AN IMMUNOHISTOCHEMICAL AND ULTRASTRUCTURAL STUDY OF THE OVARY OF THE IMMATURE OSTRICH (STRUTHIO CAMELUS)

By

WAHABU HAMISI KIMARO

A dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in the Department of Anatomy and Physiology in the Faculty of Veterinary Science, University of Pretoria

November 2005

Acknowledgement

I am highly indebted to my supervisor, Dr. M-C. Madekurozwa, who used her invaluable time tirelessly to coordinate and supervise this research. Her advice and encouragement has assisted me enormously during the course of my study.

I would like to extend my gratitude to Professors T. Aire, J. Soley and H. Groenewald who have always been there to assist with valuable suggestions on this work.

I would also like to extend my sincere thanks to Mrs. E. van Wilpe, Mrs. D. Meyer (EM unit staff) and Mrs. M. Smit (immunohistochemistry lab.) for their expert technical assistance. The assistance offered by Mr. I.L. de Villiers is gratefully acknowledged.

I would like to thank the German government for providing a DAAD (Deutscher Akademischer Austauschdienst) scholarship, which has enabled me to undertake a Master's Degree program at the University of Pretoria. The ANSTI secretariat (Nairobi) is gratefully acknowledged for my scholarship nomination. This research was supported by the University of Pretoria and the National Research Foundation.

I acknowledge the study leave granted to me by Sokoine University of Agriculture, Tanzania. The co-operation and understanding of my Head of Department Prof. G.K. Mbassa and my colleagues is highly appreciated.

ii

I would also like to thank my family for their moral support and guidance during my stay in South Africa. Life could have been very difficult.

I am grateful to Mrs. W. Olivier (Secretary, Department of Anatomy and Physiology, University of Pretoria) who made me feel at home for the entire period of my study. It is difficult to mention everyone here, but I would like to thank everybody who has helped me in one way or another during my study period in South Africa.

Table of contents

Table of contents
Acknowledgementii
List of figuresv
List of tablesxi
Summaryxii
Declarationxiv
Forewordxv
CHAPTER ONE
General introduction1
CHAPTER TWO
The gross anatomical and histological structure of the ovary in the sexually
immature ostrich12
CHAPTER THREE
Ultrastructural features of healthy and atretic ovarian follicles in the sexually
immature ostrich44
CHAPTER FOUR
An immunohistochemical localization of intermediate filament proteins in the
ovary of the sexually immature ostrich78
CHAPTER FIVE
The distribution of progesterone, oestrogen and androgen receptors in the
ovary of the sexually immature ostrich96
CHAPTER SIX
Immunoreactivities to protein gene product 9.5, neurofilament protein and
neuron specific enclase in the ovary of the sexually immature ostrich114
Appendix I140
Appendix II141

List of figures

Figure 1.1: Climatic conditions in South Africa7
Figure 2.1: Active ovary of an immature ostrich
Figure 2.2: Active ovary showing healthy and atretic follicles
Figure 2.3: Inactive ovary showing a granular surface
Figure 2.4: Portion of the ovary showing the cortex and medulla
Figure 2.5: Primordial follicle36
Figure 2.6: Early previtellogenic follicle
Figure 2.7: Early previtellogenic follicle showing yolk nucleus
Figure 2.8: Late previtellogenic follicle
Figure 2.9: Late previtellogenic follicle showing differentiated thecal gland
cells in the thecal layer38
Figure 2.10: Vitellogenic follicle
Figure 2.11: Higher magnification of vitellogenic follicle demonstrating yolk
vesicles in the oocyte39
Figure 2.12: Vitellogenic follicle showing well-differentiated theca interna and
theca externa
Figure 2.13: Portion of the cortex demonstrating atretic primordial follicles40
Figure 2.14: Atretic previtellogenic follicle40
Figure 2.15: Atretic previtellogenic follicle demonstrating vacuoles in the
oocyte41
Figure 2.16: Portion of an atretic previtellogenic follicle showing a multilayered
granulosa cell layer41
Figure 2.17: Atretic vitellogenic follicle type I42
Figure 2.18: Atretic vitellogenic follicle type I (Advanced stages)

Figure 2.19: Atretic vitellogenic follicle type II43
Figure 2.20: Portion of the stroma occupied by stromal interstitial glands43
Figure 3.1: Electron micrograph of healthy primordial follicle
Figure 3.2: Balbiani's vitelline body66
Figure 3.3: A higher magnification electron micrograph of Balbiani's vitelline
body
Figure 3.4: Granulosa cell in primordial follicle66
Figure 3.5: Basal lamina in primordial follicle67
Figure 3.6: Electron micrograph of healthy previtellogenic follicle67
Figure 3.7: Electron micrograph of late healthy previtellogenic follicle67
Figure 3.8: Higher magnification of <i>zona radiata</i> 67
Figure 3.9: Electron micrograph of early healthy previtellogenic follicle68
Figure 3.10: Electron micrograph of late healthy previtellogenic follicle68
Figure 3.11: Granulosa layer of late healthy previtellogenic follicle68
Figure 3.12: Type I granulosa cells69
Figure 3.13: Type II granulosa cells69
Figure 3.14: Granulosa cell showing apical cytoplasmic processes69
Figure 3.15: Granulosa cell exhibiting transosomes on the apical region69
Figure 3.16: Desmosomes between two granulosa cells70
Figure 3.17: Electron micrograph of transosomes70
Figure 3.18: Basal lamina in previtellogenic follicle70
Figure 3.19: A survey electron micrograph of late healthy previtellogenic
follicle70
Figure 3.20: Higher magnification electron micrograph of fibroblast in the
thecal layer71

Figure 3.21: Thecal layer showing spindle shaped fibroblasts71
Figure 3.22: Cellular junctions between fibroblasts in the thecal layer71
Figure 3.23: Undifferentiated thecal gland cell72
Figure 3.24: Portion of theca externa showing differentiated thecal gland
cells72
Figure 3.25: Higher magnification electron micrograph of healthy vitellogenic
follicle showing part of the oocyte and granulosa cell73
Figure 3.26: A survey electron micrograph of healthy vitellogenic follicle73
Figure 3.27: Granulosa cells of healthy vitellogenic follicle73
Figure 3.28: Healthy vitellogenic follicle showing a distinct theca interna and
theca externa74
Figure 3.29: Portion of healthy vitellogenic follicle showing fibroblasts and
undifferentiated thecal gland cells arranged in strata74
Figure 3.30: Nerve fibres in the theca externa74
Figure 3.31: Electron micrograph of atretic primordial follicle75
Figure 3.32: Electron micrograph of atretic previtellogenic follicle76
Figure 3.33: Amorphous layer in atretic previtellogenic follicle
Figure 3.34: Swollen mitochondria in the granulosa cells of atretic
previtellogenic follicle76
Figure 3.35: Connective tissue between thecal fibroblasts in the theca externa
of atretic previtellogenic follicle76
Figure 3.36: Interstitial gland cells in an atretic vitellogenic follicle76
Figure 3.37: Swollen mitochondria in the fibroblast of atretic vitellogenic
follicle

Figure	4.1:	Healthy	previtellogenic	follicle	showing	а	moderate
immunos	staining	g for desmi	n in the granulos	a cells			89
Figure 4	.2: Hea	althy vitello	ogenic follicle sho	wing a m	noderate im	าทนทง	oreactivity
for desm	in in th	e theca int	erna				89
Figure 4	.3: Hea	althy previt	ellogenic follicle s	showing s	trong immu	norea	activity for
vimentin	in the	granulosa	cells				90
Figure 4	.4: Hea	althy vitell	ogenic showing i	mmunost	aining for s	smoo	th muscle
actin in t	he theo	ca externa					90
Figure 4	.5: Atr	etic vitello	genic follicle sh	owing po	sitive imm	unost	aining for
desmin i	n fibrot	olast-like c	ell				91
Figure 4	.6: Atre	etic vitellog	enic follicle type	II showing	g positive i	mmur	nostaining
for desm	in in fit	oroblast-lik	e cells				91
Figure 4	.7: Atre	etic vitellog	jenic type I show	ing desm	in immunoi	reacti	vity in the
stroma a	nd in th	he blood v	essel walls				92
Figure 4	.8: Atre	etic previte	llogenic follicle sł	nowing a	moderate i	mmur	nostaining
for vimer	ntin in t	he granulo	sa cell layer				92
Figure 4	.9: Atre	etic vitellog	genic follicle type	I showing	g positive i	mmur	nostaining
for vimer	ntin in f	ibroblast-li	ke cells				93
Figure 4	.11: At	tretic vitell	ogenic follicle typ	be I show	ing smoot	h mu	scle actin
immunor	eactivi	ty in fibrob	last-like and smo	oth muscl	e cells		94
Figure 4	.12: At	tretic vitelle	ogenic follicle typ	e II shov	ving smoot	h mu	scle actin
immunor	eactivi	ty in fibrob	lasts infiltrating th	e interstit	ial mass		94
Figure 5	.1: A p	ortion of a	cortex showing o	estrogen	receptor in	Imuno	oreactivity
in the ge	rminal	epithelium					111

Figure 5.2: Previtellogenic follicle showing immunoreactivity for oestrogen
receptor in the thecal gland cells111
Figure 5.3: Part of the cortex showing immunostaining for progesterone
receptor in the germinal epithelium111
Figure 5.4: Blood vessel wall showing immunoreactivity for progesterone
receptor in the tunica media111
Figure 5.5: Part of stroma showing a moderate immunoreactivity for
progesterone receptor in the fibroblasts112
Figure 5.6: Ovarian cortex showing strong immunoreactivity for androgen
receptor in the germinal epithelium112
Figure 5.7: Part of cortex showing positive immunostaining for androgen
receptor in the granulosa cells112
Figure 6.1: Neurofilament protein immunoreactive nerve bundles in the
ovarian stalk131
Figure 6.2: Neurofilament protein immunoreactive nerves in the medulla and
cortex131
Figure 6.3: Neurofilament protein nerve bundles associated with blood
vessels132
Figure 6.4: Healthy previtellogenic follicle showing neurofilament protein
immunoreactive nerve fibres in the theca interna and stroma
Figure 6.5: Part of the cortex showing distribution of neurofilament protein
immunoreactive nerve fibres133
Figure 6.6: Vitellogenic follicle showing neurofilament protein immunoreactive
nerve fibres

Figure 6.7: Atretic vitellogenic follicle type I showing neurofilament protein
immunoreactive nerve fibres in the theca externa134
Figure 6.8: Atretic vitellogenic follicle type I showing nerve fibre within
hyalinized connective tissue134
Figure 6.9: Neuron specific enclase immunoreactive bundle in the
medulla135
Figure 6.10: Nerve cell body immunoreactive for neuron specific
enolase135
Figure 6.11: Late previtellogenic follicle showing immunoreactivity for neuron
specific enolase in differentiated thecal gland cells136
Figure 6.12: Vitellogenic follicle showing immunoreactivity for neuron specific
enolase in thecal gland cells136
Figure 6.13: Portion of cortex showing protein gene product 9.5
immunoreactivity137
Figure 6.14: Protein gene product 9.5 immunoreactive nerve bundles in the
ovarian stalk and medulla137
Figure 6.15: Protein gene product 9.5 immunoreactive nerve bundle
associated with a blood vessel in the medulla138
associated with a blood vessel in the medulla

List of tables

SUMMARY

AN IMMUNOHISTOCHEMICAL AND ULTRASTRUCTURAL STUDY OF THE OVARY OF THE IMMATURE OSTRICH (*STRUTHIO CAMELUS*)

By

WAHABU HAMISI KIMARO

Promoter: Dr. M-C. Madekurozwa

Department: Anatomy and Physiology

Degree: MSc.

The aim of this study was to investigate the components of the ovary in the sexually immature ostrich by using immunohistochemistry, light microscopy and electron microscopy. The light and electron microscopic studies carried out, revealed that the oocyte in the sexually immature ostrich is surrounded by seven layers which included the *zona radiata, lamina perivitellina, stratum granulosum, basal lamina*, thecal layers (theca interna and theca externa), connective tissue layer and superficial epithelium (see details in Chapter Two and Three). Several morphological and immunohistochemical changes occurred as the follicles developed and regressed, suggesting that ovarian follicles in the sexually immature ostrich undergo a cycle of growth and degeneration as reported in other avian species.

In the present study, thecal gland cells in the ovary of the sexually immature ostrich were common. In addition, interstitial gland cells were a notable feature in atretic follicles as described in the ovary of the crow, common myna and dove (Guraya and Chalana, 1976). Further investigations on the interstitial gland cells will provide an insight into the process of steroidogenesis in the sexually immature ostrich.

As discussed in Chapter five, various cells in the ovary showed immunoreactivity to oestrogen, progesterone and androgen receptors. These observations indicated that the ovarian tissue in the sexually immature ostrich is a potential target for gonadal hormones. Thus, it can be assumed that steroid hormones regulate ovarian functions in the ostrich.

The use of immunohistochemical procedures proved to be an excellent method to investigate the distribution of nerves in the ovary. The results of this study have shown that the ovary in the sexually immature ostrich is wellinnervated. However, further studies are required to differentiate between cholinergic and adrenergic nerve fibres.

xiii

Declaration

I hereby declare that the work presented here is my original work. To the best of my knowledge, this work has never been published or submitted for a degree in this University. The University of Pretoria reserves the right of permission for duplication of the whole thesis or in part thereof.

.....

W.H. Kimaro

November, 2005.

Foreword

The main reason for conducting the present study was the lack of information on the morphology of the ovary in the sexually immature ostrich. A total of 26 sexually immature female ostriches aged between 12 and 14 months were used in the present study. Ovarian tissue samples were collected during the active reproductive phase (August to February), the regressive reproductive phase (March to early May) and the inactive reproductive phase (Late May to July). Tissue samples were processed routinely for light and electron microscopic studies. Immunohistochemistry was performed on either frozen or paraffin-embedded sections.

The objectives of Chapter Two and Chapter Three were to investigate the histological and ultrastructural organization of the ovary in the sexually immature ostrich. At the light microscope level, healthy and atretic primordial, previtellogenic and vitellogenic follicles were observed. The healthy follicles were composed of an oocyte surrounded by a granulosa cell layer and a thecal layer.

At the electron microscope level, granulosa cells in healthy follicles displayed apical cytoplasmic processes. Attached to the cytoplasmic processes were transosomes. A basal lamina separated the granulosa cell layer from the underlying thecal layer. The basal lamina closest to the granulosa cell layer was more electron dense than that adjacent to the thecal layer. The thecal layer contained undifferentiated (type I) and differentiated (type II) thecal gland cells, as well as vacuolated thecal cells. The type I thecal gland cells

XV

contained a large oval or elongated nucleus, which exhibited clumps of heterochromatin. The nuclei of type II thecal gland cells were round to oblong in shape with a prominent nucleolus.

Non-bursting atresia was observed in all follicular sizes. The granulosa cells of atretic primordial and previtellogenic follicles contained numerous lipid droplets and electron dense bodies. Very few transosomes were observed in atretic follicles. Two forms of atresia were observed in vitellogenic follicles. Type I atresia resulted in the infiltration of the entire follicle by hyalinized connective tissue. In type II atresia, granulosa and theca interna cells differentiated into interstitial gland cells. These results indicate that the structural organization of the ovary in the sexually immature ostrich is similar to that reported in other avian species. In addition, it is apparent that ovarian follicles in the sexually immature ostrich undergo a cycle of growth and degeneration.

The objective of Chapter Four was to study the distribution of the intermediate filaments, desmin, vimentin and smooth muscle actin, in the ovary of the sexually immature ostrich. Positive immunostaining for desmin was observed in the granulosa cells of healthy primordial and previtellogenic follicles. Vimentin immunoreactivity was demonstrated in the granulosa cells of all follicles except the vitellogenic atretic follicles. Fibroblasts in healthy and atretic (type I) follicles exhibited strong immunostaining for smooth muscle actin. The results of this chapter suggested that the distribution of intermediate filaments changes during follicular development and atresia.

xvi

The objective of Chapter Five was to determine the distribution of steroid hormone receptors in the ovary of the sexually immature ostrich. Strong immunostaining for the oestrogen receptor, progesterone receptor and androgen receptor was observed in the nuclei of the germinal epithelium. Granulosa cells were immunopositive for the progesterone and androgen receptors, but not for the oestrogen receptor. However, positive immunoreactivity for the oestrogen receptor was exhibited in thecal gland cells. The distribution of steroid hormone receptors in the present study appears to be similar to that described in the domestic fowl.

The objective of Chapter Six was to describe the intrinsic innervation of the ovary using antibodies against neurofilament protein, protein gene product 9.5, and neuron specific enolase. Strong immunostaining for neurofilament protein, protein gene product 9.5 and neuron specific enolase was observed in nerve bundles, which coursed through the ovarian stalk and extended into the medulla and cortex. Neuron specific enolase immunoreactive nerve cell bodies were observed in the ovarian stalk and medulla. In addition, thecal and interstitial gland cells demonstrated neuron specific enolase immunostaining. Based on the results of this immunohistochemical study, it would appear that the distribution of immunoreactive nerve fibres in the ovary of the sexually immature ostrich resembles that of the domestic fowl.

xvii