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I said to my soul, be still and wait without hope

For hope would be hope for the wrong thing;

Wait without love for love would be love of the wrong thing;

There is yet faith but the faith and the love and

The hope are all in the waiting.

Wait without thought, for you are not ready for thought:

So the darkness shall be the light, and the stillness the dancing.

T.S. Eliot
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Summary

Due to its great importance, both from the fundamental and from the

practical points of view, it is imperative that the concept of entangle-

ment is explored. In this thesis I investigate the connection between

information measures, entanglement and the “speed” of quantum evo-

lution.

In Chapter 1 a brief review of the different information and entan-

glement measures as well as of the concept of “speed” of quantum

evolution is given. An illustration of the quantum no-cloning theorem

in connection with closed timelike curves is also provided.

The work leading up to this thesis has resulted in the following three

publications and in one conference proceeding:

(A) C. Zander and A.R. Plastino, “Composite systems with extensive

Sq (power-law) entropies”, Physica A 364, (2006) pp. 145-156

(B) S. Curilef, C. Zander and A.R. Plastino, “Two particles in a

double well: illustrating the connection between entanglement

and the speed of quantum evolution”, Eur. J. Phys. 27, (2006)

pp. 1193-1203

(C) C. Zander, A.R. Plastino, A. Plastino and M. Casas, “Entangle-

ment and the speed of evolution of multi-partite quantum sys-

tems”, J. Phys. A: Math. Theor. 40 (11), (2007) pp. 2861-2872

 
 
 



(D) A.R. Plastino and C. Zander, “Would Closed Timelike Curves

Help to Do Quantum Cloning?”, AIP Conference Proceedings:

A century of relativity physics, ERE 841, (2005) pp. 570-573.

Chapter 2 is based on (A) and is an application of the Sq (power-

law) entropy. A family of models for the probability occupancy of

phase space exhibiting an extensive behaviour of Sq and allowing for

an explicit analysis of the thermodynamic limit is proposed.

Chapter 3 is based on (B). The connection between entanglement and

the speed of quantum evolution as measured by the time needed to

reach an orthogonal state is discussed in the case of two quantum

particles moving in a one-dimensional double well. This illustration is

meant to be incorporated into the teaching of quantum entanglement.

Chapter 4 is based on (C). The role of entanglement in time evolu-

tion is investigated in the cases of two-, three- and N -qubit systems.

A clear correlation is seen between entanglement and the speed of

evolution. States saturating the speed bound are explored in detail.

Chapter 5 summarizes the conclusions drawn in the previous chapters.
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Chapter 1

Introduction

“The difference between theory and practice is that in theory, there is no differ-

ence between practice and theory, but in practice, there is.”

In recent years the physics of information [1; 2; 3; 4] has received increasing

attention [5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16]. There is a growing consensus

that information is endowed with physical reality, not in the least because the

ultimate limits of any physical device that processes or transmits information are

determined by the fundamental laws of physics [6; 11; 12; 13; 14]. That is, the

physics of information and computation is an interdisciplinary field which has

promoted our understanding of how the underlying physics influences our abil-

ity to both manipulate and use information. By the same token a plenitude of

theoretical developments indicate that the concept of information constitutes an

essential ingredient for a deep understanding of physical systems and processes

[1; 2; 3; 4; 5; 6]. Landauer’s principle is one of the most fundamental results in the

physics of information and is generally associated with the statement “informa-

tion is physical”. It constitutes a historical turning point in the field by directly

connecting information processing with (more) conventional physical quantities

[17]. According to Landauer’s principle a minimal amount of energy is required

to be dissipated in order to erase a bit of information in a computing device

working at temperature T . This minimum energy is given by kT ln 2, where k

denotes Boltzmann’s constant [18; 19; 20]. Landauer’s principle has deep impli-

cations, as it allows for the derivation of several important results in classical and
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quantum information theory [21]. It also constitutes a rather useful heuristic tool

for establishing new links between, or obtaining new derivations of, fundamental

aspects of thermodynamics and other areas of physics [22].

Information is something that is encoded in a physical state of a system and

a computation is something that can be carried out on a physically realizable

device. In order to quantify information one will need a measure of how much

information is encoded in a system or process. Shannon entropy, Rényi entropy

(which is a generalization of Shannon entropy) and Sq power-law entropies will

be discussed. Since the universe is quantum mechanical at a fundamental level,

the question naturally arises as to how quantum theory can enhance our insight

into the nature of information.

Entanglement is one of the most fundamental aspects of quantum physics. It

constitutes a physical resource that allows quantum systems to perform informa-

tion tasks not possible within the classical domain. That is, quantum information

is typically encoded in non-local correlations between the different parts of a phys-

ical system and these correlations have no classical counterpart. One of the aims

of quantum information theory is to understand how entanglement can be used as

a resource in communication and other information processes. Two spectacular

applications of entanglement are quantum teleportation and superdense coding,

which will be discussed in more detail.

Another important aspect of entanglement is its influence on the “speed” of

quantum evolution of both independent and interacting systems and hence the

possibility exists that it could speed up quantum computation and other quan-

tum information processes.

Since the outcome of a quantum mechanical measurement has a random ele-

ment, we are unable to infer the initial state of the system from the measurement

outcome. This basic property of quantum measurements is connected with an-

other important distinction between quantum and classical information: quantum

information cannot be copied with perfect fidelity. This is called the no-cloning

principle. If it were possible to make a perfect copy of a quantum state, one could
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then measure an observable of the copy (in fact, we could perform measurements

on as many copies as necessary) without disturbing the original, thereby defeat-

ing, for instance, the principle that two non-orthogonal quantum states cannot be

distinguished with certainty [23]. Perfect quantum cloning would also allow the

second principle of thermodynamics [23] to be defeated. It has also been proved

that quantum cloning would allow (via EPR-type experiments [24]) information

to be transmitted faster than the speed of light.

1.0.1 Information and entropic measures

Entropy is an extremely important concept in information theory and in other

fields as well. The entropy of a probability distribution can be interpreted not

only as a measure of uncertainty, but also as a measure of information. The

amount of information which one obtains by observing the result of an exper-

iment depending on chance, can be taken numerically equal to the amount of

uncertainty concerning the outcome of the experiment before carrying it out [25].

The Shannon entropy, introduced by Claude E. Shannon, is a fundamental mea-

sure in information theory.

1.0.1.1 Shannon entropy

This is the unique, unambiguous criterion for the amount of uncertainty repre-

sented by a discrete probability distribution, that is, the amount of uncertainty

concerning the outcome of an experiment:

HShannon(p1, p2, . . . , pn) = −k
n∑
i=1

pi log2 pi, (1.1)

where pi is the probability that the discrete variable x will assume the value xi and

k is a positive constant which when set to one gives the unit “bits” for the entropy.

The three conditions which give rise to the above expression, are [26]

1. H is a continuous function of the pi
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2. If all pi’s are equal, then H(1/n, 1/n, . . . , 1/n) is a monotonic increasing

function of n

3. The composition law:

H(p1, p2, . . . , pn) = H(w1, w2, . . . , wr) + w1H(p1/w1, . . . , pk/w1)+

w2H(pk+1/w2, . . . , pk+m/w2) + . . . , (1.2)

where w1 = (p1 + . . .+ pk), w2 = (pk+1 + . . .+ pk+m), etc.

In the view of Jaynes [26; 27; 28], the relationship between thermodynamic

and informational entropy is, that thermodynamics should be seen as an ap-

plication of Shannon’s information theory. Thermodynamic entropy is then in-

terpreted as being an estimate of the amount of information that remains un-

communicated by a description solely in terms of the macroscopic variables of

classical thermodynamics and that would be needed to define the detailed micro-

scopic state of the system. The increase in entropy characteristic of irreversibility

always signifies, both in quantum mechanics and classical theory, a loss of infor-

mation.

One of the most important property of entropy is its additivity, that is, given

two probability distributions P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qm),

HShannon[P ∗Q] = HShannon[P ] +HShannon[Q], (1.3)

where by P ∗ Q we denote the direct product of the distributions. Now, one

cannot replace condition 3 with eq. (1.3), since the latter condition is much

weaker. Actually, there are several quantities other than eq. (1.1) which satisfy

conditions 1, 2 and eq. (1.3). The following is one generalization of the Shannon

entropy.
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1.0.1.2 Rényi entropy

The entropy of order α of the distribution P = (p1, p2, . . . , pn) is defined to be

[25]

Rα(p1, p2, . . . , pn) =
1

1− α
log2

(
n∑
k=1

pαk

)
, (1.4)

where α ≥ 0, α 6= 1 and Rα is measured in units of bits. That is, the above

expression can be regarded as a measure of the entropy of the distribution P and

in the limiting case α→ 1 we recover the Shannon entropy:

lim
α→1

Rα(p1, p2, . . . , pn) =
n∑
k=1

pk log2

1

pk
. (1.5)

An interpretation of Rényi entropy is, that the greater the parameter α the

greater the dependence of the entropy on the probabilities of the more probable

values and hence less on the improbable ones.

Closely related to Rényi entropy is another generalization of Shannon’s en-

tropy that has been the subject of much interest recently, the Sq power-law en-

tropy.

1.0.1.3 Sq power-law entropies

The power-law Sq entropies, advanced by Tsallis, are non-extensive entropic func-

tionals given by [29; 30; 31],

Sq(p) =
1

q − 1

(
1−

∑
i

pqi

)
(discrete case)

Sq(p) =
1

q − 1

(
1−

∫
pq(x)dx

)
(continuous case) (1.6)

where p denotes the probability distribution and the parameter q is any real num-

ber (characterizing a particular statistics), q 6= 1. The Tsallis entropy possesses

the usual properties of positivity, equiprobability, concavity, irreversibility and it

generalizes the standard additivity (eq. (1.3)) as well as the Shannon additivity

5

 
 
 



(eq. (1.2)) [30]. The normal Boltzmann-Gibbs entropy is recovered in the limit

q → 1.

The non-extensive thermo-statistical formalism based upon the Sq entropies has

been applied to a variegated family of problems in physics, astronomy, biology

and economics [32]. In particular, the case q = 2 constitutes a powerful tool for

the study of quantum entanglement (see Chapters 3 and 4 of this dissertation).

Tsallis entropy can also be regarded as a one-parameter generalization of the

Shannon entropy.

The characteristic property of Tsallis entropy is pseudoadditivity,

Sq(A,B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B), (1.7)

with A and B being two mutually independent finite event systems whose joint

probability distribution satisfies

p(A,B) = p(A)p(B). (1.8)

From this it is evident that q is a measure of the non-extensivity of the system.

1.0.1.4 Mixed states in quantum mechanics

The density operator language gives a description of quantum mechanics that

does not take as its foundation the state vector. A quantum system whose state

|ψ〉 is known exactly is said to be in a pure state. In this case the density operator

is simply ρ = |ψ〉〈ψ|. Otherwise, ρ is in a mixed state and it is said to be a mixture

of the different pure states in the ensemble for ρ. That is, suppose a quantum

system is in one of a number of states |ψi〉 (where i is an index) with respective

probabilities pi; the ensemble of pure states is then denoted by {pi, |ψi〉}. It is

important to note that the states |ψi〉 do not need to be orthogonal to each other.

The density operator for the system is then defined by

ρ ≡
∑
i

pi|ψi〉〈ψi|, (1.9)
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where
∑

i pi = 1. Now an operator ρ is the density operator associated with an

ensemble {pi, |ψi〉} if and only if it satisfies the conditions:

(a) Hermicity condition: ρ is Hermitian, that is, ρ† = ρ

(b) Normalization condition: ρ has trace equal to one

(c) Positivity condition: ρ is a positive operator.

The above conditions provide a characterization of density operators that is in-

trinsic to the operator itself: one can define a density operator to be a positive

Hermitian operator ρ which has trace equal to one.

Given a density matrix ρ, the decomposition in equation (1.9) is not unique.

One may have different {pi, |ψi〉} leading to the same ρ:∑
i

p
′

i|ψ
′

i〉〈ψ
′

i| =
∑
i

pi|ψi〉〈ψi|. (1.10)

As an illustration consider for instance two decompositions

ρ =


1
4

0 0 0
0 1

4
0 0

0 0 1
4

0
0 0 0 1

4

 =
1

4
|00〉〈00|+ 1

4
|01〉〈01|+ 1

4
|10〉〈10|+ 1

4
|11〉〈11|

=
1

8
(|00〉+ |11〉)(〈00|+ 〈11|) +

1

8
(|00〉 − |11〉)(〈00| − 〈11|)

+
1

8
(|01〉+ |10〉)(〈01|+ 〈10|) +

1

8
(|01〉 − |10〉)(〈01| − 〈10|). (1.11)

This non-unique character of the decomposition of ρ as a “mixture” of pure states

is very relevant for the discussion of the concept of “entanglement of formation”,

see equations (1.28) and (1.29).

The main applications of the density operator formalism are the descriptions of

quantum systems whose state is only partially known, and the description of

subsystems of a composite quantum system, where the latter description is pro-

vided by the reduced density operator. The density matrices for the description

of subsystems form the basis of the description of the phenomenon of quantum

entanglement.
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1.0.1.5 Quantum entropic measures

The following quantum entropic measures are invariant under unitary transfor-

mation, since the trace is invariant under unitary transformation:

1. von Neumann entropy

2. Tsallis entropy

3. Rényi entropy.

A proper extension of Shannon’s entropy to the quantum case is given by the

von Neumann entropy, defined as

S(ρ) = −Tr(ρ log2 ρ), (1.12)

where ρ is the density matrix of the system. Thus quantum states are described

by replacing probability distributions with density operators. In order to com-

pute S(ρ), one has to write ρ in terms of its eigenbasis. Since limp→0 p log2 p = 0

is well defined, we can set 0 log2 0 = 0 by continuity.

If the system is finite (finite dimensional matrix representation) the entropy

(1.12) describes the departure of our system from a pure state. In other words,

it measures the degree of mixture of our state describing a given finite system.

The following are properties of the von Neumann entropy [33]:

• S(ρ) is only zero for pure states.

• S(ρ) is maximal and equal to log2N for a maximally mixed state, N being

the dimension of the Hilbert space.

• S(ρ) is invariant under a change of basis of ρ, that is, S(ρ) = S(U ρU †),

with U a unitary transformation.

• Given two density matrices ρI , ρII describing independent systems I and

II, we have that S(ρ) is additive: S(ρI ⊗ ρII) = S(ρI) + S(ρII).
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• If ρA and ρB are the reduced (marginal) density matrices of the general

state ρAB, then

S(ρAB) ≤ S(ρA) + S(ρB). (1.13)

The last property is known as subadditivity and also holds for the Shannon en-

tropy. However, some properties of the Shannon entropy do not hold for the von

Neumann entropy, thus leading to many interesting consequences for quantum in-

formation theory. While in Shannon’s theory the entropy of a composite system

can never be lower than the entropy of any of its parts, in quantum theory this

is not the case and can actually be seen as an indicator of an entangled state ρAB.

In the framework of quantum information theory the von Neumann entropy

is extensively used in different forms such as conditional and relative entropies.

Due to the inadequacy of the Shannon information measure in certain situations,

the von Neumann entropy is likewise not adequate as an appropriate quantum

generalization of Shannon entropy. In classical measurements the Shannon in-

formation measure is a natural measure of our ignorance about the properties of

a system, whose existence is independent of measurement. Conversely, quantum

measurement cannot claim to reveal the properties of a system that existed before

the measurement was made. This argument has encouraged the introduction of

the non-additivity property of Tsallis’ entropy as the main reason for recovering

a true quantal information measure in the quantum context, thus claiming that

non-local correlations ought to be described because of the particularity of Tsal-

lis’ entropy.

In the quantum case the Tsallis entropy becomes

Sq(ρ) =
1

q − 1
[1− Tr (ρq)] (1.14)

and the Rényi entropy

Rα(ρ) =
1

1− α
log2 [Tr (ρα)] . (1.15)
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1.0.2 Entanglement

A bipartite pure state |ψ〉AB is entangled if it cannot be expressed as a direct

product,

|ψ〉AB = |φ〉A|ϕ〉B. (1.16)

Pure states that can be factorized as (1.16) are called separable or non-entangled.

The marginal density matrices ρA = TrB(|ψ〉AB〈ψ|) and ρB = TrA(|ψ〉AB〈ψ|) as-

sociated with an entangled pure state correspond to mixed states. This means

that the joint state can be completely known, yet the subsystems are in mixed

states and hence we do not have maximal knowledge concerning them. A classic

example is the singlet state of two spin-1
2

particles, 1√
2
(| ↑↓〉 − |↓↑〉), in which

neither particle has a definite spin direction, but when one is observed to be

spin-up, the other one will always be observed to be spin-down and vice-versa.

This is the case despite the fact that it is impossible to predict (using quantum

mechanics) which set of measurement results will be observed. As a consequence,

measurements performed on one system seem to be instantaneously influencing

other systems entangled with it. If the state is separable then subsystems A and

B are with certainty in the pure states |φ〉A and |ϕ〉B respectively.

The general idea behind the most important entanglement measures of pure bi-

partite states is the following. The more “mixed” the marginal density matrices

associated with the subsystems are, the more entangled is the global state of

the bi-partite system. Consequently, any appropriate measure of the degree of

mixedness of a subsystem’s marginal density matrix provides a measure of the

amount of entanglement exhibited by the global, bi-partite pure state.

A bi-partite mixed state of a composite quantum system is entangled if it

cannot be represented as a mixture of factorizable pure states,

ρAB =
∑
i

pi|αi〉〈αi| ⊗ |βi〉〈βi|, (1.17)
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where
∑

i pi = 1, and |αi〉 and |βi〉 are pure states of subsystems A and B re-

spectively. It is also of considerable interest to quantify the entanglement of

general bi-partite mixed states, but unfortunately mixed-state entanglement is

not as well understood as pure-state entanglement and is often very difficult to

compute. One reason for the interest in mixed-state entanglement is a connection

with the transmission of quantum information through noisy quantum channels

[34].

Entanglement can be regarded as a physical resource which is associated with

the peculiar non-classical correlations that are possible between separated quan-

tum systems. Entanglement lies at the basis of important quantum information

processes such as quantum cryptographic key distribution [35], quantum telepor-

tation [36], superdense coding [37] and quantum computation [38]. The experi-

mental implementation of these processes could lead to a deep revolution in both

the communication and computational technologies. There are several valid mea-

sures of entanglement, some more useful and practical than others, depending on

the type of analysis to be performed and on the specific application or system

being analyzed.

Entangled states cannot be prepared locally by acting on each subsystem in-

dividually [39]. This property is directly related to entanglement being invariant

under local unitary transformation: one can perform a unitary operation on a

subsystem without changing the entanglement of the global system. As an illus-

tration consider a system consisting of two subsystems A and B. A local unitary

operator is then defined to be U = UA⊗UB where the unitary operators UA and

UB solely act on A and B respectively. A bi-partite pure state can be expressed

in a standard form (the Schmidt decomposition) that is often useful. That is,

according to the Schmidt decomposition an arbitrary state |ψ〉AB in the Hilbert

space H = HA ⊗HB of the composite system can be expressed as follows

|ψ〉AB =
∑
i

√
λi|φ(A)

i 〉|φ(B)
i 〉 (1.18)
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in terms of particular orthonormal bases {|φ(A)
i 〉} and {|φ(B)

j 〉} in HA and HB

respectively. The summation over the index in the Schmidt decomposition goes

to the smaller of the dimensionalities of the two Hilbert spaces HA and HB [40].

The λi’s are non-negative real numbers satisfying
∑

i λi = 1. It is important

to note that the Schmidt decomposition of a given quantum state is not unique

and that the Schmidt decomposition pertains to a specific state of the composite

system, so for two different states we have two different Schmidt decompositions

[40]. The marginal density matrices for ρA and ρB are given by

ρA = TrB[|ψ〉AB〈ψ|]
=

∑
i

λi|φ(A)
i 〉〈φ(A)

i | (1.19)

ρB =
∑
i

λi|φ(B)
i 〉〈φ(B)

i |. (1.20)

From this it is clear that ρA and ρB have the same non-zero eigenvalues. If the

subsystems A and B have different dimensions, then the number of zero eigen-

values of ρA and ρB differ. The number of non-zero eigenvalues in ρA (or ρB)

and hence the number of terms in the Schmidt decomposition of |ψ〉AB is called

the Schmidt number for the state |ψ〉AB. In terms of this quantity one can define

what it means for a bi-partite pure state to be entangled: |ψ〉AB is entangled if

its Schmidt number is greater than one, otherwise it is separable.

From equations (1.19) and (1.20), the von Neumann entropy of |ψ〉AB is then

SvN(ρA) = −
∑
i

λi log2 λi = SvN(ρB). (1.21)

Acting on |ψ〉AB with the local unitary operator U results in the state |ψ′〉AB,

[UA ⊗ UB]|ψ〉AB =
∑
i

√
λi

(
UA|φ(A)

i 〉 ⊗ UB|φ(B)
i 〉
)
. (1.22)

The marginal density matrix for subsystem A then becomes

ρ
′

A = TrB

(
[UA ⊗ UB]|ψ〉AB〈ψ|[U †A ⊗ U †B]

)
(1.23)
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and so the von Neumann entropy is

SvN [ρA] = SvN [ρ
′

A] = −
∑
i

λi log2 λi (1.24)

which implies that the entanglement remains constant under local unitary op-

eration. This means that the only way to entangle A and B is for the two

subsystems to directly interact with one another, that is, one has to apply a col-

lective or global unitary transformation to the state. It is a law of entanglement

theory (which can be derived as a theorem of quantum mechanics [41]) that the

entanglement between two spatially separated systems cannot, on average, be

increased by carrying out local operations and classical communications (LOCC)

protocols [42].

1.0.2.1 Entropy of entanglement

The entropy of entanglement is given by the von Neumann entropy of the marginal

density matrices. This is an operational measure: it gives the number of ebits

that are needed to create a pure entangled state in the laboratory. An “ebit”

or entanglement bit is a unit of entanglement and is defined as the amount of

entanglement in a Bell pair |β00〉, |β01〉, |β10〉 or |β11〉, see equations (1.41). These

states and any related to them by local unitary operations can be used to perform

a variety of non-classical feats such as superdense coding and quantum telepor-

tation and are thus a valuable resource [42].

For each pure state |ψ〉AB, the entanglement is defined as the von Neumann

entropy of either of the two subsystems A and B [43],

E(|ψ〉AB) = −Tr(ρA log2 ρA) = −Tr(ρB log2 ρB), (1.25)

where ρA and ρB are the marginal density matrices of the subsystems:

ρA = TrB(|ψ〉AB〈ψ|)
ρB = TrA(|ψ〉AB〈ψ|). (1.26)
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1.0.2.2 Entanglement measure based upon the linear entropy

Another useful entanglement measure which gives the degree of mixedness of

the density matrix ρ and which is easy to compute (since there is no need to

diagonalize ρ) is given by the linear entropy,

S(ρ) = 1− Tr(ρ2). (1.27)

This entropic measure coincides (up to a constant multiplicative factor) with the

quantum power-law entropy Sq with Tsallis’ parameter q = 2. Similar to the

von Neumann entropy, for each pure state |ψ〉AB the entanglement is defined as

the linear entropy of either of the two subsystems A and B. The linear entropy

does not stem from an operational point of view, but it gives a good idea of how

much entanglement is present when one is not interested in the detailed resources

needed to create these states in a laboratory.

1.0.2.3 Entanglement of formation

This is a physically motivated measure of entanglement for mixed states which is

intended to quantify the resources needed to create a given entangled state [44].

That is, from an “engineering” point of view this measure gives the minimum

number of ebits that are needed to create entangled states. Since entanglement

is a valuable resource one wants to minimize the amount of ebits needed.

The entanglement of formation is defined as follows [44; 45]: given a density

matrix ρ of a pair of quantum systems A and B, consider all possible pure-state

decompositions of ρ, that is, all ensembles of states |ψi〉 with probabilities pi such

that

ρ =
∑
i

pi|ψi〉〈ψi|. (1.28)

This non-unique character of the decomposition of ρ has been discussed in Section

1.0.1.4.

For each pure state, the entanglement E is defined as the von Neumann entropy

of either of the two subsystems A and B (see (1.25)). The entanglement of
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formation of the mixed state ρ is then defined as the average entanglement of the

pure states of the decomposition, minimized over all decompositions of ρ:

E(ρ) = min
∑
i

piE(ψi). (1.29)

In other words, the entanglement of formation of a mixed state ρ is defined as the

minimum average entanglement of an ensemble of pure states that represents ρ.

Of particular interest is the “entanglement of formation” (EOF) for mixed states

of a two-qubit system. In that special case an explicit formula for the entangle-

ment of formation has been discovered. For bi-partite states of higher dimension

or for three and more qubits one has to resort to numerical optimization routines

which are computationally expensive and often extremely hard to compute. In

the latter instance one then has to use other measures such as the negativity dis-

cussed in Section 1.0.2.4. To obtain the EOF of an arbitrary state of two qubits,

one has to follow the procedure by Wootters [44]. For a general state ρ of two

qubits, the spin-flipped state is

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy), (1.30)

where ρ∗ is the complex conjugate of ρ taken in the standard basis and σy is the

usual Pauli matrix. The EOF is then given by

E(ρ) = E(C(ρ)), (1.31)

where the function E is

E(C) = h

(
1 +

√
1− C2

2

)
,

h(x) = −x log2 x− (1− x) log2(1− x) (1.32)

and the “concurrence” C is defined as

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (1.33)

with the λi’s being the eigenvalues, in decreasing order, of the Hermitian matrix

R =
√√

ρ ρ̃
√
ρ. This procedure clearly also holds for bi-partite pure states |φ〉
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and in that case the EOF can be interpreted roughly as the number of qubits

that must have been exchanged between two observers in order for them to share

the state |φ〉 [44].

1.0.2.4 Negativity

The partial transpose of a density matrix ρ can be used to determine whether

the mixed quantum state represented by ρ is separable [46] and can therefore

also be used to detect entanglement in ρ [47; 48]. This entanglement measure is

effective in numerical explorations of multi-partite mixed states due to its relative

simplicity and computability [49].

Consider an N -qubit state of the form

|ψ〉 =
2N−1∑
k=0

ck|k〉, (1.34)

where the ck satisfy the normalization condition and each |k〉 is a basis state

|a1a2 . . . aN〉 with a1a2 . . . aN being the binary representation of the integer k,

ai ∈ {0, 1}. A density operator of a mixed state ρ can be written in terms of pure

states having the same form as |ψ〉:

ρ =
n∑
j=1

pj|ψj〉〈ψj|

=
n∑
j=1

pj

1∑
a1,a2,...,aN=0

cja1a2...aN
|a1a2 . . . aN〉

1∑
a
′
1,a

′
2,...,a

′
N=0

cj∗
a
′
1a

′
2...a

′
N

〈a′1a
′

2 . . . a
′

N |

=
n∑
j=1

pj

1∑
a1,a2,...,aN =0

a
′
1,a

′
2,...,a

′
N=0

dj
a1a2...aNa

′
1a

′
2...a

′
N

|a1a2 . . . aN〉〈a
′

1a
′

2 . . . a
′

N |, (1.35)

dj
a1a2...aNa

′
1a

′
2...a

′
N

= cja1a2...aN
cj∗
a
′
1a

′
2...a

′
N

. To construct the partial transpose of ρ with

respect to the index i (corresponding to the cut set {i}), we have to transpose

the bits ai and a
′
i in the basis states:
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ρT{i} =
n∑
j=1

pj

1∑
a1,a2,...,aN =0

a
′
1,a

′
2,...,a

′
N=0

dj
a1...ai...aNa

′
1...a

′
i...a

′
N

|a1 . . . a
′

i . . . aN〉〈a
′

1 . . . ai . . . a
′

N |

=
n∑
j=1

pj

1∑
a1,a2,...,aN =0

a
′
1,a

′
2,...,a

′
N=0

dj
a1...a

′
i...aNa

′
1...ai...a

′
N

|a1 . . . ai . . . aN〉〈a
′

1 . . . a
′

i . . . a
′

N |.(1.36)

The partial transpose with respect to a larger set of indices (larger cut set) is con-

structed in a similar way by transposing the bits corresponding to each index in

the set. To obtain the entanglement of the mixed state (1.35) we need to consider

all unique cut sets and then sum the negative eigenvalues of the corresponding

partially transposed matrices. As entanglement measure one then takes the nega-

tion of the aforementioned sum. The number of unique cut sets is 2N−1−1, since

the complimentary cut sets result in partially transposed matrices which have the

same eigenvalues and the trivial partial transpose with respect to the empty cut

gives the original density matrix which has no negative eigenvalues. [47; 48; 49]

1.0.2.5 Multi-partite entanglement measures

Due to its great relevance, both from the fundamental and from the practical

points of view, it is imperative to explore and characterize all aspects of the

quantum entanglement of multi-partite quantum systems [50; 51]. There are

several possible N -qubit entanglement measures for pure states |φ〉, one being

the average of all the single-qubit linear entropies,

Q(|φ〉) = 2

(
1− 1

N

N∑
k=1

Tr(ρ2
k)

)
. (1.37)

Here ρk, k = 1, . . . , N , stands for the marginal density matrix describing the kth

qubit of the system after tracing out the rest. This quantity, often referred to as

“global entanglement” (GE), measures the average entanglement of each qubit of

the system with the remaining (N−1)-qubits.

The GE measure can be generalized by using the average values of the linear

entropies associated with more general partitions of the N -qubit system into two
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subsystems (and not only the partitions of the system into a 1-qubit subsystem

and an (N −1)-qubit subsystem). A particular generalization is given by the

following family of multi-qubit entanglement measures,

Qm(|φ〉) =
2m

2m − 1

(
1− m!(N −m)!

N !

∑
s

Tr(ρ2
s)

)
, m = 1, . . . , [N/2], (1.38)

where the sum runs over all the subsystems s consisting of m qubits, ρs are the

corresponding marginal density matrices and [x] denotes the integer part of x.

The quantities Qm measure the average entanglement between all the subsystems

consisting of m qubits and the remaining (N −m) qubits. Another way of char-

acterizing the global amount of entanglement exhibited by an N -qubit state is

provided by the sum of the (bi-partite) entanglement measures associated with all

the possible bi-partitions of the N -qubits system [49]. These entanglement mea-

sures are given, essentially, by the degree of mixedness of the marginal density

matrices associated with each bi-partition. These degrees of mixedness can be,

in turn, evaluated in several ways. For instance, we can use the von Neumann

entropy, the linear entropy or a Rényi entropy of index q [50; 51]. There has

recently been great interest in the search for highly entangled multi-qubit states

[49; 51]. The results of such a numerical search are reported in the Appendix.

1.0.2.6 Application: superdense coding

For superdense coding we require two parties, conventionally known as ‘Alice’

and ‘Bob’, who are far from each other. Alice can send two classical bits of

information to Bob by sending him a single qubit, if they initially share a pair of

qubits in the entangled state:

|ψ〉 =
|00〉+ |11〉√

2
. (1.39)

The state |ψ〉 is fixed (no qubits need to be sent in order to prepare the state)

with Alice and Bob being in possession of the first and second qubit respectively.

The procedure Alice uses to send two bits of classical information via her qubit

is as follows [33]: if she intends to send the bit string ‘00’ to Bob then she does
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nothing to her qubit. To send ‘01’ she applies the phase flip Z to her qubit. If

she wishes to send ‘10’ then she applies the quantum NOT gate, X, to her qubit

and to send ‘11’ she applies the iY gate. The X, Y and Z gates are given by

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
. (1.40)

The four resulting states are the Bell states:

00 : |ψ〉 → |β00〉 =
|00〉+ |11〉√

2

01 : |ψ〉 → |β01〉 =
|00〉 − |11〉√

2

10 : |ψ〉 → |β10〉 =
|10〉+ |01〉√

2

11 : |ψ〉 → |β11〉 =
|01〉 − |10〉√

2
, (1.41)

which are orthonormal and can thus be distinguished by an appropriate quantum

measurement. Once Bob has received Alice’s qubit he can perform a measure-

ment in the Bell basis and determine which of the four possible bit strings Alice

sent. Thus superdense coding is achieved by transmitting two bits of informa-

tion through the interaction of a single qubit. This illustrates that information is

indeed physical and that quantum mechanics can predict surprising information

processing abilities [33].

1.0.2.7 Application: quantum teleportation

As for superdense coding, we need two separated parties Alice and Bob sharing

the entangled EPR state |β00〉. Alice wants to send Bob the unknown state

|ψ〉 = α|0〉 + β|1〉 (α and β are not known) by making use of the EPR pair and

sending classical information to Bob. She accomplishes this by interacting the

qubit |ψ〉 with her half of the EPR pair and then sending her two qubits of the

resultant state (the first two qubits denote Alice’s)

|ψ0〉 = |ψ〉|β00〉 =
1√
2

[α|0〉(|00〉+ |11〉) + β|1〉(|00〉+ |11〉)] (1.42)
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through a CNOT gate

UCN =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (1.43)

obtaining the state

|ψ1〉 =
1√
2

[α|0〉(|00〉+ |11〉) + β|1〉(|10〉+ |01〉)] . (1.44)

She then sends her first qubit through a Hadamard gate

Hd =

(
1 1
1 −1

)
, (1.45)

obtaining

|ψ2〉 =
1

2
[|00〉(α|0〉+ β|1〉) + |01〉(α|1〉+ β|0〉)

+|10〉(α|0〉 − β|1〉) + |11〉(α|1〉 − β|0〉)] . (1.46)

From the first term in the above expression it can be seen that when Alice’s

qubits are in the state |00〉 then Bob’s qubit is in the state |ψ〉. Thus when Alice

performs a measurement and obtains the result 00, Bob’s post-measurement state

will be |ψ〉. In a similar way we can determine the state of Bob’s system given

Alice’s measurement outcomes:

00 7−→ |ψ3(00)〉 = α|0〉+ β|1〉
01 7−→ |ψ3(01)〉 = α|1〉+ β|0〉
10 7−→ |ψ3(10)〉 = α|0〉 − β|1〉
11 7−→ |ψ3(11)〉 = α|1〉 − β|0〉. (1.47)

Alice now sends Bob the classical information of her outcome, thereby telling him

in which one of the four possible states his qubit has ended up. This classical

information enables him to recover the state |ψ〉 by either doing nothing when the

outcome is 00, applying the gate X when he receives 01, the Z gate when getting
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10 or first applying an X and then a Z gate when the information 11 reaches him.

Since classical information needs to be exchanged, quantum teleportation does

not enable faster than light communication. Quantum teleportation illustrates

that different resources in quantum mechanics can be interchanged: one shared

EPR pair together with two classical bits of communication is a resource at least

the equal of one qubit of communication [33].

1.0.3 Speed of quantum evolution

The problem of the “speed” of quantum evolution is relevant in connection with

the physical limits imposed by the basic laws of quantum mechanics on the speed

of information processing and information transmission [13; 14; 52]. When pro-

cessing information, the output state of the computer device has to be reasonably

distinct from the input state [52]. In quantum mechanics two states are distin-

guishable if they are orthogonal, thus basic computational steps involve moving

from one quantum state to an orthogonal one. Consequently, lower bounds on

the time needed to reach an orthogonal state also provide estimations on how

fast one can perform elementary computation operations [14]. These, in turn,

can be used to estimate fundamental limits on how fast a physical computer can

run [14; 52].

A natural measure for the “speed” of quantum evolution governed by the

Hamiltonian H is provided by the time interval τ that a given initial state |ψ(t0)〉
takes to evolve into an orthogonal state [52; 53; 54],

〈ψ(t0)|ψ(t0 + τ)〉 = 0. (1.48)

Let E denote the energy’s expectation value,

E = 〈H〉, (1.49)

and ∆E the energy’s uncertainty,

∆E =
√
〈H2〉 − 〈H〉2. (1.50)
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Two fundamental lower bounds for τ , in terms of E and ∆E, are given by

(see [54], [55] and references therein)

π~
2∆E

(1.51)

and

π~
2E

. (1.52)

The latter bound was derived by Margolus and Levitin in [52]. These two bounds

can be combined as (see [53]),

τmin = max

(
π~
2E

,
π~

2∆E

)
, (1.53)

which constitutes a lower limit for the evolution time τ to an orthogonal state.

The problem of the minimum time necessary to reach an orthogonal state is

also relevant in connection with the energy-time Heisenberg uncertainty principle

[14], which can be formulated in terms of the minimum time that a system with

a given spread in energy requires to evolve to a distinguishable state (that is, to

an orthogonal state).

My main focus will be on the speed of the evolution which can be regarded

as the ratio of the absolute time taken and the minimum possible time imposed

by equation (1.53). If the ratio is one, it implies optimum usage of the energy

resources. On the other hand, the greater the ratio, the less “efficient” the en-

ergy resources are being used. Thus τ/τmin can be viewed as a measure of how

efficiently the energy resources are being used to evolve to an orthogonal state.

1.0.4 Quantum no-cloning and CTC

The quantum no-cloning theorem constitutes a hallmark feature of quantum in-

formation. It states that quantum information cannot be cloned: an unknown

quantum state of a given (source) system cannot be perfectly duplicated while
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leaving the state of the source system unperturbed [56; 57]. No unitary (quantum

mechanical) transformation exists that can perform the process

|ψ〉 ⊗ |0〉 ⊗ |Σ〉 −→ |ψ〉 ⊗ |ψ〉 ⊗ |Σψ〉, (1.54)

for arbitrary source states |ψ〉. In the above equation |0〉 and |Σ〉 denote, respec-

tively, the initial standard states of the target qubit and of the copy machine, and

|Σψ〉 is the final state of the copy machine. In other words, universal quantum

cloning is not permitted by the basic laws of quantum mechanics. The impossi-

bility of universal quantum cloning can be proved in two different ways. One can

show that it is not compatible with the linearity of quantum evolution or that it

is not compatible with the unitarity of quantum evolution.

In [58] I have explored the possibility of performing quantum cloning opera-

tions in the presence of closed timelike curves. In a Lorentzian manifold, a closed

timelike curve (CTC) is a worldline of a material particle in spacetime that is

closed. CTCs appear in some exact solutions to the Einstein field equation of

general relativity [59].

1.0.4.1 Properties of the fidelity distance

In our discussion of the cloning process in the presence of closed timelike curves

(CTC) we are going to use the fidelity distance between two quantum states

(represented by two density matrices) of a given quantum system. The main

properties of this measure that we are going to use are briefly reviewed:

the fidelity distance between two quantum states is given by [33]

F [ ρ, σ ] = Tr
√
ρ1/2σρ1/2. (1.55)

In the particular case that one of the states is pure, we have

F [ |ψ〉, ρ ] =
√
〈ψ|ρ|ψ〉. (1.56)

A fundamental property of the fidelity measure is that it remains constant under

unitary transformations,
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F [UρU †, UσU † ] = F [ ρ, σ ]. (1.57)

If we have a composite system AB, the distance between two density matrices

describing two states of the composite system is smaller or equal to the distance

between the marginal density matrices associated with one of the subsystems,

F [ ρAB, σAB ] ≤ F [ ρA, σA ]. (1.58)

Finally, the distance between two factorizable density matrices complies with

F [ ρ0 ⊗ σ0, ρ1 ⊗ σ1 ] = F [ ρ0, ρ1 ]F [σ0, σ1 ]. (1.59)

The fidelity distance is a number between zero and one, F = 0 corresponds to

completely distinguishable density matrices, whereas F = 1 signifies that the

density matrices are identical.

1.0.4.2 CTC and quantum cloning

The ideas and methods of quantum information theory [33] provide an interesting

framework for the study of certain aspects of the physics of closed timelike curves

[59]. Quantum computation processes with part of the quantum data traversing

closed timelike curves lead to a new physical model of computation [60] and

also to various physical effects with profound implications for the foundations of

quantum theory [59]. It has been conjectured [59] that the nonlinear evolution

of chronology respecting qubits interacting with closed timelike curve qubits may

be used to overcome the celebrated quantum no-cloning theorem [56; 57]. We

investigate the alluded to conjecture by recourse to the analysis of specific models

of the cloning process [58].

We consider a quantum cloning process where the copy machine is a composite

system consisting of two subsystems A and B, as Figure 1.1 illustrates.

The subsystem B is allowed to traverse a closed timelike curve. The joint density

matrix describing the state of the source qubit, target qubit and the subsystem A

of the copy machine (all three assumed to be chronology respecting) evolves, due

to their interaction with subsystem B, nonlinearly. A successful cloning process

would be of the form,
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Figure 1.1: Diagram depicting the quantum evolution of our set-up.

|ψi〉 ⊗ |0〉 ⊗ ρA ⊗ ρ
(i)
B −→ |ψi〉 ⊗ |ψi〉 ⊗ σ

(i)
AB, (1.60)

where |0〉 and ρA are, respectively, the standard initial states of the target qubit

and the subsystem A of the copy machine. The process (1.60) is assumed to be

described by a unitary transformation.

The subsystem B (traversing a closed timelike curve) verifies the consistency

condition [59],

ρ
(i)
B = TrA

(
σ

(i)
AB

)
. (1.61)

Notice that this consistency condition implies that the initial state of the sub-

system B (traversing a closed timelike curve) is not independent of the initial

state of the source qubit. Furthermore, due to the aforementioned consistency
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condition the evolution of the source and target qubits (as well as the subsystem

A of the copy machine) is nonlinear. Consequently, the usual argument for the

quantum no-cloning theorem based on the linearity of quantum evolution can-

not be applied here. Instead, we consider the behaviour of the fidelity distance

between two realizations of the cloning process. The fidelity distance between

density matrices is given by equation (1.55).

We assume that two different states 〈ψ1| and 〈ψ2| can be successfully cloned.

Since the unitary evolution for both initial states is the same, the fidelity distance

between the initial states of the cloning process has to be equal to the fidelity

distance between the final states of the cloning process (property (1.57)). Using

the basic properties of the fidelity distance mentioned in Section 1.0.4.1, one then

gets

|〈ψ1|ψ2〉|F
[
ρ

(1)
B , ρ

(2)
B

]
= |〈ψ1|ψ2〉|2 F

[
σ

(1)
AB, σ

(2)
AB

]
≤ |〈ψ1|ψ2〉|2 F

[
ρ

(1)
B , ρ

(2)
B

]
. (1.62)

In order to satisfy this inequality, at least one of the following conditions must

be fulfilled:

• 〈ψ1|ψ2〉 = 0

• F
[
ρ

(1)
B , ρ

(2)
B

]
= 0.

In the first case we have orthogonal source states which, as happens with standard

linear quantum evolution, can be cloned. The second case can be realized for

an appropriate choice of the unitary transformation (1.60). Consequently, it is

possible to clone two non-orthogonal states in the presence of a closed timelike

curve. However, if the subsystem B of the copy machine has a Hilbert space

of finite dimension N , the maximum number of non-orthogonal states that can

be cloned by the present scheme is N . It is important to emphasize that the

cloning process based upon closed timelike curves cannot be used to implement

faster than light signalling: due to the nonlinear character of the process we have

just discussed, a mixture of two pure states of the target qubit does not evolve
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into the corresponding mixture of the final states generated by those initial states

separately [58].
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Chapter 2

Composite Systems with

Extensive Sq (Power-Law)

Entropies

The problem of characterizing the kind of correlations leading to an extensive

behaviour of the Sq (power-law) entropic measure has recently been considered

by Tsallis, Gell-Mann and Sato (TGS) [61]. I propose a family of models for the

probability occupancy of phase space exhibiting an extensive behaviour of Sq and

allowing for an explicit analysis of the N →∞ (thermodynamic) limit [62].

2.1 Overview

The non-extensive thermo-statistical formalism [29; 61; 63] based upon the power-

law entropic measure Sq (also referred to as the Tsallis entropy) [29] has been

the focus of intensive research activity in recent years. There are several multi-

disciplinary applications of Sq. In physics the Sq entropy has been applied (among

other things) to:

A) Descriptions of meta-stable states of many-body systems with long-range

interactions:

1. Meta-stable states of pure electron plasmas: [64].

2. Meta-stable states in astrophysical self-gravitating N -body systems: [65; 66].

B) Systems with fluctuating temperature: [67].
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2.1 Overview

C) Other applications, for example: High Tc superconductivity [68].

Specific applications in physics and other fields such as biophysics [69] and econo-

physics [70] include the non-linear Fokker-Planck equations: [71; 72] (these equa-

tions are used to model several kinds of systems both in and outside physics).

The non-extensive q-entropy is defined as (1.6)

Sq =
1

q − 1

[
1−

W∑
i=1

pqi

]
, (2.1)

where pi is the probability associated with the i-microstate of the system under

consideration, W is the total number of microstates, and q is an entropic index

that may adopt any real value. In the limit q → 1 the standard Boltzmann-Gibbs

entropy is recovered,

S1 = −
W∑
i=1

pi ln pi. (2.2)

When we have a composite system (L + R) consisting of two statistically inde-

pendent subsystems L and R,

p
(L+R)
ij = p

(L)
i p

(R)
j (classical)

ρ(L+R) = ρ(L) ⊗ ρ(R) (quantum mechanical), (2.3)

the total entropy S
(L+R)
q is related to the entropies of the subsystems by (1.7)

S(L+R)
q = S(L)

q + S(R)
q + (1− q)S(L)

q S(R)
q . (2.4)

In the limit q → 1, the standard extensive behaviour is recovered. Here I am

going to restrict my considerations to the range q ∈ [0, 1].

The non-extensive behaviour described by equation (2.4) holds, of course,

only under very special circumstances: when both subsystems are statistically

independent. Under those same circumstances the standard logarithmic entropy

is extensive. From the physical point of view the extensivity of entropy is a

desirable behaviour. Consequently, if a generalized entropic functional is going
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2.2 A discrete binary system

to be used to describe physical systems, it is a physically relevant problem to

characterize what kind of statistical correlations yield an extensive behaviour

of the aforementioned entropic functional. In the case of the Tsallis measure Sq,

the first steps towards such a characterization program were done by TGS in [61].

The aim of the present chapter is to discuss two new models of composite systems

exhibiting an additive behaviour of Sq, and allowing for an explicit analysis of the

N →∞ (thermodynamic) limit. This chapter is organized as follows. In Section

2.2 I analyze a discrete binary system exhibiting, for appropriate values of the

relevant parameters, an extensive behaviour of Sq. In Section 2.3 we compare our

model with the one advanced by TGS in [61]. A quantum version of our model

is considered in Section 2.4. In Section 2.5 I investigate a continuous model.

Finally, some conclusions are drawn in Section 2.6.

2.2 A discrete binary system

I am going to consider a classical composite system consisting of N identical (but

distinguishable) subsystems each one having two possible states, 0 or 1. Our

composite system has 2N microstates. Each possible microstate corresponds to a

string (of length N) of 0’s and 1’s. First we start with two equal and distinguish-

able binary subsystems, A and B (N=2). The associated joint probabilities are

indicated in Table 2.1.

A\B 0 1

0 λp+ (1− λ)p2 p(1− p)(1− λ)

1 p(1− p)(1− λ) (1− p)λ+ (1− λ)(1− p)2

Table 2.1: Joint probabilities for two binary subsystems A and B.

This joint probability distribution is described by two parameters p, λ ∈ [0, 1].

The parameter p gives the marginal probability distribution {p, 1− p}, which is

the same for both subsystems. The parameter λ is associated with the statistical

correlations between both subsystems. For λ = 0 the subsystems are independent
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2.2 A discrete binary system

whereas λ = 1 corresponds to the strongest possible degree of correlation. So

far our construction is similar to the one corresponding to the discrete model

discussed in [61]. In point of fact, comparing our Table 2.1 with Table 1 of [61],

one can identify

κ = λp(1− p). (2.5)

Thus, as far as the case of two subsystems is concerned, our construction can be

regarded as a re-parametrization of the one employed by TGS. However, there

is an important difference between these two parametrizations. In our case, the

parameters p and λ can be chosen independently of each other: they can adopt

any pair of values in the interval [0, 1]. Contrariwise, the parameters κ and p

used by TGS cannot be chosen independently. The range of admissible values of

κ (yielding positive joint probabilities) depends on the value of p (see Table 1 of

[61]).

The next step is to construct an appropriate joint probability distribution

for a system consisting of three equal and distinguishable binary subsystems

A,B and C. We want this probability distribution to be such that the marginal

distributions associated with each of the three possible bi-partite subsystems AB,

AC or BC, be all equal to the probabilities listed in Table 2.1. In this case (N=3),

a solution to the above problem is given by the probabilities in Table 2.2.

A\B 0 1

0 λp+ (1− λ)p3 (1− λ)p2(1− p)

[(1− λ)p2(1− p)] [(1− λ)p(1− p)2]

1 (1− λ)p2(1− p) (1− λ)p(1− p)2

[(1− λ)p(1− p)2] [λ(1− p) + (1− λ)(1− p)3]

Table 2.2: Joint probabilities for three binary subsystems A, B and C. The

quantities without (within) [ ] correspond to state 0 (state 1) of subsystem C.

At this step it is convenient to use the notation introduced by TGS [61],

r10 ≡ p
(A)
0 = p
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2.2 A discrete binary system

r01 ≡ p
(A)
1 = (1− p)

r20 ≡ p
(A+B)
00 = λp+ (1− λ)p2

r11 ≡ p
(A+B)
01 = pA+B

10 = p(1− p)(1− λ)

r02 ≡ p
(A+B)
11 = (1− p)2 + λp(1− p), (2.6)

and one can verify that this gives equation (3) of [61]:

r20 + 2r11 + r02 = 1

r20 + r11 = r10 = p

r11 + r02 = r01 = 1− p. (2.7)

With the notation

r30 ≡ p
(A+B+C)
000

r21 ≡ p
(A+B+C)
001 = p

(A+B+C)
010 = p

(A+B+C)
100

r12 ≡ p
(A+B+C)
110 = p

(A+B+C)
101 = p

(A+B+C)
011

r03 ≡ p
(A+B+C)
111 , (2.8)

where by rij I imply that the microstate consists of i 0’s and j 1’s (i + j = N),

one can verify

r30 + 3r21 + 3r12 + r03 = 1

r30 + r21 = r20 = λp+ (1− λ)p2

r21 + r12 = r11 = p(1− p)(1− λ)

r12 + r03 = r02 = (1− p)2 + λp(1− p). (2.9)

We want the marginal distribution for (N − 1)-subsystems of our N -subsystems

composite system to be equal to the distribution of the (N − 1)-subsystems com-

posite system. Following TGS, the generalization of the above procedure yields a

general set of equations relating the probabilities of the N -subsystems case with

the (N − 1)-subsystems case,
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2.2 A discrete binary system

rN−n,n + rN−n−1,n+1 = rN−n−1,n (2.10)
N∑
n=0

lN−n,nrN−n,n = 1 (N = 0, 1, 2, . . . ; n = 0, 1, 2, . . . , N), (2.11)

where lN−n,n =
(
N
n

)
.

A solution of the recurrence relations (2.10) complying with the normalization

condition (2.11) and providing a natural N -generalization of equations (2.8), is

given by

rN,0 = λp+ (1− λ)pN

rN−n,n = (1− λ)pN−n(1− p)n, 1 ≤ n ≤ N − 1

r0,N = λ(1− p) + (1− λ)(1− p)N , (2.12)

since they verify

rN,0 + rN−1,1 = rN−1,0

rN−n,n + rN−n−1,n+1 = rN−n−1,n 1 ≤ n ≤ N − 2

r1,N−1 + r0,N = r0,N−1 (2.13)

and

N∑
n=0

(
N

n

)
rN−n,n = λ+ (1− λ)

N∑
n=0

(
N

n

)
pN−n(1− p)n

= 1. (2.14)

It is important to realize that the solution (2.12) to the set of equations (2.10) is

not equivalent to the one found by TGS in [61]. The fact that (2.12) constitutes

a new solution to (2.10) can already be appreciated from Table 2.2 (case N = 3).

For instance, we have from Table 2.2 that

p(010)

p(011)

=
p

1− p
. (2.15)
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2.2 A discrete binary system

However, the case N = 3 of TGS gives,(
p(010)

p(011)

)
TGS

=
p2(1− p)− κ(1 + p)

p(1− p)2 + κp
. (2.16)

The quotients (2.15) and (2.16) are clearly different. The quotient (2.16) can be

made equal to (2.15) for one particular value of κ, but for our set of probabil-

ities expression (2.15) holds true for the complete range of admissible values of

λ ∈ [0, 1].

The probability distribution characterized by the equations (2.12) (which from

here on we are going to call p(c)) can be conveniently recast as

p(c) = λp(a) + (1− λ)p(b), (0 ≤ λ ≤ 1), (2.17)

in terms of two particular probability distributions, p(a) and p(b). The prob-

ability distribution p(a) is such that only two microscopic configurations have

non-vanishing probabilities: the microstate with all subsystems in state 0 has

probability p, and the microstate with all subsystems in state 1 has probability

(1− p). Therefore

p
(a)
(00...0) = p

p
(a)
(11...1) = 1− p

p
(a)
i = 0, i 6= 00 . . . 0, 11 . . . 1 (2.18)

where i denotes all possible 2N combinations of 0’s and 1’s in the string. On

the other hand, the probability distribution p(b) is completely factorizable: the

probabilities of finding any of its subsystems in states 0 or 1 respectively are p

and (1− p),

p
(b)
i1...iN

=
N∏
k=1

[δ0ikp+ δ1ik(1− p)], ik = 0, 1 (k = 1, . . . , N). (2.19)

For both p(a) and p(b), as well as for any linear combination of them, the marginal

probabilities associated with any of the N subsystems are p for state 0 and (1−p)
for state 1.
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2.2 A discrete binary system

To obtain the entropy of p(b), we need to apply eq. (2.4) recursively, that is

Sq[p
(b);N ] = Sq[p

(b);N − 1] + Sq[p
(b); 1] + (1− q)Sq[p

(b);N − 1]Sq[p
(b); 1]. (2.20)

The entropy of p(b) is then

Sq[p
(b);N ] =

1

1− q
{[1 + (1− q)Sq[1]]N − 1}, N ≥ 2, (2.21)

where

Sq[p
(c); 1] = Sq[1] =

1− pq − (1− p)q

q − 1
(2.22)

is the entropy of the marginal probability distribution for one subsystem, which

is the same for both p(a) and p(b), and thus also for p(c). Now

Sq[p
(c);N ](λ = 0) = Sq[p

(b);N ] (2.23)

Sq[p
(c);N ](λ = 1) = Sq[p

(a);N ] = Sq[1]. (2.24)

Since Sq[p
(b);N ] increases exponentially with N and NSq[1] only linearly, it means

that there exists an N from which onward Sq[p
(b);N ] > NSq[1] > Sq[1]. There-

fore, it follows from (2.23-2.24) that a λ exists for which

Sq[p
(c);N ](λ) = NSq[1]. (2.25)

From the general expression for the entropy Sq[p
(c);N ],

Sq[p
(c);N ] =

1

q − 1

1−
2N∑
i=1

δqi

 , (2.26)

it is possible to derive the following convenient expression for the q-entropy of

p(c),

Sq[p
(c);N ] =

1

q − 1
[1− (1− λ)q[1 + (1− q)Sq[1]]N + (1− λ)qpNq + (1− λ)q(1− p)Nq

−[(1− λ)pN + λp]q − [(1− λ)(1− p)N + λ(1− p)]q]. (2.27)
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2.2 A discrete binary system

The method used to obtain this expression is as follows: from Table 2.3 we have

the probability distributions for p(b) and p(c) and so let S∗q [p
(c);N ] be the “entropy”

from considering only the (1− λ)pj contributions,

S∗q [p
(c);N ] =

1

q − 1

1− (1− λ)q
2N∑
j=1

pqj

 . (2.28)

Microstate p(b) p(c)

00. . . 0 p1 (1− λ)p1 + λp

10. . . 0 p2 (1− λ)p2

... pi (1− λ)pi

11. . . 1 p2N (1− λ)p2N + λ(1− p)

Table 2.3: Probability distributions for p(b) and p(c), with i = 3, 4, . . . , 2N − 1.

Using the general expression for Sq[p
(b);N ],

Sq[p
(b);N ] =

1

q − 1

1−
2N∑
j=1

pqj

 , (2.29)

for which we already have expression (2.21), results in S∗q [p
(c);N ] becoming

S∗q [p
(c);N ] =

1

q − 1

1− (1− λ)q
{
1− (q − 1)Sq[p

(b);N ]
}︸ ︷︷ ︸

“sum”

 . (2.30)

Now we have to subtract
[
(1− λ)pN

]q
and

[
(1− λ)(1− p)N

]q
from the “sum”

and add
[
(1− λ)pN + λp

]q
and

[
(1− λ)(1− p)N + λ(1− p)

]q
in order to get

Sq[p
(c);N ]. Doing that and substituting for the expression for Sq[p

(b);N ] then

results in eq. (2.27).

We want NSq[1] = Sq[p
(c);N ] and, as was already shown, for large enough N this

relation can by fulfilled. Thus in this limit
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2.2 A discrete binary system

pNq, (1− p)Nq, pN , (1− p)N → 0 (large N) p, q ∈ (0, 1) (2.31)

and so

NSq[1] ≈ 1

1− q
[1 + (1− q)Sq[1]]N(1− λ)q. (2.32)

Hence for large N ,

λ ≈ 1−
{

NSq[1](1− q)

[1 + (1− q)Sq[1]]N

} 1
q

. (2.33)

Therefore, in the thermodynamic limit λ tends to one and hence p(c) tends to p(a)

which is maximally correlated. This means that as N increases the correlations

have to become stronger and stronger in order to have an extensive behaviour for

Sq.

In Tables 2.4 and 2.5 I give, for p = 0.4, q = 0.95 and q = 0.5, and for

different values of N , the exact values of the parameter λ corresponding to an

extensive behaviour of Sq, as well as the approximate values of λ provided by

the asymptotic expression (2.33). We see that for both values of q, and as N

increases, the exact λ approaches the asymptotic one given by expression (2.33),

and both tend to 1.

N λ [eq.(2.25)] λ [eq.(2.33)]

2 0.216385 0.944547

10 0.24632 0.772787

50 0.641409 0.700808

100 0.892354 0.894677

200 0.993735 0.993708

400 0.999989 0.999989

Table 2.4: Exact and approximate solutions for Sq[p
(c);N ](λ) = NSq[1]; q =

0.95, p = 0.4.

In Figures 2.1 and 2.2 we can see the behaviour of the quantityD = Sq[p
(c);N ]−

NSq[1] as a function of λ, for different values of p, q and N .
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2.3 Comparison of the (p, λ) and the (p, κ) binary models

N λ [eq.(2.25)] λ [eq.(2.33)]

2 0.739562 0.830909

5 0.890285 0.863812

10 0.985326 0.98209

50 ≈1 ≈1

Table 2.5: Exact and approximate solutions for Sq[p
(c);N ](λ) = NSq[1]; q =

0.5, p = 0.4.

Figure 2.1: Sq[p
(c);N ]−NSq[1] = D as a function of λ (q=0.95, p=0.4).

2.3 Comparison of the (p, λ) and the (p, κ) binary

models

As we have seen, in the (p, λ) model, it is possible to provide a proof that for any

value 0 ≤ p ≤ 1 and 0 < q ≤ 1, and for large enough N , there always exists a

λ-value such that the total q-entropy of the composite system is equal to N times

the entropy of one of the subsystems. Moreover, we also obtained an analytic

asymptotic expression for λ, valid in the limit of large values of N .

On the other hand, in the (p, κ) model, it is not clear that there always exists,

for large values of N , a κ-value leading to an extensive behaviour of Sq. Here we

approached this problem numerically and obtained evidence indicating that for

large enough values of N , such a κ-value does not exist.

Tables 2.6 and 2.7 were obtained by solving Sq(N) = NSq(1) (for two different

values of q) using equation (5) from [61]. In the two tables, ps is the approximate

starting value of p from which onward solutions for κ exist. A cross (×) denotes
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2.3 Comparison of the (p, λ) and the (p, κ) binary models

Figure 2.2: Sq[p
(c);N ]−NSq[1] = D as a function of λ (q=0.5, p=0.4).

that no solution for κ exists for those values of N and p.

N ps κ0.95(ps) κ0.95(p = 0.5) κ0.95(p = 0.8)

2 1× 10−6 1.66× 10−8 ±0.0550153 0.0291402; -0.0212572

3 0.001 6.82877× 10−7 0.0356238; -0.0338204 0.0237656; -0.0194896

4 0.24 0.00800363 0.0242283 0.0197763; -0.0176847

5 0.49 0.0156661 0.0161904 0.016671; -0.0158311

6 0.63 0.0149745 × 0.0141553; -0.0138966

7 0.72 0.01261 × 0.0120335; -0.011793

8 0.78 0.0102438 × 0.0101443

Table 2.6: Solutions for κ that make Sq additive (q = 0.95). [61]
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2.4 Quantum mechanical version of the binary system

N ps κ0.5(ps) κ0.5(p = 0.5) κ0.5(p = 0.8)

2 0.0001 0.0000642983 ±0.185235 0.116236

3 0.47 0.0796122 0.0832543 0.0697844

4 0.75 -0.0593005 × -0.0395967

5 0.8 -0.0388661 × -0.0388661

6 0.84 -0.0253567 × ×
7 0.86 -0.0194571 × ×
8 0.88 -0.0143473 × ×

Table 2.7: Solutions for κ that make Sq additive (q = 0.5). [61]

2.4 Quantum mechanical version of the binary

system

In this Section I am going to consider a quantum version of my binary model. The

corresponding composite quantum system consists of N equal but distinguishable

subsystems, each one described by a Hilbert space of dimension 2, with basis vec-

tors {|0〉, |1〉}. In other words, I am going to deal with a system of N qubits.

The so-called computational basis of the complete Hilbert space of the composite

system is then {|00 . . . 0〉, |10 . . . 0〉, . . . , |11 . . . 1〉}. We want the marginal (mixed)

quantum state associated with each subsystem to be a statistical mixture of the

basis states {|0〉} and {|1〉}, with weights p and (1− p), respectively.

Consider

ρ(b) = ρ1 ⊗ ρ1 ⊗ . . .⊗ ρ1︸ ︷︷ ︸
Ntimes

(2.34)

where

ρ1 = p|0〉〈0|+ (1− p)|1〉〈1| (2.35)

and let

ρ(a) = p|00 . . . 0〉〈0 . . . 00|+ (1− p)|11 . . . 1〉〈1 . . . 11|. (2.36)

Define ρ(c) to be

ρ(c) = λρ(a) + (1− λ)ρ(b), (0 ≤ λ ≤ 1). (2.37)
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2.4 Quantum mechanical version of the binary system

Since both ρ(a) and ρ(b) are diagonal in the computational basis (therefore not

entangled), ρ(c) is also diagonal in that basis (hence unentangled). This means

the diagonal elements are just the probability distributions. For density matrices

the q-entropy is given by

Sq =
1− Tr(ρq)

q − 1
, (2.38)

hence all the equations for p(c) also hold for ρ(c): Sq[ρ
(c);N ] = Sq[p

(c);N ].

Keeping the definitions for ρ(b) and ρ(c) the same but changing ρ(a) to the state

ρ(a) = |φ〉〈φ| (2.39)

|φ〉 =
√
p|00 . . . 0〉+

√
(1− p)|11 . . . 1〉, (2.40)

makes the system truly quantum mechanical (|φ〉 is entangled), since now ρ(a) is

not diagonal in the computational basis and consequently, neither is ρ(c).

The marginal density matrices of ρ(a) and ρ(b) are both equal to ρ1 and thus

the marginal density matrix of ρ(c) will be ρ1. Unlike the classical case, we now

have ρ1 6= ρ(c)[N = 1]. Actually, we have ρ
(c)
m 6= ρ(c)[N = m] which means the

marginal density matrix for m subsystems is not the same as the density matrix

for a composite system consisting of m subsystems.

The result obtained for Sq[ρ
(b);N ], using the recursion (2.4)

Sq[ρ
(b);N ] = Sq[ρ

(b);N − 1] + Sq[ρ
(b); 1] + (1− q)Sq[ρ

(b);N − 1]Sq[ρ
(b); 1], (2.41)

is exactly the same as in the classical case, that is, Sq[ρ
(b);N ] is equal to equation

(2.21), with Sq[1] also being equal to equation (2.22). Since ρ(a) is a projector and

the trace is invariant under a change of basis (unitary transformation), it follows

that Sq[ρ
(a);N ] = 0.

The marginal density matrix of m subsystems is obtained by tracing out

the other (N − m) subsystems. All the marginal density matrices of ρ(c) (for
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2.4 Quantum mechanical version of the binary system

m = 1, 2, . . . , N − 1) are diagonal, which means that only the complete system is

entangled.

The marginal density matrix of ρ(c) for two subsystems is

ρ
(c)
2 =


λp+ (1− λ)p2 0 0 0

0 (1− λ)p(1− p) 0 0
0 0 (1− λ)p(1− p) 0
0 0 0 (1− p)2 + λp(1− p)

 .

(2.42)

This gives rise to the same probability distributions as in Table 2.1. Now,

Sq[ρ
(c);N ](λ = 0) = Sq[ρ

(b);N ], (2.43)

Sq[ρ
(c);N ](λ = 1) = Sq[ρ

(a);N ] = 0. (2.44)

Using the same argument as for the classical case, there exists an N from which

onward Sq[ρ
(b);N ] > NSq[1] > 0 and thus a λ exists for which Sq[ρ

(c);N ] =

NSq[1].

Once again, in order to determine Sq[ρ
(c);N ] we use Sq[ρ

(b);N ]. For this

purpose we employ a similar procedure as in the classical case. Since ρ(b) is

diagonal,

Tr
(
(ρ(b))q

)
=

2N∑
j=1

λqj , (2.45)

where λj are the diagonal elements. By rearranging the computational basis to

have |11 . . . 1〉 in the second place and letting the rest stay in the same order,

{|00 . . . 0〉, |11 . . . 1〉, . . .}, the matrix for ρ(c) becomes

ρ(c) = (2.46)

λp+ (1− λ)pN λ
√
p(p− 1) 0 0 . . . 0

λ
√
p(p− 1) λ(1− p) + (1− λ)(1− p)N 0 0 . . . 0

0 0 (1− λ)λ2 0 . . . 0

0 0 0
. . . . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . (1− λ)λ2N−1


.
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2.4 Quantum mechanical version of the binary system

Then

Sq[ρ
(c);N ] =

1

q − 1

(
1−

[
Tr
{(

[1− λ]ρ(b)
)q}− ([1− λ]pN

)q
−
(
[1− λ][1− p]N

)q
+ eq+ + eq−

])
=

1

q − 1
{1− (1− λ)q[1 + (1− q)Sq[1]]N + (1− λ)qpNq

+(1− λ)q(1− p)Nq − eq+ − eq−} (2.47)

where

e± =
1

2
{(1− p)N − pN(λ− 1) + λ− (1− p)Nλ

±
√

[(1− p)N(λ− 1) + pN(λ− 1)− λ]2 − 4(λ− 1)[(−(p− 1)p)N(λ− 1)

−(1− p)Npλ+ (p− 1)pNλ]} (2.48)

are the eigenvalues of the top left hand corner 2× 2 matrix block.

For large N, Sq[ρ
(c);N ] = NSq[1] is also approximately equal to the right hand

side of equation (2.32) and thus λ will again be given by equation (2.33).

It is worth considering the case p = 1
2

separately. For this value of p the state

|φ〉 is a GHZ state [73],

|GHZ〉 =
1√
2
(|00 . . . 0〉+ |11 . . . 1〉), (2.49)

which means we have,

ρ(c) = λ|GHZ〉〈GHZ|+ 1− λ

2N
I, (2.50)

where I is the 2N ×2N identity matrix. The state (2.50) is known to be separable

if and only if [73]

0 ≤ λ ≤ 1

1 + 2N−1
. (2.51)

Comparing equation (2.33) with equation (2.51), it follows that in the thermody-

namic limit the value of λ yielding an extensive Sq describes an entangled state.
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2.5 A continuous system

2.5 A continuous system

We now consider a system where the phase space of each of the N subsystems

is the positive, real half line, R+ = [0,+∞). Our model will be based on the

probability densities,

p(a)(x1, x2, . . . , xN) =

{
1
2k if k − 1 ≤ xi < k; (i = 1, 2, . . . , N ; k = 1, 2, 3, . . .)
0 otherwise

(2.52)

and

p(b)(x1, x2, . . . , xN) = p(x1)p(x2) . . . p(xN), (2.53)

where

p(x) =
1

2k
if k − 1 ≤ x < k; k = 1, 2, 3, . . . . (2.54)

The probability densities p(a)(x, y) and p(b)(x, y) corresponding to the case of two

subsystems (N = 2), along with the corresponding marginal probability p(x), are

represented in Figures 2.3 and 2.4. The marginal probability p(x) is obtained by

integrating over the y-coordinate:

p(x) =

∫ ∞

0

p(a,b)(x, y)dy, (2.55)

which is equivalent to summing the probability densities in each “column” of

width k − 1 ≤ x < k. An important formula that is needed is the infinite

geometric series for |s| < 1:

∞∑
n=0

sn =
1

1− s
. (2.56)

Once again, let p(c) be given by equation (2.17). The marginal probability

distribution for both p(a) and p(b), and hence for p(c), is then given by (2.54). For

the continuous case, the Sq entropic measure is defined as

Sq[p(x1, x2, . . . , xN);N ] =
1

q − 1

[
1−

∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

[ p(x1, x2, . . . , xN)]qdx1dx2 . . . dxN

]
.

(2.57)

The entropy corresponding to (2.54) is

Sq[p] =
1

q − 1

(
2q − 2

2q − 1

)
(2.58)
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2.5 A continuous system

Figure 2.3: The upper part of the figure represents p(a)(x, y). The shaded regions

have the uniform probability densities indicated in the figure. The probability

density is zero elsewhere. The lower part corresponds to the marginal probability

distribution p(x).

and the entropy for p(a) is

Sq[p
(a);N ] = Sq[p], (2.59)

since

∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

[ p(a)(x1, x2, . . . , xN)]qdx1dx2 . . . dxN

=
∞∑
k=1

∫ k

k−1

∫ k

k−1

· · ·
∫ k

k−1

(
1

2kq

)
dx1dx2 . . . dxN

=
∞∑
k=1

(
1

2q

)k
q 6= 1. (2.60)
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2.5 A continuous system

Figure 2.4: The upper part of the figure represents p(b)(x, y), the square regions

have the uniform probability densities indicated in the figure. In the lower part

the marginal probability distribution p(x) is depicted.

To obtain the entropy for p(b), one follows exactly the same procedure as for the

discrete case, since p(b) is factorizable.

Thus

Sq[p
(b);N ] =

1

q − 1
{1− [1 + (1− q)Sq[p]]

N}, N ≥ 2. (2.61)

To obtain Sq[p
(c);N ], one uses

Sq[p
(c);N ] =

1

q − 1

[
1−

∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

[p(c)(x1, x2, . . . , xN)]qdx1dx2 . . . dxN

]
(2.62)

where
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2.5 A continuous system

∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

[λp(a) + (1− λ)p(b)]qdx1dx2 . . . dxN

= (1− λ)q
∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

[ p(b)]qdx1dx2 . . . dxN

−(1− λ)q
∞∑
k=1

∫ k

k−1

∫ k

k−1

· · ·
∫ k

k−1

(
1

2kNq

)
dx1dx2 . . . dxN

+
∞∑
k=1

∫ k

k−1

∫ k

k−1

· · ·
∫ k

k−1

(
λ

1

2k
+ (1− λ)

1

2kN

)q
dx1dx2 . . . dxN (2.63)

and the volume of the hypercubes is one. This gives

Sq[p
(c);N ] =

1

q − 1

{
1− (1− λ)q[1 + (1− q)Sq[p]]

N − C1 + C2

}
, (2.64)

where

C1 =
∞∑
k=1

[
λ

(
1

2k

)
+ (1− λ)

(
1

2kN

)]q
< 8,

C2 = (1− λ)q
(

1

2qN − 1

)
. (2.65)

Now

Sq[p
(c);N ](λ = 0) = Sq[p

(b);N ]

Sq[p
(c);N ](λ = 1) = Sq[p

(a);N ]. (2.66)

Since Sq[p
(b);N ] increases exponentially with N and NSq[p] only linearly, it means

that there exists an N from which onward Sq[p
(b);N ] > NSq[p] > Sq[p] =

Sq[p
(a);N ] and thus a λ exists for which

Sq[p
(c);N ](λ) = NSq[p]. (2.67)

For large N equation (2.67) will hold and so in this limit,

NSq[p] ≈
1

1− q
(1− λ)q[1 + (1− q)Sq[p]]

N . (2.68)
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2.6 Conclusions

Hence for large N ,

λ ≈ 1−
{

(1− q)NSq[p]

[1 + (1− q)Sq[p]]N

} 1
q

. (2.69)

Thus in the thermodynamic limit, λ tends to one and hence p(c) tends to p(a)

which is maximally correlated. This means that as N increases, the correlations

have to become stronger until the system is completely correlated.

2.6 Conclusions

I have considered two models of phase space occupancy probabilities leading, for

appropriate values of the relevant parameters, to an extensive behaviour of the

power-law entropy Sq. Our models allow for an explicit analysis of the N → ∞
(thermodynamic) limit. In that limit I obtained asymptotic analytic expressions

for the values of the parameter λ that yield an extensive Sq. We also considered

a quantum version of one of our models. I showed that for p = 1
2

and for large

enough values of N , the density matrix associated with an extensive q-entropy

describes an entangled state.

Taking as a “reference point” the completely uncorrelated (that is, factor-

ized) probability distribution I showed that (within our models) it is necessary

to incorporate strong correlations among the subsystems in order to reach an

additive regime for Sq. As a matter of fact, in the limit N → ∞, the proba-

bility distribution that makes Sq additive tends towards a maximally correlated

distribution.
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Chapter 3

Two Particles in a Double Well:

Illustrating the Connection

Between Entanglement and the

Speed of Quantum Evolution

The concept of entanglement is of fundamental importance and it is thus essen-

tial to thoroughly explore all the implications of entanglement. The problem of

the “speed” of quantum evolution is very relevant as explained in the Introduc-

tion (Section 1.0.3), because basic computational steps involve moving from one

quantum state to an orthogonal one. This implies that lower bounds on the time

needed to reach an orthogonal state can provide estimations on how fast one can

perform elementary computation operations [14]. The connection between entan-

glement and the speed of quantum evolution (as measured by the time needed to

reach an orthogonal state) will presently be discussed in the case of two quantum

particles moving in a one-dimensional double well [74].

3.1 Overview

The aim of the present chapter is to illustrate some aspects of the relationship be-

tween quantum entanglement and the speed of quantum evolution, in connection
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3.2 Two particles in a double well: separable vs entangled states

with the problem of the tunneling time in a double well potential [75; 76]: quan-

tum entanglement enhances the “speed” of evolution of certain quantum states,

as measured by the time needed to reach an orthogonal state. The purpose of this

discussion is two-fold: on the one hand, to introduce the basic idea of the connec-

tion between entanglement and “quantum speed” using a simple example. On the

other hand, to show that this simple illustration also has considerable didactic

value and can be incorporated into a university course in quantum physics. That

is, due to its great importance both from the fundamental and from the practical

points of view it is imperative that the concept of entanglement is incorporated

into the teaching of quantum mechanics. With regards to this educational as-

pect, it is worth mentioning that, despite being at the heart of quantum physics,

quantum entanglement is still not included in most standard quantum mechanics

textbooks. In most of these cases the word “entanglement” is not even mentioned

in the subject index. It is important to develop didactic examples of quantum

problems that integrate the concept of entanglement with other fundamental as-

pects of quantum physics (see [77]).

The chapter is organized as follows: in Section 3.2 I compare separable and

entangled states, Section 3.3 focuses on the role of entanglement in the speed of

quantum evolution and finally I draw some conclusions in Section 3.4.

3.2 Two particles in a double well: separable vs

entangled states

I am going to consider a system consisting of two distinguishable particles of mass

m (with coordinates x1 and x2) moving in a one-dimensional double well potential

V (x) (see Figure 3.1). The considerations discussed here hold for general double

well potentials. However, the pictures depicted in this chapter correspond to the

particular, exactly soluble potential [78]

V (x) =
~2κ2

2m

[
1

8
ξ2 cosh 4κx− 4ξ cosh 2κx− 1

8
ξ2

]
, (3.1)
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3.2 Two particles in a double well: separable vs entangled states

Figure 3.1: Double well potential function (3.1). The potential V (x), and the

coordinate x are depicted, respectively, in units of ~2κ2/2m and 1/κ.

with ξ = 0.1. The potential function (3.1) is plotted in Figure 3.1, using for

V (x) units of ~2κ2

2m
and for x units of 1/κ. The eigenstates associated with the

potential (3.1) can be used, for instance, as an approximate description of the low-

lying states of a homonuclear diatomic molecule [78]. A pair of such molecules

constitutes a possible physical realization of the bipartite composite quantum

system that I am going to consider here.

Let |ψ0〉 and |ψ1〉 denote the (one particle) ground and first excited states

corresponding to the potential V (x), with eigenenergies E0 and E1, respectively.

The ground state |ψ0〉 is described by an even wave function, while the state |ψ1〉
is described by an odd wave function (see Figure 3.2). The explicit expressions

for the ground and first excited states wave eigenfunctions of the potential (3.1)

(here we are measuring the spatial coordinate x in units of 1/κ which, of course,

is tantamount to adopting κ = 1) are given by [78]

ψ0(x) = e−
1
4
ξ cosh 2x

[
3ξ coshx+

(
4− ξ + 2

√
4− 2ξ + ξ2

)
cosh 3x

]
, (3.2)

ψ1(x) = e−
1
4
ξ cosh 2x

[
3ξ sinh x+

(
4 + ξ + 2

√
4 + 2ξ + ξ2

)
sinh 3x

]
. (3.3)

The corresponding energy eigenvalues are

E0,1 =
~2κ2

2m
ε0,1, (3.4)

with
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3.2 Two particles in a double well: separable vs entangled states

Figure 3.2: The ground state and first excited state wave functions of the double

well potential (3.1). The wave functions and the spatial coordinate x are depicted,

respectively, in units of
√
κ and 1/κ.

ε0 = − ξ − 5− 2
√

4− 2ξ + ξ2, (3.5)

ε1 = ξ − 5− 2
√

4 + 2ξ + ξ2. (3.6)

The linear combinations

|ψR〉 =
1√
2
{|ψ0〉+ |ψ1〉}, (3.7)

and

|ψL〉 =
1√
2
{|ψ0〉 − |ψ1〉}, (3.8)

correspond to states of a particle localized, respectively, in the right hand side well

and in the left hand side well of V (x). If we consider only (single-particle) states

that are linear combinations of |ψ0〉 and |ψ1〉, we have a system described by an

effective two-dimensional Hilbert space or, in quantum information parlance, an

effective one-qubit system.

Now we are going to focus our attention on states of two distinguishable

quantum particles living in the potential V (x). We are going to work only with

states that are linear combinations of the four states |ψ0〉|ψ0〉, |ψ0〉|ψ1〉, |ψ1〉|ψ0〉
and |ψ1〉|ψ1〉. In other words, we are going to work with an effective two-qubit

system. Pure states of this composite system can be classified into factorizable
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3.2 Two particles in a double well: separable vs entangled states

pure states and entangled pure states. On the one hand we have factorizable

states,

|φ〉 = |φ〉1 ⊗ |φ〉2, (3.9)

where |φ〉k (k = 1, 2) are pure states of the k-particle. On the other hand we

have entangled states, which are those that cannot be written in the form (3.9).

In the case of factorizable states, each subsystem (in our case, each one of the two

particles) is described by an individual pure state of its own (that is, the states

|φ〉k (k = 1, 2) in (3.9)). On the contrary, when we have an entangled state it is

not possible to assign an individual pure state to each subsystem. In this case,

the subsystems are in mixed states, which are described by density matrices. If

our two particle system is in a (pure) entangled state |ψ〉, each particle’s state

is described by a (marginal) density matrix obtained by taking the trace of the

projector |ψ〉〈ψ| over the coordinate of the other particle. That is, the particles

are described by density matrices ρk given by

ρ1 = Tr2(|ψ〉〈ψ|),
ρ2 = Tr1(|ψ〉〈ψ|). (3.10)

More explicitly, the matrix elements of the density matrices ρk are given by

〈x′1|ρ1|x1〉 =

∫
〈x′1, x2|ψ〉〈ψ|x1, x2〉 dx2,

〈x′2|ρ2|x2〉 =

∫
〈x1, x

′
2|ψ〉〈ψ|x1, x2〉 dx1. (3.11)

Not all entangled states are endowed with the same amount of entanglement. A

quantitative measure of the amount of entanglement of a pure state |ψ〉 is given

by the von Neumann entropy of either of the matrices ρk,

E(|ψ〉) = −Tr(ρ1 log2 ρ1) = −Tr(ρ2 log2 ρ2). (3.12)

It is clear that according to the measure E(|ψ〉) factorizable pure states have zero

entanglement.
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3.2 Two particles in a double well: separable vs entangled states

A fundamental property of the measure of entanglement (3.12) is that it does

not change under the action of local unitary transformations. That is, it does not

change under the action of transformations of the form

U = U1 ⊗ U2, (3.13)

where U1,2 represent unitary transformations acting on each particle individually.

In the problem we are considering, we have two non-interacting quantum

particles moving in the same potential V (x). The Hamiltonian of our system is

of the form

H = H1 ⊗ I2 + I1 ⊗H2, (3.14)

where Ik stands for the identity operator acting on the Hilbert space associated

with the k-particle (k = 1, 2) and

Hk = − ~2

2m

∂2

∂x2
k

+ V (xk) (k = 1, 2). (3.15)

It is clear that the time evolution operator of this system is local (that is, it has

the form (3.13)) with

Uk = exp

[
−itHk

~

]
(k = 1, 2). (3.16)

Consequently, the amount of entanglement of our two particles is not going to

change in time. Notice that the amount of entanglement exhibited by a given

state of our two particle system is an intrinsic property of that state. It does

not depend on the form of the Hamiltonian. However, the Hamiltonian governs

the evolution of the state and, consequently, also determines eventual changes in

the amount of entanglement. In the case of the Hamiltonian (3.14-3.15) that we

are going to consider, the amount of entanglement at any time is going to be the

same as the amount of entanglement E(|ψ(t0)〉) associated with the initial state

|ψ(t0)〉. Obviously. the initial entanglement E(|ψ(t0)〉) is, in turn, determined be

the particular way in which the initial state was prepared.

54

 
 
 



3.3 Entanglement and the speed of quantum evolution

3.3 Entanglement and the speed of quantum evo-

lution

3.3.1 The speed of quantum evolution and its lower bound

As already mentioned in the Introduction, a natural measure for the “speed” of

quantum evolution is provided by the time interval τ that a given initial state

|ψ(t0)〉 takes to evolve into an orthogonal state [53; 55; 79; 80],

〈ψ(t0)|ψ(t0 + τ)〉 = 0. (3.17)

In our present example involving two particles in a double well potential, τ can

be regarded as the tunneling time of the two particle system. Let E denote the

energy’s expectation value,

E = 〈H〉, (3.18)

and ∆E the energy’s uncertainty,

∆E =
√
〈H2〉 − 〈H〉2. (3.19)

A lower limit for the evolution time τ to an orthogonal state is given by [55]

τmin =
π~

2∆E
. (3.20)

3.3.2 Comparing a separable state and a maximally en-

tangled state

Let us first consider the factorizable, two particle state

|ψRR〉 = |ψR〉 ⊗ |ψR〉, (3.21)

corresponding to a situation where both particles are localized in the right hand

side well (see Figure 3.3). The expansion of this state in the Hamiltonian’s

eigenbasis is,
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3.3 Entanglement and the speed of quantum evolution

Figure 3.3: The wave function corresponding to the state |ψRR〉. The wave

function and the spatial coordinates x1,2 are depicted, respectively, in units of κ

and 1/κ.

|ψRR〉 =
1

2
{|ψ0〉|ψ0〉+ |ψ0〉|ψ1〉+ |ψ1〉|ψ0〉+ |ψ1〉|ψ1〉}, (3.22)

the energy expectation value is,

ERR = E0 + E1, (3.23)

and the energy uncertainty is

∆ERR =
1√
2
(E1 − E0). (3.24)

The concomitant lower bound for the time to reach an orthogonal state is then

(see equation (3.20))

τmin(|ψRR〉) =
~π

2∆ERR
=

~π√
2(E1 − E0)

. (3.25)

On the other hand, the time actually needed by state |ψRR〉 to evolve into the

orthogonal state |ψLL〉 = |ψL〉 ⊗ |ψL〉 (whose wave function is depicted in Figure

3.4) is the same as the time needed by the one particle state |ψR〉 to evolve to

|ψL〉,

τ(|ψRR〉) = τ(|ψR〉) =
~π

(E1 − E0)
. (3.26)

Consequently,
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3.3 Entanglement and the speed of quantum evolution

Figure 3.4: The wave function corresponding to the state |ψLL〉. The wave

function and the spatial coordinates x1,2 are depicted, respectively, in units of κ

and 1/κ.

τmin(|ψRR〉) =
1√
2
τ(|ψRR〉) < τ(|ψRR〉). (3.27)

Therefore, we see that the state |ψRR〉 does not saturate the bound (3.20). Its

evolution is not as fast as it is allowed by the bound (3.20). Let us now consider

the entangled state

|ψent〉 =
1√
2
(|ψ0〉|ψ0〉+ |ψ1〉|ψ1〉), (3.28)

whose energy expectation value is

Eent = E0 + E1, (3.29)

and whose energy uncertainty is

∆Eent = E1 − E0. (3.30)

The state |ψent〉 is (within our effective two-qubit system) maximally entangled.

The amount of entanglement of this state is (see equation (3.12))

E(|ψent〉) = log2 2 = 1, (3.31)

which is the maximum amount of entanglement in a two-qubit system.
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3.3 Entanglement and the speed of quantum evolution

Figure 3.5: The wave function corresponding to the state |ψent〉. The wave

function and the spatial coordinates x1,2 are depicted, respectively, in units of κ

and 1/κ.

The wave function of state |ψent〉 is exhibited in Figure 3.5. After a time

interval τ(|ψent〉), this state evolves into the orthogonal state |ψent〉⊥, whose wave

function is plotted in Figure 3.6. In this case, the actual time needed to reach an

orthogonal state coincides with the bound given by (3.20),

τ(|ψent〉) = τmin(|ψent〉)
=

π~
2(E1 − E0)

. (3.32)

In other words, the entangled state |ψent〉 saturates the bound (3.20).

It is instructive to compare some general aspects of the time evolution of states

|ψRR〉 and |ψent〉. In the case of the separable state |ψRR〉, it is possible to associate

the individual pure state |ψR〉 to each particle, and these single particle states

evolve in such a way that the associated wave functions are localized alternately

in each well. In other words, the expectation values 〈x1,2〉 oscillate between the

two wells. On the contrary, in the case of the entangled state |ψent〉 each particle

is described by the mixed state

ρ1,2 =
1

2

(
|ψ0〉〈ψ0| + |ψ1〉〈ψ1|

)
=

1

2

(
|ψL〉〈ψL| + |ψR〉〈ψR|

)
. (3.33)

The density matrices describing the single particle states do not evolve in time.

The associated probability densities have two peaks, one in each well. The expec-

tation values 〈x1,2〉 are constant in time. In order to “detect” the time evolution
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3.3 Entanglement and the speed of quantum evolution

Figure 3.6: The wave function corresponding to the state |ψent〉⊥. The wave

function and the spatial coordinates x1,2 are depicted, respectively, in units of κ

and 1/κ.

of the two particle system one has to consider the behaviour of the expectation

values of operators involving both particles. For instance, the expectation value

〈(x2 − x1)
2〉 (3.34)

exhibits a periodic time dependence. It adopts its maximum value for the wave

function |ψent〉 depicted in Figure 3.5, and its minimum value for the orthogonal

wave function |ψent〉⊥ depicted in Figure 3.6.

3.3.3 More general states

The general state of our effective two qubit system is

|ψ〉 = a1|ψ0〉|ψ0〉+ a2|ψ0〉|ψ1〉+ a3|ψ1〉|ψ0〉+ a4|ψ1〉|ψ1〉, (3.35)

where the ai’s are complex coefficients satisfying the normalization requirement,

|a1|2 + |a2|2 + |a3|2 + |a4|2 = 1. (3.36)

The time τ needed for this state to evolve into an orthogonal one is given by

〈ψ(t0)|ψ(t0 + τ)〉 = e−2iE0τ/~
[
|a1|2+

(
|a2|2+|a3|2

)
e−i(E1−E0)τ/~ + |a4|2e−2i(E1−E0)τ/~]

= 0. (3.37)
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This equation for τ can be recast as

P (x) = |a4|2x2 +
(
|a2|2 + |a3|2

)
x+ |a1|2 = 0, (3.38)

with

x = e−i(E1−E0)τ/~. (3.39)

The initial state (3.35) evolves to an orthogonal state if and only if the quadratic

equation (3.38) admits at least one root with modulus equal to 1. Let me consider

the family of states (which I denote the “β-family”) leading to an equation (3.38)

with two complex conjugate roots with modulus equal to one,

e±iβ, with β = (E1 − E0)τ/~ ∈ [π/2, π]. (3.40)

If that is the case, we can rewrite the polynomial P (x) under the guise

P (x) = |a4|2
(
x− eiβ

) (
x− e−iβ

)
. (3.41)

Comparing now the expressions (3.38) and (3.41) for P (x), and taking into ac-

count the normalization requirement (3.36), one obtains,

|a1|2 = |a4|2 =
1

2(1− cos β)
,

|a2|2 + |a3|2 = − cos β

1− cos β
. (3.42)

We thus see that the β-family of states evolving to an orthogonal state constitute

a monoparametric family parameterized by the parameter β. Therefore, all the

relevant quantities concerning these states can be written in terms of β. In

particular,

τmin =
π~

2∆E
=

π~
2(E1 − E0)

√
1− cos β, (3.43)

and the quotient between the actual time τ of evolution to an orthogonal state

(which is related to β through equation (3.40)) and the lower bound τmin, is
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3.3 Entanglement and the speed of quantum evolution

τ

τmin
(β) =

2β

π
√

1− cos β
. (3.44)

It is plain from this last equation that the lower bound on τ is saturated (that is,

τ/τmin = 1) only in the case β = π/2, corresponding to the maximally entangled

state |ψent〉 given by equation (3.28).

On the other hand, let us consider a separable pure state

|φ〉 = |φa〉 ⊗ |φb〉, (3.45)

that evolves to an orthogonal state. In order for this to happen, at least one of

the states |φa,b〉 has to evolve to an orthogonal state. Lets assume that

|φa〉 = c0|ψ0〉+ c1|ψ1〉 (3.46)

evolves to an orthogonal state. In that case, we have

|c0|2 + e−
iτ(E1−E0)

~ |c1|2 = 0. (3.47)

Equation (3.47) clearly implies that

|c0|2 = |c1|2,
e−

iτ(E1−E0)
~ = −1, (3.48)

and consequently, if the state belongs to the β-family, we have β = π. Therefore,

it follows from equation (3.44) that separable states in the β-family have the

highest possible value of τ/τmin,(
τ

τmin

)
separable

=
√

2. (3.49)

The separable state given by equations (3.21-3.22), which we have previously con-

sidered in connection with the two-particle system in a double well, is an example

of a state corresponding to the case β = π. This state illustrates an important

feature of separable states: separable states that are energetically symmetric
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(that is, the energy and the energy’s uncertainty are shared evenly between the

subsystems) do not saturate the bound (3.20). In fact, all energetically symmet-

ric separable states that evolve to an orthogonal state correspond to the case

β = π. It must be emphasized that the two particles that we are considering do

not interact with each other, and that the entanglement of the system (which is

conserved in time) is given by its initial state.

3.4 Conclusions

I have used a system of two non-interacting quantum particles in a double well

potential to illustrate the connection between the speed of quantum evolution

and quantum entanglement. The entanglement is conserved in time and is given

by the initial state of the system. The time required by separable (energetically

symmetric) initial states to reach an orthogonal state does not saturate the bound

(3.20). On the contrary, there exist (energetically symmetric) maximally entan-

gled states (within an effective two-qubit description) that do saturate the bound.

That is, they evolve as fast as it is permitted by the value of their energy disper-

sion ∆E. States of intermediate entanglement were also considered, and I proved

that within the β-family all the states that saturate the bound require maximum

quantum entanglement (however, not all states with maximum entanglement do

saturate the bound).

The connection between speed of evolution and entanglement in a system of

two particles in a double well potential offers interesting opportunities to illustrate

the concept of entanglement in university courses on quantum mechanics. On

the one hand, this illustration is based upon a set of well-known ingredients (i.e.

quantum double well potential, tunneling time, etc.) that are usually covered in

courses on quantum mechanics. On the other hand, this example provides a clear

instance of what we might call a “positive” feature of quantum entanglement,

as contrasted with the “negative” way in which entanglement is usually defined.

Entangled states are normally defined in terms of what they are not: an entangled

pure state is a state that cannot be factorized. Most of the “positive” aspects

of entanglement involve its role as a resource to implement novel, non-classical

types of computation and communication processes. Unfortunately, a discussion
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of these processes in a quantum mechanics course would require the introduction

of various new concepts in information theory and computer science. On the

contrary, the role played by entanglement in “speeding up” the evolution of two

particles in a double well requires mostly ideas that are already part of standard

courses in quantum mechanics.
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Chapter 4

Entanglement and the Speed of

Evolution of Multi-Partite

Quantum Systems

Due to its great importance, both from the fundamental and from the practical

points of view, it is imperative to investigate and survey in detail all the impli-

cations of the concept of entanglement. The aim of this chapter is to explore

some aspects of the relationship between quantum entanglement and the speed

of quantum evolution.

4.1 Overview

As already illustrated in the previous chapter, there exists an interesting rela-

tionship between entanglement and the time evolution of composite quantum

systems: quantum entanglement enhances the “speed” of evolution of certain

quantum states, as measured by the time needed to reach an orthogonal state.

Previous research done on this subject has been focused upon comparing extreme

cases (highly entangled states versus separable states) or upon bi-partite systems.

In the present chapter I explore the aforementioned connection between entangle-

ment and time evolution in the case of two-qubits (independent and interacting),

three-qubits and N -qubits systems, taking into account states of intermediate

entanglement. In the case of three qubits I perform a numerical survey of the

64

 
 
 



4.2 Independent bi-partite systems

system’s Hilbert space, finding a clear correlation between entanglement and the

time of evolution to an orthogonal state which is seen to hold also for states of

intermediate entanglement. In addition to numerical results, some analytical re-

sults are also reported. In the case of two qubits I pay special attention to states

of low entanglement saturating the quantum speed limit. Some of the results

obtained for two non-interacting qubits are extended to the case of N -qubits. In

particular, I introduce and investigate a family of energetically symmetric states

of low entanglement that saturate the quantum speed bound [50]. I show that,

as the number of qubits increases, very little entanglement is needed to reach the

quantum speed limit.

The chapter is organized as follows. The connection between entanglement and

speed of evolution for independent two-qubit systems is revisited in Section 4.2

and explored for interacting two-qubit systems in Section 4.3. In both instances

I pay special attention to states of low entanglement saturating the quantum

speed limit. The three-qubit system is treated in Section 4.4. Some of the results

obtained for two qubits are extended to the case of N -qubits in Section 4.5.

The role of entanglement in time-optimal quantum evolution of two qubits and

symmetric, orthogonal initial and final states is analyzed in Section 4.6. Finally,

some conclusions are drawn in Section 4.7.

4.2 Independent bi-partite systems

First I am going to consider a composite system consisting of two qubits. That

is, two identical (but distinguishable) subsystems each one described by a two-

dimensional Hilbert space. The Hamiltonian governing the evolution of our sys-

tem is of the form

H = H1 +H2, (4.1)

where Hi is a Hamiltonian acting only on the i-qubit. The time evolution opera-

tor associated with the Hamiltonian (4.1) is local and, consequently, the amount

of entanglement of the system does not change in time. The two single qubit
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4.2 Independent bi-partite systems

Hamiltonians Hi have the same structure, with eigenstates, {|0〉, |1〉}, and corre-

sponding eigenenergies E0 = 0, E1 = ε. Hamiltonians such as (4.1) are relevant

for the study of some fundamental aspects of quantum entanglement (see for

instance [81]) and, particularly, in connection with the problem of the speed of

quantum evolution of entangled states (see [53]). Besides, there are interacting

systems that, by recourse to an appropriate transformation, can be recast under

the guise of two or more non-interacting components described by a separable

Hamiltonian like (4.1) (see for example [82]).

Our composite system can be described in terms of the basis {|00〉, |01〉, |10〉, |11〉},
which can be rewritten as {|0〉, |1〉, |2〉, |3〉}. The general state of our two qubit

system is then

|ψ(t0)〉 =
3∑
j=0

aj|j〉 (4.2)

where the aj’s are complex coefficients satisfying the normalization requirement,

3∑
j=0

|aj|2 = 1. (4.3)

The degree of mixedness of the marginal density matrix associated with one

of the subsystems,

ρ1 = Tr2(|ψ〉〈ψ|), (4.4)

provides a quantitative characterization of the amount of entanglement of a pure

state |ψ〉 of a bipartite system. This degree of mixedness can be measured in sev-

eral ways. One possibility is to use the von Neumann entropy S = −Tr(ρ1 log2 ρ1),

leading to an entanglement measure called entropy of entanglement. Another pos-

sibility, frequently used in the literature because of its advantages for numerical

and analytical computations, is given by the linear entropy, 1−Tr(ρ2
1) [83]. It is

important to notice that this entropic measure coincides (up to a constant mul-

tiplicative factor) with the power-law entropy Sq with Tsallis’ parameter q = 2.
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4.2 Independent bi-partite systems

This choice leads to the entanglement measure

E(|ψ〉) = 2
[
1− Tr(ρ2

1)
]
, (4.5)

which is the one I am going to use in the present work. In terms of the measure

E(|ψ〉), factorizable pure states (which have zero entanglement) are characterized

by E(|φ1〉|φ2〉) = 0. On the other hand, states of maximum entanglement, such

as

|ψEPR〉 =
1√
2
(|00〉 + |11〉), (4.6)

have E(|ψEPR〉) = 1. Intermediate degrees of entanglement correspond to values

0 < E(|ψ〉) < 1. It must be mentioned that the main results that are going to

be reported here do not depend on the particular measure (4.5) adopted. Simi-

lar results would be obtained if other measures (such as the concurrence or the

entropy of entanglement) were used.

In order to characterize those initial states |ψ(t0)〉 that evolve into orthogonal

ones, one has to consider the equation

P (x) = 〈ψ(t0)|ψ(t0 + τ)〉 = |a3|2x2 +
(
|a1|2 + |a2|2

)
x+ |a0|2 = 0, (4.7)

where

x = e−iετ/~. (4.8)

The initial state (4.2) evolves to an orthogonal state if and only if the quadratic

equation (4.7) admits at least one root with modulus equal to one. This may

happen in two different ways: equation (4.7) may have two complex conjugate

roots of modulus one, or it may have two real roots, of which one must have

modulus equal to one. Due to the notation that we are going to introduce shortly,

these two cases are going to be designated, respectively, the β-case and the s-case.
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4.2.1 β-case

This is the case where equation (4.7) has two complex conjugate roots

x = e±iβ, (4.9)

with

β =
ετ

~
. (4.10)

The coefficients appearing in (4.7) can be written in terms of β,

|a0|2 = |a3|2 =
1

2(1− cos β)
,

|a1|2 + |a2|2 = − cos β

1− cos β
= C. (4.11)

Expressing the energy’s expectation value E and uncertainty ∆E in terms of β

(where π/2 ≤ β ≤ π) it can be verified that

∆E ≤ E, (4.12)

and consequently,

τ

τmin
(β) =

π~
2∆E

=
2β

π
√

1− cos β
. (4.13)

In order to get expressions for |a1|2 and |a2|2, one has to introduce a parameter

0 ≤ δ ≤ 1, such that

|a1|2 = δC,

|a2|2 = (1 − δ)C. (4.14)

Since a global phase factor doesn’t affect the physical properties of a state, one

can choose the global phase factor such that a0 is real. Introducing three phase

parameters
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0 ≤ γ1, γ2, γ3 < 2π, (4.15)

the coefficients a0, a1, a2 and a3 can be parameterized as follows

a0 =
1√

2(1− cos β)
,

a1 = eiγ1

√
δ

(− cos β)

1− cos β
,

a2 = eiγ2

√
(1− δ)

(− cos β)

1− cos β
,

a3 = eiγ3
1√

2(1− cos β)
. (4.16)

Consequently, the entanglement E(|ψ(t0)〉) is a function of β and of four inde-

pendent parameters, whereas τ/τmin is only a function of β (remember that the

entanglement of the system does not change in time). Since we are interested in

the relation between entanglement and the speed of time evolution, we have to

obtain an analytic expression for the boundary curve of this relation, that is, one

has to find the set of parameters yielding the minimum possible entanglement for

a given value of τ/τmin. This means finding the set of parameters minimizing the

value of E = 2 [1− Tr(ρ2
1)] for each value of β in the interval π/2 ≤ β ≤ π. For a

quantum state characterized by the coefficients (4.16) we have,

E =
1

(1− cos β)2

{
1 + 4

√
δ(1− δ) cos(γ3 − γ1 − γ2) cos β + 4δ(1− δ) cos2 β

}
.

(4.17)

We see that, for any given value of δ the minimum value of the expression (4.17)

is obtained when

cos(γ3 − γ1 − γ2) = 1. (4.18)

In particular, by setting γ1 = γ2 = γ3 = 0, hence by making all the coefficients

real, the measure E is minimized. Taking the partial derivative of E(β, δ) with

respect to δ and then choosing δ = 1/2 gives zero for all β in the domain and
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hence δ = 1/2 corresponds to a critical point. The second derivative test shows

that E(β, δ) is a convex function of δ for all allowed β and thus the critical point

is indeed the global minimum.

From this point on we shall assume the above values for the four parameters.

The concomitant expression for the entanglement measure is then given by

E(β) = 2 − 1− 6 cos β + cos2 β

(−1 + cos β)2
. (4.19)

The parametric plot of τ/τmin(β) versus E(β, δ = 1/2), with β ∈ [π/2, π], yields

the curve bounding region R1 from below in Figure 4.1.

Summing up, the β-case corresponds to the shaded regionR1 in the (E, τ/τmin)-

plane. All the points in this region are physically realizable.

4.2.2 s-case

In this case equation (4.7) has two real roots. One of these roots must have

modulus equal to one, meaning it must be ±1 and thus either τ = 0 which is

impossible since a state can never be orthogonal to itself or

τ =
π~
ε
. (4.20)

Therefore, one root must be −1. Denoting the other root s, the polynomial

appearing in equation (4.7) can be written under the guise

P (x) = |a3|2
(
x2 + (1− s)x− s

)
. (4.21)

Notice that the particular instance of the β-case corresponding to β = π coincides

with the s-case for s = −1. The coefficients of P (x) have to be positive, resulting

in the restriction s ≤ 0. Comparing the expressions (4.7) and (4.21) for P (x),

and taking into account the normalization requirement (4.3), results in

|a3|2 =
1

2(1− s)
,

|a0|2 = −s|a3|2 =
−s

2(1− s)
,
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|a1|2 + |a2|2 =
1− s

2(1− s)
=

1

2
. (4.22)

Introducing four parameters as in the β-case, we get

a0 =

√
−s

2(1− s)
,

a1 = eiµ1

√
λ

2
,

a2 = eiµ2

√
1− λ

2
,

a3 = eiµ3
1√

2(1− s)
. (4.23)

Since τ has the constant value (4.20), all the states in the s-family take the same

amount of time (actually maximum possible time) to evolve to an orthogonal

state, but what can be different among the states is the dispersion of the energy

and hence τmin. Thus

τ

τmin
(s) =

√
1− 6s+ s2

(−1 + s)2
(4.24)

changes from state to state.

Once again, we are interested in the boundary curve of the entanglement

and speed of time evolution relation. In this case we are looking for the curve

in the (E, τ/τmin)-plane corresponding to the maximum value of E (maximum

entanglement) for any given value of τ/τmin. The E-measure associated with a

state given by (4.23) is

E =
λ(1− λ)(1− s)2 − s

(1− s)2
− 2

1− s

√
−sλ(1− λ) cos(µ3 − µ2 − µ1). (4.25)

For given values of s and λ, the maximum of E is achieved when

cos(µ3 − µ2 − µ1) = −1. (4.26)
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In particular, one can choose µ1 = µ2 = 0, µ3 = π, and thus make all the

coefficients real. Assuming that relation (4.26) holds, E becomes a function solely

of s and λ and, for any given value of s, the maximum of E corresponds to λ = 1/2.

On the other hand, for given values of s and λ, the minimum of (4.25) corresponds

to cos(µ3−µ2−µ1) = 1, and letting λ(1−λ) = −s/(1− s)2 yields E = 0 (that is,

a separable state). In other words, the minimum entanglement compatible with

a given value of s (or a given value of τ/τmin) is zero.

Both E and τ/τmin (assuming (4.26)) have the property that for any u < 0

E(s = u, λ) = E(s =
1

u
, λ),

τ

τmin
(s = u) =

τ

τmin
(s =

1

u
). (4.27)

Thus the case −1 ≤ s ≤ 0 is equivalent to the case s ≤ −1, and so we are only

going to consider −1 ≤ s ≤ 0. Another property of E is that for any 0 ≤ c ≤ 1

E(s, λ = c) = E(s, λ = 1− c). (4.28)

In order to obtain the family of states that saturate the speed bound, we set

τ/τmin = 1 in equation (4.24). The only solutions are s = 0 and s → −∞. The

parameter λ may adopt any value in the range [0, 1], with λ = 1/2 and λ = 0, 1

corresponding, respectively, to the maximum and minimum value of E, namely

1/4 and 0. In the latter instance the two qubits are not entangled (the state is

factorizable). One of the two qubits is in an eigenstate of its Hamiltonian and

thus does not evolve in time, nor does it contribute to the dispersion of the energy.

The other qubit has maximal dispersion and hence evolves to an orthogonal state

at the speed limit. On the other hand, all the states

|ψ(s = 0, λ)〉 =

√
λ

2
|01〉 +

√
1− λ

2
|10〉 − 1√

2
|11〉

|ψ(s→ −∞, λ)〉 =
1√
2
|00〉 +

√
λ

2
|01〉 +

√
1− λ

2
|10〉 (4.29)

with 0 < λ < 1, thus with 0 < E ≤ 1/4, are entangled. We see that, unlike the

β-case (see equation (4.13)) where only β = π/2, hence only maximally entangled
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states saturate the bound, there is now a continuous family of partially entangled

states (parameterized by the parameter λ) that saturate the speed bound and

evolve as fast as possible. On the opposite side of the quantum speed range, the

slowest evolution occurs when τ/τmin =
√

2, thus when s = −1. In that case

λ = 1/2 (together with condition (4.26)) corresponds to the state

1

2

[
|0〉 ⊗ (|0〉+ |1〉) + |1〉 ⊗ (|0〉 − |1〉)

]
, (4.30)

which is clearly maximally entangled (and, consequently, has E = 1). The set of

parameter values s = −1, λ = 1/2, together with µ3 = µ2 = µ1 = 0, corresponds

to the state

1

2

[
|0〉|0〉+ |0〉|1〉+ |1〉|0〉+ |1〉|1〉

]
, (4.31)

which also evolves in the slowest way, but has zero entanglement. We thus see

that the states of the s-family with τ/τmin =
√

2 cover the complete range of

entanglement values: from separability to maximum entanglement.

A summary of the above results is provided in Figure 4.1. The parametric

plot {E(s, λ = 1/2), τ/τmin(s)} (taking into account (4.26)) corresponds to the

boundary of the region R2. This curve is given (in terms of the parameter s) by

the equations

E(s, λ = 1/2) = 2 − 1

4

[
−4

√
−s

1− s
+

7 + s(−10 + 7s)

(−1 + s)2

]
,

τ

τmin
(s) =

√
1− 6s+ s2

(−1 + s)2
. (4.32)

Therefore, the s-case corresponds to the shaded region R2 in the (E, τ
τmin

)-plane.

All the points within this region are associated with physically realizable states.

We see that, in a sense, the β-family (Region R1) and the s-family (Region R2)

behave in opposite ways. In region R1 states evolving faster (that is, with smaller

values of τ/τmin) tend to exhibit increasing entanglement. On the contrary, in

region R2 states with decreasing values of τ/τmin tend to have lower entanglement.

However, it must be kept in mind that regions R1 and R2 also differ in connection

with the absolute time τ needed to reach an orthogonal state. In region R2 all
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Figure 4.1: E vs τ/τmin for the independent two-qubit case: the curves

bounding regions R1 and R2 correspond to {E(β, δ = 1/2), τ/τmin(β)} and

{E(s, λ = 1/2), τ/τmin(s)} respectively.

states take the same time τ to evolve into an orthogonal state. In region R1, the

absolute evolution time to an orthogonal state is minimized by states of maximum

entanglement.

The lower boundaries of region R1 and region R2 intersect at a point corre-

sponding to the parameter values β = 1.79841 and s = −0.0179989. Thus the

blank region, which corresponds to points in the (E, τ
τmin

)-plane that are not phys-

ically allowed, is bounded by {E(s, λ = 1/2), τ/τmin(s)} for −0.0179989 ≤ s ≤ 0

and {E(β, δ = 1/2), τ/τmin(β)} for π/2 ≤ β ≤ 1.79841. These results are consis-

tent with previous research, in the sense that either entanglement or the asym-

metry of the state can enhance time evolution.

The states evolving to an orthogonal state at the highest possible speed (in

the sense of the speed bound) have either maximum entanglement (E = 1) or (rel-

atively) low entanglement (0 ≤ E ≤ 1/4). Consequently, there is an entanglement

gap, given by

1

4
< E < 1, (4.33)
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corresponding to entanglement values that are not physically permitted for states

evolving at the quantum speed limit. Those states saturating the speed bound

and having the particular amount of entanglement given by

EESSLE =
1

4
(4.34)

are especially interesting because they define a family of energetically symmetric

states with low entanglement (ESSLE) that saturate the speed bound. By “ener-

getically symmetric” states we mean states where the energy’s expectation value

E, and the energy’s variance (∆E)2 are evenly shared among all the subsystems

(in this case, the two qubits involved).

4.3 Interacting bi-partite systems

For two interacting qubits the Hamiltonian is of the form

H = H1 +H2 +Hint (4.35)

where H1, H2 are the free Hamiltonians of the two qubits and Hint is a non-trivial

interaction Hamiltonian between them. Unlike the case of two non-interacting

qubits, the time evolution is not a local unitary operation but only a global

unitary evolution. This means time evolution changes entanglement. As was

shown in [53], Hint can build up entanglement so that the system may reach

the bound even though no entanglement was present initially. They used the

following interaction capable of speeding up the dynamics:

H = ~ω0

[
2 I(1) ⊗ I(2) − σ(1)

x ⊗ I(2) − I(1) ⊗ σ(2)
x

]
+ ~ω

[
I(1) ⊗ I(2) − σ(1)

x ⊗ σ(2)
x

]
,

(4.36)

where I is the identity matrix and σx is the x-Pauli operator. The free Hamilto-

nian which rotates each of the qubits independently at frequency ω0 is given by

the first term of eq. (4.36), while the second term is a global interaction which

couples the two qubits together by collectively rotating them at frequency ω.

Expressing H in the σz-basis {|0〉, |1〉},
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H = ~


2ω0 + ω −ω0 −ω0 −ω
−ω0 2ω0 + ω −ω −ω0

−ω0 −ω 2ω0 + ω −ω0

−ω −ω0 −ω0 2ω0 + ω

 , (4.37)

we obtain the eigenvalues {0, 4~ω0, 2~(ω + ω0), 2~(ω + ω0)} and the eigenvectors

|u0〉 =
1

2
{|00〉+ |01〉+ |10〉+ |11〉} (4.38)

|u1〉 =
1

2
{|00〉 − |01〉 − |10〉+ |11〉} (4.39)

|u2〉 =
1√
2
{−|00〉+ |11〉} (4.40)

|u3〉 =
1√
2
{−|01〉+ |10〉}. (4.41)

The above Hamiltonian is of technological importance as it can increase the com-

munication rate [84]. Giovannetti et al considered a separable initial state and

then analyzed the effect of varying ω and ω0. The procedure used here is similar

to the one used in the case of two independent qubits in the sense that we shall

consider a general state and restrict ourselves to three specific cases of ω and ω0.

The initial state at time t0 is given by

|ψ(t0)〉 = a0|u0〉+ a1|u1〉+ a2|u2〉+ a3|u3〉

=

[
1

2
a0 +

1

2
a1 −

1√
2
a2

]
|00〉+

[
1

2
a0 −

1

2
a1 −

1√
2
a2

]
|01〉

+

[
1

2
a0 −

1

2
a1 +

1√
2
a2

]
|10〉+

[
1

2
a0 +

1

2
a1 +

1√
2
a2

]
|11〉, (4.42)

with

|a0|2 + |a1|2 + |a2|2 + |a3|2 = 1. (4.43)

In order to calculate the linear entanglement E = 2(1− Tr(ρ2
1)) of this state one

has to express ρ = |ψ(t0)〉〈ψ(t0)| in terms of the basis {|00〉, |01〉, |10〉, |11〉}. This
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4.3 Interacting bi-partite systems

enables one to take the partial trace over the second qubit, thereby obtaining

ρ1 = Tr2ρ.

At time τ the state will have evolved to

|ψ(t0 + τ)〉 = a0|u0〉+a1e
−4iω0τ |u1〉+a2e

−2i(ω0+ω)τ |u2〉+a3e
−2i(ω0+ω)τ |u3〉. (4.44)

To obtain all possible states evolving to an orthogonal state we find the coefficients

satisfying

〈ψ(t0)|ψ(t0 + τ)〉 = |a0|2 + e−4iω0τ |a1|2 + e−2i(ω0+ω)τ
[
|a2|2 + |a3|2

]
= 0. (4.45)

This is a transcendental equation which cannot be solved analytically, so we shall

concentrate on the three cases

1. ω = ω0

2. ω0 = 0

3. ω = 3ω0.

4.3.1 ω = ω0

In this case the eigenenergies become {0, 4~ω0, 4~ω0, 4~ω0} and from eq. (4.45)

we obtain

|a0|2 = |a1|2 + |a2|2 + |a3|2,
τ =

π

4ω0

(4.46)

which, together with the normalization condition, gives

a0 = |a0| =
1√
2

a1 = eiγ1

√
δ1
2
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a2 = eiγ2

√
δ2(1− δ1)

2

a3 = eiγ3

√
(1− δ1)(1− δ2)

2
. (4.47)

As before, 0 ≤ δ1, δ2 ≤ 1 and 0 ≤ γ1, γ2, γ3 < 2π. The mean energy E and the

dispersion ∆E are then both equal to 2~ω0, thus giving rise to

τmin =
π

4ω0

= τ. (4.48)

Hence all the states evolving to an orthogonal state evolve at the speed limit.

Setting γ1, γ2, γ3 = 0, the expression for the linear entanglement becomes

E(δ1, δ2) =
1

4
(1 + 2

√
δ1 − 2 δ2 + δ1(−1 + 2 δ2))

2. (4.49)

A plot of this equation shows that E can adopt any value between zero and one.

Thus any degree of initial entanglement will allow the initial state to evolve at

maximum speed to an orthogonal state.

4.3.2 ω0 = 0

This case is similar to the former case, with the eigenenergies now being

{0, 0, 2~ω, 2~ω} and

|a0|2 + |a1|2 = |a2|2 + |a3|2,
τ =

π

2ω
. (4.50)

This gives

a0 = |a0| =
√
δ1
2

a1 = eiγ1

√
1− δ1

2

a2 = eiγ2

√
δ2
2

a3 = eiγ3

√
1− δ2

2
. (4.51)
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Once again

τ

τmin
= 1, (4.52)

since E = ∆E = ~ω gives τmin = π
2ω

. The entanglement for γ1, γ2, γ3 = 0 is

E(δ1, δ2) =
1

4
(1−4 (−1+δ1)δ1+4 (−1+δ2)δ2−4

√
(1− δ1)δ1 (−1+2 δ2). (4.53)

Thus the entanglement is continuous between zero and one.

4.3.3 ω = 3ω0

The eigenenergies are {0, 4~ω0, 8~ω0, 8~ω0} and thus eq. (4.45) becomes

P (x) = |a0|2 + |a1|2x+
[
|a2|2 + |a3|2

]
x2 = 0,

x = e−4iω0τ . (4.54)

Now, either we have two complex conjugate roots (β-case) or we have two real

roots (s-case) of which one root must be -1 in order for the state to evolve to an

orthogonal state.

4.3.3.1 β-case

Assume that eiβ, e−iβ are the complex roots, so that

P (x) =
[
|a2|2 + |a3|2

]{
x2 +

|a1|2

|a2|2 + |a3|2
x+

|a0|2

|a2|2 + |a3|2

}
(4.55)

=
[
|a2|2 + |a3|2

] {
x− eiβ

}{
x− e−iβ

}
(4.56)

=
[
|a2|2 + |a3|2

] {
x2 − 2 cos β x+ 1

}
. (4.57)

Comparing eqs. (4.55) and (4.57) yields

|a1|2

|a2|2 + |a3|2
= −2 cos β,

|a0|2

|a2|2 + |a3|2
= 1. (4.58)
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This, together with the normalization condition, gives

|a0|2 =
1

2(1− cos β)

|a1|2 =
− cos β

1− cos β

|a2|2 =
δ

2(1− cos β)

|a3|2 =
1− δ

2(1− cos β)
. (4.59)

Since the squares of the absolute values of the coefficients have to be positive,

β is restricted to the interval [π
2
, π] and δ ∈ [0, 1]. Introducing the phases 0 ≤

φ1, φ2, φ3 < 2π, we have

a0 =
1√

2(1− cos β)

a1 = eiφ1

√
− cos β

1− cos β

a2 = eiφ2

√
δ

2(1− cos β)

a3 = eiφ3

√
1− δ

2(1− cos β)
. (4.60)

The expression for the linear entanglement in terms of the above parameters is

E(β, δ, φ1, φ2, φ3) =
1

4 (−1 + cos β)2
{1− 8 cos β − 4

√
2
√
− cos β [ δ cos(φ1 − 2φ2)

+(−1 + δ) cos(φ1 − 2φ3) ] + 4 (−1 + δ) δ cos2(φ2 − φ3)}.(4.61)

The time needed to reach an orthogonal state is

τ(β) =
β

4ω0

, (4.62)

the mean energy is E = 4~ω0 and the dispersion is ∆E = 4~ω0√
1−cosβ

. Since we are

dealing with two qubits, the dispersion of the energy is always less than the mean

energy and thus we have for the minimum possible time

80

 
 
 



4.3 Interacting bi-partite systems

τmin(β) =
π
√

1− cos β

8ω0

. (4.63)

The quantities we are interested in are

τ

τmin
(β) =

2β

π
√

1− cos β
(4.64)

and the entanglement for φ1, φ2, φ3 = 0. We set the phases equal to zero since we

want to determine the boundary curves in the {E, τ/τmin}-plane. The expression

for the linear entanglement then becomes

E(β, δ) =
(1− 2 δ)(1− 2 δ + 4

√
2
√
− cos β) + 8 cos β

4 (−1 + cos β)2
. (4.65)

The boundary curves, starting at the top and moving counterclockwise, are given

by

{ 1

16
(9− 4

√
2) ≤ E(β = π, δ) ≤ 1

16
(9 + 4

√
2), τ/τmin(β = π) =

√
2}, δ ∈ [0, 1]

{E(β, δ = 1), τ/τmin(β)}, β ∈ [1.696, π]

{E(β, δ, φ1, φ2, φ3) = 0, 1 ≤ τ/τmin(β) ≤ 1.018}, β ∈ [
π

2
, 1.696]

{0 ≤ E(β =
π

2
, δ) ≤ 1

4
, τ/τmin(β =

π

2
) = 1}, δ ∈ [0, 1]

{E(β, δ = 0), τ/τmin(β)}, β ∈ [
π

2
, π]. (4.66)

Figure 4.2 shows a random plot of the {E(β, δ, φ1, φ2, φ3), τ/τmin(β)}-plane.

Only the states within the bounded region evolve to an orthogonal state.

The states having β = π
2

evolve at the speed limit and their possible entanglement

values range from 0 to 1
4
.

Once again of interest are the energetically symmetric states:

a0 =
1√

2 (1− cos β)

a1 = a2 = eiφ1

√
− cos β

1− cos β
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Figure 4.2: E vs τ/τmin for the β-case.

Figure 4.3: E vs τ/τmin for the symmetric β-case (φ1 = φ2, δ = −2 cos β and
π
2
≤ β ≤ 2π

3
).

a3 = eiφ3

√
1 + 2 cos β

2 (1− cos β)
, (4.67)

with β ∈ [π
2
, 2π

3
]. Figure 4.3 shows the region in the {E, τ/τmin}-plane which

the symmetric states occupy. The states saturating the speed bound have entan-

glement 1
4
. As in the non-interacting two-qubit case these states are especially

interesting because they define a family of energetically symmetric states with

low entanglement (ESSLE) that saturate the speed bound.

4.3.3.2 s-case

One of the real roots has to be -1 and let the other one be s. Then we have
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P (x) =
[
|a2|2 + |a3|2

]{
x2 +

|a1|2

|a2|2 + |a3|2
x+

|a0|2

|a2|2 + |a3|2

}
(4.68)

=
[
|a2|2 + |a3|2

] {
x2 + (1− s)x− s

}
. (4.69)

Comparing eqs. (4.68) and (4.69) gives

|a1|2

|a2|2 + |a3|2
= 1− s,

|a0|2

|a2|2 + |a3|2
= −s. (4.70)

This, together with the normalization condition, gives

|a0|2 =
−s

2(1− s)

|a1|2 =
1− s

2(1− s)
=

1

2

|a2|2 =
λ

2(1− s)

|a3|2 =
1− λ

2(1− s)
, (4.71)

with λ ∈ [0, 1]. From the positivity condition we see that s ≤ 0. Again introduc-

ing three phases µ1, µ2, µ3 ∈ [0, 2π) we have

a0 =

√
−s

2(1− s)

a1 = eiµ1
1√
2

a2 = eiµ2

√
λ

2(1− s)

a3 = eiµ3

√
1− λ

2(1− s)
. (4.72)

The linear entanglement is hence

E(s, λ, µ1, µ2, µ3) =
1

4 (1− s)5/2

{
4 (−1 + s)

√
−s [λ cos(µ1 − 2µ2)

+ (−1 + λ) cos(µ1 − 2µ3) ] +
√

1− s [ 1 + 4 (−1 + s) s
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+ 2 (−1 + λ)λ+ 2 (−1 + λ)λ cos(2 (µ2 − µ3)) ] } . (4.73)

Since the one root is -1, the time needed to reach an orthogonal state is constant,

implying that all the states that do evolve to an orthogonal state take the same

amount of time, namely

τ =
π

4ω0

. (4.74)

What differs among the states are the energy resources:

E =
2ω0~(3− s)

1− s
, ∆E =

2ω0~
√

1− 6s+ s2

1− s
. (4.75)

This results in

τ

τmin
(s) =

√
1− 6s+ s2

1− s
. (4.76)

For the same reason as in the β-case, we set the phases equal to zero. The

linear entanglement then becomes

E(s, λ) =
4 (−1 + s)

√
−s (−1 + 2λ) +

√
1− s (1 + 4 (−1 + s) s+ 4 (−1 + λ)λ)

4 (1− s)5/2
.

(4.77)

What we are interested in is the region in the {E(s, λ, µ1, µ2, µ3), τ/τmin(s)}-
plane where states evolve to orthogonal states. The boundary curves of this region

are given in the same order as before:

{ 1

16
(9− 4

√
2) ≤ E(s = −1, λ) ≤ 1

16
(9 + 4

√
2), τ/τmin(s = −1) =

√
2}, λ ∈ [0, 1]

{E(s, λ = 1), τ/τmin(s)}, s ∈ [−1,−0.207]

{E(s, λ, µ1, µ2, µ3) = 0, 1 ≤ τ/τmin(s) ≤ 1.252}, s ∈ [−0.207, 0]

{0 ≤ E(s = 0, λ) ≤ 1

4
, τ/τmin(s = 0) = 1}, λ ∈ [0, 1]

{E(s, λ = 0), τ/τmin(s)}, s ∈ [−0.203777, 0]

{E(s, λ = 1), τ/τmin(s)}, s ≤ −4.907334

{E(s, λ = 0), τ/τmin(s)}, s ≤ −1. (4.78)
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Figure 4.4: E vs τ/τmin for the s-case.

Figure 4.4 is a random plot of the {E(s, λ, µ1, µ2, µ3), τ/τmin(s)}-plane. To find

the states evolving at the speed limit, we set τ/τmin(s) = 1. This means either

s = 0 or s → −∞. The former instance yields 0 ≤ E ≤ 1
4
, whereas the latter

gives E = 1. The symmetric states correspond to λ = 1 and thus have E = 1
4
.

Figure 4.5 is a combined plot of the s- and β-cases, thus showing all the

allowed states for the case ω = 3ω0. The point of intersection which is the tip

of the blank triangular region is {E(s = −41.9633, λ = 1) = E(β = 1.85986, δ =

0), τ/τmin(s = −41.9633) = τ/τmin(β = 1.85986)}. The allowed region looks

similar to the one for two non-interacting qubits (Figure 4.1): in both cases the

states evolving to an orthogonal state at the highest possible speed have either

maximum entanglement (E = 1) or (relatively) low entanglement (0 ≤ E ≤ 1/4).

Consequently, there is an entanglement gap, given by

1

4
< E < 1, (4.79)

corresponding to entanglement values that are not physically permitted for states

evolving at the quantum speed limit [50]. The difference between Figures 4.1 and

4.5 is, that in the latter figure there are states outside the triangular region that

are also not allowed: there are no states evolving at the slowest possible speed

with either very low entanglement or entanglement close to one.
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Figure 4.5: E vs τ/τmin for the interacting two-qubit case with ω = 3ω0.

4.4 Entanglement and the speed of quantum evo-

lution of three-partite systems

In this section I extend from a bi-partite to a three-partite system in order to

see if for three qubits there is a similar correlation for states of intermediate en-

tanglement. This section also illustrates that the equations get complicated very

quickly in going just from two to three qubits.

We are going to consider a composite system consisting of three identical (but

distinguishable) subsystems each one having two possible states, {|0〉, |1〉}, with

eigenenergies E0 = 0, E1 = ε respectively. Our composite system can be de-

scribed in terms of the basis {|000〉, |001〉, . . . , |111〉}, which can be rewritten as

{|0〉, |1〉, . . . , |7〉}.
The general state of our three qubit system is

|ψ(t0)〉 =
7∑
j=0

cj|j〉 (4.80)

where the cj’s are complex coefficients satisfying the normalization requirement,

7∑
j=0

|cj|2 = 1. (4.81)
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A quantitative measure of the amount of entanglement of a three-partite pure

state |ψ〉 is given by the sum of the linear entanglement (1.37) of the three unique

bi-partitions:

E(|ψ〉) = Tr(ρ2
1) + Tr(ρ2

2) + Tr(ρ2
3), (4.82)

where

ρ1 = Tr23(|ψ〉〈ψ|),
ρ2 = Tr13(|ψ〉〈ψ|),
ρ3 = Tr12(|ψ〉〈ψ|). (4.83)

According to the measure E(|ψ〉), factorizable pure states have zero entanglement,

that is, E(|φ1〉|φ2〉|φ3〉) = 3. The GHZ state

|ψGHZ〉 =
1√
2
(|000〉 + |111〉) (4.84)

has E(|ψGHZ〉) = 3/2, which corresponds to maximum entanglement.

A fundamental property of the measure of entanglement (4.82) is that it does

not change under the action of local unitary transformations. That is, it does not

change under the action of transformations of the form

U = U1 ⊗ U2 ⊗ U3, (4.85)

where U1,2,3 represent unitary transformations acting on each particle individually.

In the problem we are considering, we have three non-interacting quantum

particles, thus the Hamiltonian of our system is of the form

H = H1 ⊗ I2 ⊗ I3 + I1 ⊗H2 ⊗ I3 + I1 ⊗ I2 ⊗H3, (4.86)

where Ik stands for the identity operator acting on the Hilbert space associated

with the k-particle (k = 1, 2, 3). It is clear that the time evolution operator of

this system is local, that is, it has the form

Uk = exp

[
−itHk

~

]
(k = 1, 2, 3). (4.87)
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Consequently, the amount of entanglement of our three particles is not going to

change in time. Notice that the amount of entanglement exhibited by a given

state of our three particle system is an intrinsic property of that state. It does

not depend on the form of the Hamiltonian. However, the Hamiltonian governs

the evolution of the state and, consequently, also determines eventual changes in

the amount of entanglement. In the case of the Hamiltonian (4.86) that we are

going to consider, the amount of entanglement at any time is going to be the

same as the amount of entanglement E(|ψ(t0)〉) associated with the initial state

|ψ(t0)〉. Obviously, the initial entanglement E(|ψ(t0)〉) is, in turn, determined by

the particular way in which the initial state was prepared.

The time τ needed for this state to evolve into an orthogonal one is given by eq.

(1.48)

〈ψ(t0)|ψ(t0 + τ)〉 =
7∑
j=0

|cj| exp

[
−iτEj

~

]
(4.88)

= |c0|2 + {|c1|2 + |c2|2 + |c4|2}e−iετ/~

+ {|c3|2 + |c5|2 + |c6|2}e−i2ετ/~ + |c7|2e−i3ετ/~. (4.89)

This equation for τ can be recast as

P (x) = |c0|2 + {|c1|2 + |c2|2 + |c4|2}x
+ {|c3|2 + |c5|2 + |c6|2}x2 + |c7|2x3 = 0, (4.90)

with

x = e−iετ/~. (4.91)

Since the coefficients of P (x) are real, the initial state (4.80) evolves to an orthog-

onal state if and only if the cubic equation (4.90) admits two complex conjugate

roots with modulus equal to one and one real root or three real roots of which

one must have modulus equal to one. That is, in the first case

e±iα, with α = ετ/~ ∈ [0, π] and r ∈ <. (4.92)
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In the second case, one of the three real numbers has to be ±1. Now, +1

implies that α = 0 and thus τ = 0 which is impossible, since a state can’t be

orthogonal to itself. This means that only −1 is possible, so α = π and thus

τ = π~/ε is the only solution. This is the maximum possible time, but because

we are interested in τ/τmin which changes since τmin can differ from state to state

due to the varying dispersion of the energy, we also have to consider this case.

4.4.1 {α, r}-case

If (4.92) is the case, we can rewrite the polynomial P (x) under the guise

P (x) = |c7|2
(
x− eiα

) (
x− e−iα

)
(x− r) . (4.93)

P (x) can be expanded as follows

P (x) = |c7|2
{
x3 + (−2 cosα − r)x2 + (1 + 2 r cosα)x − r

}
. (4.94)

Using the normalization condition (4.81), one obtains an expression for |c7|2,

|c7|2 =
1

2(1− cosα)(1− r)
. (4.95)

The coefficients of P (x) have to be positive, resulting in the following three re-

strictions on α and r

• −2 cosα − r ≥ 0,

• 1 + 2 r cosα ≥ 0,

• −r ≥ 0.

These lead to the following conditions on α and r

1. For −1 ≤ r ≤ 0 ⇒ arccos(−r
2

) ≤ α ≤ π

2. For r ≤ −1 ⇒ arccos(−1
2r

) ≤ α ≤ π.
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Comparing now the expressions (4.90) and (4.94) for P (x), one obtains

|c1|2 + |c2|2 + |c4|2 =
1 + 2 r cosα

2(1− cosα)(1− r)
= A,

|c3|2 + |c5|2 + |c6|2 =
−2 cosα− r

2(1− cosα)(1− r)
= B. (4.96)

In order to get expressions for |c1|2, |c2|2, . . . , |c6|2, one has to introduce four

parameters,

0 ≤ δ1, δ2, δ3, δ4 ≤ 1 (4.97)

such that

|c1|2 = δ1A,

|c2|2 = δ2(1 − δ1)A,

|c4|2 = (1 − δ2)(1 − δ1)A,

|c3|2 = δ3B,

|c5|2 = δ4(1 − δ3)B,

|c6|2 = (1 − δ4)(1 − δ3)B. (4.98)

Since a global phase factor doesn’t affect the physical properties of a state,

one can choose the global phase factor such that c0 is real. Introducing seven

phase parameters

0 ≤ β1, β2, . . . , β7 < 2π (4.99)

the expressions for c0, c1, . . . , c7 are as follows

c0 =

√
−r

2(1− cosα)(1− r)
,

c1 = eiβ1

√
δ1

1 + 2 r cosα

2(1− cosα)(1− r)
,

c2 = eiβ2

√
δ2(1− δ1)

1 + 2 r cosα

2(1− cosα)(1− r)
,
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c3 = eiβ3

√
δ3

−2 cosα− r

2(1− cosα)(1− r)
,

c4 = eiβ4

√
(1− δ2)(1− δ1)

1 + 2 r cosα

2(1− cosα)(1− r)
,

c5 = eiβ5

√
δ4(1− δ3)

−2 cosα− r

2(1− cosα)(1− r)
,

c6 = eiβ6

√
(1− δ4)(1− δ3)

−2 cosα− r

2(1− cosα)(1− r)
,

c7 = eiβ7
1√

2(1− cosα)(1− r)
. (4.100)

Consequently, the entanglement E(|ψ(t0)〉) is a function of α and r and also

of the eleven independent parameters, whereas the quotient between the actual

time τ of evolution to an orthogonal state (which is related to α through equation

(4.92)) and the lower bound τmin, is only a function of α and r,

τ

τmin
= min

(
2αE

ε π
,

2α∆E

επ

)
, (4.101)

where ∆E is given by

∆E = ε

√
(A + 4B + 9|c7|2)− (A + 2B + 3|c7|2)2. (4.102)

Clearly, neither τ/τmin nor E depend on ε.

Now, in order to determine whether ∆E is less than or equal to E in the

allowed domain for α and r (conditions 1 and 2), we considered the difference

D(α, r) = E − ∆E. (4.103)

Since both E and ∆E are positive, E ≥ ∆E ⇐⇒ E2 ≥ (∆E)2. Thus we can

work with

D∗(α, r) = E2 − (∆E)2 (4.104)

instead of D(α, r). The first partial derivative of D∗(α, r) with respect to α is

strictly greater than zero for all α ∈ [π/3, π) and zero for α = π. The second
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partial derivative with respect to α is strictly negative for all α ∈ [π/3, π]. Hence

D∗(α, r) is a concave function of α for any fixed r ≤ 0, having its absolute

maximum at α = π and its absolute minimum at the lower bound for α. Now, if

this minimum is greater than or equal to zero for any r ≤ 0, then D∗(α, r) ≥ 0

for all α and r in the domain. Substituting the expressions for the lower bound

of α into D∗(α, r), one sees that D∗
min(r) ≥ 0 for r ≤ 0, equality being reached

only for r = −1. The conclusion is that D(α, r) ≥ 0 and hence E ≥ ∆E for all

α and r in the domain, which means

τ

τmin
(α, r) =

2α∆E

επ
=

α

π

√
− 4 r

(−1 + r)2
+ 2 csc2

(α
2

)
. (4.105)

Now, τ/τmin is a monotonically increasing function of α, for any fixed r ≤ 0.

The same holds for the extreme case r → −∞. Thus, the maximum of τ/τmin (for

any r) is at the upper boundary, namely when α = π. Likewise, the minimum

occurs at the smallest allowed value for α, depending on the particular r chosen

(conditions 1 and 2).

Keeping α fixed at any value in the domain and varying r, one finds that τ/τmin

(for any allowed α) has its maximum at r = −1, so for that value of r the func-

tion has its greatest range, τ/τmin(α = π/3, r = −1) = 1 and τ/τmin(α = π, r =

−1) =
√

3.

Investigating the behaviour of τ/τmin for α = π, one sees that (τ/τmin)max de-

creases monotonically from
√

3 to
√

2 as r goes from −1 to 0 or to −∞.

The behaviour at the lower bound for α is more complicated, since the bound

itself decreases monotonically from π/3 to π/2 as r goes from −1 to 0 or to −∞
(conditions 1 and 2). For r ≤ −1, (τ/τmin)min increases from 1 at r = −1 to

1.05235 when r = −0.332247 or the inverse thereof and then starts to decrease

slowly to 1 again as r goes to 0 or −∞.

To show that the relation between entanglement and the “speed” of time

evolution also holds for three qubits, we performed a numerical survey of the

system’s Hilbert space. That is, using random choices of the eleven parameters

and fixed values of r, we plotted τ/τmin(α) versus E(α). From Figures 4.6 and

4.7, which illustrate the cases r = −1 and r = 0 respectively, one can clearly see
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Figure 4.6: {α, r}-case for r = −1: numerical survey of {E, τ/τmin} using

random values for the δi’s, βi’s and α.

a correlation between entanglement and the time of evolution to an orthogonal

state.

To obtain an analytic expression for the global boundary curve of this relation,

one has to find the set of parameters that maximize the entanglement measure

for all values of α and r in the domain. In order to achieve that we first have to

try and find the maximum boundary for any fixed r and all the allowed α-values.

Setting β1 = β2 = . . . = β7 = 0, hence making all the coefficients real, maximizes

the entanglement measure.

Both τ/τmin and E then have the property that for any a < 0

τ

τmin
(α, r = a) =

τ

τmin
(α, r =

1

a
),

E(α, r = a, δ1, δ2, δ3, δ4) = E(α, r =
1

a
, δ3, δ4, δ1, δ2). (4.106)

Since we can always interchange δ1 ↔ δ3 and δ2 ↔ δ4, it means the two cases

−1 ≤ r ≤ 0 and r ≤ −1 are equivalent and so we only need to consider the

case −1 ≤ r ≤ 0.
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Figure 4.7: {α, r}-case for r = 0: numerical survey of {E, τ/τmin} using random

values for the δi’s, βi’s and α.

The greatest range for τ/τmin occurs at r = −1, so we shall first focus on that

value for r. The following δi’s maximize the entanglement measure:

δ1 = δ3 =
1

3
, δ2 = δ4 =

1

2
. (4.107)

This choice of parameters implies that c1 = c2 = c4 and c3 = c5 = c6.

To prove that this set of values does indeed maximize the entanglement measure,

one first has to show that they correspond to a critical point, that is, the partial

derivatives of E with respect to all four parameters must be zero at the critical

point. Since that is the case for all α and r in the domain, it means that the

critical point is either a local/global maximum, local minimum or saddle point.

It can’t be global minimum since we know there are other sets of values yielding

smaller values for the entanglement. In order to determine the nature of the

critical point, one has to construct the Hessian matrix and show whether it is

negative/positive definite or semi-definite. For all values of r 6= −1, the critical

point is either a saddle point or a local maximum/minimum.

For r = −1, all four eigenvalues of the matrix are negative for π/3 < α < π

and although some are zero at α = π/3, π this doesn’t influence the negative

definiteness of the matrix since for α = π/3 only one value (E = 3/2) is possible
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for any choice of the δi’s, and for α = π the entanglement value is 3 and thus

definitely maximal. Thus for r = −1 the above choice of parameters corresponds

to the global maximum of the concave entanglement function (for all α). In that

case we have the following expressions for τ/τmin(α) and E(α),

τ

τmin
(α) =

α

π

√
−5 + cosα

−1 + cosα
, (4.108)

E(α) =
1

12(−1 + cosα)2
{39 + 4 g + cos 2α (13 + 2 g)

− 2 cosα (28 + 3 g)} (4.109)

where

g =
2
√

3

1− cosα

√
1− 2 cosα. (4.110)

Plotting τ/τmin(α) versus E(α) results in curve 1 depicted in Figures 4.6 and 4.8.

The extreme cases (α = π/3, π) correspond to maximum entanglement (E = 3/2)

and thus fastest evolution and zero entanglement (E = 3) and thus slowest evo-

lution respectively, consistent with previous research. The correlation between

entanglement and time evolution is seen to hold also for states of intermediate

entanglement.

The minimum range for τ/τmin, namely [1,
√

2], occurs at r = 0 and so we

shall consider that case now.

The expression for τ/τmin is then

τ

τmin
(α) =

2α

π
√

1− cosα
. (4.111)

The following choice of parameters maximizes the entanglement measure for all

α ∈ [π/2, π]:

δ1 = δ2 = δ3 = 0 , δ4 =
1

2
. (4.112)

This set of parameters is actually equivalent to three other sets

• δ1 = 1 , δ2 = 1 , δ3 = 1
2
, δ4 = 1,
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• δ1 = 0 , δ2 = 1 , δ3 = 1
2
, δ4 = 0,

• δ1 = 1 , δ2 = 0 , δ3 = 1
2
, δ4 = 1,

since they all have exactly the same expressions for the entanglement measure,

namely

E(α) =
3− 8 cosα+ cos 2α

(−1 + cosα)2
. (4.113)

To show that the choice given in (4.112) does maximize the entanglement measure

for r = 0, one has to take the partial derivatives of E with respect to the δi’s and

evaluate them at the point in question. For the δ4 partial derivative this gives

zero for all α in the domain, whereas for the other partial derivatives we either

obtain that they are indeterminate or non-zero for all allowed α. Evaluating the

δ1, δ2 and δ3 partial derivatives for any selection of δi’s, we see that no critical

point exists for δ1, δ2 and δ3 and thus the global maximum must occur at the

boundary values, since E is a smooth function of the δi’s. Taking the second par-

tial derivative of E with respect to δ4 and substituting the values given in (4.112),

results in a negative function of α for α ∈ (π/2, π). For α = π/2, π the result is

zero, since E is equal to 2 in the first instance and a very flat function of δ4 (but

still a maximum) in the latter case. Thus, when the first three δi’s are equal to

zero, then δ4 = 1/2 does correspond to a global maximum for the δ4-direction.

Plotting τ/τmin(α) versus E(α) results in curve 2 depicted in Figures 4.7 and 4.8.

The extreme cases (α = π/2, π) correspond to E = 2 and thus fastest evolution

and zero entanglement (E = 3) and thus slowest evolution respectively, consistent

with previous research. The correlation between entanglement and time evolu-

tion is seen to hold also for states of intermediate entanglement.

The state corresponding to the δi’s in equation (4.112) is given below

|ψ(α)〉 = y |100〉 + z |101〉 + z |110〉 + y |111〉, (4.114)

where
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y =
1

2
csc
(α

2

)
,

z =
1

2
csc
(α

2

) √
− cosα. (4.115)

Clearly, the state is separable in the first qubit for all α in the domain. This

means that, although the first qubit contributes to the mean energy of the state,

it does not contribute to the dispersion of the energy and hence not to τ/τmin.

Thus the first qubit cannot enhance the speed of time evolution and so this case

is essentially a two-qubit case.

The general state for the parameter choice (4.112) is not separable for −1 ≤ r < 0

and all α in the domain. Only in the limit r → 0 does the state become separable,

which means we can have fully 3-qubit entangled states arbitrarily close to state

(4.114).

From a graphical analysis, for −1 < r . −0.041 the maximum boundary is a

combination of the r = −1 and r = 0 boundaries, that is, for a certain range of

α the r = −1 boundary holds and for the other values of α the r = 0 boundary

maximizes the entanglement measure. By plotting graphs for −0.041 . r ≤ 0, it

seems that the choice of parameters given by eq. (4.112) does indeed maximize

the entanglement measure for those values of r.

From the graphical approach one can then conclude that for τ/τmin(α, r) between

1 and
√

2, the global boundary for the entanglement measure is

{E(α, r = 0, δ1 = δ2 = δ3 = 0, δ4 = 1/2), τ/τmin(α, r = 0)}.
For τ/τmin(α, r) ∈ [

√
2,
√

3], the global boundary is E = 3.

To obtain the family of states that saturate the bound, we set τ/τmin = 1. The

only solutions are (α = π/3, r = −1), (α = π/2, r → −∞) and (α = π/2, r = 0).

As mentioned before, the first solution adopts only one value for the entanglement

(E = 3/2) irrespective of the choice of parameters. The corresponding state is
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the |GHZ〉 state:

|ψ(α =
π

3
, r = −1)〉 = |GHZ〉 =

1√
2
{|000〉+ |111〉}. (4.116)

For the latter solution E is independent of δ3 and δ4. Varying both δ1 and δ2

gives a continuous range for E between 5/3 ≈ 1.66667 and 2, where E = 5/3, 2

corresponds to δ1 and δ2 as in equations (4.107) and (4.112) respectively. The

corresponding spectrum of states and their entanglement are

|ψ(δ1, δ2)〉 =

√
δ1
2
|001〉+

√
δ2(1− δ1)

2
|010〉+

√
(−1 + δ1)(−1 + δ2)

2
|100〉+ 1√

2
|111〉,

E(δ1, δ2) = 2 − δ2 + δ2
2 + δ1 (−1 + 2 δ2 − 2 δ2

2) + δ2
1 (1 − δ2 + δ2

2). (4.117)

From the expression for |ψ(δ1, δ2)〉 one can determine whether these states are

fully 3-qubit entangled. For (δ1 = δ2 = 0), (δ1 = 0, δ2 = 1) and (δ1 = 1, δ2 ∈
[0, 1]) the respective states are separable in one qubit and the entanglement in

each case is E = 2. Any other combinations of δ1 and δ2 lead to states that

are not separable in any of the three qubits. Thus all states with 5/3 ≤ E < 2

are 3-qubit entangled. This means that there exists a spectrum of states that

do not have maximum entanglement (E = 3/2) and that nevertheless reach the

lower limit for the evolution time. The solution α = π/2, r → −∞ yields the

same results for the entanglement, but the corresponding spectrum of states is a

unitary transformation of |ψ(δ1, δ2)〉:

|ψ(δ3, δ4)〉=
1√
2
|000〉+

√
δ3
2
|011〉+

√
δ4(1− δ3)

2
|101〉+

√
(−1 + δ3)(−1 + δ4)

2
|110〉.

(4.118)

The state

|W 〉 =
1√
3
(|001〉 + |010〉 + |100〉) (4.119)

has the same entanglement as the state in eq. (4.117) for δ1 = 1/3, δ2 = 1/2,

namely E = 5/3, but it does not evolve to an orthogonal state.
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Figure 4.8: Three-qubit case: curves 1 and 2 correspond to

{E(α, r = −1, δ1 = 1/3, δ2 = 1/2, δ3 = 1/3, δ4 = 1/2), τ/τmin(α, r = −1)} and

{E(α, r = 0, δ1 = δ2 = δ3 = 0, δ4 = 1/2), τ/τmin(α, r = 0)} respectively.

4.4.2 {r1, r2}-case

If we let r1 and r2 be the two real roots, the polynomial P (x) can be rewritten

under the guise

P (x) = |c7|2 (x− r1) (x− r2) (x+ 1) . (4.120)

P (x) can be expanded as follows

P (x) = |c7|2
{
x3 + (−r2 − r1 + 1)x2 + (r1 r2 − r2 − r1)x + r1 r2

}
.

(4.121)

Using the normalization condition (4.81), one obtains an expression for |c7|2,

|c7|2 =
1

2(r1 − 1)(r2 − 1)
. (4.122)

The coefficients of P (x) have to be positive, resulting in the following three re-

strictions on r1 and r2
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• −r2 − r1 + 1 ≥ 0,

• r1 r2 − r2 − r1 ≥ 0,

• r1 r2 ≥ 0.

These lead to the following conditions on r1 and r2

r1 ≤ 0 and r2 ≤ 0. (4.123)

Comparing the expressions (4.90) and (4.121) for P (x), one obtains,

|c1|2 + |c2|2 + |c4|2 =
r1r2 − r2 − r1

2(r1 − 1)(r2 − 1)
= E,

|c3|2 + |c5|2 + |c6|2 =
−r2 − r1 + 1

2(r1 − 1)(r2 − 1)
= F. (4.124)

In order to get expressions for |c1|2, |c2|2, . . . , |c6|2, one again has to introduce four

parameters,

0 ≤ λ1, λ2, λ3, λ4 ≤ 1 (4.125)

and seven phase parameters

0 ≤ η1, η2, . . . , η7 < 2π, (4.126)

so that the expressions for c0, c1, . . . , c7 are as follows

c0 =

√
r1r2

2(r1 − 1)(r2 − 1)
,

c1 = eiη1
√
λ1

r1r2 − r2 − r1
2(r1 − 1)(r2 − 1)

,

c2 = eiη2
√
λ2(1− δ1)

r1r2 − r2 − r1
2(r1 − 1)(r2 − 1)

,

c3 = eiη3

√
λ3

−r2 − r1 + 1

2(r1 − 1)(r2 − 1)
,

c4 = eiη4
√

(1− λ2)(1− λ1)
r1r2 − r2 − r1

2(r1 − 1)(r2 − 1)
,
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c5 = eiη5

√
λ4(1− λ3)

−r2 − r1 + 1

2(r1 − 1)(r2 − 1)
,

c6 = eiη6

√
(1− λ4)(1− λ3)

−r2 − r1 + 1

2(r1 − 1)(r2 − 1)
,

c7 = eiη7
1√

2(r1 − 1)(r2 − 1)
. (4.127)

The entanglement E(|ψ(t0)〉) is a function of r1 and r2 and also of the eleven

independent parameters, whereas τ/τmin is only a function of r1 and r2. The

expression for τ/τmin is given by

τ

τmin
(r1, r2) =

2∆E

ε
=

√
1 + (−6 + r1)r1

(−1 + r1)2
− 4

(−1 + r2)2
− 4

−1 + r2
, (4.128)

where ∆E is given by equation (4.102) with A and B replaced by E and F

respectively.

Equation (4.128) holds since E ≥ ∆E for all r1 and r2. This was established

using a similar approach as in the {α, r}-case.

Figure 4.9 was generated by choosing random values for the λi’s and ηi’s

and for −1000 ≤ r1, r2 ≤ 0. From the figure one can see that either there are no

physically forbidden states and hence there would be no clear correlation between

entanglement and the speed of evolution or there is a minimum boundary which

would correlate highly entangled states and the speed of evolution.

Since it is not easily established whether a minimum boundary for the en-

tanglement measure exists, we just analyze what happens for the maximum and

minimum evolution speed. For that purpose we set η1 = η2 = . . . = η7 = 0. Then

both τ/τmin and E have the properties that they are symmetric in r1 and r2 and

that for any v, w < 0

τ

τmin
(r1 = v, r2 = w) =

τ

τmin
(r1 =

1

v
, r2 =

1

w
),

E(r1 = v, r2 = w, λ1, λ2, λ3, λ4) = E(r1 =
1

v
, r2 =

1

w
, λ3, λ4, λ1, λ2).(4.129)
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Figure 4.9: {r1, r2}-case: numerical survey of {E, τ/τmin} using random values

for the λi’s, ηi’s and for −1000 ≤ r1, r2 ≤ 0.

Since we can always interchange λ1 ↔ λ3 and λ2 ↔ λ4, it means we only need to

consider the two cases −1 ≤ r1 ≤ 0, −1 ≤ r2 ≤ 0 and r1 ≤ −1, −1 ≤ r2 ≤ 0.

The slowest evolution occurs when τ/τmin =
√

3, thus when r1 = r2 = −1. In

that case 3/2 ≤ E ≤ 3.

To obtain the family of states that saturate the bound, we set τ/τmin = 1.

The only solutions are (r1 = r2 = 0), (r1, r2 → −∞) and (r1 → −∞, r2 = 0),

(r1 = 0, r2 → −∞). The spectrum of states corresponding to the first pair of

solutions are unitary transformations of each other:

|ψ〉r1,2=0 =

√
λ3

2
|011〉+

√
λ4(1− λ3)

2
|101〉+

√
(−1 + λ3)(−1 + λ4)

2
|110〉+ 1√

2
|111〉,

|ψ〉r1,2→−∞ =
1√
2
|000〉+

√
λ1

2
|001〉+

√
λ2(1− λ1)

2
|010〉

+

√
(−1 + λ1)(−1 + λ2)

2
|100〉. (4.130)

The second pair gives rise to the same spectrum of states:

|ψ(r1 = 0, r2 → −∞)〉= |ψ(r1 → −∞, r2 = 0)〉

=

√
λ1

2
|001〉+

√
λ2(1− λ1)

2
|010〉+

√
λ3

2
|011〉+

√
(−1 + λ1)(−1 + λ2)

2
|100〉
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+

√
λ4(1− λ3)

2
|101〉+

√
(−1 + λ3)(−1 + λ4)

2
|110〉. (4.131)

Assuming the latter solution and choosing λ1 = 1, λ2 = λ3 = 0 and varying λ4

from zero to one gives a continuous range for E from 3/2 to 3. The corresponding

state is

|ψ(λ4)〉 =
1√
2
|001〉 +

√
λ4

2
|101〉 +

√
1− λ4

2
|110〉. (4.132)

In order to determine if these states are fully 3-qubit entangled, one has to see

whether the three marginal density matrices ρ1, ρ2 and ρ3 are all mixed, which

means that they are not equal to their squares. For λ4 = 1 all three marginal

density matrices are pure which means the state is completely separable. Any

other λ4 ∈ [0, 1) corresponds to a state that is not separable in any of the three

qubits. Thus all states with 3/2 ≤ E < 3 are 3-qubit entangled. This means that

there exists a spectrum of states that do not have maximum entanglement and

that nevertheless reach the lower limit for the evolution time.

4.5 N-qubits ESSLE states saturating the quan-

tum speed limit

Now we are going to consider a system consisting of N qubits evolving according

to the Hamiltonian

H =
N∑
i=1

Hi, (4.133)

where each of the single qubit Hamiltonians Hi have eigenstates |0〉, |1〉 with

eigenvalues 0, ε respectively.

When considering entangled N -qubit states, we can take as a reference the

GHZ state,

|GHZ〉 =
1√
2

{
|0 . . . 0〉+ |1 . . . 1〉

}
. (4.134)
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This is an entangled, energetically symmetric state that evolves into an orthogonal

state and saturates the quantum speed bound. The time needed for the GHZ state

to reach an orthogonal state is

τGHZ =
π~
Nε

. (4.135)

Although there is no rigorous criteria for defining a maximally entangled multi-

partite state, there are various reasons for describing the N -partite |GHZ〉 states

as maximally entangled. For instance, the N -qubit |GHZ〉 states exhibit the

maximum violations of multiparty inequalities imposed by local realistic theories

[85]. To have an idea of how much entanglement the GHZ state contains, notice

that the marginal density matrix ρ1 associated with any of the N qubits corre-

sponds to the totally mixed qubit state 1
2
I2, which has the maximum possible

von Neumann entropy, namely log2 2 = 1 (and also the maximum possible value

of the E = 2(1 − Tr(ρ2
1)) measure, namely E = 1). This means that, when con-

sidering the N -qubit system as partitioned into a single-qubit subsystem and an

(N − 1)-qubit subsystem, the GHZ state exhibits maximum entanglement.

Let us now consider the (energetically symmetric) N -qubit state [50]

|ESSLE〉 =
1√
2
|00 . . . 0〉+

1√
2N

{
|100 . . . 0〉+ |010 . . . 0〉+ . . .+ |00 . . . 01〉

}
.

(4.136)

This state corresponds, for N = 2, to the s-case (see equations (4.23)) with

s→ −∞ and λ = 1/2 (which, as far as the values of E and τ/τmin are concerned,

is equivalent to the state (4.29) with s = 0 and λ = 1/2). The state (4.136) takes

a time

τ =
π~
ε

(4.137)

to evolve into the orthogonal state

|ESSLE〉⊥ =
1√
2
|00 . . . 0〉 − 1√

2N

{
|100 . . . 0〉+ |010 . . . 0〉+ . . .+ |00 . . . 01〉

}
.

(4.138)
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The state |ESSLE〉⊥, in turn, takes a time τ to evolve back to the state |ESSLE〉.
The energy’s expectation value and the energy’s dispersion of the state |ESSLE〉
are given by

E = ∆E =
ε

2
(4.139)

and from equation (1.53), it follows that this state saturates the speed limit,

τ = τmin. (4.140)

In order to compare the amount of entanglement exhibited by |ESSLE〉 with

that associated with |GHZ〉 we need an appropriate measure of N -qubit entan-

glement. The study of the properties and applications of multi-partite entan-

glement measures has been the focus of intense research activity in recent years

[14; 49; 50; 51; 86; 87; 88; 89; 90; 91; 92; 93; 94]. The GE measure (1.37) dis-

cussed in Section 1.0.2.5 is widely regarded as a legitimate, useful and practical

N -qubit entanglement measure [88; 89; 90; 91; 92]. This measure is invariant

under local unitary transformations and non-increasing on average under local

quantum operations and classical communication. In other words, Q is an entan-

glement monotone. Another desirable property of this measure is that it can be

observed without the need for full quantum state tomography [88]. This measure

has been applied to the study of several problems involving multi-partite entan-

glement, such as entanglement generation by nearly random operators [89] and

by operators exhibiting particular matrix element distributions [90], thermal en-

tanglement in multi-qubit Heisenberg models [91], and multipartite entanglement

in one-dimensional time-dependent Ising models [92]. The measures Qm (gener-

alized GE measures, also discussed in Section 1.0.2.5) have been applied to the

study of quantum error correcting codes and to the analysis of the (multi-partite)

entangling power of quantum evolutions [86].

Another way of characterizing the global amount of entanglement exhibited

by an N -qubit state is provided by the sum of the (bi-partite) entanglement

measures associated with all the possible bi-partitions of the N -qubits system
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4.5 N-qubits ESSLE states saturating the quantum speed limit

[49]. That is, in order to compare the amount of entanglement exhibited by the

N -qubit state

|ESSLE〉 =
1√
2
|00 . . . 0〉+

1√
2N

{|100 . . . 0〉+ |010 . . . 0〉+ . . .+ |000 . . . 01〉}

(4.141)

with that associated with |GHZ〉, we sum all the bi-partite entanglement mea-

sures obtained from the (M -qubits):((N − M)-qubits) bi-partitions with M =

1, 2, . . . , [N/2]. The ESSLE state is energetically symmetric, from which it fol-

lows that the M : (N −M) bi-partitions are equivalent.

The marginal density matrix describing a subsystem consisting of the first M

qubits is given by

ρM = TrM+1,M+2,...,N {|ESSLE〉〈ESSLE|} . (4.142)

Changing the order of the Hilbert space basis to {|00 . . . 0〉, |100 . . . 0〉, |010 . . . 0〉,
. . . , |00 . . . 01〉, |110 . . . 0〉, . . . , |11 . . . 1〉}, the M -qubits marginal density matrix is

of the form

ρM =

(
B O
O O

)
, (4.143)

where B is an (M + 1)× (M + 1) matrix which can be cast as

B =



1
2

+ N−M
2N

1
2
√
N

1
2
√
N

. . . 1
2
√
N

1
2
√
N

1
2N

1
2N

. . . 1
2N

1
2
√
N

1
2N

1
2N

. . . 1
2N

...
...

...
. . .

...
1

2
√
N

1
2N

1
2N

. . . 1
2N

 . (4.144)

The rest of the 2M × 2M matrix consists of zeros, thus Tr(ρ2
M) = Tr(B2). Hence

EM = 2(1− Tr(ρ2
M)) =

M(N −M)

N2
, (4.145)

which is well defined for all 0 ≤ M ≤ N , since it has the property that EM =

EN−M (this property is needed since the M : (N −M) and (N −M) : M bi-

partitions have to give rise to the same linear entanglement).
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To obtain the average total entanglement, we need to multiply EM by the number

of possible M : (N −M) bi-partitions, then sum from M = 1 to N/2 (even N) or

(N − 1)/2 (odd N) and divide the resultant sum by the total number of unique

bi-partitions:

N even : Eav(|ESSLE〉) =

∑N/2
M=1

(
N
M

)
M(N−M)

N2 − 1
2

(
N
N/2

)
EM=N/2

2N−1 − 1
(4.146)

N odd : Eav(|ESSLE〉) =

∑(N−1)/2
M=1

(
N
M

)M(N−M)
N2

2N−1 − 1
, (4.147)

where in the even case we need to subtract the part which gets counted twice in the

sum due to the binomial coefficient for M = N/2. The total number of possible

bi-partitions is 2N−1− 1. Using the abovementioned property EM = EN−M , both

the sums become

Eav(|ESSLE〉) =
1

2

1
N

∑N
M=0

(
N
M

)
M − 1

N2

∑N
M=0

(
N
M

)
M2

2N−1 − 1
. (4.148)

Now,

N∑
M=0

(
N

M

)
M = N 2N−1 (4.149)

N∑
M=0

(
N

M

)
M2 = (N2 +N) 2N−2. (4.150)

Consequently,

Eav(|ESSLE〉) =
2N−3

(
1− 1

N

)
2N−1 − 1

, N ≥ 2. (4.151)

The entanglement initially decreases (for N = 2 to 5) and then slowly increases

from N = 6 onwards. For large N , Eav(|ESSLE〉) → 1/4, whereas for any

N ≥ 2, Eav(|GHZ〉) = 1 (for the GHZ state all possible bi-partitions are equiva-

lent). This implies that the ESSLE state is always less entangled than the GHZ

state.
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4.5 N-qubits ESSLE states saturating the quantum speed limit

For the particular families of (symmetric) states that we are considering here,

the main conclusions obtained from the (1-qubit):((N − 1)-qubits) bi-partitions

are the same as those obtained when taking into account all the possible bi-

partitions.

We are now going to use the N -qubit measures of entanglement Q (1.37) and Qm

(1.38) to compare the amount of entanglement exhibited by the |ESSLE〉 and

the |GHZ〉 states. Because of the symmetry of these states, the average of all the

single-qubit linear entropies is equal to the linear entropy of the marginal density

matrix associated with just one qubit,

ρ1 = Tr2...N

{
|ESSLE〉〈ESSLE|

}
, (4.152)

which is given by

ρ1 =

(
1

2
+
N − 1

2N

)
|0〉〈0|+ 1

2
√
N

{
|0〉〈1|+ |1〉〈0|

}
+

1

2N
|1〉〈1|. (4.153)

The eigenvalues of ρ1 are

λ =
1

2

{
1±

√
1− N − 1

N2

}
, (4.154)

which, in the limit of a large number of qubits, yields

lim
N→∞

λ = 0, 1. (4.155)

The GE entanglement measure of the ESSLE state is given by the single-qubit

linear entropy,

Q (|ESSLE〉) = 2
[
1 − Tr

(
ρ2

1

)]
=

N − 1

N2
. (4.156)

It is important to emphasize that this single-qubit marginal entropy actually rep-

resents a global property of the complete N -qubit system: the entropy 1−Tr(ρ2
1)

measures the amount of entanglement between each of the N qubits and the re-

maining (N − 1) qubits. We see that Q (|ESSLE〉) is a decreasing function of

N and tends to 0 when N →∞. Consequently, the amount of entanglement be-

tween each qubit of the system and the remaining (N −1) qubits tends to zero as
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4.5 N-qubits ESSLE states saturating the quantum speed limit

N increases. Therefore, as N increases, the amount of entanglement exhibited by

|ESSLE〉, as measured by the N -qubit GE measure, becomes much smaller than

the amount of entanglement associated with |GHZ〉 (Q(|GHZ〉) = 1). However,

the state |ESSLE〉 does saturate the quantum speed limit. We thus see that,

as the number of qubits of the system increases, only a small amount of entan-

glement (as compared with the entanglement exhibited by the |GHZ〉 state) is

needed to obtain an energetically symmetric state that saturates the quantum

speed limit.

It is also useful to evaluate upon the |ESSLE〉 and |GHZ〉 states the more

general N -qubit entanglement measure Qm (given by equation (1.38)),

Qm(|ESSLE〉) =
2m

2m − 1

[
m(N −m)

2N2

]
,

Qm(|GHZ〉) =
2m

2m − 1
· 1

2
. (4.157)

We see that, for any given finite m, the measure Qm(|ESSLE〉) goes to zero as

N →∞. For even values of N , we can also consider the case m = N/2 (that is,

considering the average entanglement associated with all partitions of the system

into two subsystems with N/2 qubits each). In that case we obtain, for N →∞,

QN/2(|ESSLE〉) →
1

8
, (4.158)

which is again much smaller than the value 1
2

associated with the |GHZ〉 state.

An energetically symmetric state such as

|ψ〉 =
1√
2N

{|100 . . . 0〉+ |010 . . . 0〉+ . . .+ |000 . . . 01〉}+
1√
2
|11 . . . 1〉 (4.159)

does not evolve into an orthogonal state at the speed limit, except when N = 2, 3.

For even N , the orthogonal state is

|ψ〉⊥ = − 1√
2N

{|100 . . . 0〉+ |010 . . . 0〉+ . . .+ |000 . . . 01〉}+
1√
2
|11 . . . 1〉,

(4.160)
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4.5 N-qubits ESSLE states saturating the quantum speed limit

which gives τ = π~
ε
. For N = 3 + 4n, n = 0, 1, 2, . . . the orthogonal state is

|ψ〉⊥ = − i√
2N

{|100 . . . 0〉+ |010 . . . 0〉+ . . .+ |000 . . . 01〉}+
i√
2
|11 . . . 1〉,

(4.161)

yielding τ = π~
2ε

. For all other odd values of N the state does not evolve into

an orthogonal state at all. The mean energy and dispersion of the energy of the

state |ψ〉 are ε
2
(N + 1) and ε

2
(N − 1) respectively, thus

τmin =
π~

ε (N − 1)
. (4.162)

This yields

τ

τmin
= N − 1 N even

τ

τmin
=

N − 1

2
N = 3 + 4n, n = 0, 1, 2, . . . , (4.163)

which clearly shows that the speed limit is reached only when N = 2, 3.

Consider now the states

|N ;M〉 =
1√
2
|00 . . . 0〉+

√
M !(N −M)!

2N !

{
|1 . . . 10 . . . 0〉+ . . .+ |0 . . . 01 . . . 1〉

}
,

(4.164)

where

1 ≤M ≤ N. (4.165)

The sum within curly brackets in (4.164) consists of all the
(
N
M

)
factorizable N -

qubit states with M qubits in state |1〉 and (N−M) qubits in state |0〉. The case

M = 1 corresponds to the previously defined |ESSLE〉 state, while in the case

M = N the |GHZ〉 state is recovered. All the states |N ;M〉 are energetically

symmetric, and all of them evolve to an orthogonal state in the shortest possible

time (that is, all of them saturate the speed bound). The mean energy and
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4.5 N-qubits ESSLE states saturating the quantum speed limit

Figure 4.10: Entanglement versus M for N = 100.

dispersion of the energy are both equal to Mε
2

. The time required by |N ;M〉 to

reach an orthogonal state is

τ(N ;M) =
π~
Mε

. (4.166)

To obtain the Q-entanglement for |N ;M〉 we only need ρ1, since the symmetry of

the states causes the average of all the single-qubit linear entropies to be equal to

the linear entropy of the marginal density matrix associated with just one qubit.

For M = 2, 3, . . . , N − 1

ρ1 =
1

2

[
1 +

N −M

N

]
|0〉〈0|+ M

2N
|1〉〈1| (4.167)

and thus

Q(|N ;M〉) =
2M

N
− M2

N2
, M = 2, 3, . . . , N − 1. (4.168)

For a given value of N , the amount of entanglement associated with |N ;M〉
increases with M , adopting its maximum value for the |GHZ〉 state. Figure 4.10

shows the specific case N = 100.

We thus see that for the family of states |N ;M〉 there is a correlation between

the absolute time required to reach an orthogonal state and the amount of entan-

glement. Within this family of states, the states with higher entanglement reach

an orthogonal state sooner.
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4.6 Role of entanglement in time-optimal quan-

tum evolution

Another approach to the investigation of the role of entanglement in quantum

evolution is as follows: I explore the time-average of the entanglement of a desig-

nated state evolving to another quantum state (under a given set of constraints)

in the shortest possible time τ . That is, I would like to quantify the amount of

entanglement needed in order to implement the evolution of an initial state |ψI〉
to a final state |ψF 〉 in the shortest possible time, under the constraint that the

difference between the maximum and minimum eigenenergy of the Hamiltonian

generating the unitary transformation |ψI〉 → |ψF 〉 = e
iHτ

~ |ψI〉 is a constant. This

constraint is imposed due to the following reason: if the differences between the

eigenenergies of the Hamiltonian are large, then the value of τ can be made very

small, since the magnitude of the velocity of the system in the projective Hilbert

space is proportional to the energy uncertainty (the so-called Anandan-Aharonov

relation [95]) [96]. That is, the “speed” of the unitary evolution increases pro-

portionally when the differences between eigenvalues are made large, since that

implies that the energy uncertainty can also be made large.

In the case of the quantum states |ψI〉 and |ψF 〉 being orthogonal, we can compare

the actual time τ with the minimum possible time τmin given by eq. (1.53).

The expression for the time-average of the entanglement during the time evo-

lution from |ψI〉 → |ψF 〉, that is, during the timespan τ , is

< E > =
1

τ

∫ τ

0

E(t)dt. (4.169)

Now, irrespective of the specific entanglement measure used, one has to obtain

an expression for

ρ(t) = |ψ(t)〉〈ψ(t)|, (4.170)

where [96]

112

 
 
 



4.6 Role of entanglement in time-optimal quantum evolution

|ψ(t)〉 =

[
cos

(
ωt

~
sin

1

2
θ

)
−

cos 1
2
θ

sin 1
2
θ

sin

(
ωt

~
sin

1

2
θ

)]
|ψI〉

+
1

sin 1
2
θ

sin

(
ωt

~
sin

1

2
θ

)
|ψF 〉. (4.171)

This expression satisfies |ψ(0)〉 = |ψI〉 and |ψ(τ)〉 = |ψF 〉, where [96]

τ =
~θ

2ω sin 1
2
θ
. (4.172)

The parameter ω is determined by the constraint that the difference between the

largest and the smallest eigenvalue is 2ω, that is,

∆H = ω sin
1

2
θ. (4.173)

To obtain the parameter θ, the final state |ψF 〉 has to be written in the form [96]

|ψF 〉 = cos
1

2
θ|ψI〉+ ei(φ+π/2) sin

1

2
θ|ψI〉, (4.174)

where |ψI〉 is the state orthogonal to the initial state |ψI〉 and which is contained

in the two-dimensional span of the initial and final states in the full Hilbert space.

Since both |ψI〉 and |ψF 〉 are specified, the values of φ and θ are known, the latter

being the angle of separation of the two states.

It is important to emphasize that the Hamiltonian H describes the evolution of

states within the subspace spanned by |ψI〉 and |ψF 〉, and that it can be extended

to the full Hilbert space. Thus the full Hamiltonian can hold for either interacting

or independent subsystems, depending on the specific initial and final states.

To facilitate the computations we use the linear entropy as entanglement measure.

However, even when considering only two qubits and restricting |ψI〉 and |ψF 〉 to

be symmetric and orthogonal, the expression for < E > becomes very long, thus

making an analytic approach difficult. Future work would be to find the absolute

minimum (lower bound Emin) of the time-averaged entanglement (< E >) of all

such possible states,

< E > ≥ Emin ∀ symmetric, orthogonal states (4.175)
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in other words, the minimum amount of entanglement necessary to enable the

transformation from |ψI〉 to |ψF 〉 in the shortest possible time. Presently, we are

going to consider two specific cases:

1. |00〉 → cosα√
2
{|01〉+ |10〉}+ sinα|11〉

2. 1√
2
{|01〉+ |10〉} → 1√

2
{|00〉+ |11〉}.

Since in both cases the initial and final states are orthogonal it means that θ = π.

Thus

τ =
π~
2ω

|ψ(t)〉 = cos

(
ωt

~

)
|ψI〉+ sin

(
ωt

~

)
|ψF 〉. (4.176)

1. Evolution of a separable state into either another separable state (α = π
2
),

an intermediately entangled state (α ∈ (0, π
2
)) or a maximally entangled state

(α = 0): let ξ = ωt
~ , then

|ψ(ξ, α)〉 = cos ξ|00〉+
sin ξ cosα√

2
[|01〉+ |10〉] + sin ξ sinα|11〉 (4.177)

E(ξ, α) = 2[1− cos4 ξ − 2 cos2 ξ sin2 ξ cos2 α

− sin4 ξ

(
cos4 α

2
+ 2 cos2 α sin2 α+ sin4 α

)
− 2 cos ξ sin3 ξ cos2 α sinα]

< E(α) > =
5

4
− 1

2
cos2 α− 3

4

(
cos4 α

2
+ 2 cos2 α sin2 α+ sin4 α

)
− 2

π
cos2 α sinα.

Figure 4.11 is a plot of the function < E(α) >. For |00〉 → |11〉 (α = π
2
) we

have that < E >= 1
2
, which is the maximum time-average entanglement in this

case. For |00〉 → 1√
2
[|01〉 + |10〉] (α = 0) we have that < E >= 3

8
. Of partic-

ular interest is the minimum of the time-average entanglement, which happens

when |00〉 → 1√
3
[|01〉+ |10〉+ |11〉] (α = arcsin

(
1√
3

)
) and gives < E >= 0.088298.

2. Transformation of a maximally entangled state to another maximally entangled

state
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Figure 4.11: Plot of < E(α) > as a function of α, α ∈ [0, π
2
].

E(t) = 2

[
1− 1

2
cos4

(
ωt

~

)
− 3 cos2

(
ωt

~

)
sin2

(
ωt

~

)
− 1

2
sin4

(
ωt

~

)]
< E > =

1

2
. (4.178)

From this one can deduce that for the cases considered the same amount of time-

averaged entanglement is needed to transform a maximally entangled state into

another maximally entangled state as is needed to transform a separable state

into another separable state.

In general, for two qubits and symmetric, orthogonal initial and final states,

the time-averaged entanglement < E > is independent of ω and since τ = π~
2ω

, it

means < E > is also independent of the absolute time taken. For two qubits, the

minimum possible time is

τmin =
π~

2∆E
=
π~
2ω

= τ. (4.179)

Thus all the symmetric, orthogonal initial and final states evolve at the speed

limit from |ψI〉 → |ψF 〉.
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4.7 Conclusions

I have investigated some aspects of the relationship between entanglement and

the speed of quantum evolution in multi-qubit systems. As was pointed out by

Giovannetti, Lloyd and Maccone, both entanglement, on the one hand, and the

uniformity of the distribution of energy resources among the subsystems, on the

other hand, play an important role in connection with the speed of quantum evo-

lution of multi-partite systems. Energetically symmetric, separable pure states

do not saturate the speed bound. On the contrary, the speed limit can be reached

for energetically symmetric, entangled states. However, how much entanglement

is needed to reach the aforementioned bound? In the case of two-qubits (indepen-

dent and interacting), I found that maximally entangled states are not needed

for that purpose. There are energetically symmetric states of (relatively) low

entanglement that saturate the bound. In the present effort I have provided a

systematic study of the connection between speed of evolution and entanglement

for two-qubits pure states (summarized in Figures 4.1 and 4.5) paying special

attention to the role played by the distribution of the energy resources among

the qubits. In particular, I showed that there is triangular-shaped, physically

forbidden region in the (E, τ/τmin)-plane involving states of low entanglement

saturating the speed limit. On the line τmin = τ , corresponding to the maximum

quantum speed, this region gives the entanglement gap 1/4 < E < 1, corre-

sponding to entanglement values that cannot be realized by states saturating the

quantum speed limit.

The three-qubit analysis illustrated that the equations for the entanglement

become complicated very quickly, thus making an analytic approach difficult.

The numerical survey showed that there definitely exists a connection between

entanglement and the speed of quantum evolution. In particular, I demonstrated

by analytic means that there exists a spectrum of states that do not have maxi-

mum entanglement and that nevertheless reach the lower limit for the evolution

time.

I have also constructed energetically symmetric states of low entanglement

(ESSLE) for non-interacting N -qubits that evolve at the speed limit. The ESSLE

states become less and less entangled (in comparison with the GHZ state) as N
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increases. Thus, we can conclude that for large N very little entanglement is

needed for an energetically symmetric state to reach the quantum speed limit.

In the present effort I have only discussed pure states. It would be important to

extend some of the present considerations to mixed states of multi-qubit systems.

In that case, it would be interesting to systematically explore the correlations

existing between entanglement and the time needed to reach a state with a given

fidelity distance with respect to the initial state, in connection with the role

played here by the evenness of the distribution of energy resources among the

subsystems. The case of mixed states, however, is considerably more complicated

than the case of pure states [97] and, consequently, it seems that the only way

to conduct such a study is by recourse to a systematic numerical survey of the

state-space.

The role of entanglement in time-optimal quantum evolution of two qubits

and for specific cases of symmetric, orthogonal initial and final states has been

analyzed. Depending on the initial and final states, the time-averaged entangle-

ment varies between 0.088298 and 0.5 in the particular instances I considered.

Hence entanglement is definitely needed to enable time-optimal evolution. I also

showed that all the symmetric, orthogonal initial and final states evolve at the

speed limit from |ψI〉 → |ψF 〉.
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Chapter 5

Conclusions

The subject of the present work was to use various information-entropic mea-

sures to characterize some entanglement-related features of composite quantum

systems, paying special attention to the connections between entanglement and

quantum evolution. In particular, I investigated the relationship between entan-

glement and the “speed” of quantum evolution (as measured by the time needed

to reach an orthogonal state) of systems consisting of N -qubits. I also consid-

ered the quantum evolution of multi-qubit systems in the presence of CTC’s, in

connection with the problem of quantum cloning. An exploration of classical and

quantum systems exhibiting an extensive behaviour of the Sq entropies was also

conducted.

All these investigations resulted in the following publications and in one confer-

ence proceeding:

(A) C. Zander and A.R. Plastino, “Composite systems with extensive Sq (power-

law) entropies”, Physica A 364, (2006) pp. 145-156

(B) S. Curilef, C. Zander and A.R. Plastino, “Two particles in a double well:

illustrating the connection between entanglement and the speed of quantum

evolution”, Eur. J. Phys. 27, (2006) pp. 1193-1203

(C) C. Zander, A.R. Plastino, A. Plastino and M. Casas, “Entanglement and the

speed of evolution of multi-partite quantum systems”, J. Phys. A: Math.

Theor. 40 (11), (2007) pp. 2861-2872
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(D) A.R. Plastino and C. Zander, “Would Closed Timelike Curves Help to Do

Quantum Cloning?”, AIP Conference Proceedings: A century of relativity

physics, ERE 841, (2005) pp. 570-573.

In Chapter 2 I considered models of phase space occupancy probabilities lead-

ing, for appropriate values of the relevant parameters, to an extensive behaviour

of the power-law entropy Sq. Our models allow for an explicit analysis of the

thermodynamic limit. Taking as a “reference point” the completely uncorrelated

probability distribution we showed that (within our models) it is necessary to in-

corporate strong correlations among the subsystems in order to reach an additive

regime for Sq. In particular, in the limit N → ∞, the probability distribution

that makes Sq additive tends towards a maximally correlated distribution. We

also considered a quantum version of one of our models. We showed that for

p = 1/2 and for large enough values of N , the density matrix associated with an

extensive q-entropy describes an entangled state.

In Chapter 3 I used a system of two quantum particles in a double well po-

tential to illustrate the connection between the speed of quantum evolution and

quantum entanglement. The time required by separable initial states to reach an

orthogonal state does not saturate the speed bound, whereas there exist maxi-

mally entangled states that do saturate the bound. I proved that all the symmet-

ric states that saturate the bound require quantum entanglement. This example

offers interesting opportunities to illustrate the concept of entanglement in uni-

versity courses on quantum mechanics. It provides a clear instance of what one

might call a “positive” feature of quantum entanglement, as contrasted with the

“negative” way in which entanglement is usually defined, that is, entangled states

are normally defined in terms of what they are not. Most of the “positive” aspects

of entanglement involve its role as a resource to implement novel, non-classical

types of computation and communication processes. The role played by entan-

glement in “speeding up” the evolution of this particular system (two particles

in a double well) requires mostly ideas that are already part of the traditional

quantum physics “toolkit”.
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In Chapter 4 I investigated some aspects of the relationship between entan-

glement and the speed of quantum evolution in multi-qubit systems: both en-

tanglement and the uniformity of the distribution of energy resources among

the subsystems play an important role. Energetically symmetric, separable pure

states do not saturate the speed bound. Symmetric states that reach the quan-

tum “speed” limit have to be entangled. However, in the case of two and three

qubits I found that maximally entangled states are not needed to saturate the

bound. There are energetically symmetric states of (relatively) low entanglement

that saturate the bound. In general we payed special attention to the role played

by the distribution of the energy resources among the qubits.

I also constructed energetically symmetric states of low entanglement (ESSLE)

for N -qubits that evolve at the speed limit. The ESSLE states become less and

less entangled (in comparison with the GHZ state) as N increases. Thus, we can

conclude that for large N very little entanglement is needed for an energetically

symmetric state to reach the quantum speed limit.

The role of entanglement in time-optimal quantum evolution of two qubits

and specific cases of symmetric, orthogonal initial and final states has been an-

alyzed. The time-averaged entanglement depends on the initial and final states

and in the particular instances I considered it is always non-zero. Hence entan-

glement is definitely needed to enable time-optimal evolution. I also showed that

all the symmetric, orthogonal initial and final states evolve at the speed limit

from |ψI〉 → |ψF 〉.

I explored the possibility of quantum cloning in the presence of closed timelike

curves, that is, I considered a cloning process where a subsystem of the copy

machine is allowed to travel in a closed timelike curve. For this kind of cloning

process we proved that

• Contrary to what occurs in standard linear quantum evolution, it is possible

to clone non-orthogonal states.

• The maximum number of non orthogonal states that can be cloned is limited

by the dimension of the Hilbert space associated with the part of the copy

machine travelling on a closed timelike curve.
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One has to emphasize that the cloning process based upon closed timelike curves

cannot be used to implement faster than light signalling.
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Appendix A

Numerical Search for Highly

Entangled Multi-Qubit States

Highly entangled multi-qubit states are very important, both from the theoretical

and practical points of view. That is, highly and maximally entangled states have

become a key concept in quantum mechanics and have numerous applications in

quantum information as well [98]. For two and three qubits, maximally and

highly entangled quantum states such as the Bell states and GHZ states have

been discovered. It is thus of great importance to find highly entangled states

for four and more qubits. I used different entanglement measures in a searching

procedure for highly entangled multi-qubit states of three up to seven qubits.

Our results are compared with those reported by Brown et al [49].

A.1 Overview

A considerable amount of research has recently been devoted to the study of

multi-qubit entanglement measures defined as the sum of bi-partite entangle-

ment measures over all (or an appropriate family of) the possible bi-partitions

of the full system [49; 86; 99]. In particular, Brown et al [49] have performed a

numerical search of multi-qubit states exhibiting a high value of an entanglement
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A.2 Pure state multi-partite entanglement measures based on the
degree of mixedness of subsystems

measure defined in the aforementioned way, based upon the negativity of the

system’s bi-partitions. I am going to focus on the results of running numerical

searches of multi-qubit states (up to seven qubits) exhibiting high entanglement

according to the von Neumann entropy, linear entropy and negativity. The results

obtained using each of these three measures are compared to each other, and also

compared to those reported by Brown et al [49].

The chapter is organized as follows. Some basic properties of the entanglement

measures used here are reviewed in Section A.2. Our algorithms for the search

of states of high entanglement are presented in Section A.3 and the main results

obtained are discussed and compared with those reported by Brown et al. Finally,

some conclusions are drawn in Section A.4 and the searching algorithm written

in MATHEMATICA is provided in Section A.5.

A.2 Pure state multi-partite entanglement mea-

sures based on the degree of mixedness of

subsystems

As was discussed in Section 1.0.2.5, one can evaluate the degree of mixedness of

the marginal density matrices associated with each bi-partition in several ways. In

what follows I am going to consider the following ways of computing the degrees

of mixedness of the marginal density matrices ρi,

• The linear entropy SL = 1− Tr[ρ2
i ].

• The von Neumann entropy SV N = −Tr[ρi log2 ρi].

• The “negativity”: Neg. =
∑
|αi|, where αi are the negative eigenvalues

of the partial transpose matrix associated with a given bi-partition. That

is, I am going to consider the “negativity” as a measure of the amount of

entanglement associated with a given bi-partition.
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A.3 Search for multi-qubit states of high entanglement

The global, multipartite entanglement measures associated with the sum (over

all bi-partitions) of each of these three quantities are here going to be denoted,

respectively, by EL, EV N and EN .

A.3 Search for multi-qubit states of high entan-

glement

A.3.1 Searching algorithm

In the present contribution we are going to restrict our search of multi-qubit

states of high entanglement to pure states. In this respect our approach is a little

different from that of Brown et al [49], who considered a search process within

the complete space of possible states (that is, with any degree of mixedness). The

kind of search studied by Brown et al is certainly of interest and may shed some

light on the structure of the “entanglement landscape” of the full state space.

However, it is reasonable to expect the states of maximum entanglement to be

pure. Consequently, as far as the search of states of maximum entanglement is

concerned, it seems that limiting the search to pure states is not going to reduce

its efficiency. The results reported here fully confirm this expectation.

I am going to consider two different procedures for the search algorithm. The

first program was written in the computer language MATHEMATICA and is

given in Section A.5. The first procedure I am going to use is similar to the one

employed by Brown et al, just adapted to pure states.

A general pure state of an N -qubit system can be represented as

|Ψ〉 =
2N∑
k=1

(ak + ibk)|k〉, (A.1)

where |k〉, (k = 1, . . . , 2N) represents the states of the computational basis (that

is, the 2N states |00 . . . 0〉, |10 . . . 0〉, . . . , |11 . . . 1〉). I initialize with a random

state and calculate its entanglement. All random quantities are generated by a
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A.3 Search for multi-qubit states of high entanglement

built-in function. At each step of the search process, a tentative state is gen-

erated according to the following procedure. One of the complex coefficients of

|ψ〉 is randomly chosen and the real and imaginary parts are multiplied by ran-

dom values δre and δim respectively. These random values are chosen from the

interval {1− α, 1 + α} with α between 0.1 and 0.5. The new state is then renor-

malized and the entanglement is calculated. If this new entanglement is greater

than the previous one, we keep the new state and set the counters to zero. If

the new entanglement is less than the previous one, we reject the new state and

randomly chose another coefficient of the previous state and slightly modify it as

described. If after 100 steps we do not get a higher entanglement value, we chose

a new random pair of numbers δre and δim from the interval {1− α, 1 + α} (α is

an input parameter, we experiment with different values for α during individual

runs of the program) and again choose a coefficient at random. If after 40 000

times of having chosen new random values for δre and δim and at each step having

chosen random coefficients, we do not get a higher entanglement value than that

of the previous state, the program halts. Some optimization is also included: if

the magnitude of the real or imaginary part of a coefficient of a normalized state

drops below 10−2, that part is set to zero. At the end of a search the resulting

state is hand-tweaked and remaining coefficients are set to zero.

The second program was written by a colleague in the computer language

FORTRAN. The searching procedure is different to the first one and is as follows.

We start our search process with the initial state |000...0〉. In other words, the

initial parameters characterizing the state (A.1) are a1 = 1 and all the rest of

the ai’s and bi’s are equal to zero. This initial state is fully factorizable and

can thus be regarded as being “very distant” from states of high entanglement.

Starting with an arbitrary, random initial pure state does not alter the results

of the search process. Now, at each step of the search process a new, tentative

state is generated according to the following procedure. A random quantity ∆

(uniformly chosen from an interval (−∆max,∆max)) is added to each ai and bi

(a different, independent ∆ is generated for each parameter). The new state

generated in this way is then normalized to 1 and its entanglement measure is

computed. If the entanglement of the new state is larger than the entanglement of
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A.3 Search for multi-qubit states of high entanglement

the previous state the new state is kept, replacing the previous one. Otherwise,

the new state is rejected and a new, tentative state is generated. In order to

ensure the convergence of this algorithm to a state of high entanglement, the

following two rules are also implemented:

• If 500 consecutive tentative new states are rejected, the interval for the

random quantity ∆ is changed according to ∆max → ∆max

2
(as the initial

value for ∆max we take ∆init
max = 0.1).

• When a value ∆max ≤ 1 · 10−8 is reached the search program halts.

The difference between the two programs is that for the first one we multiply

the components of the coefficients by random numbers in the interval {1−α, 1+α}
(α is an input parameter and so the interval remains constant), hence by positive

numbers. This means that the signs of the real and imaginary parts of the

coefficients remain the same. Also, only one coefficient is chosen at each step

and modified slightly, whereas the second program changes all the coefficients

slightly by adding a small random number to the real and imaginary parts, thus

enabling a change of their sign, and after 500 rejected states it halves the interval

(−∆max,∆max), thereby narrowing the search.

A.3.2 Results yielded by the searching algorithm

The maximum entanglement values obtained from the searching algorithms are

listed in Table A.1. It must be emphasized that the maximum values associ-

ated with different measures do not necessarily correspond to the same state.

The states obtained when maximizing one particular measure do not exhibit, in

general, a maximum value of the other measures. The results obtained by us

after running the search algorithms several times (considering the entanglement

measures EL, EV N and EN) can be summarized as follows,

• Among the three measures considered here, EL is computationally the eas-

iest and quickest to evaluate. The algorithms run faster when maximizing

this measure than when maximizing any of the other two. However, in the
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A.3 Search for multi-qubit states of high entanglement

case of four-qubits most states that maximize EL do not maximize the other

measures.

• The measure EV N is computationally more expensive than EL. The states

obtained when maximizing EV N also maximize EL and EN .

• EN is, by far, computationally the most expensive of the measures con-

sidered here. The states maximizing this measure also maximize EL and

EV N .

3 qubits 4 qubits 5 qubits 6 qubits 7 qubits

EL 1.500000 4.00000 10.000000 23.000000 49.573765

EV N 3.000000 9.37734 25.000000 66.000000 152.620140

EN 1.500000 6.09807 17.500000 60.500000 155.812856

Table A.1: Maximum entanglement values obtained from search algorithms.

A.3.2.1 Four qubits

In the case of four-qubit systems, the first extremization process based upon either

of the measures EV N or EN mostly results in states having higher entanglement

values than the BSSB4 state (obtained by Brown et al)

|BSSB4〉 =
1

2

[
|0000〉+ |1101〉+ 1√

2

(
|0011〉+ |1011〉+ |0110〉− |1110〉

)]
, (A.2)

but slightly lower values than the HS state discovered by Higuchi and Sudbery

[99], which is given by

|HS〉 =
1√
6

[
|1100〉+|0011〉+ω

(
|1001〉+|0110〉

)
+ω2

(
|1010〉+|0101〉

)]
, (A.3)
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A.3 Search for multi-qubit states of high entanglement

with ω = −1
2

+
√

3
2
i. Occasionally the program converged to the HS state and

very few times to the BSSB4 state.

The second extremization process (based upon either of the measures EV N

or EN) always leads to states having the same entanglement values as those ex-

hibited by the HS state. We repeated the search process starting with different,

random initial conditions and always found states with entanglement values cor-

responding to the HS state.

In order to establish which feature of the second program is responsible for the

convergence to the HS state, I modified the first program as follows: instead of

multiplying by a positive number in the interval {1− α, 1 + α}, I added a small

random number from the interval {−α, α} to the parts of the randomly chosen

coefficient, keeping the size of the interval fixed. The modified program then

converged nearly all the time to states with the same entanglement values as the

HS state. It thus seems to be that the possibility of a sign-change in the parts

of the coefficients enables the program to result in unitary transformations of the

HS state.

This constitutes convincing numerical evidence that the HS state is, at least,

a local maximum of both the EV N and the EN measures. Higuchi and Sudbery

[99] have provided analytical arguments supporting the conjecture that the HS

state is indeed a global maximum for EV N , but this conjecture has not been

proved yet. These authors have also proved that there is no pure state of four

qubits such that all its two-qubit marginal density matrices are completely mixed

[99].

It is interesting that Brown et al [49], when performing a search process (using

a program written in MATLAB) similar (but not identical) to the ones consid-

ered here, obtained instead of the HS state always a state (which we here call

BSSB4) exhibiting values of EV N and EN smaller than those exhibited by HS.

Besides some intrinsic differences in the algorithm itself, there is the fact that

the main results reported here were computed starting the search process with

a pure state, while Brown et al started their search with a mixed state. When
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A.3 Search for multi-qubit states of high entanglement

running the search algorithms maximizing the EL measure, we obtained several

different final states, some of them exhibiting values of EV N larger than the value

corresponding to the state BSSB4. Both the HS and the BSSB4 state have

EL = 4, as well as some states whose values for EV N are less than that of BSSB4.

It seems to be that EL = 4 is the highest possible linear entanglement value for

four qubits.

All these findings suggest that, perhaps, the state BSSB4 has no special signifi-

cance (although it certainly is a highly entangled four-qubit state). Its appearance

when running the searching scheme developed by Brown et al may be just an ac-

cident due to some subtle feature of that algorithm (such as multiplying the parts

of the coefficients with random positive numbers in the interval {1 − α, 1 + α},
thus always keeping their signs the same) or due to the fact that they performed

the search using mixed states.

A.3.2.2 Five qubits

When running our search schemes for states of five qubits, we always obtain

states exhibiting the same entanglement values as the state obtained by Brown

et al [49],

|BSSB5〉 =
1

2

[
|000〉|Φ−〉+ |010〉|Ψ−〉+ |100〉|Φ+〉+ |111〉|Ψ+〉

]
(A.4)

where Ψ± = |00〉 ± |11〉 and Φ± = |01〉 ± |10〉. This state has all its marginal

density matrices (for 1 and 2 qubits) completely mixed.

A.3.2.3 Six qubits

In the case of six qubits, our algorithms converge to highly entangled states ex-

hibiting all the marginal density matrices for states of 1, 2 and 3 qubits completely

mixed. In particular, we discovered the following new state of high entanglement,

Ψ6qb =
1√
32

[
|000000〉+ |111111〉+ |000011〉+ |111100〉+ |000101〉+ |111010〉

+|000110〉+ |111001〉+ |001001〉+ |110110〉+ |001111〉+ |110000〉
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A.3 Search for multi-qubit states of high entanglement

+|010001〉+ |101110〉+ |010010〉+ |101101〉+ |011000〉+ |100111〉
+|011101〉+ |100010〉 − ( |001010〉+ |110101〉+ |001100〉+ |110011〉
+|010100〉+ |101011〉+ |010111〉+ |101000〉+ |01011〉+ |100100〉
+|011110〉+ |100001〉)

]
. (A.5)

This state has a rather simple structure, with all its coefficients (when expanded

in the computational basis) equal to 0 or ±1 (the same situation occurs for

maximally entangled states of 2, 3 and 5 qubits).

A.3.2.4 Seven qubits

When we ran the search programs for seven-qubit states of high entanglement we

found states with the following features: they all have completely mixed single-

qubit marginal density matrices. However, these states do not exhibit completely

mixed two-qubit and three-qubit marginal density matrices (in this sense, the

present situation seems to have some similarities with the four-qubit case).

The high-entanglement states of seven qubits that we found are characterized

by two-qubits marginal density matrices exhibiting the following entropic values:

1− Tr(ρ2
i ) = 0.7445111988 (A.6)

SV N(ρi) = 1.9841042. (A.7)

The three-qubit marginal density matrices of these seven-qubit states have

1− Tr(ρ2
i ) = 0.86209018886 (A.8)

SV N(ρi) = 2.93739788. (A.9)

When running our programs (maximizing either EV N or EN) for five-qubit

or six-qubit states, the search process always leads to a state whose marginal

density matrices of 1,2, and (in the six-qubit case) 3 qubits are completely mixed.

On the contrary, this never happens when running our algorithms for seven-

qubits states. The marginal density matrices of 1-qubit subsystems turn out

to be maximally mixed, but not the marginal density matrices corresponding to

subsystems consisting of 2 or 3 qubits. Moreover, all the runs of the algorithms for
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A.4 Conclusions

seven-qubits states yielded states with the same entropic values for the marginal

statistical operators. This suggests that the case of seven qubits may have some

similarities with the case of four qubits. In other words, our results constitute

numerical evidence supporting the

Conjecture: There is no pure state of seven qubits whose marginal density ma-

trices for subsystems of 1, 2 and 3 qubits are all completely mixed.

A.3.2.5 The single-qubit reduced states conjecture

It was conjectured by Brown et al [49] that multi-qubit states of maximum entan-

glement always have all their single-qubit marginal density matrices completely

mixed. The results obtained by us when running the search algorithms maximiz-

ing the EV N and EN measures are consistent with the aforementioned conjecture.

All the states yielded by the searching algorithms (up to systems of seven qubits)

have maximally mixed single qubit marginal density matrices. Moreover, in the

case of 5 qubits all the states obtained also exhibited maximally mixed two-qubits

marginal density matrices. In the case of 6 qubits, all the states obtained had

completely mixed marginal density matrices of one, two and three qubits.

A.4 Conclusions

In this Appendix I investigated some aspects of the entanglement properties

of multi-qubit systems. I considered global multi-qubit entanglement measures

based upon the idea of considering all the possible bi-partitions of the system.

For each bi-partition we computed a bi-partite entanglement measure (such as

the von Neumann entropy of the marginal density matrix associated with the

subsystem with a Hilbert space of lower dimensionality) and then summed the

measures associated with all the bi-partitions. In order to evaluate the bi-partite

contributions we considered three different quantities: the von Neumann and lin-

ear entropies, and the negativity.
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A.4 Conclusions

We determined, for systems of four, five, six and seven qubits, states of high

entanglement using search schemes akin, but not identical to, the one recently

advanced by Brown et al [49]. These authors performed the search process using

an entanglement measure based on the negativity. The results obtained by us

when using the three different measures have some interesting features. First of

all, we found that a search algorithm based on the von Neumann entropy is as

successful as one based upon negativity. However, the von Neumann entropy is

(in general) considerably less expensive to compute than the negativity. Conse-

quently, when initializing the search process with a pure state, it is better to use

the von Neumann entropy.

In the case of four-qubit states our one algorithm always converged to states

exhibiting the same entanglement measures as those characterizing the HS state

and the other algorithm (before having being modified) converged most of the

time to states with slightly lower values than the HS state but higher values

than the BSSB4 state, whereas Brown et al reported that their search algorithm

always converged (up to local unitary transformations) to a state (here called

the BSSB4 state) exhibiting less entanglement than the HS state. Our results

thus provide further support to the conjecture advanced by Higuchi and Sudbery

[99] that the HS state corresponds to a global entanglement maximum for four-

qubits states. Another interesting discovery made using our search algorithms is

a particular state of six qubits that has all its marginal density matrices of 1, 2

and 3 qubits completely mixed. It is worth noting that (in the computational ba-

sis) all the coefficients characterizing this state are (up to a global normalization

constant) equal to 0 or ±1.

On the basis of the numerical evidence obtained by us when running our search

algorithms for highly entangled states of seven qubits, we make the conjecture

that there is no pure state of seven qubits whose marginal density matrices for

subsystems of 1, 2 and 3 qubits are all completely mixed.
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A.5 Search algorithm (MATHEMATICA)
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A.6 The End

A.6 The End

What we call the beginning is often the end,

And to make an end is to make a beginning.

The end is where we start from...

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.

T.S. Eliot
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