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Abstract.

A generalisation of the Diffie-Hellman protocol is studied in this disserta-
tion. In the generalisation polynomials are used to reduce the representation
size of a public key and linear shift registers for more efficient computations.
These changes are important for the implementation of the protocol in con-
strained environments. The security of the Diffie-Hellman protocol and its
generalisation is based on the same computations problems. Lastly three
examples of the generalsation and their implementation are discussed. For
two of the protocols, models are given to predict the execution time and it

is determined how well these model predictions are.
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Chapter 1
Introduction

Communication is essential in any situation where a group of people work
together. Today communication takes place through various methods, like
e-mail and real time chatting, using programs such as MSN® and VOI A
requirement for communication is privacy, i.e. secure communication. The
need for secure communication is not a new one; as early as the Roman
Empire secure communication was used. It is only recently that secure com-
munication was needed and accessible by the general public. The study of
encrypting and decrypting a message in a secure form is called cryptography.

The best contemporary example of secure communication is Internet
banking. When one does Internet banking, it must not be possible for any-
one else to understand or change the communication. Secure communication
based on encryption is ensured by two types of algorithms: symmetric and
asymmetric. The symmetric algorithm uses a shared secret key for encryption
and decryption. This shared key is obtained from a public key distribution
systemP] which uses an asymmetric algorithm to derive the shared key. In
1976, Diffie and Hellman introduced the first practical public key distribu-
tion system, i.e. the Diffie-Hellman Protocol.

In Chapter [2] the Diffie-Hellman Protocol is given, and security improve-

ment of the protocol. In this dissertation three variants of the Diffie-Hellman

LA protocol used to transport speech over the Internet.
2Today the term is key agreement system. The original term is used since the difference
between the two terms is not considered here.
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protocol are discussed. The variants have advantages over the Diffie-Hellman
protocol, namely an increase in speed and a reduction in the data needed to
represent the keys. From these variations common ideas are identified and a
general theory is created in Chapter [3] The three variations are described in
detail in Chapter

The practical part of this dissertation determines if knowledge of the
number of field operations performed is sufficient to predict the execution
time of a protocol. In Chapter [5] models are constructed and it is determined
how accurate the predictions are.

The remainder of this chapter will provide some background knowledge to
the rest of the dissertation. In Section and symmetric cryptography
and public key distribution systems are explained. In Section a short
discussion of complexity is given, which will be used in the comparison of the

protocols.

1.1 Symmetric Cryptography

When two people, for instance, Alice and Bob want to communicate se-
curely over an insecure channel, they can use an encryption algorithm. With
a symmetrical algorithm, the users need a shared secret that has to be agreed
upon before communication can start. The shared secret is used as a key for
a symmetric algorithm to enable encryption and decryption for the secure
communication between Alice and Bob to take place, see Figure[I.1} As soon
as Alice wants to communicate with more people securely, a large number of
secret keys are needed. For n number of people to communicate securely with
each other, the total number of shared keys is n(n — 1)/2. The same num-
ber of communication channels are needed. As the number of participants
in the protocol increases, the number of keys, and communication channels

becomes impractical.
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Figure 1.1: Two parties using a symmetric algorithm.

Public key distribution systems offer an approach which eliminates the
need for a secure key distribution channel. Diffie and Hellman introduced
the first practical public key distribution system, [3]. A current example
of a public key distribution system is the program PGPE] written by Phil

Zimmerman [21].

1.2 Public Key Distribution Systems

An algorithm used for a public key distribution system is called an asym-

metric algorithm. A public key system consists of the following components:
e System parameters: fix some settings in the algorithm.
e Private key, priv: the value the user must keep secret.

e Public key, pub: the value that is publicly known and used for commu-

nication with the owner of the associated private key.

e Combining function, F(priv,pub): the function used to create the

shared secret.

3Pretty Good Privacy
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The introduction of the public key distribution systems removes the need for
initial secure communication. However the public keys must belong to the
user whom the communication is intended for. Obtaining an authenticated
public key is not a trivial problem, but it is not the focus of this dissertation
and therefore will not receive further attention.

Before the protocol can be initiated the users, Alice and Bob, must first
generate their public and private key pairs, called (puba, priva) and (pubg, privg)
respectively. The public keys are then distributed over an insecure channel
to the other users where the combining function computes the shared secret.
By selecting any symmetric algorithm (C') a secure channel can be created
by using the shared secret as the key for the symmetric algorithm. An il-
lustration of the communication between Alice and Bob is given in Figure
The shared secret computed by Bob is given by F(privg,pubys), and
must be the same as the shared secret computed by Alice, which is given by
F(priva,privg). For this reason a requirement for the combining function is
that

F(priva,pubg) = F(privg, puba) (1.1)

for all users Alice and Bob.

For a public key distribution system to be secure, it should not be com-
putationally feasible to deduce a private key, or any key equivalent of it, from
a public key. Furthermore, the combining function must at least satisfy the

following conditions to ensure that the shared secret is in fact a secret.

e [t must not be computationally feasible to determine information about

the shared secret from the information exchanged in the protocol.

e The combining function must appear as though acting randomly with

respect to its input.
e It must be infeasible to compute the private key from the public key.

All known asymmetrical algorithms are significantly slower than sym-

metrical algorithms. Hence, a combination of symmetrical and asymmetrical
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Figure 1.2: Two parties using a public key distribution system.

algorithms are used in order to optimise the speed without compromising

security.

1.3 Computation

The suitability of a protocol for an implementation, is determined by its
computational efficiency and its data transmitting efficiency during commu-
nication. A theoretical measure, the O-notation, is used to determine how
efficient a protocol is. An advantage of using the O-notation is that it can be
used independently from the machine the protocol is implemented on. The

O-notation measures the complexity of an algorithm.
Definition 1.1.

(1) A partial function f: N+ R is a function that needs not be defined for
all n € N and is called eventually positive if there is a constant N € N
and such that f(n) is defined and strictly positive for all n > N.
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(2) Let g : N — R be eventually positive. Then O(g) is the set of all
eventually positive functions f : N — R for which there exist N,c € N
such that f(n) and g(n) are defined and f(n) < cg(n) for all n > N.

Complexity analysis of an exponentiation algorithm is given in the next

example.

Example 1.2 (Repeated Squaring). The power of a number is frequently
computed. In this example a simple but efficient algorithm is demonstrated,

namely the repeated squaring technique, see Algorithm

Algorithm 1: Left-to-right exponentiation
Data: a € Z,n = (nﬁ_l, o ,n6)2
Output: M =a”
M —1;
fori=r—11to0do

if n; = 1 then

M — M - «;

end

M «— M - M;
end

N O Ok W N =

The input of the algorithm is taken as the length of the exponent in its
binary representation, i.e. r = log,(n). The operations that are of interest
in the complexity analysis are multiplication and squaring.

Squaring and multiplication is implemented in the current context as
multiprecision integers. In the squaring operation of a multiprecision integer,
symmetries arise that can be used to reduce the number of single precision
multiplications. Thus it is assumed that squaring takes 80% of the time to
perform multiplication. The bit of the exponent under consideration in line
3 determines whether multiplication is also being performed. Therefore, the

time needed to perform the exponentation is
H,M +r(1.8M) = (H, + 1.8r)M

where H,, is the Hamming weight of the exponent and M the time needed

to perform multiplication. Only using repeated multiplication would require
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n multiplication, which is larger than or equal to 2r. Note that H, < r.
Thus, repeated squaring is more efficient. In terms of the O-notation, the

complexity is linear, i.e. O(r).

The O-notation can be seen as an asymptotic measure, but the protocol
will only be implemented with finite possible inputs. This difference raises
the question about the validity of using the O-notation.

The comparison of the complexity analysis with implementations with
practical inputs will be investigated here, Chapter 5] The operations of
interest in the analysis are multiplication, squaring and addition. These

were selected, as they are the operations used in the finite field.
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Chapter 2

Diffie-Hellman Protocol

In [3] the Diffie-Hellman protocol is introduced; it was the first practical
public key distribution protocol. Despite its age, some of the mainstream
asymmetric protocols are still based on it, such as Elliptic Curves and XTR.
One of the criticisms of the Diffie-Hellman protocol is that it is more compli-
cated than RSA, as knowledge of finite fields is needed for the implementation
of the Diffie-Hellman protocol.

In this chapter, the protocol is given as well as how the security of the pro-
tocol is evaluated. The security of the Diffie-Hellman Protocol is formalised
in the Diffie-Hellman, Discrete Logarithm and Diffie-Hellman Decision Prob-
lems. Four attacks on these problems will be discussed and each of these
attacks highlights a vulnerability of the Diffie-Hellman Protocol. Currently,
the security of the protocol is determined by the choice of parameters that

make known attacks not feasible.

2.1 The Protocol

The protocol requires a cyclic group G of order n and a primitive element
a in G that generates all the elements 1, a,a?,...,a" ! of G. The system’s
parameters a and G are public knowledge. The group <« > is referred to as
the Diffie-Hellman group.

The private keys of Alice and Bob are integers in the interval [2, ord(«)),
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privy and privg respectively. The public keys of Alice and Bob are now

calculated as follows:

puby = "4

pubg = o"VE.

The public keys are exchanged between Alice and Bob via an insecure chan-
nel.

To compute the shared secret between Alice and Bob, the combining
function F : Z,_1 \ {0,1} x G — G is defined by

F(z,y) =y"
Now the combining function satisfies ([1.1)):

F(priva, pubg) = (ozp””B)privA

aprivA )pri'UB

= F(privg, puby).

A summary of the protocol is given in Table [2.1]

| [ Alice | Bob |
Common <a>=G
Private privy | prive
Public QPTA | o PTVB
Shared Secret QPTVAPTIUE

Table 2.1: Diffie-Hellman Protocol.

Example 2.1. The Diffie-Hellman key exchange for a = 7, using Zj,; as the

cyclic group.

Let the private keys for Alice and Bob be:

privy = 10

privg = 9.
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The public keys are then

puby =7 (mod 13)
=4

and

pubg = 7° (mod 13)
=11.

The shared secret for Alice and Bob is thus

751% (mod 13) = 10.

2.2 Security of the Diffie-Hellman Protocol

In Section three necessary properties for a secure public key distribu-
tion system are stipulated. In the case of the Diffie-Hellman Protocol, these

properties translate into the following three problems.

Definition 2.2 (Discrete Logarithm Problem). [I8 Definition 2| Let G be
a finite cyclic group generated by a. The problem of computing from 3 € G
a number s such that o® = ( is called the Discrete Logarithm Problem.
Notation: s = DL, (f3).

Definition 2.3 (Diffie-Hellman Problem). [I8, Definition 1] Let G be a finite
cyclic group with generator a. The problem of computing a® from a® and
a’ is called the Diffie-Hellman Problem. Notation: a® = DH (a®, ab).

Definition 2.4 (Diffie-Hellman Decision Problem). [I8] Definition 3] Let G
be a finite cyclic group generated by a.. Let a®, a’, a¢ be chosen independently
and randomly in G according to the uniform distribution. Given the triples
(a“,ab,a“b) and (a“,o/’,of) in random order, the Diffie-Hellman Decision
Problem is to decide, with a probability greater than 1/2, which of the triples
is the correct Diffie-Hellman triple.

10
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The intractability of these problems will ensure that the Diffie-Hellman
Protocol has the properties mentioned in Section [I.2l Although all three
problems are important for the security of the Diffie-Hellman Protocol, the
Discrete Logarithm Problem will be the main focus of this dissertation.

It is evident that solving the Discrete Logarithm Problem is sufficient for
solving the Diffie-Hellman Problem and the Diffie-Hellman Decision Problem.
It is also evident that solving the Diffie-Hellman problem is sufficient for

solving for the Diffie-Hellman Decision Problem.

DL

DH

DHD
Figure 2.1: Evident relations between problems Diffie-Hellman Problems.

Indeed, if a® and o’ are given, then

aab — (aa)DLa(O‘b)

and if a triple (oﬂ, a?, ac) is given, then it can be determined whether this is

a Diffie-Hellman triple by testing whether

c (aa)DLa(ch)

or

11
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Whether one can solve the Diffie-Hellman Decision Problem by methods other
the discrete logarithm poses an important problem. The following example
shows that in certain cases it is very easy to solve the Diffie-Hellman Deci-
sion Problem without making use of solutions from the Discrete Logarithm
Problem or the Diffie-Hellman Problem.

Example 2.5 (Difficulty of Diffie-Hellman Decision). This example shows
that in certain cases, solving the Diffie-Hellman Decision Problem is easy.
Use the notation of Definition and let the order of the group G be 2p,
where p is prime. For a triple (04“7 al, ac) to be a valid Diffie-Hellman triple,

it must be the case that
2p](ab — o).
hence
ab=c¢ (mod 2). (2.1)

Relation holds if, and only if, one of the following holds:

(1) (2|a or 2|b) and 2|c,

(2) 24aand 2{band 21c.

Relation fails if, and only if, one of the following relations holds:
(1) (2|a or 2|b) and 2t ¢,

(2) 2ta and 210 and 2|c.

To determine if a triple is a Diffie-Hellman triple, Algorithm [2|is used. The
algorithm determines if is satisfied. If relation is not satisfied
the triple is not a valid Diffie-Hellman pair. If the relation is not valid the
output of the algorithm is random. Thus the probability that the algorithm
is correct is 0.5 if relation holds and 1 if the relation does not hold.
Since the relation holds with a probability of 0.5, the algorithm provides the

correct answer is obtained with a probability of 3/4.

12
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If the relation is valid no information is obtained and a random decision is
made. Thus for a random input the relation will be false of 50 percent of the
input and for the other triple the probability that a correct answer is give, is
0.5. Thus for any triple the correct answer is obtained with a probability of
0.5.

Algorithm 2: Solve the Diffie-Hellman Decision Problem, Example

Data: (a*,a®, af) the triple to test
Output: If the Triple is valid

1 go — (@)

2 gy — ()"

3 ge — (o)

aif g, =g, =1 and g. # 1 then
5 return Not Valid Triple;

6 end

7 if g, =g, # 1 and g. = 1 then
8 return Not Valid Triple;

9 end

10 Randomly select r € Zs;

11 if r then

12 return Not Valid Triple;
13 end

14 return Valid Triple;

2.3 Attacks on the Discrete Logarithm Prob-

lem

Certain attacks, as indicated below, are considered for determining the
parameters of the Diffie-Hellman protocol. These attacks are not the most
efficient variants, but illustrate the weakness of the protocol. In certain
attacks, the order of the Diffie-Hellman group needs to be factorised. It is
therefore assumed that the factors can be computed in a reasonable time.

The attacks considered are:

e Pollard p: Random search.

13
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e Chinese Remainder Theorem: Factorisation of the order of the Diffie-

Hellman group.

e Pohlig-Hellman: Provides a method to compute the discrete logarithm

in a cyclic group of prime order.

e Index Calculus: Using the smallest field containing the Diffie-Hellman
group.

A detailed survey of attacks on the Discrete Logarithm Problem can be found
in [19).

In each of the following attacks, let G be a cyclic group of order n, with
generator «, and let § € G be any element of which the logarithm needs to
be computed, i.e. for the equation " = (3, (r is an integer) where r must be

solved.

2.3.1 Pollard p

The Pollard p algorithm solves for r by first finding integers m and s such
that

/Bm — O[S.

The above integers are found by constructing a sequence xg,xq, s, ... of

elements in GG and then determining an index m such that

Toam = Tm,

a collision. This method of finding an m such that z,,, = x5, is called Floyd’s
cycle-finding algorithm [24].

Floyd’s cycle-finding algorithm adds computation complexity, by remov-
ing the need to store all the elements in the sequence until a collision is found.
For any sequence g, 21,2, ..., if j is the smallest index such that z; = x;
for 0 <7 < 7, then there exists an m’ with i < m’ < j such that z,,, = x9,,:

If Kk = j — 1 then for any [ > ¢ and t > 0, it follows that x; = x; 4. In

14



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

é’%
<

particular, if

and

then x,,, = 2o,y and 1 < m/ < j.
Divide the group G into three disjoint and roughly equal, in cardinality,
sets S1, S9 and S3, from which the sequence zg, x1,xs,... is obtained by

setting zo = 1 and

Briy ifxzi €5

T, = [E?_l ifx; 1 €95,

AT; 1 if Ti1 € Sg

with ¢ > 1. The elements of the sequence can be written as z; = 3%a® for
1> 0 and ag = by = 0. Therefore, for each ¢ > 1 it follows that

(@i—1,bi-1 +1) ifz,q €5
(aia bz) = (2(11',1, 2()1;1) if Ti_1 € SQ
(ai_l -+ 1, bi—l) if Ti—1 € S3.

Compute the 6-tuple (z;, a;, b;, xo;, as;, boy;) for i = 1,2. .. until z; = xy;.
Then

ﬁbia(li — ﬁbmaazi'
Let m = b; — by; (mod ord(«)) and s = ag; — a; (mod ord(«)), then

g" = a’ (2.2)

15
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and
mDL,(6) =s (mod ord(«)).

Case 1: If m and n are relatively prime, then the discrete logarithm can be

solved directly by

DL,(B) =sm_; (mod ord(«)),

where m_; is such that

mm_; =1 (mod ord(a)).

Case 2: If (m,ord(a)) = m’ > 1 use the extended Euclidean Algorithm to
compute u and v such that

m' =wu-m+v-ord(a). (2.3)
Then from (2.2

ﬁm’ _ ﬁu-m-{—vord(&)

=a".

By substituting 3 by a” in the above equation,

with r» and m' fixed. While u can be selected arbitrarily large, it can
thus be assumed that us is divisible by m’. The above equation can be

stated as follows:

16
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thus
8= az+(iord(a)/m') with 1 < < m/
and

DLa(p)

|
<

=1+ (in/m’) (mod n)

for a value of 1.

p algorithm.

Theorem 2.6 (The birthday paradox). [24, Theorem 2.4] Suppose that
0 < k< n and independently selects k random integers between 1 and n,

with equal probability. The probability P(n, k), that of two selected numbers

—k(k—1)/(2n)

are equal, is approximately 1 — e .

Proof. Randomly select k integers independently and uniformly from the set
[1,n] and let P(n, k) denote the probability that two of the selected numbers

are equal. The probability that all the selected elements are distinct is

thus

nn—1)---(n—k+1)

bl

n(n—l)---(n—k—i—l)‘

P(n,k)=1- %

The probability can be written as

The factors (1 —i/n) for 1 < i < k will be approximated. If i/n is small,

rny =1 (10 (- 5) - (-5

17
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then 1 — i/n ~ e~"/". The probability can now be approximated by

P(n,k) =1 — e t/me2n. . g=(k=l)/n
— 1 — e~ /nt2/nt 4 (k=1)/n)

—1— 6—k(k—1)/2n'

]

Assume that the sequence x1, 9, ... is chosen in the Pollard p algorithm
such that it behaves like a random walk through the group G. Theorem
is then used to estimate the complexity. If a success rate of approximately
90% is needed, then from 1 — e~2® ~ 0.9 it is required that

—k(k—1)/(20rd(a)) = —2.5
L k* =~ 5. ord(a),

where the collision in the sequence of elements occurs after k iterations.
Note that k is the index of the largest element computed in the sequence.
As Floyd’s algorithm is used, it is needed that k is replaced by 2k. Thus,

k* =~ (1.25)ord(c)
ie. k= 0(y/ord(a)).

This gives a complexity of O(y/ord(a)). Since the success rate only changes
the number of iterations needed, the order of the complexity of the algorithm
will not change. In [22] it is proven that the lower bound of complexity of a

generic method to solve the Discrete Logarithm Problem is O(y/ord(«)).

Example 2.7. Consider the group Zj; with generator o = 7. Let 3 =5 be

the element of which the discrete logarithm needs to be computed.

18
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Divide the group into three sets as follows

S, = {3,4,9,10}
Sy ={2,6,11,12}
Sy ={1,5,7,8}

The sequence is now defined by

517i_1 if i1 € Sl
ri=qax?, ifx; €S8,

7551'_1 if T € 53.

Table gives the values of the 6-tuples (z;, a;, b;, T2;, ag;, by;) for the first

four iterations.

il @i [ai]bi] @ [ an | b |
0100 1]0]0
17 [0 [1/10] 02
o100 2124
3111 2]10] 3 |5
142448 10

Table 2.2: Sequence generated in Example [2.7]

This table indicates that the first collision occurs when ¢ = 4 using Floyd’s
method. Also notice that the first collision occurs when ¢ = 2 and j = 6,

if Floyd’s cycle-finding technique is not used. With a collision at ¢ = 4, the

variables in (2.2)) are

m = a4 — as
—2-38
=6 (mod 12)
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and

S:bg—b4
=10—-4
=6 (mod 12).

Since (6,12) = 6 = m’ > 1 the extended Euclidean Algorithm is used to find
the next set of variables as defined in ([2.3)):

u=—1
v=1
Thus
B =a"
and
[=1.

The solution is in now in the set

{1—-4-12/6li =0,1,...,11}
={1,10,9,7,5, 3}.

By exhaustive search it follows that the logarithm is 3.

2.3.2 Chinese Remainder Theorem

The Discrete Logarithm Problem will be solved in a group by considering
the same problem in its subgroups. This is achieved through a divide and
conquer attack that uses the factorisation of ord(<a>) to divide the prob-
lem. The Chinese Remainder Theorem uses the solutions in these subgroups

to provide the solution in the group <a>.
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Theorem 2.8 (Chinese Remainder Theorem). |4, Theorem 2.3.1| Let {n1, ... ,ng}
be a set of positive integers which are relatively prime. For any set of integers

{ai,...,a,} the system of congruences

r=a; (modmn;), i=1,2,...k,
has exactly one solution modulo n = niny - - - ny.
Proof. Define

¢ =a;(M;)_, (mod n;)

where

k
M,; = Hnj and M;(M;) ;=1 (mod n;).

J#i

Then the value

is a solution since

y =c¢;M; (mod ny)
(CLZ(M1>_1)MZ (Il’lOd nz)

a; (mod ny).

If x and y are two solutions, then x —y =0 (mod n;) fori =1,... k. It
follows that x =y (mod n). This proves uniqueness of the solution. O
Let nins - - -, n be a factorisation of n, where the n;’s are relatively prime

and let M; = n/n;, i.e (M;,n;) = 1. Define a function

f i ly — Ly X - X Ly,
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f(m)=(m (mod ny),...,m (mod ng)).

By the Chinese Remainder Theorem, the function f is a surjection and since
the cardinalities of the domain and range of f are the same, f is a bijection.

The inverse of f is given by

K
fHay, - a,) = ZCiMi (mod n),
i=1

where
¢ = a;(M;) , (mod n;).

To compute the discrete logarithm of § = a" where G = <a> and
ord(a)) = n, factorise n into relatively prime numbers, ny,ns....,ng. Then

there exists an isomorphism
<a>ZE<ap > XX < >
where o; € <a> and ord(a;) = n; for i = 1,2,... k. Define a function

I:<a>—<op> X X <ap>

I:a™m— (a{” (mod m), oy (mod n’“)).

The function [ is a bijection as it has an inverse defined by

al ank m
(Oél’...,afnk)HOé 5
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where m = f~(aq,...,a,, ). Now it follows from

(mod nl) m+l (mod ng)
ey O{k

( m (mod n1) . ,OZZL (mod nk)> . (all (mod m1) Oé; (mod nk)>
I«

f()

that [ is an isomorphism.

Algorithm [3]is used to compute the discrete logarithm in G. The ‘for loop’
computes the discrete logarithm of the i** component of I(3) in < a; >. The
last line of the algorithm uses the Chinese Remainder Theorem to compute

the discrete logarithm of 3.

Algorithm 3: Chinese Remainder Theorem computing the discrete
logarithm.

Data: n = [[;_, n; and a¢ where <a> = G and ord(G) = n
Output: Ensure ¢ = DL, (ac)
B a5
for =1 to k do

Bi — B

Ci DLCH(/BZ)7

z; — ¢ - (n/n; (mod n;)) ™"
end
c=x1-n/n+ -+, n/n; (mod n);

o =R G S I

The time needed to compute the discrete logarithm can be estimated by

time(DLa(3)) = Z (time(DLy(5;)) + m;)

< k-max{DL.(5;) +m;}
~ k-max{DL,(5;)},

where m; 1s a small value for the time needed to execute the other instructions
in the ‘for loop’. This is an efficient divide and conquer algorithm, where

the complexity is dependent on the largest factor of the order of the group.
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Algorithm [3| can be used before applying most of the other algorithms used

to solve the Discrete Logarithm Problem.

Example 2.9. Consider the group G = Zj; with generator & = 7 and 3 = 6.

The order of Z, is 12 = 2% - 3 and the factorisation is
<T>E<LH>X <9 >,

where ord(< 5 >) = 4 and ord(< 9 >) = 3. The element 6 is represented in
<5>x <9> by (8,9). The logarithm of 9 in < 9 > is 1. The power list
of 5in <5 >is

5,12, 8, 1. (2.4)
Thus the logarithm of 8 in < 5 > is 3 and

r1=3-3_1 (mod 4)
=1,

ro=4_; (mod 3)
=1

The logarithm of 6 in Zj, is now given by
12/4+12/3 =7 (mod 12).

2.3.3 Pohlig-Hellman

The Pohlig-Hellman algorithm is similar to the Chinese Remainder The-
orem. Both the attacks divide the cyclic group G = <a> into subgroups.
In the case of the Pohlig-Hellman algorithm, the order of these cyclic groups

must be a prime power, i.e.

<a>=Z o> X X <>
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where each «; is a generator of a cyclic group of order pf‘i, with p; a prime
factor of the ord(«). Thus the Pohlig-Hellman algorithm can be seen as a
special case of the Chinese Remainder Theorem attack. The Pohlig-Hellman
algorithm is Algorithm [3| where the n;’s are prime numbers and the method
of solving DL, in line 4 is specified next.

For each prime factor p of ord(<«>) the exponent r in 5 = ", can be

written in its radix expansion,

A1
r= Zsipi with 0 <s; <p—1. (2.5)

i=0
To remove cluttering of notation the subscript ¢ is removed. Note that the
value of r is not used in the algorithm, it is in fact the values of s; that
are determined. After all the s; for every prime factor of ord(<a>) are
determined, the Chinese Remainder Theorem is used to compute the value

of r.

The values of the s; are determined iteratively. In the subgroup of order

p' notice that

ﬁOfd(Oé)/p _ yrord(a)/p

_ ord(a) )5 sp

_ O[OI’d(Oé)so/p

— 50
= C

ord()/p 5 a primitive p™* root of unity in the current group

where ¢y = «
< aord(a)/p >. Through exhaustive search on all possible values of s € [1, p),
the correct value can be determined.

To determine the value of an s;, a similar computation is performed in
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the group < aord(a)pt 5 Suppose s, ..., s;_1 are known and
A-1
T :Z,Smpm with 0<s,, <p—1
m=t

1—1
=r— E Smp™.
m=0

Then s; can be computed by noticing that

a?rd(a)/piﬂ _ yreord(a)/pt
_ CYord(a) YA s
_ pord(a)si/p
= sz’
where ¢, = aOTd(@)/p i 5 primitive p'* root of unity in the current group.

The value of s; is determined by testing all possible values until

41
ord(a)/p 1 _ oS0

a/'L 7

By using an algorithm for fast exponentiation and improving the search
for the exponent s;, the complexity [19] of solving the Discrete Logarithm

Problem is given by

@) (Z Ai(logord(a) + pl)> :

For a detailed discussion of the algorithm see [19].

Example 2.10. In Example the logarithm of 6 with respect to 7 is com-
puted by considering the logarithm in <5> and <9>. Since the logarithm
is trivial in <9>, only the logarithm of 8 in <5 > is considered, i.e. DL5(8).

Since ord(<5>) = 4, the only two subgroups that need to be considered

are those of order 2 and 4. The intermediate values of the algorithm are
given in Table
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Table 2.3: Intermediate results in Example
The logarithm can be written in the form
r=sg+ s1-2 where s; € {0,1}.
The first iteration gives the relation

842 =12
= (mod 13).

and since 12 is primitive in <5>; ¢y = 12 and it follows that s = 1. The

second iteration gives the relation

8§-51=8.5
=12
=’ (mod 13)

and thus s; = 1.

The logarithm is of 8 with generator 5 is

1+1-2=3.

2.3.4 Index Calculus

The Index Calculus method gives rise to a class of probabilistic algorithms
to find the logarithm of an element 3 in a group G = <a> of order n. The
method consists of two stages, namely pre-computation and computation of
the individual logarithm.

The pre-computation stage is executed once for a specific group. In the

pre-computation stage relations are created, which are dependent on the
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group that is attacked. The second stage uses the relations from the pre-
computation phase to compute the discrete logarithm.

Pre-computation
Let the set S C G consist of elements p; € G. A random positive integer a

is selected and it is attempted to write a® as a product of the elements in S,

t
a" = Hp?i, (2.6)
i=1

where t is the size of S. The above equation gives the congruence

a= Z AiDLy(p;) (mod n). (2.7)

By considering the DL, (p;)’s as indeterminate in (2.7)), a system of equations
can be constructed. A solution for such a system of equations is necessary
for the success of the pre-computation phase.

By increasing the size of the set S, the work needed for the pre-computation
phase increases and the probability that the computation of the individual
logarithm will succeed is increased.

Computing an individual logarithm
To compute the logarithm of a given 3, integers s are randomly selected until

o®(3, can be written as a product of elements in S, i.e.
t
a’f = pr (2.8)
i=1

If such a relation cannot be found, the method fails. It follows that

t

DLo(B) =Y biDLa(p;) —s (mod n).
i=1

Consider an implementation in F.. Since the elements of S are being
used to ‘factorise’ numbers, it is natural to select irreducible elements for the

set S. But there are no irreducible elements in the F,» since every element
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has an inverse. However, the irreducible elements are selected from F,[z]
since the polynomials in F,[z] of degree less than n represent the elements
in F,» uniquely. Therefore the irreducible polynomials in F,[x] of degree less
than n generate the elements in Fy.. The set S will consist of irreducible
polynomials of degree less then k, k& < n, where the parameter k£ determines
the probability that the algorithm will be successful. By reducing the value
of k, the number of elements in S decreases which in turn reduces the chance
that the relation in (2.6]) will be found. Reduction in the size of S also reduces
the computations needed to complete the pre-computation phase.

To solve the system of equations given by , (GGauss elimination or

other techniques as illustrated in Example [2.11] can be used.

Example 2.11. Consider the field Fos with defining primitive polynomial
f(z) =a%+x+1 € Fyfx]. Then o = x is a primitive element of Fj,, being a
root of the polynomial. We determine the logarithm of 8 = z*+2%+224+2+1
to the base x.

Let S = {z,z + 1,2% + x + 1} be the set of irreducible polynomials of
degree at most 2 in F,[z]. To compute the logarithm of these elements let
1 <a <63. Evidently DL,(z) = 1. Let a = 6 then

P=z+1 (mod f(x)),

giving DL, (z + 1) = 6. Before computing the case a = 32, note that

=z
=2%+1
= (2° + 1)2 (mod f(x))
giving
2 =g+ 1

=(z+1)(z*+z+1) (mod f(x))
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and

32=DLy(z + 1)+ DLy(2* +x + 1)
=6+ DLy(z*+2+1) (mod 63)

thus DL, (2> + z + 1) = 26.
To get a relation in the form of (2.8)), let s = 2. That is,

o=+t +3 4+ +r+1
= (P +2+1)°(@+1) (mod f(z)).

Since all the factors are in S, the discrete logarithm can be computed as

DL(3) =2DLy(z* + 2+ 1)+ DLy(z +1) — 2
=2-26+6-—-2
=56 (mod 63).

The implementation given by Weidemann [19, page 67| in For gives a

complexity of

e(cl+o(1)(k’ log, k)1/2)

for the pre-computation and

o (1/(2e1)+o(1) (K log, 1)/2)

for computing the logarithm, where ¢; = \/@. The implementer of
this attack does not need to use the same representation as the user of the
protocol. The alternatives would include the use of an isomorphic field for
improved efficiency or the smallest field containing the Diffie-Hellman group.

A detailed discussion about the Index Calculus algorithm and related

variants can be found in [19].
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2.4 Security Improvements

In the previous section, four attacks were considered. From these attacks

the following was concluded, where the Diffie-Hellman group G = <a>:

e The size of \/ord(a) must be large enough to prevent the Pollard p
attack.

e The largest prime factor of ord(«) must be large enough to prevent the

Pohlig-Hellman and Chinese Remainder Theorem attacks.

e The smallest field containing the Diffie-Hellman group must be large

enough to prevent the Index Calculus attack.

All but the last constraint can easily be achieved by parameter selection.
For the last constraint Lemma (below) is needed. This lemma was first
given in [I1, Lemma 2.4] (slightly differently), and later corrected in [I].

Definition 2.12. |15, Theorem 2.44] Let K be a field with characteristic p
and let n be a natural number not divisible by p and let n be a primitive n'*

root of unity over K. Then the polynomial

1<s<n
ged(s,n)=1

is called the n** cyclotomic polynomial over K.

Lemma 2.13. Let q be a prime factor of ¢,(p) with n a natural number, p
a prime number with q{n, p{n. Then the subgroup of Fy. of order q is not

contained in any proper subgroup of F ..

Proof. Let a be an element in 7, of order ¢. It is needed to prove for sln
and s < n that ord(<a>)  ord(FF;.). Note that ¢ { [1is ¢i(p) if and only if
ord(<a>) f ord(F,).

From (2" — 1,nz" ') = 1 it follows that that 2 — 1 has no repeated root
in the algebraic closure of F,. Thus ¢,, and ¢ share no common root modulo

g, since 2" — 1 =[], ¢n(x). Now from ¢,(p) = 0 (mod g) it follows that
for any s|n, ¢s(p) # 0 (mod q) thus ¢ 1 [[,, #:(p). O
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The above lemma gives the smallest field containing the Diffie-Hellman
group; only the smallest field for a specific characteristic is given.

To determine a cyclic group G in [Fs that is not contained in any sub-
field of F,s, the cyclotomic polynomial must first be determined. From [15]
Theorem 2.45] it follows that

2% —1

¢6<$) = H0<‘56<6 ¢S(l,)

S

If ¢ is any prime such that ¢|(p? —p+ 1), then ¢ will be the order of the
cyclic group G in Fle. Let o be the generator of the group Fle. Then the
generator of the cyclic group G is a(P*=1)/ 7 which generates the cyclotomic

subgroup.

Definition 2.14. [II, Definition 1] In a field F,x we call a subgroup of prime
order ¢ with q|¢x(p) and g 1 k a cyclotomic subgroup and denote it by G, -

Example 2.15. Determine a cyclic subgroup G in 3 such that G is not
contained in any subfield of Fys, i.e. determine G,26. The 6 cyclotomic

polynomial is ¢¢(z) = 22 — x + 1 and

Since 3 is a prime number, the order of the group G546 is 3.
Consider the field F 6 defined by the primitive polynomial f(z) = 2%+z+
1 € Fy[z] Let a be a root of f(z). The order of the group <a > is 63 = 3.7
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and a generator of the group G526 is

BT = 2

— oSababald

= (a+1)(a+1)(a+1)a?
=a’+a+1.
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Chapter 3
The Compact Subgroup Protocol

A few variants of the Diffie-Hellman protocol are based on common ideas.
These ideas are the use of a polynomial for representing the data and a linear
shift register for the computations. The first example of a computational ad-
vantage gained by using shift registers, is given in [8]. The idea of reducing
the amount of data that needs to be communicated through an irreducible
polynomial was given in [2]. The Efficient and Compact Subgroup Trace Rep-
resentation (XTR) has both the advantages of more efficient computations
and less data that needs to be communicated and was designed by Lenstra
in [I3]. These examples are discussed in Chapter

The general theory involving all of these aspects was suggested in [I]. The
focus is on the use of a polynomial to reduce the number of bits to represent
the key data. The use of a polynomial makes the use of a linear shift register
attractive for computations. In this chapter a general theory is developed
for a variant of the Diffie-Hellman Protocol. The variant which is called the
Compact Subgroup Protocol, needs less data for key exchange than the Diffie-
Hellman Protocol. Efficiency of the computations with the shift register is
very dependent on the parameters of the protocol. The method given here
shows that it is possible to perform the computations without sending the
initial values to the other party.

In the next section, the Diffie-Hellman protocol is modified until the re-

quired variation is achieved. Section shows the implementation advan-
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tages of the variation. Some of the modifications change the security of the

representation. The last section proves the Protocol secure.

3.1 Representations and the Protocol

The Compact Subgroup Protocol uses three different representations to
achieve advantages in communication overhead and computation efficiency
without sacrificing the security of the protocol. The three representations
which are given here, each introduces only a small variation. The contribu-

tions of the representations are the following:

e The Multi Group Representation which uses more than one element in

the Diffie-Hellman group to represent the user’s key.

e The Polynomial Representation which fixes some parameters in the

multi group representation.

e The Sequence Representation which introduces an alternative method

of computations.

Multi Group representation

The Diffie-Hellman Protocol can be generalised to a representation which
uses more than one Diffie-Hellman group <a>. Instead of working in one

group <« >, the system is defined by a sequence of cyclic groups:
<al> <o > . . <al1>,

where the h; are integers in the interval [1,ord(a) — 1). The system param-
eters of the system are «, hg,...,hyp_1.

The private key of a user is an integer priv € [2,ord(a) — 1) and the
public key is the k-tuple

(aho-priv

N e ] (3.1)
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The shared secret generated by Alice and Bob will be

ho-priva-privg hi-priva-privg
(Oé , (v sy

Oéhk,l-privA-privB) )
It is not important at this stage in which manner the shared secret is used.
This representation is the Diffie-Hellman Protocol repeated k times, where

the generator of the Diffie-Hellman group of each protocol run is different.

’ H Alice \ Bob ‘
Common <a>and hg, ..., hip_1
0 s IOk
Private Priva Privg
Public (ahop”“, .., afRepriva ahorrivs - ozhkflp””B)
Shared Secret (ahoprivarrive | qRe-1privaprivs)

Table 3.1: Multi Group representation.

The use of the h;’s might result in a larger probability for a collision in

the public keys, i.e.
{ahngivA7 o ’ahk,lpm‘v,q} ﬂ {ahop’l‘iUB’ o 7Oéhk—1p7'ivB} 75 (Z)’ (32)

for private keys priva and privg. This will be the case if there exist integers

7 and j such that
priva - hy = privg - h; (mod ord(w)).

In the case of a collision, each of the participants in the protocol can compute
the other participant’s private key, since the above equation only has one
unknown. In the next section, when the polynomial representation is defined,
constraints will be given for the h;’s to provide results on the probability that

public keys are disjoint.

Example 3.1. Let the Diffie-Hellman group be <13> in Zgz;. The three
groups used are generated by 13, 27 and 22 and correspond to h; = 1, 3 and
7 respectively. Selecting the private key of Alice as 13, her public key is

(133,273 22!3) = (11,29,13) (mod 31)
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and using 17 as the private key of Bob, his corresponding public key is
(13'7,27'7,22'7) = (17,15,12)  (mod 31).
Their shared secret is

(17",15',13") = (3,27,17)  (mod 31).

Polynomial representation

A polynomial f(z) € F,[z] which is irreducible will be used to represent
the generators of the Diffie-Hellman groups in the Multi Group representa-

tion. Let f(z) be an irreducible polynomial of degree k that factors as

fo) = [ o - a0
o |
= 11 <:L‘ —aof )

where a; = ¢ for i = 0,1,...,k — 1 are in the splitting field of f(x) and
are of prime order. The roots of the polynomial f(z) form the set of cyclic
groups that are used in the Multi Group representation.

The private key is an integer priv € [2,ord(«)) and the public key is

pub = fprin(2) (3.3)
k-1

— (;1;' — af”“), (3.4)
i=0

where the private key must be such that the polynomial f,,.;, () is irreducible.
A sufficient condition for f,.,(x) to be irreducible is that ord(a) is prime.
Indeed, since the order of « is prime, no power of «, except the unit, is

contained in a subfield of F» and therefore f,,(z) is irreducible.
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The shared secret of users Alice and Bob is given by

k—

fp’r‘iUA-privB (1’) = H (x _ O[,IiwiUA'pTivB).

1=0

—

’ H Alice \ Bob ‘
Common f(x) over F,
Private Priva \ privg

Shared Secret Jorivaprivs

Table 3.2: Polynomial representation

In the Multi Group representation, a collision occurs if is satisfied.
A collision in the polynomial representation means that the public keys of
Alice and Bob are the same, since a root of an irreducible polynomial de-
fines the polynomial uniquely. Thus, a collision exists for the polynomial

representation if there exist two integers ¢ and j such that

priva __ _privg

i J )

that is
P g : k
q' - privg = ¢’ - privg  (mod (q — 1))
By noticing that
¢"=1 (mod (¢*—1))

it follows that

priva =g -privg  (mod (¢* — 1)) and of"™* = a?}}®
for some integer [. Thus, a collision in the public keys of Alice and Bob

priv
i

occurs if and only if « is a root of fyriw,(z). The number k of integers

resulting in the same public key is therefore equal to the degree of the polyno-
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mial f(z). It follows that the number of distinct private keys is |ord(«)/k].
Generally k£ << ord(«), resulting in a very small reduction in the key space.

The probability that two randomly selected private keys are equivalent, is
k/ord(a).

Example 3.2 (LUC). Let a be the generator of a Diffie-Hellman group
in F2. Let ord(cw) be prime and ord(a)|¢2(p) = p + 1. The constraint that
ord(a)|¢2(p) together with Lemma [2.13is used to ensure that the polynomial
is irreducible. The use of the constraint is not necessary but it is convenient
for implementation and illustrative purposes. This ensures that the minimal

polynomial
fx)=2" - (a+ )z +1
of «v is irreducible. The public key related to priv is then
forin(@) = 2% — (&7 4+ a7 )z + 1,

since p = —1 (mod ord(«)). This representation allows the representation

of the public key to be represented by
pub = o 4 P,
The shared secret generated by users Alice and Bob will be
Fovivapriog () = 22 — (apmA.me + a—privA-privB>x 11
or just

aprivA-pTivB + a—privA-privB'

This illustrates that less data is needed to represent the public key, compared

to the Diffie-Hellman protocol.
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Sequence representation

Let f(x) be an irreducible polynomial over F,. This polynomial defines a
linear recurring relation that defines an associated linear sequence. Let such
a sequence be denoted by (s;), with initial values that are still to be defined.

In particular if
f(2) =2 —ap_ 12" —ap 02" — . —ay € F, 7]

then f(z) defines the linear recurring relation

Spk = Ak—1Sptk—1 + Ag—2Spyk—2 + -+ + ags, for n > 0.

Theorem 3.3. |15, Theorem 6.21| Let sg, s1, ... be a k-order homogeneous
linear recurring sequence in F, with characteristic polynomial f(x). If the
roots oy, . ..,ax_1 of f(x) are distinct, then
k—1
si:Zﬂja; fori=0,1,.... (3.5)
§=0
where Bo, ..., Pk_1 are elements that are uniquely determined by the initial

values of the sequence and belong to the splitting field of f(x) over F,.

Proof. The constants fy,...,0r_1 are determined by the system of linear

equations

k—1

Za?ﬁjzsn, formn=0,1,...,k—1.
j=0

Since the determinant of this system is a Vandermonde determinant which
is non-zero by the condition on «g,...,ar_1, the elements 3g,..., Gr_1 are
uniquely determined and belong to the splitting field F,(avo, . .., ax—1) of f(z)
over Iy, as seen from Cramer’s rule. To prove the identity forallmn >0
it suffices to check whether the elements in the right-hand side of , with

these specific values of (g, ..., [Ok_1, satisfy the linear recurrence relation
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(3.5). It now follows that

k—1 k—1 k—1
k k—1
> B0 — a1y Byt —a0 ) fef
7=0 7=0 7=0
k—1
= B; (oz}“rk Qg a?'”“ ! — aooz?)
j=0
k—1
= ﬁjf(aj)a?
j=0
=0
for all n > 0, and this completes the proof. O

Let ay,..., a1 be the distinct roots of f(x). By Theorem any se-
quence with characteristic polynomial f(z) can be written in terms of the

roots a;,

T
L

Sp = Bijaj for n=0,1,....

<
Il
o

where the 3; are uniquely determined by the initial values. The sequence

(s;) with initial values

S0 =k
k—1

S1 = Z Q;
7=0
k—1

S9 = Z CV?
7=0

k—1
Sp_1 = Z a;‘f—l.
=0
is called the characteristic sequence of f(z). The public key pub = (Spriv,i) is
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now defined by
Sprivi = Si-priv

k—1

. 1priv

- Z @
Jj=0
k—1 '

= (o) fori=0,1

= j =0,1,....
Jj=0

which is every priv'" element of the sequence (s;). Since the polynomial
Jpriv = Hf:_ol (z—af m) is irreducible, this polynomial is the characteristic
polynomial of the sequence (S,y,;), see Theorem .

The shared secret of users Alice and Bob is now given by the characteristic
sequence of fy iy, privg (), which is every priv aprivg'™ term of the sequence
(s;). The shared secret that is computed by each user in the system is the

same as seen from

N

-1
; 1-Priv A
— (aprsz )

Sprivg,i-priva j

E
Il
= O

; 1-Privp
(Oj?rwA )

o

j=
= Sprivg,i-privg-
No attention has been given to the initial values of the public sequences
of each user. The initial values for each user’s sequence must be such that

the 5,’s in (3.5)) have the value 1, otherwise the shared sequence will not be

the same. The initial values need to be sent along with the linear relation.
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For user Alice, the initial values are

Sprivy,0 =k

k—1
_ Privg
Sprivy,l = E aj
Jj=0

k—1
o 2privg
Sprivg,2 = Z aj
7=0

k—1

o (k—1)priva

Spriva,k—1 = Z aj s
J=0

which are sent to user Bob along with the public key.

Example 3.4 (LUC). Continuing with Example [3.2] the initial values of the

sequence are given by

So =2

S1 =+ at

and the linear relation is
Snt+2 = (a + Oé_l)Sn+1 — Sp.
User Alice uses her private key priv, and computes the initial values

Sprivy,0 =2

___priva —priva
SprivA,l _ap + P
and the linear relation

_ TV A —priva
Spio = (ap +a? )snﬂ — Sp.

The shared secret that Bob computes is every privg' element in Alice’s
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public sequence, i.e.
iV —priv
Sprivai — (Oép At+a? A)Si-privA—l — Si-privg—2 (36)
with initial values

Sprivy,0 =2

Spriva,1 =04 4 a7

Compact Subgroup Protocol

The three representations given in the previous three sections are now
used to construct the Compact Subgroup Protocol. Each of the three repre-

sentations provides an advantage:
e Multi Group representation gives a basis for security.
e Polynomial representation enables the use of a compact representation.
e Sequence representation provides a method for efficient computation.

As in the sequence representation let

T
I

flx) =] ] (@ — o) € Fpla]

%

Il
o

be an irreducible system polynomial over F,: of degree k and of prime order
q dividing ¢ (p). The private key of a user is an integer priv € [2,¢) and
the associated public key is

Jprin(z) = (:c — afm). (3.7)

3

|
—

i
o

Since the polynomial f is irreducible over F, and of prime order the
polynomial f,;, is also irreducible over F,: for priv € [1,q) and it follows
that the orders of f and f,;, are equal. The orders of the system and public

polynomials are equal and therefore the roots of these polynomials define
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the same Diffie-Hellman group, up to isomorphism. Thus the only difference
between the system and public polynomials is how the polynomial is used.
All the results that are applicable to the system polynomial are therefore
also applicable to the public polynomials.

For users Alice and Bob the respective private keys are priv, and privg,
where the associated shared secret is the coefficient of %71 in f,.i0 ,privg (7)),
which is S50 o 4?5 The shared secret and the respective public keys
are computed by the combining function F'. An illustration of the protocol
is given in Figure |3.1

Insecure

Alice Bob

priva privg
Sprivs{() fpﬁivA (z)
____:.Shared secret:
Zk— 1 OéprivAprfivB
i=0 @i .
Y : Y
C > C

Figure 3.1: Key exchange using the Compact Subgroup Protocol

In this protocol, the Berlekamp-Massey algorithm is used to compute
the combining function F. The polynomial f(x) is used to construct a lin-
ear relation and initial values are chosen arbitrarily to form a sequence (s;).
From this sequence every priv'® element is selected to create a new sequence,
(Spriv.i), with characteristic polynomial f,.;,(z). The Berlekamp-Massey al-
gorithm produces the minimal polynomial of (s,,,;) which must be f,.;,(2),

since fyrin () is irreducible. It is important to note that in this protocol the
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computations are not performed in the Diffie-Hellman group, but in the field
over which the polynomial is defined. This gives the advantage that the field
operations used, require less resources.

Security of the Compact Subgroup Protocol will follow from Theorem
Thus all the same measures needed to secure the Diffie-Hellman pro-
tocol are also needed for the Compact Subgroup Protocol. These measures
are contained in selecting a polynomial of large prime order dividing ¢x:(p).

Reduction in the data that needs to be transmitted is due to the property
that ord(f)|dw:(p), see Theorem

| [ Alice | Bob |
Common f(x)
Private Privy prive
Public Soriva (%) | fprivs (%)
Shared Secret Zf;ol afmAme

Table 3.3: Compact Subgroup Protocol.

More attention is given to the computations and security properties of
the protocol in Section [3.2]

Example 3.5. Let the system polynomial be the irreducible polynomial
f(x) = 23+ 2z + 2 € F3lx]. The order of f(x) is 13, which is the same as

¢3(3). With initial values so = 1, s; = 1 and sy = 1 the linear relation
Sp = 8p_2 1+ Sn_3
generates the sequence
(8i);e = 111220121001011122012100101112201 ... .

Let the private keys of users Alice and Bob be 2 and 4 respectively. The

public sequence of Alice is then

(82i)509 = 11211001202011121 . ...
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with characteristic polynomial

Joriva(2) = fo()
=2+l tr+2

determined by the Berlekamp-Massey algorithm.
Similarly, the public sequence of Bob is

(541)3%, = 1210221110100121 . ..

with characteristic polynomial

forivs (2) = fa(z)
=2 +22 42

Bob now uses fa(x) and the initial values s, = 0, s§ = 1 and s, = 0, for

example, to generate a shift register sequence of (sg;), namely
(sh;)2y = 010222122002101. ..
Taking every 4" element of the above sequence gives
(8h9i)iep = 022122201012. ..

with characteristic polynomial

fprivAprivB (37) = f4-2(‘r)

Likewise Alice uses fy(z) and the initial values s; = 1, sf = 0 and s = 1,

say, to generate a shift register sequence of (s4;), namely

(s4)2, = 1010012102211101 . ..
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Taking every second element of the above sequence gives
(Sh.47)i00 = 110202100112111 . ...

with characteristic polynomial of

fprivAprivB (SL’) = f2,4(ZL‘)

The shared secret is the coefficient of 22, namely 2.

3.2 Implementation Advantages

The Compact Subgroup Protocol is much more complex than the Diffie-
Hellman Protocol. This section will show its advantages: less data is needed

to represent the keys and a more efficient computation method.

Compact Representation

In the Compact Subgroup Protocol the coefficients of the polynomials
are transmitted. This is in contrast with the Diffie-Hellman protocol where
a root of the polynomial is transmitted. If the polynomial is defined over [F:
and of degree k then ktlog,(p) bits are needed to represent the polynomial
which is the same number of bits needed in the Diffie-Hellman protocol. In
Theorem it is proved that it is not required to send all the polynomial’s
coefficients.

The reduction of the number of coefficients that define a polynomial is

due to the fact that the roots are in the cyclotomic subgroup of F;tk, see
Definition .14

Definition 3.6. Let n be a positive integer. For every integer £ < n, the

elementary symmetric polynomial of degree k in R[X,..., X,] where R is a

48



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

%
g

ring with unit, which is denoted by oy, is given by the formula
o X (1)
n}

Example 3.7. The elementary symmetric polynomials for n = 1,2, 3,4 and

5 are.

01:%1+ 29+ 23+ 24+ 25

09 ! T1T9 + X1T3 + T1Tg4 + T1XT5 + T2T3 + ToXy + ToZs + T34 + T4T5
03 T1X9x3 + T1LoX4 + T1ToX5 + XoX3L4 + LoX3Ts + T3XL4T5

04 @ T1X9X3L4 + L1X2X3X5 + LoX3L4X5

05 . T1X2X3X4T5.

In the proof of Theorem the following property of symmetric poly-

nomials, is needed.

Proposition 3.8. [6, Proposition 3.2.2| If f(z) = >__, axx® is a monic

polynomial of degree n with roots x4, ..., x, belonging to a field ¥, then
i = (=) or(z1, ..., 1),
for 0 < k <n, where o,(x1,...,x,) is the k™ symmetric polynomial.

Theorem 3.9. [1, Theorem 1| Let  be a generator of a cyclotomic subgroup
Gp.qk, where p is odd and k > 2. Let /e 4 ak/d_lxk/d*1 + - 4+ a1 + ag
be the minimal polynomial of o over F,a, for some d dividing k, with d < k.
Then ay = (—1)k/d and if k = 21 for | an integer, a; = (—1)k/da§l/dﬂ. for
i=1,...,k/d—1.

Proof. Write o = a?" for j=0,...,k/d—1. Then
k/d—1

xk‘/d + a,k/dfll‘k/d_l +---+ax+ ag = H (l’ — O{j),
7=0
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and using Propositionit follows that a; = (—1)k/d7iak/d,i(ao, e ak/d,l)
fori =0,...,k/d— 1, where crn(ozo, . ,Oék;/d—1) is the n'* elementary sym-

metric polynomial in the conjugates o; of . In particular

ao (_1>k/d0k/d<a07 e Od-1)

(_1)k/d040 < hygaa
(1) Qlptert e

But 1 +p+p* + .-+ pF~? = (pF —1)/(p? — 1), which is divisible by ¢(p)
and hence by ¢. Therefore ay = (—1)k/d.
If kK = 20 then p* — 1 = (p' — 1)(p' + 1). Since the order ¢ of h di-

vides p* — 1 but not p' — 1 it follows that p' = —1 (mod ¢) and therefore
ozj’l = oz? for j =0,...,k/d— 1. Since ag - hl “ay/g—1 = 1 it follows that
Uk/dfi(OJOa'--:Oék/dfl) = Uz’(%_lw- %/d 1) and
Uk/d—i<a07 s O d— 1 = 0; (04 ) Ofk/d 1)
oot alle)
l
= 0; (Oéo, s Xk /d— 1)

fori=1,...,k/d— 1. Thus

a; = (_1)k/d7iak/dfi (o0, -, hja—1)
k/d
:( 1) / aZ/d i

]

From the above theorem it is seen that both the degree of the polynomial
and the field over which the polynomial is defined, determine the obtainable
communication reduction. By selecting the degree of the polynomial correctly

a saving of 75% is achievable in the communication of the public keys.
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Proposition 3.10. [I, Proposition 1| Let e = kt, with 0 < k. Then for any
element h of Gy, the minimal polynomial of h over Fp: can be represented

by using the following number of elements of Fy:

(1) k—1 if kt is odd,

E—1
(2) 5 if t is even and k is odd,

k
(3) 5 if k is even.

Proof. Represent the elements of G, . by their minimal polynomials over the
subfield of degree t. The constant coefficients are (—1)k, so k — 1 elements
of F: are sufficient to represent elements of G, .. This covers the first case.

In the second and third cases e is even and by Theorem only half
of the coefficients are required. More precisely, if k is odd only (k — 1)/2
coefficients are required and if k is even, only k/2 coefficients are required.

Bearing in mind that the first coefficient is (—1)*, the results follow. O

It now follows from Proposition that the fraction of coefficients saved

is given by

k — number of coeflicients needed
? )

The coefficients saved in each case, respectively, are

k—(k—1) 1
P
k—(k—1)/2 1 1
I 5T oy and
k- (k/2) 1
k 2

With only compression in mind, the field used in the protocol should have

even extension degree and the degree of the polynomial should be odd.
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ktisodd K
kiseven <
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x
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Polynomial degree

Figure 3.2: Proportion of bits saved in the Compact Subgourp Protocol.

The number of bits needed for representing the polynomials in the Com-

pact Subgroup Protocol is either (k — 1) log, p*, (k — 1)/21og, p* or k/21og, p'.

Computation Efficiency

The combination function is used to compute the priv*” term in the se-
quence (s;). Computation of such a sequence would require initial values.

These initial values must generate a sequence of the form

The most direct way to obtain the initial values is to factorise the polynomial,
which requires field operations in . An alternative method to compute
the minimal polynomial of (s, ;) is the Berlekamp-Massey Algorithm.
Alice will receive the public key, pubg, of Bob. From pubg a subsequence
(Spubs.i) Of (s;) is created, where the initial values are arbitrary. Every priv.®"
term of this sequence will create the shared sequence. This shared sequence

is used in the Berlekamp Massey algorithm. The output of the Berlekamp
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Massey Algorithm is the shared polynomial, from which the shared secret
can be obtained.To generate the shared sequence, 2k - privy < 2k - ord(«)
values of the initial sequence are needed. Since the Berlekamp Massey algo-
rithm provides the result in at most k% steps, the combining function would
require at most k2 + 2 - ord(a) = O(ord(ev)) operationd]] The computational
complexity is not feasible. In Section and an improved sequence com-
putation method is given that will make implementation of the combining

function computationally feasible.

3.3 Security

The security of the Compact Subgroup Protocol is based on the Diffie-
Hellman protocol. A modification of the Discrete Logarithm Problem is
needed to prove the security of the Compact Subgroup Protocol.

Let

f(x) =a" —ap_ 12"t — - —ag € Fpea]

be an irreducible polynomial, with o™ € I,k as a root. The problem is to
determine priv if ag, ..., ar_1 and « are given. If it is possible to calculate a
solution, the protocol is considered compromised.

In Definition [3.11 summing functions are defined. The summing func-
tions give a more general form for writing the coefficients of a polynomial.

The security proof is given in terms of summing functions.

Definition 3.11. Let n be a non-negative number, consider the integers
€g, ..., en—1 and the elements g, ..., \,_1 € Fpe \ {0}. Then the summing

function Z : <a> — Fp is given by:

n—1

Z(k) = Z)\i'/-iei, for k € <a>.

=0

!The complexity is same as solving the Discrete Logarithm Problem
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The number n is called the degree of the summing function and the number

d = ged (eg, €1, ..., e,-1,0rd(c)) is called the order of the summing function.

The coefficients of the polynomial F' can be written as

Zifa)= ) (H aj>

Hc{0,1,....n—1} \jEH
|H|=n—1i

i
= E O[ZJ'EHP]7

HcC{0,..n—1}

|H|=n—1
where o; = of". Thus the coefficients of a polynomial can be written in
terms of summing functions. With the exception of Z; and Z,, the order of

the summing functions is 1. Notice that e; = Y, p", ord(a)|(p™ — 1) and
also (Y,cyp',p"—1) =1.

Theorem 3.12 (Polynomial Security Proof). [2, Theorem 3.2] Let Z be a

summing function of order d. Also let O be an oracle that on basis of any

8
that computes

T and Y computes Z(y*Y). Then there exists a polynomial time algorithm

vrd on basis of v* and Y. Thus for d = 1 there exists a

polynomaal time algorithm that solves the Diffie-Hellman problem in <~y >.

Proof. Let V. =~* and W = ~¥ be any elements in <~ >. Using the oracle
O the value Z(y*®*1) can be determined using V and +'W as input. The

following system of equations can be constructed

1 1 1 Apyever Z (")
Ve Ve . Ven )\2,.)/:83/82 B Z(,yac(y—o—l))
V(n—1)61 V(n—l)eg . V(n_l)e" )\n,.)/zyen Z(,.)/z(y—i-n—l))

The above matrix is a Vandermonde matrix.

First consider the case that Ve Ve .. . Ve are distinct. Then the ma-
trix is invertible and the elements y*¥¢1 ~*¥°2 .. " can be determined by
the system of equations. By taking a suitable combination of these elements

the element v*¥? can be computed.
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If there exist integers ¢ and j such that V¢ = V% then the two columns
containing V% and V% are identical and y*¥% = *¥% . By removing duplicate
columns and 7 values, the matrix is invertible and the values of 4*¥¢ can be

computed. O

The above security proof is not directly applicable to the Compact Sub-
group protocol. In the protocol a polynomial is sent as the public key, instead
of the roots of the polynomial. When a polynomial is sent, the Scipione del
Ferro root finding technique can be used to reduce the security problem in
polynomial time to the one state in Theorem Therefore the Compact

Subgroup Protocol is at least as secure as the Diffie-Hellman protocol.
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Chapter 4

Examples of the Compact
Subgroup Protocol

In Chapter |3| a motivation is given for the use of polynomials and their
characteristic sequences in key agreement systems. In this chapter three such

existing systems are discussed.

4.1 Doing More with Fewer Bits

In [2] Brouwer et. al. introduced a key distribution system that uses a
6" degree polynomial and which is an example of the Compact Subgroup
Protocol. This system is referred to here as DMFB. In the literature, this
protocol introduced the idea of using a polynomial to reduce the data that
needs to be transmitted during the execution of the protocol. It will follow
that the 6! degree polynomial used in DMFB is determined by only two

coeflicients.

4.1.1 Description

The system is defined by a 6™ degree polynomial f(z) € F,[z],

f(z) = 2% + a52® + ayz® + azz® + agr® + ayx + 1
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with p a prime number. The polynomial has roots ay, . . . , a5 of prime order ¢
dividing ¢¢(p) = p* —p+1. Thus the Diffie-Hellman group is the cyclic group
generated by any root «;. The private key is an integer priv € [2,ord(«y))
and the associated public key is fpi ().

Since f(x) satisfies the condition of Theorem [3.9it follows that the leading
and constant coefficients of the polynomials f and f,, are 1. Furthermore
three of the remaining five coefficients determine the polynomial uniquely,
namely a5 = aIfS, ay = a§3 and as. However, the coefficient as can be written
in terms of a; and ay: Let ay, ... ag be the roots of f(z). From Theorem

it follows that the first and second terms in the linear sequence are given by

S1 :O-l(ah cee ,056)
Sg =181 — 20‘2((117 s 7a6)
where o, is the " elementary symmetrical polynomial over F,[xi, ... zg).

Then by elementary computation it follows that

5 5
_ 2
ag——2E ocz-—g a; — 2,
i=0

1=0

from which follows that
as = —2+ 204 — Oé% + 209.

Theorem 4.1 (Newton’s Formula). [I5 Theorem 1.75| Let o4,...,0, be
the elementary symmetric polynomials in xq,...,x, over a ring R, and let
so=n€Z and s, = sp(x1,...,2,) =25+ -+a¥ € R[xq,...,x,) for k > 1.
Then the formula

_ T
Sk — Sk_101 + Sp_20y + -+ (=) sy 101 + (1) T Skem = 0

holds for k > 1, where m = min {k,n}.

Using the Newton’s Formula and noting that s; = oy(aq,...,a6) = a4
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and oo(ayq, ..., qg) = ag, it follows that
CL3:—2CL1—82—2
= 2(11 — (810'1(051, e ,046) — 20'2(@1, Ce ,a6)) -2

= —242a; — a2 + 2as.

Thus f(z) is determined by a; and ay. Consequently, as in the Compact

Subgroup Protocol the public keys

Spriv(@) = H (:C - O‘frw)

=0

can be represented by only two of its coefficient, see (3.7)).

4.1.2 Computations

Computation in this protocol does not use the sequence representation.
All the computations are done in the field Fs and the roots of the polynomial
must be computed. Thus, the performance of the protocol is not very good
and no complexity analysis is performed.

The system parameter is generated by Algorithm[dl The algorithm selects
an element a € IF;()- of order ¢, where ¢ is the order of the Diffie-Hellman
group. The system polynomial is the minimal polynomial of «, over the
prime field. Only two of the coefficients are used to represent the system

polynomial.

Algorithm 4: Parameter generation of DMFB.
Data: n, and n,, the required bit lengths of primes p and ¢
respectively.
Output: primes p and ¢ and the coefficient pair (aq, as)
1 Choose p € {n € Zanp \ Zgnp—1 : n is prime};
2 Choose ¢ € {i € Zanq \ Zgng—1 : i divides ¢g(p) and is prime};
3 Choose a € Fy6 such that ord(a) = g;
4 f(z) < the minimal polynomial of a over F;
5 (ay,as) < the coefficients of x and z? in f(z);
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Each user of the system uses his private key, priv, to compute the priv®"
power of the roots of the system polynomial. These new elements form
the roots of an irreducible polynomial f,.;,(z) over [F, of which only two
coefficients are needed to represent the public key. Algorithm [5| computes
the public and private keys.

Algorithm 5: Selection of private and public keys in DMFB.
Data: primes p and g, the field Fys and coefficient pair (aq, as)
Output: priv and pub the private and public key respectively

1 f(z) 1+ a7 + asz?;

2 f(x) « f(x) + (=2 + 2a; — a? + 6ag)x?;

s f(x) — f(z)+ab ot +af 2 + 2

4 Choose a € Fy6 such that f(a) = 0;

5 priv €g (2,9 — 1)

6 fyriv < the minimal polynomial of o™ over F;

7 pub « the coefficients of z and 2% in fp4,(2);

Computation of the shared secret is similar to the computation of a user’s
public key, the only difference being the input parameters of the algorithm.
Algorithm [0] is used to compute the shared secret.

Algorithm 6: Combining function for DMFB
Data: the field s, a public key pub and the private key priv
Output: The shared secret s.

1 (a1, ag) < pub;

2 f(z) — 1+ a1z + axx?;

3 f(z) — f(z) + (=2 +2a1 — af + 6as)2?;

4 f(z) — f(2)+ b 2t + a¥ 25 + 25;

5 a € Fye such that f,.;, (o) = 0;

6 g(z) < the minimal polynomial of o™ over F,;

7 s < the coefficient of x in g(z);

4.1.3 Security

For the security proof of the DMFB protocol, Theorem can be applied
directly. Is is worthwhile to note that in DMFB there exists a dependence
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between the coefficients of the polynomial, that is not given in Theorem
This indicates that only one of the two coefficients should be used as the

shared secret, as is the case in DMFB.

Example 4.2 (DMFB). Let the characteristic of the field be 113, then
¢6(113) = 3 -4219. Select ¢ = 4219 as the order of the Diffie-Hellman
group in [} 5 and let Fy;36 be defined by the irreducible polynomial 2% +
6525 4+ 172 + 8423 + 252% + 672 + 98 € Fy13]x]. Implementation of Algorithm
gives the system polynomial

f(z) = 2® 4 372° + 632* + 412° + 632% + 372 + 1

over [Fy;5 which is represented by (37, 63).

An implementation of Algorithm [5| is used to compute both the public
and private key pairs. Let the private key of Alice be 944. The root obtained
by factorising f(x) is 98x° + 94x* + 9023 + 912% + 24z + 111 and its 944"
power is 412° + 11z + 2123 + 5822 + 6 + 47 giving a root of the public
polynomial 2° + 8125 + 162* + 7223 + 1622 + 81x + 1 that is represented by
(81,16).

Likewise, let 1850 be the private key of Bob. The root of f(z) used by Bob
in its computations is 792° + 20z* + 2323 + 6322 + 452 + 43 and its 1850
power is 50x° + 24x* + 4323 + 3922 + 552 + 64 with minimal polynomial
28 + 3325 + 782* + 3523 + 78x2 + 33z + 1, represented by (33, 78).

Algorithm [6]is used to find the shared secret. In the computations of the
shared secret, Alice uses privy = 944 and pubg = (33,78) where user Bob
uses privg = 1850 and pubs = (81, 16) to compute the shared secret 99.

4.2 Cubic Field Extension

In [8] a public key cryptographic system was introduced with a polynomial
of degree three where the order of the roots are not a prime number. The
system is abbreviated here as CFE. In the literature, the main contribution

of the article is the introduction of a linear shift register in the computation
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of the shared secret. Sequence representation is used for the computations

of the protocol.
4.2.1 Description
The system is defined by an irreducible polynomial
f(x)=2°—ar*+bx—1, a,b€F, (4.1)

with p a prime. The polynomial f(x) has roots ag, a; and «ay of order

#3(p) = p* + p + 1 and associated linear recurring relation
Sk = aSk_1 — bSp_9 + Sk_3. (4.2)

Since the roots are conjugates, a; = agi for © =0,1,2. From Theorem it

follows that the elements of a sequence satisfying can be written as
Sp = af +af + oy,
with initial values
So = 3,

S1 = g+ a1 + oo

:a/’

So = ag + ozf + oz%
= (g + a1 + ag)” — 2(apan + apaz + aay)

= q% — 20.

This sequence is called the characteristic sequence of f(z) and its k™ term
is denoted by si(a,b). The reciprocal sequence of (sx(a,b)) is the sequence

generated by the reciprocal of f(x), namely f~1(z) = 2° — bx® + ax — 1 with
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associated linear recurring relation
Sk—3 — bsk_g — aSk—1 + Sk.

The k' term of the reciprocal sequence is denoted by s_.(a,b).
As in the Polynomial Representation, the public key is given by the poly-

nomial

frn(o) (o = ™) (5 = o) & =)

3 priv

—3 (ao priv priv

2
+ o™ + o)
iV TV TV TV TV IV TV iV TV
+ (af ™ol + o ah™ + o™ e — af " ol o
3 —priv —priv —priv
=2 — spriv(a,b) + ("™ + " + o)z — 1

=% — Spriv (@, b)a? + S_priv(a,b)r — 1

where priv € [2,ord(ap)) and (priv,ord(ag)) = 1. The public key fyriv(2)
is irreducible: Since (priv,ord(ag)) = 1 it follows that <ao> = <af™ >.
Thus furi(2) is irreducible, since f(x) is irreducible.

For the private key, priv, the corresponding public key is given by the
polynomial f,;,(z) which is represented by pub = (Spriv(a,b), s_priv(a,b)).
Using the private keys priv, and privg, the shared secret will be the poly-
nomial [y 4. privg () represented by (Spriv,privs (@, 0)s S—priva-privs (@, D).

Note that the system polynomial f(z) is used to define the sequence that
is used to derive the public key of each user, where the public key of a user
is used to generate the sequence used to derive the shared secret. Thus the

initial values for the sequence used to derive the shared secret is 3, s,,;, and

2

Spriv — 25 _priv-

4.2.2 Computation

In the computations of the CFE protocol a more efficient method is given,
than that of the Compact Subgroup Protocol. It uses a linear shift register
and avoids the Berlekamp-Massey algorithm. In the computation of the

system parameters elements of the field IF,s are used but only elements of I,
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are used for computing the shared secret.
The computation of the system parameters is straight forward and is
given in Algorithm [7]

Algorithm 7: Computing system parameters for CFE
Data: n, the required bit length of the prime p.
Output: prime p and system polynomial (a,b).
Choose p € {n € Zgnp \ Zgnp—1 : n is prime};

Choose a € {3 € Fps : ord(8) = ¢3(p) };

f(z) < the minimal polynomial of o over F;

(a,b) «— the coefficient of z and z? in f(x);

BN

The computation of the shared secret is based on the method of repeated
squaring, given in Section [L.3], which is a more direct method of computation
than that used in the Compact Subgroup Protocol. The index of the term
in the sequence that is required is treated as the exponent in the repeated
squaring algorithm. Depending on the current bit of the index, one of three
functions is executed to get the next sequence element. The initial values

(s_1, S0, S1) are computed using
sk = ab 4+ of + ok (4.3)
and are

5_1 :a51+af1+a2_1
= (g + 13 + Qg
:b’
50:37
S1 = g+ a1 + o

= a.

These initial values are used to compute the sequences (s;) and (s_x) simul-

taneously, as the relations used in the computations need values from both
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sequences. The linear relations for these two sequences are
S = aSk—_1 — bSp_o + Sp_3

and
Sk—3 = bSp_o — asp_1 + sy,

respectively. To avoid the transmission of the initial values, these values are
computed from the characteristic polynomial. Therefore, the algorithm that
is used to compute the shared secret is much simpler than the algorithm used
in the Compact Subgroup Protocol, i.e. avoiding the use of the Berlekamp-

Massey algorithm.

Lemma 4.3. [8, Lemma 3| Let (sg) be the characteristic sequence of the
polynomial f(z), defined by ({{.1]), and (s_y) its reciprocal sequence. Then

for any positive integers n and m, with n # m,

Sop = si —25_,, (4.4)

SnSm — Sn—mS—m = Sn+m — Sn—2m- (45)
Proof. Firstly, by using (4.3
Son = 2" + a2 + a2 and 2 = (ol + a + o)’

are obtained. By using apajay = 1 it follows that

2 _ 2n 2n 2n n.n n.n n.n
so=ay" + o + a3" + 2(agat + afay + asag)
= Sop +2(3" + 03" + g ™)

= So, + 25_,,.

64



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&

&

“ UNIVERSITEIT VAN PRETORIA
A 4

Secondly it follows from ord(a) =0 (mod (p? + p + 1)) that

. n+m n+m n+m n_m n_.m n_m n_m
SpSm =0t o oy R agay - agay ooy +ayog
+ ayoy' + ajal’
=Snpm + 00T + 0ol + afaf’ + afaf + afaf + ajal

and

Sn—mS—m :&8—2771 + a?f—Qm + a;z—2m + ag—mal—m + ag—maQ—m

o 0 T g

+ agpfmpfmpr" + Oéng"fﬂ%mp2 + Oégpzfmpfmp2

=5, o ag—l—mpZ + ag+mp +agp+mp2agp+m
+ a/gp2+mp + agp2+m

=Sp_om + 0pay + aja]" + ajay + ooy + asalt + oy’
thus

SnSm — Sn—mS—m = Snd+m — Sn—2m-
[

The above lemma will be used to construct relations for the computation
of the sequence. The index of the required sequence element is written in the

form
k= k2, (4.6)
j=0
and let t; = k;+2t;_, with ty = ko # 0. If k; € {0, 1} then (4.6) is the binary

expansion, and if k; € {—1,0,1} then (4.6) is a signed digit representation.

The sequence elements s;; are computed where t; = k;+2t; 1. The following
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relations
2
S2t;-2 = Sy, 1 2=9—(t]-—1)
Sot;—1 = St;St;—1 — bS_¢; + S _(1,41)
2

Sot; = Sy, — 254,

Sot;4+1 = St;5t;41 — AS—t; + S_(1,-1)
2

S2t;42 = S0 T 23—(tj+1)
are constructed from (4.4)) and (4.5) using n =¢; —1; m = —t; and n = —1;
n =t;; m = —t; and n = 1; n = t; + 1 respectively. From these relations it
is seen that both the sequence (s;) and its reciprocal sequence are needed.
From the above relations three relations are selected depending on the current

digit in the expansion of the number k. The relations are:

If kj = —1 then tj = 2tj_1 —1:

2
Stj—1 = Sy, 1~ 25(t;_1-1)

St

5 = Stj1Stj-1 T bs*t]‘—l T S—(t;1+1)

Sthrl = 5?3;1 — 28,,5],71.
If k’j = (0 then tj = Qtj_li

Stjfl = Stjflstjflfl - bsftjfl + S—(tj_1+1)

_2
St; = Sp,_, — 25 4, ,

Stj+1 = Stj_IStj_1+1 - aS—t]'_l + 8—(15]',1—1)‘

If ]fj =1 then tj = Qtjfl + 1:

2

St;—1 = S| — 254,

—1

St

;= Sty Sty T Sty F Sty -1)

_ .2
Stj41 = Sty 11— 28-(t_1+1)-

To be able to compute the next triple from the above relation sets, the
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triples (sj_1, S, 5j+1) and (s_;_1, S_;, s_j+1) are needed. The same two triples
are needed to compute the reciprocal sequence as can be seen from the next
relation sets that are obtained in the same way as the previous set, but by

using —t; = —k; — 2t;_; instead.

For kj = —1 thus —tj = —215];1 + 1:

2
S_¢._1 =8, . —28.
J J

Jj—1

S—tj = S—tj_ls—tj_l-i-l - aStj_l + Stj_1-|—1

S—tj—i-l = SQ—tj—l"l‘l — 28,5].71_1.
For kj =0 thus —tj = —Qtjfli

S—t]'—l = S—tlj_ls—t]’_l—l - bSt]'_l + Stj_l—l
2
S_t; =87y | — 25,

s—tj-i-]. = S—tjfls—tj,1+l - astj,1 + Stj,1+1'
For kj =1 thus —t] = —Qtjfl —1:

2
S_tj_l - S—tj_1—1 - 2Stj—l+1

S_¢.

j = S—tjfls—tjfl—l - bst]‘,1 + Stj,1—1

_ 2
S,tj+1 = S—tj,1 — 23tj71'

Algorithm [§| gives the combining function for CFE and is also used in the
generation of a user’s public key. The functions F_4, Fyy, and F} used in Algo-
rithm [§ are defined by the above relations. The functions Fj; are defined by
transforming the two triples (Stj_1, St stj+1) and (s_t]._l, S_t;, s_tj+1) to the
two triples (S, —14k;, S2t;4k;5 S26,414k;) AN (S_2t,—1-k;, S—2t;— ;s S—2t, 41—k, )
for k; € {—1,0,1}.

Lemma [4.4] gives the number of operations in Algorithm [§ To improve
the performance of the algorithm, the iterations where k; = 0 need to be
reduced. The Hamming weight of k£ can be decreased by using signed digit

representation, see [9]. In this dissertation this is not done.
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Algorithm 8: Combining function for CFE
Data: The index k = (k,_1, ..., ko), and the polynomial (a,b).
Output: (5_p—1,5 &, S—k+1,Sk—1, Sk» Sk+1)
M — (b,3,a,b,3,a);
fori=r—11%00do
M «— Fy,(M);
end
(S—k—155—ks S—kt15 Sk—1, Sk, Sk41) < M;

[ N

Lemma 4.4. Let f(x) be a system polynomial for the CFE protocol and (sy)
the associated characteristic sequence. The k' term in the sequence can be
computed with 6log, k multiplications and 5log, k— Hy, additions in F,, where
Hy is the Hamming weight of k.

4.2.3 Security

The security proof of the CFE Protocol is a specific case of Section
Using a Diffie-Hellman group that does not have a prime order makes an
attack using the Chinese Remainder Theorem applicable, see Section [2.3.2]

The security of the protocol is therefore based on the largest prime factor of

®3 (p)

Example 4.5 (Small implementation of CFE). To simplify the example, only
the binary expansion of the private key will be used. Let the characteristic
of the field be 101. Then ¢3(101) = 10303 which is a prime number. Select
the order of the Diffie-Hellman group as 10303. Define the field Fyp3 by
the irreducible polynomial 23 + 23z* + 40x + 69 with root a. An element
of order 10303 is 15a2 + 79« + 29 and the system polynomial is given by
f(x) = 2® + 452 + 3z + 100. This gives a = —45 = 56 and b = 3, thus the
initial values of the sequence are 3, 3 and 56.

Let the private key of Alice be privy = 1882 = 11101011010,. The
computation of Algorithm [§]is given in Table
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I[teration \ k; \ t; H St,-1 \ St; | St+1 H S_t;—1 \ S_t; | S—t;+1 ‘
0 - 0 3 3| 56 3 3 56
1 1 1 3 |56 100 99 3 3
2 1 3 100 [ 82| 5 6 31 99
3 1 7 97 |86 | 13 26 40 90
4 0| 14 67 |44 | 79 71 14 9
5 11 29 90 | 75| 39 35 20 7
6 0| 58 59 | 30| 95 60 48 19
7 1| 117 97 |80 | 17 7 21 22
8 1| 235 9% | 4| 34 37 60 79
9 0 | 470 39 |98 | 87 82 57 5
10 1| 941 97 | 87| 32 86 76 23
11 0 | 1882 15 [ 44| 66 9 47 39

Table 4.1: Computing the public key of Alice in CFE

From the table it is seen that sigg9 = 44 and s_;g30 = 47, thus the public
key is puby = o3 + 572% + 47x + 100.

The private key of user Bob is selected as privg = 7998 and the associated
public key pubp = 23 + 10022 + 65z + 100 is computed in a similar manner
as the public key of Alice.

For user Alice to compute the shared secret the private key priv, and the
public key pubp are used. The values are 65, 3 and 1 are the initial values
for the linear sequence and is constructed from privg. The computed shared
secret is x® + 1722 + 562 + 100.

4.3 Extended XTR

Lenstra defined the system XTR in [12] based on a third degree irreducible
polynomial over the field F 2. This idea was extended in [I6] to any field F2m.
In this dissertation, the system in [16] is called the Extended XTR (EXTR).
The protocol follows the Compact Subgroup Protocol, but like CFE defined
in the previous section, a more direct computation method is used to compute
the public keys and the associated shared secret. An additional performance

improvement is achieved by using an optimal normal basis.
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In the next section EXTR is described; in Section the parameter
selection is given. Section [£.3.3] gives a method of computation and the last

section provides a security proof.

4.3.1 Description of EXTR

For any positive integer m, the system is defined by an irreducible system

polynomial
f)=2° —cx® + "z —1, ¢ € Fpenm (4.7)

with p { 6m and ord(f) 1 6m and where the roots oy, aq, s in Fem have prime
order dividing ¢, (p). These constraints are needed for security reasons as
from Lemma it follows that the smallest field containing the roots of
f(x) is Fpem. From the primality of ord(ayp) it follows that the minimum
polynomial of o}, is irreducible for i € [1,0rd(ag)). Furthermore 2m + 1 must
be prime and p primitive in Zs,,.1 to ensure the existence of an optimal
normal basis.

The associated linear recurrence relation is
Skig = CSpao — ¥ Spy1+ sk, k> 0. (4.8)

The sequence (s) satisfying (4.8)) and with initial values sy = 3, s; = ¢ and
sy = 2 — 2cP" is called the characteristic sequence of f(x). It follows from
Theorem [3.3] that the characteristic sequence (s;) satisfies

sp=ak +af +ak k>0 (4.9)

2mi

Since the roots are conjugates, a; = oy for i = 0, 1,2 it follows that
Sk - Trpﬁm,/me, (Oélg) (410)

where T'ryom jp2m is the trace of af, see |15, Definition 2.22].

In Lemma it is shown that ¢, (p)|(p*™ — p™ + 1), ensuring that the
order of the roots of f(x) divides p*™ — p™ + 1.
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Lemma 4.6. Let f(x) be a third degree polynomial over F,em|x], with roots
o, a1, . If f(x) is irreducible and the order of the roots divides p*™ — p™ + 1
then the polynomial is of the form

f)y=2°—ca®* + "2 — 1, c € Fpom.

fx) =(z = ag)(x — ar)(z — as)

=1® — (ap + a1 + a)2? + (ay + apas + ar1an)T — agagan

1 2m 1 4m 2m 4m 1 2m 4m
S S (a LRI, I i PR

m

1—p™m 2m __,m 1 2m __
=2t —ca?+ (o) + )" o )x o P

=z® — c2® + (oz b +oz5p2m +a§2m_pm>x— 1

2 —p™ pm—1\7
=2° —cx® + (g + " +af r—1

m\ P
=z® — cx? + ao—l—ao —|—o/0’2> r—1

=% — cx® + (ap + o + ag)pmx -1

m
=} — P+ -1
where
c=0op+ o+ o

and the modulus relations used are

pr=pt—1
p4m = pm
1— pm = _ p2m
—1=p™ —p",
all modulo (p*™ — p™ +1). O
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Since ord(qy) is a prime number, the group <ag> is not contained in

any proper subfield of Fpem. Therefore the public key

fpriv (Z’) :(I' . agriv) (.T . C(;iwriv) (l’ . Oégriv)
defined by (3.3) and associated with a private key priv € [2,ord(ap)), is
irreducible. By Lemma 4.6

m
fpriv (x) = 9:.3 - Cpriv'xz + Cgm'vx -1

where

Coriv = a;griv + O/l)riv + agrivl (411)
The shared secret for Alice and Bob is now given by fyriv,privs (7). The key
agreement is illustrated in Figure It is important to note that pubsy =
foriva(x) and pubp = fyriw, () are the public data that is exchanged in the

clear.

Insecure

Alice Bob

Priva privp
F pUbB; ;pUbA F
éShared secreté
e it el
Y
C —  C

Figure 4.1: Two parties using a public key distribution system.
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Each user computes the shared secret independently. It is seen that the
computed values are the same by considering
___priva-privp Privg-privg priv-privg
Cpriva-privg = O + o + oy
— agrivB-privA + a]iwivg-privA + azz)rivB -privy

= Cprivg-priva -

The coefficient cpriyy.priv, Of the shared polynomial can be computed from
the characteristic sequence, as seen from (4.8)) and (4.11]).

4.3.2 Parameter Selection

Parameter selection in EXTR has three parts, namely the selection of an
optimal normal basis, the selection of the system polynomial and the com-
putation of ¢g,,(p). The optimal normal basis is needed for efficient compu-
tations. An irreducible polynomial is needed for the selection of the system
polynomial. Lastly, a more efficient formula is given for the computation of
Gem(p) from which it follows that ¢g,,(p)|(p*™ — p™ + 1).

Optimal normal basis

Any finite field F, can be extended by using an irreducible polynomial of
degree n to construct a finite field Fn 2< F [z]/< f(x)>. This field F,» can

be represented by a basis over [F,.

Definition 4.7. |15, Definition 2.32] A basis of F,» over F, of the form
{a,oﬂ, e ,aqn_l}, consisting of a suitable element o € Fy» and its conju-
gates with respect to F,, is called a normal basis of Fyn over F,.

Note that if G = Gal(Fp» : F,) and a € Fpn, then {o(a):0€ G} =

n—1

a,aq,aq2, coyal The element o will always be selected, in such a
way that {o(a): 0 € G} is a normal basis. Theorem 2.35 of [I5] gives the
existence of a normal basis for any finite field.

For efficient computations optimal normal bases, introduced in [20], will

be used and discussed later. Before optimal normal bases are discussed, some
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theory of dual bases is needed.

Definition 4.8. [I5, Definition 2.30] Let K be a finite field and L a finite
extension of K. Then two bases {aq,...,a,} and {f1,...,Gn} of L over K

are said to be dual bases, if for 1 <1¢,7 <m

TTL/K(%@) _ 0 ifis#y
1 ifi=j
It is now shown how the trace function can be used to determine the coor-
dinates of an element A € F » with respect to a normal basis {o(a) : 0 € G}.
Let a, 8 € Fyn such that {o(a) : 0 € G} and {o(f) : 0 € G} are dual normal
bases of Fy» over F,. For any 7 € G

Trr, /5, (AT(B)) = Trg 0 r, (T(ﬁ) > aw(@))

ceG

=TTF /R, (Z aaU(a)T(5)>

oeG

= aoTre,.r,(0(a)7(8))

ceG

= a,.

Thus, Ty, /r,(27(3)) defines a linear transformation that determines the

7" coordinate of A. This transformation is uniquely defined by 7(3), see

[15, Theorem 2.24].
Next, it is shown that the dual of a normal basis is normal. Let {31,...,5,}

be the dual of a normal basis {o(«) : ¢ € G}. Then for integers i and j

i i q
Try . /¥, (Oéq ﬁj) = Trp ./, ( [aq @} )
= T?“]Fqn /Fq (quHlﬁ;-]) .

For any linear transformation from Fy» to F, there exists a unique 3 € Fyn,
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such that the linear transformation in z is defined by Tr(3 - x). Since the
two linear transformations T'rg_, /v, (3;2) and Trp,,/r, (ﬁgx) with indeter-
minate x are identical, it follows that ﬁjq = fBj41. Hence {f1,...,08,} =
{ﬁl, Bi... ,ﬁfnil} is a normal basis.

Before the existence of optimal normal bases is proven, the multiplication
method of Massey and Omura [17] is discussed. Computations in F,» are done
with respect to a normal basis {o(«) : 0 € G} of Fjn over F,. Let A, B € Fyn,
with

A= Zaga(a) and B = Zbga(a), ay, b, € Fy.
oceG ceG
Addition is computed component wise. The product of A and B is given by

AB = Z azbyo(a)y(a)

ovEG

= Y asbo(ac ! (7(a))).

o,v€G

Notation: The automorphism o; € G is defined by o; : o +— ad'. A product

ao(a) with o € G can be written as

ao(a) = Z do(T,0)7 (), (4.12)

TG

where d,(-,-) is an n x n matrix over F, defined by

ao (@) o . o1(a)
aos(a) _ d(alz’ o1) dloz o) N don;01) o)
00, (@) d(oy,0,) d(og,0n) -+ d(on,on) o1 (@)

Since av is a unit, {a - 0;(a) : 0 < i <n — 1} is also a basis of Fyn over F, and
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the matrix d, is invertible. The product AB is now given by

AB = Z asbyo (Z da(T,J_l’)/)T(Oz))

ovEG T€EG

=Y ashy Y do(r.07y)o(r())
o,eG T€EG

= Z agb, Zda(UflT, 0717)7(04)'
o,VEG TEG

Multiplication can therefore be computed through the use of the matrix d,.
Computational efficiency of multiplication is determined by the number of
non-zero entries in the matrix. The minimum number of non-zero elements

in d, is determined next. From

> do(r,0)m(@) =) ac(a)

o,7€G oceG

= aZa(a)

ceG

= al'rg,, /r, (@)
it follows that

Trg.p(a) ifr=1,

Zda(T, o) =

Therefore each row and column of the matrix d, contains at least one non-
zero element. From the above summation, it follows that all columns with

7 # 1 have at least two non-zero values. Thus
#{(1,0) € (G,G) : do(1,0) #0} > 2n — 1. (4.13)

If the number of non-zero elements is 2n — 1, the basis is called an optimal
normal basis.
The matrix d, defined in (4.12)) can also be defined by the dual basis

76



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<

{a(B) :0 € G} of {o(c) : 0 € G} i.e.

ar(B) = da(7,0)0(8) (4.14)
oeG
of all 7in G. It is sufficient to observe that the coefficient of a1 (/) at o(53)

is given by
Tr . m,((a7(8))o(@) = Tre . /r, (a0 () 7(5))

. (z du(p, a)p(oof(ﬁ))

peG

= dy(1,0).

In 7] it is proven that only two types of optimal normal bases exist.
Fields with characteristic 2 are considered less secure and therefore optimal

normal bases of fields with characteristic 2 will not be considered.

Theorem 4.9. Let Iy be a finite field of characteristic not equal to 2 and
Fyn-1 a finite Galois extension of Fy, with Galois group G' and let o € Fyn-1.
Then {o(a)},cq is an optimal normal basis if and only if there is a prime

" root of unity  in some algebraic extension of F, and an

n, a primitive n'
element ¢ € F, such that the irreducible polynomial of ¢ over Fy has degree

n—1, Fpn1=Fy () and o = (.

Proof. It is first proven that the conditions are sufficient for {o(a)}, . to
be an optimal normal basis. Since n is prime, it follows that the irreducible
polynomial of ¢ is the n'" cyclotomic polynomial ¢, (z) = 2" 1+ -+ z+ 1.

h

Also, since ( is a primitive n'* root of unity an integer ¢ exists for each 7,

such that qu = (", 1 <i<n-—1. Now let N be a the normal basis of Fyn-1,

1.e.

N:{g,gq,...,gq””}
(¢,
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Note that
C-¢'=(¢C""eN, 1<i<n-1,
and

¢t =1
= ("t -2

There are 2n — 1 non-zero elements in the multiplication matrix d; and thus
N is an optimal normal basis. Note N is an optimal normal basis if and only
if ¢V is an optimal normal basis.

Now it is proven that the conditions are necessary. Assume that {o(a)}, .
is an optimal normal basis of L over K. From the argument leading to ({4.13])

it follows that

(1) For each 7 € G, 7 # 1 only two elements o exist in G, such that d,(7,0)

1S non-zero.

(2) Only one element o exists in G such that d,(o,,0) is non-zero and its

value is Tr(«).

Thus, there exists a u € G such that af = Try_,_, s, () - p(3), see (4.14).
Since ca with ¢ € F, generates an optimal normal basis, without loss of

generality, it can be assumed that Ty, , /v, (@) = —1. Thus af = —1p(3).
Also

TTIFqn_l/Fq(OZ)TTFqn_l/qu(ﬂ) = Z o(a)7(B)

= 3" olap(8)

o,peG

= Z Tnpqn,l/zﬁq (ap(B))

peG
= 17

from which it follows that without loss of generality it can be assumed that

78



(025&

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

TT]Fqn—l/Fq (ﬁ) =—L
The case p = 1 results in no extension field being generated and the case

u" =1 for n > 2 forces the characteristic of the field to be 2 which is not

considered.
Consider the case pu? = 1. Then a = —u(3)/f and u(a) = —p?(B)/u(8) =
—B/u(B) =1/a. Thus

ap(a) =1

= _TTFqnfl /]Fq (Oé)

= Z —o(a).

oceG

Thus d(o,u) = —1 for all 0 € G. For each row where o # 1, two non-zero

entries and a ¢* # u exist in G such that

The mapping F' : G\ {1} — G\ {i} is defined such that ¢ — o* as in
the above relation. For any ¢ and 7 not equal to each other it follows that
ao(f) # ar(B) and thus F(o) # F(7). This proves that F' is injective and
since the range and domain of F' are finite and of the same cardinality, the

function is a bijection. Determining the coefficients 7(«) of ao* (),
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Now

ac*(a) = o(a) for 0" # p and (4.15)
1. (4.16)

ap(a)

The set {1} U{o(«a) : 0 € G} is closed under multiplication by « and under
the action of G and thus it is a group of order n. Since o = 1 and a #
1 it follows that « is a zero of (z" — 1)/(z — 1) = 2™ ' + ...+ + 1.
From the fact that the degree of a over K is n — 1 and that « is a root of
2" 4+ ...z +1it follows that z"! + ...z + 1 is irreducible. Note that the
n' cyclotomic polynomial 2! + ...+ x + 1 is irreducible if and only if n is

a prime number. O

In EXTR it is necessary to find an optimal normal basis for the field Fzm.
Thus, according to the above theorem, 2m 4 1 must be prime and p must be
primitive in Zoy, 1.

Computation of the system polynomial

An irreducible polynomial of order dividing ¢g,,(p) is needed. This can
be done by considering each irreducible polynomial of degree 3, compute its
order and test if the required condition is satisfied. A more efficient method

is given for the selection of a required polynomial.

Lemma 4.10. [I3, Lemma 2.3.2 (iv) and (vi)| Let
f(x) =2° + ca* ="z — 1 € Fpem[a]

have roots oy, oy, aa. Then for j =0,1,2,

(1) fla;”") =0.

(2) f(x) is irreducible over Fpem if and only if ord(oy)|(p*™ — p™ + 1) and
ord(a;) > 3.
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Proof. (1) From f(a;) = a —caj 4+ " a; — 1 = 0 it follows that a; # 0.

-
Since ¢ = ¢ and a; # 0 it follows that

m

_ Y4
O—f(%)
3m m 2m 2m, m
=af —c o +d8 -1
j ] j
3p™ _3pm —opm mo _am
:—osz (aj P — ca; PP osz —1>

m

= _a?pm . f(aj_p )7
ie. fla;?") =0.

It is first proven that ord(a;)|(p*™ — p™ + 1) and ord(«;) > 3 are neces-
sary conditions for f(x) to be irreducible. From ({1)) it follows that either
a; = Ozj_pm or that a; = aj_f:r(mod 5 for j = 0,1,2 or without loss of

generality that ag = ay” , a1 = ay” and ay = aj”
In the first case all a;’s have order dividing p™ + 1 and are thus in Fpom.

In the second case it follows from agajas = 1 that

— —p" "
1 =aapay”

2m  _.m
= oo ag”
2m m
- 1
=l P +

so that g, a; and a5 have order dividing p?™ — p™ + 1.

In the last case ag has order dividing p™ + 1, oy = a;” = ofl’Qm so that
both a; and as have order dividing p?™ — 1 and again all roots are in
IF 2m .,

p
Assume that f(z) is an irreducible polynomial. Then «; ¢ F,em and
therefore ord(a;)|(p*™ — p™ + 1) for j =0, 1,2.

Suppose that ord(a;) < 3. Since p*™ — p™ + 1 is odd, ord(«;) € {1, 3},
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i.e. ord(a;)|3. Since

3=(p"" —p"+1) = (" =2)(p" +1)
= (P —p" + 1)+ [P —pm+ 1) = (P —1)](p™ + 1)
= (™ —p"+1)(p"+2) - (P —1)(p" + 1),

ord(a;)|(p*™ — 1), contradicting the fact that «; € F,em. Therefore
ord(a;) >3 for j =0,1,2.

Conversely, assume that ord(c;)|(p*™ —p™ + 1) and ord(a;) > 3 for
j = 0,1,2. Suppose that a; € Fpem, ie. ord(a;)|(p*™ —1). Then it
follows from p*™ — p™ +1 = (p*™ — 1) — (p™ — 2) that ord(«;)|(p™ — 2)
and from p*™ — p™ 41 = (p™ — 2)(p™ + 1) + 3 that ord(a;)[3, contra-
dicting ord(a;) > 3. Therefore o, oy and oy are not in Fpem and f(z) is
irreducible over Fom.

[

The next lemma shows that it is quite efficient to find an irreducible

polynomial of the required form by using a random search.

Lemma 4.11. [I3] Lemma 3.2.1] For a randomly selected ¢ € Fj2m the prob-
ability that

f(x) =2 —cx® + "z — 1 € Fpem[a]

is irreducible, is approxrimately one third for large enough m and p.

Proof. From Lemma it is seen that a polynomial of the required form
is irreducible if and only if the order of the roots divide p?™ — p™ + 1 and
are greater than three. Let § € FJ,,, such that ord(8) = p*™ — p™ + 1. The
existence of 3 follows from the fact that ¢g,,(p)|(p°™ — 1). For any a € < 3>
with ord(«) > 3 the irreducible polynomial with roots «, o™ and o?'" is of
the form , see Lemma, Since ord(/3) is odd, the only possible orders

of o smaller than 4 is 1 or 3. Now the number of elements o € < (3> with
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ord(a)) > 3 is

(p*™ —p™+1) — a with ' € {1,3}
:p2m _pm —a Wlth a € {072}

Since the roots of an irreducible polynomial are conjugates, there are (p*™ — p™ — a)/3
different irreducible polynomials f(x). Thus the probability that f(z) is ir-

reducible is

(" —p™—a)/3 1 p—p"—a
p*m -1 3 p*m—1
1/p—1 pm"+1—a
:§(p2m—1_ me—1>
SIS
3 pmr—1 pPm—1
1
3

]

The following lemma gives a condition for the irreducibility of a polyno-
mial in terms of the characteristic sequence of the polynomial. The use of a

characteristic sequence gives an efficient test for irreducibility.

Lemma 4.12. |13, Lemma 2.3.4 part (iii)] Let f(z) = 23 +ca? — "z —1 €
Fp2m 2] be a polynomial with roots g, o, e and let (si) be the characteristic

sequence of f(x). Then f(z) is irreducible over Fpem if and only if symiq &
Fym.

p

Proof. If f(x) is reducible then all a; are in Fp2m. If f(2) is reducible it follows
that Oé(pm—i_l)pm = a§2m*1apm+l = a§m+1 and a§m+1 S Fpm for j = 0; 172 SO

J J
: U] ™ ™1
that sym 1 € Fpm, since spmg =aff ' +af T 4+ab T

Conversely, if symyy € Fym, then sb,| = symiy and fi,.,, (z) = 2° —
Spm 102 4 Spymip1z — 1, see . Thus f .. (1) = 0. Because the roots of
fs,m..(x) are the (p™ + 1)™ powers of the roots of f(x), it follows that f(z)
has roots of order dividing p™ + 1, i.e. an element of Fy2m. Thus f(z) is

reducible over [F2m. O
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The EXTR system requires an irreducible polynomial of prime order ¢
and of the form (£.7). Algorithm [ randomly selects such a polynomial.

Algorithm 9: Computation of f(x)

Data: Primes p and ¢, a positive integer m, ¢ 1 6m and q|¢¢m(p)

Output: f(z) =2% — cz® + "z — 1 € Fjem[z], irreducible and of
order ¢

Pick a € F2m \ Fpm at random;

g(z) — 2® —az®* + a?"x — 1;

(sg) <« characteristic sequence of g(x);

If symi1 € Fpym, restart;

If s(pem_pmi1y/q = 3, restart;

C <— S(me_pm+1)/q; .
flx) 23 —ca® + " x — 1;

b = R S U N

The justification of Algorithm [9]is given next. Let H = p*™ —p™ + 1 and
from the property that ¢g,,(p)|H it follows that ¢|H and let n be the largest
integer such that ¢"|H.

Lines 1 to 4 are used to obtain a random irreducible polynomial g(x).
From Lemma if follows that s,m i € Fpm if and only if the polynomial
is irreducible. This irreducible polynomial is referred to as g(z) with roots
g, 1 and ao, say. The probability that the selected a will result in an
irreducible polynomial is approximately one third, see Lemma [4.11

Line 5 determines whether the order of g(x) is divisible by ¢". It is shown
that if

SH/g = aéf/q + Of/q + aéf/q

£3

then 0rd<oz£1/q> = ¢. Suppose that ord(aé{/q> #+ ¢ then aé{/q = 1 and
therefore sy, = 3 is a contradiction. Note that since g(x) is irreducible, the
orders of all its roots are the same.

Lines 6 and 7 give the irreducible output polynomial f(x) of order ¢. It
follows from Lemma that if a root of f(x) has order ¢ the polynomial

f(x) is irreducible. From line 6 it follows that cp/, = aOH/q + a{{/q + af/q,
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defining oi’?, /% and o'/ as the roots of f(x) where the order of the roots
is ¢. Thus the order of f(x) is q.

For the remainder of this section, the probability that the algorithm will
terminate is discussed. Both lines 4 and 5 determine when the algorithm
terminates. Line 4 is covered by Lemma and line 5 is discussed next.

Let Cy» and Cpygn be cyclic groups of order ¢" and H/q" respectively.
Then the group G = Cgn X Cp/gn is a cyclic group of order H. An element
f in G has the form (3, ;), where 1 € Cgn and By € Cpygn. Let 3 be a
root of g(x). An element of order ¢ is constructed if the H/qth power of (8
is not 1, that is if ¢"|ord(/). The number of elements in G that satisfy this

constraint is

H
(1G] = |Cps]) - [Cotyn| = (q—) (¢ — ¢")

=H - H/q.

From the proof of Lemma it follows that the number of elements in G
that are possible roots of g(z) is p*™ — p™ — d with d € {0,2}. Thus the
probability that ¢"|ord(g) is

H-H/qg @™ -p"-1)—-@"-p"-1)/q

p2m_pm_b p2m_pm_b
== =" —p"—1)/q
p2m_pm_1
=1-1/q.

For q ~ 2190 the influence of line 5 can be ignored /]

Computation of ¢g,,(p)

The computation of the cyclotomic polynomial ¢g,,(x) is important for
the implementation of EXTR. It is an advantage to find an easy computable
formula for ¢g,, (p) for the implementation. From this formulation it will also
follow that ¢em(p)|(p*™ — p™ + 1).

!The recommended subgroup size needed for security by Lenstra in [14].
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Three different cases are considered.
(1) m is prime and m # 2,3,
(2) m has the form 273% where i and j are non-negative integers and

(3) m has the form 273'm’ where 4, j and m’ are non-negative integers with
m' > 1.

In which follows the formula

at—1= Hgbd(:l:)

dn

is repeatedly used [I5, Theorem 2.45].

Let m be a prime number not equal to 2 or 3.

2o — 1
Pom () H%G;nn (@)
2o — 1
[01(2) 93(2) i (7) P30 ()] P2 (%) P6 () P2 ()
2 — 1
3m 91(2)02(2)fm () b2m (@) |
] (e e L
_ @ = 1)@ + 1)[81(2)$m(2)]
(@™ — 1) (> — 1) ¢ ()
_ (3™ + 1) (™ — 1)
¢o(x)(z™ — 1) (2™ + 1)
_ (2™ — 2™+ 1)(z™ — 1)
go(x)(z™ — 1)
2 — g™ 41

22 —x+1

In the following two cases, set notation is used to determine distinct sets
of which the union is {d € Z* : d|6m, d # 6m}.
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Let m be of the form m = 273!, where ¢ and j are non-negative. Now

{d c 7t d|2j+13i+1’ d 7& 2j+13i+1}
={d: d|Z3'} U {2 d|3} U {3"d: d|2’},

where the last two sets in the union can be written as

{2%1d  d|3'} = {d : |23, 27 |d}
= {d:d|27"'3'}\ {d: d|2/3"}

and

{3"d : d|2’} = {d: |23, 37 |d}
={d:d23*'}\ {d: d]23"}.

This partition is used to compute the cyclotomic polynomial.

x5 — 1

) P

dA2i+13i+1
oatm—1 Hd|2j3i ¢a(x) Hd\szi a()
Hd|2a‘3i a(7) Hd|2j+13i () Hd|2jgi+1 Ga(T)
(25 — D)(a™ — 1)(a™ ~ 1)
(7 — 1) — 1) (¥ — 1)
_ @ - 1)
o @rm=])
3+ 1
™+ 1

= 22" — ™4 1.

Pom (T)

Lastly, let m be of the form m = 273"m/ where i, j and m’ are non-negative

integers and m’ > 1. The same technique as above is used to partition the
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divisors into different sets. Now

{dez:d2*'3™ ' m/ d #2413 m'}
={d:d|2’3'm'} U{2d: d|3m'} U {3F'd : d|2'm'}
U {273 d)m! d #£ m'}

where the second and third sets can be written as

{2 d|3'm/} = {d: d|27'3'm/, 277|d}
={d: d|27T'3m'}\ {d: d|2/3'm'}

and

{3d: d2m'} = {d: d]32m’, 37|d}
={d: d[3*'2m'} \ {d: d|2’3'm'}.

This partition is used to compute the cyclotomic polynomial.

¢6m(x) = ¢2j+13i+1m/ (x)

B x6m -1
H d|23+13i+1m/ ¢d(x)
d£20+13i+ 1y
B o —1 [ai5im @a(@) [ gjaiginy @a(2)
Hd|2j3im/ ¢d<x) Hdim// ¢2j+13i+1m/ (x) x2m 1 r3m
(2% — 1) (2™ — 1) (™ — 1) 1
(@™ = 1) (2> = 1) (@ — 1) \ TT g doitr30410 ()
d£m/
B 3"+ 1 1
™+ 1 H djm! Doit+13i+1y (l‘)

d#m/
2 — ™41

- H djm! ¢2j+13i+1m/(l') ’

d#m/

From these results the next lemma is obtained.
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Lemma 4.13. The 6m'" cyclotomic polynomial ¢em(x) over the field F,

divides the polynomial x*™ — x™ + 1.

4.3.3 Computations

Attention is given to computation in a finite field defined by an optimal
normal basis and to the computation of a specific element in a linear shift
register. An optimal normal basis is used for the construction of the field F2m
over which the EXTR polynomials are defined. The sequence computations

are specific to the shift register used in the EXTR protocol.

Optimal Normal basis Computations

The next lemma gives the number of multiplications in F, needed to
compute an operation in Fy2m. The number of additions needed is also given.
Addition is normally not added in the complexity analysis, but the addition
count is used in the construction of the computational models in the next

chapter.

Lemma 4.14. |16, Lemma 5| Let p and 2m + 1 be prime numbers, where p

is a primitive element in 25, . Let v,y,z € Fpom.

(1) Computing x +y takes 2m additions in F,.

(2) Computing P is for free.

(3) Computing xy takes 4m? multiplications and 4m?* — 2m additions in F,.

(4) Computing vz —yzP" takes 4m?* multiplications and 8m? — 4m additions

in .

Proof. Let x,y,z,a € Fpm such that {o(«) : 0 € G} is an optimal normal
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basis with

2m

x = Z z;0i(a)
m

y= Z yioi(c)
i=1

2m
z = Z zioi(a)
i=1
and a € G the automorphism which is the index to the all —1 row of the

matrix d,.

(1) An element in F2m can be represented by a 2m dimensional vector over

[F,, from which the result follows.

(2) Represent the element = with a normal basis. Then
2m p
P = (Z xiai(oz)>
i=1
2m
= Z zio;(a)?
i=1

2m
= Z Ti0;11 (CY)
=1

Note that z? is just a cyclic right shift of the coefficients of x. Also note

that Oom+1 — O1.

(3) Multiplication of z and y is done with an optimal normal basis. The
number of multiplications needed is 4m? in F,. This is seen from the

formula of multiplication given in Section [4.3.2]

Ty = Z Tolry Zda(a’17,a’1’y)7(a)

o,yeG TG

= Z ( Z :E,,yvaloé(a_lT7 0_17)> 7().

T€G \oyEG
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The number of additions needed is determined by fixing the automor-
phism 7 in the above equation and determining when d,(c~'7,0717)
is non-zero. Let k index the row consisting of only minus ones, i.e.
o' = ky~!. Any other row must contain only a single 1, since the ba-
sis is optimal normal. Thus only 2m additions are needed to compute
the coefficient for a fixed 7. Since the same summation is done for each

coefficient, the total number of additions is 2m(2m — 1) = 4m? — 2m.

Note that
m 2m
2= Zziaim(a) + Z 2i0i_m(Q).
i=1 i=m+1
Now
2m  2m
rz —y = Z Z To, 2%, Z do(o_iT,0_;05)7T()
i=1 j=1 e
2m m
- Z Z Yo, %o, Z do(0_iT,0_i0j1m)T ()
i=1 j=1 reG
m 2m
=7(a) Z{ (Z Zs, Z (g, do(0_iT,0_0}) — Yo, do(0_;T, Ui0j+m)))
reG  \j=1 i=1
2m 2m
+ ( Z Zoj Z (xaida<0-—i7-7 U—in) - ymda(a—ﬂ—? U—iaj—m))> }
j=m+1l =1

Since the products o;(a)o;(a) are ‘free’; a total of 4m? multiplications
in [F, is needed. The number of additions is determined by the number

of non-zero entries in the matrix d,. Now consider the pairs
(da (Cl'_ﬂ‘7 O'_iO'j) s da (O'_ﬂ', O—igj—m))

fori,7=1,2,...,2m and 7 a fixed automorphism. First consider when
the pairs have —1 as the first coordinate. This only happens when
ord(oj_;) = 2 which is the case if 2m|2(j —4), i.e. m|(j —4) and thus

m|(j —i—m) and 0j_; = 0j_;_p,. Thus a coordinate is —1 if and only if
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both coordinates are —1. This happens 2m times. The only other possi-
ble cases are (1,0) and (0, 1), which happen only 2(m — 1) times. Thus
the number of additions needed to compute the coefficient of 7 is 4m — 2.

The total number of additions is now given by 2m(4m — 2) = 8m? — 4m.

]

Sequence computations

The characteristic sequence (s;) of f(x) will be used to compute the poly-
nomial f,(x) for positive integers n. The private key will determine the

subsequences (s;,) with characteristic polynomial
fulz) =23 — 8,22 + 2" 0 — 1,

as the associated public key. Attention is now given to the computation
of a specific term in the characteristic sequence of the polynomial f(z) =
23 — ca® + "2 — 1 € Fjen(z]. This computation is needed in Algorithm [J]
and in the computation of the shared secret.

The computation of the sequence terms is done in a similar manner as in
CFE. The reciprocal sequence of (si) is generated by the reciprocal of f(z),

3

namely f~1(z) = 2®— " 2?4+ cx — 1, with associated linear recurring relation

S = cpmskﬂ —CSp_o + Spy3 for kK < —1

and with the same initial values as the characteristic sequence of f(x). It
follows that the terms of the reciprocal sequence of f(x) also satisfy the
relation (4.9), namely s, = af +af + ok, k< —1.

The characteristic and reciprocal sequences of f(x) are therefore the sub-

[e.e]
—o0?

sequences (sg)r>o and (sg)g<—1 of the sequence (sj) with initial values

so =3, 51 =cand sy = — 2¢?". No distinction will be made between the

first two sequences as both subsequences satisfy the same linear relation

Skt+3 = CSgao — ' cpi1 — ¢y for k € Z.
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The following lemmas provide relations that are used in the computation

of the sequence terms.

Lemma 4.15. [13, Lemma 2.3.2 part (v)| The terms of the characteristic

and the reciprocal sequences (si) generated by
f(x) =2 —cx® + "z — 1 € Fpem[a]
satisfy the property
S_p = Symp =50, k> 0.

Proof. Let ap, oy and ay be the roots of the polynomial f(x). Then from
Lemma it follows that f(a;”") = 0 for all i and therefore the exponent

—p™ maps a root of the polynomial to a different root, i.e. in set notation

m

{ag?”",ar”" 05" } = a0, a1, a2}, Now from (1.9

—k —k —k
mp, mp mp
=af "+al "+ ab
- Spmk

o an
=S5 -

]

It follows from the above lemma that in EXTR the reciprocal sequence is
not needed in the computation of s, as is the case in CFE. In the sequel the

sequence (si)%,, will be referred to as the characteristic sequence of f(x).

Lemma 4.16. [13| Lemma 2.3.4| The relation

77

p g3
Sutv = SuSv — Sy Su—v + Su—2v, U,V € 7

holds for the characteristic sequence (sx) of the polynomial

2 —cx? + " x — 1€ Fpenlz].
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Through substitution it follows that
(1) s, = 52 — 25"

(2) Sont1 = SnSpi1 — st + Sn 1
(3) Son1 = 8psn_1 — "L S0

Proof. The relation
Sutv = SuSv — ngsufv + Sy—20
is obtained by the following computations:

3u+v _a'ng'u + au+v + au+v
suSy =(ag + of + aiy)(ag + af + a3)
=af™ + afjal + afal + afaf + o’ + afal + abal
+ ayal + oyt
=Su4v + Qp0] + apay + afag + ofay + agaf] + ajad,
2" Sy_y =5_ySy_p (Lemma [£.15)
:(a6”+af”+ag”) (046“”4—04 Yty U)
_ag 21;_’_0[81)0/{1;_’_0[01) 12Lv+alv uv+au 2v+a1v u—v
+a2fu ¥~ v+a2v o v+au 2v
—Su 2v+a0’U ’11LU+aOU 12LU+a1U uv+a1v uUu—v
+a2’U u— ’U_'_&2’U uU—v

=Sy_2y + Q0] + 0j0y + ah0q + agag + ajag + agal.
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In the last step, the relation agayas = 1 is used. Now

pm o v U v u v u
SuSv — Sy Su—v T Su—20 =Sutv T Qo + Q105 + Q50

+ ooy + afjag + agad
— (azaf + aja; + azag + agas + ajag + agay)
=Sy+tuv-

Using the above relation, Lemma [4.15] and substitution, the required num-

bered relations are obtained by using the fact that s; = c.

(1) The substitutions v = n and u = n give

Son = 52 — 505E 4 Sp_on
=52 -3 +5.,
=52 —3sP" 52"
= 52 —2sP",

(2) The substitutions v =n and u =n + 1 give

_ p"™
Son1t1 = SpSpnt1 — S, S1 1 Snt1-2n

m

= SpSpt+1 — CSE + S1-4

= SpSpy1 — st + S0
(3) The substitutions v =n and u =n — 1 give

_ p"

Son—1 = SpSn—1 — S, S—1 T Sn—1-2n
_ p™ p™
= SnpnSpn—-1 — S1 S + S no1

— ™ P
= SpSp—1 — " sh 4+ s,

O

The term s, in the characteristic sequence is computed as discussed in
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Section [3.2] The index n is written in its binary form
n=>y n;2". (4.17)
=0

The index can be computed by using the linear relation ¢; = n;+2¢t;_;, where
j > 0and ty = ng # 0. The value n is given by t,.

Two functions F,,, with n; € {0,1} are needed in the computation of
Sp. These functions are defined, using Lemma [£.16] such that they map
(st].,l, St stﬁl) to (stﬁl,l, Stii1 Stj+1+1>- The functions F;,; are defined as

follows:

If Njt1 = 0 then tj+1 = 2tj:

— P P
Stj+1—1 - Stjstj—l - Cp st]' + Stj+1

— 2 P
Stjp1 = St; — 28¢,;

" p
Stjp1+1 = St;St;41 — €Sy, + St;-1-

If Njy1 = 1 then tj+1 = 2tj + 1:

— 2 P
Stj—1 = S, — 25y,

St

" "
41 = St;St;41 — CSy, + St,-1

_ 2 -9 p™
Stipi+l = Sg41 T 4Sp41-

Note that the above functions can be computed using less multiplications if
the form zz — y2P" is used.

These functions are used in Algorithm [10[to compute the n'® term in the
characteristic sequence.

Algorithm [10] is based on the repeated squaring algorithm, where F{ cor-
responds to squaring while F; corresponds to squaring and multiplication.
The value of M starts with 3 as its center element and the index of this
element is 0. In the ‘for loop’ the binary expansion of n is scanned. The bit
scanned determines whether Fj or [ is executed. The index of the center el-

ement of M will thus satisfy the relation t; = n; +2t;_;. After the execution
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Algorithm 10: Computation of (s, 1, Sn, Sni1)

Data: The index n = (n,,n,_1,...,n9), and c defining the
characteristic sequence (s,)
Output: (s,_1, Sn, Snt1)
M — (cpm,B,c);
for : =0 tor do
M — F,_(M);
4 end
5 (Sn_1, Sn, Sni1) — M;

(SR I

of the ‘for loop’ the value of ¢, is n as required.

Lemma 4.17. Let f(z) be a system polynomial, as defined in and (sy)
the associated characteristic sequence. The n'* term in the sequence can be

computed with
16m?logy n + 4m*H,,
multiplications and
(72m2 — 36m + 7) logy n — (8m2 —4m + 1)Hn

additions in F,, where H, is the Hamming weight of [n].

Proof. In Lemma the number of operations in F, needed to compute the
functions F,,, in F2m is given. For the function Fy the number of multipli-
cations in T, is 16m? and the number of additions in F, is 32m? — 16m + 3.
For the function F; the number of multiplications in F, is 20m? and the
number of additions in F, is 40m? — 20m + 4. Therefore the total number of

multiplications in F, is

H,(20m?) + (logyn — H,)(16m*)
= 16m?log,n + 4m*H,
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and the total number of additions in F,, is

H,(40m* — 20m + 4) + (logyn — H,)(32m* — 16m + 3)
= (72m* — 36m + 7) logyn — (8m* — 4m + 1) H,,.

]

Example 4.18 (EXTR). In this example a characteristic of 101 is used and
m = 1. Thus the original XTR system is given here. Computations of the
shift register are computed in F,2 = F,[z]/<g(x) >, where g(z) = 2* + 2z + 1.
The basis used for Fe is an optimal normal basis given by {a, a?} where a
is a root of g(z).

The system polynomial is selected as
f(z) =2 — (2la + 70®)2” + (Ta + 21a”)z — 1

and is of order 103. Let the private keys of Alice and Bob be privy = 51
60 + 5202 and
pubg = T7a + 6402, as computed by Algorithm For Alice to compute
the shared secret, pubg and priv, are provided as input for Algorithm

and privg = 3. The associated public keys are puby =

The triples computed for each iteration of the ‘for loop’ in Algorithm [10] are
given in Table below. From the table it is seen that the shared secret is
17a + 7902

] Iteration \ k; \ t; H St;—1 \ S, \ St;4+1 ‘
1 — | 0 || 64 + 77a? | 98a + 98a? | TTar + 64a”
2 1| 1 | 98x+98a? | 77a + 6402 | 7Tl + 6002
3 1| 2 || Tla+60a? | 73c + 84a? | 10 + 1502
4 015 28 + 7a? | 78a + 90a? | Hda + 6202
5 0 |11 || 7o+ 8202 | 41 + 69a? | 39a + 87a?
6 1|22 | 76 4+ 8202 | 29 4+ 3202 | 3a + 1002
7 1 [ 45 || 13a+38a2 | 17a + 7902 | 200 + 440

Table 4.2: Computing the public key of Alice in EXTR
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4.3.4 Security

In Section [I.2] three necessary properties of a public key distribution sys-
tem are given. These properties translate into three problems very similar
to those in Section 2.2

Definition 4.19 (EXTR Discrete Logarithm Problem). Let G C ]F‘;6m be a
finite cyclic group generated by «. The problem of computing from g € G
a number a such that Try g, /F 5, (") = T7s g,/ ,,, (0) is called the EXTR
Discrete Logarithm Problem. Notation: a = EXTRDL, (/).

Definition 4.20 (EXTR Diffie-Hellman Problem). Let G C IF;M be a finite
cyclic group generated by «. The problem of computing Tr]ppem J om (oﬂb)
from Trg g,/ o, (") and Trg o g o, (a?) is called the EXTR Diffie-Hellman

Problem. Notation:
Tre g0 5, (0™) = EXTRDH (Tre 5,0, (0°), T, () )
P P P P P P

Definition 4.21 (EXTR Diffie-Hellman Decision Problem). Let G C IE‘;Gm
be a cyclic group with generator a. Let a®a’,a¢ be chosen independently

and randomly in G according to the uniform distribution. Given the triples

(TT]prim /]FPQm (Oéa), T’f’]Fp6m /szm (O[b> s TTFPGm /szm (O./ab))

and

<TT]FI)677L /]Fp2m, (aa) Y TT]FPGm, /]FPQm (ab) ’ TT]FPBm, /]FPZm (ac)>

in random order, the EXTR Diffie-Hellman Decision Problem is to decide,
with probability greater than 1/2; which of the triples is the correct EXTR
Diffie-Hellman triple. Notation:

EXTRDHD <T7"]Fp6m 5,0 (@), T8 0 /5 00 (00). T78 o o (ac>)

The main difference between the above problems and those defined in

Section 2.2] is the incorporation of the trace function. The occurrence of the
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trace function is a direct result from the use of polynomials to represent the
public key, see Section

Since the trace is the sum of conjugates the solution to the first problem is
not unique. In fact the problem has three solutions. The additional solutions
are a direct consequence of the reduction in the key space. Now it follows
that

XTRDL(a%) = XTRDL (oﬂp“)
and

b
EXTRDH <TT]Fp6'm /]FPZm (aa)’ TTIFPSm /]Fp2m (Oé ))
2m b 4m
—EXTRDH (Tnppam /5 (aap )erpﬁm /5 am (a v ))
The fact that the solution is not unique is of no concern and the reduction
in the key space is so small that it can be ignored. The theorem given below
gives the assurance that there exists no security risk due to the different
solutions. Two problems A and B are (a,b)-equivalent, where a and b are

positive integers, if A can be solved by invoking a instances of B and if B

can be solved by invoking b instances of A.

Theorem 4.22. |13, Theorem 5.2.1] Let v be a root of order q of an EXTR

system polynomial. Then the following equivalences hold:
(1) The EXTRDL problem is (1,1)-equivalent to the DL problem in <o >.
(2) The EXTRDH problem is (1,2)-equivalent to the DH problem in <o >.

(8) The EXTRDHD problem is (3,2)-equivalent to the DHD problem in
<a>.

Proof. Let a,d,b € Fj2m and y, z, z,w be positive integers and r(a) be any
root of the EXTR system polynomial defined by a, i.e.

G m
22 —ar?+ad"r — 1.
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Note r(a) can be one of three roots and can be computed in polynomial time

with the Scipione del Ferro method.

(1) To compute DL(a¥), let + = EXTRDL (Terﬁm /Fm (ay)), then DL(a¥)
z-p*™ (mod q) for either j = 0, j = 1 or j = 2. Conversely EXTRDL(a) =
DL, (r(a)).

(2) To compute DH (a®, a¥), first compute

d; = EXTRDH (Trmpﬁm (07 ), T o e, (ay)>

for i = 0,1, Le. d = Tre, /e, <a<x+i>yp2mj) for some j = 0,1,2.
Therefore

r(d) € { (@)™ j = 0,1,2)

= {(DH(ozm,ozy) : ozyi)pmj 17 =0,1, 2}.

To determine DH (o, oY) find two roots r(dp) and r(d;) such that r(dy) = r(d;)a?
then