University of Pretoria etd, Coetzee P (2006)

Molecular epidemiology of rabies in KwaZulu Natal, South Africa.

ΒY

PETER COETZEE

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE M.Sc. (MICROBIOLOGY) IN THE FACULTY OF AGRICULTURAL AND BIOLOGICAL SCIENCES, DEPARTMENT OF MICROBIOLOGY AND PLANT PATHOLOGY, UNIVERSITY OF PRETORIA

SUPERVISOR: PROF L.H. NEL

DECEMBER 2005

Declaration

I hereby declare that this thesis, except where indicated, is my own research, and has not been submitted in part, or as a whole, for a degree at any other university.

Peter Coetzee

Signature:

Date: -----

University of Pretoria etd, Coetzee P (2006)

Dedications

Dedicated to my loving parents and

<u>brother</u>

Acknowledgements

I would like to thank the following people for their assistance, guidance and contributions towards the completion of this thesis.

Prof L.H. Nel for having faith in his students, and for his invaluable contributions towards the findings of this project. I really appreciate all the help that you have given me, and have learned a lot about my chosen field of study, as well as myself !

Dr. J. Randles and the staff from the Veterinary Institute at Allerton, for allowing us access their collection of rabies virus isolates from KwaZulu Natal, and for preparing these samples for transport.

Mrs. W. Markotter, for helping me with the initial viral isolations, and for providing technical assistance throughout the course of the project.

Dr. C. T. Sabeta, for allowing us the use the facilities at OVI, and for his advice and interest in this project.

Dr. F. Burt for performing the preparation of the human isolates at the NICD.

Prof G. Pietersen, for providing advice and assistance throughout the course of the project, and for allowing us to go on the field trip to the Cape, thank you !

Friends and colleagues from the department of Microbiology, especially Nobantu, Katherine, Orienka, Liz, Aletta and Jackie, thanks for providing an excellent and enjoyable lab environment.

To my parents for their love and support, and for providing me with the financial assistance which enabled me to continue my postgraduate studies.

To my Creator, who gives me my strength, and who has directed my path.

Summary

MOLECULAR EPIDEMIOLOGY OF RABIES IN KWAZULU NATAL, SOUTH AFRICA

ΒY

PETER COETZEE

Supervisor: Prof. L.H. Nel Department of Microbiology and Plant Pathology University of Pretoria

for the degree MS.c.

In South Africa, two biotypes of type species 1 of the Lyssavirus genus are maintained independently among the members of the *Herpestidae* and *Canidae* families, respectively. Canid rabies is a relatively new addition to the African subcontinent, having been introduced from infectious cycles, which had existed among dogs in Angola, in the early 1940s. Two epidemics, believed to have originated from dog endemic regions which had existed in the southern Maputo district of Mozambique since 1952, have occurred among domestic dogs in the KwaZulu Natal province in recent years. The first of these epidemics started in 1964, and ended by 1968, while the second epidemic which started in 1976, has proven to be intractable, despite the concerted efforts which have been implemented to bring it under control. In order to contribute to the understanding of the molecular epidemiology of rabies in the KwaZulu Natal province, and to thereby assist in future surveillance and control efforts, we conducted a molecular sequence analysis of representative panel of viral isolates which were obtained from the province during the year 2003. A 591 nt. sequence encompassing the G-L intergenic region and glycoprotein cytoplasmic domain was sequenced for 128 viral isolates, which were obtained from the different magisterial districts and affected host species of the province, and was subsequently used to characterize these viruses phylogenetically.

Summary

Characterization of the KwaZulu Natal variants, and comparison of the obtained sequence data, to sequences data which was obtained from rabies endemic regions from elsewhere in South Africa and Zimbabwe, in general supported the pattern of spread which led to the introduction of rabies into the province, as was previously suggested from the literature. The phylogeny which was established from the analyses, indicated that the viral isolates from the province were highly related to each other, and could be divided into two groups, which although belonging to the canid biotype, were in general distinguishable from canid rabies virus isolates which were obtained from elsewhere in South Africa and Zimbabwe. The observation that these subfamilies showed a low genetic divergence, as well as that they shared a unique recent common ancestor, suggested that they were introduced recently into the northern reaches of the province, probably from the same geographical region (i.e. southern Mozambique).

Phylogenetic characterization of the KwaZulu Natal isolates further suggested that at least three enzootic fronts are currently responsible for the introduction of rabies into the northern and southern regions of the province. The first of these fronts was hypothesized to have spread directly across the southern Mozambique border (possibly via southeastern Swaziland), into the northeastern coastal regions of KwaZulu Natal, while the second front represented the south-eastwards spread of synergistic dog-jackal cycles from southeastern Mpumalanga, into the northern and northeastern regions of the province. The third front on the other hand, represented the possible spread of a remnant infectious cycle, left over from the 1964-1968 epidemic, from the northern region of the Eastern Cape, into southern KwaZulu Natal.

Phylogenetic characterization further proved useful for identifying the distribution of viral variants, and allowed us to propose a pathway by which the disease might have spread throughout the province. The proposed pathway of spread suggested that viral variants may have been translocated over long distances, and highlighted the role that major routes of human transportation may play in the dissemination of the disease. The regional characterization of viral variants from KwaZulu Natal, further demarked the location where the identified viral variants circulated in individual host populations, allowing us to place

6

Summary

the current epidemic into an epidemiological framework which attempts to explain the long term persistence of the disease. This provided clues as to the intractability of the second epidemic, and allowed us to develop a proposal as to how current control strategies may be altered, in order to contain the current outbreak in the province.

The initial phylogeny which was established from the study provides an epidemiological framework, which will play an important role in determining the origin of future human spillover cases, and for tracking the spread of viral variants throughout the affected regions of the province. It is further envisaged that the data which was generated during the course of the project will be utilized in future surveillance efforts, targeted to the evaluation of the efficacy of potentially implemented control campaigns.

		PAGE
Declaration		2
Dedication		3
Acknowledgeme	ents	4
Summary		5-7
List of abbreviat	ions	14-19
List of figures		20-21
List of tables		22-23
List of appendix	es	24
Chapter 1		25-99
(A) - Literature s	urvey	25-84
	-	
1.1 Genera	al introduction	26-27
1.2 History	y of rabies	27-31
1.3 Classif	ication of the <i>Lyssavirus</i> genus	31-38
1.4 Molecu	llar biology of the rabies virus	39-50
1.4.1 Structu	re of the rabies virus	39-40
1.4.2 Organiz	zation of the rabies virus genome	40-41
1.4.2.1. Coding	regions	42-48
(a) The nuc	cleoprotein (N)	42-43
(b) The pho	osphoprotein (P)	43-44
(c) The Ma	atrix protein (M)	44-46

		PAGE
(d)	The Glycoprotein (G)	46-47
(d)	The RNA polymerase (L)	47-48
1.4.2.2	Non-coding regions	48-50
(a)	The leader RNA (Le)	48
(b)	Intergenic sequences	48-50
1.5	Genetic variability of the Lyssavirus genome	50-52
1.6	Heterogeneous nature of RNA genomes: Quasispecies concept	52-53
1.7	Intracellular replication cycle of the rabies virus	54-57
1.8	Rabies in humans: Clinical presentation and pathogenesis	58-62
1.9	Epidemiology of rabies	62-77
1.9.1	Worldwide distribution of rabies	64-68
1.9.2	Molecular epidemiological studies conducted on a global	
	scale on the Lyssavirus genus	68-72
1.9.3	Distribution of rabies in South Africa	72-76
1.9.4	Molecular epidemiology of rabies in South Africa	76-77
1.10	Prevention and control of rabies	78-81
1.11	Vaccines	81-84

1-97
4-85
5-87
5-86
6-87
7-95
9-90
)-95
3-94
4-95
5-96
96
97
8-99

		PAGE
Chapter	2 – Sequence analysis of rabies virus isolates	
	from KwaZulu Natal (KZN).	100- 136
2.1	Summary	101
2.2.	Introduction	101-108
2.2	Materials and methods	109-115
2.2.1	Rabies virus isolates	109
2.2.2	RNA extraction	109-110
2.2.3	Primer selection	110
2.2.4	Reverse transcription	110
2.2.5	Polymerase chain reaction (PCR)	111-112
2.2.6	Purification of PCR products	112
2.2.7	Nucleotide sequencing	112-113
2.2.8	Phylogenetic analysis	113-115
2.3	Results	115-135
2.3.1	Rabies virus isolates	115
2.3.2	RNA extraction, cDNA synthesis, and PCR of rabies virus isolates	115
2.3.3	Purification and nucleotide sequence determination	115-119
2.3.4	Phylogenetic analysis	119-136
(A) Phylo	geny of KwaZulu Natal rabies virus isolates, compared to canine	
rabies virus isolates obtained from elsewhere in South Africa		
and Zimbabwe. 120-126		120-126
(B) Phylogeny of rabies virus isolates from KwaZulu Natal. 126-136		

		PAGE
Cha	pter 3 - Discussion	137- 159
3.1	Summary	137
	Phylogeny of KwaZulu Natal rabies virus isolates, compared to canine rabies virus isolates obtained from elsewhere in South Africa and Zimbabwe.	138-143
3.2.1	Phylogenetic and geographical divisions present for viral isolates belonging to subcluster 1-1 (KZN family).	139-140
3.2.2	. Jackal rabies in the northern and north-eastern regions of KwaZulu Natal.	140-141
3.2.3	Reconstruction of the events which led to the introduction of rabies into KwaZulu Natal.	141-142
3.2.4	Introduction of KwaZulu Natal variants into other regions of South Africa.	143
3.2.5	Future studies required to clarify the molecular epidemiology of rabies in Mozambique and the northern Limpopo province of South Africa	143
3.3	Phylogeny of rabies virus isolates from KwaZulu Natal	143-159
3.3.1	Pattern of spread and its associated factors, which led to the introduction of viral variants from subfamily B into the affected regions of KZN.	145-146
3.3.2	Pattern of spread and its associated factors, which led to the introduction o viral variants from subfamily A into the affected regions of KZN.	f 146-149
3.3.3	. Correlation between the variants which were isolated from human infections, and the geographically discrete variants identified from KZN during the course of this study.	150-152

	PAGE
3.3.4 Factors that influence the maintenance and persistence of the rabies virus in the KZN province.	153
3.3.4.1 Maintenance and persistence of rabies in local dog populations in KwaZ Natal.	ulu 153-155
3.3.4.2 Maintenance and persistence of rabies among jackal in KwaZulu Natal.	155-156
3.3.5 Suggestions of how current strategies for rabies control in the KZN province may be altered in order to bring the epidemic under control.	156-158
3.3.6 Implications of this study for the future surveillance of the epidemic in KwaZulu Natal	159
Chapter 4 – Conclusion	160-167
4.1 Introduction	161-162
4.2 Principal findings of this study 162-167	
4.3 Recommendations for the future 167	
References 168-187	
Communications 188-189	
Appendix	

μm	micrometer
A	Adenosine
Ab	antibody
aa	amino acid
A.D.	Anno Domino
ABI	Applied Biotechnologies Incorporated
ABLV	Australian Bat Lyssavirus
AChR	acethycholine receptor
AIDS	Acquired Immune Deficiency Syndrome
approx.	approximately
Arg	arginine
ATP	adenosine triphosphate
B.C.	before Christ
BCG	bacille Calmette-Guerin
bp	base pair
С	cytosine
ca.	calculated
cDNA	complementary DNA
CNI	close neighbor interchange
CNS	central nervous system
CRU	cellular receptor unit
CVS	challenge virus standard
CW	COW
Da.	Dalton
ddNTP	dideoxyribonucleotide triphosphate

direct fluorescent antibody test
dog
defective interfering particle
deoxyribonucleic acid
deoxyribonucleotide triphosphate
dithiothreitol
Duvenhage Virus
for example
European Bat Lyssavirus 1
European Bat Lyssavirus 2
Eastern Cape
edition
electron microscopy
endoplasmic reticulum
Evelyn Rokitnicki Abelseth
and others
acceleration of gravity
guanosine
glycoprotein
glycine, aspartic acid and asparagine
glutamine
glycine
Global positioning system
genotype
hydrochloric acid

HDCV	human diploid cell vaccine
HEP	Flury high egg passage
hm	human
HRIG	human rabies immunoglobin
i.e.	in other words
ICTV	International Committee for the Taxonomy of Viruses
IDT	Integrated DNA Technologies
IFA	indirect fluorescent antibody test
IL	interleukin
lle	isoleucine
Inc.	incorporated
IHNV	Infectious Hematopoietic Necrosis Virus
j	Canis mesomelas
kb	kilobase pairs
KCI	potassium chloride
km	kilometer
KZN	KwaZulu Natal
L	polymerase (L) protein
LBV	Lagos Bat Virus
Le	leader RNA
Lys	lysine
m	Cynictis penicillata
Μ	matrix protein
MAb	monoclonal antibody

methionine
magnesium chloride
millilitre
maximum likelihood
millimolar
Moloney Murine Leukemia Virus
Mokola Virus
maximum parsimony
messenger ribonucleic acid
nucleoprotein
non-virion protein
sodium hydroxide
nanogram
National Institute for Communicable Diseases
neighbourhood joining
nanometres
neurotrophin
nucleotide
Otocyon megalotis
open reading frame
Onderstepoort Veterinary Institute
degree Celsius
operational taxonomic unit
phosphoprotein

PAGE	polyacrylamide gel electrophoresis
PAHO/AMRO	Panamerican Health Organization/Americas
PBS	phosphate buffered saline
PCEC	purified chick embryo cell vaccine
PCR	polymerase chain reaction
PEP	post exposure prophylaxis
РМ	Pitman Moore
pMol	pico molar
pp.	page
Pu	purine
PV	Pasteur virus
Ру	pyrimidine
RABV	rabies virus
RFLP	restriction fragment length polymorphism
RI	replicative intermediate
RIG	rabies immunoglobin
RNA	ribonucleic acid
RNP	ribonucleoprotein
RT	reverse transcriptase
RT-PCR	reverse transcriptase polymerase chain reaction
SAD	Street Alabama Dufferin
SEARG	South and East African Rabies Group
Ser	serine
SDS	sodium dodecyl sulphate

Shp	sheep
SP	signal peptide
SPU	Special Pathogens Unit
т	thiamine
Taq	Thermus aquaticus
TBSV	Tomato Bushy Stunt Virus
TMV	Tobacco Mosaic Virus
TRAIL	Tumor Necrosis Factor Related Apoptosis Inducing Ligand
TTP	Transcirption termination and polyadenylation signal
U	unit
U	uracil
UPGMA	unweighted pair group method with arithmetic mean
USA	United States of America
UV	ultraviolet
V	volt
VNAb	virus neutralizing antibody
VRG	vaccinia recombinant glycoprotein
VSV	Vesicular Stomatitis Virus
WHO	World Health Organization
х	times
mg	milligram
μΙ	microliter
Ψ	G-L intergenic region, or pseudogene

List of figures

Figure number F	Page
 UPGMA phylogenetic tree illustrating the genotype and phylogroup divisions within the <i>Lyssavirus</i> genus (Smith <i>et al.</i>, 2002). 	37
1.2. Schematic presentation of the rabies virus particle (Tordo and Poch, 1988).	40
1.3. Schematic presentation of the Lyssavirus genome (Levy et al., 1994).	42
1.4. Similarity profile generated by comparing the divergent rabies and Mokola virus genomes (Bourhy <i>et al.</i> , 1993; Bourhy <i>et al.</i> , 1995; Nadin-Davis, 2000).	52
1.5. Infection and replication cycle of the rabies virus.	57
1.6. Route of spread of the rabies virus, from a peripheral inoculation site, to the central nervous system, and from there to other sites throughout the body (Internet reference).	59
1.7. Global distribution of the primary host species which are responsible for the maintenance of the rabies and rabies related viruses (Rupprecht <i>et al.</i> , 2002).	63
1.8. The distribution of the primary host species responsible for rabies endemicity within South Africa (Bishop <i>et al.</i> , 2003).	72
2.1 Provinces of South Africa.	102
2.2. Rabies virus trends for KwaZulu Natal between 1992-2002 (Randles, 2003).	105
2.3. Total number of dogs vaccinated in KwaZulu Natal between 1992-2002 (Randles, 2003).	105

List of figures

Figure number	Page
2.4. Schematic presentation of the annealing positions and orientations of primers, used to amplify the glycoprotein cytoplasmic domain and G-L intergenic regions (Tordo <i>et a</i> l., 1986; Sacramento <i>et al.</i> , 1991).	111
2.5. Approximate geographic region of isolation for reference sequences which were obtained from South Africa (Sabeta et al., 2003)	125
2.6. Approximate geographic region of isolation for reference sequences which were obtained from Zimbabwe (Sabeta et al., 2003).	125
2.7. Neighbourhood joining tree constructed from selected isolates from KZN as well as isolates from other canine rabies endemic regions in South Africa and Zimbabwe.	126
2.8. Neighbourhood-joining tree, constructed from an alignment of 128 nucleotide sequences, encompassing the cytoplasmic domain of the glycoprotein, and the G-L intergenic region of canine rabies viruses from KZN.	135
2.9. The approximate geographic location of isolation for rabies virus isolates which were analyzed during the course of this study.	136

List of tables

Table number	Page
1.1. Abridged classification of the Mononegavirales order (ICTV, 2005).	38
1.2. Some common terms used in the field of phylogenetics (Li and Graur, 2000).	88
1.3. Some methods used in phylogenetic tree construction. and the strategies they are based on (Vandamme, 2003).	91
1.4. Advantages and disadvantages of different tree construction methods (Bourhy <i>et al.</i> , 1995).	97
2.1. Total number of infections in domestic dogs, livestock, humans and wildlife from KwaZulu Natal for the year 2003 (Randles, 2003).	106
2.2. Summary of the number of cases per magisterial district for KwaZulu Natal from the calendar year 2003 (Randles, 2003).	107
2.3. Annealing positions and nucleotide sequences of the primers used to amplify the glycoprotein cytoplasmic domain and G-L intergenic regions (Tordo <i>et al.</i> , 1986; Sacramento <i>et al.</i> , 1991).	112
. 2.4. Rabies virus isolates analyzed during the course of this study.	116-119
2.5 Nucleotide substitutions responsible for the clustering of the major groupings identified from the phylogeny in section 2.4.4 (A)	122
2.6. Reference sequences used to conduct the analysis in 2.4.4 (A) (Tordo <i>et al.</i> , 1986, Von Teichman, 1005; Sabeta <i>et al.</i> , 2003).	123-124

22

List of tables

Table number	Page
2.7. Nucleotide substitutions responsible for the clustering of the major groupings identified from the phylogeny in section 2.4.4 (B)	128
2.8. Viral groups which were identified from KwaZulu Natal,	120
their epidemiological information, and the symbols and colours used to denote them on the phylogenetic tree and	
map in figure. 2.8. and 2.9., respectively.	132-133
3.1. Case histories from human infections, which had occurred in the KwaZulu Natal and Eastern Cape provinces	
from 2002-2003.	152

University of Pretoria etd, Coetzee P (2006)

Appendix

Page

Appendix A.	Multiple sequence alignment of a 591 nt. sequence encompassing the cytoplasmic domain of the glycoprotein and the G-L intergenic regions for 58 isolates, obtained from KwaZulu Natal and the other rabies endemic regions of southern Africa and Zimbabwe.	191-199
Appendix B.	Multiple sequence alignment of a 591 nt. sequence encompassing the cytoplasmic domain of the glycoprotein and the G-L intergenic region, for 128 isolates obtained from KwaZulu Natal.	200-218
Appendix C.	Maximum parsimony tree constructed from a 591 nt. sequence encompassing the glycoprotein cytoplasmic domain and the G-L intergenic region for 58 isolates, obtained from KwaZulu Natal and the other rabies endemic regions of southern Africa and Zimbabwe.	219-220
Appendix D.	Maximum parsimony tree constructed from a 591 nt. sequence encompassing the glycoprotein cytoplasmic domain and the G-L intergenic region, for 128 isolates obtained from KwaZulu Natal.	221-222
Appendix E.	The proposed regional path of spread of the epidemic throughout the African subcontinent, which led to the introduction and the establishment of the different rabies virus variants, which were identified from neighboring regions and countries during the course of this study.	223-224
Appendix F.	The proposed path of spread of the epidemic, which led to the introduction and establishment of the different rabies virus variants which were identified from KwaZulu Natal during the course of this study.	225-229
Appendix G.	Magisterial districts of KZN.	230-233