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Summary 

Atmospheric general circulation model (AGCM) simulations of southern 
African climate on a regional scale are unsatisfactory. The main reason for 
this result is that computational requirements determine that AGCMs are run 
at coarse horizontal resolutions. The impact of local forcing such as complex 
topography, and important small-scale circulation systems cannot be resolved 
properly at typical AGCM resolutions. However, mesoscale forcing and 
circulation systems have an important modifying influence on the southern 
African climate. The technique of nested climate modelling can be used to 
obtain detailed climate simulations over limited areas of the earth. Nested 
climate modelling involves the nesting of a high grid-resolution limited-area 
model (LAM) within an AGCM (or observational analyses) over an area of 
interest. The AGCM provides the LAM with boundary conditions during an 
extended integration period. With a grid resolution of 10-100 km, the LAM 
model is able to simulate some of the mesoscale features of the circulation. 

The limited-area model DAR LAM has been developed to meet the 
requirements of both climate simulation experiments and shorter-term 
mesoscale studies. The dynamical formulation of DARLAM is characterised 
by the semi-Lagrangian method used to simulate advection. The essential 
feature of the scheme is that the total or material derivatives in the equations 
of motion are treated directly by calculating the departure points of fluid 
parcels. The semi-Lagrangian approach allows the use of large time steps 
during the model integration. Numerical experiments performed in the study 
indicate that the particular semi-Lagrangian method used in DAR LAM is highly 
accurate and has excellent conservation and stability properties. 

The results of climate simulations over the SADC region with DARLAM are 
described. The model is one-way nested within simulations of selected 
months from a long seasonal varying simulation of the CSIR09 AGCM. The 
relatively coarse resolution AGCM is used to provide boundary conditions to 
DAR LAM , which is run at a horizontal grid resolution of 60 km with 18 levels in 
the vertical. The higher resolution adds Significant smaller-scale detail to the 
coarser simulation of the AGCM. The additional detail provides improved 
simulation results, when compared to AGCM results over most regions of the 
LAM domain. 
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Samevatting 

Atmosferiese algemene sirkulasie model (AASM) simulasies van suider 
Afrikaanse kJimaat op streekskaal is onbevredigend. Die hoofrede hiervoor is 
dat berekeningsvereistes bepaal dat AASMe geloop word met ruwe 
horisontale resolusie. Die impak van lokale forsering soos komplekse 
topografie en kleinskaalse sirkulasiesisteme kan nie vasgevang word met 
tipiese AASM-resolusie nie. Mesoskaalforsering- en sirkulasiesisteme het 
egter 'n belangrike modifiserende invloed op suider Afrikaanse klimaat. Die 
tegniek van genestelde klimaatmodeltering kan gebruik word om 
gedetaileerde klimaatsimulasies oor beperkte dele van die aarde te verkry. 
Die tegniek behels die nes van 'n hoe roosterresolusie beperkte- area-model 
(BAM) binne 'n AASM (of waargenome data) oor die area wat van belang is. 
Die AASM verskaf die BAM met randwaardes gedurende 'n verlengde 
integrasie periode. Met 'n roosterresolusie van 10-100 km is kan die BAM 
sommige mesoskaaleienskappe van die sirkulasie simuleer. 

Die beperkte-area-model DARLAM is ontwikkel om te voldoen aan die 
vereistes van sowel klimaatsimulasie-eksperimente en korter tydskaal 
mesoskaalstudies. Kenmerkend van die modelformulasie is die semi­
Lagrange metode wat gebruik word vir adveksie-simulasie. Die essensiele 
kenmerk van die skema is dat die totale afgeleides in die bewegings­
vergelykings direk hanteer word deurdat vertrekpunte van vloeistofdeeltjies 
bereken word. Die semi-Lagrange benadering bied die gebruik van groot 
tydstappe gedurende die modelintegrasie. Numeriese eksperimente uitgevoer 
dui aan dat die semi-Lagrange metode wat in DAR LAM gebruik word hoogs 
akkuraat is en uitstekende behouds- en stabiliteitseienskappe besit. 

Die resultate van klimaatsimulasies oor die SADC gebied met DARLAM word 
beskryf. Die model is een-rigting genestel binne simulasies van uitgesoektee 
maande van 'n lang, seisonaal varierende simulasie van die CSIR09 AASM. 
Die relatief lae resolusie AASM is gebruik om randwaardes aan DARLAM te 
verskaf, wat geloop is met 'n horisontale roosterresolusie van 60 km met 18 
vlakke in die vertikaa/. Die hoer resolusie voeg betekenisvol/e kleiner skaal 
detail by die ruwer simulasie van die AASM. Die bykomende besonderhede 
verskaf verbeterde simulasie resultate in vergelyking met die AASM oor die 
meeste areas binne die BAM gebied. 
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