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Summary

The LULU operators Ln and Un operate on neighbourhoods of size n. The
Discrete Pulse Transform (DPT) of images is obtained via recursive peeling
of so-called local maximum and minimum sets with the LULU operators as
n increases from 1 to the maximum number of elements in the array. The
DPT provides a new nonlinear decomposition of a multidimensional array.
This thesis investigates the theoretical and practical soundness of the de-
composition for image analysis. Properties for the theoretical justification of
the DPT are provided as consistency of the decomposition (a pseudo-linear
property), and its setting as a nonlinear scale-space, namely the LULU scale-
space. A formal axiomatic theory for scale-space operators and scale-spaces
is also presented. The practical soundness of the DPT is investigated in im-
age sharpening, best approximation of an image, noise removal in signals and
images, feature point detection with ideas to extending work to object track-
ing in videos, and image segmentation. LULU theory on multidimensional
arrays and the DPT is now at a point where concrete signal, image and video
analysis algorithms can be developed for a wide variety of applications.
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