Chapter 6 with the k-factor model, the omicron risk 

can increase substantially when the CB trades in the distressed zone. Generally 

speaking if the credit spread widens, the CB loses value and if the credit spread 

narrows, the CB rises in value. For both high and low grade issuers, deep in-the-

money CB’s have low omicron risk, as the driving factor becomes the share price. For 

at-the-money and out-the-money convertibles the omicron risk increases with most 

sensitivity occurring out-the-money. 

 

9.2 Delta Hedging 

One of the most common hedging strategies is the delta neutral hedge as it is 

considered lower risk relative to the other hedging strategies, because of its ability to 

reduce the equity sensitivity while taking advantage of the equity volatility. As the 

share price changes so to do the risks and hedge opportunities. Figure 57 together with 

Table 7 shows the various Greek sensitivities along the CB price track. Figure 58 and 
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Table 8 depict the risk measures for the CB price track with negative convexity 

present.  
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Figure 57 – Trade strategies at various point along the convertible price track (No credit spread 

sensitivity to share price). 

 

 

Greek Risks:  Busted Hybrid Equity 

Delta Low Medium High 

Gamma Low High Low 

Vega Low High Low 

Theta Low High Low – Medium 

Rho High Medium Low 

Credit High Medium Low 

 

Table 7 – Greek exposure through various stages of the convertible bond price track (No credit 

spread sensitivity to share price). 

• Credit Spread plays  

• Cheap Call Options 

• Bull Gamma 

• Bear Gamma 

• Long Volatility 

• Cheap Put Options 

• Levered Cash flow 

Busted Hybrid Equity 
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Figure 58 - Trade strategies at various points along the convertible bond price track (credit 

spread sensitivity to share price). 

 

Greek Risks:  Busted Hybrid Equity 

Delta High Medium High 

Gamma Medium (Negative) High Low 

Vega Low (Negative) High Low 

Theta Low High Low – Medium 

Rho High Medium Low 

Credit High Medium Low 

 

Table 8 - Greek exposure through various stages of the convertible bond price track (credit 

spread sensitivity to share price). 

 

Deep in-the-money CB’s experience low amounts of rho, omicron and gamma risk, 

allowing the arbitrageur to purchase cheap put options on the CB and take on more 

leveraged positions. The distressed CB is similar but has high omicron risk that offers 

cheap call options on the underlying and a credit spread play related to the 

undervaluation of the CB. Depending on the credit quality of the issuer, low grade 

(and at times high grade) issuers experience negative gamma in the distressed zone, 

which could significantly eat away into the hedge strategy profits. The CB is now 

• Credit Spread plays  

• Cheap Call Options 

• Bull Gamma 

• Bear Gamma 

• Long Volatility 

• Cheap Put Options 

• Levered Cash flow 

Distressed / Busted Hybrid Equity 

 
 
 



 

 161

highly correlated with the share price and the negative gamma causes the delta to 

reverse and move closer to 1 (assuming a conversion ratio of 1). A strong credit 

assessment needs to be undertaken when it comes to low grade issuers, especially 

when they are trading in the distressed zone. 

 

The long volatility convertible hedge is a popular delta neutral hedge involving 

longing the CB and shorting the underlying stock at the current delta. The hedge is 

constructed so that there are no gains or losses from small stock price movements; the 

majority of the income comes from the CB’s yield and short interest rebate74. The 

long volatility hedge neutralizes the equity risk (delta) although leaves the arbitrageur 

exposed to volatility (vega) and interest rate risk (rho). The arbitrageur is taking a 

view that implied volatility is undervalued relative to his expectations and so 

implements this long volatility hedge in the hope that volatility does in fact increase. 

This is where the majority of the hedge’s income will stem from, if on the otherhand 

the volatility decreases the only income would be the coupon from the CB and the 

short interest rebate. As such the more volatile the implied volatility, the more trading 

opportunities exist. An important note on volatility is the effect it has on the time 

value of an option, increasing volatility has the effect of reversing the time value of an 

option whilst decreasing volatility has the opposite effect. As such CB’s with little or 

no call protection can be exposed to these irregular volatility effects. The following 

criteria help in identifying the long volatility hedge: 

 

• Implied volatility or credit mis-pricing 

• Yield advantage greater than risk-free rate 

• Expectation that implied volatility will increase for low cash positions, and 

increase a fraction or stay the same for high cash position. 

• Stable or improving credit opinion 

• Minimal liquidity risk 

• Ample stock borrowing available 

• Vega higher than omicron 

 

                                                 

74 The short interest rebate is the interest earned on the short position and margin gains and losses. 
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The risks to consider are: 

 

• Implied volatility decreases 

• Credit spread widens 

• Surprise call from issuer 

• Yield curve shifts up at short end 

• Theta eats away vega gains 

 

Delta neutral hedges are constructed to capture the cash flows available on the 

convertible position as well as profit from longing the cheap volatility in the 

embedded option. The correct hedge ratio depends on the expected changes in implied 

volatility, gamma and delta. The modified delta75 is a more accurate delta to use when 

using large share price moves. The arbitrageur has to determine a stock price range 

within a specified time interval for the hedge to be held or rebalanced. Figure 59 

illustrates the delta-neutral hedge with the hedge offering downside protection of 

4.4% compared to the unhedged CB return of 2.9% and upside return of 8.0% 

compared to the unhedged CB’s 9.8%. 
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Figure 59 – Delta neutral hedge vs. unhedged convertible bond return profile for a selection of 

share prices. 

                                                 

75 The modified delta is calculated as ( ) ( )/
S S

S Sχ χ+ −

+ −− − with
S

χ +  being the value of the 

convertible when the share moves up and 
S

χ − being the convertible value when the share moves down. 
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9.3 Dynamic Hedging 

In theory dynamic hedging requires the arbitrageur to create a maximum or minimum 

Greek exposure and have to continuously rebalance to maintain a delta neutral hedge. 

The less frequent the hedging the higher the equity correlation and the lower the 

potential return. This does not mean that the hedge should be rebalanced frequently 

because the trading costs involved will become significant and affect the profitability 

of the position. Static hedging or infrequent balancing would be acceptable if trading 

costs were high in an un-levered portfolio and the total income flow was low, but to 

achieve a higher return some hedging is required to lock in the gains. In essence a 

hedge position needs to be rebalanced more frequently when it has a high gamma due 

to the accelerated change in the delta for stock price moves and also when the 

underlying stock is considered volatile. Similarly a low gamma will result in less 

frequent rebalancing due to a small change in the delta when the share price moves. 

 

The only situation where the active hedge underperforms relative to a passive hedge is 

when the share price only moves in one direction, which occurs very rarely. The 

constant rebalancing will inflate the trading costs and destroy the benefits of the 

hedge, leaving the income flow and convergence to theoretical value as the only 

source of income. 

 

9.4 Gamma Hedging 

Due to the convexity of the CB price track an opportunity for convertible arbitrageurs 

exists. They can capture this gamma with less frequent rebalancing and minimal risk 

to increase the alpha in their portfolios. If the convertible arbitrageur has a strong 

market viewpoint he can achieve even greater returns with a slight directional bias if it 

pays off of course. In this section the most common gamma hedging tilts used in the 

industry will be discussed, namely bullish and bearish gamma hedging. Bullish 

gamma hedging will be defined as using a delta less than the true delta neutral, and 

bearish gamma hedging will be defined as a delta greater than the true delta neutral 

hedge. 

 

To start off with a delta neutral gamma hedge can benefit despite the movement in the 

underlying stock price, as the hedge will be exposed before rebalancing is done. 

 
 
 



 

 164

However, if a passive hedge is held over time the investor will be exposed to 

substantial equity market volatility. In practice frequent rebalancing is done to capture 

smaller amounts of gamma with lower volatility and as a drawback, the returns will 

not be as significant. Less frequent rebalancing increases the returns and gamma 

capture but also the equity volatility. The neutral gamma (delta neutral) hedge is most 

advantageous when the CB possesses a high gamma and the underlying share is 

volatile. This equates to large share price moves over short time intervals ensuring 

that the hedge is exposed to this volatility and also before the hedge is rebalanced, 

thereby creating higher returns. 

 

If the CB has a high gamma it might be worthwhile just to have a delta neutral hedge, 

but for CB’s that do not possess enough gamma, a gamma hedge would suffice but 

directional bets on the market are required for any meaningful returns.  

 

The bullish un-leveraged gamma hedge captures upside gamma and relies on an 

appreciation of the share price. The hedge ratio is set slightly below the delta neutral 

ratio depending on the investors’ confidence of the market (lower if he is more 

confident). It works best when the upside gamma is smaller than the downside 

gamma, providing the investor with downside protection if the market moves in the 

opposing direction. The 12-month return profile with accompanying breakdown of 

returns is given in Figure 60 and Table A- 1 respectively. 

 

-30%

-20%

-10%

0%

10%

20%

30%

35.00 50.00 65.00

Share Price

1
2

m
 R

e
tu

rn
 o

n
 i

n
v

e
s

tm
e

n
t

Bullish Gamma Tilt Unhedged CB

 

Figure 60 – Bullish gamma hedge (without leverage) vs. unhedged convertible bond return 

profile for a selection of share values. 
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The bullish leveraged gamma hedge also captures upside gamma and relies on the 

share price increasing but takes on additional risk due to the leveraged position. The 

hedge ratio is set slightly higher than the bullish un-leveraged gamma hedge but less 

than the neutral hedge to reduce some of the volatility. More aggressive investors can 

increase it as desired to improve the upside potential. As the stock increases the 

gamma starts to decline and the delta increases, requiring the convertible arbitrageur 

to add to the hedge so that the hedge ratio closes on the delta neutral hedge until the 

stock price objective is reached. The disadvantage is of course the short interest76 

missed due to the lighter hedge ratio. The bullish gamma hedge with leverage is 

shown in Figure 61 with the detail in Table A-2. As can be seen the additional 

leverage increases the upside returns but at the expense of greater downside loss, with 

the unhedged CB still producing greater downside returns. 
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Figure 61 - Bullish gamma hedge (with leverage) vs. unhedged convertible bond return profile 

for a selection of share values. 

 

The bearish un-leveraged gamma hedge captures downside gamma and relies on the 

share depreciating in value. The hedge ratio is set above the delta neutral hedge ratio, 

once again depending on the investors risk tolerance. This strategy works best if 

                                                 

76 The short interest is the interest earned on the short stock proceeds that have been invested in the 

bank at the risk-free rate. 

 
 
 



 

 166

upside gamma is less than downside gamma, and can achieve high returns if the share 

moves in line with the investors’ expectations. The 12 month returns are given in 

Figure 62 with details in Table A- 3, with the downside producing higher returns for 

the bearish un-leveraged gamma hedge at the cost of upside returns. 
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Figure 62 - Bearish gamma hedge (without leverage) vs. unhedged convertible bond return 

profile for a selection of share values. 

 

 

The bearish leveraged gamma hedge is similar to the un-leveraged one except as the 

name implies, it relies on more leverage to increase alpha. The hedge ratio is set 

above the un-leveraged hedge and even higher depending on the investors’ 

confidence. As the hedge ratio increases, the upside potential decreases and the 

downside increases, due to the downside gamma being higher than the upside gamma. 

This dramatically increases the downside returns but at the expense of decreasing the 

upside returns as shown in Figure 63 and Table A-4. 
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Figure 63 - Bearish gamma hedge (with leverage) vs. unhedged convertible bond return profile 

for a selection of share values. 

 

 

As can be seen the bearish gamma hedge looks to take advantage of a decline in the 

share price whilst the bullish gamma hedge benefits from an increase in the share 

price. Looking at Figure 64 and Table 9 we can see that the bearish hedge returns the 

highest with 15.32% and the bullish hedge returns the lowest with -0.89% which is 

appropriate due to the lighter hedge ratio on the bullish hedge, reducing the potential 

gain from the short interest and stock positions. When the share price increases, the 

bullish hedge outperforms the bearish hedge with a return of 15.19% and 5.79% 

respectively because of the lighter short stock position. The gains from the CB are not 

being eroded by the loss on the short stock. The delta neutral hedge falls in-between 

these two strategies, so depending on the directional hedge that the arbitrageur wants 

to take, he can enhance his return relative to the delta neutral hedge and even more so 

with leverage, but obviously at a greater cost if the stock moves in the opposing 

direction. 
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Figure 64 – Comparison of the bearish and bullish gamma hedges relative to the delta-neutral 

hedge. 

 

Share Price 35.00                      50.00             65.00               

Bullish Gamma -0.89% 10.04% 15.19%

Bearish Gamma 15.32% 13.44% 5.79%

Delta Neutral 7.28% 11.75% 10.45%
 

Table 9 – 12 month returns for the various hedging strategies, with a graphical representation 

given in Figure 64. 

 

When adopting these gamma strategies into a portfolio the convertible arbitrageur 

should have a very confident outlook of the market supported by sufficient equity 

research. If so these hedging strategies will reduce trading costs as they allow more 

passive hedging to be achieved as opposed to delta hedging. The convertible 

arbitrageur should also attempt to make a market neutral portfolio by setting 

complementary positions and creating a delta-adjusted beta exposure of zero. The 

delta-adjusted beta is important as it quantifies the exposure of the hedge relative to 

the amount of market risk (beta) present in the underlying stock. The best way of 

describing this is through an example. 
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Bull Gamma

Position Position Size Beta Theoretical Delta Hedge Delta Delta Exposure Delta Adj Beta

Issuer A 100,000 1.1 0.70 0.60 10,000 11,000

Issuer B 100,000 1.4 0.58 0.50 8,000 11,200

Issuer C 100,000 0.9 0.77 0.65 12,000 10,800

Net Beta Exposure = 33,000

Bear Gamma

Position Position Size Beta Theoretical Delta Hedge Delta Delta Exposure Delta Adj Beta

Issuer D 100,000 1.5 0.70 0.78 -8,000 -12,000

Issuer E 100,000 1.18 0.58 0.68 -10,000 -11,800

Issuer F 100,000 0.84 0.77 0.88 -11,000 -9,240

Net Beta Exposure = -33,040

-40Portfolio's net bull and bear gamma beta exposure =  

 

Table 10 – Delta-adjusted beta portfolio with a zero delta-adjusted beta to take advantage of the 

non-linear relationship between the underlying stock and convertible cash flows. 

 

Referring to Table 10 we can see a simple portfolio of convertible bonds that is setup 

for a bullish and bearish gamma hedge but has a delta-adjusted beta of almost zero. 

Walking through Table 10, we first have the bullish gamma hedge that sets up a lighter 

delta relative to its theoretical delta to provide more downside protection. The delta 

exposure is the difference between the two deltas multiplied by the position size. Thus 

the delta-adjusted beta is equal to the delta exposure multiplied by the stock beta. 

Likewise the bearish gamma hedge is positioned with a relatively larger delta to 

participate in share price depreciation. In doing so the net delta-adjusted beta exposure 

of the portfolio is -40 and so is effectively zero. This gamma hedge allows the 

convertible arbitrageur to add additional alpha while controlling the delta exposure. 

Arbitrageurs that have a strong equity support team can also take more aggressive 

directional bets in a diversified convertible hedge portfolio. 

 

9.5 Option Hedging 

Since the CB contains an embedded call option and in some cases issued with a put 

option giving the holder of the CB the benefit of exercising, many arbitrage 

opportunities exist. These opportunities arise due to the mis-pricing between the 

issuers listed option and the embedded option in the convertible. To actually quantify 

whether the implied volatility in the CB is under/overvalued requires the 

investor/arbitrageur to possess a precise valuation model. The basic idea is to sell the 

more expensive option and purchase the cheaper option. Most arbitrageurs use the 
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option hedge technique to take advantage of volatility time skews. Usually the listed 

option has a shorter term to maturity and so has less implied volatility whereas the 

embedded option has a longer term to maturity and a relatively higher implied 

volatility. 

 

The typical option hedge strategy involves shorting a call option on the issuers stock 

and investing in the CB. This is referred to as a covered or partially covered 

convertible call option hedge, depending on the risk-return profile of the arbitrageur, 

and whether to write out-the-money or in-the-money call options. Writing out-the-

money calls improves the upside potential but limits downside profits due to the low 

premium, on the otherhand writing in-the-money options improves downside profits 

but exposes the hedge to greater upside losses.  The call option hedge is usually 

constructed for only a few months, until the written call options expire. This strategy 

takes a view that the share value is going to move sideways or even down, because if 

the share value were to increase beyond the strike value plus the premium, the gain in 

the CB would be eroded by the written calls being exercised. If the share value were 

to move sideways or even down, the profits would arise from the bond coupon and the 

premium on the written calls. Shorting a greater number of calls, which is dependent 

on the arbitrageurs risk appetite, could enhance the returns even further. The ideal 

situation to implement this option strategy is when:  

 

• The CB is undervalued77 and has higher upside gamma than downside gamma 

which reduces the cost of rebalancing the hedge, 

• The call options implied volatility is greater than the expected volatility and 

the CB’s implied volatility, and  

• The share is overvalued, showing weak technical support with no upside 

movement.  

 

                                                 

77 The undervalued CB occurs when the implied volatility in the embedded option is less than the 

expected volatility. 
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Of course if the share were to increase above the strike and premium this would cause 

unlimited upside loss with only limited downside profit. Also if the volatility time 

skew were to widen with shorter maturity volatility increasing and longer term 

volatility decreasing, this would cause the hedge to breakdown. A 4-month return 

profile is shown in Figure 65 with the details given in Table A-5.  

 

There is some downside protection evident with the covered convertible call hedge 

offering a return of -10.6% relative to the unhedged convertible return of –15.8%. As 

the CB moves into the money the profits from the hedge are eroded with the unhedged 

convertible yielding 17.5% and the covered convertible call hedge yielding 12.5% at 

72.60. 
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Figure 65 – Convertible covered call write hedge vs. unhedged convertible bond for a selection of 

share prices showing downside protection but sacrificing upside potential relative to the 

convertible bond. 

 

As mentioned earlier the traditional convertible hedge involves longing the CB and 

shorting the stock, but if the arbitrageur has a negative view of the share price he can 

enhance the return by shorting call options on the underlying as well. This strategy is 

called the convertible stock hedge with call write overlay, and takes advantage of 

mean-reverting implied volatility in the written call option. This position once again 

takes a directional view for a short period of time assuming that the implied call 

volatility is trading above its expected value and the CB’s implied volatility. The 

assumption is that the implied call volatility will soon normalise by decreasing and the 
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implied CB volatility increase, with the share trading in a narrow price range. It may 

also be difficult to short additional stock when establishing or rebalancing the delta-

neutral hedge, justifying the call overlay hedge. As mentioned previously if the 

volatility skew were to widen or the share increase in value, this would erode the 

profit potential of the hedge. An example of the return profile under the call overlay 

hedge is given in Figure 66 with the corresponding details given in Table A-6. As can 

be seen there is more downside protection with a return of 0.1% when the share 

moves to 48.60 but this comes at a price with the upside yielding only 3.2% at 72.60 

compared to the unhedged convertible yielding 17.5%. 
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Figure 66 - Convertible covered call write with additional short stock hedge vs. unhedged 

convertible bond for a selection of share prices showing downside protection but sacrificing 

upside potential relative to the convertible bond. 

 

As previously discussed, when the share value drops to very low levels the CB 

experiences negative gamma and falls below its investment value. An out-the-money 

put option on the CB can be purchased quite cheaply to limit the downside risk should 

the share drop to these levels. As the strike price on the embedded call option in the 

CB is a moving target it would be difficult to decide at what share value the CB 

moves into the distressed zone so that a strike price for the put can be determined. 

Due to the negative gamma the delta reverses and starts moving up towards its 

maximum, which can be devastating to the return profile due to the equity correlation, 

and rebalancing required. As such using a put strategy is very effective since it is 
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perfectly correlated to the stock but lacks all the credit risk ensuring that rebalancing 

produces short stock gains and downside protection. The upside is of course the same 

but decreased by the put option premium. Criteria to lookout for, for this hedge is 

whether  

 

• The CB has low downside gamma risk,  

• High volatility,  

• Good yield carry,  

• High liquidity with low implied put option volatility and  

• The CB is of low-grade78 but not trading in the distressed zone just yet, with a 

pessimistic view on the share price.  

 

The risks are that if the put options strike is calculated incorrectly or below the level 

needed to prevent a loss, it could seriously reduce the overall returns of the strategy. 

The return profile is illustrated in Figure 67 with the detail shown in Table A-7. The 

return profile is similar to the covered convertible call write with short stock but a 

little more risky due to the lower downside return of –3.1% but higher upside return 

of 6.4%. 

 

 

 

                                                 

78 Investment grade issues can also be considered but generally speaking there is little chance of these 

issues defaulting, although if the arbitrageur has a strong equity support team with convincing evidence 

of a possible default, then an opportunity may arise. 
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Figure 67 - Convertible covered long put with additional short stock hedge vs. unhedged 

convertible bond for a selection of share prices showing downside protection but sacrificing 

upside potential relative to the convertible bond. 

 

The option hedging techniques offer great opportunities depending on the risk appetite 

and level of conviction of the arbitrageur. As can be seen from all these hedging 

strategies, the greater the upside potential, the greater the downside risk and vice 

versa. Taking on additional risk has its consequences if the market moves against the 

position, as such it is critical to do substantial research and develop a reasonable basis 

before constructing a hedging strategy. The reader should bear in mind that these are 

not the only hedging strategies that exist, but only a few of the most popular ones. In 

reality there are numerous hedging strategies that exist. 

 

After explaining the various CB models and hedging strategies, one asks the question 

as to which of the models is the most reliable. As such a comparison of several 

models is presented relative to actual market prices of a traded CB. The firm value 

models were not included due to the predicament of finding an accurate firm asset 

value.  
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10. Numerical Results 

In the final Chapter a comparison of the accuracy of several models is done. The 

Barclays CB is used as the benchmark. Section 10.1 describes how the precision of 

each model is determined with 10.2 giving the results. 

 

10.1 Description 

A good starting block to assess the accuracy of the above models is by testing their 

estimates against actual data. The convertible bond that will be used is the Barclays 

issue introduced in Chapter 6. The models used to obtain estimate values are, the 

Margrabe American Exchange (MAE), Tsiveriotis and Fernandes (TF), Tsiveriotis 

and Fernandes with k-factor (TFk), Hung and Wang (HW), Goldman-Sachs (GS) and 

the Component Exchange with Coupon and Credit (CompEx). The inputs for the 

models can be found in the Appendix A3. To evaluate the accuracy of each model the 

average absolute pricing error (AAPE) defined as 
1

/
n

i i

i

X O n
=

−∑ will be used, where 

Xi is the model output, Oi is the observed value for the CB in the modulus and n is the 

number of observations. It can be viewed as the standard deviation of the differences 

between the predicted and actual outcomes. The model with the lowest AAPE should 

be the most accurate according to this crude evaluation technique. The results are 

given below in Table 11. 

 

Model AAPE (%) 

MAE 41.0 

GS 16.5 

CompEx 8.3 

HWk 5.5 

TF 4.6 

TFk 4.4 

HW 3.8 

 

Table 11 - AAPE of the various CB models relative to the Barclays issue. 
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10.2 Results 

The GS and CompEx models are shown in Figure 68 with the GS model 

underestimating with an AAPE of 16.5% which is substantial, but it could be because 

the credit spread is a little high increasing the risky discount rate. The bond is trading 

in the debt zone so is most likely using this higher rate to discount the cash flows. The 

CompEx model provides a better estimate with an AAPE of 8.3%, mostly with 

overestimation. The improvement is due to the calibration of the term structure of 

interest rates and credit spreads to a one-factor Vasicek interest rate model, with the 

overestimation due to the separation of the straight bond and exchange option, which 

causes additional premium of the CB. This also applies to the MAE model in Figure 

69, which shows the large overestimation with an AAPE of 41.0%. The TF model 

(Figure 70) like the MAE and CompEx model also overestimates although improves 

the pricing estimate with an average absolute pricing error of 4.6%. This is a little 

peculiar seen as the GS model uses a smoothing discount rate whereas the TF model 

uses either the risk-free or risky rate for discounting, and as such should cause the CB 

price to be lower than the GS model. A possible explanation is that due to the 

decoupling PDEs that separate the CB into a cash-only part (equity) and debt part, the 

equity part is being weighted a little more and so increasing the CB value because of 

the lower risk-free interest rate. The TFk improves upon this slightly with an AAPE of 

4.4% as can be seen in  

 

Figure 70. This seems to suggest that the inclusion of the k-factor credit spread has 

improved the estimation on average by 0.2%. The HW model in Figure 71 gives the 

best results with an AAPE of 3.8%, although the HFk actually increases the AAPE to 

5.5% so that the incorporation of the k-factor into the HW model does not improve the 

accuracy. The pricing improvements in the HW model can be anticipated because of 

the implied default probabilities calibrated from the market term structure. It is 

interesting to note how the models move in tandem with the share value, which 

emphasizes the importance of the share price as a dominant factor in the CB. Another 

observation with respect to the TF and HW models is that the inclusion of the k-factor 

decreases the value of the model output with respect to the TFk and HWk models. 

This is even more prevalent when the share value drops to the trigger share value of 

18.90, between Aug 05 to Dec 05 and after Nov 07. During this period the TFk and 

 
 
 



 

 177

HWk models underestimate quite substantially from the TF and HW models 

respectively, because of the higher risky discount rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 68 - Time series of the Barclays CB vs. the CompEx and GS models, including the 

underlying share price in euros. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 69– Time series of the Barclays CB vs. the MAE model, including the underlying share 

price in euros. 
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Figure 70 - Time series of the Barclays CB vs. the TF and TFk models, including the underlying 

share price in euros. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 71 - Time series of the Barclays CB vs. the HW and HWk models, including the 

underlying share price in euros. 
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Conclusion 

Convertible bonds can be an extremely rewarding asset class if the inherent risks and 

trading strategies are managed correctly. Since a forecast of the convertible bonds 

return is required to see if the hedge/trading strategy provides satisfactory 

performance, the accuracy of the model used in these forecasts is vital. In this 

dissertation a variety of CB models have been reviewed from the most basic 

piecewise models, to more complex models that deal with credit and default risk. 

 

The simple piecewise models that value the CB as a straight bond plus call option are 

easy to compute and implement and provide an estimate value for the CB, but their 

downfall is the fact that the strike value of the embedded call option is fixed and that 

the bond and option components can each be traded separately, thus constantly over-

estimating the value of the CB79. The MEE and MAE models use an exchange option 

instead of a call option, which corrects the fixed strike value, by using a floating strike 

instead. However these models also assume that the components trade separately once 

again over-estimating the CB price. They also assume that the straight bond follows a 

lognormal distribution which is a little subjective and in addition do not account for 

embedded call and put options. The Component model improves on this by allowing 

embedded call and put options, with some default risk as well, but is much more 

difficult to implement due to the large amount of inputs required including a 

Voluntary Conversion Date which is tricky to approximate. A desirable property of 

these piecewise models however, is the inclusion of correlation between interest rates 

and share prices, which have shown to cause a significant impact on the CB price. 

 

Next a binomial interest rate tree is calibrated to a given term structure using the BDT 

and more precise Arrow-Debreu techniques. This is required for the equity valuation 

models beginning with the Quadrinomial tree model which improves the CB price by 

taking into account share price and interest rate correlation, the stochastic nature of 

interest rates, and treating the CB as a single financial security; although as shown in 

Chapter 5.2, the volatility of interest rates do not play a dominant role in the value of 

                                                 

79 This is because the straight bond and embedded option in a single convertible bond will more often 

than not cost less than the sum of the individual components. 
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the CB. The downfall of this model is that credit risk is introduced in a very simplistic 

manner by using a constant credit spread to rollback through time. The TF model 

provides a more robust model by using a decoupled PDE approach breaking the CB 

into a debt and equity part and discounting each part with a risky and risk-free interest 

rate respectively. This improves on the credit risk aspect but does not specify what 

happens to the share value upon default and assumes the share price is unaffected. The 

GS model uses a blended discount rate dependent on the probability of conversion, 

which gives results very similar to the TF model but once again the share price is 

unaffected upon default. The AFV and HW models take default risk into account by 

specifying exactly what happens to the share price upon default and thereby improve 

the estimation of the CB, especially for low share values where default risk increases. 

These models also incorporate the negative convexity that becomes evident for low 

share values. An improvement to the TF model was also discussed that included a 

stochastic credit spread dependent upon the level of the share value (k-factor credit 

spread model), which also facilitated in the negative convexity. This increased the 

results of the TFk model to some degree, but not incorporating any default risk is seen 

as a downfall. The major advantage of the equity and structural models is that they 

value the CB as a single security thereby increasing the accuracy of the estimates. 

 

The structural models described consisted of the Tan and Cai model and the Gheno 

model. These models use the firm value as the explanatory variable and incorporate 

default risk by using a barrier approach ascribing to the fact that the firm will default 

if the debt value of the firm rises above its asset value. Although this approach does 

have its advantages in that it takes into account the negative convexity of the CB, 

finding data on the firms’ asset returns and asset volatility is a difficult prospect and 

so calibration becomes a problem. The calibration of the asset value trees using the 

volatility structure of options trading in the market is a real plus for the Gheno model 

but getting reliable values for the inputs in the model is questionable.  Also the other 

securities issued by the firm have to be modelled as well, thereby reducing the 

tractability of this approach. As such only the basics of these models were discussed. 

 

Convertible arbitrage has become a popular hedging strategy and as such a few 

important strategies have been highlighted from the basic delta hedge to more creative 
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gamma and option hedging techniques. Also included is some incite into the “Greeks” 

of convertible bonds such as the delta, gamma, theta, rho and omicron. 

 

The above CB models capture the important factors, namely credit risk, default risk 

and calibration but improvements can be made. One such is the negative convexity or 

gamma that occurs when the CB is in the distressed debt phase. Although 

incorporation of credit risk does make it clear that the CB value drops below an 

equivalent straight bond value during this phase80, its drop in value is not as dramatic 

as observed in real world situations. A superior model should take this subordination 

factor into account as was illustrated by the TFk, HW, Tan and Cai and AFV models. 

The correlation between the interest rates and share price is also an important 

parameter to consider in developing these models. The piecewise and Quadrinomial 

model take this into account but the other equity and structural models should also 

account for this. Another assumption that can be reviewed is the conversion option. In 

all these models when the conversion value is above the CB price it is assumed that 

all investors81 will convert at that time (block conversion). In reality it is not true since 

there are sequential conversion dates as described by Bühler and Koiziol [16], where 

only a percentage of investors will choose to convert. The other investors choose to 

receive the coupon payments associated with the bond to enhance their returns and 

convert later. 

 

With the introduction of hybrid securities the gap between debt and equity is 

becoming narrower. These new instruments are difficult to value and require a 

mixture of both debt and equity methodologies. As financial markets become more 

sophisticated with this relatively new asset class, additional concepts and approaches 

will arise assisting in the development of more accurate valuation models. Monte 

Carlo simulation is proving to be a popular method for valuing securities with 

uncertain income streams such as American-style options. In essence it requires 

knowledge of the distribution of the random variables being modelled, so that 

thousands of samples from the distribution can be drawn. Once these samples have 

                                                 

80 This can be seen with the Hung and Wang Default Risk model 

81 The assumption made is that all investors behave rationally and choose to maximize the value of 

their convertible bond holdings. 
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been drawn numerous paths of the underlying variables can be simulated. The present 

value of the security is calculated along each of these numerous paths82 with the final 

value being given as the average of the paths. The simulation approach is well suited 

for modelling discrete coupon and dividend payments, for including realistic 

dynamics of the underlying state variables, and for taking into account path-dependent 

call features83. As mentioned by Ammann, Kind and Wilde [2] another advantage is 

that “the relationship between the number of state variables and computing time is 

almost linear in our Monte Carlo framework and this can become advantageous when 

multiple state variables need to be modelled.” Of late there has been an extensive 

literature review on using Monte Carlo simulation to value convertible bonds, In the 

meantime separating the asset into debt and equity parts amid appropriate discount 

rates, with credit spread sensitivity and default risk, seems to be the latest instalment.  

 

                                                 

82 The usual interim and final boundary conditions will apply throughout the life of the security to 

calculate its value along each simulated path. 

83 An example of path dependency may arise due to early redemption only being allowed when the 

share price is above a pre-specified barrier for 20 out of the last 30 days. 
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Appendix 

A1 – Parameter Set 1 

Stock 

Share price volatility 11% 

Risk-free rate 7.00% 

Dividend rate 2.50% 

Bond 

Face value 100.00 

Bond yield 10.00% 

Conversion Ratio 2 

Coupon rate 8.00% 

Coupon frequency 2 

Recovery rate 32% 

Call/Put None 

No. of time steps 35 

Margrabe Parameters 

Continuous coupon 7.84% 

Final redemption ratio 1 

Bond price volatility 5% 

Correlations 

Share / Interest rates -0.2 

Interest rates / Credit spreads -0.3 

Share / Credit spreads 0.15 

Vasicek – Interest Rates 

Initial r 6.50% 

Theta -r 7.85% 

Kappa -r 0.14 

Sigma – r 0.24% 

Vasicek – Spreads 

Initial s 0.65% 

Theta -s 0.79% 

Kappa -s 0.14 

Sigma – s 0.24% 

Safety Premium (K) 1.05 

Voluntary Conversion Date (T*
2) 6 years 
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A2 – Derivation of Risk Neutral Measure with Default Risk 

 

We are going to first assume that the risk-neutral probability measure is given by 
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, which is when the firm is in default, no default share 

moves up and no default share moves down respectively. If further we know that the 
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By constructing the following portfolio we can prove that the above risk-neutral 

measure holds true: 

 

• Long a risky bond with a value of x in one year 

• Short a riskless bond with a value of y in one year 

• Long ∆ shares of stock 

 

Since we want to replicate the payoffs of the CB we must have that in each state the 

portfolio is equal to the CB, thus: 
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 u uS y x g∆ − + =  (A.2) 

 d dS y x g∆ − + =  (A.3) 

 
default

x y gδ − = . (A.4) 

 

Solving for ∆ using equations (A.2) and (A.3), we have that 

  

 u d

u d

g g

S S

−
∆ =

−
, (A.5) 

 

Substituting (A.4) into (A.5) and solving for x gives us 

 

 
1

u default u
g g S

x
δ

− − ∆
=

−
. (A.6) 

 

The value of the portfolio at t=0 is given by: 

 

 f b
r t r t

V S ye xe
− ∆ − ∆= ∆ − + . (A.7) 

 

Substituting equation (A.4) into (A.7) implies 

 

 f fb
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Replacing x with equation (A.6) into (A.8) leads to 
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Assuming that the expected cash flows of a risky bond is equal to its face value 

discounted at the risky rate; we must have the following equation, 
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Subtracting fr t
e

− ∆
from both sides of (A.10) and simplifying the LHS 

 

 ( )( )1 1f f b
r t r t r t

e e eδ λ δ
− ∆ − ∆ − ∆− − = + . (A.11) 

 

Inserting equation (A.11) into (A.9) and simplifying, we have 

 

 ( ) ( )1 f fr t r t

u u defaultS g S e g eλ λ
− ∆ − ∆

∆ + − ∆ − + . (A.12) 

 

Finally inserting equation (A.5) for ∆ and rearranging terms proves our risk-neutral 

measure, which is equal to (A.1), 

 

    ( )1f fr t r tu d d u
default

g g ug dg
e e g

u d u d
λ λ

− ∆ − ∆− − 
+ − + 

− − 
 .             (A.13) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



 

 v

A3 - Parameter Set 2  

 

Stock 

Share price volatility 30% 

Risk-free rate 4.35% 

Dividend rate 0.23% 

Bond 

Face value 100 

Bond yield 4.50% 

Coupon rate 0.50% 

Coupon frequency 2 

Recovery rate 40% 

No. of time steps 30 

Margrabe Parameters 

Continuous coupon 0.5% 

Final redemption ratio 1 

Bond price volatility 5% 

Correlations 

Share / Interest rates -0.2 

Interest rates / Credit spreads -0.3 

Share / Credit spreads 0.15 

Vasicek – Interest Rates 

Initial r 3.81% 

Theta -r 4.85% 

Kappa -r 0.14 

Sigma – r 0.24% 

Vasicek – Spreads 

Initial s 0.38% 

Theta -s 0.48% 

Kappa -s 0.14 

Sigma – s 0.24% 

Credit Spreads 

Current Spread (bps) 400 

Min Spread (bps) 200 

Trigger Share Price 25 

k-factor 1.5 

Safety Premium (K) 1.05 

Voluntary Conversion Date (T*
2) 24 March 2010 
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A4 – Yield Curve for Quadrinomial Tree Model (Chapter 5) 

 

Term (Year) Spot Curve Spot Curve + Scenario Forward Rates (1-period)

0 8.70% 8.70% 0 8.70%

1 9.08% 9.08% 1 0.00%

2 8.79% 8.79% 2 0.00%

3 8.33% 8.33% 3 0.00%

4 8.06% 8.06% 4 0.00%

5 7.97% 7.97% 5 0.00%

6 7.96% 7.96% 6 0.00%

7 7.94% 7.94% 7 0.00%

8 7.91% 7.91% 8 0.00%

9 7.86% 7.86% 9 0.00%

10 7.80% 7.80% 10 0.00%

11 7.73% 7.73% 11 0.00%

12 7.70% 7.70% 12 0.00%

13 7.61% 7.61% 13 0.00%

14 7.54% 7.54% 14 0.00%

15 7.47% 7.47% 15 0.00%

16 7.41% 7.41% 16 0.00%

17 7.36% 7.36% 17 0.00%

18 7.31% 7.31% 18 0.00%

19 7.26% 7.26% 19 0.00%

20 7.22% 7.22% 20 0.00%

21 7.18% 7.18% 21 0.00%

22 7.15% 7.15% 22 0.00%

23 7.12% 7.12% 23 0.00%

24 7.09% 7.09% 24 0.00%

25 7.06% 7.06% 25 0.00%

26 7.04% 7.04% 26 0.00%

27 7.02% 7.02% 27 0.00%

28 6.99% 6.99% 28 0.00%

29 6.98% 6.98% 29 0.00%

30 6.96% 6.96% 30 0.00%

31 6.94% 6.94% 31
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A5 – Convertible Arbitrage Return Breakdown 

 

Hedge Ratio 0.54

Risk-Free Rate 7%

Risk Tolerance 0.7

Curr Implied Vol 10%

End Implied Vol 10%

t=5 t=6 t=5

Downside Trigger 

Price
Current Price Upside Trigger Price

Share Price 35.00                        -30% 50.00                   30% 65.00                             

CB Price 97.77                        131.84                 158.30                           

Delta 0.28                          0.77                     0.87                               

Gamma 0.040                        0.013                   0.002                             

Vega 0.246                        0.199                   0.037                             

Long Bonds 100.00                      bonds @ 131.84                 Total invest 13,183.93                      

Borrow -                           Net invest 13,183.93                      

Short Stock -141.00                    shares @ 53.00                   -7,473.00                       

P/L CB -3,407.35                  -                       2,646.21                        

P/L Share 2,115.00                   -                       -2,115.00                       

CB Income 800.00                      800.00                 800.00                           

Share Div -                           -                       -                                 

Short Credit Int 375.06                      523.11                 671.16                           

Margin Int -                           -                       -                                 

Total P/L -117.29                    1,323.11              2,002.37                        

Bullish Gamma Tilt -0.89% 10.04% 15.19%

Unhedged CB -19.78% 6.07% 26.14%  

 

Table A- 1 – Return breakdown of a bullish gamma hedge, without leverage, when the share 

price increases and decreases by 30%. 

 

Hedge Ratio 0.54

Risk-Free Rate 7%

Risk Tolerance 0.7

Curr Implied Vol 10%

End Implied Vol 10%

t=5 t=6 t=5

Downside 

Trigger Price
Current Price

Upside Trigger 

Price

Share Price 35.00                -30% 50.00             30% 65.00                    

CB Price 97.77                131.84           158.30                  

Delta 0.28                  0.77               0.87                      

Gamma 0.040                0.013             0.002                    

Vega 0.246                0.199             0.037                    

Long Bonds 100.00              bonds @ 131.84           Total invest 13,183.93             

Borrow 85% of LMV @ 7% 11,206.34      Net invest 1,977.59               

Short Stock -141.00             shares @ 53.00             -7,473.00              

P/L CB -3,407.35          -                 2,646.21               

P/L Share 2,115.00           -                 -2,115.00              

CB Income 800.00              800.00           800.00                  

Share Div -                    -                 -                       

Short Credit Int 375.06              523.11           671.16                  

Margin Int -784.44             -784.44          -784.44                 

Total P/L -901.74             538.67           1,217.92               

Bullish Gamma Tilt 

(with leverage)
-45.60% 27.24% 61.59%

Unhedged CB -19.78% 6.07% 26.14%  

 

Table A- 2 - Return breakdown of a bullish gamma hedge, with leverage, when the share price 

increases and decreases by 30%. 
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Hedge Ratio 1.00

Risk-Free Rate 7%

Risk Tolerance 1.3

Curr Implied Vol 10%

End Implied Vol 10%

t=5 t=6 t=5

Downside Trigger 

Price
Current Price Upside Trigger Price

Share Price 35.00                        -30% 50.00                   30% 65.00                             

CB Price 97.77                        131.84                 158.30                           

Delta 0.28                          0.77                     0.87                               

Gamma 0.040                        0.013                   0.002                             

Vega 0.246                        0.199                   0.037                             

Long Bonds 100.00                      bonds @ 131.84                 Total invest 13,183.93                      

Borrow -                           Net invest 13,183.93                      

Short Stock -262.00                    shares @ 53.00                   -13,886.00                     

P/L CB -3,407.35                  -                       2,646.21                        

P/L Share 3,930.00                   -                       -3,930.00                       

CB Income 800.00                      800.00                 800.00                           

Share Div -                           -                       -                                 

Short Credit Int 696.92                      972.02                 1,247.12                        

Margin Int -                           -                       -                                 

Total P/L 2,019.57                   1,772.02              763.33                           

Bearish Gamma Tilt 15.32% 13.44% 5.79%

Unhedged CB -19.78% 6.07% 26.14%  

 

Table A- 3 - Return breakdown of a bearish gamma hedge, without leverage, when the share 

price increases and decreases by 30%. 

 

Hedge Ratio 1.00

Risk-Free Rate 7%

Risk Tolerance 1.3

Curr Implied Vol 10%

End Implied Vol 10%

t=5 t=6 t=5

Downside 

Trigger Price
Current Price

Upside Trigger 

Price

Share Price 35.00                -30% 50.00             30% 65.00                    

CB Price 97.77                131.84           158.30                  

Delta 0.28                  0.77               0.87                      

Gamma 0.040                0.013             0.002                    

Vega 0.246                0.199             0.037                    

Long Bonds 100.00              bonds @ 131.84           Total invest 13,183.93             

Borrow 85% of LMV @ 7% 11,206.34      Net invest 1,977.59               

Short Stock -262.00             shares @ 53.00             -13,886.00            

P/L CB -3,407.35          -                 2,646.21               

P/L Share 3,930.00           -                 -3,930.00              

CB Income 800.00              800.00           800.00                  

Share Div -                    -                 -                       

Short Credit Int 696.92              972.02           1,247.12               

Margin Int -784.44             -784.44          -784.44                 

Total P/L 1,235.12           987.58           -21.12                   

Bearish Gamma Tilt 

(with leverage)
62.46% 49.94% -1.07%

Unhedged CB -19.78% 6.07% 26.14%  

 

Table A- 4 – Return breakdown of a bearish gamma hedge, with leverage, when the share price      

increases and decreases by 30%. 
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Price 60

Volatility 10%

Delta 0.84

Risk-Free Rate 7.00%

Dividend Yield 2.50%

Price 152.86

Quantity 100 Share Price 48.6 54.0 60.0 66.0 72.6

Adj. Strike 14.093

CB Price 128.68 140.88 153.92 166.23 179.63

Price 35.08 % Chg CB -15.8% -7.8% 0.7% 8.7% 17.5%

Quantity 65

Strike 25 Call Price 23.60 29.00 35.00 41.00 47.60

Time to Expiration 0.33 % Chg Call -32.7% -17.3% -0.2% 16.9% 35.7%

Implied Vol 10%

P&L Convertible -2418.84 -1198.22 105.99 1336.57 2676.55

Risk Tolerance 0.6 Short Interest 53.20 53.20 53.20 53.20 53.20

Share Move 10% P&L Call 746.02 395.04 5.07 -384.91 -813.88

Hedge Ratio 0.50 Total P&L -1619.62 -749.98 164.27 1004.87 1915.88

Holding Period 0.331

Start (time to mat) 6.00 ROI -10.6% -4.9% 1.1% 6.6% 12.5%

End (time to mat) 5.67 Annualized -20.1% -9.6% 2.2% 13.6% 26.6%

Common Stock

Short Call

Convertible Bond

 

 

Table A- 5 - Return breakdown of a convertible covered call write strategy when share price 

increases and decreases by 10% and 20%. 

 

Price 60

Quantity 128

Volatility 10%

Delta 0.84

Risk-Free Rate 7.00%

Dividend Yield 2.50%

Share Price 48.6 54.0 60.0 66.0 72.6

Price 152.86 % Chg Share -19.0% -10.0% 0.0% 10.0% 21.0%

Quantity 100

Adj. Strike 14.093 CB Price 128.68 140.88 153.92 166.23 179.63

% Chg CB -15.8% -7.8% 0.7% 8.7% 17.5%

Price 35.08

Quantity 65 Call Price 23.60 29.00 35.00 41.00 47.60

Strike 25 % Chg Call -32.7% -17.3% -0.2% 16.9% 35.7%

Time to Expiration 0.33

Implied Vol 10% P&L Convertible -2418.84 -1198.22 105.99 1336.57 2676.55

Short Interest 232.40 232.40 232.40 232.40 232.40

Risk Tolerance 0.6 P&L Call 746.02 395.04 5.07 -384.91 -813.88

Share Move 10% P&L Share 1459.20 768.00 0.00 -768.00 -1612.80

Hedge Ratio 0.50 Total P&L 18.78 197.22 343.47 416.07 482.28

Holding Period 0.33

Start (time to mat) 6.00 ROI 0.1% 1.3% 2.2% 2.7% 3.2%

End (time to mat) 5.67 Annualized 0.2% 2.6% 4.5% 5.5% 6.4%

Short Stock

Convertible Bond

Short Call

 

 

Table A- 6 - Return breakdown of a convertible covered call write strategy, with a short stock 

position when share price increases and decreases by 10% and 20%. 
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Price 60

Quantity 152

Volatility 10%

Delta 0.99

Risk-Free Rate 7.00%

Dividend Yield 2.50%

Share Price 48.6 54.0 60.0 66.0 72.6

Price 152.86 % Chg Share -19.0% -10.0% 0.0% 10.0% 21.0%

Quantity 100

Adj. Strike 14.093 CB Price 128.68 140.88 153.92 166.23 179.63

% Chg CB -15.8% -7.8% 0.7% 8.7% 17.5%

Price 0.000

Quantity 90 Put Price 0.00 0.00 0.00 0.00 0.00

Strike 25 % Chg Put -100.0% -100.0% -100.0% -100.0% -100.0%

Time to Expiration 0.33

Implied Vol 10% P&L Convertible -2418.84 -1198.22 105.99 1336.57 2676.55

Short Interest 212.80 212.80 212.80 212.80 212.80

Risk Tolerance 0.6 P&L Put 0.00 0.00 0.00 0.00 0.00

Share Move 10% P&L Share 1732.80 912.00 0.00 -912.00 -1915.20

Hedge Ratio 0.59 Total P&L -473.24 -73.42 318.79 637.37 974.15

Holding Period 0.33

Start (time to mat) 6.00 ROI -3.1% -0.5% 2.1% 4.2% 6.4%

End (time to mat) 5.67 Annualized -6.1% -1.0% 4.2% 8.5% 13.2%

Long Put

Short Stock

Convertible Bond

 

 

Table A- 7 - Return breakdown of a convertible covered long put strategy, with a short stock 

position when share price increases and decreases by 10% and 20%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



 

 xi

A6 – VBA source code for several convertible bond models 

A6.1 Tsiveriotis and Fernandes model  

 
Option Explicit 
 
'//Valuation of Convertible Bond 
    'Parameters: 
    'S_0: Stock Price at time 0 
    'Sigma: volatility of stock price 
    'IntRate: risk free rate 
    'IntRateRisky: required bond yield (to discount debt component of CB) 
    ' DividendRateContinuous: dividend rate p.a. (for cont dividend model) 
    'Conversion_Ratio: number of stocks per face value CB 
    'Maturity: time to CB maturity 
    'Face Value CB 
    'Coupon_rate (total annual %) 
    'Coupon Frequency p.a. 
    'Call_Value (optional): value at which bond can be called by another company (at any time) 
    'Put_Value (optional): value at which bond can be redeemed by holder (at any time) 
    'Call_Start_Time (optional): when the call option becomes active 
    'Put_Start_Time (optional): when the put option becomes active 
     
    'No_t_Steps(optional): number of discrete t steps in grid 
    'Optional AmeEurFlag: European("e") - default or American "a" with early conversion option possible. 
    '"InitialNoConversionPeriod: if American exercise option, time at which early exercise begins 
     
    'Version (optional) 
    '-"Full": full tree with 
    '1st Row: stock price 
    '2nd row: equity component (if CB is converted) 
    '3rd row: debt component (if CB is NOT converted) 
    '4th row: value of CB 
    '-"Node": all components of initial node omitted or any value - CB value only 
 
'********************************************************************************************************** 
 
Function ConvertibleBinomial( _ 
        S_0 As Double, _ 
        sigma As Double, _ 
        IntRate As Double, _ 
        IntRateRisky As Double, _ 
        DividendRateContinuous As Double, _ 
        Conversion_Ratio As Single, _ 
        Maturity As Double, _ 
        Face_value As Double, _ 
        coupon_rate As Double, _ 
        Optional coupon_frequency As Integer = 1, _ 
        Optional call_value As Double = 0, _ 
        Optional put_value As Double = 0, _ 
        Optional No_t_Steps As Single, _ 
        Optional AmeEurFlag As String = "e", _ 
        Optional InitialNoConversionPeriod As Double, _ 
        Optional Version As String = "", _ 
        Optional Call_Start_Time As Double = 0.00000001, _ 
        Optional Put_Start_Time As Double = 0.00000001) 
         
On Error GoTo error_handling 
Dim u As Double, D As Double, p As Double 
Dim ConversionValue As Double 
Dim delta_t As Double, df As Double, DfRisky As Double 
Dim coupon_time As Double, i As Integer, k As Integer 
 
ReDim nodevalue(0 To No_t_Steps, 0 To No_t_Steps, 0 To 2) 
 
'defining parameters tobe used 
delta_t = Maturity / No_t_Steps 
u = Exp(sigma * Sqr(delta_t)) 
D = 1 / u 
p = (Exp((IntRate - DividendRateContinuous) * delta_t) - D) / (u - D) 
df = Exp(-(IntRate - DividendRateContinuous) * delta_t): DfRisky = Exp(-IntRateRisky * delta_t) 
 
'Set up vector of PV of coupons to be added to the debt component to particular column of the tree 
ReDim coupon_schedule(0 To No_t_Steps) 
coupon_schedule(No_t_Steps) = coupon_rate / coupon_frequency 
coupon_time = Maturity - 1 / coupon_frequency 
For k = No_t_Steps - 1 To 0 Step -1 
    Do While coupon_time >= k * delta_t And coupon_time > 0 
        coupon_schedule(k) = coupon_schedule(k) + _ 
        Exp(-IntRateRisky * (coupon_time - k * delta_t)) * _ 
        coupon_rate / coupon_frequency 
    coupon_time = coupon_time - 1 / coupon_frequency 
    Loop 
Next k 
'initialize final (right) nodes of tree 
For i = 0 To No_t_Steps 
    nodevalue(i, No_t_Steps, 0) = S_0 * u ^ i * D ^ (No_t_Steps - i) 
    ConversionValue = Conversion_Ratio * nodevalue(i, No_t_Steps, 0) / Face_value 
    If ConversionValue > 1 + coupon_schedule(No_t_Steps) Then 
        nodevalue(i, No_t_Steps, 1) = ConversionValue ' set final equity values 
    Else 
        nodevalue(i, No_t_Steps, 2) = 1 + coupon_schedule(No_t_Steps) ' set final debt values 
    End If 
Next i 
             
'Loop thru tree back 
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For k = No_t_Steps - 1 To 0 Step -1 
    For i = 0 To k 
        nodevalue(i, k, 0) = S_0 * u ^ i * D ^ (k - i) 
        ConversionValue = Conversion_Ratio * nodevalue(i, k, 0) / Face_value 
         
            nodevalue(i, k, 1) = (p * nodevalue(i + 1, k + 1, 1) + _ 
                                 (1 - p) * nodevalue(i, k + 1, 1)) * df 'Equity component 
            nodevalue(i, k, 2) = coupon_schedule(k) + _ 
                                 (p * nodevalue(i + 1, k + 1, 2) + _ 
                                 (1 - p) * nodevalue(i, k + 1, 2)) * DfRisky 'Debt component 
                             
            'If American and inside the early exercise window, check whther early conversion increases value 
            If AmeEurFlag = "a" And InitialNoConversionPeriod <= k * delta_t Then 
             
                If ConversionValue > (nodevalue(i, k, 1) + nodevalue(i, k, 2)) Then 
                    nodevalue(i, k, 1) = ConversionValue          'Equity component 
                    nodevalue(i, k, 2) = 0                        'Debt component 
                End If 
            End If 
 
            'Test whether company should call the bond, i.e. force conversion 
            'call if... 
            '-conversion value exceeds the call value 
            '-the CB value at particular node exceeds the conversion value 
            '- cannot call at time 0 or maturity & only after start time 
            'NOTE: The TF model treats the call as equity part, not debt part,whereas the put is treated as debt 
            If (call_value > 0) And ConversionValue > call_value And k > 0 _ 
                                And (nodevalue(i, k, 1) + nodevalue(i, k, 2)) > ConversionValue _ 
                                And InitialNoConversionPeriod <= k * delta_t _ 
                                And delta_t * k >= Call_Start_Time Then 
                            nodevalue(i, k, 1) = ConversionValue  'Equity component 
                            nodevalue(i, k, 2) = 0                'Debt component 
            ElseIf (call_value > 0) And (nodevalue(i, k, 1) + nodevalue(i, k, 2)) > call_value _ 
                                    And k > 0 And call_value > ConversionValue _ 
                                    And delta_t * k >= Call_Start_Time Then 
                            nodevalue(i, k, 1) = call_value    'Equity component 
                            nodevalue(i, k, 2) = 0             'Debt component 
            End If 
            'Test whether holder should put bond 
            'cannot put at time 0 or maturity & only after start time 
            If (put_value > 0) And (nodevalue(i, k, 1) + nodevalue(i, k, 2)) < put_value And k > 0 _ 
                               And delta_t * k >= Put_Start_Time And put_value > ConversionValue Then 
                            nodevalue(i, k, 1) = 0                'Equity component 
                            nodevalue(i, k, 2) = put_value        'Debt component 
            End If 
        Next i 
    Next k 
 
If Version = "Full" And No_t_Steps > 35 Then Version = "Node" 
 
Select Case Version 
Case "Full" 
    'initialize FullTree() - conditional formatting needs "" values to blank out non relevant cells 
    ReDim fulltree(0 To (4 * (No_t_Steps + 1) - 1), 0 To No_t_Steps) 
    For k = 0 To UBound(fulltree, 2) 
        For i = 0 To UBound(fulltree, 1) 
            fulltree(i, k) = "" 
        Next i 
    Next k 
 
    'write to FullTree() 
    For k = No_t_Steps To 0 Step -1 
        For i = 0 To k 
        fulltree(4 * (k - i), k) = nodevalue(i, k, 0) 
        fulltree(4 * (k - i) + 1, k) = nodevalue(i, k, 1) 
        fulltree(4 * (k - i) + 2, k) = nodevalue(i, k, 2) 
        fulltree(4 * (k - i) + 3, k) = nodevalue(i, k, 1) + nodevalue(i, k, 2) 
        Next i 
    Next k 
    ConvertibleBinomial = fulltree 
Case "Node" 
    ReDim initialnode(0 To 3) As Double 
    initialnode(0) = S_0 
    initialnode(1) = nodevalue(0, 0, 1) 
    initialnode(2) = nodevalue(0, 0, 2) 
    initialnode(3) = initialnode(1) + initialnode(2) 
    ConvertibleBinomial = Application.Transpose(initialnode) 
Case Else 
    ConvertibleBinomial = nodevalue(0, 0, 1) + nodevalue(0, 0, 2) 
End Select 
 
Exit Function 
error_handling: 
    ConvertibleBinomial = "Error #" & str(Err.Number) & "was generated by " _ 
        & Err.Source & Chr(13) & Err.Description 
 
End Function 

 
'find PV of coupons between the time ticks 
Function couponschedule(Maturity As Double, _ 
                        No_t_Steps As Double, _ 
                        delta_t As Double, _ 
                        coupon_rate As Double, _ 
                        coupon_frequency As Double, _ 
                        IntRateRisky As Double) 
                         
Dim coupon_time As Double, k As Integer, i As Integer 
ReDim coupon_schedule(0 To No_t_Steps) 
 
coupon_schedule(No_t_Steps) = coupon_rate / coupon_frequency 
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'check if coupon falls between 2 timeticks and if so discount to earlier time 
coupon_time = Maturity - 1 / coupon_frequency 
For k = No_t_Steps - 1 To 0 Step -1 
    Do While coupon_time >= k * delta_t And coupon_time > 0 
        coupon_schedule(k) = coupon_schedule(k) + _ 
        Exp(-IntRateRisky * (coupon_time - k * delta_t)) * _ 
        coupon_rate / coupon_frequency 
    coupon_time = coupon_time - 1 / coupon_frequency 
    Loop 
Next k 
                         
couponschedule = coupon_schedule 
End Function 

 
A6.2 Goldman-Sachs Conversion Probability Model 

Option Explicit 
 
'//Valuation of Convertible Bond using Goldman-Sachs Conversion Prob Tree 
    'Parameters: 
    'S_0: Stock Price at time 0 
    'Sigma: volatility of stock price 
    'IntRate: risk free rate 
    'IntRateRisky: required bond yield (to discount debt component of CB) 
    ' DividendRateContinuous: dividend rate p.a. (for cont dividend model) 
    'Conversion_Ratio: number of stocks per face value CB 
    'Maturity: time to CB maturity 
    'Face Value CB 
    'Coupon_rate (total annual %) 
    'Coupon Frequency p.a. 
    'Call_Value (optional): value at which bond can be called by another company (at any time) 
    'Put_Value (optional): value at which bond can be redeemed by holder (at any time) 
    'Call_Start_Time (optional): when the call option becomes active 
    'Put_Start_Time (optional): when the put option becomes active 
     
    'No_t_Steps(optional): number of discrete t steps in grid 
    'Optional AmeEurFlag: European("e") - default or American "a" with early conversion option possible. 
    '"InitialNoConversionPeriod: if American exercise option, time at which early exercise begins 
     
    'Version (optional) 
    '-"Full": full tree with 
    '1st Row: stock price 
    '2nd row: equity component (if CB is converted) 
    '3rd row: debt component (if CB is NOT converted) 
    '4th row: value of CB 
    '-"Node": all components of initial node omitted or any value - CB value only 
 
'********************************************************************************************************** 
 
Function ConvBinomial_Goldman( _ 
        S_0 As Double, _ 
        sigma As Double, _ 
        IntRate As Double, _ 
        IntRateRisky As Double, _ 
        DividendRateContinuous As Double, _ 
        Conversion_Ratio As Single, _ 
        Maturity As Double, _ 
        Face_value As Double, _ 
        coupon_rate As Double, _ 
        Optional coupon_frequency As Integer = 1, _ 
        Optional call_value As Double = 0, _ 
        Optional put_value As Double = 0, _ 
        Optional No_t_Steps As Single, _ 
        Optional AmeEurFlag As String = "e", _ 
        Optional InitialNoConversionPeriod As Double, _ 
        Optional Version As String, _ 
        Optional Call_Start_Time As Double = 0.00000001, _ 
        Optional Put_Start_Time As Double = 0.00000001) 
         
On Error GoTo error_handling 
Dim u As Double, D As Double, p As Double 
Dim ConversionValue As Double 
Dim delta_t As Double, df As Double, DfRisky_u As Double, DfRisky_d As Double 
Dim coupon_time As Double, i As Integer, k As Integer 
 
ReDim nodevalue(0 To No_t_Steps, 0 To No_t_Steps, 0 To 3) 
 
'defining parameters to be used 
delta_t = Maturity / No_t_Steps 
u = Exp(sigma * Sqr(delta_t)) 
D = 1 / u 
p = (Exp((IntRate - DividendRateContinuous) * delta_t) - D) / (u - D) 
 
'Set up vector of PV of coupons to be added to the debt component to particular column of the tree 
ReDim coupon_schedule(0 To No_t_Steps) 
coupon_schedule(No_t_Steps) = coupon_rate / coupon_frequency 
coupon_time = Maturity - 1 / coupon_frequency 
For k = No_t_Steps - 1 To 0 Step -1 
    Do While coupon_time >= k * delta_t And coupon_time > 0 
        coupon_schedule(k) = coupon_schedule(k) + _ 
        Exp(-IntRateRisky * (coupon_time - k * delta_t)) * _ 
        coupon_rate / coupon_frequency 
    coupon_time = coupon_time - 1 / coupon_frequency 
    Loop 
Next k 
'initialize final (right) nodes of tree 
For i = 0 To No_t_Steps 
    nodevalue(i, No_t_Steps, 0) = S_0 * u ^ i * D ^ (No_t_Steps - i) 
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    ConversionValue = Conversion_Ratio * nodevalue(i, No_t_Steps, 0) / Face_value 
    If ConversionValue > 1 + coupon_schedule(No_t_Steps) Then 
        nodevalue(i, No_t_Steps, 1) = ConversionValue ' set final values 
        nodevalue(i, No_t_Steps, 2) = 1  ' set final conversion prob to either 1 or 0 
        nodevalue(i, No_t_Steps, 3) = IntRate * nodevalue(i, No_t_Steps, 2) + _ 
                                      IntRateRisky * (1 - nodevalue(i, No_t_Steps, 2)) 'Conv adjusted discount rate 
    Else 
        nodevalue(i, No_t_Steps, 1) = 1 + coupon_schedule(No_t_Steps) ' set final values 
        nodevalue(i, No_t_Steps, 2) = 0  ' set final conversion prob to either 1 or 0 
        nodevalue(i, No_t_Steps, 3) = IntRate * nodevalue(i, No_t_Steps, 2) + _ 
                                      IntRateRisky * (1 - nodevalue(i, No_t_Steps, 2)) 'Conv adjusted discount rate 
    End If 
Next i 
             
'Loop thru tree backwards 
For k = No_t_Steps - 1 To 0 Step -1 
    For i = 0 To k 
        nodevalue(i, k, 0) = S_0 * u ^ i * D ^ (k - i) 
        ConversionValue = Conversion_Ratio * nodevalue(i, k, 0) / Face_value 
         
            nodevalue(i, k, 2) = p * nodevalue(i + 1, k + 1, 2) + _ 
                                 (1 - p) * nodevalue(i, k + 1, 2) 'Rollback Conversion Prob 
            nodevalue(i, k, 3) = IntRate * nodevalue(i, k, 2) + _ 
                                 IntRateRisky * (1 - nodevalue(i, k, 2)) 'Rollback Conversion Adj Discount Rate 
            DfRisky_u = Exp(-nodevalue(i + 1, k + 1, 3) * delta_t)       ' Prob adjusted discount rate (up) 
            DfRisky_d = Exp(-nodevalue(i, k + 1, 3) * delta_t)           ' Prob adjusted discount rate (down) 
            nodevalue(i, k, 1) = coupon_schedule(k) + _ 
                                 (p * DfRisky_u * nodevalue(i + 1, k + 1, 1) + _ 
                                 (1 - p) * DfRisky_d * nodevalue(i, k + 1, 1)) 'Rollback CB value 
                             
            'If American and inside the early exercise window, check whther early conversion increases value 
            If AmeEurFlag = "a" And InitialNoConversionPeriod <= k * delta_t Then 
             
                If ConversionValue > nodevalue(i, k, 1) Then 
                    nodevalue(i, k, 1) = ConversionValue          'Check for conversion 
                End If 
            End If 
 
            'Test whether company should call the bond, i.e. force conversion 
            'call if... 
            '-conversion value exceeds the call value 
            '-the CB value at particular node exceeds the conversion value 
            '- cannot call at time 0 or maturity & only after start time 
            If (call_value > 0) And ConversionValue > call_value And k > 0 _ 
                                And nodevalue(i, k, 1) > ConversionValue _ 
                                And InitialNoConversionPeriod <= k * delta_t _ 
                                And delta_t * k >= Call_Start_Time Then 
                            nodevalue(i, k, 1) = ConversionValue  'Converted 
            ElseIf (call_value > 0) And nodevalue(i, k, 1) > call_value _ 
                                    And k > 0 And call_value > ConversionValue _ 
                                    And delta_t * k >= Call_Start_Time Then 
                            nodevalue(i, k, 1) = call_value        'Called 
            End If 
            'Test whether holder should put bond 
            'cannot put at time 0 or maturity & only after start time 
            If (put_value > 0) And nodevalue(i, k, 1) < put_value And k > 0 _ 
                               And delta_t * k >= Put_Start_Time And put_value > ConversionValue Then 
                            nodevalue(i, k, 1) = put_value         'CB is Put by holder 
            End If 
        Next i 
    Next k 
 
If Version = "Full" And No_t_Steps > 35 Then Version = "Node" 
 
Select Case Version 
Case "Full" 
    'initialize FullTree() - conditional formatting needs "" values to blank out non relevant cells 
    ReDim fulltree(0 To (4 * (No_t_Steps + 1) - 1), 0 To No_t_Steps) 
    For k = 0 To UBound(fulltree, 2) 
        For i = 0 To UBound(fulltree, 1) 
            fulltree(i, k) = "" 
        Next i 
    Next k 
 
'check for immediate conversion 
nodevalue(0, 0, 1) = Application.Max(nodevalue(0, 0, 1), Conversion_Ratio * S_0 / Face_value) 
    'write to FullTree() 
    For k = No_t_Steps To 0 Step -1 
        For i = 0 To k 
        fulltree(4 * (k - i), k) = nodevalue(i, k, 0) 
        fulltree(4 * (k - i) + 1, k) = nodevalue(i, k, 3) 
        fulltree(4 * (k - i) + 2, k) = nodevalue(i, k, 2) 
        fulltree(4 * (k - i) + 3, k) = nodevalue(i, k, 1) 
        Next i 
    Next k 
    ConvBinomial_Goldman = fulltree 
Case "Node" 
    ReDim initialnode(0 To 3) As Double 
    initialnode(0) = S_0 
    initialnode(1) = nodevalue(0, 0, 3) 
    initialnode(2) = nodevalue(0, 0, 2) 
    initialnode(3) = Application.Max(initialnode(1), Conversion_Ratio * S_0 / Face_value) 
    ConvBinomial_Goldman = Application.Transpose(initialnode) 
Case Else 
    ConvBinomial_Goldman = Application.Max(nodevalue(0, 0, 3), Conversion_Ratio * S_0 / Face_value) 
End Select 
 
Exit Function 
error_handling: 
    ConvBinomial_Goldman = "Error #" & str(Err.Number) & "was generated by " _ 
        & Err.Source & Chr(13) & Err.Description 
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End Function 

 
A6.3 Tsiverotis and Fernandes k-factor model 

Option Explicit 
 
'//Valuation of Convertible Bond with k-factor credit spread methodology for negative convexity 
'at extremely low share values 
    'Parameters: 
    'S_0: Stock Price at time 0 
    'Sigma: volatility of stock price 
    'IntRate: risk free rate 
    'IntRateRisky: required bond yield (to discount debt component of CB) 
    ' DividendRateContinuous: dividend rate p.a. (for cont dividend model) 
    'Conversion_Ratio: number of stocks per face value CB 
    'Maturity: time to CB maturity 
    'Face Value CB 
    'Coupon_rate (total annual %) 
    'Coupon Frequency p.a. 
    'Call_Value (optional): value at which bond can be called by another company (at any time) 
    'Put_Value (optional): value at which bond can be redeemed by holder (at any time) 
    'Call_Start_Time (optional): when the call option becomes active 
    'Put_Start_Time (optional): when the put option becomes active 
     
    'No_t_Steps(optional): number of discrete t steps in grid 
    'Optional AmeEurFlag: European("e") - default or American "a" with early conversion option possible. 
    '"InitialNoConversionPeriod: if American exercise option, time at which early exercise begins 
     
    'Version (optional) 
    '-"Full": full tree with 
    '1st Row: stock price 
    '2nd row: equity component 
    '3rd row: debt component 
    '4th row: Risky discount rate (used to discount debt component) 
    '5th row: value of CB 
    '-"Node": all components of initial node omitted or any value - CB value only 
 
'********************************************************************************************************** 
 
Function ConvertibleBinomial_CreditSpread( _ 
        S_0 As Double, _ 
        sigma As Double, _ 
        IntRate As Double, _ 
        Credit_Spread As Object, _ 
        DividendRateContinuous As Double, _ 
        Conversion_Ratio As Single, _ 
        Maturity As Double, _ 
        Face_value As Double, _ 
        coupon_rate As Double, _ 
        Optional coupon_frequency As Integer = 1, _ 
        Optional call_value As Double = 0, _ 
        Optional put_value As Double = 0, _ 
        Optional No_t_Steps As Single, _ 
        Optional AmeEurFlag As String = "e", _ 
        Optional InitialNoConversionPeriod As Double, _ 
        Optional Version As String = "", _ 
        Optional Call_Start_Time As Double = 0.00000001, _ 
        Optional Put_Start_Time As Double = 0.00000001) 
         
On Error GoTo error_handling 
Dim u As Double, D As Double, p As Double 
Dim ConversionValue As Double 
Dim delta_t As Double, df As Double, DfRisky As Double, IntRateRisky 
Dim coupon_time As Double, i As Integer, k As Integer 
Dim Curr_Spread As Double, min_spread As Double, k_factor As Double, trig_share_price As Double 
 
ReDim nodevalue(0 To No_t_Steps, 0 To No_t_Steps, 0 To 3), IntRateRisky(0 To No_t_Steps, 0 To No_t_Steps) 
 
'defining parameters to be used 
Curr_Spread = Credit_Spread(1): min_spread = Credit_Spread(2): trig_share_price = Credit_Spread(3): k_factor = Credit_Spread(4) 
delta_t = Maturity / No_t_Steps 
u = Exp(sigma * Sqr(delta_t)) 
D = 1 / u 
p = (Exp((IntRate - DividendRateContinuous) * delta_t) - D) / (u - D) 
df = Exp(-(IntRate - DividendRateContinuous) * delta_t) 
 
 
'Set up vector of PV of coupons to be added to the debt component to particular column of the tree 
ReDim coupon_schedule(0 To No_t_Steps) 
coupon_schedule(No_t_Steps) = coupon_rate / coupon_frequency 
coupon_time = Maturity - 1 / coupon_frequency 
 
'initialise binomial share tree and Risky Interest rate tree dependent on the stock level using k-factor spread model 
For k = No_t_Steps - 1 To 0 Step -1 
    For i = 0 To k 
    nodevalue(i, k, 0) = S_0 * u ^ i * D ^ (k - i) 
    IntRateRisky(i, k) = IntRate + 1 / 10000 * (min_spread + (Curr_Spread - min_spread) * (nodevalue(i, k, 0) / trig_share_price) ^ (-k_factor)) 
    nodevalue(i, k, 3) = IntRateRisky(i, k) 
    Next i 
Next k 
 
'PV coupons for each time tick (assumes simple constant spread for discounting coupons at each time tick) 
Dim Const_RiskyRate As Double 
Const_RiskyRate = Credit_Spread(1) / 10000 + IntRate 
For k = No_t_Steps - 1 To 0 Step -1 
    Do While coupon_time >= k * delta_t And coupon_time > 0 
        coupon_schedule(k) = coupon_schedule(k) + _ 
        Exp(-Const_RiskyRate * (coupon_time - k * delta_t)) * _ 
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        coupon_rate / coupon_frequency 
    coupon_time = coupon_time - 1 / coupon_frequency 
    Loop 
Next k 
'initialize final (right) nodes of tree 
For i = 0 To No_t_Steps 
    nodevalue(i, No_t_Steps, 0) = S_0 * u ^ i * D ^ (No_t_Steps - i) 
    ConversionValue = Conversion_Ratio * nodevalue(i, No_t_Steps, 0) / Face_value 
    If ConversionValue > 1 + coupon_schedule(No_t_Steps) Then 
        nodevalue(i, No_t_Steps, 1) = ConversionValue ' set final equity values 
    Else 
        nodevalue(i, No_t_Steps, 2) = 1 + coupon_schedule(No_t_Steps) ' set final debt values 
    End If 
Next i 
             
'Loop thru tree back 
For k = No_t_Steps - 1 To 0 Step -1 
    For i = 0 To k 
        nodevalue(i, k, 0) = S_0 * u ^ i * D ^ (k - i) 
        ConversionValue = Conversion_Ratio * nodevalue(i, k, 0) / Face_value 
        'IntRateRisky = IntRate + 1 / 10000 * (Min_Spread + (Curr_Spread - Min_Spread) * (nodevalue(i, k, 0) / Trig_share_price) ^ (-k_factor)) 
        DfRisky = Exp(-IntRateRisky(i, k) * delta_t) 
        ConversionValue = Conversion_Ratio * nodevalue(i, k, 0) / Face_value 
         
            nodevalue(i, k, 1) = (p * nodevalue(i + 1, k + 1, 1) + _ 
                                 (1 - p) * nodevalue(i, k + 1, 1)) * df 'Equity component 
            nodevalue(i, k, 2) = coupon_schedule(k) + _ 
                                 (p * nodevalue(i + 1, k + 1, 2) + _ 
                                 (1 - p) * nodevalue(i, k + 1, 2)) * DfRisky 'Debt component 
                             
            'If American and inside the early exercise window, check whther early conversion increases value 
            If AmeEurFlag = "a" And InitialNoConversionPeriod <= k * delta_t Then 
             
                If ConversionValue > (nodevalue(i, k, 1) + nodevalue(i, k, 2)) Then 
                    nodevalue(i, k, 1) = ConversionValue          'Equity component 
                    nodevalue(i, k, 2) = 0                        'Debt component 
                End If 
            End If 
 
            'Test whether company should call the bond, i.e. force conversion 
            'call if... 
            '-conversion value exceeds the call value 
            '-the CB value at particular node exceeds the conversion value 
            '- cannot call at time 0 or maturity & only after start time 
            If (call_value > 0) And ConversionValue > call_value And k > 0 _ 
                                And (nodevalue(i, k, 1) + nodevalue(i, k, 2)) > ConversionValue _ 
                                And InitialNoConversionPeriod <= k * delta_t _ 
                                And delta_t * k >= Call_Start_Time Then 
                            nodevalue(i, k, 1) = ConversionValue  'Equity component 
                            nodevalue(i, k, 2) = 0                'Debt component 
            ElseIf (call_value > 0) And (nodevalue(i, k, 1) + nodevalue(i, k, 2)) > call_value _ 
                                    And k > 0 And call_value > ConversionValue _ 
                                    And delta_t * k >= Call_Start_Time Then 
                            nodevalue(i, k, 1) = call_value         'Equity component 
                            nodevalue(i, k, 2) = 0                  'Debt component 
            End If 
            'Test whether holder should put bond 
            'cannot put at time 0 or maturity & only after start time 
            If (put_value > 0) And (nodevalue(i, k, 1) + nodevalue(i, k, 2)) < put_value And k > 0 _ 
                               And delta_t * k >= Put_Start_Time And put_value > ConversionValue Then 
                            nodevalue(i, k, 1) = 0                'Equity component 
                            nodevalue(i, k, 2) = put_value        'Debt component 
            End If 
        Next i 
    Next k 
 
If Version = "Full" And No_t_Steps > 35 Then Version = "Node" 
 
Select Case Version 
Case "Full" 
    'initialize FullTree() - conditional formatting needs "" values to blank out non relevant cells 
    ReDim fulltree(0 To (5 * (No_t_Steps + 1) - 1), 0 To No_t_Steps) 
    For k = 0 To UBound(fulltree, 2) 
        For i = 0 To UBound(fulltree, 1) 
            fulltree(i, k) = "" 
        Next i 
    Next k 
 
    'write to FullTree() 
    For k = No_t_Steps To 0 Step -1 
        For i = 0 To k 
        fulltree(5 * (k - i), k) = nodevalue(i, k, 0) 
        fulltree(5 * (k - i) + 1, k) = nodevalue(i, k, 1) 
        fulltree(5 * (k - i) + 2, k) = nodevalue(i, k, 2) 
        fulltree(5 * (k - i) + 3, k) = nodevalue(i, k, 3) 
        fulltree(5 * (k - i) + 4, k) = nodevalue(i, k, 1) + nodevalue(i, k, 2) 
        Next i 
    Next k 
    ConvertibleBinomial_CreditSpread = fulltree 
Case "Node" 
    ReDim initialnode(0 To 4) As Double 
    initialnode(0) = S_0 
    initialnode(1) = nodevalue(0, 0, 1) 
    initialnode(2) = nodevalue(0, 0, 2) 
    initialnode(3) = nodevalue(0, 0, 3) 
    initialnode(4) = initialnode(1) + initialnode(2) 
    ConvertibleBinomial_CreditSpread = Application.Transpose(initialnode) 
Case Else 
    ConvertibleBinomial_CreditSpread = nodevalue(0, 0, 1) + nodevalue(0, 0, 2) 
End Select 
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Exit Function 
error_handling: 
    ConvertibleBinomial_CreditSpread = "Error #" & str(Err.Number) & "was generated by " _ 
        & Err.Source & Chr(13) & Err.Description 
 
End Function 
 
'k-factor credit spread model 
Function k_factor_model(current_spread As Double, _ 
                        current_share_price As Double, _ 
                        min_spread As Double, _ 
                        trig_share_price As Double, _ 
                        k_factor As Double) 
 
k_factor_model = min_spread + (current_spread - min_spread) / (trig_share_price / current_share_price) ^ (-k_factor) 
 
End Function 

 
A6.4 Hung and Wang Default Risk model 

Option Explicit 
 
'//Valuation of Convertible Bond with Default Risk using Hung and Wang model 
    'Parameters: 
    'S_0: Stock Price at time 0 
    'Sigma: volatility of stock price 
    'IntRate: risk free rate 
    'IntRateRisky: required bond yield (to discount debt component of CB) 
    ' DividendRateContinuous: dividend rate p.a. (for cont dividend model) 
    'Conversion_Ratio: number of stocks per face value CB 
    'Maturity: time to CB maturity 
    'Face Value CB 
    'Coupon_rate (total annual %) 
    'Coupon Frequency p.a. 
    'Default_Prob:the prob of default vector to be used in the calc 
    'Call_Value (optional): value at which bond can be called by another company (at any time) 
    'Put_Value (optional): value at which bond can be redeemed by holder (at any time) 
    'Call_Start_Time (optional): when the call option becomes active 
    'Put_Start_Time (optional): when the put option becomes active 
    'Default_Share_Prob (optional): adjusting the share prob moves with default 
     
    'No_t_Steps(optional): number of discrete t steps in grid 
    'Optional AmeEurFlag: European("e") - default or American "a" with early conversion option possible. 
    '"InitialNoConversionPeriod: if American exercise option, time at which early exercise begins 
     
    'Version (optional) 
    '-"Full": full tree with 
    '1st Row: stock price 
    '2nd row: option type exercised 
    '3rd row: equity value (without option exercised) 
    '4th row: bond value (without option exercised) 
    '5th row: equity value (option exercised) 
    '6th row: bond value (option exercised) 
    '7th row: Total CB value 
    '-"Node": all components of initial node omitted or any value - CB value only 
 
'********************************************************************************************************** 
 
Function ConvBond_DefaultRisk( _ 
        S_0 As Double, _ 
        sigma As Double, _ 
        IntRate As Double, _ 
        IntRateRisky As Double, _ 
        DividendRateContinuous As Double, _ 
        Conversion_Ratio As Single, _ 
        Maturity As Double, _ 
        Face_value As Double, _ 
        coupon_rate As Double, _ 
        Recovery_value As Double, _ 
        Optional coupon_frequency As Integer = 1, _ 
        Optional call_value As Double = 0, _ 
        Optional put_value As Double = 0, _ 
        Optional No_t_Steps As Single, _ 
        Optional InitialNoConversionPeriod As Double, _ 
        Optional Call_Start_Time As Double = 0.00000001, _ 
        Optional Put_Start_Time As Double = 0.00000001, _ 
        Optional Version As String = "Full") 
         
On Error GoTo error_handling 
Dim u As Double, D As Double, p As Double 
Dim ConversionValue As Double, Default_Prob, Default_Prob_vec As Object 
Dim delta_t As Double, df As Double, DfRisky As Double 
Dim coupon_time As Double, i As Integer, k As Integer, Default_Share_Prob 
 
'defining parameters to be used 
Default_Share_Prob = Range("Default_Share_Prob") 
delta_t = Maturity / No_t_Steps 
u = Exp(sigma * Sqr(delta_t)) 
D = 1 / u 
df = Exp(-(IntRate - DividendRateContinuous) * delta_t): DfRisky = Exp(-IntRateRisky * delta_t) 
 
Set Default_Prob_vec = Sheets("Default Prob Calc").Range("C2:C32") 
ReDim Default_Prob(No_t_Steps) 
For i = 0 To No_t_Steps 
Default_Prob(i) = inter2(Sheets("Default Prob Calc").Range("A2:A32"), Default_Prob_vec, (i + 1) * delta_t) 
Next i 
 
ReDim nodevalue(0 To No_t_Steps, 0 To No_t_Steps, 0 To 6) 
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'Set up vector of PV of coupons to be added to the debt component to particular column of the tree 
ReDim coupon_schedule(0 To No_t_Steps) 
coupon_schedule(No_t_Steps) = coupon_rate / coupon_frequency 
coupon_time = Maturity - 1 / coupon_frequency 
For k = No_t_Steps - 1 To 0 Step -1 
    Do While coupon_time >= k * delta_t And coupon_time > 0 
        coupon_schedule(k) = coupon_schedule(k) + _ 
        Exp(-IntRateRisky * (coupon_time - k * delta_t)) * _ 
        coupon_rate / coupon_frequency 
    coupon_time = coupon_time - 1 / coupon_frequency 
    Loop 
Next k 
'set up vector of PV of Default amount to be used in the default states 
ReDim Rollback_recovery(No_t_Steps) 
For k = No_t_Steps - 1 To 0 Step -1 
Rollback_recovery(No_t_Steps) = Recovery_value / Face_value 
Rollback_recovery(k) = DfRisky * Rollback_recovery(k + 1) 
Next k 
'initialize final (right) nodes of tree 
For i = 0 To No_t_Steps 
    nodevalue(i, No_t_Steps, 0) = S_0 * u ^ i * D ^ (No_t_Steps - i) 
    ConversionValue = Conversion_Ratio * nodevalue(i, No_t_Steps, 0) / Face_value 
    If ConversionValue > (1 + coupon_schedule(No_t_Steps)) Then 
        nodevalue(i, No_t_Steps, 1) = "Voluntary Conversion" ' Conversion option exercised 
        nodevalue(i, No_t_Steps, 2) = ConversionValue        ' set final equity values 
        nodevalue(i, No_t_Steps, 3) = 0                      ' set final debt values 
    Else 
        nodevalue(i, No_t_Steps, 3) = 1 + coupon_schedule(No_t_Steps) ' set final debt values 
        nodevalue(i, No_t_Steps, 2) = 0                               ' set final equity values 
        nodevalue(i, No_t_Steps, 1) = "Redemption"                    ' Let bond be redeemed 
    End If 
        'at terminal nodes without option exercise and option exercise are same value 
        nodevalue(i, No_t_Steps, 4) = nodevalue(i, No_t_Steps, 2) 
        nodevalue(i, No_t_Steps, 5) = nodevalue(i, No_t_Steps, 3) 
Next i 
             
Dim Default As Double, no_default As Double 
'Loop thru tree backwards 
For k = No_t_Steps - 1 To 0 Step -1 
    For i = 0 To k 
        Default = Default_Prob(k + 1) * delta_t 
        no_default = 1 - Default 
        'adjust prob of up share moves with default risk 
        If Default_Share_Prob = 1 Then 
        p = (Exp((IntRate - DividendRateContinuous) * delta_t) / no_default - D) / (u - D) 
        Else 
        p = (Exp((IntRate - DividendRateContinuous) * delta_t) - D) / (u - D) 
        End If 
        nodevalue(i, k, 0) = S_0 * u ^ i * D ^ (k - i) 
        ConversionValue = Conversion_Ratio * nodevalue(i, k, 0) / Face_value 
         
            nodevalue(i, k, 2) = (p * nodevalue(i + 1, k + 1, 2) * no_default + _ 
                                 (1 - p) * nodevalue(i, k + 1, 2) * no_default) * df  'Equity component 
            nodevalue(i, k, 3) = coupon_schedule(k) + _ 
                                 (p * nodevalue(i + 1, k + 1, 3) * no_default + _ 
                                 (1 - p) * nodevalue(i, k + 1, 3) * no_default) * DfRisky + _ 
                                 Rollback_recovery(k) * Default                       'Debt component 
        nodevalue(i, k, 4) = nodevalue(i, k, 2) 
        nodevalue(i, k, 5) = nodevalue(i, k, 3) 
            'If American and inside the early exercise window, check whther early conversion increases value 
            If InitialNoConversionPeriod <= k * delta_t Then 
             
                If ConversionValue > (nodevalue(i, k, 4) + nodevalue(i, k, 5)) Then 
                    nodevalue(i, k, 1) = "Voluntary Conversion"   'Conversion option exercised 
                    nodevalue(i, k, 4) = ConversionValue         'Equity component 
                    nodevalue(i, k, 5) = 0                        'Debt component 
                End If 
            End If 
 
            'Test whether company should call the bond, i.e. force conversion 
            'call if... 
            '-conversion value exceeds the call value 
            '-the CB value at particular node exceeds the conversion value 
            '- cannot call at time 0 or maturity & only after start time 
            If (call_value > 0) And ConversionValue > call_value And k > 0 _ 
                                And (nodevalue(i, k, 4) + nodevalue(i, k, 5)) > ConversionValue _ 
                                And InitialNoConversionPeriod <= k * delta_t _ 
                                And delta_t * k >= Call_Start_Time Then 
                            nodevalue(i, k, 1) = "Forced Conversion"  'Issuer forces holder to convert 
                            nodevalue(i, k, 4) = ConversionValue      'Equity component 
                            nodevalue(i, k, 5) = 0                    'Debt component 
            ElseIf (call_value > 0) And (nodevalue(i, k, 4) + nodevalue(i, k, 5)) > call_value _ 
                                    And k > 0 And call_value > ConversionValue _ 
                                    And delta_t * k >= Call_Start_Time Then 
                            nodevalue(i, k, 1) = "Called"         'Holder lets bond be called 
                            nodevalue(i, k, 4) = call_value       'Equity component 
                            nodevalue(i, k, 5) = 0                'Debt component 
            End If 
            'Test whether holder should put bond 
            'cannot put at time 0 or maturity & only after start time 
            If (put_value > 0) And (nodevalue(i, k, 4) + nodevalue(i, k, 5)) < put_value And k > 0 _ 
                               And delta_t * k >= Put_Start_Time And put_value > ConversionValue Then 
                            nodevalue(i, k, 1) = "Put"            'Holder puts the bond to issuer 
                            nodevalue(i, k, 4) = 0                'Equity component 
                            nodevalue(i, k, 5) = put_value        'Debt component 
            End If 
            nodevalue(i, k, 6) = nodevalue(i, k, 4) + nodevalue(i, k, 5) 'CB value at each node after options exercised 
        Next i 
Next k 
 
Select Case Version 
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Case "Full" 
 
'initialize FullTree() - conditional formatting needs "" values to blank out non relevant cells 
    ReDim fulltree(0 To (7 * (No_t_Steps + 1) - 1), 0 To No_t_Steps) 
    For k = 0 To UBound(fulltree, 2) 
        For i = 0 To UBound(fulltree, 1) 
            fulltree(i, k) = "" 
        Next i 
    Next k 
 
    'write to FullTree() 
    For k = No_t_Steps To 0 Step -1 
        For i = 0 To k 
        fulltree(7 * (k - i), k) = nodevalue(i, k, 0) 
        fulltree(7 * (k - i) + 1, k) = nodevalue(i, k, 1) 
        fulltree(7 * (k - i) + 2, k) = nodevalue(i, k, 2) 
        fulltree(7 * (k - i) + 3, k) = nodevalue(i, k, 3) 
        fulltree(7 * (k - i) + 4, k) = nodevalue(i, k, 4) 
        fulltree(7 * (k - i) + 5, k) = nodevalue(i, k, 5) 
        fulltree(7 * (k - i) + 6, k) = nodevalue(i, k, 6) 
        Next i 
    Next k 
    ConvBond_DefaultRisk = fulltree 
 
Case "Node" 
    ConvBond_DefaultRisk = nodevalue(0, 0, 4) + nodevalue(0, 0, 5) 
 
End Select 
 
Exit Function 
error_handling: 
    ConvBond_DefaultRisk = "Error #" & str(Err.Number) & "was generated by " _ 
        & Err.Source & Chr(13) & Err.Description 
 
End Function 
 
'function used in theHung and Wang default risk model for nodes that have defaulted and need to bediscounted to time 0 
Function Rollback_recovery(Rec_Rate As Double, Face_value As Double, _ 
                            Maturity As Double, No_t_Steps As Double, _ 
                            IntRateRisky As Double) 
                             
Dim i As Integer, delta_t, DfRisky As Double 
ReDim rollback_vec(No_t_Steps) 
delta_t = Maturity / No_t_Steps 
DfRisky = Exp(-IntRateRisky * delta_t) 
 
For i = No_t_Steps - 1 To 0 Step -1 
rollback_vec(No_t_Steps) = Rec_Rate * Face_value 
rollback_vec(i) = DfRisky * rollback_vec(i + 1) 
Next i 
 
Rollback_recovery = rollback_vec 
 
End Function 
 
'find coupon values on annual dates in Default Risk Model 
Function total_coup_amt(Annual_coup As Double, coup_frequency As Integer, rate As Double, Face_value As Double) 
 
Dim i As Integer, n As Integer, sum_coups 
 
sum_coups = (Annual_coup / coup_frequency * Face_value) 
For i = 1 To coup_frequency - 1 
    sum_coups = sum_coups + (Annual_coup / coup_frequency * Face_value) * (1 + rate) ^ (-i / coup_frequency) 
Next i 
 
total_coup_amt = sum_coups 
 
End Function 

 
A6.5 Margrabe American and European Exchange models 

Option Explicit 
Option Base 1 
 
'usual BS European call option formula 
Function EuropeanCall(spot As Double, strike As Double, r As Double, q As Double, sigma As Double, tau As Double) 
 
Dim d1 As Double, d2 As Double, Nd1 As Double, Nd2 As Double, delta As Double, b As Double 
 
b = r - q 
 
d1 = (Log(spot / strike) + (b + 0.5 * sigma ^ 2) * tau) / (sigma * Sqr(tau)) 
d2 = d1 - sigma * Sqr(tau) 
Nd1 = WorksheetFunction.NormSDist(d1) 
Nd2 = WorksheetFunction.NormSDist(d2) 
 
EuropeanCall = spot * Exp(-q * tau) * Nd1 - strike * Exp(-r * tau) * Nd2 
 
End Function 
 
'Barone-Adesi & Whaley american call option approximation 
Function AmericanCall(spot As Double, strike As Double, r As Double, q As Double, sigma As Double, tau As Double) 
 
Dim X As Double, f As Double, f_prime As Double, A2 As Double, q2 As Double, n As Double, k As Double, Nd1 As Double 
Dim d1 As Double, cream As Double, delta As Double, ECall As Double, d2 As Double, Nd2 As Double, b As Double 
 
' b is defined in the actual paper, delta was defined using some other notation 
b = r - q 
delta = -q 
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n = 2 * (r - delta) / sigma ^ 2 
k = 2 * r / (sigma ^ 2 * (1 - Exp(-r * tau))) 
q2 = (1 - n + Sqr((n - 1) ^ 2 + 4 * k)) / 2 
 
'using Newton Rhapson to arrive at the trigger price to exercise call - certain degreee of error 
X = spot 
Do 
    d1 = (Log(X / strike) + (b + 0.5 * sigma ^ 2) * tau) / (sigma * Sqr(tau)) 
    Nd1 = WorksheetFunction.NormSDist(d1) 
    cream = 1 - (Exp(-delta * tau) * Nd1) 
 
    f = strike - X + EuropeanCall(X, strike, r, q, sigma, tau) + cream * (X / q2) 
    f_prime = Exp(delta * tau) * Nd1 - 1 + (1 / q2) * cream - (1 / q2) * ((sigma * Sqr(tau * 2 * WorksheetFunction.Pi)) ^ -1) * Exp(-delta * tau - 0.5 * d1 ^ 2) 
 
X = X - f / f_prime 
Loop Until Abs(f) < 0.0000001 
 
A2 = X * (1 - Exp(delta * tau) * Nd1) / q2 
 
' depends on the trigger price and spot price if its worth exercising now or not 
If spot < X Then 
AmericanCall = EuropeanCall(spot, strike, r, q, sigma, tau) + A2 * (spot / X) ^ q2 
ElseIf spot >= X Then 
AmericanCall = spot - strike 
End If 
 
End Function 
 
Function EuropeanExchange(spot1 As Double, spot2 As Double, q1 As Double, q2 As Double, sigma1 As Double, sigma2 As Double, tau As Double, rho As Double, 
conv_ratio As Double) 
 
Dim d1 As Double, d2 As Double, Nd1 As Double, Nd2 As Double, sigma As Double 
 
sigma = Sqr(sigma1 ^ 2 + sigma2 ^ 2 - 2 * rho * sigma1 * sigma2) 
d1 = (Log(conv_ratio * spot1 / spot2) + (q2 - q1 + 0.5 * sigma ^ 2) * tau) / (sigma * Sqr(tau)) 
d2 = d1 - sigma * Sqr(tau) 
Nd1 = WorksheetFunction.NormSDist(d1) 
Nd2 = WorksheetFunction.NormSDist(d2) 
 
EuropeanExchange = (spot1 * conv_ratio * Exp(-q1 * tau) * Nd1) - (spot2 * Exp(-q2 * tau) * Nd2) 
 
End Function 
 
Function AmericanExchange(spot1 As Double, spot2 As Double, div1 As Double, div2 As Double, sigma1 As Double, sigma2 As Double, tau As Double, rho As Double, 
conv_ratio As Double) 
 
Dim X As Double, f As Double, f_prime As Double, A2 As Double, q2 As Double, n As Double, k As Double, Nd1 As Double, num As Integer 
Dim d1 As Double, cream As Double, delta As Double, ECall As Double, d2 As Double, Nd2 As Double, b As Double, sigma As Double 
 
' b is defined in the actual paper, delta was defined using some other notation 
b = conv_ratio * div1 - div2 
delta = -div2 
 
sigma = Sqr(sigma1 ^ 2 + sigma2 ^ 2 - 2 * rho * sigma1 * sigma2) 
 
n = 2 * (div1 - delta) / sigma ^ 2 
k = 2 * div1 / (sigma ^ 2 * (1 - Exp(-div1 * tau))) 
q2 = (1 - n + Sqr((n - 1) ^ 2 + 4 * k)) / 2 
 
'using Newton Rhapson to arrive at the trigger price to exercise call - certain degree of error 
X = spot1 
Do 
    d1 = (Log(conv_ratio * X / spot2) + (b + 0.5 * sigma ^ 2) * tau) / (sigma * Sqr(tau)) 
    Nd1 = WorksheetFunction.NormSDist(d1) 
    cream = 1 - (Exp(-delta * tau) * Nd1) 
 
    f = spot2 - conv_ratio * X + EuropeanExchange(X, spot2, div1, div2, sigma1, sigma2, tau, rho, conv_ratio) + cream * (X * conv_ratio / q2) 
    f_prime = conv_ratio * Exp(delta * tau) * Nd1 - conv_ratio + (1 / q2) * cream - (1 / q2) * ((sigma * Sqr(tau * 2 * WorksheetFunction.Pi)) ^ -1) * Exp(-delta * tau - 0.5 * 
d1 ^ 2) 
 
X = X - f / f_prime 
    num = num + 1 
    If num > 200 Then Exit Do 
Loop Until Abs(f) < 0.0000001 
A2 = X * (1 - Exp(delta * tau) * Nd1) / q2 
 
Dim tmp1 As Double, tmp2 As Double 
 'depends on the trigger price and spot price if its worth exercising now or not 
If (spot1) < X Then 
AmericanExchange = EuropeanExchange(spot1, spot2, div1, div2, sigma1, sigma2, tau, rho, conv_ratio) + A2 * (spot1 / X) ^ q2 
ElseIf (spot1) >= X Then 
AmericanExchange = conv_ratio * spot1 - spot2 
End If 
 
'calc breaks down at critical stock price, so have to include this safety precaution to find max option value 
tmp1 = EuropeanExchange(spot1, spot2, div1, div2, sigma1, sigma2, tau, rho, conv_ratio) + A2 * (spot1 / X) ^ q2 
tmp2 = conv_ratio * spot1 - spot2 
 
AmericanExchange = Application.Max(tmp1, tmp2) 
 
End Function 

 
A6.5 Component Exchange model 

Option Explicit 
Option Base 1 
 
'used to calc the modified duration in the component exchange  model 
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Function dur_comp_model(start_date As Double, end_date As Double, kappa As Double) 
 
dur_comp_model = (1 - Exp(-kappa * (end_date - start_date))) / kappa 
 
End Function 
'used to calc the convexity in the component exchange  model 
Function convex_comp_model(start_date As Double, end_date As Double, kappa As Double) 
 
convex_comp_model = dur_comp_model(start_date, end_date, kappa) ^ 2 
 
End Function 
 
'used to calc the volatility in the component exchange  model (zero-coupon CB) 
Function sigma_z(sigma_e As Double, sigma_r As Double, kappa_r As Double, rho As Double, _ 
                 T As Double, T2 As Double, Tm As Double) 
                  
Dim temp1 As Double, temp2 As Double, temp3 As Double 
                  
temp1 = (sigma_e ^ 2 + sigma_r ^ 2 / kappa_r ^ 2 + (2 * rho * sigma_r * sigma_e) / kappa_r) * (T2 - T) 
temp2 = -(sigma_r ^ 2 / kappa_r ^ 2 + 2 * rho * sigma_r * sigma_e / kappa_r) * _ 
         (dur_comp_model(T, Tm, kappa_r) - dur_comp_model(T2, Tm, kappa_r)) 
temp3 = -sigma_r ^ 2 * (convex_comp_model(T, Tm, kappa_r) - convex_comp_model(T2, Tm, kappa_r)) / (2 * kappa_r) 
 
sigma_z = Sqr(temp1 + temp2 + temp3) 
 
End Function 
 
'used to calc the volatility in the component exchange  model (zero-coupon credit spread CB) 
Function sigma_d(sigma_e As Double, sigma_s As Double, sigma_r As Double, kappa_r As Double, kappa_s As Double, rho_es As Double, _ 
                 rho_rs As Double, rho_er As Double, T As Double, T2 As Double, Tm As Double) 
                  
Dim temp1 As Double, temp2 As Double, temp3 As Double, temp4 As Double 
                  
temp1 = (sigma_e ^ 2 + sigma_r ^ 2 / kappa_r ^ 2 + sigma_s ^ 2 / kappa_s ^ 2 + (2 * rho_er * sigma_r * sigma_e) / kappa_r + _ 
        (2 * rho_rs * sigma_s * sigma_r) / (kappa_r * kappa_s) + (2 * rho_es * sigma_e * sigma_s / kappa_s)) * (T2 - T) 
temp2 = -(sigma_r ^ 2 / kappa_r ^ 2 + (2 * rho_rs * sigma_r * sigma_s) / (kappa_r * kappa_s) + 2 * rho_er * sigma_r * sigma_e / kappa_r) * _ 
         (dur_comp_model(T, Tm, kappa_r) - dur_comp_model(T2, Tm, kappa_r)) 
temp3 = -(sigma_s ^ 2 / kappa_s ^ 2 + (2 * rho_rs * sigma_r * sigma_s) / (kappa_r * kappa_s) + 2 * rho_es * sigma_s * sigma_e / kappa_s) * _ 
         (dur_comp_model(T, Tm, kappa_s) - dur_comp_model(T2, Tm, kappa_s)) 
temp4 = (2 * rho_rs * sigma_r * sigma_s) * (dur_comp_model(T, Tm, kappa_r + kappa_s) - dur_comp_model(T2, Tm, kappa_r + kappa_s)) / (kappa_r * kappa_s) _ 
        - sigma_r ^ 2 * (convex_comp_model(T, Tm, kappa_r) - convex_comp_model(T2, Tm, kappa_r)) / (2 * kappa_r) _ 
        - sigma_s ^ 2 * (convex_comp_model(T, Tm, kappa_s) - convex_comp_model(T2, Tm, kappa_s)) / (2 * kappa_s) 
         
sigma_d = Sqr(temp1 + temp2 + temp3 + temp4) 
 
End Function 
 
'used to calc the volatility in the component exchange model (coupon credit spread CB) 
Function sigma_c(sigma_e As Double, sigma_s As Double, sigma_r As Double, kappa_r As Double, kappa_s As Double, rho_es As Double, _ 
                 rho_rs As Double, rho_er As Double, cflows, risk_free As Double, spread As Double, _ 
                 Freq, T, T2, Tm, xirr As Double) 
                  
Dim temp1 As Double, temp2 As Double, temp3 As Double, temp4 As Double 
Dim dur_r_t, dur_r_T2, dur_s_t, dur_s_T2, dur_rs_t, dur_rs_T2, convex_r_t, convex_r_T2, convex_s_t, convex_s_T2 
 
dur_r_t = DurModCon(T, T2, cflows, risk_free, 0, xirr, Freq)(1, 1) 
dur_r_T2 = DurModCon(T2, T2, cflows, risk_free, 0, xirr, Freq)(1, 1) 
dur_s_t = DurModCon(T, T2, cflows, 0, spread, xirr, Freq)(1, 1) 
dur_s_T2 = DurModCon(T2, T2, cflows, 0, spread, xirr, Freq)(1, 1) 
dur_rs_t = DurModCon(T, T2, cflows, risk_free, spread, xirr, Freq)(1, 1) 
dur_rs_T2 = DurModCon(T2, T2, cflows, risk_free, spread, xirr, Freq)(1, 1) 
convex_r_t = DurModCon(T, T2, cflows, risk_free, 0, xirr, Freq)(3, 1) 
convex_r_T2 = DurModCon(T2, T2, cflows, risk_free, 0, xirr, Freq)(3, 1) 
convex_s_t = DurModCon(T, T2, cflows, 0, spread, xirr, Freq)(3, 1) 
convex_s_T2 = DurModCon(T2, T2, cflows, 0, spread, xirr, Freq)(3, 1) 
                  
temp1 = (sigma_e ^ 2 + sigma_r ^ 2 / kappa_r ^ 2 + sigma_s ^ 2 / kappa_s ^ 2 + (2 * rho_er * sigma_r * sigma_e) / kappa_r + _ 
        (2 * rho_rs * sigma_s * sigma_r) / (kappa_r * kappa_s) + (2 * rho_es * sigma_e * sigma_s / kappa_s)) * (T2 - T) / 365 
temp2 = -(sigma_r ^ 2 / kappa_r ^ 2 + (2 * rho_rs * sigma_r * sigma_s) / (kappa_r * kappa_s) + 2 * rho_er * sigma_r * sigma_e / kappa_r) * _ 
         (dur_r_t - dur_r_T2) 
temp3 = -(sigma_s ^ 2 / kappa_s ^ 2 + (2 * rho_rs * sigma_r * sigma_s) / (kappa_r * kappa_s) + 2 * rho_es * sigma_s * sigma_e / kappa_s) * _ 
         (dur_s_t - dur_s_T2) 
temp4 = ((2 * rho_rs * sigma_r * sigma_s) * (dur_rs_t - dur_rs_T2)) / (kappa_r * kappa_s) _ 
        - sigma_r ^ 2 * (convex_r_t - convex_r_T2) / (2 * kappa_r) _ 
        - sigma_s ^ 2 * (convex_s_t - convex_s_T2) / (2 * kappa_s) 
         
sigma_c = Sqr(temp1 + temp2 + temp3 + temp4) 
 
End Function 
 
 
'calc no. of coupons between 2 dates 
Function Num_Coupon_Pmts(valuation_date As Date, NCD As Date, edate As Date, frequency As Single) 
 
Dim i As Integer, n As Integer, coup_dates(61), PV_fut_coups, j As Integer 
 
coup_dates(1) = NCD 
'calc the number of coupon pmts 
For i = 1 To 60 
coup_dates(i + 1) = DateAdd("m", 12 / frequency, coup_dates(i)) 
    If coup_dates(i) <= edate And valuation_date <= (coup_dates(i) - 10) Then 
    n = i 
    Else 
    'Nothing 
    End If 
Next i 
 
Num_Coupon_Pmts = n 
 
End Function 
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'function to create duration, mod duration and convexity of variable series of cash flows 
Function DurModCon(t0, force_conv_date, cflows As Variant, risk_free As Double, spread As Double, xirr As Double, i) 
 
'i is the NAC of the specified spot rate 
Dim k As Integer, n As Integer, LinSpot() As Variant 
Dim df_t() As Variant, cf_df() As Variant, cf_df_t() As Variant 
Dim df() As Variant, num As Single, denom As Single 
Dim cf_df_t_t1() As Variant 'Note t1 is(t+1) 
Dim stow(3, 1), i2 As Single 'i2 is NACS of xirr 
 
n = Application.Count(cflows) / 2 
ReDim LinSpot(n) 
ReDim df_t(n) 
ReDim cf_df(n) 
ReDim cf_df_t(n) 
ReDim df(n) 
ReDim cf_df_t_t1(n) 
 
For k = 1 To n 
    If cflows(k, 1) < force_conv_date Then 
        'Nothing 
    Else 
        LinSpot(k) = risk_free + spread 
        'LinSpot(k) = inter2(term, spot, cflows(k, 1)) 
        df(k) = (1 + LinSpot(k) / (i * 100)) ^ (-i * (force_conv_date - t0) / 365) * _ 
                (1 + LinSpot(k) / (i * 100)) ^ (-i * k) 
        df_t(k) = df(k) * k 
        cf_df(k) = cflows(k, 2) * df(k) 
        cf_df_t(k) = cflows(k, 2) * df(k) * k 
        cf_df_t_t1(k) = cflows(k, 2) * df(k) * k * (k + 1) 
    End If 
Next k 
 
num = Application.Sum(cf_df_t) 
denom = -cflows(1, 2) 
 
i2 = i * ((1 + xirr) ^ (1 / i) - 1) 
 
stow(1, 1) = num / denom / (i * (1 + i2)) 
stow(2, 1) = num / denom / i 
stow(3, 1) = Application.Sum(cf_df_t_t1) / (denom) / (1 + i2) ^ i 
 
DurModCon = stow 
End Function 
 
'returns the Vasicek (imod=1) or CIR (imod=2) zero-coupon bond value 
Function VasicekCIRZeroValue(imod As Integer, a As Double, b As Double, r As Double, nowyr, zeroyr, sigma As Double) 
 
Dim syr, sig2, Asyr, Bsyr, rinf, gamma, c1, c2 
syr = (zeroyr - nowyr) 
sig2 = sigma ^ 2 
 
'Vasicek ZCB value 
If imod = 1 Then 
    If a = 0 Then 
        Bsyr = syr 
        Asyr = Exp((sig2 * syr ^ 3) / 6) 
    Else 
        Bsyr = (1 - Exp(-a * syr)) / a 
        rinf = b - 0.5 * sig2 / (a ^ 2) 
        Asyr = Exp((Bsyr - syr) * rinf - ((sig2 * Bsyr ^ 2) / (4 * a))) 
    End If 
     
'CIR ZCB value 
ElseIf imod = 2 Then 
    gamma = Sqr(a ^ 2 + 2 * sig2) 
    c1 = 0.5 * (a + gamma) 
    c2 = c1 * (Exp(gamma * syr) - 1) + gamma 
    Bsyr = (Exp(gamma * syr) - 1) / c2 
    Asyr = ((gamma * Exp(c1 * syr)) / c2) ^ (2 * a * b / sig2) 
End If 
 
VasicekCIRZeroValue = Asyr * Exp(-Bsyr * r) 
 
End Function 
 
'calculate the value for zero-coupon CB 
Function ZC_Component_Exchange(s0 As Double, bond_price As Double, div As Double, conv_ratio As Double, _ 
                                r As Double, theta_r As Double, kappa_r As Double, sigma_r As Double, sigma_e As Double, _ 
                                rho_er As Double, valuation_date As Double, forced_conv_date As Double, Maturity As Double) 
 
Dim str_bond_value As Double, exchange_option As Double, mean_c As Double, sigma As Double, mu_sigma As Double, breakdown(3, 1) 
 
mean_c = Log(conv_ratio * s0 / bond_price * Exp(-div * (forced_conv_date - valuation_date))) 
sigma = sigma_z(sigma_e, sigma_r, kappa_r, rho_er, valuation_date, forced_conv_date, Maturity) 
str_bond_value = 100 * VasicekCIRZeroValue(1, kappa_r, theta_r, r, valuation_date, Maturity, sigma_r) 
mu_sigma = mean_c / sigma 
 
exchange_option = conv_ratio * s0 * Exp(-div * (forced_conv_date - valuation_date)) * WorksheetFunction.NormSDist(mu_sigma + sigma) _ 
                               - str_bond_value * WorksheetFunction.NormSDist(mu_sigma) 
 
breakdown(1, 1) = str_bond_value 
breakdown(2, 1) = exchange_option 
breakdown(3, 1) = str_bond_value + exchange_option 
 
ZC_Component_Exchange = breakdown 
 
End Function 
 
'calculate the value for zero-coupon CB with credit risk 
Function ZC_Credit_Component_Exchange(s0 As Double, bond_price As Double, div As Double, conv_ratio As Double, _ 
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                                r As Double, theta_r As Double, kappa_r As Double, sigma_r As Double, sigma_e As Double, _ 
                                S As Double, theta_s As Double, kappa_s As Double, sigma_s As Double, _ 
                                rho_er As Double, rho_rs As Double, rho_es As Double, _ 
                                valuation_date As Double, forced_conv_date As Double, Maturity As Double) 
 
Dim str_bond_value As Double, exchange_option As Double, mean_c As Double, sigma As Double, mu_sigma As Double, breakdown(3, 1) 
 
mean_c = Log(conv_ratio * s0 / bond_price * Exp(-div * (forced_conv_date - valuation_date))) 
sigma = sigma_d(sigma_e, sigma_s, sigma_r, kappa_r, kappa_s, rho_es, rho_rs, rho_er, valuation_date, forced_conv_date, Maturity) 
str_bond_value = 100 * (VasicekCIRZeroValue(1, kappa_r, theta_r, r, valuation_date, Maturity, sigma_r) _ 
                     - (1 - VasicekCIRZeroValue(1, kappa_s, theta_s, S, valuation_date, Maturity, sigma_s))) 
mu_sigma = mean_c / sigma 
 
exchange_option = conv_ratio * s0 * Exp(-div * (forced_conv_date - valuation_date)) * WorksheetFunction.NormSDist(mu_sigma + sigma) _ 
                               - str_bond_value * WorksheetFunction.NormSDist(mu_sigma) 
breakdown(1, 1) = str_bond_value 
breakdown(2, 1) = exchange_option 
breakdown(3, 1) = str_bond_value + exchange_option 
 
ZC_Credit_Component_Exchange = breakdown 
 
End Function 
 
'calculate the value for coupon CB with credit risk 
Function Credit_Component_Exchange(s0 As Double, div As Double, conv_ratio As Double, _ 
                                r As Double, theta_r As Double, kappa_r As Double, sigma_r As Double, sigma_e As Double, _ 
                                S As Double, theta_s As Double, kappa_s As Double, sigma_s As Double, _ 
                                rho_er As Double, rho_rs As Double, rho_es As Double, Annual_coup, par_value, _ 
                                valuation_date As Date, forced_conv_date As Date, Maturity As Date, next_coup_date As Date, Freq As Single, _ 
                                term As Object, yield_curve As Object, Optional cap_option = True, Optional Version As String) 
 
Dim str_bond_value As Double, exchange_option As Double, mean_c As Double, sigma As Double, mu_sigma As Double, breakdown(3, 1) 
Dim i As Integer, n As Integer, accrued_int As Double 
 
n = Num_Coupon_Pmts(valuation_date, next_coup_date, Maturity, Freq) 
ReDim cashflow_schedule(n, 5), pv_vec(n) 
 
For i = 1 To n 
        If i = 1 Then 
        cashflow_schedule(i, 2) = next_coup_date 
        Else 
        cashflow_schedule(i, 2) = DateAdd("m", 12 / Freq, cashflow_schedule(i - 1, 2)) 
        End If 
    cashflow_schedule(i, 1) = (cashflow_schedule(i, 2) - valuation_date) / 365 
        If i = n Then 
        cashflow_schedule(i, 3) = (1 + Annual_coup / Freq) * par_value 
        Else 
        cashflow_schedule(i, 3) = Annual_coup / Freq * par_value 
        End If 
    cashflow_schedule(i, 4) = (1 + inter2(term, yield_curve, cashflow_schedule(i, 1)) / (par_value * Freq)) ^ (-Freq * cashflow_schedule(i, 1)) 
        If i = 1 Then 
        cashflow_schedule(1, 5) = (next_coup_date - DateAdd("m", -12 / Freq, next_coup_date)) / 365 * cashflow_schedule(i, 3) 
        accrued_int = cashflow_schedule(1, 5) 
        Else 
        cashflow_schedule(i, 5) = cashflow_schedule(i, 3) * cashflow_schedule(i, 4) 
        End If 
pv_vec(i) = cashflow_schedule(i, 5) 
Next i 
str_bond_value = Application.Sum(pv_vec) 
 
're-mapping to cflows to be used in duration of cashflow calc -> also used in mean and sigma calc 
ReDim cflows(n + 1, 2) 
For i = 1 To n + 1 
    If i = 1 Then 
    cflows(1, 1) = valuation_date 
    cflows(1, 2) = -str_bond_value 
    Else 
    cflows(i, 1) = cashflow_schedule(i - 1, 2) 
    cflows(i, 2) = cashflow_schedule(i - 1, 3) 
    End If 
Next i 
  
Dim riskless_vec As Double, spread_vec As Double, risky_vec As Double 
riskless_vec = DurModCon(valuation_date, forced_conv_date, cflows, 100 * r, 0, r, Freq)(1, 1) 
spread_vec = DurModCon(valuation_date, forced_conv_date, cflows, 0, 100 * S, S, Freq)(1, 1) 
risky_vec = DurModCon(valuation_date, forced_conv_date, cflows, 100 * r, 100 * S, r + S, Freq)(1, 1) 
 
mean_c = r - sigma_e ^ 2 / 2 - rho_er * sigma_r * sigma_e * riskless_vec - rho_es * sigma_s * sigma_e * spread_vec 
sigma = sigma_c(sigma_e, sigma_s, sigma_r, kappa_r, kappa_s, rho_es, rho_rs, rho_er, cflows, r, S, Freq, valuation_date, forced_conv_date, Maturity, r) 
mu_sigma = mean_c / sigma 
 
exchange_option = conv_ratio * s0 * Exp(-div * (forced_conv_date - valuation_date) / 365) * WorksheetFunction.NormSDist(mu_sigma + sigma) _ 
                               + (str_bond_value - accrued_int) * (WorksheetFunction.NormSDist(-mu_sigma) - 1) 
Select Case Version 
Case "Full" 
breakdown(1, 1) = str_bond_value 
    'Limit min value of option to zero 
    If cap_option = True Then 
    breakdown(2, 1) = Application.Max(exchange_option, 0) 
    Else 
    breakdown(2, 1) = exchange_option 
    End If 
breakdown(3, 1) = breakdown(1, 1) + breakdown(2, 1) 
 
Credit_Component_Exchange = breakdown 
Case Else 
breakdown(1, 1) = str_bond_value 
    'Limit min value of option to zero 
    If cap_option = True Then 
    breakdown(2, 1) = Application.Max(exchange_option, 0) 
    Else 
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    breakdown(2, 1) = exchange_option 
    End If 
breakdown(3, 1) = breakdown(1, 1) + breakdown(2, 1) 
 
Credit_Component_Exchange = breakdown(3, 1) 
End Select 
 
End Function 
 
'value a vanilla bond using a term structure 
Function Bond_value(valuation_date As Date, next_coup_date As Date, Annual_coup, Freq As Single, par_value, Maturity As Date, term As Object, yield_curve As 
Object) 
Dim cashflow_schedule, i As Integer, n As Integer 
 
n = Num_Coupon_Pmts(valuation_date, next_coup_date, Maturity, Freq) 
ReDim cashflow_schedule(n, 5) 
 
For i = 1 To n 
        If i = 1 Then 
        cashflow_schedule(i, 2) = next_coup_date 
        Else 
        cashflow_schedule(i, 2) = DateAdd("m", 12 / Freq, cashflow_schedule(i - 1, 2)) 
        End If 
    cashflow_schedule(i, 1) = (cashflow_schedule(i, 2) - valuation_date) / 365 
        If i = n Then 
        cashflow_schedule(i, 3) = (1 + Annual_coup / Freq) * par_value 
        Else 
        cashflow_schedule(i, 3) = Annual_coup / Freq * par_value 
        End If 
    cashflow_schedule(i, 4) = (1 + inter2(term, yield_curve, cashflow_schedule(i, 1)) / (par_value * Freq)) ^ (-Freq * cashflow_schedule(i, 1)) 
        If i = 1 Then 
        cashflow_schedule(1, 5) = (next_coup_date - DateAdd("m", -12 / Freq, next_coup_date)) / 365 * cashflow_schedule(i, 3) 
        Else 
        cashflow_schedule(i, 5) = cashflow_schedule(i, 3) * cashflow_schedule(i, 4) 
        End If 
Bond_value = Bond_value + cashflow_schedule(i, 5) 
Next i 
 
End Function 
 

A6.6 Valuation of Vanilla Bond with embedded Call and Put Options 

Option Explicit 
 
'//Valuation of Bond using binomial tree - takes into account call and put features 
    'Parameters: 
    'IntRateTree: calibrated interest rate tree to be used 
    'Maturity: time to bond maturity 
    'Face Value CB 
    'Coupon_rate (total annual %) 
    'Coupon Frequency p.a. 
    'Call_Value (optional): value at which bond can be called by another company (at any time) 
    'Put_Value (optional): value at which bond can be redeemed by holder (at any time) 
    'Call_Start_Time (optional): when the call option becomes active 
    'Put_Start_Time (optional): when the put option becomes active 
    'No_t_Steps(optional): number of discrete t steps in grid 
     
    '1st Row: int rate used to discount backwards in tree 
    '2nd row: bond value without option exercised 
    '3rd row: option type exercised 
    '4th row: bond value (with option exercised) 
'********************************************************************************************************** 
 
Function Bond_Tree_Valuation( _ 
        IntRate As Double, _ 
        Maturity As Double, _ 
        Face_value As Double, _ 
        coupon_rate As Double, _ 
        sigma As Double, _ 
        Optional coupon_frequency As Integer = 1, _ 
        Optional call_value As Double = 0, _ 
        Optional put_value As Double = 0, _ 
        Optional No_t_Steps As Single, _ 
        Optional Call_Start_Time As Double = 0.00000001, _ 
        Optional Put_Start_Time As Double = 0.00000001, _ 
        Optional Version As String) 
         
On Error GoTo error_handling 
Dim u As Double, D As Double, p As Double 
Dim delta_t As Double, DfRisky 
Dim coupon_time As Double, i As Integer, k As Integer 
 
ReDim nodevalue(0 To No_t_Steps, 0 To No_t_Steps, 0 To 3) 
delta_t = Maturity / No_t_Steps 
u = Exp(sigma * Sqr(delta_t)) 
D = 1 / u 
p = (Exp(IntRate * delta_t) - D) / (u - D) 
DfRisky = Exp(-IntRate * delta_t) 
call_value = call_value / Face_value 
put_value = put_value / Face_value 
 
'Set up vector of PV of coupons to be added to the debt component to particular column of the tree 
ReDim coupon_schedule(0 To No_t_Steps) 
coupon_schedule(No_t_Steps) = coupon_rate / coupon_frequency 
coupon_time = Maturity - 1 / coupon_frequency 
For k = No_t_Steps - 1 To 0 Step -1 
    Do While coupon_time >= k * delta_t And coupon_time > 0 
        coupon_schedule(k) = coupon_schedule(k) + _ 
        Exp(-IntRate * (coupon_time - k * delta_t)) * _ 
        coupon_rate / coupon_frequency 
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    coupon_time = coupon_time - 1 / coupon_frequency 
    Loop 
Next k 
 
'initialize final (right) nodes of tree 
For i = 0 To No_t_Steps 
    nodevalue(i, No_t_Steps, 3) = 100 * (1 + coupon_schedule(No_t_Steps)) / Face_value   ' Let bond be redeemed 
    nodevalue(i, No_t_Steps, 2) = "Matured"                                              ' Option type exercised 
    nodevalue(i, No_t_Steps, 1) = 100 * (1 + coupon_schedule(No_t_Steps)) / Face_value   ' Let bond be redeemed 
    nodevalue(i, No_t_Steps, 0) = ""                                                     ' Maturity int rates = 0 
Next i 
             
Dim Default As Double, no_default As Double 
'Loop thru tree backwards 
For k = No_t_Steps - 1 To 0 Step -1 
    For i = 0 To k 
        nodevalue(i, k, 0) = IntRate 
        nodevalue(i, k, 1) = coupon_schedule(k) + _ 
                             (p * nodevalue(i + 1, k + 1, 3) + _ 
                             (1 - p) * nodevalue(i, k + 1, 3)) * DfRisky                  'Discounted rollback value 
            If nodevalue(i, k, 1) >= call_value And delta_t * k >= Call_Start_Time Then   'check if rollback value greater than call value 
            nodevalue(i, k, 2) = "Called" 
            nodevalue(i, k, 3) = call_value 
            ElseIf nodevalue(i, k, 1) <= put_value And delta_t * k >= Put_Start_Time Then 'check if rollback value less than put value 
            nodevalue(i, k, 2) = "Put" 
            nodevalue(i, k, 3) = put_value 
            Else 
            nodevalue(i, k, 2) = "" 
            nodevalue(i, k, 3) = nodevalue(i, k, 1) 
            End If 
        Next i 
Next k 
 
Select Case Version 
Case "Full" 
'initialize FullTree() - conditional formatting needs "" values to blank out non relevant cells 
    ReDim fulltree(0 To (4 * (No_t_Steps + 1) - 1), 0 To No_t_Steps) 
    For k = 0 To UBound(fulltree, 2) 
        For i = 0 To UBound(fulltree, 1) 
            fulltree(i, k) = "" 
        Next i 
    Next k 
 
    'write to FullTree() 
    For k = No_t_Steps To 0 Step -1 
        For i = 0 To k 
        fulltree(4 * (k - i), k) = nodevalue(i, k, 0) 
        fulltree(4 * (k - i) + 1, k) = nodevalue(i, k, 1) 
        fulltree(4 * (k - i) + 2, k) = nodevalue(i, k, 2) 
        fulltree(4 * (k - i) + 3, k) = nodevalue(i, k, 3) 
        Next i 
    Next k 
    Bond_Tree_Valuation = fulltree 
Case "Node" 
    ReDim initialnode(0 To 3) As Double 
    initialnode(0) = nodevalue(0, 0, 0) 
    initialnode(1) = nodevalue(0, 0, 1) 
    initialnode(2) = nodevalue(0, 0, 2) 
    initialnode(3) = initialnode(1) + initialnode(2) 
    Bond_Tree_Valuation = Application.Transpose(initialnode) 
Case Else 
    Bond_Tree_Valuation = nodevalue(0, 0, 1) 
End Select 
 
Exit Function 
error_handling: 
    Bond_Tree_Valuation = "Error #" & str(Err.Number) & "was generated by " _ 
        & Err.Source & Chr(13) & Err.Description 
 
End Function 

 

A6.7 Tan and Cai Risk Equilibrium model 

Option Explicit 
 
 
'//Valuation of Convertible Bond using Tan & Cai Risk Equilibrium Model 
    'Parameters: 
    'A_0: Total Firm Mkt Value at time 0 
    'Sigma: volatility of Firm Value 
    'IntRate: risk free rate 
    'IntRateRisky: required bond yield (to discount debt component of CB) 
    ' DividendRateContinuous: dividend rate p.a. (for cont dividend model) 
    'Conversion_Ratio: number of stocks per face value CB 
    'Maturity: time to CB maturity 
    'Face Value CB 
    'Coupon_rate (total annual %) 
    'Coupon Frequency p.a. 
    'Call_Value (optional): value at which bond can be called by another company (at any time) 
    'Put_Value (optional): value at which bond can be redeemed by holder (at any time) 
    'Call_Start_Time (optional): when the call option becomes active 
    'Put_Start_Time (optional): when the put option becomes active 
     
    'No_t_Steps(optional): number of discrete t steps in grid 
    'Optional AmeEurFlag: European("e") - default or American "a" with early conversion option possible. 
    '"InitialNoConversionPeriod: if American exercise option, time at which early exercise begins 
     
    'Version (optional) 
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    '-"Full": full tree with 
    '1st Row: stock price 
    '2nd row: equity component (if CB is converted) 
    '3rd row: debt component (if CB is NOT converted) 
    '4th row: value of CB 
    '-"Node": all components of initial node omitted or any value - CB value only 
 
'********************************************************************************************************** 
 
Function ConvBinomial_RiskEquil( _ 
        A_0 As Double, _ 
        Sigma As Double, _ 
        meanreturn As Double, _ 
        num_convertibles As Double, _ 
        num_shares As Double, _ 
        IntRate As Double, _ 
        coupon_rate As Double, _ 
        coupon_frequency As Double, _ 
        Conversion_Ratio As Single, _ 
        maturity As Double, _ 
        Face_value As Double, _ 
        lambda As Double, _ 
        Optional call_value As Double = 0, _ 
        Optional put_value As Double = 0, _ 
        Optional No_t_Steps As Single, _ 
        Optional InitialNoConversionPeriod As Double, _ 
        Optional Version As String = "", _ 
        Optional Call_Start_Time As Double = 0.00000001, _ 
        Optional Put_Start_Time As Double = 0.00000001) 
         
'On Error GoTo error_handling 
Dim u As Double, d As Double, p As Double, expA, expC, cov_AC, CBMkt_Value 
Dim ConversionValue As Double, NomValue As Double, sigma_conv, tot_call_value 
Dim delta_t As Double, Df As Double, DfRisky As Double, tot_put_value As Double 
Dim coupon_time As Double, i As Integer, k As Integer, j As Integer 
 
ReDim nodevalue(0 To No_t_Steps, 0 To No_t_Steps, 0 To 3), a(0 To No_t_Steps, 0 To No_t_Steps) 
ReDim sigma_conv(0 To No_t_Steps, 0 To No_t_Steps), meanconvret(0 To No_t_Steps, 0 To No_t_Steps) 
delta_t = maturity / No_t_Steps 
u = Exp(Sigma * Sqr(delta_t)) 
d = 1 / u 
p = (Exp(meanreturn * delta_t) - d) / (u - d) 
 
'Set up vector of PV of coupons to be added to the debt component to particular column of the tree 
ReDim coupon_schedule(0 To No_t_Steps) 
coupon_schedule(No_t_Steps) = coupon_rate / coupon_frequency 
coupon_time = maturity - 1 / coupon_frequency 
For k = No_t_Steps - 1 To 0 Step -1 
    Do While coupon_time >= k * delta_t And coupon_time > 0 
        coupon_schedule(k) = coupon_schedule(k) + _ 
        Exp(-IntRate * (coupon_time - k * delta_t)) * _ 
        coupon_rate / coupon_frequency 
    coupon_time = coupon_time - 1 / coupon_frequency 
    Loop 
Next k 
'initialize final (right) nodes of tree 
For i = 0 To No_t_Steps 
    nodevalue(i, No_t_Steps, 0) = A_0 * u ^ i * d ^ (No_t_Steps - i) 
    NomValue = num_convertibles * Face_value * (1 + coupon_rate / coupon_frequency) 
    If NomValue > nodevalue(i, No_t_Steps, 0) Then 
        nodevalue(i, No_t_Steps, 1) = nodevalue(i, No_t_Steps, 0) ' set final CB values 
    Else 
        nodevalue(i, No_t_Steps, 1) = NomValue ' set final debt values 
    End If 
Next i 
'Loop thru tree backwards 
For k = No_t_Steps - 1 To 0 Step -1 
    For i = 0 To k 
        nodevalue(i, k, 0) = A_0 * u ^ i * d ^ (k - i) 
             
            'defining the call, put and conversion parameters 
            If k * delta_t >= Call_Start_Time Then 
            tot_call_value = call_value * Face_value * num_convertibles 
            Else 
            tot_call_value = 1E+91 
            End If 
            If k * delta_t >= Put_Start_Time Then 
            tot_put_value = put_value * Face_value * num_convertibles 
            Else 
            tot_put_value = 0 
            End If 
            If k * delta_t >= InitialNoConversionPeriod Then 
            ConversionValue = (Conversion_Ratio * num_convertibles * nodevalue(i, k, 0)) / (num_shares + num_convertibles * Conversion_Ratio) 
            Else 
            ConversionValue = 0 
            End If 
 
            'using expected values to compute covariance and thus find risk burden ratio 
            expA = p * WorksheetFunction.Ln(nodevalue(i + 1, k + 1, 0)) + _ 
                   (1 - p) * WorksheetFunction.Ln(nodevalue(i, k + 1, 0))    'Firm Value component 
            expC = p * WorksheetFunction.Ln(nodevalue(i + 1, k + 1, 1)) + _ 
                   (1 - p) * WorksheetFunction.Ln(nodevalue(i, k + 1, 1))  'CB component 
            cov_AC = p * (WorksheetFunction.Ln(nodevalue(i + 1, k + 1, 0)) - expA) * (WorksheetFunction.Ln(nodevalue(i + 1, k + 1, 1)) - expC) + _ 
                    (1 - p) * (WorksheetFunction.Ln(nodevalue(i, k + 1, 0)) - expA) * (WorksheetFunction.Ln(nodevalue(i, k + 1, 1)) - expC) 
            a(k - i, k) = cov_AC / (Sigma ^ 2 * delta_t) 
            sigma_conv(k - i, k) = a(k - i, k) * Sigma 
            meanconvret(k - i, k) = IntRate + lambda * sigma_conv(k - i, k)     'appropriate discount rate to be used 
                         
            nodevalue(i, k, 2) = meanconvret(k - i, k) 
            nodevalue(i, k, 3) = a(k - i, k) 
            CBMkt_Value = (Face_value * num_convertibles * coupon_schedule(k)) + _ 

 
 
 



 

 xxvii

                           Exp(-meanconvret(k - i, k) * delta_t) * (p * nodevalue(i + 1, k + 1, 1) + (1 - p) * nodevalue(i, k + 1, 1)) 
             
            nodevalue(i, k, 1) = Application.Min(CBMkt_Value, nodevalue(i, k, 0), tot_call_value) 
            nodevalue(i, k, 1) = Application.Min(Application.Max(nodevalue(i, k, 1), ConversionValue, tot_put_value), nodevalue(i, k, 0)) 
             
            If nodevalue(i, k, 1) = ConversionValue Then 
            nodevalue(i, k, 2) = "Conversion" 
            ElseIf nodevalue(i, k, 1) = tot_put_value Then 
            nodevalue(i, k, 2) = "Put" 
            ElseIf nodevalue(i, k, 1) = tot_call_value Then 
            nodevalue(i, k, 2) = "Called" 
            Else 
            nodevalue(i, k, 2) = "" 
            End If 
    Next i 
Next k 
 
If Version = "Full" And No_t_Steps > 35 Then Version = "Node" 
 
Select Case Version 
Case "Full" 
    'initialize FullTree() - conditional formatting needs "" values to blank out non relevant cells 
    ReDim fulltree(0 To (4 * (No_t_Steps + 1) - 1), 0 To No_t_Steps) 
    For k = 0 To UBound(fulltree, 2) 
        For i = 0 To UBound(fulltree, 1) 
            fulltree(i, k) = "" 
        Next i 
    Next k 
 
    'write to FullTree() 
    For k = No_t_Steps To 0 Step -1 
        For i = 0 To k 
        fulltree(4 * (k - i), k) = nodevalue(i, k, 0) 
        fulltree(4 * (k - i) + 1, k) = nodevalue(i, k, 1) 
        fulltree(4 * (k - i) + 2, k) = nodevalue(i, k, 2) 
        fulltree(4 * (k - i) + 3, k) = nodevalue(i, k, 3) 
        Next i 
    Next k 
    ConvBinomial_RiskEquil = fulltree 
Case "Node" 
    ReDim initialnode(0 To 3) As Double 
    initialnode(0) = A_0 
    initialnode(1) = nodevalue(0, 0, 1) 
    initialnode(2) = nodevalue(0, 0, 2) 
    initialnode(3) = nodevalue(0, 0, 3) 
    ConvBinomial_RiskEquil = Application.Transpose(initialnode) 
Case Else 
    ConvBinomial_RiskEquil = nodevalue(0, 0, 1) 
End Select 
 
Exit Function 
error_handling: 
   ConvBinomial_RiskEquil = "Error #" & Str(Err.Number) & "was generated by " _ 
        & Err.Source & Chr(13) & Err.Description 
 
End Function 
 

A6.8 Other Functions 

' Calculates the value of an European Option (Black-Scholes) 
' Typ -> Call or Put 
' Command -> Price, Delta, Gamma, Theta, Vega, Rho 
 
Function phi(X As Double) As Double 
    phi = 1 / Sqr(2 * Application.Pi()) * Exp(-X ^ 2 / 2) 
End Function 
 
 
Function fi(X As Double) As Double 
    fi = 1 / Sqr(2 * Application.Pi()) * Exp(-X ^ 2 / 2) 
End Function 
 
 
Function Gauss(X As Double) As Double 
    Gauss = Application.NormSDist(X) 
End Function 
 
Function option_e(Put_Call As String, S As Double, e As Double, Tmt As Double, r As Double, q As Double, sigma As Double, Command As String) As Double 
' Calculates the value of an European Option (Black-Scholes) 
' Typ -> Call or Put 
' Command -> Price, Delta, Gamma, Theta, Vega, Rho 
     
    Tmt = Application.Max(0.00001, Tmt) 
     
    Dim Sign As Integer 
    Dim d1 As Double, d2 As Double, ed1 As Double, ed2 As Double 
    Select Case UCase$(Left$(Put_Call, 1)) 
        Case "C": Sign = 1 
        Case "P": Sign = -1 
        Case Else: MsgBox "Not valid." 
                   option_e = 0 
                   Exit Function 
        
    End Select 
     
    If (sigma * S * Tmt > 0) Then 
        d1 = (Log(S / e) + (r - q + 0.5 * sigma * sigma) * Tmt) / (sigma * Sqr(Tmt)) 
        ed1 = Gauss(Sign * d1) 
        d2 = d1 - sigma * Sqr(Tmt) 
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        ed2 = Gauss(Sign * d2) 
    Else 
        If (S < e) Then 
            ed1 = 0.5 * (1 - Sign) 
        Else 
            ed1 = 0.5 * (1 + Sign) 
        End If 
        ed2 = ed1 
    End If 
    Select Case UCase$(Left$(Command, 1)) 
        Case "P": option_e = Sign * (S * Exp(-q * Tmt) * ed1 - e * Exp(-r * Tmt) * ed2) ' Price 
        Case "D": option_e = Sign * Exp(-q * Tmt) * ed1 ' Delta 
        Case "G": 
                      If S * sigma * Tmt > 0 Then 
                         option_e = Exp(-q * Tmt) * phi(d1) / (sigma * S * Sqr(Tmt)) 
                      Else: option_e = 0 
                      End If ' Gamma 
        Case "T": 
                option_e = (-0.5 * S * sigma * Exp(-q * Tmt) * phi(d1) / Sqr(Tmt) _ 
                        + Sign * (q * S * Exp(-q * Tmt) * ed1 - r * e * Exp(-r * Tmt) * ed2)) / 365.25 ' Theta 1/Day 
        Case "V": option_e = 0.01 * Exp(-q * Tmt) * phi(d1) * S * Sqr(Tmt) ' Vega [1/%] 
        Case "Q": option_e = -0.01 * Sign * S * Tmt * Exp(-q * Tmt) * ed1 ' Divi-Yield-Sensitivität [1/%] 
        Case "R": option_e = 0.01 * Sign * e * Tmt * Exp(-r * Tmt) * ed2 ' Rho [1/%] 
        Case Else: MsgBox "Illegal output query '" & Command & "'" 
                   option_e2 = 0 
    End Select 
End Function 
 
'Linear Interpolation (e.g. of interest rates or volatilities): x_v = Datevector,y_v = valuevector, X = date 
 
Function inter2(x_v As Object, y_v As Object, X As Variant) As Double 
    Dim n As Long, ind As Long, i As Long 
    n = x_v.Rows.Count 
    If X < x_v(1) Then 
        inter2 = y_v(1) 
    ElseIf X > x_v(n) Then 
        inter2 = y_v(n) 
    Else 
        For i = 1 To n 
            If x_v(i) <= X Then 
                ind = ind + 1 
            Else 
                ind = ind 
            End If 
        Next 
        Dim X1 As Variant, X2 As Variant, Y1 As Double, Y2 As Double 
        X1 = x_v(ind) 
        X2 = x_v(ind + 1) 
        Y1 = y_v(ind) 
        Y2 = y_v(ind + 1) 
        inter2 = (Y1 * (X2 - X) + Y2 * (X - X1)) / (X2 - X1) 
    End If 
End Function 
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