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Abstract.

A generalisation of the Di�e-Hellman protocol is studied in this disserta-

tion. In the generalisation polynomials are used to reduce the representation

size of a public key and linear shift registers for more e�cient computations.

These changes are important for the implementation of the protocol in con-

strained environments. The security of the Di�e-Hellman protocol and its

generalisation is based on the same computations problems. Lastly three

examples of the generalsation and their implementation are discussed. For

two of the protocols, models are given to predict the execution time and it

is determined how well these model predictions are.
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Chapter 1

Introduction

Communication is essential in any situation where a group of people work

together. Today communication takes place through various methods, like

e-mail and real time chatting, using programs such as MSNr and VOIP1. A

requirement for communication is privacy, i.e. secure communication. The

need for secure communication is not a new one; as early as the Roman

Empire secure communication was used. It is only recently that secure com-

munication was needed and accessible by the general public. The study of

encrypting and decrypting a message in a secure form is called cryptography.

The best contemporary example of secure communication is Internet

banking. When one does Internet banking, it must not be possible for any-

one else to understand or change the communication. Secure communication

based on encryption is ensured by two types of algorithms: symmetric and

asymmetric. The symmetric algorithm uses a shared secret key for encryption

and decryption. This shared key is obtained from a public key distribution

system2 which uses an asymmetric algorithm to derive the shared key. In

1976, Di�e and Hellman introduced the �rst practical public key distribu-

tion system, i.e. the Di�e-Hellman Protocol.

In Chapter 2 the Di�e-Hellman Protocol is given, and security improve-

ment of the protocol. In this dissertation three variants of the Di�e-Hellman

1A protocol used to transport speech over the Internet.
2Today the term is key agreement system. The original term is used since the di�erence

between the two terms is not considered here.
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protocol are discussed. The variants have advantages over the Di�e-Hellman

protocol, namely an increase in speed and a reduction in the data needed to

represent the keys. From these variations common ideas are identi�ed and a

general theory is created in Chapter 3. The three variations are described in

detail in Chapter 4.

The practical part of this dissertation determines if knowledge of the

number of �eld operations performed is su�cient to predict the execution

time of a protocol. In Chapter 5 models are constructed and it is determined

how accurate the predictions are.

The remainder of this chapter will provide some background knowledge to

the rest of the dissertation. In Section 1.1 and 1.2 symmetric cryptography

and public key distribution systems are explained. In Section 1.3 a short

discussion of complexity is given, which will be used in the comparison of the

protocols.

1.1 Symmetric Cryptography

When two people, for instance, Alice and Bob want to communicate se-

curely over an insecure channel, they can use an encryption algorithm. With

a symmetrical algorithm, the users need a shared secret that has to be agreed

upon before communication can start. The shared secret is used as a key for

a symmetric algorithm to enable encryption and decryption for the secure

communication between Alice and Bob to take place, see Figure 1.1. As soon

as Alice wants to communicate with more people securely, a large number of

secret keys are needed. For n number of people to communicate securely with

each other, the total number of shared keys is n(n− 1)/2. The same num-

ber of communication channels are needed. As the number of participants

in the protocol increases, the number of keys, and communication channels

becomes impractical.
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Shared secret

Secure channel

Alice Bob

Encrypted
algorithmalgorithm

Encryption Decryption

Figure 1.1: Two parties using a symmetric algorithm.

Public key distribution systems o�er an approach which eliminates the

need for a secure key distribution channel. Di�e and Hellman introduced

the �rst practical public key distribution system, [3]. A current example

of a public key distribution system is the program PGP3 written by Phil

Zimmerman [21].

1.2 Public Key Distribution Systems

An algorithm used for a public key distribution system is called an asym-

metric algorithm. A public key system consists of the following components:

• System parameters: �x some settings in the algorithm.

• Private key, priv: the value the user must keep secret.

• Public key, pub: the value that is publicly known and used for commu-

nication with the owner of the associated private key.

• Combining function, F (priv, pub): the function used to create the

shared secret.

3Pretty Good Privacy
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The introduction of the public key distribution systems removes the need for

initial secure communication. However the public keys must belong to the

user whom the communication is intended for. Obtaining an authenticated

public key is not a trivial problem, but it is not the focus of this dissertation

and therefore will not receive further attention.

Before the protocol can be initiated the users, Alice and Bob, must �rst

generate their public and private key pairs, called (pubA, privA) and (pubB, privB)

respectively. The public keys are then distributed over an insecure channel

to the other users where the combining function computes the shared secret.

By selecting any symmetric algorithm (C) a secure channel can be created

by using the shared secret as the key for the symmetric algorithm. An il-

lustration of the communication between Alice and Bob is given in Figure

1.2. The shared secret computed by Bob is given by F (privB, pubA), and

must be the same as the shared secret computed by Alice, which is given by

F (privA, privB). For this reason a requirement for the combining function is

that

F (privA, pubB) = F (privB, pubA) (1.1)

for all users Alice and Bob.

For a public key distribution system to be secure, it should not be com-

putationally feasible to deduce a private key, or any key equivalent of it, from

a public key. Furthermore, the combining function must at least satisfy the

following conditions to ensure that the shared secret is in fact a secret.

• It must not be computationally feasible to determine information about

the shared secret from the information exchanged in the protocol.

• The combining function must appear as though acting randomly with

respect to its input.

• It must be infeasible to compute the private key from the public key.

All known asymmetrical algorithms are signi�cantly slower than sym-

metrical algorithms. Hence, a combination of symmetrical and asymmetrical

4

 
 
 



Shared secret
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Alice

F

Figure 1.2: Two parties using a public key distribution system.

algorithms are used in order to optimise the speed without compromising

security.

1.3 Computation

The suitability of a protocol for an implementation, is determined by its

computational e�ciency and its data transmitting e�ciency during commu-

nication. A theoretical measure, the O-notation, is used to determine how

e�cient a protocol is. An advantage of using the O-notation is that it can be

used independently from the machine the protocol is implemented on. The

O-notation measures the complexity of an algorithm.

De�nition 1.1.

(1) A partial function f : N 7→ R is a function that needs not be de�ned for

all n ∈ N and is called eventually positive if there is a constant N ∈ N
and such that f(n) is de�ned and strictly positive for all n ≥ N .
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(2) Let g : N 7→ R be eventually positive. Then O(g) is the set of all

eventually positive functions f : N 7→ R for which there exist N, c ∈ N
such that f(n) and g(n) are de�ned and f(n) ≤ cg(n) for all n ≥ N .

Complexity analysis of an exponentiation algorithm is given in the next

example.

Example 1.2 (Repeated Squaring). The power of a number is frequently

computed. In this example a simple but e�cient algorithm is demonstrated,

namely the repeated squaring technique, see Algorithm 1.

Algorithm 1: Left-to-right exponentiation

Data: α ∈ Z, n =
(
n′r−1, . . . , n

′
0

)
2

Output: M = αn

M ← 1;1

for i = r − 1 to 0 do2

if n′i = 1 then3

M ←M · α;4

end5

M ←M ·M ;6

end7

The input of the algorithm is taken as the length of the exponent in its

binary representation, i.e. r = log2(n). The operations that are of interest

in the complexity analysis are multiplication and squaring.

Squaring and multiplication is implemented in the current context as

multiprecision integers. In the squaring operation of a multiprecision integer,

symmetries arise that can be used to reduce the number of single precision

multiplications. Thus it is assumed that squaring takes 80% of the time to

perform multiplication. The bit of the exponent under consideration in line

3 determines whether multiplication is also being performed. Therefore, the

time needed to perform the exponentation is

HnM + r(1.8M) = (Hn + 1.8r)M

where Hn is the Hamming weight of the exponent and M the time needed

to perform multiplication. Only using repeated multiplication would require

6

 
 
 



n multiplication, which is larger than or equal to 2r. Note that Hn ≤ r.

Thus, repeated squaring is more e�cient. In terms of the O-notation, the

complexity is linear, i.e. O(r).

The O-notation can be seen as an asymptotic measure, but the protocol

will only be implemented with �nite possible inputs. This di�erence raises

the question about the validity of using the O-notation.

The comparison of the complexity analysis with implementations with

practical inputs will be investigated here, Chapter 5. The operations of

interest in the analysis are multiplication, squaring and addition. These

were selected, as they are the operations used in the �nite �eld.
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Chapter 2

Di�e-Hellman Protocol

In [3] the Di�e-Hellman protocol is introduced; it was the �rst practical

public key distribution protocol. Despite its age, some of the mainstream

asymmetric protocols are still based on it, such as Elliptic Curves and XTR.

One of the criticisms of the Di�e-Hellman protocol is that it is more compli-

cated than RSA, as knowledge of �nite �elds is needed for the implementation

of the Di�e-Hellman protocol.

In this chapter, the protocol is given as well as how the security of the pro-

tocol is evaluated. The security of the Di�e-Hellman Protocol is formalised

in the Di�e-Hellman, Discrete Logarithm and Di�e-Hellman Decision Prob-

lems. Four attacks on these problems will be discussed and each of these

attacks highlights a vulnerability of the Di�e-Hellman Protocol. Currently,

the security of the protocol is determined by the choice of parameters that

make known attacks not feasible.

2.1 The Protocol

The protocol requires a cyclic group G of order n and a primitive element

α in G that generates all the elements 1, α, α2, . . . , αn−1 of G. The system's

parameters α and G are public knowledge. The group <α> is referred to as

the Di�e-Hellman group.

The private keys of Alice and Bob are integers in the interval [2, ord(α)),
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privA and privB respectively. The public keys of Alice and Bob are now

calculated as follows:

pubA = αprivA

pubB = αprivB .

The public keys are exchanged between Alice and Bob via an insecure chan-

nel.

To compute the shared secret between Alice and Bob, the combining

function F : Zn−1 \ {0, 1} ×G→ G is de�ned by

F (x, y) = yx.

Now the combining function satis�es (1.1):

F (privA, pubB) =
(
αprivB

)privA

=
(
αprivA

)privB

= F (privB, pubA).

A summary of the protocol is given in Table 2.1.

Alice Bob

Common <α> = G
Private privA privB

Public αprivA αprivB

Shared Secret αprivAprivB

Table 2.1: Di�e-Hellman Protocol.

Example 2.1. The Di�e-Hellman key exchange for α = 7, using Z∗
13 as the

cyclic group.

Let the private keys for Alice and Bob be:

privA = 10

privB = 5.
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The public keys are then

pubA = 710 (mod 13)

= 4

and

pubB = 75 (mod 13)

= 11.

The shared secret for Alice and Bob is thus

75·10 (mod 13) = 10.

2.2 Security of the Di�e-Hellman Protocol

In Section 1.2 three necessary properties for a secure public key distribu-

tion system are stipulated. In the case of the Di�e-Hellman Protocol, these

properties translate into the following three problems.

De�nition 2.2 (Discrete Logarithm Problem). [18, De�nition 2] Let G be

a �nite cyclic group generated by α. The problem of computing from β ∈ G

a number s such that αs = β is called the Discrete Logarithm Problem.

Notation: s = DLα(β).

De�nition 2.3 (Di�e-Hellman Problem). [18, De�nition 1] Let G be a �nite

cyclic group with generator α. The problem of computing αab from αa and

αb is called the Di�e-Hellman Problem. Notation: αab = DH(αa, αb).

De�nition 2.4 (Di�e-Hellman Decision Problem). [18, De�nition 3] Let G

be a �nite cyclic group generated by α. Let αa, αb, αc be chosen independently

and randomly in G according to the uniform distribution. Given the triples(
αa, αb, αab

)
and

(
αa, αb, αc

)
in random order, the Di�e-Hellman Decision

Problem is to decide, with a probability greater than 1/2, which of the triples

is the correct Di�e-Hellman triple.
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The intractability of these problems will ensure that the Di�e-Hellman

Protocol has the properties mentioned in Section 1.2. Although all three

problems are important for the security of the Di�e-Hellman Protocol, the

Discrete Logarithm Problem will be the main focus of this dissertation.

It is evident that solving the Discrete Logarithm Problem is su�cient for

solving the Di�e-Hellman Problem and the Di�e-Hellman Decision Problem.

It is also evident that solving the Di�e-Hellman problem is su�cient for

solving for the Di�e-Hellman Decision Problem.

DL

��9
99

99
99

99
99

99
9

DH

����
��

��
��

��
��

��

DHD
��

Figure 2.1: Evident relations between problems Di�e-Hellman Problems.

Indeed, if αa and αb are given, then

αab = (αa)DLα(αb)

and if a triple
(
αa, αb, αc

)
is given, then it can be determined whether this is

a Di�e-Hellman triple by testing whether

αc = (αa)DLα(αb)

or

αc = DH(αa, αb).
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Whether one can solve the Di�e-Hellman Decision Problem by methods other

the discrete logarithm poses an important problem. The following example

shows that in certain cases it is very easy to solve the Di�e-Hellman Deci-

sion Problem without making use of solutions from the Discrete Logarithm

Problem or the Di�e-Hellman Problem.

Example 2.5 (Di�culty of Di�e-Hellman Decision). This example shows

that in certain cases, solving the Di�e-Hellman Decision Problem is easy.

Use the notation of De�nition 2.4 and let the order of the group G be 2p,

where p is prime. For a triple
(
αa, αb, αc

)
to be a valid Di�e-Hellman triple,

it must be the case that

2p|(ab− c),

hence

ab ≡ c (mod 2). (2.1)

Relation (2.1) holds if, and only if, one of the following holds:

(1) (2|a or 2|b) and 2|c,

(2) 2 - a and 2 - b and 2 - c.

Relation (2.1) fails if, and only if, one of the following relations holds:

(1) (2|a or 2|b) and 2 - c,

(2) 2 - a and 2 - b and 2|c.

To determine if a triple is a Di�e-Hellman triple, Algorithm 2 is used. The

algorithm determines if (2.1) is satis�ed. If relation (2.1) is not satis�ed

the triple is not a valid Di�e-Hellman pair. If the relation is not valid the

output of the algorithm is random. Thus the probability that the algorithm

is correct is 0.5 if relation (2.1) holds and 1 if the relation does not hold.

Since the relation holds with a probability of 0.5, the algorithm provides the

correct answer is obtained with a probability of 3/4.
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If the relation is valid no information is obtained and a random decision is

made. Thus for a random input the relation will be false of 50 percent of the

input and for the other triple the probability that a correct answer is give, is

0.5. Thus for any triple the correct answer is obtained with a probability of

0.5.

Algorithm 2: Solve the Di�e-Hellman Decision Problem, Example 2.5

Data:
(
αa, αb, αc

)
the triple to test

Output: If the Triple is valid
ga ← (αa)p;1

gb ←
(
αb
)p
;2

gc ← (αc)p;3

if ga = gb = 1 and gc 6= 1 then4

return Not Valid Triple;5

end6

if ga = gb 6= 1 and gc = 1 then7

return Not Valid Triple;8

end9

Randomly select r ∈ Z2;10

if r then11

return Not Valid Triple;12

end13

return Valid Triple;14

2.3 Attacks on the Discrete Logarithm Prob-

lem

Certain attacks, as indicated below, are considered for determining the

parameters of the Di�e-Hellman protocol. These attacks are not the most

e�cient variants, but illustrate the weakness of the protocol. In certain

attacks, the order of the Di�e-Hellman group needs to be factorised. It is

therefore assumed that the factors can be computed in a reasonable time.

The attacks considered are:

• Pollard ρ: Random search.
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• Chinese Remainder Theorem: Factorisation of the order of the Di�e-

Hellman group.

• Pohlig-Hellman: Provides a method to compute the discrete logarithm

in a cyclic group of prime order.

• Index Calculus: Using the smallest �eld containing the Di�e-Hellman

group.

A detailed survey of attacks on the Discrete Logarithm Problem can be found

in [19].

In each of the following attacks, let G be a cyclic group of order n, with

generator α, and let β ∈ G be any element of which the logarithm needs to

be computed, i.e. for the equation αr = β, (r is an integer) where r must be

solved.

2.3.1 Pollard ρ

The Pollard ρ algorithm solves for r by �rst �nding integers m and s such

that

βm = αs.

The above integers are found by constructing a sequence x0, x1, x2, . . . of

elements in G and then determining an index m such that

x2m = xm,

a collision. This method of �nding an m such that xm = x2m is called Floyd's

cycle-�nding algorithm [24].

Floyd's cycle-�nding algorithm adds computation complexity, by remov-

ing the need to store all the elements in the sequence until a collision is found.

For any sequence x0, x1, x2, . . ., if j is the smallest index such that xj = xi

for 0 ≤ i < j, then there exists an m′ with i ≤ m′ ≤ j such that xm′ = x2m′ :

If k = j − i then for any l ≥ i and t ≥ 0, it follows that xl = xl+tk. In

14

 
 
 



particular, if

l = m′ = k

⌈
i

k

⌉
and

t =

⌈
i

k

⌉
then xm′ = x2m′ and i ≤ m′ ≤ j.

Divide the group G into three disjoint and roughly equal, in cardinality,

sets S1, S2 and S3, from which the sequence x0, x1, x2, . . . is obtained by

setting x0 = 1 and

xi =


βxi−1 if xi−1 ∈ S1

x2
i−1 if xi−1 ∈ S2

αxi−1 if xi−1 ∈ S3

with i ≥ 1. The elements of the sequence can be written as xi = βbiαai for

i ≥ 0 and a0 = b0 = 0. Therefore, for each i ≥ 1 it follows that

(ai, bi) =


(ai−1, bi−1 + 1) if xi−1 ∈ S1

(2ai−1, 2bi−1) if xi−1 ∈ S2

(ai−1 + 1, bi−1) if xi−1 ∈ S3.

Compute the 6-tuple (xi, ai, bi, x2i, a2i, b2i) for i = 1, 2 . . . until xi = x2i.

Then

βbiαai = βb2iαa2i .

Let m = bi − b2i (mod ord(α)) and s = a2i − ai (mod ord(α)), then

βm = αs (2.2)
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and

mDLα(β) ≡ s (mod ord(α)).

Case 1: If m and n are relatively prime, then the discrete logarithm can be

solved directly by

DLα(β) ≡ sm−1 (mod ord(α)),

where m−1 is such that

mm−1 ≡ 1 (mod ord(α)).

Case 2: If (m, ord(α)) = m′ > 1 use the extended Euclidean Algorithm to

compute u and v such that

m′ = u ·m + v · ord(α). (2.3)

Then from (2.2)

βm′
= βu·m+v·ord(α)

= βu·m

= αus.

By substituting β by αr in the above equation,

αrm′
= αus,

with r and m′ �xed. While u can be selected arbitrarily large, it can

thus be assumed that us is divisible by m′. The above equation can be

stated as follows:

βm′
= αm′l
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thus

β = αl+(iord(α)/m′) with 1 ≤ i ≤ m′

and

DLα(β) = r

≡ l + (in/m′) (mod n)

for a value of i.

This indicates how to calculate the value r, such that β = αr.

The following theorem is used to estimate the complexity of the Pollard

ρ algorithm.

Theorem 2.6 (The birthday paradox). [24, Theorem 2.4] Suppose that

0 < k � n and independently selects k random integers between 1 and n,

with equal probability. The probability P (n, k), that of two selected numbers

are equal, is approximately 1− e−k(k−1)/(2n).

Proof. Randomly select k integers independently and uniformly from the set

[1, n] and let P (n, k) denote the probability that two of the selected numbers

are equal. The probability that all the selected elements are distinct is

n(n− 1) · · · (n− k + 1)

nk
,

thus

P (n, k) = 1− n(n− 1) · · · (n− k + 1)

nk
.

The probability can be written as

P (n, k) = 1−
(

1− 1

n

)(
1− 2

n

)
· · ·
(

1− k − 1

n

)
.

The factors (1− i/n) for 1 ≤ i < k will be approximated. If i/n is small,
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then 1− i/n ≈ e−i/n. The probability can now be approximated by

P (n, k) ≈ 1− e−1/ne−2/n · · · e−(k−1)/n

= 1− e−(1/n+2/n+···+(k−1)/n)

= 1− e−k(k−1)/2n.

Assume that the sequence x1, x2, . . . is chosen in the Pollard ρ algorithm

such that it behaves like a random walk through the group G. Theorem 2.6

is then used to estimate the complexity. If a success rate of approximately

90% is needed, then from 1− e−2.5 ≈ 0.9 it is required that

−k(k − 1)/(2ord(α)) ≈ −2.5

∴ k2 ≈ 5 · ord(α),

where the collision in the sequence of elements occurs after k iterations.

Note that k is the index of the largest element computed in the sequence.

As Floyd's algorithm is used, it is needed that k is replaced by 2k. Thus,

k2 ≈ (1.25)ord(α)

i.e. k = O(
√
ord(α)).

This gives a complexity of O(
√
ord(α)). Since the success rate only changes

the number of iterations needed, the order of the complexity of the algorithm

will not change. In [22] it is proven that the lower bound of complexity of a

generic method to solve the Discrete Logarithm Problem is O(
√
ord(α)).

Example 2.7. Consider the group Z∗
13 with generator α = 7. Let β = 5 be

the element of which the discrete logarithm needs to be computed.
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Divide the group into three sets as follows

S1 = {3, 4, 9, 10}

S2 = {2, 6, 11, 12}

S3 = {1, 5, 7, 8}.

The sequence is now de�ned by

xi =


5xi−1 if xi−1 ∈ S1

x2
i−1 if xi−1 ∈ S2

7xi−1 if xi−1 ∈ S3.

Table 2.2 gives the values of the 6-tuples (xi, ai, bi, x2i, a2i, b2i) for the �rst

four iterations.

i xi ai bi x2i a2i b2i

0 1 0 0 1 0 0
1 7 0 1 10 0 2
2 10 0 2 4 2 4
3 11 1 2 10 3 5
4 4 2 4 4 8 10

Table 2.2: Sequence generated in Example 2.7.

This table indicates that the �rst collision occurs when i = 4 using Floyd's

method. Also notice that the �rst collision occurs when i = 2 and j = 6,

if Floyd's cycle-�nding technique is not used. With a collision at i = 4, the

variables in (2.2) are

m = a4 − a8

= 2− 8

≡ 6 (mod 12)
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and

s = b8 − b4

= 10− 4

≡ 6 (mod 12).

Since (6, 12) = 6 = m′ > 1 the extended Euclidean Algorithm is used to �nd

the next set of variables as de�ned in (2.3):

u = −1

v = 1.

Thus

β6 = α−6,

and

l = 1.

The solution is in now in the set

{1− i · 12/6|i = 0, 1, . . . , 11}

={1, 10, 9, 7, 5, 3}.

By exhaustive search it follows that the logarithm is 3.

2.3.2 Chinese Remainder Theorem

The Discrete Logarithm Problem will be solved in a group by considering

the same problem in its subgroups. This is achieved through a divide and

conquer attack that uses the factorisation of ord(<α>) to divide the prob-

lem. The Chinese Remainder Theorem uses the solutions in these subgroups

to provide the solution in the group <α>.
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Theorem 2.8 (Chinese Remainder Theorem). [4, Theorem 2.3.1] Let {n1, . . . , nk}
be a set of positive integers which are relatively prime. For any set of integers

{a1, . . . , ak} the system of congruences

x ≡ ai (mod ni), i = 1, 2, . . . , k,

has exactly one solution modulo n = n1n2 · · ·nk.

Proof. De�ne

ci = ai(Mi)−1 (mod ni)

where

Mi =
k∏

j=1

j 6=i

nj and Mi(Mi)−1 ≡ 1 (mod ni).

Then the value

y =
k∑

i=1

ciMi (mod n),

is a solution since

y ≡ ciMi (mod ni)

≡
(
ai(Mi)−1

)
Mi (mod ni)

≡ ai (mod ni).

If x and y are two solutions, then x− y ≡ 0 (mod ni) for i = 1, . . . , k. It

follows that x ≡ y (mod n). This proves uniqueness of the solution.

Let n1n2 · · · , nk be a factorisation of n, where the ni's are relatively prime

and let Mi = n/ni, i.e (Mi, ni) = 1. De�ne a function

f : Zn → Zn1 × · · · × Znk
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by

f(m) = (m (mod n1), . . . ,m (mod nk)).

By the Chinese Remainder Theorem, the function f is a surjection and since

the cardinalities of the domain and range of f are the same, f is a bijection.

The inverse of f is given by

f−1(a1, . . . , ak) =
k∑

i=1

ciMi (mod n),

where

ci = ai(Mi)−1 (mod ni).

To compute the discrete logarithm of β = αr where G = <α> and

ord(α) = n, factorise n into relatively prime numbers, n1, n2. . . . , nk. Then

there exists an isomorphism

<α> ∼=< α1 > × · · ·× < αk >

where αi ∈ <α> and ord(αi) = ni for i = 1, 2, . . . , k. De�ne a function

I : <α> 7→ <α1 >× · · · ×<αk >

by

I : αm 7→
(
α

m (mod n1)
1 , . . . , α

m (mod nk)
k

)
.

The function I is a bijection as it has an inverse de�ned by

(
αa1

1 , . . . , α
ank
nk

)
7→ αm,
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where m = f−1(a1, . . . , ank
). Now it follows from

I
(
αm · αl

)
=
(
α

m+l (mod n1)
1 , . . . , α

m+l (mod nk)
k

)
=
(
α

m (mod n1)
1 , . . . , α

m (mod nk)
k

)
·
(
α

l (mod n1)
1 , . . . , α

l (mod nk)
k

)
= I(αm) · I

(
αl
)

that I is an isomorphism.

Algorithm 3 is used to compute the discrete logarithm in G. The `for loop'

computes the discrete logarithm of the ith component of I(β) in < αi >. The

last line of the algorithm uses the Chinese Remainder Theorem to compute

the discrete logarithm of β.

Algorithm 3: Chinese Remainder Theorem computing the discrete
logarithm.

Data: n =
∏k

i−1 ni and αc where <α> = G and ord(G) = n
Output: Ensure c = DLα(αc)
β ← αc;1

for i = 1 to k do2

βi ← βn/ni ;3

ci ← DLαi
(βi);4

xi ← ci · (n/ni (mod ni))
−1;5

end6

c = x1 · n/n1 + · · ·+ xk · n/ nk (mod n);7

The time needed to compute the discrete logarithm can be estimated by

time(DLα(β)) =
k∑

i=1

(time(DLα(βi)) + mi)

≤ k ·max {DLα(βi) + mi}

≈ k ·max {DLα(βi)},

where mi is a small value for the time needed to execute the other instructions

in the `for loop'. This is an e�cient divide and conquer algorithm, where

the complexity is dependent on the largest factor of the order of the group.
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Algorithm 3 can be used before applying most of the other algorithms used

to solve the Discrete Logarithm Problem.

Example 2.9. Consider the group G = Z∗
13 with generator α = 7 and β = 6.

The order of Z∗
13 is 12 = 22 · 3 and the factorisation is

< 7 >∼=< 5 > × < 9 >,

where ord(< 5 >) = 4 and ord(< 9 >) = 3. The element 6 is represented in

< 5 > × < 9 > by (8, 9). The logarithm of 9 in < 9 > is 1. The power list

of 5 in < 5 > is

5, 12, 8, 1. (2.4)

Thus the logarithm of 8 in < 5 > is 3 and

x1 = 3 · 3−1 (mod 4)

≡ 1,

x2 = 4−1 (mod 3)

≡ 1.

The logarithm of 6 in Z∗
13 is now given by

12/4 + 12/3 = 7 (mod 12).

2.3.3 Pohlig-Hellman

The Pohlig-Hellman algorithm is similar to the Chinese Remainder The-

orem. Both the attacks divide the cyclic group G = <α> into subgroups.

In the case of the Pohlig-Hellman algorithm, the order of these cyclic groups

must be a prime power, i.e.

<α> ∼= <α1 >× · · · ×<αk >
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where each αi is a generator of a cyclic group of order pλi
i , with pi a prime

factor of the ord(α). Thus the Pohlig-Hellman algorithm can be seen as a

special case of the Chinese Remainder Theorem attack. The Pohlig-Hellman

algorithm is Algorithm 3 where the ni's are prime numbers and the method

of solving DLα in line 4 is speci�ed next.

For each prime factor p of ord(<α>) the exponent r in β = αr, can be

written in its radix expansion,

r =
λ−1∑
i=0

sip
i with 0 ≤ si ≤ p− 1. (2.5)

To remove cluttering of notation the subscript i is removed. Note that the

value of r is not used in the algorithm, it is in fact the values of si that

are determined. After all the si for every prime factor of ord(<α>) are

determined, the Chinese Remainder Theorem is used to compute the value

of r.

The values of the si are determined iteratively. In the subgroup of order

pl notice that

βord(α)/p = αr·ord(α)/p

= αord(α)Pλ−1
j=0 sjpj−1

= αord(α)s0/p

= cs0
0

where c0 = αord(α)/p is a primitive pth root of unity in the current group

<αord(α)/p >. Through exhaustive search on all possible values of s0 ∈ [1, p),

the correct value can be determined.

To determine the value of an si, a similar computation is performed in
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the group <αord(α)/pi+1
>. Suppose s0, . . . , si−1 are known and

ri =
λ−1∑
m=i

smpm with 0 ≤ sm ≤ p− 1

= r −
i−1∑
m=0

smpm.

Then si can be computed by noticing that

a
ord(α)/pi+1

i = αri·ord(α)/pi+1

= αord(α)Pλ−1−i
j=0 sj+ip

j−1

= αord(α)si/p

= csi
i ,

where c0 = αord(α)/p is a primitive pth root of unity in the current group.

The value of si is determined by testing all possible values until

a
ord(α)/pi+1

i = csi
i .

By using an algorithm for fast exponentiation and improving the search

for the exponent si, the complexity [19] of solving the Discrete Logarithm

Problem is given by

O

(
k∑

i=1

λi(log ord(α) + pi)

)
.

For a detailed discussion of the algorithm see [19].

Example 2.10. In Example 2.9 the logarithm of 6 with respect to 7 is com-

puted by considering the logarithm in <5> and <9>. Since the logarithm

is trivial in <9>, only the logarithm of 8 in <5> is considered, i.e. DL5(8).

Since ord(<5>) = 4, the only two subgroups that need to be considered

are those of order 2 and 4. The intermediate values of the algorithm are

given in Table 2.3.
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i ai ci si pi

0 8 12 1 2
1 12 12 1 4

Table 2.3: Intermediate results in Example 2.10.

The logarithm can be written in the form

r = s0 + s1 · 2 where si ∈ {0, 1}.

The �rst iteration gives the relation

84/2 ≡ 12

≡ cs0
0 (mod 13).

and since 12 is primitive in <5>; c0 = 12 and it follows that s0 = 1. The

second iteration gives the relation

8 · 5−1 ≡ 8 · 53

≡ 12

≡ cs1
1 (mod 13)

and thus s1 = 1.

The logarithm is of 8 with generator 5 is

1 + 1 · 2 = 3.

2.3.4 Index Calculus

The Index Calculus method gives rise to a class of probabilistic algorithms

to �nd the logarithm of an element β in a group G = <α> of order n. The

method consists of two stages, namely pre-computation and computation of

the individual logarithm.

The pre-computation stage is executed once for a speci�c group. In the

pre-computation stage relations are created, which are dependent on the
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group that is attacked. The second stage uses the relations from the pre-

computation phase to compute the discrete logarithm.

Pre-computation

Let the set S ⊂ G consist of elements ρi ∈ G. A random positive integer a

is selected and it is attempted to write αa as a product of the elements in S,

αa =
t∏

i=1

ρλi
i , (2.6)

where t is the size of S. The above equation gives the congruence

a ≡
t∑

i=1

λiDLα(ρi) (mod n). (2.7)

By considering the DLα(ρi)'s as indeterminate in (2.7), a system of equations

can be constructed. A solution for such a system of equations is necessary

for the success of the pre-computation phase.

By increasing the size of the set S, the work needed for the pre-computation

phase increases and the probability that the computation of the individual

logarithm will succeed is increased.

Computing an individual logarithm

To compute the logarithm of a given β, integers s are randomly selected until

αsβ, can be written as a product of elements in S, i.e.

αsβ =
t∏

i=1

ρbi
i . (2.8)

If such a relation cannot be found, the method fails. It follows that

DLα(β) ≡
t∑

i=1

biDLα(ρi)− s (mod n).

Consider an implementation in F∗
pn . Since the elements of S are being

used to `factorise' numbers, it is natural to select irreducible elements for the

set S. But there are no irreducible elements in the Fpn since every element
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has an inverse. However, the irreducible elements are selected from Fp[x]

since the polynomials in Fp[x] of degree less than n represent the elements

in Fpn uniquely. Therefore the irreducible polynomials in Fp[x] of degree less

than n generate the elements in F∗
pn . The set S will consist of irreducible

polynomials of degree less then k, k ≤ n, where the parameter k determines

the probability that the algorithm will be successful. By reducing the value

of k, the number of elements in S decreases which in turn reduces the chance

that the relation in (2.6) will be found. Reduction in the size of S also reduces

the computations needed to complete the pre-computation phase.

To solve the system of equations given by (2.7), Gauss elimination or

other techniques as illustrated in Example 2.11 can be used.

Example 2.11. Consider the �eld F26 with de�ning primitive polynomial

f(x) = x6 + x + 1 ∈ F2[x]. Then α = x is a primitive element of F∗
26 , being a

root of the polynomial. We determine the logarithm of β = x4+x3+x2+x+1

to the base x.

Let S = {x, x + 1, x2 + x + 1} be the set of irreducible polynomials of

degree at most 2 in Fp[x]. To compute the logarithm of these elements let

1 ≤ a ≤ 63. Evidently DLα(x) = 1. Let a = 6 then

x6 ≡ x + 1 (mod f(x)),

giving DLα(x + 1) = 6. Before computing the case a = 32, note that

x64 ≡ x

≡ x6 + 1

≡
(
x3 + 1

)2
(mod f(x))

giving

x32 ≡ x3 + 1

≡ (x + 1)
(
x2 + x + 1

)
(mod f(x))
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and

32 ≡ DLα(x + 1) + DLα(x2 + x + 1)

≡ 6 + DLα(x2 + x + 1) (mod 63)

thus DLα(x2 + x + 1) = 26.

To get a relation in the form of (2.8), let s = 2. That is,

β · α2 ≡ x5 + x4 + x3 + x2 + x + 1

≡
(
x2 + x + 1

)2
(x + 1) (mod f(x)).

Since all the factors are in S, the discrete logarithm can be computed as

DLα(β) ≡ 2DLα(x2 + x + 1) + DLα(x + 1)− 2

≡ 2 · 26 + 6− 2

≡ 56 (mod 63).

The implementation given by Weidemann [19, page 67] in F2k gives a

complexity of

e(c1+o(1)(k loge k)1/2)

for the pre-computation and

e(1/(2c1)+o(1)(k loge k)1/2)

for computing the logarithm, where c1 =
√

2 loge 2. The implementer of

this attack does not need to use the same representation as the user of the

protocol. The alternatives would include the use of an isomorphic �eld for

improved e�ciency or the smallest �eld containing the Di�e-Hellman group.

A detailed discussion about the Index Calculus algorithm and related

variants can be found in [19].
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2.4 Security Improvements

In the previous section, four attacks were considered. From these attacks

the following was concluded, where the Di�e-Hellman group G = <α>:

• The size of
√
ord(α) must be large enough to prevent the Pollard ρ

attack.

• The largest prime factor of ord(α) must be large enough to prevent the

Pohlig-Hellman and Chinese Remainder Theorem attacks.

• The smallest �eld containing the Di�e-Hellman group must be large

enough to prevent the Index Calculus attack.

All but the last constraint can easily be achieved by parameter selection.

For the last constraint Lemma 2.13 (below) is needed. This lemma was �rst

given in [11, Lemma 2.4] (slightly di�erently), and later corrected in [1].

De�nition 2.12. [15, Theorem 2.44] Let K be a �eld with characteristic p

and let n be a natural number not divisible by p and let η be a primitive nth

root of unity over K. Then the polynomial

φn(x) =
∏

1≤s≤n

gcd(s,n)=1

(x− ηs)

is called the nth cyclotomic polynomial over K.

Lemma 2.13. Let q be a prime factor of φn(p) with n a natural number, p

a prime number with q - n, p - n. Then the subgroup of F∗
pn of order q is not

contained in any proper subgroup of F∗
pn.

Proof. Let α be an element in F∗
pn of order q. It is needed to prove for s|n

and s < n that ord(<α>) - ord
(
F∗

ps

)
. Note that q -

∏
i|s φi(p) if and only if

ord(<α>) - ord
(
F∗

ps

)
.

From (xn − 1, nxn−1) = 1 it follows that that xn− 1 has no repeated root

in the algebraic closure of Fq. Thus φn and φs share no common root modulo

q, since xn − 1 =
∏

d|n φn(x). Now from φn(p) ≡ 0 (mod q) it follows that

for any s|n, φs(p) 6≡ 0 (mod q) thus q -
∏

i|s φi(p).
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The above lemma gives the smallest �eld containing the Di�e-Hellman

group; only the smallest �eld for a speci�c characteristic is given.

To determine a cyclic group G in F∗
p6 that is not contained in any sub-

�eld of Fp6 , the cyclotomic polynomial must �rst be determined. From [15,

Theorem 2.45] it follows that

φ6(x) =
x6 − 1∏

0<s<6

s|6
φs(x)

=
x6 − 1

(x− 1)φ2(x)φ3(x)

=
(x6 − 1)

(x− 1)

(
(x2 − 1)

(x− 1)

)(
(x3 − 1)

(x− 1)

)
= x2 − x + 1.

If q is any prime such that q|(p2 − p + 1), then q will be the order of the

cyclic group G in F∗
p6 . Let α be the generator of the group F∗

p6 . Then the

generator of the cyclic group G is α(p6−1)/q, which generates the cyclotomic

subgroup.

De�nition 2.14. [1, De�nition 1] In a �eld Fpk we call a subgroup of prime

order q with q|φk(p) and q - k a cyclotomic subgroup and denote it by Gq,p,k.

Example 2.15. Determine a cyclic subgroup G in F∗
26 such that G is not

contained in any sub�eld of F26 , i.e. determine Gq,2,6. The 6th cyclotomic

polynomial is φ6(x) = x2 − x + 1 and

φ6(2) = 22 − 2 + 1

= 3.

Since 3 is a prime number, the order of the group G3,2,6 is 3.

Consider the �eld Fp6 de�ned by the primitive polynomial f(x) = x6+x+

1 ∈ F2[x] Let α be a root of f(x). The order of the group <α> is 63 = 32 · 7
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and a generator of the group G3,2,6 is

α3·7 = x21

= α6α6α6α3

= (α + 1)(α + 1)(α + 1)α3

= α2 + α + 1.
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Chapter 3

The Compact Subgroup Protocol

A few variants of the Di�e-Hellman protocol are based on common ideas.

These ideas are the use of a polynomial for representing the data and a linear

shift register for the computations. The �rst example of a computational ad-

vantage gained by using shift registers, is given in [8]. The idea of reducing

the amount of data that needs to be communicated through an irreducible

polynomial was given in [2]. The E�cient and Compact Subgroup Trace Rep-

resentation (XTR) has both the advantages of more e�cient computations

and less data that needs to be communicated and was designed by Lenstra

in [13]. These examples are discussed in Chapter 4.

The general theory involving all of these aspects was suggested in [1]. The

focus is on the use of a polynomial to reduce the number of bits to represent

the key data. The use of a polynomial makes the use of a linear shift register

attractive for computations. In this chapter a general theory is developed

for a variant of the Di�e-Hellman Protocol. The variant which is called the

Compact Subgroup Protocol, needs less data for key exchange than the Di�e-

Hellman Protocol. E�ciency of the computations with the shift register is

very dependent on the parameters of the protocol. The method given here

shows that it is possible to perform the computations without sending the

initial values to the other party.

In the next section, the Di�e-Hellman protocol is modi�ed until the re-

quired variation is achieved. Section 3.2 shows the implementation advan-
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tages of the variation. Some of the modi�cations change the security of the

representation. The last section proves the Protocol secure.

3.1 Representations and the Protocol

The Compact Subgroup Protocol uses three di�erent representations to

achieve advantages in communication overhead and computation e�ciency

without sacri�cing the security of the protocol. The three representations

which are given here, each introduces only a small variation. The contribu-

tions of the representations are the following:

• The Multi Group Representation which uses more than one element in

the Di�e-Hellman group to represent the user's key.

• The Polynomial Representation which �xes some parameters in the

multi group representation.

• The Sequence Representation which introduces an alternative method

of computations.

Multi Group representation

The Di�e-Hellman Protocol can be generalised to a representation which

uses more than one Di�e-Hellman group <α>. Instead of working in one

group <α>, the system is de�ned by a sequence of cyclic groups:

<αh0 >,<αh1 >, . . . , <αhk−1 >,

where the hi are integers in the interval [1, ord(α)− 1). The system param-

eters of the system are α, h0, . . . , hk−1.

The private key of a user is an integer priv ∈ [2, ord(α) − 1) and the

public key is the k-tuple

(
αh0·priv , . . . , αhk−1·priv

)
. (3.1)
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The shared secret generated by Alice and Bob will be

(
αh0·privA·privB , αh1·privA·privB , . . . , αhk−1·privA·privB

)
.

It is not important at this stage in which manner the shared secret is used.

This representation is the Di�e-Hellman Protocol repeated k times, where

the generator of the Di�e-Hellman group of each protocol run is di�erent.

Alice Bob

Common <α> and h0, . . . , hk−1

Private privA privB

Public
(
αh0privA , . . . , αhk−1privA

) (
αh0privB , . . . , αhk−1privB

)
Shared Secret

(
αh0privAprivB , . . . , αhk−1privAprivB

)
Table 3.1: Multi Group representation.

The use of the hi's might result in a larger probability for a collision in

the public keys, i.e.

{
αh0privA , . . . , αhk−1privA

}⋂{
αh0privB , . . . , αhk−1privB

}
6= ∅, (3.2)

for private keys privA and privB. This will be the case if there exist integers

i and j such that

privA · hi ≡ privB · hj (mod ord(α)).

In the case of a collision, each of the participants in the protocol can compute

the other participant's private key, since the above equation only has one

unknown. In the next section, when the polynomial representation is de�ned,

constraints will be given for the hi's to provide results on the probability that

public keys are disjoint.

Example 3.1. Let the Di�e-Hellman group be <13> in Z31. The three

groups used are generated by 13, 27 and 22 and correspond to hi = 1, 3 and

7 respectively. Selecting the private key of Alice as 13, her public key is

(
1313, 2713, 2213

)
= (11, 29, 13) (mod 31)
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and using 17 as the private key of Bob, his corresponding public key is

(
1317, 2717, 2217

)
= (17, 15, 12) (mod 31).

Their shared secret is

(
1713, 1513, 1313

)
= (3, 27, 17) (mod 31).

Polynomial representation

A polynomial f(x) ∈ Fq[x] which is irreducible will be used to represent

the generators of the Di�e-Hellman groups in the Multi Group representa-

tion. Let f(x) be an irreducible polynomial of degree k that factors as

f(x) =
k−1∏
i=0

(x− αi)

=
k−1∏
i=0

(
x− αqi

)
where αi = αqi

for i = 0, 1, . . . , k − 1 are in the splitting �eld of f(x) and

are of prime order. The roots of the polynomial f(x) form the set of cyclic

groups that are used in the Multi Group representation.

The private key is an integer priv ∈ [2, ord(α)) and the public key is

pub = fpriv(x) (3.3)

=
k−1∏
i=0

(
x− αpriv

i

)
, (3.4)

where the private key must be such that the polynomial fpriv(x) is irreducible.

A su�cient condition for fpriv(x) to be irreducible is that ord(α) is prime.

Indeed, since the order of α is prime, no power of α, except the unit, is

contained in a sub�eld of Fqk and therefore fpriv(x) is irreducible.
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The shared secret of users Alice and Bob is given by

fprivA·privB
(x) =

k−1∏
i=0

(
x− αprivA·privB

i

)
.

Alice Bob

Common f(x) over Fq

Private privA privB

Shared Secret fprivAprivB

Table 3.2: Polynomial representation

In the Multi Group representation, a collision occurs if (3.2) is satis�ed.

A collision in the polynomial representation means that the public keys of

Alice and Bob are the same, since a root of an irreducible polynomial de-

�nes the polynomial uniquely. Thus, a collision exists for the polynomial

representation if there exist two integers i and j such that

αprivA
i = αprivB

j ,

that is

qi · privA ≡ qj · privB (mod
(
qk − 1

)
).

By noticing that

qk ≡ 1 (mod
(
qk − 1

)
)

it follows that

privA ≡ ql · privB (mod
(
qk − 1

)
) and αprivA

i = αprivB

i+l

for some integer l. Thus, a collision in the public keys of Alice and Bob

occurs if and only if αpriv
i is a root of fprivB

(x). The number k of integers

resulting in the same public key is therefore equal to the degree of the polyno-
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mial f(x). It follows that the number of distinct private keys is bord(α)/kc.
Generally k << ord(α), resulting in a very small reduction in the key space.

The probability that two randomly selected private keys are equivalent, is

k/ord(α).

Example 3.2 (LUC). Let α be the generator of a Di�e-Hellman group

in Fp2 . Let ord(α) be prime and ord(α)|φ2(p) = p + 1. The constraint that

ord(α)|φ2(p) together with Lemma 2.13 is used to ensure that the polynomial

is irreducible. The use of the constraint is not necessary but it is convenient

for implementation and illustrative purposes. This ensures that the minimal

polynomial

f(x) = x2 − (α + αp)x + 1

of α is irreducible. The public key related to priv is then

fpriv(x) = x2 −
(
αpriv + α−priv

)
x + 1,

since p ≡ −1 (mod ord(α)). This representation allows the representation

of the public key to be represented by

pub = αpriv + α−priv .

The shared secret generated by users Alice and Bob will be

fprivA·privB
(x) = x2 −

(
αprivA·privB + α−privA·privB

)
x + 1

or just

αprivA·privB + α−privA·privB .

This illustrates that less data is needed to represent the public key, compared

to the Di�e-Hellman protocol.
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Sequence representation

Let f(x) be an irreducible polynomial over Fq. This polynomial de�nes a

linear recurring relation that de�nes an associated linear sequence. Let such

a sequence be denoted by (si), with initial values that are still to be de�ned.

In particular if

f(x) = xk − ak−1x
k−1 − ak−2x

k−2 − · · · − a0 ∈ Fq[x]

then f(x) de�nes the linear recurring relation

sn+k = ak−1sn+k−1 + ak−2sn+k−2 + · · ·+ a0sn for n ≥ 0.

Theorem 3.3. [15, Theorem 6.21] Let s0, s1, . . . be a kth-order homogeneous

linear recurring sequence in Fq with characteristic polynomial f(x). If the

roots α0, . . . , αk−1 of f(x) are distinct, then

si =
k−1∑
j=0

βjα
i
j for i = 0, 1, . . . . (3.5)

where β0, . . . , βk−1 are elements that are uniquely determined by the initial

values of the sequence and belong to the splitting �eld of f(x) over Fq.

Proof. The constants β0, . . . , βk−1 are determined by the system of linear

equations

k−1∑
j=0

αn
i βj = sn, for n = 0, 1, . . . , k − 1.

Since the determinant of this system is a Vandermonde determinant which

is non-zero by the condition on α0, . . . , αk−1, the elements β0, . . . , βk−1 are

uniquely determined and belong to the splitting �eld Fq(α0, . . . , αk−1) of f(x)

over Fq, as seen from Cramer's rule. To prove the identity (3.5) for all n ≥ 0

it su�ces to check whether the elements in the right-hand side of (3.5), with

these speci�c values of β0, . . . , βk−1, satisfy the linear recurrence relation
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(3.5). It now follows that

k−1∑
j=0

βjα
n+k
j − ak−1

k−1∑
j=0

βjα
n+k−1
j − · · · − a0

k−1∑
j=0

βjα
n
j

=
k−1∑
j=0

βj

(
αn+k

j − ak−1α
n+k−1
j − · · · − a0α

n
j

)
=

k−1∑
j=0

βjf(αj)α
n
j

= 0

for all n ≥ 0, and this completes the proof.

Let α0, . . . , αk−1 be the distinct roots of f(x). By Theorem 3.3 any se-

quence with characteristic polynomial f(x) can be written in terms of the

roots αi,

sn =
k−1∑
j=0

βjα
n
j for n = 0, 1, . . . .

where the βj are uniquely determined by the initial values. The sequence

(si) with initial values

s0 =k

s1 =
k−1∑
j=0

αj

s2 =
k−1∑
j=0

α2
j

...

sk−1 =
k−1∑
j=0

αk−1
j .

is called the characteristic sequence of f(x). The public key pub = (spriv,i) is
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now de�ned by

spriv,i = si·priv

=
k−1∑
j=0

αi·priv
j

=
k−1∑
j=0

(
αpriv

j

)i
for i = 0, 1, . . . .

which is every privth element of the sequence (si). Since the polynomial

fpriv =
∏k−1

i=0

(
x− αpriv

i

)
is irreducible, this polynomial is the characteristic

polynomial of the sequence (spriv,i), see Theorem 3.3.

The shared secret of users Alice and Bob is now given by the characteristic

sequence of fprivA·privB
(x), which is every privAprivB

th term of the sequence

(si). The shared secret that is computed by each user in the system is the

same as seen from

sprivB ,i·privA
=

k−1∑
j=0

(
αprivB

j

)i·privA

=
k−1∑
j=0

(
αprivA

j

)i·privB

= sprivA,i·privB
.

No attention has been given to the initial values of the public sequences

of each user. The initial values for each user's sequence must be such that

the βj's in (3.5) have the value 1, otherwise the shared sequence will not be

the same. The initial values need to be sent along with the linear relation.
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For user Alice, the initial values are

sprivA,0 =k

sprivA,1 =
k−1∑
j=0

αprivA
j

sprivA,2 =
k−1∑
j=0

α2privA
j

...

sprivA,k−1 =
k−1∑
j=0

α
(k−1)privA

j ,

which are sent to user Bob along with the public key.

Example 3.4 (LUC). Continuing with Example 3.2 the initial values of the

sequence are given by

s0 =2

s1 =α + α−1

and the linear relation is

sn+2 =
(
α + α−1

)
sn+1 − sn.

User Alice uses her private key privA and computes the initial values

sprivA,0 =2

sprivA,1 =αprivA + α−privA

and the linear relation

sn+2 =
(
αprivA + α−privA

)
sn+1 − sn.

The shared secret that Bob computes is every privB
th element in Alice's
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public sequence, i.e.

sprivA,i =
(
αprivA + α−privA

)
si·privA−1 − si·privA−2 (3.6)

with initial values

sprivA,0 =2

sprivA,1 =αprivA + α−privA .

Compact Subgroup Protocol

The three representations given in the previous three sections are now

used to construct the Compact Subgroup Protocol. Each of the three repre-

sentations provides an advantage:

• Multi Group representation gives a basis for security.

• Polynomial representation enables the use of a compact representation.

• Sequence representation provides a method for e�cient computation.

As in the sequence representation let

f(x) =
k−1∏
i=0

(x− αi) ∈ Fpt [x]

be an irreducible system polynomial over Fpt of degree k and of prime order

q dividing φtk(p). The private key of a user is an integer priv ∈ [2, q) and

the associated public key is

fpriv(x) =
k−1∏
i=0

(
x− αpriv

i

)
. (3.7)

Since the polynomial f is irreducible over Fpt and of prime order the

polynomial fpriv is also irreducible over Fpt for priv ∈ [1, q) and it follows

that the orders of f and fpriv are equal. The orders of the system and public

polynomials are equal and therefore the roots of these polynomials de�ne
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the same Di�e-Hellman group, up to isomorphism. Thus the only di�erence

between the system and public polynomials is how the polynomial is used.

All the results that are applicable to the system polynomial are therefore

also applicable to the public polynomials.

For users Alice and Bob the respective private keys are privA and privB,

where the associated shared secret is the coe�cient of xk−1 in fprivAprivB
(x),

which is
∑k−1

i=0 αprivA·privB
i . The shared secret and the respective public keys

are computed by the combining function F . An illustration of the protocol

is given in Figure 3.1.

Insecure

fprivB
(x) fprivA

(x)

privB

Bob

F

Alice

F

privA

C C

Shared secret∑k−1
i=0 αprivAprivB

i

Figure 3.1: Key exchange using the Compact Subgroup Protocol

In this protocol, the Berlekamp-Massey algorithm is used to compute

the combining function F . The polynomial f(x) is used to construct a lin-

ear relation and initial values are chosen arbitrarily to form a sequence (si).

From this sequence every privth element is selected to create a new sequence,

(spriv,i), with characteristic polynomial fpriv(x). The Berlekamp-Massey al-

gorithm produces the minimal polynomial of (spriv,i) which must be fpriv(x),

since fpriv(x) is irreducible. It is important to note that in this protocol the
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computations are not performed in the Di�e-Hellman group, but in the �eld

over which the polynomial is de�ned. This gives the advantage that the �eld

operations used, require less resources.

Security of the Compact Subgroup Protocol will follow from Theorem

3.12. Thus all the same measures needed to secure the Di�e-Hellman pro-

tocol are also needed for the Compact Subgroup Protocol. These measures

are contained in selecting a polynomial of large prime order dividing φkt(p).

Reduction in the data that needs to be transmitted is due to the property

that ord(f)|φkt(p), see Theorem 3.9.

Alice Bob

Common f(x)
Private privA privB

Public fprivA
(x) fprivB

(x)

Shared Secret
∑k−1

i=0 αprivAprivB
i

Table 3.3: Compact Subgroup Protocol.

More attention is given to the computations and security properties of

the protocol in Section 3.2.

Example 3.5. Let the system polynomial be the irreducible polynomial

f(x) = x3 + 2x + 2 ∈ F3[x]. The order of f(x) is 13, which is the same as

φ3(3). With initial values s0 = 1, s1 = 1 and s2 = 1 the linear relation

sn = sn−2 + sn−3

generates the sequence

(si)
∞
i=0 = 111220121001011122012100101112201 . . . .

Let the private keys of users Alice and Bob be 2 and 4 respectively. The

public sequence of Alice is then

(s2i)
∞
i=0 = 11211001202011121 . . .
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with characteristic polynomial

fprivA
(x) = f2(x)

= x3 + x2 + x + 2

determined by the Berlekamp-Massey algorithm.

Similarly, the public sequence of Bob is

(s4i)
∞
i=0 = 1210221110100121 . . .

with characteristic polynomial

fprivB
(x) = f4(x)

= x3 + x2 + 2.

Bob now uses f2(x) and the initial values s′0 = 0, s′1 = 1 and s′2 = 0, for

example, to generate a shift register sequence of (s2i), namely

(s′2i)
∞
i=0 = 010222122002101 . . .

Taking every 4th element of the above sequence gives

(s′4·2i)
∞
i=0 = 022122201012 . . .

with characteristic polynomial

fprivAprivB
(x) = f4·2(x)

= x3 + 2x2 + 2x + 2.

Likewise Alice uses f4(x) and the initial values s′′0 = 1, s′′1 = 0 and s′′2 = 1,

say, to generate a shift register sequence of (s4i), namely

(s′′4i)
∞
i=0 = 1010012102211101 . . .
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Taking every second element of the above sequence gives

(s′′2·4i)
∞
i=0 = 110202100112111 . . .

with characteristic polynomial of

fprivAprivB
(x) = f2·4(x)

= x3 + 2x2 + 2x + 2.

The shared secret is the coe�cient of x2, namely 2.

3.2 Implementation Advantages

The Compact Subgroup Protocol is much more complex than the Di�e-

Hellman Protocol. This section will show its advantages: less data is needed

to represent the keys and a more e�cient computation method.

Compact Representation

In the Compact Subgroup Protocol the coe�cients of the polynomials

are transmitted. This is in contrast with the Di�e-Hellman protocol where

a root of the polynomial is transmitted. If the polynomial is de�ned over Fpt

and of degree k then kt log2(p) bits are needed to represent the polynomial

which is the same number of bits needed in the Di�e-Hellman protocol. In

Theorem 3.9 it is proved that it is not required to send all the polynomial's

coe�cients.

The reduction of the number of coe�cients that de�ne a polynomial is

due to the fact that the roots are in the cyclotomic subgroup of F∗
ptk , see

De�nition 2.14.

De�nition 3.6. Let n be a positive integer. For every integer k ≤ n, the

elementary symmetric polynomial of degree k in R[X1, . . . , Xn] where R is a
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ring with unit, which is denoted by σk, is given by the formula

σk =
∑

H⊂{1,...,n}
|H|=k

(∏
i∈H

Xi

)

Example 3.7. The elementary symmetric polynomials for n = 1, 2, 3, 4 and

5 are.

σ1 : x1 + x2 + x3 + x4 + x5

σ2 : x1x2 + x1x3 + x1x4 + x1x5 + x2x3 + x2x4 + x2x5 + x3x4 + x4x5

σ3 : x1x2x3 + x1x2x4 + x1x2x5 + x2x3x4 + x2x3x5 + x3x4x5

σ4 : x1x2x3x4 + x1x2x3x5 + x2x3x4x5

σ5 : x1x2x3x4x5.

In the proof of Theorem 3.9, the following property of symmetric poly-

nomials, is needed.

Proposition 3.8. [6, Proposition 3.2.2] If f(x) =
∑n

k=0 akx
k is a monic

polynomial of degree n with roots x1, . . . , xn belonging to a �eld F, then

an−k = (−1)kσk(x1, . . . , xn),

for 0 ≤ k ≤ n, where σk(x1, . . . , xn) is the kth symmetric polynomial.

Theorem 3.9. [1, Theorem 1] Let α be a generator of a cyclotomic subgroup

Gp,q,k, where p is odd and k ≥ 2. Let xk/d + ak/d−1x
k/d−1 + · · · + a1x + a0

be the minimal polynomial of α over Fpd, for some d dividing k, with d < k.

Then a0 = (−1)k/d and if k = 2l for l an integer, ai = (−1)k/dapl

k/d−i for

i = 1, . . . , k/d− 1.

Proof. Write αj = αpdj
for j = 0, . . . , k/d− 1. Then

xk/d + ak/d−1x
k/d−1 + · · ·+ a1x + a0 =

k/d−1∏
j=0

(x− αj),

49

 
 
 



and using Proposition 3.8 it follows that ai = (−1)k/d−iσk/d−i

(
α0, . . . , αk/d−1

)
for i = 0, . . . , k/d − 1, where σn

(
α0, . . . , αk/d−1

)
is the nth elementary sym-

metric polynomial in the conjugates αj of α. In particular

a0 = (−1)k/dσk/d

(
α0, . . . , αk/d−1

)
= (−1)k/dα0 · · ·hk/d−1

= (−1)k/dα1+pd+p2d+···+pk−d

.

But 1 + pd + p2d + · · ·+ pk−d = (pk − 1)/(pd − 1), which is divisible by φk(p)

and hence by q. Therefore a0 = (−1)k/d.

If k = 2l then pk − 1 = (pl − 1)(pl + 1). Since the order q of h di-

vides pk − 1 but not pl − 1 it follows that pl ≡ −1 (mod q) and therefore

α−1
j = αpl

i for j = 0, . . . , k/d − 1. Since α0 · h1 · · ·αk/d−1 = 1 it follows that

σk/d−i

(
α0, . . . , αk/d−1

)
= σi

(
α−1

0 , . . . , α−1
k/d−1

)
and

σk/d−i

(
α0, . . . , αk/d−1

)
= σi

(
α−1

0 , . . . α−1
k/d−1

)
= σi

(
αpl

0 , . . . , αpl

k/d−1

)
= σi

(
α0, . . . , αk/d−1

)pl

=
(
(−1)iak/d−i

)pl

= (−1)iapl

k/d−i.

for i = 1, . . . , k/d− 1. Thus

ai = (−1)k/d−iσk/d−i

(
α0, . . . , αk/d−1

)
= (−1)k/dapl

k/d−i.

From the above theorem it is seen that both the degree of the polynomial

and the �eld over which the polynomial is de�ned, determine the obtainable

communication reduction. By selecting the degree of the polynomial correctly

a saving of 75% is achievable in the communication of the public keys.

50

 
 
 



Proposition 3.10. [1, Proposition 1] Let e = kt, with 0 < k. Then for any

element h of Gq,p,e the minimal polynomial of h over Fpt can be represented

by using the following number of elements of Fpt

(1) k − 1 if kt is odd,

(2)
k − 1

2
if t is even and k is odd,

(3)
k

2
if k is even.

Proof. Represent the elements of Gq,p,e by their minimal polynomials over the

sub�eld of degree t. The constant coe�cients are (−1)k, so k − 1 elements

of Fpt are su�cient to represent elements of Gq,p,e. This covers the �rst case.

In the second and third cases e is even and by Theorem 3.9 only half

of the coe�cients are required. More precisely, if k is odd only (k − 1)/2

coe�cients are required and if k is even, only k/2 coe�cients are required.

Bearing in mind that the �rst coe�cient is (−1)k, the results follow.

It now follows from Proposition 3.10 that the fraction of coe�cients saved

is given by

k − number of coe�cients needed

k
.

The coe�cients saved in each case, respectively, are

k − (k − 1)

k
=

1

k
,

k − (k − 1)/2

k
=

1

2
+

1

2k
and

k − (k/2)

k
=

1

2
.

With only compression in mind, the �eld used in the protocol should have

even extension degree and the degree of the polynomial should be odd.
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Figure 3.2: Proportion of bits saved in the Compact Subgourp Protocol.

The number of bits needed for representing the polynomials in the Com-

pact Subgroup Protocol is either (k − 1) log2 pt, (k − 1)/2 log2 pt or k/2 log2 pt.

Computation E�ciency

The combination function is used to compute the privth term in the se-

quence (si). Computation of such a sequence would require initial values.

These initial values must generate a sequence of the form

si =
k−1∑
j=0

αi
j.

The most direct way to obtain the initial values is to factorise the polynomial,

which requires �eld operations in Fpkt . An alternative method to compute

the minimal polynomial of (spriv,i) is the Berlekamp-Massey Algorithm.

Alice will receive the public key, pubB, of Bob. From pubB a subsequence

(spubB ,i) of (si) is created, where the initial values are arbitrary. Every privA
th

term of this sequence will create the shared sequence. This shared sequence

is used in the Berlekamp Massey algorithm. The output of the Berlekamp
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Massey Algorithm is the shared polynomial, from which the shared secret

can be obtained.To generate the shared sequence, 2k · privA ≤ 2k · ord(α)

values of the initial sequence are needed. Since the Berlekamp Massey algo-

rithm provides the result in at most k2 steps, the combining function would

require at most k2 + 2 · ord(α) = O(ord(α)) operations1. The computational

complexity is not feasible. In Section 4.2 and 4.3 an improved sequence com-

putation method is given that will make implementation of the combining

function computationally feasible.

3.3 Security

The security of the Compact Subgroup Protocol is based on the Di�e-

Hellman protocol. A modi�cation of the Discrete Logarithm Problem is

needed to prove the security of the Compact Subgroup Protocol.

Let

f(x) = xk − ak−1x
k−1 − · · · − a0 ∈ Fpt [x]

be an irreducible polynomial, with αpriv ∈ Fpkt as a root. The problem is to

determine priv if a0, . . . , ak−1 and α are given. If it is possible to calculate a

solution, the protocol is considered compromised.

In De�nition 3.11, summing functions are de�ned. The summing func-

tions give a more general form for writing the coe�cients of a polynomial.

The security proof is given in terms of summing functions.

De�nition 3.11. Let n be a non-negative number, consider the integers

e0, . . . , en−1 and the elements λ0, . . . , λn−1 ∈ Fpt \ {0}. Then the summing

function Z : <α>→ Fpt is given by:

Z(κ) =
n−1∑
i=0

λi · κei , for κ ∈ <α>.

1The complexity is same as solving the Discrete Logarithm Problem
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The number n is called the degree of the summing function and the number

d = gcd (e0, e1, . . . , en−1, ord(α)) is called the order of the summing function.

The coe�cients of the polynomial F can be written as

Zi(α) =
∑

H⊂{0,1,...,n−1}
|H|=n−i

(∏
j∈H

αj

)

=
∑

H⊂{0,..n−1}
|H|=n−i

α
P

j∈H ptj

,

where αi = αpit
. Thus the coe�cients of a polynomial can be written in

terms of summing functions. With the exception of Z0 and Zn the order of

the summing functions is 1. Notice that ei =
∑

i∈H pti, ord(α)|(ptn − 1) and

also
(∑

i∈H pti, ptn − 1
)

= 1.

Theorem 3.12 (Polynomial Security Proof). [2, Theorem 3.2] Let Z be a

summing function of order d. Also let O be an oracle that on basis of any

γx and γy computes Z(γxy). Then there exists a polynomial time algorithm

that computes γyxd on basis of γx and γy. Thus for d = 1 there exists a

polynomial time algorithm that solves the Di�e-Hellman problem in <γ>.

Proof. Let V = γx and W = γy be any elements in <γ>. Using the oracle

O the value Z
(
γx(y+1)

)
can be determined using V and γiW as input. The

following system of equations can be constructed
1 1 · · · 1

V e1 V e2 · · · V en

...
...

. . .
...

V (n−1)e1 V (n−1)e2 · · · V (n−1)en




λ1γ
xye1

λ2γ
xye2

...

λnγ
xyen

 =


Z(γxy)

Z
(
γx(y+1)

)
...

Z
(
γx(y+n−1)

)


The above matrix is a Vandermonde matrix.

First consider the case that V e1 , V e2 , . . . , V en are distinct. Then the ma-

trix is invertible and the elements γxye1 , γxye2 , . . . , γxyen can be determined by

the system of equations. By taking a suitable combination of these elements

the element γxyd can be computed.
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If there exist integers i and j such that V ei = V ej , then the two columns

containing V ei and V ej are identical and γxyei = γxyej . By removing duplicate

columns and γ values, the matrix is invertible and the values of γxyd can be

computed.

The above security proof is not directly applicable to the Compact Sub-

group protocol. In the protocol a polynomial is sent as the public key, instead

of the roots of the polynomial. When a polynomial is sent, the Scipione del

Ferro root �nding technique can be used to reduce the security problem in

polynomial time to the one state in Theorem 3.12. Therefore the Compact

Subgroup Protocol is at least as secure as the Di�e-Hellman protocol.
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Chapter 4

Examples of the Compact

Subgroup Protocol

In Chapter 3 a motivation is given for the use of polynomials and their

characteristic sequences in key agreement systems. In this chapter three such

existing systems are discussed.

4.1 Doing More with Fewer Bits

In [2] Brouwer et. al. introduced a key distribution system that uses a

6th degree polynomial and which is an example of the Compact Subgroup

Protocol. This system is referred to here as DMFB. In the literature, this

protocol introduced the idea of using a polynomial to reduce the data that

needs to be transmitted during the execution of the protocol. It will follow

that the 6th degree polynomial used in DMFB is determined by only two

coe�cients.

4.1.1 Description

The system is de�ned by a 6th degree polynomial f(x) ∈ Fp[x],

f(x) = x6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + 1
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with p a prime number. The polynomial has roots α0, . . . , α5 of prime order q

dividing φ6(p) = p2−p+1. Thus the Di�e-Hellman group is the cyclic group

generated by any root αi. The private key is an integer priv ∈ [2, ord(α0))

and the associated public key is fpriv(x).

Since f(x) satis�es the condition of Theorem 3.9 it follows that the leading

and constant coe�cients of the polynomials f and fpriv are 1. Furthermore

three of the remaining �ve coe�cients determine the polynomial uniquely,

namely a5 = ap3

1 , a4 = ap3

2 and a3. However, the coe�cient a3 can be written

in terms of a1 and a2: Let α1, . . . α6 be the roots of f(x). From Theorem 4.1

it follows that the �rst and second terms in the linear sequence are given by

s1 =σ1(α1, . . . , α6)

s2 =α1s1 − 2σ2(α1, . . . , α6)

where σi is the ith elementary symmetrical polynomial over Fp[x1, . . . x6].

Then by elementary computation it follows that

a3 = −2
5∑

i=0

αi −
5∑

i=0

α2
i − 2,

from which follows that

a3 = −2 + 2α1 − α2
1 + 2α2.

Theorem 4.1 (Newton's Formula). [15, Theorem 1.75] Let σ1, . . . , σn be

the elementary symmetric polynomials in x1, . . . , xn over a ring R, and let

s0 = n ∈ Z and sk = sk(x1, . . . , xn) = xk
1 + · · ·+xk

n ∈ R[x1, . . . , xn] for k ≥ 1.

Then the formula

sk − sk−1σ1 + sk−2σ2 + · · ·+ (−1)m−1sk−m+1σm−1 + (−1)m m

n
sk−m = 0

holds for k ≥ 1, where m = min {k, n}.

Using the Newton's Formula and noting that s1 = σ1(α1, . . . , α6) = a1
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and σ2(α1, . . . , α6) = a2, it follows that

a3 = −2a1 − s2 − 2

= 2a1 − (s1σ1(α1, . . . , α6)− 2σ2(α1, . . . , α6))− 2

= −2 + 2a1 − a2
1 + 2a2.

Thus f(x) is determined by a1 and a2. Consequently, as in the Compact

Subgroup Protocol the public keys

fpriv(x) =
5∏

i=0

(
x− αpriv

i

)
can be represented by only two of its coe�cient, see (3.7).

4.1.2 Computations

Computation in this protocol does not use the sequence representation.

All the computations are done in the �eld Fp6 and the roots of the polynomial

must be computed. Thus, the performance of the protocol is not very good

and no complexity analysis is performed.

The system parameter is generated by Algorithm 4. The algorithm selects

an element α ∈ F∗
p6 of order q, where q is the order of the Di�e-Hellman

group. The system polynomial is the minimal polynomial of α, over the

prime �eld. Only two of the coe�cients are used to represent the system

polynomial.

Algorithm 4: Parameter generation of DMFB.

Data: np and nq, the required bit lengths of primes p and q
respectively.

Output: primes p and q and the coe�cient pair (a1, a2)
Choose p ∈ {n ∈ Z2np \ Z2np−1 : n is prime};1

Choose q ∈ {i ∈ Z2nq \ Z2nq−1 : i divides φ6(p) and is prime};2

Choose α ∈ Fp6 such that ord(α) = q;3

f(x)← the minimal polynomial of α over Fp;4

(a1, a2)← the coe�cients of x and x2 in f(x);5
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Each user of the system uses his private key, priv, to compute the privth

power of the roots of the system polynomial. These new elements form

the roots of an irreducible polynomial fpriv(x) over Fp of which only two

coe�cients are needed to represent the public key. Algorithm 5 computes

the public and private keys.

Algorithm 5: Selection of private and public keys in DMFB.

Data: primes p and q, the �eld Fp6 and coe�cient pair (a1, a2)
Output: priv and pub the private and public key respectively
f(x)← 1 + a1x + a2x

2;1

f(x)← f(x) + (−2 + 2a1 − a2
1 + 6a2)x

3;2

f(x)← f(x) + ap3

2 x4 + ap3

1 x5 + x6;3

Choose α ∈ Fp6 such that f(α) = 0;4

priv ∈R [2, q − 1).;5

fpriv ← the minimal polynomial of αpriv over Fp;6

pub ← the coe�cients of x and x2 in fpriv(x);7

Computation of the shared secret is similar to the computation of a user's

public key, the only di�erence being the input parameters of the algorithm.

Algorithm 6 is used to compute the shared secret.

Algorithm 6: Combining function for DMFB

Data: the �eld Fp6 , a public key pub and the private key priv
Output: The shared secret s.
(a1, a2)← pub;1

f(x)← 1 + a1x + a2x
2;2

f(x)← f(x) + (−2 + 2a1 − a2
1 + 6a2)x

3;3

f(x)← f(x) + ap3

2 x4 + ap3

1 x5 + x6;4

α ∈ Fp6 such that fpriv(α) = 0;5

g(x)← the minimal polynomial of αpriv over Fp;6

s← the coe�cient of x in g(x);7

4.1.3 Security

For the security proof of the DMFB protocol, Theorem 3.12 can be applied

directly. Is is worthwhile to note that in DMFB there exists a dependence
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between the coe�cients of the polynomial, that is not given in Theorem 3.9.

This indicates that only one of the two coe�cients should be used as the

shared secret, as is the case in DMFB.

Example 4.2 (DMFB). Let the characteristic of the �eld be 113, then

φ6(113) = 3 · 4219. Select q = 4219 as the order of the Di�e-Hellman

group in F∗
1136 and let F1136 be de�ned by the irreducible polynomial x6 +

65x5 +17x4 +84x3 +25x2 +67x+98 ∈ F113[x]. Implementation of Algorithm

4 gives the system polynomial

f(x) = x6 + 37x5 + 63x4 + 41x3 + 63x2 + 37x + 1

over F113 which is represented by (37, 63).

An implementation of Algorithm 5 is used to compute both the public

and private key pairs. Let the private key of Alice be 944. The root obtained

by factorising f(x) is 98x5 + 94x4 + 90x3 + 91x2 + 24x + 111 and its 944th

power is 41x5 + 11x4 + 21x3 + 58x2 + 6x + 47 giving a root of the public

polynomial x6 + 81x5 + 16x4 + 72x3 + 16x2 + 81x + 1 that is represented by

(81, 16).

Likewise, let 1850 be the private key of Bob. The root of f(x) used by Bob

in its computations is 79x5 + 20x4 + 23x3 + 63x2 + 45x + 43 and its 1850th

power is 50x5 + 24x4 + 43x3 + 39x2 + 55x + 64 with minimal polynomial

x6 + 33x5 + 78x4 + 35x3 + 78x2 + 33x + 1, represented by (33, 78).

Algorithm 6 is used to �nd the shared secret. In the computations of the

shared secret, Alice uses privA = 944 and pubB = (33, 78) where user Bob

uses privB = 1850 and pubA = (81, 16) to compute the shared secret 99.

4.2 Cubic Field Extension

In [8] a public key cryptographic system was introduced with a polynomial

of degree three where the order of the roots are not a prime number. The

system is abbreviated here as CFE. In the literature, the main contribution

of the article is the introduction of a linear shift register in the computation
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of the shared secret. Sequence representation is used for the computations

of the protocol.

4.2.1 Description

The system is de�ned by an irreducible polynomial

f(x) = x3 − ax2 + bx− 1, a, b ∈ Fp (4.1)

with p a prime. The polynomial f(x) has roots α0, α1 and α2 of order

φ3(p) = p2 + p + 1 and associated linear recurring relation

sk = ask−1 − bsk−2 + sk−3. (4.2)

Since the roots are conjugates, αi = αpi

0 for i = 0, 1, 2. From Theorem 3.3 it

follows that the elements of a sequence satisfying (4.2) can be written as

sn = αn
0 + αn

1 + αn
2 ,

with initial values

s0 = 3,

s1 = α0 + α1 + α2

= a,

s2 = α2
0 + α2

1 + α2
2

= (α0 + α1 + α2)
2 − 2(α0α1 + α0α2 + α1α2)

= a2 − 2b.

This sequence is called the characteristic sequence of f(x) and its kth term

is denoted by sk(a, b). The reciprocal sequence of (sk(a, b)) is the sequence

generated by the reciprocal of f(x), namely f−1(x) = x3− bx2 + ax− 1 with
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associated linear recurring relation

sk−3 = bsk−2 − ask−1 + sk.

The kth term of the reciprocal sequence is denoted by s−k(a, b).

As in the Polynomial Representation, the public key is given by the poly-

nomial

fpriv(x) =
(
x− αpriv

0

)(
x− αpriv

1

)(
x− αpriv

2

)
=x3 −

(
αpriv

0 + αpriv
1 + αpriv

2

)
x2

+
(
αpriv

0 αpriv
1 + αpriv

0 αpriv
2 + αpriv

1 αpriv
2

)
x− αpriv

0 αpriv
1 αpriv

2

=x3 − spriv(a, b) +
(
α−priv

2 + α−priv
1 + α−priv

0

)
x− 1

=x3 − spriv(a, b)x2 + s−priv(a, b)x− 1

where priv ∈ [2, ord(α0)) and (priv, ord(α0)) = 1. The public key fpriv(x)

is irreducible: Since (priv, ord(α0)) = 1 it follows that <α0 > = <αpriv
0 >.

Thus fpriv(x) is irreducible, since f(x) is irreducible.

For the private key, priv, the corresponding public key is given by the

polynomial fpriv(x) which is represented by pub = (spriv(a, b), s−priv(a, b)).

Using the private keys privA and privB, the shared secret will be the poly-

nomial fprivA·privB
(x) represented by (sprivA·privB

(a, b), s−privA·privB
(a, b)).

Note that the system polynomial f(x) is used to de�ne the sequence that

is used to derive the public key of each user, where the public key of a user

is used to generate the sequence used to derive the shared secret. Thus the

initial values for the sequence used to derive the shared secret is 3, spriv and

s2
priv − 2s−priv .

4.2.2 Computation

In the computations of the CFE protocol a more e�cient method is given,

than that of the Compact Subgroup Protocol. It uses a linear shift register

and avoids the Berlekamp-Massey algorithm. In the computation of the

system parameters elements of the �eld Fp3 are used but only elements of Fp
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are used for computing the shared secret.

The computation of the system parameters is straight forward and is

given in Algorithm 7.

Algorithm 7: Computing system parameters for CFE

Data: np the required bit length of the prime p.
Output: prime p and system polynomial (a, b).
Choose p ∈ {n ∈ Z2np \ Z2np−1 : n is prime};1

Choose α ∈ {β ∈ Fp3 : ord(β) = φ3(p)};2

f(x)← the minimal polynomial of α over Fp;3

(a, b)← the coe�cient of x and x2 in f(x);4

The computation of the shared secret is based on the method of repeated

squaring, given in Section 1.3, which is a more direct method of computation

than that used in the Compact Subgroup Protocol. The index of the term

in the sequence that is required is treated as the exponent in the repeated

squaring algorithm. Depending on the current bit of the index, one of three

functions is executed to get the next sequence element. The initial values

(s−1, s0, s1) are computed using

sk = αk
0 + αk

1 + αk
2 (4.3)

and are

s−1 = α−1
0 + α−1

1 + α−1
2

= α1α2 + α1α3 + α0α2

= b,

s0 = 3,

s1 = α0 + α1 + α2

= a.

These initial values are used to compute the sequences (sk) and (s−k) simul-

taneously, as the relations used in the computations need values from both
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sequences. The linear relations for these two sequences are

sk = ask−1 − bsk−2 + sk−3

and

sk−3 = bsk−2 − ask−1 + sk

respectively. To avoid the transmission of the initial values, these values are

computed from the characteristic polynomial. Therefore, the algorithm that

is used to compute the shared secret is much simpler than the algorithm used

in the Compact Subgroup Protocol, i.e. avoiding the use of the Berlekamp-

Massey algorithm.

Lemma 4.3. [8, Lemma 3] Let (sk) be the characteristic sequence of the

polynomial f(x), de�ned by (4.1), and (s−k) its reciprocal sequence. Then

for any positive integers n and m, with n 6= m,

s2n = s2
n − 2s−n (4.4)

snsm − sn−ms−m = sn+m − sn−2m. (4.5)

Proof. Firstly, by using (4.3)

s2n = α2n
0 + α2n

1 + α2n
2 and s2

n = (αn
0 + αn

1 + αn
2 )2

are obtained. By using α0α1α2 = 1 it follows that

s2
n = α2n

0 + α2n
1 + α2n

2 + 2(αn
0αn

1 + αn
1αn

2 + αn
2αn

0 )

= s2n + 2
(
α−n

2 + α−n
2 + α−n

0

)
= s2n + 2s−n.
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Secondly it follows from ord(α) ≡ 0 (mod (p2 + p + 1)) that

snsm =αn+m
0 + αn+m

1 + αn+m
2 + αn

0αm
1 + αn

0αm
2 + αn

1αm
0 + αn

1αm
2

+ αn
2αm

0 + αn
2αm

1

=sn+m + αn
0αm

1 + αn
0αm

2 + αn
1αm

0 + αn
1αm

2 + αn
2αm

0 + αn
2αm

1

and

sn−ms−m =αn−2m
0 + αn−2m

1 + αn−2m
2 + αn−m

0 α−m
1 + αn−m

0 α−m
2

+ αn−m
1 α−m

0 + αn−m
1 α−m

2 + αn−m
2 α−m

0 + αn−m
2 α−m

1

=sn−2m + αn−m−mp
0 + αn−m−mp2

0 + αnp−m−mp
0

+ αnp−mp−mp2

0 + αnp2−m−mp2

0 + αnp2−mp−mp2

0

=sn−2m + αn+mp2

0 + αn+mp
0 + αnp+mp2

0 αnp+m
0

+ αnp2+mp
0 + αnp2+m

0

=sn−2m + αn
0αm

2 + αn
0αm

1 + αn
1αm

2 + αn
1αm

0 + αn
2αm

1 + α2α
m
0 ,

thus

snsm − sn−ms−m = sn+m − sn−2m.

The above lemma will be used to construct relations for the computation

of the sequence. The index of the required sequence element is written in the

form

k =
r∑

j=0

kj2
r−j, (4.6)

and let tj = kj +2tj−1 with t0 = k0 6= 0. If kj ∈ {0, 1} then (4.6) is the binary

expansion, and if kj ∈ {−1, 0, 1} then (4.6) is a signed digit representation.

The sequence elements stj are computed where tj = kj +2tj−1. The following
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relations

s2tj−2 = s2
tj−1 − 2s−(tj−1)

s2tj−1 = stjstj−1 − bs−tj + s−(tj+1)

s2tj = s2
tj
− 2s−tj

s2tj+1 = stjstj+1 − as−tj + s−(tj−1)

s2tj+2 = s2
tj+1 − 2s−(tj+1)

are constructed from (4.4) and (4.5) using n = tj − 1; m = −tj and n = −1;

n = tj; m = −tj and n = 1; n = tj + 1 respectively. From these relations it

is seen that both the sequence (sk) and its reciprocal sequence are needed.

From the above relations three relations are selected depending on the current

digit in the expansion of the number k. The relations are:

If kj = −1 then tj = 2tj−1 − 1:

stj−1 = s2
tj−1−1 − 2s−(tj−1−1)

stj = stj−1
stj−1−1 − bs−tj−1

+ s−(tj−1+1)

stj+1 = s2
tj−1
− 2s−tj−1

.

If kj = 0 then tj = 2tj−1:

stj−1 = stj−1
stj−1−1 − bs−tj−1

+ s−(tj−1+1)

stj = s2
tj−1
− 2s−tj−1

stj+1 = stj−1
stj−1+1 − as−tj−1

+ s−(tj−1−1).

If kj = 1 then tj = 2tj−1 + 1:

stj−1 = s2
tj−1
− 2s−tj−1

stj = stj−1
stj−1+1 − as−tj−1

+ s−(tj−1−1)

stj+1 = s2
tj−1+1 − 2s−(tj−1+1).

To be able to compute the next triple from the above relation sets, the
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triples (sj−1, sj, sj+1) and (s−j−1, s−j, s−j+1) are needed. The same two triples

are needed to compute the reciprocal sequence as can be seen from the next

relation sets that are obtained in the same way as the previous set, but by

using −tj = −kj − 2tj−1 instead.

For kj = −1 thus −tj = −2tj−1 + 1:

s−tj−1 = s2
−tj−1

− 2stj−1

s−tj = s−tj−1
s−tj−1+1 − astj−1

+ stj−1+1

s−tj+1 = s2
−tj−1+1 − 2stj−1−1.

For kj = 0 thus −tj = −2tj−1:

s−tj−1 = s−tj−1
s−tj−1−1 − bstj−1

+ stj−1−1

s−tj = s2
−tj−1

− 2stj−1

s−tj+1 = s−tj−1
s−tj−1+1 − astj−1

+ stj−1+1.

For kj = 1 thus −tj = −2tj−1 − 1:

s−tj−1 = s2
−tj−1−1 − 2stj−1+1

s−tj = s−tj−1
s−tj−1−1 − bstj−1

+ stj−1−1

s−tj+1 = s2
−tj−1

− 2stj−1
.

Algorithm 8 gives the combining function for CFE and is also used in the

generation of a user's public key. The functions F−1, F0, and F1 used in Algo-

rithm 8 are de�ned by the above relations. The functions Fkj
are de�ned by

transforming the two triples
(
stj−1, stj , stj+1

)
and

(
s−tj−1, s−tj , s−tj+1

)
to the

two triples
(
s2tj−1+kj

, s2tj+kj
, s2tj+1+kj

)
and

(
s−2tj−1−kj

, s−2tj−kj
, s−2tj+1−kj

)
for kj ∈ {−1, 0, 1}.

Lemma 4.4 gives the number of operations in Algorithm 8. To improve

the performance of the algorithm, the iterations where ki = 0 need to be

reduced. The Hamming weight of k can be decreased by using signed digit

representation, see [9]. In this dissertation this is not done.
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Algorithm 8: Combining function for CFE

Data: The index k = (kr−1, . . . , k0)2 and the polynomial (a, b).
Output: (s−k−1, s−k, s−k+1, sk−1, sk, sk+1)
M ← (b, 3, a, b, 3, a);1

for i = r − 1 to 0 do2

M ← Fki
(M);3

end4

(s−k−1, s−k, s−k+1, sk−1, sk, sk+1)←M ;5

Lemma 4.4. Let f(x) be a system polynomial for the CFE protocol and (sk)

the associated characteristic sequence. The kth term in the sequence can be

computed with 6 log2 k multiplications and 5 log2 k−Hk additions in Fp, where

Hk is the Hamming weight of k.

4.2.3 Security

The security proof of the CFE Protocol is a speci�c case of Section 3.3.

Using a Di�e-Hellman group that does not have a prime order makes an

attack using the Chinese Remainder Theorem applicable, see Section 2.3.2.

The security of the protocol is therefore based on the largest prime factor of

φ3(p).

Example 4.5 (Small implementation of CFE). To simplify the example, only

the binary expansion of the private key will be used. Let the characteristic

of the �eld be 101. Then φ3(101) = 10303 which is a prime number. Select

the order of the Di�e-Hellman group as 10303. De�ne the �eld F1013 by

the irreducible polynomial x3 + 23x2 + 40x + 69 with root α. An element

of order 10303 is 15α2 + 79α + 29 and the system polynomial is given by

f(x) = x3 + 45x2 + 3x + 100. This gives a = −45 = 56 and b = 3, thus the

initial values of the sequence are 3, 3 and 56.

Let the private key of Alice be privA = 1882 = 111010110102. The

computation of Algorithm 8 is given in Table 4.1.
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Iteration ki ti sti−1 sti sti+1 s−ti−1 s−ti s−ti+1

0 - 0 3 3 56 3 3 56
1 1 1 3 56 100 99 3 3
2 1 3 100 82 5 6 31 99
3 1 7 97 86 13 26 40 90
4 0 14 67 44 79 71 14 9
5 1 29 90 75 39 35 20 7
6 0 58 59 30 95 60 48 19
7 1 117 97 80 17 77 21 22
8 1 235 96 4 34 37 60 79
9 0 470 39 98 87 82 57 5
10 1 941 97 87 32 86 76 23
11 0 1882 15 44 66 9 47 39

Table 4.1: Computing the public key of Alice in CFE

From the table it is seen that s1882 = 44 and s−1882 = 47, thus the public

key is pubA = x3 + 57x2 + 47x + 100.

The private key of user Bob is selected as privB = 7998 and the associated

public key pubB = x3 + 100x2 + 65x + 100 is computed in a similar manner

as the public key of Alice.

For user Alice to compute the shared secret the private key privA and the

public key pubB are used. The values are 65, 3 and 1 are the initial values

for the linear sequence and is constructed from privB. The computed shared

secret is x3 + 17x2 + 56x + 100.

4.3 Extended XTR

Lenstra de�ned the system XTR in [12] based on a third degree irreducible

polynomial over the �eld Fp2 . This idea was extended in [16] to any �eld Fp2m .

In this dissertation, the system in [16] is called the Extended XTR (EXTR).

The protocol follows the Compact Subgroup Protocol, but like CFE de�ned

in the previous section, a more direct computation method is used to compute

the public keys and the associated shared secret. An additional performance

improvement is achieved by using an optimal normal basis.
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In the next section EXTR is described; in Section 4.3.2 the parameter

selection is given. Section 4.3.3 gives a method of computation and the last

section provides a security proof.

4.3.1 Description of EXTR

For any positive integer m, the system is de�ned by an irreducible system

polynomial

f(x) = x3 − cx2 + cpm

x− 1, c ∈ Fp2m (4.7)

with p - 6m and ord(f) - 6m and where the roots α0, α1, α2 in Fp6m have prime

order dividing φ6m(p). These constraints are needed for security reasons as

from Lemma 2.13 it follows that the smallest �eld containing the roots of

f(x) is Fp6m . From the primality of ord(α0) it follows that the minimum

polynomial of αi
0 is irreducible for i ∈ [1, ord(α0)). Furthermore 2m+1 must

be prime and p primitive in Z2m+1 to ensure the existence of an optimal

normal basis.

The associated linear recurrence relation is

sk+3 = csk+2 − cpm

sk+1 + sk, k ≥ 0. (4.8)

The sequence (sk) satisfying (4.8) and with initial values s0 = 3, s1 = c and

s2 = c2 − 2cpm
is called the characteristic sequence of f(x). It follows from

Theorem 3.3 that the characteristic sequence (sk) satis�es

sk = αk
0 + αk

1 + αk
2, k ≥ 0. (4.9)

Since the roots are conjugates, αi = αp2mi

0 for i = 0, 1, 2 it follows that

sk = Trp6m/p2m

(
αk

0

)
(4.10)

where Trp6m/p2m is the trace of αk
0, see [15, De�nition 2.22].

In Lemma 4.13 it is shown that φ6m(p)|(p2m − pm + 1), ensuring that the

order of the roots of f(x) divides p2m − pm + 1.
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Lemma 4.6. Let f(x) be a third degree polynomial over Fp2m [x], with roots

α0, α1, α2. If f(x) is irreducible and the order of the roots divides p2m − pm + 1

then the polynomial is of the form

f(x) = x3 − cx2 + cpm

x− 1, c ∈ Fp2m .

Proof.

f(x) =(x− α0)(x− α1)(x− α2)

=x3 − (α0 + α1 + α2)x
2 + (α0α1 + α0α2 + α1α2)x− α0α1α2

=x3 − cx2 +
(
α1+p2m

0 + α1+p4m

0 + αp2m+p4m

0

)
x− α1+p2m+p4m

0

=x3 − cx2 +
(
αpm

0 + α1−pm

0 + αp2m−pm

0

)
x− α1+p2m−pm

0

=x3 − cx2 +
(
αpm

0 + α−p2m

0 + αp2m−pm

0

)
x− 1

=x3 − cx2 +
(
α0 + α−pm

0 + αpm−1
0

)pm

x− 1

=x3 − cx2 +
(
α0 + αp4m

0 + αp2m

0

)pm

x− 1

=x3 − cx2 + (α0 + α1 + α2)
pm

x− 1

=x3 − cx2 + cpm

x− 1

where

c = α0 + α1 + α2

and the modulus relations used are

p2m ≡ pm − 1

p4m ≡− pm

1− pm ≡− p2m

−1 ≡ p2m − pm,

all modulo (p2m − pm + 1).
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Since ord(α0) is a prime number, the group <α0 > is not contained in

any proper sub�eld of Fp6m . Therefore the public key

fpriv(x) =
(
x− αpriv

0

)(
x− αpriv

1

)(
x− αpriv

2

)
de�ned by (3.3) and associated with a private key priv ∈ [2, ord(α0)), is

irreducible. By Lemma 4.6

fpriv(x) = x3 − cprivx
2 + cpm

privx− 1

where

cpriv = αpriv
0 + αpriv

1 + αpriv
2 . (4.11)

The shared secret for Alice and Bob is now given by fprivA·privB
(x). The key

agreement is illustrated in Figure 4.1. It is important to note that pubA =

fprivA
(x) and pubB = fprivB

(x) are the public data that is exchanged in the

clear.

Shared secret

C C

Insecure

pubB pubA

privB

Bob

F

privA

Alice

F

Figure 4.1: Two parties using a public key distribution system.
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Each user computes the shared secret independently. It is seen that the

computed values are the same by considering

cprivA·privB
= αprivA·privB

0 + αprivA·privB
1 + αprivA·privB

2

= αprivB ·privA
0 + αprivB ·privA

1 + αprivB ·privA
2

= cprivB ·privA
.

The coe�cient cprivB ·privA
of the shared polynomial can be computed from

the characteristic sequence, as seen from (4.8) and (4.11).

4.3.2 Parameter Selection

Parameter selection in EXTR has three parts, namely the selection of an

optimal normal basis, the selection of the system polynomial and the com-

putation of φ6m(p). The optimal normal basis is needed for e�cient compu-

tations. An irreducible polynomial is needed for the selection of the system

polynomial. Lastly, a more e�cient formula is given for the computation of

φ6m(p) from which it follows that φ6m(p)|(p2m − pm + 1).

Optimal normal basis

Any �nite �eld Fq can be extended by using an irreducible polynomial of

degree n to construct a �nite �eld Fqn ∼=< Fq[x]/<f(x)>. This �eld Fqn can

be represented by a basis over Fq.

De�nition 4.7. [15, De�nition 2.32] A basis of Fqn over Fq of the form{
α, αq, . . . , αqn−1

}
, consisting of a suitable element α ∈ Fqn and its conju-

gates with respect to Fq, is called a normal basis of Fqn over Fq.

Note that if G = Gal(Fqn : Fq) and α ∈ Fqn , then {σ(α) : σ ∈ G} ={
α, αq, αq2

, . . . , αqn−1
}
. The element α will always be selected, in such a

way that {σ(α) : σ ∈ G} is a normal basis. Theorem 2.35 of [15] gives the

existence of a normal basis for any �nite �eld.

For e�cient computations optimal normal bases, introduced in [20], will

be used and discussed later. Before optimal normal bases are discussed, some
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theory of dual bases is needed.

De�nition 4.8. [15, De�nition 2.30] Let K be a �nite �eld and L a �nite

extension of K. Then two bases {α1, . . . , αm} and {β1, . . . , βm} of L over K

are said to be dual bases, if for 1 ≤ i, j ≤ m

TrL/K(αiβj) =

0 if i 6= j

1 if i = j.

It is now shown how the trace function can be used to determine the coor-

dinates of an element A ∈ Fqn with respect to a normal basis {σ(α) : σ ∈ G}.
Let α, β ∈ Fqn such that {σ(α) : σ ∈ G} and {σ(β) : σ ∈ G} are dual normal

bases of Fqn over Fq. For any τ ∈ G

TrFqn/Fq(Aτ(β)) = TrFqn/Fq

(
τ(β)

∑
σ∈G

aσσ(α)

)

= TrFqn/Fq

(∑
σ∈G

aσσ(α)τ(β)

)
=
∑
σ∈G

aσTrFqn/Fq(σ(α)τ(β))

= aτ .

Thus, TrFqn/Fq(xτ(β)) de�nes a linear transformation that determines the

τ th coordinate of A. This transformation is uniquely de�ned by τ(β), see

[15, Theorem 2.24].

Next, it is shown that the dual of a normal basis is normal. Let {β1, . . . , βn}
be the dual of a normal basis {σ(α) : σ ∈ G}. Then for integers i and j

TrFqn/Fq

(
αqi

βj

)
= TrFqn/Fq

([
αqi

βj

]q)
= TrFqn/Fq

(
αqi+1

βq
j

)
.

For any linear transformation from Fqn to Fq there exists a unique β ∈ Fqn ,
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such that the linear transformation in x is de�ned by Tr(β · x). Since the

two linear transformations TrFqn/Fq(βjx) and TrFqn/Fq

(
βq

j x
)
with indeter-

minate x are identical, it follows that βq
j = βj+1. Hence {β1, . . . , βn} ={

β1, β
q
1 . . . , βqn−1

1

}
is a normal basis.

Before the existence of optimal normal bases is proven, the multiplication

method of Massey and Omura [17] is discussed. Computations in Fqn are done

with respect to a normal basis {σ(α) : σ ∈ G} of Fqn over Fq. Let A, B ∈ Fqn ,

with

A =
∑
σ∈G

aσσ(α) and B =
∑
σ∈G

bσσ(α), aσ, bσ ∈ Fq.

Addition is computed component wise. The product of A and B is given by

AB =
∑

σ,γ∈G

aσbγσ(α)γ(α)

=
∑

σ,γ∈G

aσbγσ
(
ασ−1(γ(α))

)
.

Notation: The automorphism σi ∈ G is de�ned by σi : α 7→ αqi
. A product

ασ(α) with σ ∈ G can be written as

ασ(α) =
∑
τ∈G

dα(τ, σ)τ(α), (4.12)

where dα(·, ·) is an n× n matrix over Fq de�ned by
ασ1(α)

ασ2(α)
...

ασn(α)

 =


d(σ1, σ1) d(σ2, σ1) · · · d(σn, σ1)

...
. . .

d(σ1, σn) d(σ2, σn) · · · d(σn, σn)




σ1(α)

σ2(α)
...

σn(α)


Since α is a unit, {α · σi(α) : 0 ≤ i ≤ n− 1} is also a basis of Fqn over Fq and
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the matrix dα is invertible. The product AB is now given by

AB =
∑

σ,γ∈G

aσbγσ

(∑
τ∈G

dα

(
τ, σ−1γ

)
τ(α)

)
=
∑

σ,γ∈G

aσbγ

∑
τ∈G

dα

(
τ, σ−1γ

)
σ(τ(α))

=
∑

σ,γ∈G

aσbγ

∑
τ∈G

dα

(
σ−1τ, σ−1γ

)
τ(α).

Multiplication can therefore be computed through the use of the matrix dα.

Computational e�ciency of multiplication is determined by the number of

non-zero entries in the matrix. The minimum number of non-zero elements

in dα is determined next. From∑
σ,τ∈G

dα(τ, σ)τ(α) =
∑
σ∈G

ασ(α)

= α
∑
σ∈G

σ(α)

= αTrFqn/Fq(α)

it follows that

∑
σ∈G

dα(τ, σ) =

TrFqn/Fq(α) if τ = 1,

0 if τ 6= 1.

Therefore each row and column of the matrix dα contains at least one non-

zero element. From the above summation, it follows that all columns with

τ 6= 1 have at least two non-zero values. Thus

#{(τ, σ) ∈ (G, G) : dα(τ, σ) 6= 0} ≥ 2n− 1. (4.13)

If the number of non-zero elements is 2n − 1, the basis is called an optimal

normal basis.

The matrix dα de�ned in (4.12) can also be de�ned by the dual basis
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{σ(β) : σ ∈ G} of {σ(α) : σ ∈ G} i.e.

ατ(β) =
∑
σ∈G

dα(τ, σ)σ(β) (4.14)

of all τ in G. It is su�cient to observe that the coe�cient of ατ(β) at σ(β)

is given by

TrFqn/Fq((ατ(β))σ(α)) = TrFqn/Fq((ασ(α))τ(β))

= TrFqn/Fq

(∑
ρ∈G

dα(ρ, σ)ρ(α)τ(β)

)
= dα(τ, σ).

In [7] it is proven that only two types of optimal normal bases exist.

Fields with characteristic 2 are considered less secure and therefore optimal

normal bases of �elds with characteristic 2 will not be considered.

Theorem 4.9. Let Fq be a �nite �eld of characteristic not equal to 2 and

Fqn−1 a �nite Galois extension of Fq, with Galois group G and let α ∈ Fqn−1.

Then {σ(α)}σ∈G is an optimal normal basis if and only if there is a prime

n, a primitive nth root of unity ζ in some algebraic extension of Fq and an

element c ∈ F∗
q such that the irreducible polynomial of ζ over Fq has degree

n− 1, Fqn−1 = Fq(ζ) and α = cζ.

Proof. It is �rst proven that the conditions are su�cient for {σ(α)}σ∈G to

be an optimal normal basis. Since n is prime, it follows that the irreducible

polynomial of ζ is the nth cyclotomic polynomial φn(x) = xn−1 + · · ·+ x + 1.

Also, since ζ is a primitive nth root of unity an integer i exists for each j,

such that ζqj
= ζ i, 1 ≤ i ≤ n− 1. Now let N be a the normal basis of Fpn−1 ,

i.e.

N =
{

ζ, ζq, . . . , ζqn−2
}

=
{
ζ, ζ2, . . . , ζn−1

}
.
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Note that

ζ · ζ i = ζ i+1 ∈ N, 1 ≤ i < n− 1,

and

ζ · ζn−1 = 1

= −ζn−1 − · · · − ζ2 − ζ.

There are 2n− 1 non-zero elements in the multiplication matrix dζ and thus

N is an optimal normal basis. Note N is an optimal normal basis if and only

if cN is an optimal normal basis.

Now it is proven that the conditions are necessary. Assume that {σ(α)}σ∈G

is an optimal normal basis of L over K. From the argument leading to (4.13)

it follows that

(1) For each τ ∈ G, τ 6= 1 only two elements σ exist in G, such that dα(τ, σ)

is non-zero.

(2) Only one element σ exists in G such that dα(σn, σ) is non-zero and its

value is Tr(α).

Thus, there exists a µ ∈ G such that αβ = TrFqn−1/Fq(α) · µ(β), see (4.14).

Since cα with c ∈ Fq generates an optimal normal basis, without loss of

generality, it can be assumed that TrFqn−1/Fq(α) = −1. Thus αβ = −1µ(β).

Also

TrFqn−1/Fq(α)TrFqn−1/Fq(β) =
∑

σ,τ∈G

σ(α)τ(β)

=
∑

σ,ρ∈G

σ(αρ(β))

=
∑
ρ∈G

TrFqn−1/Fq(αρ(β))

= 1,

from which it follows that without loss of generality it can be assumed that
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TrFqn−1/Fq(β) = −1.

The case µ = 1 results in no extension �eld being generated and the case

µn = 1 for n > 2 forces the characteristic of the �eld to be 2 which is not

considered.

Consider the case µ2 = 1. Then α = −µ(β)/β and µ(α) = −µ2(β)/µ(β) =

−β/µ(β) = 1/α. Thus

αµ(α) = 1

= −TrFqn−1/Fq(α)

=
∑
σ∈G

−σ(α).

Thus d(σ, µ) = −1 for all σ ∈ G. For each row where σ 6= 1, two non-zero

entries and a σ∗ 6= µ exist in G such that

ασ(β) = σ∗(β)− µ(β).

The mapping F : G \ {1} → G \ {µ} is de�ned such that σ 7→ σ∗ as in

the above relation. For any σ and τ not equal to each other it follows that

ασ(β) 6= ατ(β) and thus F (σ) 6= F (τ). This proves that F is injective and

since the range and domain of F are �nite and of the same cardinality, the

function is a bijection. Determining the coe�cients τ(α) of ασ∗(α),

ατ(β) =τ ∗(β)− µ(β)

ατ(β)σ∗(α) =τ ∗(β)σ∗(α)− µ(β)σ∗(α)

TrFqn−1/Fq([ασ∗(α)]τ(β)) =TrFqn−1/Fq(τ
∗(β)σ∗(α))

− TrFqn−1/Fq(µ(β)σ∗(α))

=TrFqn−1/Fq(τ
∗(β)σ∗(α))

=

1 if τ = σ

0 if τ 6= σ.
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Now

ασ∗(α) = σ(α) for σ∗ 6= µ and (4.15)

αµ(α) = 1. (4.16)

The set {1} ∪ {σ(α) : σ ∈ G} is closed under multiplication by α and under

the action of G and thus it is a group of order n. Since αn = 1 and α 6=
1 it follows that α is a zero of (xn − 1)/(x − 1) = xn−1 + . . . + x + 1.

From the fact that the degree of α over K is n − 1 and that α is a root of

xn−1 + . . . x + 1 it follows that xn−1 + . . . x + 1 is irreducible. Note that the

nth cyclotomic polynomial xn−1 + . . . + x + 1 is irreducible if and only if n is

a prime number.

In EXTR it is necessary to �nd an optimal normal basis for the �eld Fp2m .

Thus, according to the above theorem, 2m + 1 must be prime and p must be

primitive in Z2m+1.

Computation of the system polynomial

An irreducible polynomial of order dividing φ6m(p) is needed. This can

be done by considering each irreducible polynomial of degree 3, compute its

order and test if the required condition is satis�ed. A more e�cient method

is given for the selection of a required polynomial.

Lemma 4.10. [13, Lemma 2.3.2 (iv) and (vi)] Let

f(x) = x3 + cx2 − cpm

x− 1 ∈ Fp2m [x]

have roots α0, α1, α2. Then for j = 0, 1, 2,

(1) f(α−pm

j ) = 0.

(2) f(x) is irreducible over Fp2m if and only if ord(αj)|(p2m − pm + 1) and

ord(αj) > 3.
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Proof. (1) From f(αj) = α3
j − cα2

j + cpm
αj − 1 = 0 it follows that αj 6= 0.

Since cp2m
= c and αj 6= 0 it follows that

0 = f(αj)
pm

= α3pm

j − cpm

α2pm

j + cp2m

αpm

j − 1

= −α3pm

j

(
α−3pm

j − cα−2pm

j + cpm

α−pm

j − 1
)

= −α3pm

j · f(α−pm

j ),

i.e. f(α−pm

i ) = 0.

(2) It is �rst proven that ord(αj)|(p2m − pm + 1) and ord(αj) > 3 are neces-

sary conditions for f(x) to be irreducible. From (1) it follows that either

αj = α−pm

j or that αj = α−pm

j+1 (mod 3) for j = 0, 1, 2 or without loss of

generality that α0 = α−pm

0 , α1 = α−pm

2 and α2 = α−pm

1 .

In the �rst case all αj's have order dividing pm + 1 and are thus in Fp2m .

In the second case it follows from α0α1α2 = 1 that

1 = α0α
−pm

2 α−pm

0

= α0α
p2m

0 α−pm

0

= αp2m−pm+1
0

so that α0, α1 and α2 have order dividing p2m − pm + 1.

In the last case α0 has order dividing pm + 1, α1 = α−pm

2 = αp2m

1 so that

both α1 and α2 have order dividing p2m − 1 and again all roots are in

Fp2m .

Assume that f(x) is an irreducible polynomial. Then αj 6∈ Fp2m and

therefore ord(αj)|(p2m − pm + 1) for j = 0, 1, 2.

Suppose that ord(αj) ≤ 3. Since p2m − pm + 1 is odd, ord(αj) ∈ {1, 3},
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i.e. ord(αj)|3. Since

3 =
(
p2m − pm + 1

)
− (pm − 2)(pm + 1)

=
(
p2m − pm + 1

)
+
[(

p2m − pm + 1
)
−
(
p2m − 1

)]
(pm + 1)

=
(
p2m − pm + 1

)
(pm + 2)−

(
p2m − 1

)
(pm + 1),

ord(αj)|(p2m − 1), contradicting the fact that αj 6∈ Fp2m . Therefore

ord(αj) > 3 for j = 0, 1, 2.

Conversely, assume that ord(αj)|(p2m − pm + 1) and ord(αj) > 3 for

j = 0, 1, 2. Suppose that αj ∈ Fp2m , i.e. ord(αj)|(p2m − 1). Then it

follows from p2m − pm + 1 = (p2m − 1)− (pm − 2) that ord(αj)|(pm − 2)

and from p2m − pm + 1 = (pm − 2)(pm + 1) + 3 that ord(αj)|3, contra-
dicting ord(αj) > 3. Therefore α0, α1 and α2 are not in Fp2m and f(x) is

irreducible over Fp2m .

The next lemma shows that it is quite e�cient to �nd an irreducible

polynomial of the required form by using a random search.

Lemma 4.11. [13, Lemma 3.2.1] For a randomly selected c ∈ Fp2m the prob-

ability that

f(x) = x3 − cx2 + cpm

x− 1 ∈ Fp2m [x]

is irreducible, is approximately one third for large enough m and p.

Proof. From Lemma 4.10 it is seen that a polynomial of the required form

is irreducible if and only if the order of the roots divide p2m − pm + 1 and

are greater than three. Let β ∈ F∗
p6m such that ord(β) = p2m − pm + 1. The

existence of β follows from the fact that φ6m(p)|(p6m − 1). For any α ∈ <β>

with ord(α) > 3 the irreducible polynomial with roots α, αp2m
and αp4m

is of

the form (4.7), see Lemma 4.6. Since ord(β) is odd, the only possible orders

of α smaller than 4 is 1 or 3. Now the number of elements α ∈ <β> with
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ord(α) > 3 is

(
p2m − pm + 1

)
− a′ with a′ ∈ {1, 3}

= p2m − pm − a with a ∈ {0, 2}.

Since the roots of an irreducible polynomial are conjugates, there are (p2m − pm − a)/3

di�erent irreducible polynomials f(x). Thus the probability that f(x) is ir-

reducible is

(p2m − pm − a)/3

p2m − 1
=

1

3
· p

2m − pm − a

p2m − 1

=
1

3

(
p2m − 1

p2m − 1
− pm + 1− a

p2m − 1

)
=

1

3

(
1− 1

pm − 1
− a

p2m − 1

)
≈ 1

3
.

The following lemma gives a condition for the irreducibility of a polyno-

mial in terms of the characteristic sequence of the polynomial. The use of a

characteristic sequence gives an e�cient test for irreducibility.

Lemma 4.12. [13, Lemma 2.3.4 part (iii)] Let f(x) = x3 + cx2− cpm
x− 1 ∈

Fp2m [x] be a polynomial with roots α0, α1, α2 and let (sk) be the characteristic

sequence of f(x). Then f(x) is irreducible over Fp2m if and only if spm+1 6∈
Fpm.

Proof. If f(x) is reducible then all αj are in Fp2m . If f(x) is reducible it follows

that α
(pm+1)pm

j = αp2m−1
j αpm+1

j = αpm+1
j and αpm+1

j ∈ Fpm for j = 0, 1, 2 so

that spm+1 ∈ Fpm , since spm+1 = αpm+1
0 + αpm+1

1 + αpm+1
2 .

Conversely, if spm+1 ∈ Fpm , then spm

pm+1 = spm+1 and fspm+1
(x) = x3 −

spm+1x
2 + spm+1x − 1, see (3.3). Thus fspm+1

(1) = 0. Because the roots of

fspm+1
(x) are the (pm + 1)th powers of the roots of f(x), it follows that f(x)

has roots of order dividing pm + 1, i.e. an element of Fp2m . Thus f(x) is

reducible over Fp2m .
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The EXTR system requires an irreducible polynomial of prime order q

and of the form (4.7). Algorithm 9 randomly selects such a polynomial.

Algorithm 9: Computation of f(x)

Data: Primes p and q, a positive integer m, q - 6m and q|φ6m(p)
Output: f(x) = x3 − cx2 + cpm

x− 1 ∈ Fp2m [x], irreducible and of
order q

Pick a ∈ Fp2m \ Fpm at random;1

g(x)← x3 − ax2 + apm
x− 1;2

(sk)← characteristic sequence of g(x);3

If spm+1 ∈ Fpm , restart;4

If s(p2m−pm+1)/q = 3, restart;5

c← s(p2m−pm+1)/q;6

f(x)← x3 − cx2 + cpm
x− 1;7

The justi�cation of Algorithm 9 is given next. Let H = p2m− pm +1 and

from the property that φ6m(p)|H it follows that q|H and let n be the largest

integer such that qn|H.

Lines 1 to 4 are used to obtain a random irreducible polynomial g(x).

From Lemma 4.12 if follows that spm+1 ∈ Fpm if and only if the polynomial

is irreducible. This irreducible polynomial is referred to as g(x) with roots

α0, α1 and α2, say. The probability that the selected a will result in an

irreducible polynomial is approximately one third, see Lemma 4.11.

Line 5 determines whether the order of g(x) is divisible by qn. It is shown

that if

sH/q = α
H/q
0 + α

H/q
1 + α

H/q
2

6= 3

then ord
(
α

H/q
0

)
= q. Suppose that ord

(
α

H/q
0

)
6= q then α

H/q
0 = 1 and

therefore sH/q = 3 is a contradiction. Note that since g(x) is irreducible, the

orders of all its roots are the same.

Lines 6 and 7 give the irreducible output polynomial f(x) of order q. It

follows from Lemma 4.10 that if a root of f(x) has order q the polynomial

f(x) is irreducible. From line 6 it follows that cH/q = α
H/q
0 + α

H/q
1 + α

H/q
2 ,

84

 
 
 



de�ning α
H/q
0 , α

H/q
1 and α

H/q
2 as the roots of f(x) where the order of the roots

is q. Thus the order of f(x) is q.

For the remainder of this section, the probability that the algorithm will

terminate is discussed. Both lines 4 and 5 determine when the algorithm

terminates. Line 4 is covered by Lemma 4.11 and line 5 is discussed next.

Let Cqn and CH/qn be cyclic groups of order qn and H/qn respectively.

Then the group G = Cqn × CH/qn is a cyclic group of order H. An element

β in G has the form (β1, β2), where β1 ∈ Cqn and β2 ∈ CH/qn . Let β be a

root of g(x). An element of order q is constructed if the H/qth power of β

is not 1, that is if qn|ord(β). The number of elements in G that satisfy this

constraint is

(|Cqn| − |Cqn−1|) ·
∣∣CH/qn

∣∣ =

(
H

qn

)(
qn − qn−1

)
= H −H/q.

From the proof of Lemma 4.11 it follows that the number of elements in G

that are possible roots of g(x) is p2m − pm − d with d ∈ {0, 2}. Thus the

probability that qn|ord(g) is

H −H/q

p2m − pm − b
=

(p2m − pm − 1)− (p2m − pm − 1)/q

p2m − pm − b

≈ (p2m − pm − 1)− (p2m − pm − 1)/q

p2m − pm − 1

= 1− 1/q.

For q ≈ 2160, the in�uence of line 5 can be ignored.1

Computation of φ6m(p)

The computation of the cyclotomic polynomial φ6m(x) is important for

the implementation of EXTR. It is an advantage to �nd an easy computable

formula for φ6m(p) for the implementation. From this formulation it will also

follow that φ6m(p)|(p2m − pm + 1).

1The recommended subgroup size needed for security by Lenstra in [14].
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Three di�erent cases are considered.

(1) m is prime and m 6= 2, 3,

(2) m has the form 2j3i where i and j are non-negative integers and

(3) m has the form 2j3im′ where i, j and m′ are non-negative integers with

m′ > 1.

In which follows the formula

xn − 1 =
∏
d|n

φd(x)

is repeatedly used [15, Theorem 2.45].

Let m be a prime number not equal to 2 or 3.

φ6m(x) =
x6m − 1∏
d<6m

d|6m
φd(x)

=
x6m − 1

[φ1(x)φ3(x)φm(x)φ3m(x)]φ2(x)φ6(x)φ2m(x)

=
x6m − 1

(x3m − 1)

(
φ1(x)φ2(x)φm(x)φ2m(x)

φ1(x)φm(x)

)
φ6(x)

=
(x3m − 1)(x3m + 1)[φ1(x)φm(x)]

(x3m − 1)(x2m − 1)φ6(x)

=
(x3m + 1)(xm − 1)

φ6(x)(xm − 1)(xm + 1)

=
(x2m − xm + 1)(xm − 1)

φ6(x)(xm − 1)

=
x2m − xm + 1

x2 − x + 1
.

In the following two cases, set notation is used to determine distinct sets

of which the union is {d ∈ Z+ : d|6m, d 6= 6m}.
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Let m be of the form m = 2j3i, where i and j are non-negative. Now

{
d ∈ Z+ : d|2j+13i+1, d 6= 2j+13i+1

}
=
{
d : d|2j3i

}
∪
{
2j+1d : d|3i

}
∪
{
3i+1d : d|2j

}
,

where the last two sets in the union can be written as

{
2j+1d : d|3i

}
=
{
d : d|2j+13i, 2j+1|d

}
=
{
d : d|2j+13i

}
\
{
d : d|2j3i

}
and

{
3i+1d : d|2j

}
=
{
d : d|2j3i+1, 3i+1|d

}
=
{
d : d|2j3i+1

}
\
{
d : d|2j3i

}
.

This partition is used to compute the cyclotomic polynomial.

φ6m(x) =
x6m − 1∏

d|2j+13i+1

d6=2j+13i+1

φd(x)

=
x6m − 1∏
d|2j3i φd(x)

∏
d|2j3i φd(x)∏

d|2j+13i φd(x)

∏
d|2j3i φd(x)∏

d|2j3i+1 φd(x)

=
(x6m − 1)(xm − 1)(xm − 1)

(xm − 1)(x2m − 1)(x3m − 1)

=
(x3m + 1)(xm − 1)

(x2m − 1)

=
x3m + 1

xm + 1

= x2m − xm + 1.

Lastly, let m be of the form m = 2j3im′ where i, j and m′ are non-negative

integers and m′ > 1. The same technique as above is used to partition the
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divisors into di�erent sets. Now

{
d ∈ Z∗ : d|2j+13i+1m′, d 6= 2j+13i+1m′}

=
{
d : d|2j3im′} ∪ {2j+1d : d|3im′} ∪ {3i+1d : d|2jm′}
∪
{
2j+13i+1d : d|m′, d 6= m′}

where the second and third sets can be written as

{
2j+1d : d|3im′} =

{
d : d|2j+13im′, 2j+1|d

}
=
{
d : d|2j+13im′} \ {d : d|2j3im′}

and

{
3i+1d : d|2jm′} =

{
d : d|3i+12jm′, 3i+1|d

}
=
{
d : d|3i+12jm′} \ {d : d|2j3im′}.

This partition is used to compute the cyclotomic polynomial.

φ6m(x) = φ2j+13i+1m′(x)

=
x6m − 1∏

d|2j+13i+1m′

d6=2j+13i+1m′
φd(x)

=
x6m − 1∏

d|2j3im′ φd(x)
∏

d|m′
d6=m′

φ2j+13i+1m′(x)

∏
d|2j3im′ φd(x)

x2m − 1

∏
d|2j3im′ φd(x)

x3m − 1

=
(x6m − 1)(xm − 1)(xm − 1)

(xm − 1)(x2m − 1)(x3m − 1)

 1∏
d|m′

d6=m′
φ2j+13i+1m′(x)


=

x3m + 1

xm + 1

 1∏
d|m′

d6=m′
φ2j+13i+1m′(x)


=

x2m − xm + 1∏
d|m′

d6=m′
φ2j+13i+1m′(x)

.

From these results the next lemma is obtained.
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Lemma 4.13. The 6mth cyclotomic polynomial φ6m(x) over the �eld Fp

divides the polynomial x2m − xm + 1.

4.3.3 Computations

Attention is given to computation in a �nite �eld de�ned by an optimal

normal basis and to the computation of a speci�c element in a linear shift

register. An optimal normal basis is used for the construction of the �eld Fp2m

over which the EXTR polynomials are de�ned. The sequence computations

are speci�c to the shift register used in the EXTR protocol.

Optimal Normal basis Computations

The next lemma gives the number of multiplications in Fp needed to

compute an operation in Fp2m . The number of additions needed is also given.

Addition is normally not added in the complexity analysis, but the addition

count is used in the construction of the computational models in the next

chapter.

Lemma 4.14. [16, Lemma 5] Let p and 2m + 1 be prime numbers, where p

is a primitive element in Z∗
2m+1. Let x, y, z ∈ Fp2m.

(1) Computing x + y takes 2m additions in Fp.

(2) Computing xp is for free.

(3) Computing xy takes 4m2 multiplications and 4m2 − 2m additions in Fp.

(4) Computing xz− yzpm
takes 4m2 multiplications and 8m2− 4m additions

in Fp.

Proof. Let x, y, z, α ∈ Fp2m such that {σ(α) : σ ∈ G} is an optimal normal
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basis with

x =
2m∑
i=1

xiσi(α)

y =
2m∑
i=1

yiσi(α)

z =
2m∑
i=1

ziσi(α)

and α ∈ G the automorphism which is the index to the all −1 row of the

matrix dα.

(1) An element in Fp2m can be represented by a 2m dimensional vector over

Fp, from which the result follows.

(2) Represent the element x with a normal basis. Then

xp =

(
2m∑
i=1

xiσi(α)

)p

=
2m∑
i=1

xiσi(α)p

=
2m∑
i=1

xiσi+1(α).

Note that xp is just a cyclic right shift of the coe�cients of x. Also note

that σ2m+1 = σ1.

(3) Multiplication of x and y is done with an optimal normal basis. The

number of multiplications needed is 4m2 in Fp. This is seen from the

formula of multiplication given in Section 4.3.2,

xy =
∑

σ,γ∈G

xσyγ

∑
τ∈G

dα(σ−1τ, σ−1γ)τ(α)

=
∑
τ∈G

(∑
σ,γ∈G

xσyγdα(σ−1τ, σ−1γ)

)
τ(α).
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The number of additions needed is determined by �xing the automor-

phism τ in the above equation and determining when dα(σ−1τ, σ−1γ)

is non-zero. Let κ index the row consisting of only minus ones, i.e.

σ−1 = κγ−1. Any other row must contain only a single 1, since the ba-

sis is optimal normal. Thus only 2m additions are needed to compute

the coe�cient for a �xed τ . Since the same summation is done for each

coe�cient, the total number of additions is 2m(2m− 1) = 4m2 − 2m.

(4) Note that

zpm

=
m∑

i=1

ziσi+m(α) +
2m∑

i=m+1

ziσi−m(α).

Now

xz − yzpm

=
2m∑
i=1

2m∑
j=1

xσi
zσj

∑
τ∈G

dα(σ−iτ, σ−iσj)τ(α)

−
2m∑
i=1

m∑
j=1

yσi
zσj

∑
τ∈G

dα(σ−iτ, σ−iσj+m)τ(α)

=τ(α)
∑
τ∈G

{

(
m∑

j=1

zσj

2m∑
i=1

(xσi
dα(σ−iτ, σ−iσj)− yσi

dα(σ−iτ, σ−iσj+m))

)

+

(
2m∑

j=m+1

zσj

2m∑
i=1

(xσi
dα(σ−iτ, σ−iσj)− yσi

dα(σ−iτ, σ−iσj−m))

)
}.

Since the products σi(α)σj(α) are `free', a total of 4m2 multiplications

in Fp is needed. The number of additions is determined by the number

of non-zero entries in the matrix dα. Now consider the pairs

(dα(σ−iτ, σ−iσj), dα(σ−iτ, σ−iσj−m))

for i, j = 1, 2, . . . , 2m and τ a �xed automorphism. First consider when

the pairs have −1 as the �rst coordinate. This only happens when

ord(σj−i) = 2 which is the case if 2m|2(j − i), i.e. m|(j − i) and thus

m|(j − i−m) and σj−i = σj−i−m. Thus a coordinate is −1 if and only if
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both coordinates are −1. This happens 2m times. The only other possi-

ble cases are (1, 0) and (0, 1), which happen only 2(m− 1) times. Thus

the number of additions needed to compute the coe�cient of τ is 4m−2.

The total number of additions is now given by 2m(4m− 2) = 8m2−4m.

Sequence computations

The characteristic sequence (si) of f(x) will be used to compute the poly-

nomial fn(x) for positive integers n. The private key will determine the

subsequences (sin) with characteristic polynomial

fn(x) = x3 − snx
2 + spm

n x− 1,

as the associated public key. Attention is now given to the computation

of a speci�c term in the characteristic sequence of the polynomial f(x) =

x3 − cx2 + cpm
x − 1 ∈ Fp2m [x]. This computation is needed in Algorithm 9

and in the computation of the shared secret.

The computation of the sequence terms is done in a similar manner as in

CFE. The reciprocal sequence of (sk) is generated by the reciprocal of f(x),

namely f−1(x) = x3−cpm
x2+cx−1, with associated linear recurring relation

sk = cpm

sk+1 − csk−2 + sk+3 for k ≤ −1

and with the same initial values as the characteristic sequence of f(x). It

follows that the terms of the reciprocal sequence of f(x) also satisfy the

relation (4.9), namely sk = αk
0 + αk

1 + αk
2, k ≤ −1.

The characteristic and reciprocal sequences of f(x) are therefore the sub-

sequences (sk)k≥0 and (sk)k≤−1 of the sequence (sk)
∞
−∞, with initial values

s0 = 3, s1 = c and s2 = c2 − 2cpm
. No distinction will be made between the

�rst two sequences as both subsequences satisfy the same linear relation

sk+3 = csk+2 − cpm

ck+1 − ck for k ∈ Z.
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The following lemmas provide relations that are used in the computation

of the sequence terms.

Lemma 4.15. [13, Lemma 2.3.2 part (v)] The terms of the characteristic

and the reciprocal sequences (sk) generated by

f(x) = x3 − cx2 + cpm

x− 1 ∈ Fp2m [x]

satisfy the property

s−k = spmk = spm

k , k ≥ 0.

Proof. Let α0, α1 and α2 be the roots of the polynomial f(x). Then from

Lemma 4.10 it follows that f(α−pm

i ) = 0 for all i and therefore the exponent

−pm maps a root of the polynomial to a di�erent root, i.e. in set notation{
α−pm

0 , α−pm

1 , α−pm

2

}
= {α0, α1, α2}. Now from (4.9)

s−k = α−k
0 + α−k

1 + α−k
2

= αpmk
0 + αpmk

1 + αpmk
2

= spmk

= spm

k .

It follows from the above lemma that in EXTR the reciprocal sequence is

not needed in the computation of sk, as is the case in CFE. In the sequel the

sequence (sk)
∞
−∞ will be referred to as the characteristic sequence of f(x).

Lemma 4.16. [13, Lemma 2.3.4] The relation

su+v = susv − spm

v su−v + su−2v, u, v ∈ Z

holds for the characteristic sequence (sk) of the polynomial

x3 − cx2 + cpm

x− 1 ∈ Fp2m [x].
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Through substitution it follows that

(1) s2n = s2
n − 2spm

n

(2) s2n+1 = snsn+1 − cspm

n + spm

n−1

(3) s2n−1 = snsn−1 − cpm
spm

n + spm

n+1.

Proof. The relation

su+v = susv − spm

v su−v + su−2v

is obtained by the following computations:

su+v =αu+v
0 + αu+v

1 + αu+v
2 ,

susv =(αu
0 + αu

1 + αu
2)(α

v
0 + αv

1 + αv
2)

=αu+v
0 + αu

0α
v
1 + αu

0α
v
2 + αu

1α
v
0 + αu+v

1 + αu
1α

v
2 + αu

2α
v
1

+ αu
2α

v
1 + αu+v

2

=su+v + αu
0α

v
1 + αu

0α
v
2 + αu

1α
v
0 + αu

1α
v
2 + αu

2α
v
1 + αu

2α
v
1,

spm

v su−v =s−vsu−v (Lemma 4.15)

=
(
α−v

0 + α−v
1 + α−v

2

)(
αu−v

0 + αu−v
1 + αu−v

2

)
=αu−2v

0 + α−v
0 αu−v

1 + α−v
0 αu−v

2 + α−v
1 αu−v

0 + αu−2v
1 + α−v

1 αu−v
2

+ α−v
2 αu−v

0 + α−v
2 αu−v

1 + αu−2v
2

=su−2v + α−v
0 αu−v

1 + α−v
0 αu−v

2 + α−v
1 αu−v

0 + α−v
1 αu−v

2

+ α−v
2 αu−v

0 + α−v
2 αu−v

1

=su−2v + αv
2α

u
1 + αv

1α
u
2 + αv

2α
u
0 + αv

0α
u
2 + αv

1α
u
0 + αv

0α
u
1 .
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In the last step, the relation α0α1α2 = 1 is used. Now

susv − spm

v su−v + su−2v =su+v + αv
2α

u
1 + αv

1α
u
2 + αv

2α
u
0

+ αv
0α

u
2 + αv

1α
u
0 + αv

0α
u
1

− (αv
2α

u
1 + αv

1α
u
2 + αv

2α
u
0 + αv

0α
u
2 + αv

1α
u
0 + αv

0α
u
1)

=su+v.

Using the above relation, Lemma 4.15 and substitution, the required num-

bered relations are obtained by using the fact that s1 = c.

(1) The substitutions v = n and u = n give

s2n = s2
n − s0s

pm

n + sn−2n

= s2
n − 3spm

n + s−n

= s2
n − 3spm

n + spm

n

= s2
n − 2spm

n .

(2) The substitutions v = n and u = n + 1 give

s2n+1 = snsn+1 − spm

n s1 + sn+1−2n

= snsn+1 − cspm

n + s1−n

= snsn+1 − cspm

n + spm

n−1.

(3) The substitutions v = n and u = n− 1 give

s2n−1 = snsn−1 − spm

n s−1 + sn−1−2n

= snsn−1 − spm

1 spm

n + s−n−1

= snsn−1 − cpm

spm

n + spm

n+1.

The term sn in the characteristic sequence is computed as discussed in
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Section 3.2. The index n is written in its binary form

n =
r∑

j=0

nj2
r−j. (4.17)

The index can be computed by using the linear relation tj = nj +2tj−1, where

j ≥ 0 and t0 = n0 6= 0. The value n is given by tr.

Two functions Fnj
with nj ∈ {0, 1} are needed in the computation of

sn. These functions are de�ned, using Lemma 4.16, such that they map(
stj−1, stj , stj+1

)
to
(
stj+1−1, stj+1

, stj+1+1

)
. The functions Fnj

are de�ned as

follows:

If nj+1 = 0 then tj+1 = 2tj:

stj+1−1 = stjstj−1 − cpm

spm

tj + spm

tj+1

stj+1
= s2

tj
− 2spm

tj

stj+1+1 = stjstj+1 − cspm

tj + spm

tj−1.

If nj+1 = 1 then tj+1 = 2tj + 1:

stj+1−1 = s2
tj
− 2spm

tj

stj+1
= stjstj+1 − cspm

tj + spm

tj−1

stj+1+1 = s2
tj+1 − 2spm

tj+1.

Note that the above functions can be computed using less multiplications if

the form xz − yzpm
is used.

These functions are used in Algorithm 10 to compute the nth term in the

characteristic sequence.

Algorithm 10 is based on the repeated squaring algorithm, where F0 cor-

responds to squaring while F1 corresponds to squaring and multiplication.

The value of M starts with 3 as its center element and the index of this

element is 0. In the `for loop' the binary expansion of n is scanned. The bit

scanned determines whether F0 or F1 is executed. The index of the center el-

ement of M will thus satisfy the relation tj = nj +2tj−1. After the execution
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Algorithm 10: Computation of (sn−1, sn, sn+1)

Data: The index n = (nr, nr−1, . . . , n0)2 and c de�ning the
characteristic sequence (sn)

Output: (sn−1, sn, sn+1)
M ←

(
cpm

, 3, c
)
;1

for i = 0 to r do2

M ← Fnr−i
(M);3

end4

(sn−1, sn, sn+1)←M ;5

of the `for loop' the value of tr is n as required.

Lemma 4.17. Let f(x) be a system polynomial, as de�ned in (4.7) and (sk)

the associated characteristic sequence. The nth term in the sequence can be

computed with

16m2 log2 n + 4m2Hn

multiplications and

(
72m2 − 36m + 7

)
log2 n−

(
8m2 − 4m + 1

)
Hn

additions in Fp, where Hn is the Hamming weight of dne.

Proof. In Lemma 4.14 the number of operations in Fp needed to compute the

functions Fni
in Fp2m is given. For the function F0 the number of multipli-

cations in Fp is 16m2 and the number of additions in Fp is 32m2 − 16m + 3.

For the function F1 the number of multiplications in Fp is 20m2 and the

number of additions in Fp is 40m2− 20m + 4. Therefore the total number of

multiplications in Fp is

Hn

(
20m2

)
+ (log2 n−Hn)

(
16m2

)
= 16m2 log2 n + 4m2Hn
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and the total number of additions in Fp is

Hn

(
40m2 − 20m + 4

)
+ (log2 n−Hn)

(
32m2 − 16m + 3

)
=
(
72m2 − 36m + 7

)
log2 n−

(
8m2 − 4m + 1

)
Hn.

Example 4.18 (EXTR). In this example a characteristic of 101 is used and

m = 1. Thus the original XTR system is given here. Computations of the

shift register are computed in Fp2
∼= Fp[x]/<g(x)>, where g(x) = x2 +x+1.

The basis used for Fp2 is an optimal normal basis given by {α, α2} where α

is a root of g(x).

The system polynomial is selected as

f(x) = x3 −
(
21α + 7α2

)
x2 +

(
7α + 21α2

)
x− 1

and is of order 103. Let the private keys of Alice and Bob be privA = 51

and privB = 3. The associated public keys are pubA = 60α + 52α2 and

pubB = 77α + 64α2, as computed by Algorithm 10. For Alice to compute

the shared secret, pubB and privA are provided as input for Algorithm 10.

The triples computed for each iteration of the `for loop' in Algorithm 10 are

given in Table 4.2 below. From the table it is seen that the shared secret is

17α + 79α2.

Iteration ki ti sti−1 sti sti+1

1 − 0 64α + 77α2 98α + 98α2 77α + 64α2

2 1 1 98α + 98α2 77α + 64α2 71α + 60α2

3 1 2 71α + 60α2 73α + 84α2 10α + 15α2

4 0 5 28α + 7α2 78α + 90α2 54α + 62α2

5 0 11 7α + 82α2 41α + 69α2 39α + 87α2

6 1 22 76α + 82α2 29α + 32α2 3α + 10α2

7 1 45 13α + 38α2 17α + 79α2 20α + 44α2

Table 4.2: Computing the public key of Alice in EXTR
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4.3.4 Security

In Section 1.2 three necessary properties of a public key distribution sys-

tem are given. These properties translate into three problems very similar

to those in Section 2.2.

De�nition 4.19 (EXTR Discrete Logarithm Problem). Let G ⊂ F∗
p6m be a

�nite cyclic group generated by α. The problem of computing from β ∈ G

a number a such that TrFp6m/Fp2m (αa) = TrFp6m/Fp2m (β) is called the EXTR

Discrete Logarithm Problem. Notation: a = EXTRDLα(β).

De�nition 4.20 (EXTR Di�e-Hellman Problem). Let G ⊂ F∗
p6m be a �nite

cyclic group generated by α. The problem of computing TrFp6m/Fp2m

(
αab
)

from TrFp6m/Fp2m (αa) and TrFp6m/Fp2m

(
αb
)
is called the EXTR Di�e-Hellman

Problem. Notation:

TrFp6m/Fp2m

(
αab
)

= EXTRDH
(
TrFp6m/Fp2m (αa), T rFp6m/Fp2m

(
αb
))

De�nition 4.21 (EXTR Di�e-Hellman Decision Problem). Let G ⊂ F∗
p6m

be a cyclic group with generator α. Let αa,αb,αc be chosen independently

and randomly in G according to the uniform distribution. Given the triples(
TrFp6m/Fp2m (αa), T rFp6m/Fp2m

(
αb
)
, T rFp6m/Fp2m

(
αab
))

and (
TrFp6m/Fp2m (αa), T rFp6m/Fp2m

(
αb
)
, T rFp6m/Fp2m (αc)

)
in random order, the EXTR Di�e-Hellman Decision Problem is to decide,

with probability greater than 1/2, which of the triples is the correct EXTR

Di�e-Hellman triple. Notation:

EXTRDHD
(
TrFp6m/Fp2m (αa), T rFp6m/Fp2m

(
αb
)
, T rFp6m/Fp2m (αc)

)
The main di�erence between the above problems and those de�ned in

Section 2.2, is the incorporation of the trace function. The occurrence of the
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trace function is a direct result from the use of polynomials to represent the

public key, see Section 3.1.

Since the trace is the sum of conjugates the solution to the �rst problem is

not unique. In fact the problem has three solutions. The additional solutions

are a direct consequence of the reduction in the key space. Now it follows

that

XTRDL(αa) = XTRDL
(
αap2m

)
and

EXTRDH
(
TrFp6m/Fp2m (αa), T rFp6m/Fp2m

(
αb
))

=EXTRDH
(
TrFp6m/Fp2m

(
αap2m

)
, T rFp6m/Fp2m

(
αbp4m

))
.

The fact that the solution is not unique is of no concern and the reduction

in the key space is so small that it can be ignored. The theorem given below

gives the assurance that there exists no security risk due to the di�erent

solutions. Two problems A and B are (a, b)-equivalent, where a and b are

positive integers, if A can be solved by invoking a instances of B and if B

can be solved by invoking b instances of A.

Theorem 4.22. [13, Theorem 5.2.1] Let α be a root of order q of an EXTR

system polynomial. Then the following equivalences hold:

(1) The EXTRDL problem is (1, 1)-equivalent to the DL problem in <α>.

(2) The EXTRDH problem is (1, 2)-equivalent to the DH problem in <α>.

(3) The EXTRDHD problem is (3, 2)-equivalent to the DHD problem in

<α>.

Proof. Let a, d, b ∈ Fp2m and y, x, z, w be positive integers and r(a) be any

root of the EXTR system polynomial de�ned by a, i.e.

x3 − ax2 + apm

x− 1.
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Note r(a) can be one of three roots and can be computed in polynomial time

with the Scipione del Ferro method.

(1) To compute DL(αy), let x = EXTRDL
(
TrFp6m/Fp2m (αy)

)
, then DL(αy) =

x·p2mj (mod q) for either j = 0, j = 1 or j = 2. Conversely EXTRDL(a) =

DLα(r(a)).

(2) To compute DH(αx, αy), �rst compute

di = EXTRDH
(
TrFp6m/p2m

(
αx · αi

)
, T rFp6m/Fp2m (αy)

)
for i = 0, 1, i.e. di = TrFp6m/Fp2m

(
α(x+i)yp2mj

)
for some j = 0, 1, 2.

Therefore

r(di) ∈
{(

α(x+i)y
)p2mj

: j = 0, 1, 2
}

=
{(

DH(αx, αy) · αyi
)p2mj

: j = 0, 1, 2
}

.

To determine DH(αx, αy) �nd two roots r(d0) and r(d1) such that r(d0) = r(d1)α
y

then DH(αx, αy) = r(d0). Conversely

EXTRDH(αx, αy) = Trp6m/p2m(DH(αx, αy)). (4.18)

(3) To solve DHD(αx, αy, αw). Let z be such that

XTRDH
(
TrFp6m/Fp2m (αx), T rFp6m/Fp2m (αy)

)
= TrFp6m/Fp2m (αxy)

= TrFp6m/Fp2m (αz)

i.e. there exists an integer i such that xy = zp2mi (mod q). Then for

some value of j = 0, 1, 2

XTRDH
(
TrFp6m/Fp2m

(
α(x+1)

)
, T rFp6m/Fp2m (αy)

)
= TrFp6m/Fp2m (αxyαy)

= TrFp6m/Fp2m

(
αzαyp2mj

)
.

Thus z = xyp2mj (mod q). The DHD(αx, αy, αw) problem can be solved
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by two invocations of XTRDHD by determining whether w = z with

j = 0. Conversely XTRDHD(a, b, d) can be solved by determining if

one of the three roots r(a) satis�es DHD
(
r(a), r(b), r(d)p2mj

)
for some

j = 0, 1, 2.

From this proof it appears that Di�e-Hellman is at least twice as secure as

EXTR. This does not mean that the key length of EXTR must be double the

length of the keys of Di�e-Hellman, but rather that EXTR could be broken

with half the e�ort it would take to break the Di�e-Hellman Protocol.
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Chapter 5

Protocol Implementations

In this chapter it is determined how well the complexity of an algorithm,

considering only �nite �eld operations, can predict the execution time of that

algorithm. Linear regression [5] is used to determine how good these predic-

tions are. The object is to verify that the theoretical models for the �nite

�eld operations, the combining function and the generation of the system

parameters in the protocols are a good �t for the empirical data. Using SAS

we �t regression curves to simulated data obtained from measuring the exe-

cution time of the implemented algorithms. During the linear regression it is

assumed that the errors made during measurement are normally distributed

and that the models for the �nite �eld operations do not contain any error

term.

Only the CFE and XTR protocols are considered in this chapter. This is

due to the type of computations that are used in the protocols. The main

distinction between DMFB and the other two protocols is that DMFB uses

factorisation in the computation of the system parameters and the combining

function. Since this dissertation focuses on the use of linear shift registers

in the computations the DMFB protocol is not considered further in this

chapter. The measurements are available in ./data, the implementations

are available in ./src and the output of SAS is given in ./stats, on the

attached CD.

The values predicted by the �tted models, the measured data as well as
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the standardised error are represented by graphs. The standardised error is

computed by

f − d

RMS
,

where f is the value predicted by the model, d the measured data and RMS

the root mean square. The error f − d is scaled by the RMS, so that

the standardised error is follow a standard normal distribution. For the

distribution the propability of values between 3 and −3 is 0.9973; hence for a

good linear regression almost all the standardised errors should be between

these limits.

Another method which is used to determine how good a model is, is to

consider a second (test) data set. With the second data set the error must

also normally distributed. The standardised error for the second data set is

computed by

f − d

RMS

where f is the �tted model evaluated on the second data set, d is the current

value of the second data set and RMS is obtained from the SAS analysis

on the �rst data set. When the standardised error does not give randomly1

distributed values between 3 and −3 for both data sets, the model is rejected.

5.1 Time Measurement and Data Collection

The measurement of execution time is performed with the assembly in-

struction `rdtsc', that gives the number of CPU clock cycles that have passed

since start up. By calling the instruction `rdtsc' twice, the number of clock

cycles that have elapsed is given. This method was selected as the other meth-

ods known to the author did not provide a time resolution small enough. The

time measuremens are performed on an Intel Pentium 4, 3.0 GHz machine

running linux and the protocols are compiled with the standard settings of a

1Randomness is determine by visual inspection.
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g++ compiler. The measurements are used to determine whether the models

for execution time are valid in this environment.

To avoid that the factorisation needed in the protocol overshadows the

�eld operations, all factorisation was performed by Mathematica before pro-

tocol execution. The numbers that are factored are φ3(p) and φ6(p) where p is

a prime. The primes used in the computations are congruent to 2 (mod 3),

and only one prime for each bit length. Considering only primes that are

congruent to 2 (mod 3) is a requirement of the XTR protocol.

Two data sets are created during the measurements; the �rst data set is

used to create models, and the second is used to determine how good the

models predict another data set. In the �rst data set two measurements

are performed for each prime. The second data set is created by randomly

selecting data from a data set where a large number of measurements are

performed for each prime. For the protocols the parameters k is randomly

selected for each measurement.

5.2 Analysis of Finite Field Operations

The operations used in the protocol that are of interest during complexity

analysis are the �eld operations. The analysis is done only for the �elds Fp

and Fp3 in the current section. The complexity for multiplication in the �eld

Fpn is denoted by Mpn and for addition the complexity is denoted by Apn .

Note the in this section it is only tested that the complexities of addition

and multiplication are reasonable by using linear regression.

One other �eld operation that is also used is the power function. The

power function is implemented by the repeated squaring algorithm2. The

complexity to compute the kth power in the �eld Fpn is

Ppn(k) = (Hk + log2 k)Mpn , (5.1)

where Hk is the Hamming weight of k.

2An implementation of the repeated squaring method is given in Algorithm 1.
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5.2.1 Complexity of Field operations

As noted, the �eld operations of interest are addition and multiplication

in the �elds Fp and Fp3 . The prime �eld's operations are implemented by a

big integer library, GMP v4.2.1, and for the computation in the �eld Fp3 a

polynomial basis over Fp is used.

From [23] it follows that the complexity for addition in Fp and Fp3 are

linear and multiplication is quadratic.

5.2.2 Statistical Analysis

The models for the �eld operations are computed by SAS and are given

in Table 5.1.

Model Goodness of �t (R2)

Ap 2172.60959 + 1.86646x 0.1476
Mp 2169.29748 + 15.53596x + 0.01766x2 0.9818
Ap3 47462 + 22.43205x 0.3239
Mp3 492530 + 105.83087x + 0.85509x2 0.9168

Table 5.1: SAS output of the �eld operation analysis, where x = log2p

The �tted model and measured data for addition in Fp are given in Figure

5.1. As expected the measured data roughly form two lines. The lower line is

where only normal addition is performed and the upper line is where normal

addition and subtraction for the modulo operation are performed. Fitting

only one line to the data results in a low R2 value. However any higher order

polynomial gives a lower R2 value.

The errors made by the model with respect to both data sets are given

in Figure 5.2. The errors with the second data set are similar to the errors

of data set one and this similarity provides con�dence in the model.

Figure 5.3 gives the �tted model and the measured data for addition in

Fp3 . The measured data is mostly linear as expected. The main di�erence

between the behaviour of Fp and Fp3 in the addition is the �double linearity�

that appears in the addition in Fp does not appear with the addition in the
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Figure 5.1: Field Addition in the Field Fp.
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Figure 5.2: Field Addition error in the Field Fp.
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�eld Fp3 . This is attributed to the fact that not one but three coe�cient in Fp

are added for one addition in Fp3 , creating an average between the two lines

for addition in Fp3 . From the graphs is clear that the overhead is signi�cant

for the values considered.
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Figure 5.3: Field Addition in the Extension Field Fp3 .

Figure 5.4 gives the error made by the model, with both data sets. The

errors of both data sets are similar and acceptably small. The �double linear-

ity� in the data of addition in Fp do not appear in Fp3 , since three elements

in Fp are added for addition in Fp3 .

Figures 5.5 and 5.6 give the models and measures data for multiplication

in Fp and Fp3 respectively. The data for Fp is more linear because better opti-

misations are used in the library GMP than that used for the implementation

of Fp3 . The jumps in the data are due to the word length of the CPU.

Figure 5.7 and 5.8 give the error of the model for the two data sets.

In both �gures piecewise lines are created. The piecewise nature of the

lines is due to the word length of the CPU. By considering addition and

multiplication in the same �eld it is seen that big jump in the addition

graphs does have an in�uence in the multiplication graphs. This is seen in

Figures 5.2; 5.7 and Figures 5.3; 5.8.
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Figure 5.5: Field Multiplication in the Field Fp.
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Figure 5.6: Field Multiplication in the Field Fp3 .
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Figure 5.7: Field Multiplication error in the Field Fp.
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Figure 5.8: Field Multiplication error in the Field Fp3 .

5.3 Modeling the CFE protocol

The description of the CFE protocol in [8] does not provide enough in-

formation for an implementation. The missing details are mainly in the

generation of the system parameters. This was done as the selection of a

polynomial of given order was outside the scope of the article. Thus the

complexity for the generation of the system parameters given here is more

complex than those in the original article. For the combining function the

only di�erence between the analysis done here and that in [8], is the inclusion

of the number of additions needed.

5.3.1 Complexity of CFE

System Parameter Generation

Algorithm 11 is used to compute the system parameters, given3 the char-

acteristic of the �eld. The algorithm is divided into two parts namely the

generation of the �eld Fp3 and the selection of an irreducible polynomial

3The input is di�erent from Algorithm 7, the di�erence is created for Algorithm 11 to
follow the implementation more exactly.
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over Fp of degree 3 with order φ3(p). The selected polynomial is the system

polynomial for the protocol.

In the construction of Fp3 a random search, lines 2 to 6, is performed for

an irreducible polynomial g(x) ∈ Fp[x], of degree 3 and order q = φ3(p). To

determine whether the polynomial g(x) is irreducible, it is tested whether

gcd (g(x), xp − x) is equal to g(x). Since the Extended Euclidean Algorithm

is used, it follows from the following theorem that the complexity to compute

the gcd is

4(6p + dp)(Mp + Ap)

where d is some constant.

Theorem 5.1. [23, Theorem 3.11] The traditional Extended Euclidean Al-

gorithm for polynomials f, g ∈ Fp[x] with deg(f) = n ≥ deg(g) = m can be

performed with:

(1) at most m + 1 inversions and 2nm + O(n) additions and multiplications

in Fp if only the quotients qi and remainders ri are needed.

(2) at most m + 1 inversions and 6nm + O(n) additions and multiplications

in Fp for computing all results.

Corollary 5.2. [15, Corollary 3.21] The number Nq(n) of monic irreducible

polynomials in Fq[x] of degree n is given by

Nq(n) =
1

n

∑
d|n

µ(d)qn/d,

where µ is the Moebius function.

Now it follows from Corollary 5.2 that the expected number of times the

Extended Euclidean Algorithm is executed is

p3 − 1

Np(3)
= 3

p3 − 1

p3 − p

= 3
p2 + p + 1

p2 + p
.
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Thus the expected number of operation required to �nd the �eld Fp3 is

12

(
(p2 + p + 1)(6p + dp)

p2 + p

)
(Mp + Ap).

Algorithm 11: Compute system parameters for CFE

Data: The prime p.
Output: The system polynomial de�ned by (a, b).
φ3(p)← p ∗ p + p + 1;1

repeat2

a ∈R Fp;3

b ∈R Fp;4

g(x)← x3 + ax2 + bx− 1;5

until gcd{g(x), xp − x} 6= 1 ;6

while true do7

f(x) ∈R {l ∈ Fp[x] : deg{l} ≤ 2};8

f(x)← f(x)(p3−1)/φ3(p) (mod g(x));9

found← true;10

if f(x) 6= 1 then11

forall e ∈ {n ∈ Z : n|φ3(p), and n is prime} do12

if f(x)φ3(p)/e (mod g(x)) = 1 then13

found← false;14

break;15

end16

end17

if found then18

break;19

end20

end21

end22

r0 ← f(x);23

r1 ← rp
0;24

r2 ← rp
1;25

a← −(r0 + r1 + r2);26

b← r0 · r1 + r0 · r2 + r1 · r2;27

Next a polynomial of order q is created in lines 7 to 22. The method used,

is to select an element α of order q in Fp3 and use this element α as a root of
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the required polynomial. The algorithm selects an element of order β ∈ Fp3

and tests whether β ∈ <α>. It follows from (5.1) that the complexity to

perfom the test is

Pp3

((
p3 − 1

)
/q
)

=
(
H(p3−1)/q + log2

(
(p3 − 1)/q

))
Mp3 .

For an element β ∈ F∗
p3 the order is q if and only if for all prime factors l

of q, the element βq/l is not the identity element. Thus to test if an element

has order q the expected complexity is

Cprimes

2
Pp3(Clen) =

Cprimes

2
(HClen

+ log2 (Clen))Mp3

where Cprimes is the number of primes dividing q and Clen is the average length

of the primes dividing q. For a random element β ∈ Fp3 , the probability that

β(p3−1)/q is equal to a speci�c element is 1/q. Since there are φ(q) generators

in <α>, the probability that such a generator is selected by β is φ(q)/q. The

expected number of selections needed to �nd a generator is (p3 − 1)φ(q)/q.

Thus an element of order q can be found in an expected number

φ(q)(p3 − 1)

q

(
H(p3−1)/q + log2

((
p3 − 1

)
/q
)

+
Cprimes

2
(HClen

+ log2 (Clen))

)
Mp3

of operations.

In lines 23 to 27, the system polynomial's root is given f(x) and the

system polynomial is computed.
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The complexity to compute the system parameters is given by

Ts(p, q) =12

(
(p2 + p + 1)(6p + dp)

p2 + p

)
(Mp + Ap)+

+
φ(q)(p3 − 1)

q

(
H(p3−1)/q + log2

(
p3 − 1

q

))
Mp3

+
φ(q)(p3 − 1)

q

(
Cprimes

2
(HClen

+ log2 (Clen))

)
Mp3

+ 2Pp3 + 3Mp3 + 4Ap3

=12

(
(p3 + p2 + p)

p2 + p
(6 + d)

)
(Mp + Ap)+

+
φ(q)(p3 − 1)

q

(
H(p3−1)/q + log2

(
p3 − 1

q

))
Mp3

+
φ(q)(p3 − 1)

q

(
Cprimes

2
(HClen

+ log2 (Clen))

)
Mp3

+ (2Hp + 2 log2 p + 3)Mp3 + 4Ap3

The Combining Function

The combining function is implemented by an algorithm similar to the

repeated squaring algorithm. In stead of using multiplication and squaring,

two functions F0 and F1 are de�ned. These functions are determined by the

characteristic polynomials of the linear shift register. The complexity of the

combining function is directly obtained from Lemma 4.4 and is

Tc(p, k) = 6(log2 k)Mp + (5 log2 k −Hk)Ap

where k is the index of the term in the sequence to be computed.

5.3.2 Statistical Analysis

Linear regression is used in SAS to determine the models for Ts and Tc

with data set one. For both models the �tted model and the measured data

are plotted. To determine the accuracy of the model's prediction the error

made on the second data set is also given.
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Combining function

The model for the combining function and the associated data is plotted

in Figure 5.9. The jumps in the measured data are a result of the word length

of the CPU.
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Figure 5.9: Model for the combining function of CFE.

In Figure 5.10 the standarised errors are plotted. Clearly the model does

not predict the second data set very well. The only input to the model Tc

is the Hamming weight of the �eld's characteristic. The Hamming weight

is investigated in Figure 5.11. It is seen that the average Hamming weight

does not deviate much from the expected Hamming weight for the two data

sets. This indicates that some unknown dependency is not considered in the

model.

System Parameter Generation

The model for the generation of the system parameters and the associated

data are plotted in Figure 5.12 and in Figure 5.13 the error is plotted. The

error is between −3 and 3 and therefore the model predicts the data well.
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Figure 5.10: The error of CFE combining function's model.
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Figure 5.11: The average Hamming weight of the index of the sequence
element in CFE.
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Figure 5.12: Model for system parameter generation in CFE.
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Figure 5.13: The error for CFE system parameter generation model.
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5.4 Modeling the EXTR protocol

The models that predict the execution time and the complexity for the

generation of the system parameters Ts and the combining function Tc are

given in this section. Since only the case where m = 1 is implemented the

models and complexity are given speci�cally for m = 1, thus the original

XTR in [13] is implemented. The performance of XTR is better than that of

EXTR, due to the use of a Karatsuba-like approach for the multiplication,

[10].

5.4.1 Complexity of XTR

The orginal description in [13] is su�cient for the implementation of XTR,

so that no more theory is needed as was the case for CFE. Despite the complex

description of the protocol the complexity is less than that of CFE. This is

largely due to the removal of the probabilistic nature of the system parameter

generation algorithm.

All operations in XTR are performed in Fp2 using an optimal normal basis

over Fp. The extension �eld is created by the polynomial x2−x−1 with a root

α of x2−x−1 and the basis is {α, α2}. Multiplication in Fp2 is now performed

by a Karatsuba-like approach resulting in one fewer multiplication in Fp. The

Karatsuba-like approach is a trade-o� between addition and multiplication,

where the number of additions needed is increased. Let x, y ∈ Fp2 such that

x = x0α + x1α
2 and y = y0α + y1α

2 where x0, x1, y0, y1 ∈ Fp. To compute

xy let a = x0y0, b = x1y1, c = (y0 + y1)(x0 + x1) and d = c − a − b then

xy = (b− d)α + (a− d)α2. Another optimization from [13] is the following.

Let z ∈ Fp2 such that z = z0α + z1α
2 where z0, z1 ∈ Fp then

xz − yzp

=(z0(y0 − x1 − y1) + z1(x1 − x0 + y1))α

+ (z0(x0 − x1 + y0) + z1(y1 − x0 − y0))α
2.
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System Parameter Generation

Algorithm 12 is used to compute the system parameters given the prime

order of the Di�e-Hellman group. The algorithm performs a random search

for a polynomial with the objective that the polynomial is irreducible and

the (p2 − p + 1)/qth power of a root of the polynomial is not equal to 1. Thus

the time needed to compute the system parameters is

Ts(p, q) =3
(
Tc(p, p + 1) + Pp(p− 1) + Tc

(
p, p2 − p + 1

))
=
(
12 log2 (p + 1)− 4H(p+1)

)
Mp +

(
34 log2 (p + 1)− 2H(p+1)

)
Ap

+ (Hp−1 + log2 (p− 1))Mp2

+
(
12 log2

((
p2 − p + 1

)
/q
)
− 4H((p2−p+1)/q)

)
Mp

+
(
34 log2

(
p2 − p + 1

)
− 2H(p2−p+1)

)
Ap.

=
(
3Hp−1 + 3 log2 (p− 1)− 4H((p2−p+1)/q)

)
Mp

+
(
6Hp−1 + 6 log2 (p− 1)− 2H((p2−p+1)/q)

)
Ap

+
(
12 log2 (p + 1)− 4H(p+1) + 12 log2

((
p2 − p + 1

)
/q
))

Mp

+
(
34 log2 (p + 1)− 2H(p+1) + 34 log2

((
p2 − p + 1

)
/q
))

Ap.

Algorithm 12: Compute the system parameters for XTR an imple-
mented
Data: The prime p and a list of prime divisors of p3 − p + 1.
Output: c.
q = max{iZ : i|(p3 − p + 1), i a prime number};1

while true do2

c ∈R Fp2 ;3

compute sp+1 with characteristic polynomial xp − cx2 + cpx− 1;4

if sp+1 ∈ Fp then5

compute s(p2−p+1)/q with characteristic polynomial6

xp − cx2 + cpx− 1;
if s(p2−p+1)/q 6= 3 then7

break;8

end9

end10

end11
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Combining function

Algorithm 10 is used to compute a speci�c term sk in a sequence which

is the output of the combining function for XTR. The execution time of the

algorithm is dependent on the Hamming weight of k. If the Hamming weight

is 0 then the expression xz−yzp in the algorithm is computed twice resulting

in three additions and two multiplications in Fp2 resulting in a complexity of

2(4Mp + 10Ap) + 3(2Ap) + 2(3Mp + 4Ap) = 14Mp + 34Ap.

If the Hamming weight is 1 then xz − yzp is computed once, resulting in

three additions and four multiplications in Fp2 and giving a complextity of

(4Mp + 10Ap) + 3(2Ap) + 4(3Mp + 4Ap) = 16Mp + 32Ap.

Thus the complexity of computing the kth term in the sequence is

Tc(p, k) =(log2 k −Hk)(12Mp + 34Ap) + Hk(16Mp + 32Ap)

=(12 log2 k − 4Hk)Mp + (34 log2 k − 2Hk)Ap.

5.4.2 Statistical analysis

Linear regression is used in SAS to determine the models for the com-

plexities Ts and Tc with data set one. For both models the �tted model and

the measured data are plotted.

System Parameter Generation

The model for the the generation of system parameters and the associated

data are plotted in Figure 5.14. To determine how well the model �ts the

second data set, the error made with the original data set and a bigger data

set of plotted in Figure 5.15. Both curves lie mostly between −3 end 3,

validating that the model �ts the data well. Also both curves are similar,

giving an indication that the model predicts the second data set well enough.
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Figure 5.14: Model for generation of the system parameters in XTR.

Combining function

The �tted model for the combining function and the associated data are

plotted in Figure 5.16. To determine how well the model �ts the second

data set, the error made with both data sets are plotted in Figure 5.17. It

is immediately seen that the prediction on the second data set is wrong. By

plotting the model Tc with the second data set it is seen why the error is

so large, see Figure 5.18. The model prediction is much smaller than the

measured data. The only inputs of the model are p and the Hamming weight

of the exponent k. In Figure 5.19 log2 k/2 versus Hk for both data sets and

the line y = x are plotted. It is expected that log2 k/2 ≈ Hk but from the

graph it is seen that it is not the case and thus the model does not �t the

data set very well. The surprising fact is that the average Hamming weight

of both data sets are similar and it is expected that the model should �t both

data sets equally well.
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Figure 5.15: The error of XTR system parameter generation's model.
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Figure 5.16: Model of XTR combining function.
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Figure 5.17: The error of XTR combining function's model.
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Figure 5.18: The XTR Combining function's model with second data set.
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