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Summary

The maximum entropy principle, pioneered by Jaynes, provides a

method for finding the least biased probability distribution for the

description of a system or process, given as prior information the

expectation values of a set (in general, a small number) of relevant

quantities associated with the system. The maximum entropy method

was originally advanced by Jaynes as the basis of an information the-

ory inspired foundation for equilibrium statistical mechanics. It was

soon realised that the method is very useful to tackle several prob-

lems in physics and other fields. In particular it constitutes a power-

ful tool for obtaining approximate and sometimes exact solutions to

several important partial differential equations of theoretical physics.

In Chapter 1 a brief review of Shannon’s information measure and

Jaynes’ maximum entropy formalism is provided. As an illustration

of the maximum entropy principle a brief explanation of how it can be

used to derive the standard grand canonical formalism in statistical

mechanics is given.

The work leading up to this thesis has resulted in the following pub-

lications in peer-review research journals:

• J.-H. Schönfeldt and A.R. Plastino, Maximum entropy approach

to the collisional Vlasov equation: Exact solutions, Physica A,

369 (2006) 408-416,

 
 
 



• J.-H. Schönfeldt, N. Jimenez, A.R. Plastino, A. Plastino and

M. Casas, Maximum entropy principle and classical evolution

equations with source terms, Physica A, 374 (2007) 573-584,

• J.-H. Schönfeldt, G.B. Roston, A.R. Plastino and A. Plastino,

Maximum entropy principle, evolution equations, and physics

education, Rev. Mex. Fis. E, 52 (2)(2006) 151-159.

Chapter 2 is based on Schönfeldt and Plastino (2006). Two different

ways for obtaining exact maximum entropy solutions for a reduced

collisional Vlasov equation endowed with a Fokker-Planck like colli-

sion term are investigated.

Chapter 3 is based on Schönfeldt et al. (2007). Most applications of

the maximum entropy principle to time dependent scenarios involved

evolution equations exhibiting the form of a continuity equations and,

consequently, preserving normalization in time. In Chapter 3 the max-

imum entropy principle is applied to evolution equations with source

terms and, consequently, not preserving normalization. We explore in

detail the structure and main properties of the dynamical equations

connecting the time dependent relevant mean values , the associated

Lagrange multipliers, the partition function, and the entropy of the

maximum entropy scheme. In particular, we compare the H-theorems

verified by the maximum entropy approximate solutions with the H-

theorems verified by the exact solutions.

Chapter 4 is based on Schönfeldt et al. (2006). In chapter 4 it is

discussed how the maximum entropy principle can be incorporated

into the teaching of aspects of theoretical physics related to, but not

restricted to, statistical mechanics. We focus our attention on the

study of maximum entropy solutions to evolution equations that ex-

hibit the form of continuity equations (eg. Liouville equation, the

diffusion equation the Fokker-Planck equation, etc.).
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Chapter 1

Introduction

The maximum entropy principle (Beck and Schlögl (1993); Jaynes (1963); Katz

(1967)) was pioneered in Jaynes (1957) where Jaynes used the maximum entropy

principle to show how the computational rules for statistical mechanics can be

inferred by considering statistical mechanics as a form of statistical inference. He

showed how statistical mechanics is connected to information theory by adopting

a viewpoint where thermodynamic entropy and information entropy appear as

the same concept. The principle describes a method for finding the least biased

probability distribution for the description of a system or process, given as prior

information the expectation values of a set (in general a small number) of rel-

evant quantities associated with the system. It constitutes a powerful tool for

obtaining approximate (sometimes exact) solutions to several important partial

differential equations of physics Borland et al. (1999); da Silva et al. (2004); Frank

(2005); Plastino et al. (1997a,b,c); Tsallis and Bukman (1996) and other scientific

disciplines Borland (2002); Gell-Mann and Tsallis (2004).

Consider the situation where a physical quantity x can assume the discrete

values xi (i = 1, 2, . . . , n). The probabilities fi corresponding to the xi are not

known and form a probability distribution f . The only information known about

the system is the expectation values for the j = 1, 2, . . . ,m dynamical quantities

gj(x) (for example through experiment),

〈gj(x)〉 =
∑

i

figj(xi), (1.1)
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1. INTRODUCTION

and the normalization condition for the probabilities

〈1〉 =
∑

i

fi = 1. (1.2)

A number of different probability distributions f may yield expectation values

that are the same as those obtained via experiment, and thus these different prob-

ability distributions all describe the observed physical phenomena. The question

then must be which f is the best. The maximum entropy argument is that the

probability distribution that contains the least information must be the better

one. Any extra information that a probability distribution contains has no bear-

ing on the expectation values obtained from the experiment, and thus has no

physical justification. The extra information represents knowledge about certain

expectation values that were never observed, and thus should not be described

by the probability distribution. A probability distribution with no extra informa-

tion will describe the physical results obtained without making any assumptions

about measurements that were never made. Thus the f that has the maximum

missing information or uncertainty (whilst still describing the observed expecta-

tion values) will be the least biased distribution. The problem is then how to

decide which f has the most missing information.

In Chapter (3) it is discussed how the maximum entropy principle can also be

applied to positive densities, in other words a distribution that is not normalised

to 1. In fact the normalisation of the distribution could even vary with time.

1.1 Missing Information (Uncertainty) and En-

tropy

First a suitable measure for the missing information (I) of a probability distri-

bution is required. Once we have such a measure we can try to maximise it in

order to obtain the probability distribution with the least extra information. A

measure of missing information is the same thing as a measure of the uncertainty.

Such a measure must conform to certain requirements (Kapur (1989); Khinchin

(1957); Nielsen and Chuang (2000)):

2

 
 
 



1.1 Missing Information (Uncertainty) and Entropy

i. It should be a function of the probabilities, ie.

I(f) = I(f1, f2, f3, . . . , fn). (1.3)

ii. It should be a continuous function so that small changes in the probabilities

only effect a small change in I.

iii. It should remain the same if the probabilities are shuffled. Thus I should be

a symmetric function of the probabilities.

iv. I must not change if an impossible event is added to the probability distri-

bution,

I(f1, f2, f3, . . . , fn, 0) = I(f1, f2, f3, . . . , fn). (1.4)

v. As one of the fi approaches one and the rest zero, uncertainty is clearly

decreasing and thus the measure of missing information must approach zero.

vi. The measure must have its maximum, for a given n, when the uncertainty is

maximum, ie., when the probabilities fi are all equal:

fi = 1/n (i = 1, 2, . . . , n). (1.5)

vii. The maximum for I(f1, f2, f3, . . . , fn) should increase as n increases.

viii. The measure for missing information should be additive, so that the sum of

the missing information for two independent probability distributions f and

p, corresponding to discrete physical quantities xi (i = 1, 2, . . . , n) and yh

(h = 1, 2, . . . , l) respectively, is equal to the missing information of the joint

scheme f ∪ p. In other words,

I(f, p) = I(f) + I(p). (1.6)

Thus the amount of information gained by performing an experiment on the

joint scheme, and finding say x3y3, should be the same as the information

gained by doing two separate experiments with the results x3 and y3.

3

 
 
 



1. INTRODUCTION

ix. A generalisation of (viii) is that the missing information for a joint probability

scheme f ∪ p, where f and p are not necessarily independent from each

other, is equal to the missing information of one of the schemes and the

mathematical expectation of the missing information of the other scheme,

conditional on the realisation of the first scheme:

I(f, p) = I(f) +
∑

i

fiIi(p), (1.7)

where Ii(p) is the conditional missing information of the probability distribu-

tion, p, corresponding to the value xi in the probability distribution f . The

term on the right of equation (1.7) is then the mathematical expectation of

I(p) with respect to the probability distribution f .

Shannon (1948), pioneered information theory and the measure of information.

The measure for missing information I (as proposed by Shannon) for the discrete

probability distribution f is given by

I = −k
n∑
i

fi ln fi, (1.8)

and for a continuous probability distribution, f(x), by

I = −k

∫
f(x) ln f(x)dx, (1.9)

where the constant k is a positive number. These measures satisfy all the re-

quirements (i-ix) as set out above. The constant k, will determine the unit of

information used in a given problem, for convenience usually set to 1. Khinchin

(1957), showed that any measure that satisfies requirements (ii,iv,vi and ix) must

be of equation (1.8)’s form. Equations (1.8) and (1.9) are also referred to as

the information entropy equations since, with k = kB, the Boltzmann constant,

they are identical to the thermodynamic entropy in statistical mechanics (Reif

(1965)). There are however other formulations for the information measure that

do not conform to all the requirements. Renyi’s entropic measure for example

satisfies requirements (i-viii) and a modified version of (ix), see (Kapur (1989);

Rényi (1961)). Havrda and Charvat (1967) obtained non-additive measures of en-

tropy by only satisfying requirements (i-vii),see also (Kapur (1989)). These other

4

 
 
 



1.2 Formulation of the Maximum Entropy Principle

information measures sometimes prove useful to describe certain situations, and

sometimes an alternative to Shannon information is the only measure that pro-

vides solutions for a given situation. In general, however, Shannon’s measure

remains the most useful. Tsallis entropy is a generalization of the Boltzmann-

Gibbs entropy and is used in nonextensive statistical mechanics.

1.2 Formulation of the Maximum Entropy Prin-

ciple

In order to maximize equation (1.8) we take the constraints, equations (1.2) and

(1.1), into account by introducing the Lagrange multipliers k(λ0−1) and kλj and

then varying I ′:

I ′ = I − k(λ0 − 1) 〈1〉 − k
m∑
j

λj 〈gj(x)〉

= −k
n∑
i

fi ln fi − k(λ0 − 1)
n∑
i

fi − k
m∑
j

λj

n∑
i

figj(xi)

= −k
n∑
i

fi

(
ln fi + λ0 − 1 +

m∑
j

λjgj(xi)

)
, (1.10)

the variation is without restriction and with respect to fi

δI ′ = −k
n∑
i

δfi

(
ln fi + λ0 − 1 +

m∑
j

λjgj(xi)

)

−k
n∑
i

fi δ

(
ln fi + λ0 − 1 +

m∑
j

λjgj(xi)

)

= −k
n∑
i

δfi

(
ln fi + λ0 +

m∑
j

λjgj(xi)

)
+ k

n∑
i

δfi

−k
n∑
i

fi (δfi/fi)

= −k

n∑
i

δfi

(
ln fi + λ0 +

m∑
j

λjgj(xi)

)
. (1.11)

5

 
 
 



1. INTRODUCTION

Since δI ′ vanishes for arbitrary δfi we have that

0 = ln fi + λ0 +
m∑
j

λjgj(xi)

ln fi = −λ0 −
m∑
j

λjgj(xi)

fi = exp

(
−λ0 −

m∑
j

λjgj(xi)

)
. (1.12)

By substituting into equation (1.2) λ0 can be determined

1 =
n∑
i

exp

(
−λ0 −

m∑
j

λjgj(xi)

)

ln 1 = ln

(
e−λ0

n∑
i

exp

(
−

m∑
j

λjgj(xi)

))

λ0 = ln
n∑
i

exp

(
−

m∑
j

λjgj(xi)

)
λ0 = ln Z(λ1 . . . λj) , (1.13)

where

Z (λ1 . . . λj) =
n∑
i

exp

(
−

m∑
j

λjgj(xi)

)
, (1.14)

is the partition function.

Substitution of equation (1.12) into equation (1.1) gives a set of equations

from which the λj can be determined

〈gj (x)〉 =
n∑
i

exp

(
−λ0 −

m∑
h

λhgh(xi)

)
gj(xi)

= e−λ0

n∑
i

exp

(
−

m∑
h

λhgh(xi)

)
gj(xi)

= − 1

Z

n∑
i

∂

∂λj

exp

(
−

m∑
h

λhgh(xi)

)

6

 
 
 



1.2 Formulation of the Maximum Entropy Principle

= − 1

Z

∂

∂λj

Z

= −Z
1

Z2

∂

∂λj

Z

= −Z
∂

∂λj

1/Z

= − ∂

∂λj

ln Z, (1.15)

these equations are often intractable and have to be solved numerically.

The entropy of distribution (1.12) is the maximum entropy that can be ob-

tained in an unbiased fashion with the given prior knowledge. This entropy, with

k = 1 reduces to

Smax = −
n∑
i

fi ln fi

= −
n∑
i

fi ln

[
exp

(
−λ0 −

m∑
j

λj gj(xi)

)]

= −
n∑
i

fi

(
−λ0 −

m∑
j

λj gj(xi)

)

= λ0 +
m∑
j

λj

n∑
i

fi gj(xi)

= λ0 +
m∑
j

λj 〈gj(x)〉

= ln Z +
m∑
j

λj 〈gj(x)〉 . (1.16)

The Lagrange multipliers are also related to the expectation values through

the following differential equation

∂S

∂ 〈gj (x)〉
=

∂

∂ 〈gj (x)〉

(
λ0 +

m∑
h

λh 〈gh(x)〉

)

=
∂λ0

∂ 〈gj (x)〉
+

m∑
h

(
∂λh

∂ 〈gj (x)〉
〈gh(x)〉+ λh

∂ 〈gh (x)〉
∂ 〈gj (x)〉

)

7

 
 
 



1. INTRODUCTION

=
m∑
k

∂ ln Z

∂λk

∂λk

∂ 〈gj (x)〉
+

m∑
h

∂λh

∂ 〈gj (x)〉
〈gh(x)〉+

m∑
h

λhδ (h− j)

=
m∑
k

[
−〈gk (x)〉 ∂λk

∂ 〈gj (x)〉

]
+

m∑
h

〈gh(x)〉 ∂λh

∂ 〈gj (x)〉
+ λj

= λj. (1.17)

.

From (1.17) another very useful relation is also found,

∂λh

∂ 〈gj (x)〉
=

∂

∂ 〈gj (x)〉
∂S

∂ 〈gh (x)〉

=
∂2S

∂ 〈gh (x)〉 ∂ 〈gj (x)〉

=
∂λj

∂ 〈gh (x)〉
. (1.18)

Equations (1.15-1.18) are also known as the Jaynes’ relations. Due to their great

importance these equations have been summarised in table (1.1). These rela-

tions are of crucial importance in that they form the basis of the connection be-

tween statistical mechanics and thermodynamics in Jaynes’ information-theoretic

approach to statistical mechanics (Jaynes (1983)). All the basic equations of

equilibrium thermodynamics are particular instances of, or can be derived from,

equations (1.15-1.18).

On occasion in the following chapters some of the equations in this section

will be repeated, most notably those summarised in table (1.1). This is done so

that each chapter will be self-contained in as far as is reasonable.

1.3 The Grand Canonical Ensemble

As an example we will briefly look at the grand canonical ensemble formalism

in statistical mechanics. The system has a probability pi to be in the i’th micro

state at any given time. Each micro state i is characterised by a total energy E(i)

and a total number of particles N(i). For instance, in the case of a quantum ideal

gas the label i represents a string of occupation numbers: i →
(
n

(i)
0 , n

(i)
1 , n

(i)
2 , . . .

)

8

 
 
 



1.3 The Grand Canonical Ensemble

〈gj (x)〉 = − ∂

∂λj

ln Z,

Smax = ln Z +
m∑
j

λj 〈gj(x)〉 ,

∂S

∂ 〈gj (x)〉
= λj,

∂λh

∂ 〈gj (x)〉
=

∂2S

∂ 〈gj (x)〉 ∂ 〈gh (x)〉
=

∂λj

∂ 〈gh (x)〉
.

Table 1.1: Jaynes’ relations

where n
(i)
k stands for the occupation number of the k’th single particle state and

εk is the energy of the single particle state. In this case we have:

N (i) =
∑

k

n
(i)
k , (1.19)

and

E (i) =
∑

k

n
(i)
k εk. (1.20)

Having as prior knowledge the mean values, 〈E〉 =
∑

i piE(i) and 〈N〉 =
∑

i piN(i)

we can write down a maximum entropy ansatz for the probability distribution by

considering equations (1.12), (1.13) and (1.14):

pi =
exp (−βE (i)− αN (i))∑
i exp (−βE (i)− αN (i))

, (1.21)

where β and α are the Lagrange multipliers corresponding to the mean energy and

the mean number of particles of the system respectively. The partition function

is then given by

9

 
 
 



1. INTRODUCTION

Z =
∑

i

exp (−βE (i)− αN (i)) . (1.22)

As we shall see, the basic equations of thermodynamics are recovered from the

Jaynes’ relations if we make the following identifications:

β → 1

kT
, (1.23)

and

α → − µ

kT
, (1.24)

where T is the absolute temperature, k is the Boltzmann constant and µ is the

chemical potential of the system. Now, according to equation (1.15) we have that

the mean energy is equal to

〈E〉 = − ∂

∂β
ln Z

= − ∂

∂β
ln

[∑
i

exp (−βE (i)− αN (i))

]

= −
∑

i
∂
∂β

exp (−βE (i)− αN (i))∑
i exp (−βE (i)− αN (i))

= −
∑

i E (i) exp (−βE (i)− αN (i))∑
i exp (−βE (i)− αN (i))

, (1.25)

and similarly for the mean number of particles we have

〈N〉 = − ∂

∂α
ln

[∑
i

exp (−βE (i)− αN (i))

]
= −

∑
i N (i) exp (−βE (i)− αN (i))∑

i exp (−βE (i)− αN (i))
. (1.26)

From these relations, that are well known in statistical physics, the values for β

and α can be determined. Using the results of (1.16) and remembering that our

entropic measure should now include the Boltzmann constant we find that

10

 
 
 



1.3 The Grand Canonical Ensemble

S = k
∑

i

pi ln pi

S/k = ln Z + β 〈E〉+ α 〈N〉
ln Z = S/k − β 〈E〉 − α 〈N〉

=
TS − 〈E〉 − µ 〈N〉

kT
(1.27)

where from thermodynamics µ 〈N〉 is the Gibbs free energy

G = 〈E〉 − TS + PV, (1.28)

where P is the pressure and V is the volume of the system. Equation (1.27) can

then be written as

ln Z =
PV

kT
, (1.29)

which is a well known equation in statistical physics. Lastly by considering equa-

tion (1.17) we get

∂S

∂ 〈E〉
= kβ =

1

T
, (1.30)

and

∂S

∂ 〈N〉
= kα = −µ

T
(1.31)

Summarising, we see that the thermodynamic formalism can be recovered

from Jaynes’ maximum entropy formalism. In general, the extensive thermody-

namic quantities (energy, number of particles, etc.) are to be identified with the

relevant mean values used as constraints in the maximum entropy approach. On

the other hand, the intensive thermodynamic quantities (temperature, chemical

potential, etc.) are related to the Lagrange multipliers appearing in the maximum

entropy distribution.

11

 
 
 



 
 
 



Chapter 2

Maximum Entropy Approach to

the Collisional Vlasov Equation:

Exact Solutions

2.1 Introduction

The collisional Vlasov equation is also known as the Boltzmann equation (Cercig-

nani (1988)), it describes the statistical distribution of particles in a low density

fluid (gas), and is used to study the transport of physical quantities (such as heat,

charge and density) through a fluid. The Boltzmann equation is only valid when

the density of the gas is not too high so that collisions between three or more

particles doesn’t occur. It is used to study diverse systems such as collisional

plasmas and a Brownian particle moving through a medium (El-Hanbaly and El-

garayhi (1998)), and is used in cosmology for example to model galaxy formation

(Steinmetz (1999)) by considering each star as a particle and assuming that the

long-range “collisions” only take place between pairs of stars. When collisions

are ignored (or the particles are only weakly interacting) the normal Vlasov (col-

lisionless Boltzmann) equation is used to describe the short time behaviour of a

system (Binney and Tremaine (1987)), (the collision term on the right of equation

(2.1) is then equal to zero).

The Boltzmann equation (Uhlenbeck (1957)) is a time evolution equation of

the particle density and in it’s usual form it reads,
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∂f

∂t
+ va

∂f

∂xa

+ Xa
∂f

∂va

=

∫
dv1

∫ ∫
g I (g, θ) (f ′f ′

1 − ff1) dΩ, (2.1)

where

Xa = − ∂

∂xa

U, (2.2)

and the density function f(x, v, t) is a time dependent function in velocity and

position space. U is the potential of an external force. The term on the right

hand side of the equation is the collision term and g = |v − v1| = |v′ − v′1| is the

relative velocity that turns over the angle θ during the collision. The prime and

index of the f ′s refer only to the velocity variable. I (g, θ) dΩ is the differential

collision cross-section for a collision in the solid angle dΩ.

Recently, El-Wakil, Elhanbaly and Abdou (from now on EEA) in (El-Wakil

et al. (2003)) proposed an interesting maximum entropy scheme for solving a

particular instance of the collisional Vlasov equation. In (El-Wakil et al. (2003)),

however, EEA obtained only approximate maximum entropy solutions of the al-

luded evolution equation. The aim is to show that the maximum entropy method

can be used also to generate exact solutions of the collisional Vlasov equation

studied by EEA.

In this chapter we consider two different ways for obtaining exact maximum

entropy solutions of the aforementioned equation. On the one hand, we identify

an appropriate set of five relevant mean values (moments) that evolve according

to a closed set of coupled, ordinary, linear differential equations. We show that

there are exact maximum entropy solutions associated with that set of moments.

These solutions can be studied focusing either on the equations of motion of

the moments themselves, or on the equations of motion of the corresponding

Lagrange multipliers. On the other hand, we prove that it is possible to obtain

exact solutions of the reduced equation considered by EEA, if the zeroth-order

moment of the solutions is explicitly taken into account.

Exact maximum entropy solutions of the collisional Vlasov equation itself

are discussed in Section II. Exact maximum entropy solutions of EEA’s reduced
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equation are investigated in Section III. Finally, some conclusions are drawn in

Section IV.

2.2 Direct Maximum Entropy Approach to the

Collisional Vlasov Equation

The collisional Vlasov equation that EEA studies has a Fokker-Planck collision

term (the term on the right of the equation), and is given by

∂f

∂t
+ v

∂f

∂x
− ∂φ

∂x

∂f

∂v
= γ

∂

∂v

[
vf(x, v, t) + α

∂f(x, v, t)

∂v

]
. (2.3)

The Fokker-Planck term (Cercignani (1988)) is derived when long range interac-

tions that take place over relatively long periods of time, eg. plasmas, galactic

systems etc., need to be considered.

After taking the derivative on the right and rearranging the terms in equation

(2.3) it becomes,

∂f

∂t
= −v

∂f

∂x
+

[
∂φ

∂x
+ γv

]
∂f

∂v
+ γα

∂2f

∂v2
+ γf, (2.4)

where γ and α are positive constants, and the potential φ is of a quadratic form,

φ(x) = φ0 + φ1x +
1

2
φ2x

2. (2.5)

Here we are also going to assume that φ2 > 0.

Let us now consider a maximum entropy ansatz (1.12) of the form

f(x, v, t) = exp[−λ0 − λ1x− λ2v − λ3x
2 − λ4xv − λ5v

2], (2.6)

where the λi, i = 0, . . . , 5 are appropriate Lagrange multipliers. The distribu-

tion (2.6) maximizes the Boltzmann-Gibbs entropic functional,

S[f ] = −
∫

f(x, v, t) ln f(x, v, t) dxdv, (2.7)

under the constraints imposed by normalization and the instantaneous mean

values of the quantities B1 = x, B2 = v, B3 = x2, B4 = xv, and B5 = v2. All
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the time dependence of the ansatz (2.6) is through the Lagrange multipliers λi,

which are time dependent. Inserting the ansatz (2.6) into the partial differential

equation (2.4), one obtains

0 = − f

(
−dλ0

dt
− x

dλ1

dt
− v

dλ2

dt
− x2dλ3

dt
− vx

dλ4

dt
− v2dλ5

dt

)
− vf (−λ1 − 2xλ3 − vλ4)

+ f (φ1 + γv + φ2x) (−λ2 − xλ4 − 2vλ5)

+ γαf
(
−2λ5 + (−λ2 − xλ4 − 2vλ5)

2) + fγ

= −φ1λ2 + γαλ2
2 − 2γαλ5 + γ +

dλ0

dt

+ x

(
−φ1λ4 − φ2λ2 + 2γαλ4λ2 +

dλ1

dt

)
+ v

(
λ1 − γλ2 − 2φ1λ5 + 4γαλ2λ5 +

dλ2

dt

)
+ x2

(
−φ2λ4 + γαλ2

4 +
dλ3

dt

)
+ vx

(
2λ3 − 2φ2λ5 − γλ4 + 4γαλ4λ5 +

dλ4

dt

)
+ v2

(
λ4 + 4γαλ2

5 − 2γλ5 +
dλ5

dt

)
, (2.8)

and then equating to zero separately terms proportional to xivj with different

exponents i, j, it is clear that the ansatz (2.6) constitutes an exact solution to

(2.4), provided that the Lagrange multipliers comply with the set of coupled

ordinary differential equations,

dλ0

dt
= φ1λ2 − γαλ2

2 + 2γαλ5 − γ, (2.9)

dλ1

dt
= φ1λ4 + φ2λ2 − 2γαλ4λ2, (2.10)

dλ2

dt
= −λ1 + γλ2 + 2φ1λ5 − 4γαλ2λ5, (2.11)

dλ3

dt
= φ2λ4 − γαλ2

4, (2.12)
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dλ4

dt
= −2λ3 + 2φ2λ5 + γλ4 − 4γαλ4λ5, (2.13)

and

dλ5

dt
= −λ4 − 4γαλ2

5 + 2γλ5. (2.14)

Alternatively, we can focus our attention on the set of ordinary differential

equations governing the evolution of the selected set of relevant mean values,

obtaining

d

dt
〈x〉 =

∫ ∫
x
df

dt
dx dv

=

∫ ∫ [
−vx

∂f

∂x
+ x (φ1 + φ2x + γv)

∂f

∂v
+ γαx

∂2f

∂v2
+ γxf

]
dx dv

=

∫
−v

∫
x
∂f

∂x
dx dv +

∫
x (φ1 + φ2x)

∫
∂f

∂v
dv dx

+

∫
x

∫
γv

∂f

∂v
dv dx + γα

∫
x

∫
∂2f

∂v2
dv dx + γ

∫ ∫
xfdx dv

=

∫
vfdv + 0 − γ

∫
xfdx + 0 + γ

∫
xfdx

= 〈v〉, (2.15)

and in a similar fashion,

d

dt
〈v〉 = −φ1 − φ2〈x〉 − γ〈v〉, (2.16)

d

dt
〈x2〉 = 2〈xv〉, (2.17)

d

dt
〈xv〉 = −φ1〈x〉 − φ2〈x2〉 − γ〈xv〉+ 〈v2〉, (2.18)

and

d

dt
〈v2〉 = −2φ1〈v〉 − 2φ2〈xv〉 − 2γ〈v2〉+ 2αγ. (2.19)

Changing appropriately the origin of the x-coordinate, it is possible to set the

linear term in the potential equal to zero. Consequently, and without loss of gen-

erality, we can set the coefficient φ1 = 0. In that case, the differential equations
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(2.15-2.16) governing the evolution of the mean values 〈x〉 and 〈v〉 are decou-

pled from the three equations (2.17-2.19) governing the evolution of 〈x2〉, 〈xv〉,
and 〈v2〉. The differential equations (2.15-2.16) admit the particular (linearly

independent) solutions

〈x〉1,2 = −
(

γ + σ1,2

φ2

)
exp(σ1,2t)

〈v〉1,2 = exp(σ1,2t), (2.20)

where

σ1,2 =
1

2

{
−γ ±

√
γ2 − 4φ2

}
. (2.21)

The general solution for the equations (2.15-2.16) is then,

〈x〉 = D1〈x〉1 + D2〈x〉2
〈v〉 = D1〈v〉1 + D2〈v〉2, (2.22)

where D1,2 are appropriate coefficients.

The equations (2.17-2.19) constitute a closed set of inhomogeneous linear dif-

ferential equations admitting the particular solution

W0 =

 〈x2〉0
〈xv〉0
〈v2〉0

 =

 α/φ2

0
α

 . (2.23)

This stationary solution, along with the stationary solution 〈x〉0 = 0, 〈v〉0 = 0

of equations (2.15-2.16), corresponds to the stationary solution of the collisional

Vlasov equation (2.4), exhibiting a Maxwellian velocity distribution.

The homogeneous set of differential equations associated with (2.17-2.19) can

be cast under the guise

d

dt

 〈x2〉
〈xv〉
〈v2〉

 = A ·

 〈x2〉
〈xv〉
〈v2〉

 , (2.24)
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where

A =

 0 2 0
−φ2 −γ 1
0 −2φ2 −2γ

 . (2.25)

The general solution of the homogeneous set of differential equations is

Whomog. =

 〈x2〉homog.

〈xv〉homog.

〈v2〉homog.

 =
3∑

i=1

ci e
li t Wi, (2.26)

where the (constant) coefficients ci are determined by the initial conditions, and

(Wi, li, i = 1, 2, 3) are the eigenvectors and eigenvalues of the matrix A. The

general solution to the equations is then,

W =

 〈x2〉
〈xv〉
〈v2〉

 = W0 + Whomog.. (2.27)

Now, the eigenvalues l of the matrix (2.25) are the roots of the equation

l3 + 3γ l2 + (2γ2 + 4φ2)l + 4φ2γ = 0, (2.28)

which has the three roots,

l1 = −γ +
√

γ2 − 4φ2, (2.29)

l2 = −γ −
√

γ2 − 4φ2, (2.30)

and

l3 = −γ, (2.31)

with the concomitant eigenvectors

W1 =


1

4φ2
2

[
γ +

√
γ2 − 4φ2

]2
− 1

2φ2

[
γ +

√
γ2 − 4φ2

]
1

 , (2.32)
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W2 =


1

4φ2
2

[
γ −

√
γ2 − 4φ2

]2
− 1

2φ2

[
γ −

√
γ2 − 4φ2

]
1

 , (2.33)

and

W3 =

 1
φ2

− γ
2φ2

1

 . (2.34)

Figure 2.1: The time evolution of the expectation values of x and v

We can see that the three eigenvalues of the matrix (2.25) have negative real parts.

Consequently, we have that, in the limit t →∞, the general solution of equations

(2.17-2.19) tends to the stationary solution (with a Maxwellian distribution).

It is important to realize that the mean values associated with any solution of

the collisional Vlasov equation (being it of a maximum entropy form or not)

evolve towards the aforementioned stationary values. This illustrates the fact

that any exact solution of the collisional Vlasov equation relaxes towards the

stationary distribution exhibiting a Maxwellian velocity distribution. This can

also be proved by recourse to an appropriate H-theorem.

In figure (2.1) and (2.2) the time evolution of the mean values, 〈x〉, 〈v〉, 〈x2〉,
〈xv〉, and 〈v2〉 are plotted. The arbitrarily chosen values for the constants are:
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Figure 2.2: The time evolution of the expectation values of x2, xv and v2

γ = 1.5, φ2 = 0.5, D1 = D2 = 1, α = 50, c1 = 10, c2 = 100, c3 = 1. As expected

the mean values evolve to a stationary solution.

The maximum entropy solutions based upon the set of relevant mean values

can be analysed focusing either on the equations of motion for the moments them-

selves, or on the equations of motion of the corresponding Lagrange multipliers.

Each of these two viewpoints is, of course, equivalent to the other one. The

“translation” between the mean values language and the Lagrange multipliers

language can be effected by recourse to the partition function,

Z = exp[λ0]

=

∫
exp[−λ1x− λ2v − λ3x

2 − λ4xv − λ5v
2]dxdv. (2.35)

Evaluating explicitly the Gaussian integrals associated with Z (assuming λ3, λ5 >

0 and 4λ3λ5 − λ2
4 > 0) we obtain,

Z =
2π√

4λ3λ5 − λ2
4

exp

{
λ2

1λ5 + λ2
2λ3 − λ1λ2λ4

4λ3λ5 − λ2
4

}
. (2.36)

The relevant mean values 〈Bi〉 and the associated Lagrange multipliers λi are

related by the Jaynes’ relations (see equations (1.15) and (1.17))
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2. MAXIMUM ENTROPY APPROACH TO THE COLLISIONAL
VLASOV EQUATION: EXACT SOLUTIONS

λi =
∂

∂〈Bi〉
S, (2.37)

and

〈Bi〉 = − ∂

∂λi

(ln Z). (2.38)

If the time dependent Lagrange multipliers are determined by solving the

equations of motion, then the (again, time dependent) mean values can be di-

rectly evaluated from equation (2.38).Thus, by substituting equation (2.36) into

equation (2.38), we can write the mean values in terms of the Lagrange multipliers

as:

〈x〉 =
2λ1λ5 − λ2λ4

λ2
4 − 4λ3λ5

, (2.39)

〈v〉 =
2λ2λ3 − λ1λ4

λ2
4 − 4λ3λ5

, (2.40)

〈x2〉 =
λ2

2λ
2
4 − 2λ4 (2λ1λ2 + λ4) λ5 + 4 (λ2

1 + 2λ3) λ2
5

(λ2
4 − 4λ3λ5)

2 , (2.41)

〈xv〉 =
λ3

4 − 2λ2
2λ3λ4 − 2 (λ2

1 + 2λ3) λ4λ5 + λ1λ2 (λ2
4 + 4λ3λ5)

(λ2
4 − 4λ3λ5)

2 , (2.42)

and

〈v2〉 =
4λ2

2λ
2
3 − 4λ1λ2λ3λ4 + (λ2

1 − 2λ3) λ2
4 + 8λ2

3λ5

(λ2
4 − 4λ3λ5)

2 . (2.43)

After having solved equations (2.9-2.14) for the Lagrange multipliers we can now

in principle plot graphs for the expectation values, or determine the expectation

values at a specific time.

On the other hand, if the equations of motion of the relevant mean values

are solved, equation (2.38) can again be used, now to solve for the time depen-

dent Lagrange multipliers. Here we take equations (2.39-2.43) and solve for the

Lagrange multipliers in terms of the relevant mean values:
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2.3 EEA Reduced Evolution Equation

λ1 =
〈v2〉〈x〉 − 〈v〉〈xv〉

〈v〉2 + 〈v2〉2〈x〉 − 2〈v〉〈v2〉〈xv〉 − 〈x〉〈x2〉+ 〈xv〉2〈x2〉
, (2.44)

λ2 =
〈xv〉〈x2〉 − 〈v〉〈v2〉

〈v〉2 + 〈v2〉2〈x〉 − 2〈v〉〈v2〉〈xv〉 − 〈x〉〈x2〉+ 〈xv〉2〈x2〉
, (2.45)

λ3 =
〈xv〉2 − 〈x〉

2 (〈v〉2 + 〈v2〉2〈x〉 − 2〈v〉〈v2〉〈xv〉 − 〈x〉〈x2〉+ 〈xv〉2〈x2〉)
, (2.46)

λ4 =
〈v〉 − 〈v2〉〈xv〉

〈v〉2 + 〈v2〉2〈x〉 − 2〈v〉〈v2〉〈xv〉 − 〈x〉〈x2〉+ 〈xv〉2〈x2〉
, (2.47)

and

λ5 =
〈v2〉2 − 〈x2〉

2 (〈v〉2 + 〈v2〉2〈x〉 − 2〈v〉〈v2〉〈xv〉 − 〈x〉〈x2〉+ 〈xv〉2〈x2〉)
. (2.48)

It is then possible to write the maximum entropy solution explicitly in term of

the relevant mean values (which are known through the prior knowledge). Thus

we can draw a graph of the time evolution of the maximum entropy solution (that

is, we can plot f (x, v, t) as a function of (x, v) at any given time).

2.3 EEA Reduced Evolution Equation

After an appropriate change of variables, EEA transformed their original Vlasov

equation,(2.4), into an evolution equation of the form (see, for instance, equations

(11), (23), (26), and (36) of El-Wakil et al. (2003))

∂F

∂s
= m

∂2F

∂z2
+ (nz + p)

∂F

∂z
+ (q1 + q2z)F, (2.49)

s and z playing respectively the roles of the temporal and spatial variables, and

m, n, p, q1, and q2 being constants (notice that, when writing down the evolution

equation (2.49) our notation differs slightly from that of EEA. For instance, in
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connection with equation (11) of EEA, we have, h1 = m, h3 = (q1 + q2z), h4 = n,

h5 = p). By recourse to an ingenious procedure based upon group-theoretical

ideas, they obtained the explicit time dependence of the first two moments of

F (z, s), namely

〈z〉(s) =

∫
F (z, s) z dz, (2.50)

and

〈z2〉(s) =

∫
F (z, s) z2 dz. (2.51)

Finally, taking the instantaneous values of 〈z〉(s) and 〈z2〉(s), at each time s,

as constraints, they found the concomitant maximum entropy distribution FME,

which constitutes an approximate solution to the evolution equation (2.49). Be-

fore going on, it is important to realize that, according to the developments pre-

sented in El-Wakil et al. (2003), each exact solution of EEA’s reduced equation

corresponds to an exact solution of the the original Vlasov equation (2.4). Ob-

viously, such an exact solution is going to share all the general properties of the

solutions of (2.4). In particular, such a solution is going to relax to the stationary

solution associated with a Maxwellian velocity distribution.

The point we want to make here is that, if the zeroth order moment,

N(s) =

∫
F (z, s) dz, (2.52)

is explicitly incorporated as a constraint in the entropy maximization scheme, the

maximum entropy procedure leads to exact solutions of the evolution equation

(2.49). It is important to realize that the evolution equation (2.49) does not

preserve the normalization of the solution F . In point of fact, taking the time

derivative of the zeroth order moment of (2.49) we get,

dN

ds
= (q1 − n)N + q2〈z〉, (2.53)

which is, in general, different from zero. Now, if taking as the only constraints the

instantaneous values of 〈z〉 and 〈z2〉 (as EEA does in El-Wakil et al. (2003)) we

build up a normalized (that is, N = 1) maximum entropy solution for (2.49), we
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are disregarding an important piece of information concerning the behaviour of

F (z, s). Such a maximum entropy approximation has, by construction, a constant

normalization, although we know that the exact solution has a time dependent

one. Consequently, such a procedure is bound to yield only an approximate

solution to (2.49). However, as we shall presently show, exact solutions can be

obtained if the time dependence of N is explicitly taken into account in the

maximum entropy procedure.

In connection with the new constraint N , a few remarks are in order. It

is usually assumed that entropic concepts and, in particular, the maximum en-

tropy principle, can be applied only to probability distributions. In order to be

interpreted as a probability distribution, a function ρ must be non-negative and

normalized to one. However, entropic concepts can be profitably applied also to

the description of (positive) densities, which are non-negative quantities not nec-

essarily normalized to 1. A (positive) density can be normalized to any positive

number N . The application of the maximum entropy principle to the study of

densities allows for the discussion of a wide family of interesting scenarios. For in-

stance, densities may evolve according to non-linear evolution equations (Borland

et al. (1999); da Silva et al. (2004); Plastino (2001)) (as opposed to ensemble prob-

abilities which, strictly speaking, must evolve linearly, see van Kampen (1992)).

In this regard, it is important to remember that Boltzmann himself introduced

his celebrated entropic functional in order to study the evolution of the density

of particles in the (x,v) space which, by the way, evolves according to a non-

linear transport equation. When applying the maximum entropy principle to the

evolution of a density the normalization N may even change with time. This is

precisely the case with the (linear) problem studied by EEA in El-Wakil et al.

(2003).

As already mentioned, our present purpose is to show that, when the zeroth

moment (2.52) is explicitly incorporated to the maximum entropy solution based

on the first and second moments (2.50-2.51), an exact solution of (2.49) is ob-

tained. In order to do that we consider the concomitant maximum entropy ansatz

based on the three constraints (2.50-2.52). The maximum entropy ansatz has the

form,
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F (z, s) = exp
[
−λ0(s)− λ1(s)z − λ2(s)z

2
]
, (2.54)

where the λi(s)’s are time dependent Lagrange multipliers. Alternatively, the

ansatz can be written explicitly in terms of the relevant three moments (which

account for its time dependence),

F (z, s) =
N

[2π( 〈z
2〉

N
− 〈z〉2

N2 )]1/2
exp

−
(
z − 〈z〉

N

)2

2[ 〈z
2〉

N
− 〈z〉2

N2 ]

 . (2.55)

Which after setting

a =
〈z2〉
N

and b =
〈z〉
N

, (2.56)

becomes

F (z, s) =
N

[2π(a− b2)]1/2
exp

[
− (z − b)2

2 (a− b2)

]
, (2.57)

Inserting the maximum entropy ansatz (2.57) into the partial differential equation

(2.49) we get (the ′’s designate total derivatives with respect to s),

0 = m
∂2F

∂z2
+ (nz + p)

∂F

∂z
+ (q1 + q2z)F − ∂F

∂s

= z2

(
m

(a− b2)2
− n

a− b2
− a′ − 2bb′

2(a− b2)2

)
+ z

(
q2 −

2mb

(a− b2)2
− p

a− b2
+

nb

a− b2
− b′

a− b2
+

b(a′ − 2bb′)

(a− b2)2

)
−N ′

N
+ q1 +

mb2

(a− b2)2
− m

a− b2
+

pb

a− b2
+

bb′

a− b2

−b2(a′ − 2bb′)

2(a− b2)2
+

a′ − 2bb′

2(a− b2)
. (2.58)

Equating separately to zero the coefficients corresponding to different powers of

z we obtain,

0 =
m

(a− b2)2
− n

a− b2
− a′ − 2bb′

2(a− b2)2
, (2.59)
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0 = q2 +
nb− p− b′

a− b2
+

b(a′ − 2bb′)− 2mb

(a− b2)2
, (2.60)

and

0 = q1 −
N ′

N
+

2mb2 − b2(a′ − 2bb′)

2(a− b2)2
+

a′ − 2bb′ + 2p b− 2m + 2bb′

2(a− b2)
.(2.61)

Equations (2.59) and (2.60) (considering the combination (2.60) + 2b(2.59) ) lead

to

b′ = −p + q2a− nb− q2b
2. (2.62)

Combining now equations (2.59) and (2.62) we get

a′ = 2(m− na− pb + q2ab− q2b
3). (2.63)

Finally, from equations (2.61), (2.62), and (2.63), we derive the evolution equation

for the parameter N ,

N ′ = N (q1 − n + q2b). (2.64)

The three equations (2.62-2.64) constitute a closed set of (coupled) ordinary dif-

ferential equations for the three parameters a, b, and N . It is clear that the

maximum entropy ansatz (2.55) constitutes an exact solution to the evolution

equation (2.49), provided that the three parameters a, b, and N evolve according

to the equations (2.62-2.64).

The time derivatives of the three moments N , 〈z〉, and 〈z2〉, can also be ob-

tained taking the corresponding moments of equation (2.49). That is, multiplying

equation (2.49) respectively by 1, z, and z2, and integrating over z. One obtains,

dN

ds
= (q1 − n)N + q2〈z〉, (2.65)

d〈z〉
ds

= −pN + (q1 − 2n) 〈z〉+ q2〈z2〉, (2.66)
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and

d〈z2〉
ds

= 2mN − 3n〈z2〉 − 2p〈z〉+ q1〈z2〉+ q2〈z3〉. (2.67)

In the case q2 = 0, it can be directly verified that the above three equations are

equivalent to the equations (2.62-2.64) (taking into account (2.56)).

Now, the set of coupled ordinary differential equations (2.62-2.64) for the

parameters b, a, and N , admits a closed analytical solution given by,

b =
1

n2
e−ns

[
nq2

(
a0 − b2

0

)(
1− e−ns

)
+ mq2 +

(
ens + e−ns − 2

)
− pn (ens − 1) + b0n

2
]
, (2.68)

a =
1

n4

[
a0n

4e−2ns + 2b0pn
3e−ns

(
e−ns − 1

)
−mn3

(
e−2ns − 1

)
+ 2q2n

3e−2ns
(
e−ns − 1

) (
b3
0 − a0b0

)
+ p2n2

(
e−ns − 1

)2
+ 2b0mq2n

2e−ns
(
e−ns − 1

)2
+ 2pq2n

2e−ns
(
e−ns − 1

)2 (
b2
0 − a0

)
+ q2

2n
2e−2ns

(
e−ns − 1

)2 (
b2
0 − a0

)2
+ 2mpq2n

(
e−ns − 1

)3
+ 2mq2

2ne−ns
(
e−ns − 1

)3 (
b2
0 − a0

)
+ m2q2

2

(
e−ns − 1

)4 ]
, (2.69)

and

N = N0 exp

{
1

2n3

[
− 2b0n

2q2

(
e−ns − 1

)
−n q2

2

(
e−ns − 1

)2 (
b2
0 − a0

)
− 2np q2

(
e−ns−1

)]
× e

1
2n3 (−m q2

2(3−4e−ns+e−2ns)−2s(n4−n3q1+n2p q2−m n q2
2))
}

, (2.70)

where b0, a0, and N0, are the initial values of these parameters at s = 0.
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2.4 Conclusions

Summing up, we have re-visited the maximum entropy approach to the collisional

Vlasov equation studied by EEA in El-Wakil et al. (2003). We have shown that

there exist exact maximum entropy solutions to the collisional Vlasov equation

(as opposed to the solutions advanced by EEA in El-Wakil et al. (2003), that

are only approximate). We considered two different approaches to the exact

maximum entropy solutions of the collisional Vlasov equation. On the one hand,

we identified an appropriate set of five relevant mean values (moments) that

evolve according to a closed set of coupled, ordinary, linear differential equations.

We then constructed exact maximum entropy solutions associated with that set of

moments. We investigated these solutions using both the equations of motion of

the moments themselves, as well as the equations of motion of the corresponding

Lagrange multipliers.

On the other hand, we proved that it is possible to obtain exact solutions of

the reduced equation considered by EEA, if the zeroth-order moment of the so-

lutions is explicitly taken into account. In order to do this, we proved that some

of the partial differential equations considered by EEA in El-Wakil et al. (2003)

(that is, equations of the form (2.49)) admit exact maximum entropy solutions.

These authors considered approximate maximum entropy solutions based upon

the optimization of the Boltzmann-Gibbs entropy under the constraints imposed

by the first two moments, 〈z〉 and 〈z2〉 (they implicitly assumed a constant nor-

malization to 1 of their maximum entropy ansatz). However, the exact solutions

to an evolution equation of the form (2.49) have a time-dependent normalization.

Consequently, the maximum entropy solutions advanced by EEA are bound to

be only approximate, since they do not take into account this important piece

of information concerning the exact solutions. In particular, and contrary to

what is asserted in El-Wakil et al. (2003) (see paragraph after equation (32) in

El-Wakil et al. (2003)), some of the approximate, maximum entropy solutions

obtained by EEA are going to differ drastically from the exact solutions at large

times (s → ∞). The reason for this is that EEA’s maximum entropy solutions

(for instance, solution (31) to equation (26) in El-Wakil et al. (2003)) have a

constant normalization equal to 1, while the exact solution has a time dependent
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normalization. For example, the exact solutions to equation (26) of El-Wakil

et al. (2003) have, for h3 > 0 (h3 < 0) a monotonously increasing (decreasing)

normalization. In the cases of equations (26) and (36) of El-Wakil et al. (2003),

EEA provide (formal) exact solutions. But they do not recognize those solutions

as maximum entropy solutions easily obtainable if the zeroth order moment is

incorporated.

What we have shown here is that, if the time-dependent zeroth order moment

is explicitly taken into account as a further constraint in the maximum entropy

procedure, it is possible to obtain exact maximum entropy solutions to some of

the evolution equations considered by EEA in El-Wakil et al. (2003).
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Chapter 3

Maximum Entropy Principle and

Classical Evolution Equations

with Source Terms

3.1 Introduction

The application of information-entropic variational principles to the study of

diverse systems and processes in physics, astronomy, biology, and other fields, has

been the focus of considerable research activity in recent years. A (by no means

exhaustive) list of important examples is given in references: Beck and Schlögl

(1993); Boghosian (1996); Borland (1996); Frank (2005); Frieden (1998, 2004);

Frieden and Soffer (1995); Gell-Mann and Tsallis (2004); Jaynes (2003); Plastino

and Curado (2005); Sieniutycz and Farkas (2005); Yamano (2000). The roots of

this approach can be traced back (at least) to Gibbs (1902) who pointed out that

the canonical probability distribution is the one maximizing the entropy under

the constraints imposed by normalization and the mean energy value. However,

it was Jaynes who elevated the principle of maximum entropy to the status of a

foundational starting point for the development of statistical mechanics, and the

first to recognize its relevance as a general statistical inference principle (Grandy

and Milonni (1993); Jaynes (1983); Katz (1967)) see also Chapter (1).

A large amount of research has been devoted to the study of time dependent

maximum entropy solutions (either exact or approximate) of diverse evolution
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3. MAXIMUM ENTROPY PRINCIPLE AND CLASSICAL
EVOLUTION EQUATIONS WITH SOURCE TERMS

equations, such as the Liouville equation, the Vlasov equation, diffusion equa-

tions, and Fokker-Planck equations (Baker-Jarvis et al. (1989); Borland et al.

(1999); da Silva et al. (2004); El-Wakil et al. (2003); Hick and Stevens (1987);

Malaza et al. (1999); Plastino and Plastino (1997); Plastino et al. (1997a,b,c);

Tsallis and Bukman (1996)). Most of these applications of the maximum en-

tropy method to time dependent scenarios involved evolution equations (linear

or nonlinear) exhibiting the form of a continuity equation and, consequently, pre-

serving normalization in time. Our purpose here is to explore some aspects of

the application of the maximum entropy approach to a special type of evolution

equations: those endowed with source terms and, consequently, not preserving

normalization.

It is a common assumption that entropic concepts, including the maximum en-

tropy principle, can be applied only to probability distributions. A given function

ρ, if it is to be interpreted as a probability distribution, has to be non-negative

and normalized to unity. However, entropic concepts can be profitably applied

also to the study of (positive) densities, which are non-negative quantities not

necessarily normalized to 1. Indeed, a (positive) density can be normalized to

any positive number N. The application of the maximum entropy principle to

the study of densities allows for the analysis of a variegated family of interesting

problems. For example, densities may evolve according to non-linear evolution

equations (Borland et al. (1999); da Silva et al. (2004); Tsallis and Bukman

(1996)) (as contrasted to ensemble probabilities which, strictly speaking, must

evolve linearly, see van Kampen (1992)). In this regard, it is worthwhile to re-

member that Boltzmann himself introduced his celebrated entropic functional in

order to study the evolution of the density of particles in the (x,v) space which,

by the way, obeys a non-linear transport equation. When applying the maximum

entropy principle to the evolution of a density the normalization N may even

change with time (i.e., N = N(t)). This is precisely the case with the (linear)

evolution equations with source terms that we are going to consider in the present

work.

There are several possible scenarios where these equations with sources may

arise. For instance, when considering the diffusion of a certain type of particles

we may need to include explicitly, in the description of the diffusion process, the
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sources of those particles. This situation may arise in several problems in physics,

astronomy, or biology. For example, when dealing with the transport equation

of cosmic rays (Hick and Stevens (1987)), if we want to include the sources of

cosmic rays into our model, we have to incorporate the corresponding source-

terms into the evolution equation. In spite of its possible practical applications,

our principal interest in the present contribution will be to explore the structure of

the dynamical equations connecting the (time dependent) main characters of our

maximum entropy scheme: the relevant mean values (constituting, at an initial

time t0, the available prior information), the associated Lagrange multipliers, the

partition function, and the entropy. In particular, we are going to investigate

the relationships between H-theorems verified by the exact solutions and the

H-theorems verified by the maximum entropy approximate ones.

This chapter is organized as follows. In Section II we explain, and provide

some examples, of the type of evolution equations that we are going to consider in

this work. Some properties of the exact time dependent solutions to this equations

are derived in Section III. A maximum entropy formalism to treat these equations

is implemented in Section IV, where some of its main features are investigated. In

Section V some examples are considered, in order to illustrate the results obtained

in the previous sections. Finally, some conclusions are drawn in Section VI.

3.2 Evolution Equations with Source Terms

In references (Baker-Jarvis et al. (1989); El-Wakil et al. (2003); Hick and Stevens

(1987); Malaza et al. (1999); Plastino and Plastino (1997); Plastino et al. (1997a,b,c))

the maximum entropy principle has been used with reference to the study of equa-

tions of evolution exhibiting the form of continuity equations. We may mention,

for instance, the Liouville equation, the Fokker-Planck equation, diffusion equa-

tions, the Von Neumann equation in quantum mechanics, etc. The evolution

equations that we are going to investigate here comprise a continuity-like equa-

tion plus an extra term K describing a source or a sink. Let us consider a classical

system described by a time dependent density distribution F (z, t) evolving ac-

cording to the partial differential equation
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∂F

∂t
+ ∇ · J = K, (3.1)

where z denotes a point in the relevant N -dimensional phase space, J is the flux

vector, and K represents a source-term (J and K may depend on the distribution

F ). As examples we have:

• The one dimensional diffusion equation with a source term,

∂F

∂t
− Q

∂2F

∂x2
= K, (3.2)

where Q denotes the diffusion coefficient, and the flux is given by

J = −Q
∂F

∂x
. (3.3)

• The general Liouville equation with a source term K

∂F

∂t
+ ∇ · (F w) = K, (3.4)

with flux

J = F w. (3.5)

If K = 0 we recover the standard (general) Liouville equation (Andrey

(1985); Liouville (1838); van Kampen (1992)). The Liouville equation de-

scribes the evolution of an ensemble of classical, deterministic dynamical

systems evolving according to the equations of motion

dz

dt
= w(z), (3.6)

where z denotes a point in the concomitant N -dimensional phase space.

• Hamiltonian ensemble dynamics with sources, a particular instance of the

Liouville equations (3.6). For Hamiltonian systems with n degrees of free-

dom we have
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1. N = 2n,

2. z = (q1, . . . , qn, p1, . . . , pn),

3. wi = ∂H/∂pi, (i = 1, . . . , n), and

4. wi+n = −∂H/∂qi, (i = 1, . . . , n),

where the qi and the pi stand for generalized coordinates and momenta,

respectively.

With reference to the last item note that Hamiltonian dynamics exhibits the

important feature of being divergence-less

∇ ·w = 0. (3.7)

For it the Liouville equation simplifies to

∂F

∂t
+ w · ∇F = K, (3.8)

which is equivalent to a relationship obeyed by the total time derivative

dF

dt
= K, (3.9)

that is computed along an individual phase-space’s orbit.

As mentioned in section (3.1), there are several problems in physics, astron-

omy, and biology where the evolution equations with sources arise naturally.

When studying diffusion problems we can include explicitly, in the description

of the diffusion process, the sources of the diffusing particles. In that case, the

most natural kind of source term K(z, t) is given by a positive function of z and

t (if the source is time dependent) not depending on F itself. Another type of

situation leading naturally to a source term is given by the diffusion of particles

that undergo a certain decay process. In such a case, the changes in the evolving

density F (z, t) have two different origins. On the one hand, the diffusion process

itself, and on the other hand, the decay process. This last factor gives rise to a

negative source-like term (that is, a sink-like term) proportional to F (z, t) itself,

K = − qF, (3.10)
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where the (positive) constant q is related to the mean life τ of the decaying

particles.

3.3 Evolution of the Entropy and the Relevant

Mean Values

In order to implement the maximum entropy method, we need to re-formulate

our problem in terms of a density f(z, t) that is normalized to unity and therefore

can be regarded as a probability density. Consequently, it will prove convenient

to re-cast the density distribution F (z, t) under the guise,

F (z, t) = N(t) f(z, t), (3.11)

with ∫
F (z, t) dNz = N(t), (3.12)

and ∫
f(z, t) dNz = 1. (3.13)

The evolution equations for N and f are, respectively,

dN

dt
=

∫
K dNz, (3.14)

and

∂F

∂t
+ ∇ · J = K

∂Nf

∂t
+ ∇ · j

N
=

k

N
∂N

∂t
f +

∂f

∂t
N + ∇ · j

N
=

k

N
∂f

∂t
+ ∇ · j = k − Ṅ

N
f, (3.15)

where we have introduced the abbreviations
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j =
J

N
, (3.16)

and

k =
K

N
. (3.17)

3.3.1 Evolution of the Entropy

Since the density f is properly normalized, we can consider its (time-dependent)

Shannon entropy,

S[f ] = −
∫

f ln f dNz, (3.18)

whose time derivative is given by (cf. Eq.(3.15))

dS

dt
=

∫ [
Ṅ

N
f + ∇ · j − k

]
ln f dNz

= − Ṅ

N
S +

∫ [
∇ · j − k

]
ln f dNz. (3.19)

The following alternative (but equivalent) expression for the time derivative of

the entropy is also useful,

dS

dt
= − Ṅ

N
S −

∫
k ln f dNz +

〈
∇ ·
(

j

f

)〉
. (3.20)

If the source k(z) has a definite sign we can introduce the function

g(z, t) =
N

Ṅ
k(z), (3.21)

which verifies,

g(z, t) ≥ 0,∫
g(z, t) dNz = 1, (3.22)
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and can thus be interpreted as a probability density function associated with the

source term. Now, adding and subtracting the integral∫
k ln

(
Nk

Ṅ

)
dNz, (3.23)

from equation (3.20), we get

dS

dt
= − Ṅ

N
S[f ] −

∫
k ln f dNz +

∫
k ln g dNz −

∫
k ln g dNz +

〈
∇ ·
(

j

f

)〉
=

Ṅ

N

[
−S[f ] −

∫
g (ln f − ln g) dNz −

∫
g ln g dNz

]
+

〈
∇ ·
(

j

f

)〉
=

Ṅ

N

{
S[g] − S[f ] − I[g, f ]

}
+

〈
∇ ·
(

j

f

)〉
, (3.24)

where

I[g, f ] =

∫
g ln(f/g) dNz, (3.25)

denotes the Kullback distance (Kullback (1959)) between the probability densities

g and f .

An interesting particular instance of equation (3.24) is obtained when we have

a source term proportional to F itself,

K = q F, (3.26)

with q constant. If q < 0 we can interpret this source term as describing the flow

of particles that undergo a decay process. With a term like (3.26) we have g = f

and

dS

dt
=

〈
∇ ·
(

j

f

)〉
. (3.27)

In the particular case of a Liouville equation with a source like (3.26) we get,

dS

dt
= 〈∇ ·w〉, (3.28)

which coincides with the expression for the time derivative of the entropy for the

standard, norm preserving Liouville equation (Andrey (1985); Ruelle (2004)).
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3.3.2 Evolution of the Relevant Mean Values

Another important ingredient of the maximum entropy approach is given by the

set of mean values

〈Ai〉 =

∫
Ai F dNz, (3.29)

of M relevant quantities Ai, (i = 1, . . . ,M). These M quantities are going to play

the role of the prior information used to construct the maximum entropy ansatz.

We are going to assume that these M mean values are known at an initial time

t0 (more on this later).

The time derivatives of the relevant mean values (3.29) are

d

dt
〈Ai〉 =

∫
Ai

d

dt
F dNz,

=

∫ [
−Ai∇ · J + Ai K

]
dNz, (i = 1, . . . M), (3.30)

Integrating by parts and making the usual assumption that J → 0 rapidly enough

as |z| → ∞, surface terms vanish (as they do in most physics problems) and we

finally obtain

d

dt
〈Ai〉 =

∫ [
J · ∇Ai + Ai K

]
dNz, (i = 1, . . . ,M). (3.31)

We are also going to need, and thus introduce now, the “re-scaled” mean values,

ai =
1

N
〈Ai〉. (3.32)

3.4 Maximum Entropy Ansatz for the Evolution

Equation

3.4.1 Preliminaries

A central point for our present discussion is that of considering a specially im-

portant ansatz for solving the evolution equation (3.1), namely, the maximum

entropy one,
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F (z, t) = N fME(z, t) =
N

Z
exp

[
−

M∑
i=1

λiAi

]
, (3.33)

where the Ai(z) are M appropriate quantities that are functions of the phase

space location z. The partition function Z is given by,

Z =

∫
exp

[
−

M∑
i=1

λiAi

]
dNz. (3.34)

The probability distribution fME appearing in (3.33) is the one that maximizes

the entropy S[f ] under the constraints imposed by normalization and the relevant

mean values 〈Ai〉 (or the ai = 〈Ai〉/N). The re-scaled relevant mean values ai

and the associated Lagrange multipliers λi are related by the celebrated Jaynes’

relations (Katz (1967) see also equations (1.16), (1.17), (1.15) and (1.18))

λi =
∂S

∂ai

, (3.35)

ai =
〈Ai〉
N

= − ∂

∂λi

(ln Z), (3.36)

S = ln Z +
∑

i

λiai, (3.37)

and

∂λi

∂aj

=
∂2S

∂ai∂aj

=
∂λj

∂ai

. (3.38)

As already mentioned all the basic equations of equilibrium thermodynamics are

particular instances of (3.35-3.38), or can be derived from special instances of

(3.35-3.38). This fact alone provides already a strong motivation for studying in

detail the interplay between the various quantities appearing in Jaynes’ relations,

when applying the maximum entropy principle to diverse physical scenarios. In-

deed, a special instance of this line of enquiry constitutes one of our main focus

of attention here.

All the time dependence of the maximum entropy distribution fME appearing

in the ansatz (3.33) is contained in the Lagrange multipliers λi(t), which are
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assumed to be time dependent. The Lagrange multipliers (and the normalization

factor N) change in time in order to accommodate the evolving mean values 〈Ai〉
(and the evolving norm of F (z, t)). We assume that the mean values of the M

relevant quantities Ai at an initial time t0,{
〈A1〉t0 , . . . , 〈AM〉t0

}
, (3.39)

as well as the initial value Nt0 , are known. They constitute our prior information.

On the basis of these initial data we determine the initial values of the Lagrange

multipliers λi and the partition function Z. Then, on the basis of an appropriate

set of equations of motion for the relevant mean values (constructed using the

evolving maximum entropy ansatz) we determine the (approximate) time evo-

lution of the 〈Ai〉. Now, in general, the time derivatives of the aforementioned

mean values are given by equation (3.31), that is re-written here for convenience,

d

dt
〈Ai〉 =

∫
[J · ∇Ai + Ai K] dNz, (i = 1, . . . ,M). (3.40)

The integrals appearing in the right hand sides of these equations generally in-

volve, unfortunately, new mean values not included in the original set 〈Ai〉 (i =

1, . . . ,M) (remember that the flux J depends on the distribution f). One way to

implement the maximum entropy approach to solve the evolution equation (3.1)

is to evaluate, at each instant of time, the right hand sides of (3.40) using the

maximum entropy ansatz (3.33). In this way, the system of equations (3.40) can

be translated into a closed system of equations of motion for the Lagrange mul-

tipliers λi. This (time dependent self-consistent) approach will yield either exact

solutions, or only approximate solutions, depending on the specific form of the

evolution equation (3.1) (such is also the case, of course, for continuity equations.

See Malaza et al. (1999); Plastino and Plastino (1997); Plastino et al. (1997a,b,c)

and references therein).

3.4.2 Time Evolution

We discuss now specific details of the temporal evolution, beginning with that of

the Lagrange multipliers. Regarding the set of quantities ai, (i = 1, . . . ,M) as

the set of independent parameters characterizing fME, we get
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dλi

dt
=

M∑
j=1

(
∂λi

∂aj

)(
dai

dt

)

=
M∑

j=1

(
∂λj

∂ai

)(
dai

dt

)

=
∂

∂ai

(
M∑

j=1

λj

(
daj

dt

))
−

M∑
j=1

λj
∂

∂ai

(
daj

dt

)
. (3.41)

Now, since 〈Ai〉 = Nai (equation (3.32)), we have

dai

dt
=

1

N

d〈Ai〉
dt

− 〈Ai〉
N2

dN

dt

=
1

N

∫ [
J · ∇Ai + Ai K − Ṅ

N
FAi

]
dNz

=
1

N

∫ [
J · ∇Ai + Ai K − ṄfAi

]
dNz, (3.42)

and, as a consequence,

M∑
i=1

λi

(
dai

dt

)
=

1

N

∫ (
J · ∇

∑
i

λiAi + K
∑

i

λiAi − Ṅf
∑

i

λiAi

)
dNz.

(3.43)

Substituting now the maximum entropy ansatz (3.33) for f (remember that we

have defined j = J/N) one gets

M∑
i=1

λi

(
dai

dt

)
=

1

N

[
−
∫

f (Nj) · ∇[ln (fZ)] dNz +

∫
[Ṅf −K] [ln (fZ)] dNz

]
=

1

N

[∫
F ∇ · (j/f) dNz +

∫
[Ṅf −K] [ln (fZ)] dNz

]
=

1

N

(
〈∇ · (j/f)〉+

∫
[Ṅf −K] ln f dNz

)
, (3.44)

where the fact has been used that (3.14) implies
∫

[Ṅf − K] [ln (Z)] dNz = 0.

Finally,
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dλi

dt
=

∂

∂ai

∫ [
f ∇ ·

(
j

f

)
+

(
Ṅ

N
f − k

)
ln f

]
dNz

−
M∑

j=1

λj
∂

∂ai

∫ [
j · ∇Aj + Aj k − Ṅ

N
fAj

]
dNz (3.45)

3.4.3 Evolution of the Entropy

Now we are going to consider the time derivative of the entropy evaluated on the

maximum entropy solution: S[fME]. From equations (3.36) and (3.37) we have,

d

dt
S[fME] =

d

dt
(ln Z) +

d

dt

(
M∑
i=1

λiai

)
=

∑
i

dλi

dt

∂

∂λi

(ln Z) +
∑

i

dλi

dt
ai +

∑
i

λi
dai

dt

=
∑

i

λi
dai

dt
, (3.46)

and, now using equation (3.43), we find the important relation

d

dt
S[fME] =

1

N

∫ [
J · ∇

∑
i

λiAi + K
∑

i

λiAi − ṄfME

∑
i

λiAi

]
dNz

=

∫ [
−(∇ · j)

(∑
i

λiAi

)
+ k

∑
i

λiAi −
Ṅ

N
fME

∑
i

λiAi

]
dNz

=

∫ [
(∇ · j) (ln Z + ln fME) +

(
Ṅ

N
fME − k

)
(ln Z + ln fME)

]
dNz

=

∫ (
∇ · j +

Ṅ

N
fME − k

)
ln fME dNz

= − Ṅ

N
S[fME] +

∫
(∇ · j − k) ln fME dNz. (3.47)

Comparing now the expression for the entropy’s time derivative correspond-

ing to the exact solutions (cf. equation(3.19)) with the expression just derived

(3.47) for the maximum entropy ansatz, we can reach an important conclusion:
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our present maximum entropy scheme always (even in the case of approximate

solutions) preserves the exact functional relationship between the time derivative

of the entropy and the time dependent solutions of the evolution equation. Conse-

quently, any H-theorem verified when evaluating the entropy functional upon the

exact solutions is also verified when evaluating the entropy upon the maximum

entropy approximate treatments. This is of considerable relevance in connection

with the consistency of the method as a maximum entropy approach.

3.5 Examples

3.5.1 Liouville Equation with Constant Sources

According to equation (3.31), and remembering that, for the Liouville equation,

the flux is given by J = Fw, the temporal evolution of the mean values of the

dynamical quantities Ai is

d 〈Ai〉
dt

=

∫ [
F w · ∇Ai + AiK

]
dNz

= 〈w · ∇Ai〉 + Bi, (i = 1, . . . ,M) , (3.48)

where

Bi =

∫
AiK dNz, (i = 1, . . . ,M) . (3.49)

Here we are going to assume that f is given by the ansatz (3.33)-(3.34). We

can then regard the quantities Z, f, and λi’s as functions of the set a1, . . . , aM .

Alternatively, it is also possible to regard all relevant quantities as functions of

the λi’s instead.

Let us consider the important particular case where the following closure

relationship holds,

w · ∇Ai =
M∑
j

Cij Aj, (i = 1, . . . ,M), (3.50)

where the Cij constitute a set of (structure) constants. This entails that
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d〈Ai〉
dt

=
M∑
j

Cij 〈Aj〉 + Bi, (i = 1, . . . ,M). (3.51)

It is useful also to introduce the quantity,

B0 =

∫
K dNz. (3.52)

The general solution of the equations of motion for the mean values is then seen

to be of the form

〈Ai〉(t) = 〈Ai〉inhom. + 〈Ai〉hom., (3.53)

where 〈Aj〉inhom. complies with

N∑
j=1

Cij〈Aj〉inhom. + Bi = 0, (3.54)

and is a particular solution of the (inhomogeneous) set of linear differential equa-

tions, while 〈Ai〉hom. is the general solution of the homogeneous set of equations

d〈Ai〉
dt

=
M∑
j

Cij 〈Aj〉 (i = 1, . . . ,M). (3.55)

Now, if ∇ ·w = 0 (that is, if the flux w is divergenceless) the temporal evolution

of the Lagrange multiplier is given by,

dλi

dt
=

∂

∂ai

∫ [
f ∇ ·

(
j

f

)
+

(
Ṅ

N
f − k

)
ln f

]
dNz

−
M∑

j=1

λj
∂

∂ai

∫ [
j · ∇Aj + Aj k − Ṅ

N
fAj

]
dNz

=
∂

∂ai

∫ [
f ∇ ·w +

1

N

(
Ṅf − K

)
ln f

]
dNz

−
M∑

j=1

λj
∂

∂ai

∫ [
fw · ∇Aj +

1

N
( Aj K − Ṅ fAj)

]
dNz

= − Ṅ

N

∂S

∂ai

− 1

N

∂

∂ai

∫
K ln f dNz
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−
M∑

j=1

λj
∂

∂ai

∫ [
f

(
M∑
k

Cjk Ak

)
+

1

N
( Aj K − Ṅ fAj)

]
dNz

= − Ṅ

N
λi −

1

N

∂

∂ai

∫
K ln f dNz

−
M∑

j=1

λj
∂

∂ai

[(
M∑
k

Cjk ak

)
+

1

N

(∫
Aj K dNz

)
− Ṅ

N
aj

]

= − Ṅ

N
λi −

1

N

∂

∂ai

∫
K ln f dNz

−
M∑

j=1

λj

[
Cji +

1

N

∂

∂ai

(∫
Aj K dNz

)
− Ṅ

N
δij

]

= −
M∑

j=1

λj

[
Cji +

1

N

∂

∂ai

(∫
Aj K dNz

)]
− 1

N

∂

∂ai

∫
K ln f dNz. (3.56)

In the particular case where the source term K (z̄, t) does not depend explicitly

on the distribution F this equation reduces to

dλi

dt
= −

(
M∑

j=1

Cjiλj

)
− 1

N

∂

∂ai

∫
K ln f dNz. (3.57)

3.5.2 A Collisional Vlasov Equation with Sources

We are going to consider the following collisional Vlasov equation with sources,

∂F

∂t
+ v

∂F

∂x
−
[
∂φ

∂x
+ γv

]
∂F

∂v
− γα

∂2F

∂v2
− γF = [β0 + β1x

2] F, (3.58)

where γ, α, β0, and β1 are constants (γ and α are positive) and the potential φ

is of a quadratic form,

φ(x) =
1

2
φ2x

2. (3.59)

Here we are also going to assume that φ2 > 0. Equation (3.58) is a generalization

of the source-free equation studied by El-Wakil et al. (2003). Let us now consider

a maximum entropy ansatz of the form
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F (x, v, t) = exp[−λ0 − λ1x− λ2v − λ3x
2 − λ4xv − λ5v

2],

=
N

Z
exp[−λ1x− λ2v − λ3x

2 − λ4xv − λ5v
2]

= Nf, (3.60)

where the λi, i = 0, . . . , 5 are appropriate Lagrange multipliers and

Z =

∫
exp[−λ1x− λ2v − λ3x

2 − λ4xv − λ5v
2] dxdv. (3.61)

The (normalized) distribution f appearing in (3.60) maximizes the Boltzmann-

Gibbs entropic functional,

S[f ] = −
∫

f(x, v, t) ln f(x, v, t) dxdv, (3.62)

under the constraints imposed by normalization and the instantaneous mean val-

ues of the quantities B1 = x, B2 = v, B3 = x2, B4 = xv, and B5 = v2. All the

time dependence of the ansatz (3.60) is expressed through the Lagrange multi-

pliers λi, which are time dependent. Inserting the ansatz (3.60) into the partial

differential equation (3.58), and equating to zero, separately, terms proportional

to xivj with different exponents i, j, it is possible to prove that the ansatz (3.60)

constitutes an exact solution to (3.58), provided that the Lagrange multipliers

comply with the set of coupled ordinary differential equations,

dλ0

dt
= −γαλ2

2 + 2γαλ5 − γ − β0, (3.63)

dλ1

dt
= φ2λ2 − 2γαλ4λ2, (3.64)

dλ2

dt
= −λ1 + γλ2 − 4γαλ2λ5, (3.65)

dλ3

dt
= φ2λ4 − γαλ2

4 − β1, (3.66)

dλ4

dt
= −2λ3 + 2φ2λ5 + γλ4 − 4γαλ4λ5, (3.67)
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and

dλ5

dt
= −λ4 − 4γαλ2

5 + 2γλ5. (3.68)

Alternatively, we can focus our attention on the set of ordinary differential

equations governing the evolution of the selected set of relevant mean values,

d

dt
〈x〉 = 〈v〉+ β0〈x〉+ β1〈x3〉, (3.69)

d

dt
〈v〉 = −φ2〈x〉 − γ〈v〉+ β0〈v〉+ β1〈x2v〉, (3.70)

d

dt
〈x2〉 = 2〈xv〉+ β0〈x2〉+ β1〈x4〉, (3.71)

d

dt
〈xv〉 = −φ2〈x2〉 − γ〈xv〉+ 〈v2〉+ β0〈xv〉+ β1〈x3v〉, (3.72)

and

d

dt
〈v2〉 = −2φ2〈xv〉 − 2γ〈v2〉+ 2αγ + β0〈v2〉+ β1〈x2v2〉. (3.73)

This example exhibits the peculiarity that, in spite of the fact that the maximum

entropy ansatz (3.60) provides exact time dependent solutions to the equation

(3.58), the equations of motion (3.69-3.73) for the five relevant mean values do

not constitute a closed set of differential equations of motion for these quantities.

3.6 Conclusions

A maximum entropy approach to construct approximate, time dependent solu-

tions to evolution equations endowed with source terms was considered. We have

shown that in some particular cases the method leads to exact time dependent

solutions. By construction our present implementation of the maximum entropy

prescription complies with the exact equations of motion of the relevant mean

values. Moreover, it always (even in the case of approximate solutions) preserves

the exact functional relationship between the time derivative of the entropy and

the time dependent solutions of the evolution equation. This means that any
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3.6 Conclusions

H-theorem verified when evaluating the entropy functional upon the exact so-

lutions is also verified when evaluating the entropy upon the maximum entropy

approximate treatments. This is of considerable relevance in connection with the

consistency of the method as a maximum entropy approach. Other features ex-

hibited by the maximum entropy solutions and some illustrative examples were

also discussed.
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Chapter 4

Maximum Entropy Principle,

Evolution Equations and Physics

Education

4.1 Introduction

There is some repetition in this chapter of things already covered in previous

chapters but it is deemed necessary for clarity and in order for this chapter to be

self-contained.

The contents and structure of the physics curriculum have been in continuous

evolution since the last quarter of the 19th century, when physics finally acquired,

as a consolidated independent discipline and as a professional career, a form that

would be (at least barely) recognizable by a physics student today. However,

the pace of change of the physics curriculum has not been uniform. The first

half of last century witnessed deep and rapid changes arising from the relativity

and the quantum revolutions. On the other hand, during the second half of the

20th century the changes made on the physics curriculum have not been that

dramatic. This (relatively speaking) “stationary state” had the psychological

consequence that some physicists seem to believe that we have already reached

“the end of History”, as far as the physics curriculum is concerned. Far from the

truth. Physics is nowadays experiencing profound changes both in terms of the

contents of physics as a discipline, and in terms of the activities developed by
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4. MAXIMUM ENTROPY PRINCIPLE, EVOLUTION
EQUATIONS AND PHYSICS EDUCATION

professional physicists involved either in pure research or in the practical applica-

tions of the physical science. Two of the main sources behind these deep changes

are (i) the fundamental new role played by the concept of information in some of

the currently most active branches of theoretical physics and (ii) the increasing

importance of the multidisciplinary areas of research (particularly concerning the

application of methods and ideas from physics to biology, economics, sociology,

etc.).

Figure 4.1: The flow of physical knowledge

Of course, the physics curriculum must have a finite length. Consequently, it

is not possible to incorporate new contents to the curriculum without doing at the

same time an appropriate re-organization of the traditional contents. The way to

do this is to focus on the teaching of the general, unifying principles, concepts,

methods and techniques. Consequently, there should be a flow (see figure (4.1))

of these “grand themes”, originating in the physics research literature, to be

integrated into the physics curriculum. Conversely, one should also expect some

of the old, more specific contents to move away from the physics curriculum into

what we may call “oblivion”. This “flow” out of the physics curriculum has

been taking place all the time (just compare a general physics textbook written

before 1940 with one written at the end of the 20th century). There is also a

continuous flow of themes out of the current research literature into “oblivion”

(dashed lines in figure (4.1)). But to fall into oblivion from the research literature
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is less dramatic than to fall from the physics curriculum. Research interests and

fashions change all the time, and a subject that fell into “oblivion” may come

back at any time. But if something was once part of the physics curriculum, it

means that there was once a consensus that it was among the most fundamental

topics in physics. And when something falls from the curriculum, it almost never

comes back.

The maximum entropy principle constitutes one of the alluded general, uni-

fying, ideas that plays an important role in current research. It is, undoubtedly,

one of the most fundamental tools in statistical physics, both from the concep-

tual and the practical points of view. It was first mentioned by Gibbs himself

in his famous book on statistical mechanics (Gibbs (1902)). In that book Gibbs

noticed that his canonical distribution is the one that maximizes the entropy un-

der the constraints imposed by the mean energy and normalization. However, it

was Jaynes who, inspired by ideas from information theory, elevated the maxi-

mum entropy principle to the status of the basic postulate of statistical mechanics

(Jaynes (1983)). There are already several textbooks on equilibrium statistical

mechanics that develop this subject taking as its basis the maximum entropy

principle (Baierlein (1971); Katz (1967); Tribus (1961); Wyllie (1970)). However,

the scientific relevance of the maximum entropy principle (and the information

theoretical ideas behind it) goes well beyond the study of equilibrium statistical

mechanics. The large number of applications of the maximum entropy principle

to diverse areas of science attest to this. One of the first places in which this was

explored is the classical work by Brillouin (1962). It is impossible to review here

all the applications of the maximum entropy principle. To give an idea of the

richness of its scope we mention now some recent applications.

• In Agrawal et al. (2005) the principle of maximum entropy yields a con-

ditional probability distribution model for estimating the run-off for the

catchment (watershed) of the Matatila dam in India. The model predicts

run-off, subject to the selected constraints, in response to a given rainfall,

in a rather adequate fashion.

• In Lukacs and Papp (2004) a maximum entropy method is applied directly

to experimental kinetic absorption data in order to select between possible
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photocycle kinetics. No assumption is needed for the number of intermedi-

ate states taking part in the photocycle.

• In Blokhin et al. (2004), based on the maximum entropy principle, the

authors proved the asymptotic stability of the equilibrium state for the

balance-equations of charge transport in semiconductors, in the non-linear

approximation, for a typical one dimensional problem.

• In Gong et al. (2004) a maximum entropy model-based framework is devel-

oped to provide a platform capable of integrating multimedia features as

well as their contextual information in a uniform fashion to automatically

detect and classify baseball highlights. This model simplifies the training-

data creation and the highlight-detection and classification tasks.

• In Shams et al. (2004) the authors found that for a particular choice of the

set of parameters related to the strengths of the (i) mean field, (ii) anti-

alignment, (iii) internal magnetic field, and (iv) hopping, a system could

exhibit physical properties characteristic of the colossal magnetoresistance.

This property has been investigated within the framework of the maxi-

mum entropy principle for a system described by a simplified version of the

Hubbard-Anderson Hamiltonian.

• In Amemiya et al. (2003), making use of the maximum entropy method, it

is possible to determine the resonant frequency of a mechanical oscillator

from the stochastic time-series data.

• In Israel et al. (2003) highly resolved electron density maps for LiF and

NaF have been elucidated using reported X-ray structure factors. Here, the

bonding electron density distribution is clearly revealed, both qualitatively

and quantitatively, using the maximum entropy method.

• In Kim and Lee (2002) the maximum entropy method is introduced in

order to build a robust formulation of the inverse problem. This method

finds the solution which maximizes the entropy functional under the given

temperature measurements.
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• In Clowser and Strouthos (2002) the maximum entropy method is applied

to dynamical fermion simulations of a Nambu-Jona-Lasinio model. The

authors present results on large lattices for the spectral functions of the

elementary fermion, the pion, the sigma, the massive pseudo-scalar meson,

and the symmetric phase resonances.

• In Elgarayhi (2002) the method of maximum entropy is used for the solution

of the aerosol dynamic equation so as to get physical insights into the role

of coagulation, condensation, and removal processes.

• In Raychaudhuri et al. (2002) the possibility that statistical, natural-language

processing techniques could be used to assign Gene-Ontology codes is ex-

plored. It is shown that maximum entropy modelling outperforms other

methods for associating a set of GO codes (for biological processes) to

literature-abstracts and thus to the genes associated with the abstracts.

• In El-Wakil et al. (2001) the maximum entropy approach is used to find the

exact solution of the one-dimensional Fokker-Planck equation with vari-

able coefficients. They consider three examples: the well-known Ornstein-

Uhlenbeck differential equation, the Lamm equation and the Fokker-Planck

equation for the linear Brownian motion.

The aim of this chapter’s work is to provide some hints on how the maxi-

mum entropy principle can be incorporated into the teaching of those aspects of

theoretical physics related to, but not restricted to, statistical mechanics. We

are going to focus our attention on the study of maximum entropy solutions to

evolution equations that exhibit the form of continuity equations. Such equa-

tions include, for instance, the Liouville equation, the diffusion equation, the

Fokker-Planck equation, etc.

4.2 Brief Review of the Maximum Entropy Ideas

The second law of thermodynamics (Callen (1960); Desloge (1968)) is one of

physics’ most important statements. Together with the first law, they constitute
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strong pillars of our understanding of Nature. In statistical mechanics an under-

lying microscopic substratum is added that is able to explain not only these laws

but the whole of thermodynamics itself (Katz (1967); Pathria (1993); Reif (1965);

Sakurai (1985)). The most basic ingredient of such an explanation is a micro-

scopic probability distribution that controls the population of microstates of the

system under consideration (Pathria (1993)). Primarily, the maximum entropy

approach, is an algorithm designed to obtain this probability distribution. In

order to make sense of it, however, we must consider the concept of entropy in a

more general information theoretic sense (Jaynes (1983); Katz (1967); Scalapino

(1993), see also section 1.1).

4.2.1 A Derivation of Thermodynamics’ First Law from

the Maximum Entropy Principle

As a physical example of a maximum entropy application, let us tackle deriving

the first law of thermodynamics from it in a special case: that in which we

are concerned only with changes that affect exclusively the microstate-population.

Thus, one considers a system whose possible atomic energy-levels are labelled by

a set of quantum numbers collectively denoted by i that can be occupied with

probabilities pi. The way in which the variations dpi are related to changes in a

system’s extensive quantities can be interpreted as one of the essential aspects of

the first law (Reif (1965)). Consequently, one has to show that for any system

described by a microscopic probability distribution {pi} with

• a concave entropic form (or information measure) S,

• a mean internal energy U ,

• mean values Aν ≡ 〈Aν〉, (ν = 1, . . . ,M) of M extensive quantities Aν ,

• a temperature T , and

• assuming a reversible process via pi → pi + dpi,

(Thesis): If a normalized probability distribution {pi} maximizes S, with the

numerical values of U and the M Aν as constraints, it entails that

56

 
 
 



4.2 Brief Review of the Maximum Entropy Ideas

dU = TdS −
∑M

ν=1 γν dAν

First Law of Thermodynamics. (4.1)

.

4.2.1.1 Proof

Consider a quite general information measure (Plastino and Curado (2005); Plas-

tino and Plastino (1997)) of the form

S = k
∑

i

pi f(pi), (4.2)

where, for simplicity’s sake, Boltzmann’s constant kB is denoted here just by k.

The sum runs over a set of quantum numbers, collectively denoted by i (char-

acterizing levels of energy εi), that specify an appropriate basis in Hilbert space

and P = {pi} is an (as yet unknown) normalized probability distribution such

that

∑
i

pi = 1. (4.3)

Let f be an arbitrary smooth function of the pi. Further, consider M quantities

Aν that represent mean values of the extensive physical quantities Aν . These

take, for the state i, the value aν
i with probability pi.

The mean energy U and the Aν are given by

U =
∑

i

εi pi,

Aν =
∑

i

aν
i pi. (4.4)

Assume now that the set P changes in the fashion

pi → pi + dpi, (4.5)
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with
∑

i dpi = 0 (cf. equation (4.3)), which in turn generates corresponding

changes dS, dAν and dU in, respectively, S, the Aν , and U . We wish to extrem-

ise S subject to the constraint of fixed i) U and ii) the M values Aν . This is

achieved via Lagrange multipliers i) β and ii) γν (ν = 1, . . . ,M). We need also a

normalization Lagrange multiplier ξ.

δ{pi}

[
S − βU −

M∑
ν=1

γνAν − ξ
∑

i

pi

]
= 0, (4.6)

leading, with γν = βλν , to

0 = δpm

∑
i

pif(pi)− δpm

[∑
i

βpi

(
M∑

ν=1

λν aν
i + εi

)
− ξ

]
, (4.7)

so that

0 = f(pi) + pif
′(pi)− β

(
M∑

ν=1

λν aν
i + εi

)
− ξ,

that after setting ξ = βK becomes

0 = f(pi) + pif
′(pi)− β

[(
M∑

ν=1

λν aν
i + εi

)
−K

]
. (4.8)

To see that this equation leads to the first law (Plastino and Curado (2005)) we

go back to the expression for the first law

dU − TdS +
M∑

ν=1

dAνλν = 0, (4.9)

with T the temperature and see what happens when the pi vary in the fashion

pi → pi + dpi. A little algebra yields, up to first order in the dpi∑
i

[
C1

i + C2
i

]
dpi ≡

∑
Kidpi = 0

C1
i =

[
M∑

ν=1

λν aν
i + εi

]
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C2
i = −kT [f(pi) + pi f

′(pi)] , (4.10)

where the primes indicate derivative with respect to pi. We proceed to show

now that all the Ki are equal. Indeed, select just two of the dp’s 6= 0, say,

dpi and dpj with the remaining dpk = 0 for k 6= j and k 6= i, which entails

dpi = −dpj. In these circumstances, for equation (4.10) to hold we necessarily

have Ki = Kj. But, since i and j have been arbitrarily chosen, a posteriori we

find Ki = constant = K for all i. The value of K will be determined by the

normalization condition on the probability distribution, to be determined by the

relation:

K = D1
i + D2

i (4.11)

D1
i =

[
M∑

ν=1

λν aν
i + εi

]
D2

i = −kT [f(pi) + pi f
′(pi)] , (4.12)

so that we can recast equation (4.12) in the fashion

T 1
i = −β

[(
M∑

ν=1

λν aν
i + εi

)
−K

]
T 2

i = f(pi) + pi f
′(pi), (4.13)

which when β ≡ 1/kT leads to

∑
i

[
T 1

i + T 2
i

]
= 0. (4.14)

Equation(4.13) comes from the first law while eq. (4.8) comes from the maximum

entropy principle. Since it is apparent that the two equations are identical, our

proof is complete. In fact,

T 1
i + T 2

i = 0, (4.15)

and can be solved for pi in terms of the constraints. pi would then be a maximum

entropy distribution.
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4.3 Why is the Maximum Entropy Method a

Useful Teaching Tool?

There are thousands of maximum entropy applications in the most diverse fields

of knowledge. Why is this useful for the teaching of Physics?

In elementary courses the maximum entropy principle illustrates in simple

fashion the utility of Lagrange multipliers. These are seen in Calculus but scarcely

illustrated in physics lectures, save for a brief mention in Analytical Mechanics.

Some maximum entropy examples could already be taught in first year courses

without any difficulty.

Of course, the maximum entropy principle should be examined in a more

detailed vein in teaching Thermodynamics and Statistical Mechanics. Addition-

ally, maximum entropy can be used with reference to the teaching of equations

of evolution exhibiting the form of continuity equations. We can mention, for in-

stance, the Liouville equation, the Fokker-Planck equation, Diffusion equations,

the Von Neumann’s equation in quantum mechanics, etc. This entails a change

of perspective. In the preceding discussion we were concerned with discrete prob-

abilities, while we need now continuous ones, i.e., probability densities f(z) for

the random (vector) variable z. Let us thus consider a classical system described

by a time dependent probability distribution f(z, t) evolving according to the

continuity equation

∂f

∂t
+ ∇ · J = 0, (4.16)

where z denotes a point in the relevant N -dimensional phase space and J is the

flux vector (which, in general, depends on the distribution f). As examples we

have:

• i) The one dimensional diffusion equation,

∂f

∂t
− Q

∂2f

∂x2
= 0, (4.17)

where Q denotes the diffusion coefficient, and the flux is given by
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J = −Q
∂f

∂x
. (4.18)

• ii) The general Liouville equation

∂f

∂t
+ ∇ · (f w) = 0, (4.19)

with flux

J = f w. (4.20)

The Liouville equation describes the evolution of an ensemble of classical,

deterministic dynamical systems evolving according to the equations of mo-

tion

dz

dt
= w(z), (4.21)

where z denotes a point in the concomitant N -dimensional phase space.

• Hamiltonian ensemble dynamics, a particular instance of the Liouville equa-

tions (4.21). For Hamiltonian systems with n degrees of freedom we have

1. N = 2n,

2. z = (q1, . . . , qn, p1, . . . , pn),

3. wi = ∂H/∂pi, (i = 1, . . . , n), and

4. wi+n = −∂H/∂qi, (i = 1, . . . , n),

where the qi and the pi stand for generalized coordinates and momenta,

respectively.

With reference to the last item note that Hamiltonian dynamics i) exhibits the

important feature of being divergence-free

∇ ·w = 0, (4.22)
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and ii) for it the Liouville equation simplifies to

∂f

∂t
+ w · ∇f = 0, (4.23)

equivalent to a relationship obeyed by the total time derivative

df

dt
= 0, (4.24)

that is computed along an individual phase-space’s orbit. This last form of

Liouville-equation for divergenceless systems has an important consequence: if

f(z, t) is a solution of equations (4.23)-(4.24), so is any function g[f(z, t)].

4.4 Maximum Entropy Ansatz for the Continu-

ity Equation

A central point for our present discussion is that of considering a specially impor-

tant ansatz for solving the equation of continuity (4.16), namely, the maximum

entropy one, that writes

fME =
1

Z
exp

[
−

M∑
i=1

λiAi

]
, (4.25)

where the Ai(z) are M appropriate quantities that are functions of the phase

space location z, and the partition function Z (normalization constant) is given

by,

Z =

∫
exp

[
−

M∑
i=1

λiAi d
Nz

]
. (4.26)

The probability distribution (4.25) is the one that maximizes the entropy (here

we are dealing with continuous probability distributions, and the summations

appearing in previous sections are replaced by integrals),

S[f ] = −
∫

f ln f dNz, (4.27)

under the constraints imposed by normalization and the relevant mean values,
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〈Ai〉 =

∫
Ai f dNz. (4.28)

The relevant mean values 〈Ai〉 and the associated Lagrange multipliers λi are

related by the celebrated Jaynes’ relations (see equations (1.15 and 1.17))

λi =
∂

∂〈Ai〉
S, (4.29)

and

〈Ai〉 = − ∂

∂λi

(ln Z). (4.30)

All the time dependence of the maximum entropy distribution (4.25) is contained

in the Lagrange multipliers λi(t), which are assumed to be time dependent. The

Lagrange multipliers change in time, in order to accommodate to the evolving

mean values 〈Ai〉. Now, in general, the time derivatives of the aforementioned

mean values are

d

dt
〈Ai〉 = −

∫
Ai∇ · J dNz, i = 1, . . . M. (4.31)

Integrating by parts and making the usual assumption that J → 0 quickly enough

as |z| → ∞, surface terms vanish (they do in most physics problems) and we

finally obtain

d

dt
〈Ai〉 =

∫
J · ∇Ai d

Nz, (i = 1, . . . ,M). (4.32)

The integrals appearing in the right hand sides of these equations generally in-

volve, unfortunately, new mean values not included in the original set 〈Ai〉 (i =

1, . . . ,M) (remember that the flux J depends on the distribution f). One way

to implement the maximum entropy approach to solve the evolution equation

(4.16) is to evaluate, at each instant of time, the right hand sides of (4.31) us-

ing the maximum entropy anzats (4.25). In this way, the system of equations

(4.31) can be translated into a system of equations of motion for the Lagrange

multipliers λi. This approach will yield exact solutions, or only approximate so-

lutions, depending on the specific form of the evolution equation (4.16) (Frank

63

 
 
 



4. MAXIMUM ENTROPY PRINCIPLE, EVOLUTION
EQUATIONS AND PHYSICS EDUCATION

(2005); Malaza et al. (1999); Plastino (2001); Plastino et al. (1997b); Plastino

and Plastino (1998)).

4.5 Maximum Entropy Solution to the Liouville

Equation

According to equation (4.32), and remembering that, for the Liouville equation,

the flux is given by J = fw, the temporal evolution of the mean values of the

dynamical quantities Ai is

d 〈Ai〉
dt

=

∫
fw · ∇Ai d

Nz = 〈w · ∇Ai〉 , (i = 1, . . . ,M) . (4.33)

Here we are going to assume that f is given by the ansatz (4.25)-(4.26). We can

then regard the quantities Z, f, and λi’s as functions of the set 〈A1〉, . . . , 〈AM〉.
Alternatively, it is also possible to regard all relevant quantities as functions of

the λi’s instead. Making use of the Jaynes’ relation (1.18),

∂λi

∂ 〈Aj〉
=

∂2S

∂ 〈Aj〉 ∂ 〈Ai〉

=
∂λj

∂ 〈Ai〉
, (4.34)

the time derivative of the Lagrange multipliers reads

dλi

dt
=

M∑
j=1

∂λi

∂ 〈Aj〉
d 〈Aj〉

dt

=
M∑

j=1

∂λj

∂ 〈Ai〉
d 〈Aj〉

dt

=
∂

∂ 〈Ai〉

{
M∑

j=1

λj
d 〈Aj〉

dt

}
−

M∑
j=1

λj
∂

∂ 〈Ai〉
d 〈Aj〉

dt
. (4.35)

Now, from (4.33), the form of fME (4.25) and since as |z̄| → inf, f → 0 in rapid

enough fashion we find that
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M∑
j=1

λj
d 〈Aj〉

dt
=

M∑
j=1

λj 〈w · ∇Aj〉

=

〈
w · ∇

(
M∑

j=1

λjAj

〉)
= −

∫
f∇ (ln f) ·w dNz

= −
∫
∇f ·w dNz

= −∇
∫

wf dNz +

∫
f∇ ·w dNz

= 〈∇ ·w〉 . (4.36)

The equation of motion for the Lagrange multipliers then becomes

dλi

dt
= −

M∑
j=1

[
λj

∫
∂f

∂ 〈Ai〉
w · ∇Aj dNz − ∂ 〈∇ ·w〉

∂ 〈Ai〉

]
. (4.37)

Note that, for the important instance of a divergenceless flow, which implies that

∇ ·w = 0, equation (4.37) specializes to

dλi

dt
= −

M∑
j=1

λj
∂

∂ 〈Ai〉
d 〈Aj〉

dt
. (4.38)

It is often the case that we deal with a set of relevant quantities Ai, (i =

1, . . . ,M) entering equations (4.25)-(4.26) such that

w · ∇Ai =
M∑
j

Cij Aj, (i = 1, . . . ,M), (4.39)

where the Cij constitute a set of (structure) constants. This entails, remembering

that d〈Ai〉/dt = 〈w · ∇Ai〉,

d〈Ai〉
dt

=
M∑
j

Cij 〈Aj〉, (i = 1, . . . ,M). (4.40)

Now, if ∇·w = 0, we have, for temporal evolution of the Lagrange multipliers in

equations (4.25)-(4.26)
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dλi

dt
= −

M∑
j=1

λj
∂

∂〈Ai〉
d〈Aj〉

dt
, (4.41)

so that
dλi

dt
= −

M∑
j=1

λj
∂

∂〈Ai〉

[∑
k

Cjk〈Ak〉

]
, (4.42)

which yields the equation of motion for the Lagrange multipliers in the fashion

dλi

dt
= −

M∑
j=1

Cjiλj. (4.43)

We can now study the time-evolution of
∑M

i=1 λiAi using equations (4.39)-(4.43)

and the fact that this dependence is entirely contained in the Lagrange multipliers.

Thus,

∂

∂t

(
M∑
i=1

λiAi

)
=

∑
i

dλi

dt
Ai

= −
∑

i

Ai

[
M∑

j=1

Cjiλj

]
, (4.44)

that, after interchanging sums over i and j yields

∂

∂t

(
M∑
i=1

λiAi

)
= −

∑
j

λj

[
M∑
i=1

CjiAi

]
= −

∑
j

λj(w · ∇Aj)

= −w · ∇
∑

j

λjAj, (4.45)

i.e.,

∂

∂t

(
M∑
i=1

λiAi

)
+ w · ∇

(
M∑
i=1

λiAi

)
= 0, (4.46)

which entails that
∑M

i=1 λiAi is an exact solution of Liouville’s equation for di-

vergenceless systems (eg. Hamiltonian systems), and so is (because of equation

(4.24)) any function of this quantity like the one that interest us here, this is, the

maximum entropy ansatz (4.25)-(4.26).
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4.5.1 Example: Application to the Harmonic Oscillator

As a simple illustration of the above ideas we are going to consider maximum

entropy solutions of the Liouville equation associated with a one dimensional

harmonic oscillator with time dependent frequency ω(t). Given the harmonic

oscillator Hamiltonian

H =
p2

2m
+

1

2
mw2(t)q2, (4.47)

we have to deal with the following observables, that take here the place of the

〈Ai〉’s, namely,

〈p〉 , 〈q〉 ,
〈
p2
〉
,
〈
q2
〉
, 〈pq〉 . (4.48)

Making use of Hamilton’s equations we find

d 〈p〉
dt

= 〈ṗ〉 =

〈
−∂H

∂q

〉
= −mw2(t) 〈q〉 , (4.49)

d 〈q〉
dt

= 〈q̇〉 =

〈
∂H

∂p

〉
=
〈p〉
m

, (4.50)

d 〈p2〉
dt

=

〈
d

dt
p2

〉
= 2 〈pṗ〉 = −2mw2(t) 〈pq〉 , (4.51)

d 〈q2〉
dt

=

〈
d

dt
q2

〉
= 2 〈qq̇〉 =

2 〈pq〉
m

, (4.52)

and
d 〈pq〉

dt
=

〈
d

dt
pq

〉
= 〈ṗq〉+ 〈pq̇〉 = −mw2(t) 〈q〉2 +

〈p〉2

m
. (4.53)

In the harmonic oscillator case we have a divergenceless flow so that equation

(4.38) applies,

dλi

dt
= −

M∑
j=1

λj
∂

∂ 〈Ai〉
d 〈Aj〉

dt
, (4.54)

wherefrom we find:

dλp

dt
= −λq

m
, (4.55)
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dλq

dt
= λpmw2(t), (4.56)

dλp2

dt
= −λpq

m
, (4.57)

dλq2

dt
= λpqmw2(t), (4.58)

and

dλpq

dt
= λp22mw2(t)−

λq22

m
. (4.59)

The system of linear differential equations (4.55-4.59) for the Lagrange multipliers

λi can be solved (given a specific form of w(t)) by a variety of standard methods.

Given a particular solution λi(t), the maximum entropy ansatz (remember that

all the time dependence of f(q, p, t) is through the Lagrange multipliers λi)

f(q, p, t) =
1

Z
exp(−λq q − λp p− λq2 q2 − λqp qp− λp2 p2), (4.60)

with

Z =

∫ +∞

−∞

∫ +∞

−∞
exp(−λq q − λp p− λq2 q2 − λqp qp− λp2 p2) dq dp, (4.61)

constitutes an exact time dependent solution to the Liouville equation of the

harmonic oscillator. It is worth mentioning that standard textbooks on classical

dynamics rarely provide examples of exact, time dependent solutions of Liouville

equation.

4.6 Conclusions

This effort has revolved around the idea of giving the Maximum Entropy Method-

ology a more important place in the physics curriculum than it has now. The

following points have been emphasized:
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4.6 Conclusions

1. The maximum entropy principle constitutes an interesting application of

the Lagrange multipliers technique, and some aspects of it could already be

taught in elementary Calculus courses.

2. The maximum entropy principle provides the foundation of statistical me-

chanics, not only in its equilibrium version but also in its non-equilibrium

one.

3. The maximum entropy method constitutes a useful didactic tool for com-

fortably tackling other aspects of theoretical physics, as it provides a simple

and elegant method for obtaining analytical solutions of several evolution

equations, like the Liouville, diffusion, and Fokker-Planck ones.

4. The maximum entropy method today is an indispensable tool in Physics,

Chemistry, Engineering, etc., with which to confront “real world” problems.

Of course, all these points are inextricably intertwined. In this contribution we

have focused attention on point 3, providing a simple and informative application

that any attentive student of physics should understand.
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Chapter 5

Conclusions

The subject of the present work was to investigate the application of maximum

entropy schemes for solving evolution equations describing time dependent pro-

cesses. In particular we considered:

1. A collisional Vlasov equation with a Fokker-Planck like collision term.

(Schönfeldt et al., Physica A, 369 (2006) 408-416).

2. Evolution equations with the form of continuity equations with sources.

(Schönfeldt et al., Physica A, 374 (2007) 573-584).

3. The use of simple illustrations of the afore mentioned techniques in physics

education. (Schönfeldt et al., Rev. Mex. Fis. E, 52 (2) (2006) 151-159).

We investigated a maximum entropy procedure for constructing solutions for

a collisional Vlasov equation. We showed that the aforementioned equation ad-

mits exact maximum entropy solutions, as opposed to the alternative maximum

entropy solutions previously advanced by El-Wakil et al. (2003) that were only

approximate. We considered two different approaches to the exact maximum

entropy solutions of the collisional Vlasov equation. In the first instance we iden-

tified an appropriate set of five relevant mean values that evolve according to a

closed set of coupled , ordinary, linear differential equations. We then constructed

exact maximum entropy solutions associated with that set of mean values. We

investigated these solutions using both the equations of motion of the mean val-

ues, as well as the equations of motion of the corresponding Lagrange multipliers.
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In the second instance we proved that it is possible to obtain exact solutions of

the reduced equation considered by El-Wakil et al. (2003), if the zeroth-order

moment of the solutions is explicitly taken into account. In order to do this,

we proved that some of the partial differential equations considered by El-Wakil

et al. (2003) admit exact solutions. The maximum entropy solutions considered

by El-Wakil et al. (2003) assumed a constant normalization of 1. Where as the

exact solutions, to the equation they considered, have a time-dependent normal-

ization. Their solutions, neglecting this important piece of information, are thus

bound to be only approximate.

We considered a maximum entropy approach to construct approximate, time

dependent solution to evolution equations endowed with source terms. We showed

that in some particular cases the method leads to exact time dependent solutions.

By construction our present implementation of the maximum entropy prescription

complies with the exact equations of motion of the relevant mean values. More-

over, it always (even in the case of approximate solutions) preserves the exact

functional relationship between the time derivative of the entropy and the time

dependent solutions of the evolution equation. This means that any H -theorem

verified when evaluating the entropy functional upon the exact solutions is also

verified when evaluating the entropy upon the maximum entropy approximate

treatments.

We explored the idea of giving the maximum entropy methodology a more

important place in the physics curriculum than it has now. The points emphasized

were:

1. The maximum entropy principle constitutes an interesting application of

the Lagrange multipliers technique.

2. The maximum entropy principle provides the foundation of statistical me-

chanics, not only in its equilibrium version but also in its non-equilibrium

one.

3. The maximum entropy principle constitutes a useful didactic tool for com-

fortably tackling other aspects of theoretical physics, since it is an impor-

tant and elegant method to obtain analytical solutions of several evolution

equations.
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4. The maximum entropy principle is an indispensable tool in Physics, Chem-

istry, Engineering, etc., for solving “real world” problems.

We focused our attention on point 3, providing simple and informative illustra-

tions of the maximum entropy approach to some basic evolution equations of

physics.
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