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 2 

ABSTRACT 1 

Southern African December-January-February (DJF) probabilistic rainfall forecast 2 

skill is assessed over a 22-year retro-active test period (1980/81 to 2001/02) by 3 

considering multi-model ensembles consisting of downscaled forecasts from 4 

three of the DEMETER models, the ECMWF, Météo-France and UKMO coupled 5 

ocean-atmosphere general circulation models. These models are initialized in 6 

such a way that DJF forecasts are produced at an approximate 1-month lead-7 

time, i.e., forecasts made in early November. Multi-model forecasts are obtained 8 

by 1) downscaling each model’s 850 hPa geopotential height field forecast using 9 

canonical correlation analysis (CCA) and then simply averaging the rainfall 10 

forecasts, and 2) by combining the three models’ 850 hPa forecasts and then 11 

downscaling them using CCA. Downscaling is performed onto the 0.5°x0.5° 12 

resolution of the CRU rainfall data set south of 10° south over Africa. Forecast 13 

verification is performed using the relative operating characteristic (ROC) and the 14 

reliability diagram. The performance of the two multi-model combinations 15 

approaches are compared with the single model downscaled forecasts and also 16 

with each other. It is shown that the multi-model forecasts outperform the single 17 

model forecasts, that the two multi-model schemes produce about equally skilful 18 

forecasts, and that the forecasts perform better during El Niño and La Niña 19 

seasons than during neutral years.  20 

 21 

22 
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1. Introduction 1 

 2 

The scientific basis for the existence of seasonal climate predictability originates 3 

from the observation that slowly evolving sea-surface temperature (SST) 4 

anomalies influence seasonal-mean weather conditions (Palmer and Anderson 5 

1994). Therefore, estimation of the evolution of SST anomalies, which are often 6 

relatively predictable, and subsequently employing them in atmospheric general 7 

circulation models (GCMs), potentially provides means of generating forecasts of 8 

seasonal-average weather (Graham et al. 2000). With the advent of fully coupled 9 

ocean-atmosphere models (Stockdale et al., 1998; Saha et al., 2006; Weisheimer 10 

et al. 2009), evidence that the ocean models participating in fully coupled GCMs 11 

can predict the evolution of SSTs to elevated levels of skill has been presented. 12 

This notion has been demonstrated conclusively through the DEMETER 13 

(Development of a European Multimodel Ensemble system for seasonal to 14 

interannual prediction) project (Palmer et al. 2004), and recently the usefulness 15 

of these forecasts over the mid-latitudes has been further demonstrated (Coelho 16 

et al. 2006; Frias et al. 2010). In theory coupled models should eventually 17 

outperform using GCMs as a second step in a 2-tiered system in which SSTs are 18 

first predicted since the former is able to describe the feedback between ocean 19 

and atmosphere while the latter assumes that the atmosphere responds to SST 20 

but does not in turn affect the oceans (Copsey et al., 2006; Troccoli et al., 2008).  21 

 22 



 4 

Although GCMs, commonly configured with an effective resolution of 100-300 1 

km, have demonstrated skill at global or even continental scale, they are unable 2 

to represent local sub-grid features, subsequently overestimating rainfall over 3 

southern Africa (Joubert and Hewitson 1997; Mason and Joubert 1997). Also, the 4 

representation of rainfall at mid-to-high latitudes is complex and often not well 5 

estimated (Graham et al. 2000; Goddard and Mason 2002). Such systematic 6 

biases have created the need to downscale GCM simulations over southern 7 

Africa. Semi-empirical relationships exist between observed large-scale 8 

circulation and rainfall, and assuming that these relationships are valid under 9 

future climate conditions and also that the large-scale structure and variability is 10 

well characterized by GCMs, mathematical equations can be constructed to 11 

predict local precipitation from the forecast large-scale circulation (Landman and 12 

Goddard, 2002; Wilby and Wigley 1997). Empirical remapping of GCM fields to 13 

regional rainfall has been demonstrated successfully over southern Africa 14 

(Bartman et al. 2003; Landman and Goddard 2002, 2005; Landman et al. 2001; 15 

Shongwe et al., 2006).  16 

 17 

The chaotic inherent variability of the atmosphere requires seasonal climate 18 

simulations to be expressed probabilistically. Probabilistic forecasts are made 19 

possible through the proper use of GCM ensembles since ensemble forecasting 20 

is a feasible method to estimate the probability distribution of atmospheric states 21 

(Branković and Palmer 2000). In addition, errors in the initial conditions as well as 22 

deficiencies in the parameterizations and systematic or regime-dependent model 23 
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errors can be to a large part accounted for through ensemble forecasting (Evans 1 

et al. 2000). Moreover, there is inevitable growth in differences between forecasts 2 

started from very slightly different initial conditions suggesting that there is no 3 

single valid solution but rather a range of possible solutions (Tracton and Kalnay 4 

1993). Information contained in the distribution of the ensemble members can 5 

subsequently be used to represent forecast probabilities by calculating the 6 

percentage of ensemble members that fall within a particular category (e.g. 7 

below-normal, near-normal or above-normal). Similarly, forecast probabilities can 8 

be produced indicating the percentage of ensemble members in the upper or 9 

lower extremes, e.g., 15th percentiles (Mason et al. 1999).   10 

 11 

There are advantages in combining ensemble members of a number of GCMs 12 

into a multi-model ensemble since GCMs differ in their parameterizations and 13 

therefore differ in their performance under different conditions (Hagedorn et al., 14 

2005). Using a suite of several GCMs not only increases the effective ensemble 15 

size; it also leads to probabilistic simulations that are skilful over a greater portion 16 

of the region and a greater portion of the time series. Multi-model ensembles are 17 

nearly always better than any of the individual models (Dirmeyer et al. 2003, 18 

Doblas-Reyes et al. 2000, 2005, Hagedorn et al., 2005; Krishnamurti et al. 2000). 19 

The benefits from combining ensembles are a result of the inclusion of 20 

complementary predictive information since the forecast scheme is able to 21 

extract useful information from the results of individual models from local regions 22 

where their skill is higher (Krishnamurti et al. 2000). In fact, the most striking 23 
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benefit obtained from multi-model ensembles is the skill-filtering property in 1 

regions or seasons when the performance of the individual models varies widely 2 

(Graham et al. 2000). Moreover, increased ensemble size leads to further 3 

benefits (Brown and Murphy 1996), but the multi-model approach is only 4 

beneficial if the individual models produce independent skilful information 5 

(Graham et al. 2000). A number of ensemble combining algorithms exists. The 6 

most simple of these is the unweighted combination of ensembles from different 7 

models (Hagedorn et al. 2005; Graham et al. 2000, Mason and Mimmack 2002; 8 

Peng et al. 2002; Tippet and Barnston 2008). The improvements of a multi-model 9 

over the individual ensemble systems are attributed to the collective information 10 

of all the models used in the mean of probabilities algorithm. However, the 11 

forecast quality of a simple multi-model ensemble is often difficult to improve on 12 

when the available sample size is relatively small (Doblas-Reyes et al. 2005).  13 

 14 

An association exists between South Africa’s summer seasonal rainfall and the 15 

equatorial Pacific Ocean. However, the association in the middle to late austral 16 

summer season is higher than earlier in the summer rainy season (e.g., Tyson 17 

and Preston-Whyte, 2000), and it is also non-linear (Fauchereau et al. 2008). 18 

Notwithstanding, in the mid-summer months South Africa tends to be 19 

anomalously dry during El Niño years and anomalously wet during La Niña years, 20 

although wet El Niño seasons and dry La Niña seasons are not uncommon. 21 

Indian and Atlantic Ocean SST also have a statistically detectable influence on 22 

South African rainfall variability (e.g., Mason, 1995; Reason et al., 2006). 23 
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Moreover, while the El Niño-Southern Oscillation (ENSO) has a control on rainfall 1 

variability over the southern African region, Indian Ocean SST anomalies, 2 

sometimes varying independently of ENSO, are important for the skilful 3 

simulation of southern African seasonal rainfall variability using atmospheric 4 

GCMs (e.g., Washington and Preston, 2006). Since ENSO is the dominant mode 5 

of seasonal and interannual climate variability globally, and since ENSO has a 6 

strong influence on southern African rainfall, it needs to be investigated to what 7 

extent ENSO influences coupled model performance over southern Africa.  8 

 9 

The paper consists of three parts: 1) single coupled model downscaled forecast 10 

performance during mid austral summer over southern Africa compared with that 11 

of multi-models, 2) the comparison between unweighted and weighted 12 

combination of forecasts, and 3) multi-model performance during ENSO and 13 

during neutral years. For the second part, the unweighted combination involves 14 

downscaling and correcting GCM output first before combining, while for the 15 

weighted combination weighting is done and then combined before downscaling 16 

and correcting. 17 

 18 

19 
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2. Data, models and methods 1 

 2 

2.1. Rainfall data 3 

 4 

The season of interest is December-January-February (DJF) when southern 5 

Africa is being dominated by influences mainly from the tropics and so is a 6 

season of relatively high predictability and ideal for seasonal predictability studies 7 

over the region. The University of East Anglia Climatic Research Unit (CRU) 8 

global 0.5° x 0.5° monthly data, Version 2.1 (Mitchell and Jones, 2005) are used 9 

to construct DJF seasonal averaged rainfall totals for southern Africa south of 10° 10 

south for the period 1959/60 to 2001/02. This data set is used for both empirical 11 

downscaling and for forecast verification.  12 

 13 

2.2. Coupled general circulation models 14 

 15 

The atmosphere-ocean models used in this study are from the DEMETER project 16 

(Palmer et al., 2004) and in particular are the ECMWF, Météo-France and UKMO 17 

coupled models. These models were selected since they each have 43 years of 18 

available hindcast data, and the longer the record of archived model data the 19 

better the chance is to develop robust empirical downscaling equations.  20 

Hindcasts had been started from 1 November and nine ensemble members 21 

created. Seasonal means are used in the study. 22 

 23 



 9 

2.3. Model output statistics 1 

 2 

Given the low spatial resolution of the coupled models (Palmer et al., 2004) there 3 

is a need to downscale the global model output to a higher resolution to satisfy 4 

end-user needs and to further improve on the forecasts (Landman and Goddard, 5 

2002) through the correction of systematic deficiencies in the global models 6 

(Tippet et al., 2005). Model output statistics (MOS; Wilks, 2006) equations are 7 

developed here because they can compensate for these errors in the model 8 

fields directly in the regression equations. The reason why these errors can be 9 

overcome is because MOS uses predictor values from the global models in both 10 

the development and forecast stages. Notwithstanding, the selection of the 11 

appropriate model field require careful consideration: Raw model forecast of 12 

rainfall that is a result of, for example, the interaction between atmospheric 13 

circulation and topography is poorly resolved, and may therefore not be a good 14 

predictor of rainfall observed at ground level. Rainfall fields, even when totalled 15 

over a season, are noisy, and normally contain structures on spatial scales well 16 

below those resolved by the models. However, variables such as large-scale 17 

circulation are more accurately simulated by models than rainfall and should 18 

therefore be used instead in a MOS system to predict seasonal rainfall totals 19 

(Landman and Goddard, 2002).  20 

 21 

The MOS equations are developed by using the canonical correlation analysis 22 

(CCA; Barnett and Preisendorfer, 1987) option of the Climate Predictability Tool 23 



 10 

(CPT). This tool was developed at the International Research Institute for Climate 1 

and Society (IRI; http://iri.columbia.edu). The forecast fields from each GCM used 2 

in the MOS are restricted over a domain that covers an area between the 3 

Equator and 40°S, and Greenwich to 60°E. Empirical orthogonal function (EOF) 4 

analysis is performed on both the predictor (model forecast fields) and predictand 5 

sets (CRU data over southern Africa) prior to CCA, and the number of EOF and 6 

CCA modes to be retained in the CPT’s CCA procedure is determined using 7 

cross-validation skill sensitivity tests. Both the models’ ensemble mean rainfall 8 

and 850 hPa geopotential height fields were separately considered over the 9 

available 43-year period (1959/60 – 2001/02) to find out which of the two fields 10 

provide the best first estimate for the downscaled forecasts. A 5-year-out cross-11 

validation design was selected and it was found that for both the ECMWF and 12 

UKMO models, the height field is the better option, but for the Météo-France 13 

model, rainfall was a slightly better performer. Notwithstanding, 850 hPa 14 

geopotential heights were selected for all three models for consistency and 15 

because of the potential problems mentioned above when rainfall as a 16 

downscaling predictor field is used. Considering other model fields such as 17 

moisture and geopotential heights at levels other than 850 hPa showed no further 18 

benefits over only using the 850 hPa geopotential fields as a single predictor field 19 

either.  20 

 21 

22 



 11 

2.4. Model combination 1 

 2 

A number of forecast combining algorithms exists, but only two are considered 3 

here. The first is the most simple of all combination schemes and involves 4 

unweighted averaging of the forecast probabilities (e.g., Hagedorn et al., 2005). 5 

For this simple combination approach, the 850 hPa height forecasts from the 6 

three coupled models are first separately downscaled to DJF rainfall at the 0.5° x 7 

0.5° CRU resolution and then averaged, and is referred to here as a combination 8 

using equal weights (MMeqw). The second approach allows the models to be 9 

weighted by combining the 850 hPa geopotential height forecasts fields from the 10 

models prior to EOF pre-filtering in the CCA process. Downscaling is then 11 

performed as before, but with combined forecast fields (MMcca) as opposed to 12 

individual model fields.  13 

 14 

2.5. Retro-active forecasts  15 

 16 

In order to minimize artificial inflation of forecast skill, the performance of the 17 

individual models and the two multi-model systems (MMeqw and MMcca) should 18 

be verified over a test period that is independent of the training period and should 19 

involve evaluation of predictions compared to their matching observations 20 

excluding any information following the forecast year. Such a system mimics a 21 

true operational forecasting environment where no prior knowledge of the coming 22 

season is available. The individual models and two multi-model systems are first 23 
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trained with information from 1959/60 and leading up to and including 1979/80. 1 

The seasonal rainfall of the next year (1980/81) is subsequently predicted using 2 

the trained models. The various MOS sets of equations are subsequently 3 

retrained using information leading up to and including 1980/81 to predict for 4 

1981/82 conditions. This procedure is continued until the 2001/02 DJF rainfall is 5 

predicted using MOS systems trained with data from 1959/60 to 2000/01, 6 

resulting in 22 years (1980/81 – 2001/02) of independent forecast data. In 7 

estimating the skill in predicting DJF rainfall over southern Africa, the observed 8 

and predicted fields are separated into three equi-probable categories based on 9 

the preceding years’ climatology defining above-normal, near-normal and below-10 

normal seasonal rainfall totals.  11 

 12 

The distribution of individual ensemble members is intended to be able to 13 

indicate forecast uncertainty. However, only a finite ensemble is available (9 14 

members from each coupled model) suggesting that the forecast distribution may 15 

be poorly sampled – and so the uncertainty associated with the forecasts has to 16 

be estimated. Probabilistic MOS forecasts for each of the 22 retro-active years 17 

are obtained here from the error variance of the cross-validated predictions using 18 

the ensemble mean (Troccoli et al., 2008) for each of the various training periods. 19 

The errors in the predictions are assumed to be Gaussian. Cross-validation is 20 

performed using a (large) 5-year-out window, which means that 2 years on either 21 

side of the predicted year are omitted, in order to minimize the chance of 22 

obtaining biased results. 23 
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 1 

This modelling study also focuses on one of the major sources of predictability 2 

over southern Africa, namely the El Niño – Southern Oscillation (ENSO) 3 

phenomenon, and how forcing from the equatorial Pacific Ocean influences 4 

predictability over the region. The El Niño, La Niña and neutral years considered 5 

are those listed by Coelho et al. (2006). Rainfall retro-active forecast skill over the 6 

subcontinent is then assessed during El Niño (1982/83, 1986/87, 1987/88, 7 

1990/91, 1991/92, 1992/93, 1994/95 and 1997/98 = 8 seasons), La Niña 8 

(1983/84, 1984/85, 1988/89, 1995/96, 1998/99, 1999/00 and 2000/01 = 7 9 

seasons) and neutral (1980/81, 1981/82, 1985/86, 1989/90, 1993/94, 1996/97 10 

and 2001/02 = 7 seasons) events.  11 

 12 

2.6. Estimating true forecast performance 13 

 14 

For the generation of verification data we adopt an approach that minimizes the 15 

inflation of forecast skill by testing the models in an environment that mimics that 16 

of an operational centre, i.e. a retro-active forecast setting (Wilks, 2006). 17 

However, owing to the limited archived model data set available the MOS 18 

equations used for the prediction of the first part of the verification set may not 19 

display a robust relationship between the predictor (850 hPa heights) and 20 

predictand (rainfall at the surface) throughout the retro-active process, but this 21 

problem should become less of an issue as the forecast process progresses 22 
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beyond about 30 years of training data. Notwithstanding, here we assume that 1 

the relationships remain robust, a notion that will be tested later on in the paper.  2 

 3 

Since seasonal climate is inherently probabilistic, seasonal forecasts should be 4 

judged probabilistically. The main attributes of interest for probabilistic forecasts 5 

are: 1) reliability (is the confidence communicated in the forecast appropriate and 6 

are there systematic biases in the forecast probabilities?), 2) resolution (is there 7 

any useable information in the forecast?), 3) discrimination (are the forecasts 8 

discernibly different given different outcomes?), and 4) sharpness (what is the 9 

confidence level that is communicated in the forecast?) (Troccoli et al., 2008; 10 

Wilks, 2006). The forecast verification measures are the reliability diagram 11 

(Hamill 1997; Wilks, 2006) and the relative operating characteristic (ROC; Mason 12 

and Graham, 1999; Wilks, 2006). A forecast system is deemed reliable if there is 13 

consistency between predicted probabilities of an event such as drought/floods 14 

(or below/above-normal rainfall in this paper) and the observed relative 15 

frequencies of drought/floods. Reliability diagrams will be used here to assess 16 

the reliability and confidence of the forecasts. ROC applied to probabilistic 17 

forecasts indicates whether the forecast probability was higher when an event 18 

such as drought occurred compared to when it did not occur, and therefore 19 

identifies whether a set of forecasts has the attribute of discrimination. Here the 20 

area underneath the ROC curve is used as a measure of discrimination in the 21 

prediction of below-normal and above-normal DJF rainfall totals.  22 

 23 
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3. Results 1 

 2 

3.1. Deterministic assessment of forecasts 3 

 4 

Although the seasonal climate is inherently probabilistic and therefore seasonal 5 

forecasts globally are for the most part issued probabilistically, it is often 6 

informative to investigate deterministic forecast performance. Figure 1 shows 7 

area-averaged (Africa south of 10°S) deterministic cross-validated (5-year-out 8 

approach) multi-model DJF rainfall (mm) forecasts over the available 43-year 9 

period (1959/60 – 2001/02) compared with the observed. The cross-validation 10 

procedure is designed in such a way that the data is “wrapped” around in order to 11 

make a 5-year-out approach possible while at the same time producing cross-12 

validated forecasts for the whole period. Forecasts for both MMcca and MMeqw 13 

are shown, and El Niño and La Niña seasons are respectively marked with “E” 14 

and “L”. The vertical line on the figure divides the time series into two parts: The 15 

initial training period for the creation of retro-active forecasts (1959/60 – 1979/80; 16 

21 years) and the retro-active test period (1980/81 – 2001/02; 22 years) for which 17 

probabilistic forecasts are generated. The Spearman’s correlation between the 18 

area-averaged 22-year forecasts and observations for MMcca and MMeqw are 19 

respectively 0.4783 and 0.4873, suggesting about equally skilful area-averaged 20 

deterministic forecasts from the two multi-model methods. The Spearman’s 21 

correlation is used here since the 1997/98 rainfall predictions are considered 22 

outliers (Figure 1). The four driest years during the 22-year test period (1982/83, 23 
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1986/87, 1991/92, 1994/95) are associated with El Niño seasons and the four 1 

wettest with La Niña seasons (1988/89, 1995/96, 1998/99, 1999/00). For the 2 

most part, the forecasts do not capture the size of the observed anomalies for 3 

these extreme seasons, but this is often found with linear regression-based 4 

downscaling techniques such as the one used here. Notwithstanding, no attempt 5 

was made here to inflate the forecasts since variance adjustment of forecasts are 6 

generally discouraged (Trocccoli et al., 2008).  7 

 8 

The length of the training period may have an effect on the robustness or stability 9 

of the MOS equations (Doblas-Reyes et al., 2005; Wilks, 2006). For stability it is 10 

understood that the fitted equations are also applicable to independent data. 11 

Since the initial training period (for making the 1980/81 rainfall forecasts) is only 12 

21 years long, investigation into the variation of forecast performance over the 13 

various training periods is warranted. Figure 2 shows area-averaged Spearman’s 14 

correlations (adjusted with the Fisher Z transformation (Wilks, 2006)) for various 15 

cross-validation training periods ranging from 12 years to 43 years, using MMcca, 16 

and using August-September-October averaged SSTs as predictor in a statistical 17 

model (CCA). The SST predictor field is between 170°E to 80°W and 20°N to 18 

20°S in order to capture central and eastern equatorial Pacific SST variability. A 19 

4th order polynomial is fitted to the averaged Spearman’s correlations and a 20 

gradual improvement in forecast skill can be seen towards a training set 21 

consisting of 32 years when MMcca is used, and throughout the whole period 22 

when using SSTs as predictor in the statistical model. A skill plateau could have 23 
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been attained with the MMcca were it not for the large errors associated with the 1 

rainfall prediction of the 1997/98 El Niño season and of the two preceding years. 2 

Thereafter a gradual decrease is seen until 43 years are included in the MOS 3 

training period. Using the DJF 850 hPa geopotential field predicted at the end of 4 

October by the coupled ECHAM4.5-MOM3-DC2 5 

(http://iridl.ldeo.columbia.edu/SOURCES/.IRI/.MP/.RESEARCH/.COUPLED/.GL6 

OBAL/.ECHAM4p5-MOM3-DC2/) as predictor in the same MOS downscaling 7 

approach for southern Africa, a similar shape is found in the variation of skill 8 

(Figure 2). Here the initial training period is from 1982/83 to 1991/92. It is 9 

suggested that the decrease in skill towards the 2001/02 season is therefore not 10 

a function of the DEMETER data used here, since a differently configured 11 

coupled model produces similar results. Forecast skill using physical models may 12 

thus not be constant in time. However, the dominant modes of CCA (Barnett and 13 

Preisendorfer, 1987) for the multi-model considered here remain the same (not 14 

shown) regardless of the training period used (e.g. Landman and Goddard, 15 

2002), which suggests stability in the selected dominant modes of variability 16 

included in the MOS equations, and therefore implies stability in the MOS 17 

prediction equations even though forecast skill may not be constant in time. 18 

 19 

3.2. Multi-model vs. single model results 20 

 21 

By knowing the probability of a predicted category occurring, additional forecast 22 

value is obtained (Mason and Graham, 1999), since probabilistic forecasts exhibit 23 

http://iridl.ldeo.columbia.edu/SOURCES/.IRI/.MP/.RESEARCH/.COUPLED/.GLOBAL/.ECHAM4p5-MOM3-DC2/
http://iridl.ldeo.columbia.edu/SOURCES/.IRI/.MP/.RESEARCH/.COUPLED/.GLOBAL/.ECHAM4p5-MOM3-DC2/
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reliability considerably in excess of that achieved by corresponding deterministic 1 

forecasts (Murphy, 1998). Probabilistic rainfall forecasts are produced here for 2 

three equi-probable categories of above-normal, near-normal and below-normal. 3 

Only the verification results for the above- and below-normal categories are 4 

presented here since there is little skill to be derived from predicting the near-5 

normal category (Van den Dool and Toth 1991).  6 

 7 

A ROC graph is made by plotting the forecast hit rates against the false alarm 8 

rates (Wilks, 2006). The area beneath the ROC curve is used as a measure of 9 

discrimination here and is referred to as a ROC score. If the area would be ≤0.5 10 

the forecasts have no skill, and for a maximum ROC score of 1.0, perfect 11 

discrimination has been obtained. The ROC score can be interpreted here as a 12 

probability of the forecast system successfully discriminating respectively above- 13 

or below-normal seasons from other seasons.  14 

 15 

The ROC graph and its score can be meaningfully applied in seasonal 16 

forecasting given the small sample size normally associated with these forecasts 17 

(Troccoli et al., 2008). Figure 3 shows the area-averaged ROC scores for above- 18 

and below-normal DJF rainfall for each of the individual downscaled models 19 

(Météo-France – MF; ECMWF and UKMO) and for the two multi-models (MMeqw 20 

and MMcca) as calculated over the 22-year test period in a retro-active design. 21 

All area-averaged scores are above 0.5, which means that on average there is 22 

more than a 50% chance that all the forecast systems have the ability to 23 
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successfully discriminate respectively wet and dry seasons from other seasons. 1 

Two of the three single models have a greater ability to discriminate the below-2 

normal category as opposed to the above-normal one, but both the multi-models 3 

are better able to discriminate the below-normal category. Moreover, the multi-4 

models have higher averaged ROC scores than any of the individual models. In 5 

fact, based on the area-averaged scores the multi-models each have at least a 6 

61% chance of discriminating the above-normal category and at least a 63% 7 

chance of discriminating the below-normal DJF rainfall. The outperformance by 8 

the multi-models over southern Africa confirms what has been found with many 9 

other studies that multi-model forecasts usually outscore single model forecasts 10 

(e.g. Barnston et al., 2003; Doblas-Reyes et al., 2005; Hagedorn et al., 2005; 11 

Coelho et al., 2006; Weigel et al., 2008; Wang and Fan, 2009).  12 

 13 

The improvement in forecast performance of the multi-models over the single 14 

models is further demonstrated in Figure 4 that shows the geographical 15 

distribution of ROC score differences between the multi-models and the 16 

individual models. Figure 4(a) shows where the multi-model that uses equal 17 

weights (MMeqw) outscore each of the individual models, and Figure 4(b) where 18 

the weighted forecast combination multi-model (MMcca) outscores them. Shaded 19 

areas are where the multi-models outperform the single models. Both sets of 20 

maps show that most of southern Africa is associated with positive ROC score 21 

differences, thus providing further evidence that the multi-models are outscoring 22 

the single models.  23 
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 1 

The ROC score is sometimes criticized as a measure of forecast performance 2 

because of its insensitivity to reliability (Troccoli et al., 2008). Figure 5 shows the 3 

reliability diagrams for the individual models. In addition to the respective 4 

reliability curves for the two categories, their least-squares regression lines are 5 

presented on the diagrams. The regression lines are calculated with weighting 6 

relative to how frequently forecasts are issued at a given confidence. When these 7 

regression lines lie along the diagonal, the forecasts are perfectly reliable. When 8 

the regression line lies above the diagonal observed above- or below-normal DJF 9 

rainfall tends to occur more frequently than forecast, but when it lies below the 10 

diagonal the observed categories respectively tend to occur less frequently than 11 

forecast, indicating under- and over-forecasting respectively. The most common 12 

slope of the regression line found for seasonal forecasting is one that is shallower 13 

than the diagonal line (Troccoli, et al., 2008) – the forecasts are said to be over-14 

confident. Histograms are also included in the figures, and they show the 15 

frequencies with which forecasts occur in probability intervals of 10%, starting at 16 

5%.   17 

 18 

All the forecasts made by the single models for both above- and below normal 19 

DJF are over-confident (Figure 5). However, forecasts for below-normal rainfall 20 

totals are less over-confident than forecasts for above-normal rainfall for all three 21 

single models. Since the single models are over-confident, multi-model 22 

ensembles can enhance prediction skill regardless of which combination 23 
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approach is used since multi-model combination reduces over-confidence 1 

(Weigel et al., 2008). Figure 6 shows the reliability diagrams of the two multi-2 

models, and here improved reliability over the single models is in fact seen (the 3 

regression lines for both categories tend to be closer to the diagonal). However, 4 

for both multi-models the high-probability above-normal forecasts are not reliable, 5 

as well as the high-probability below-normal forecasts of the MMeqw model. This 6 

result suggests that a simple equal weighting scheme to combine forecasts may 7 

not sufficiently reduce over-confidence (Barnston et al., 2003) for high-probability 8 

forecasts. Difference maps (not shown) of ROC scores (MMcca minus MMeqw) 9 

for the two categories show more or less an even split in terms of the areas of 10 

positive and negative score differences. This result indicates that both multi-11 

model approaches are not much different in their ability to discriminate events 12 

from non-events, and that the MMcca is only slightly better able to produce 13 

reliable high-probability below-normal rainfall forecasts. However, such forecasts 14 

are often made during El Niño seasons  15 

 16 

It has been shown that both the single and multi-models have the ability to 17 

discriminate between different observed situations. However, the multi-models 18 

outscore the single models, both in terms of discrimination and reliability. Since 19 

southern African mid-summer rainfall is influenced by the state of the equatorial 20 

Pacific Ocean, there is a need to investigate how skilful a multi-model predicts 21 

the two rainfall categories during ENSO and during neutral events separately. 22 

 23 



 22 

3.3. Multi-model forecast performance during ENSO years 1 

 2 

CCA pattern and time series analysis (Barnett and Preisendorfer, 1987) of the 3 

multi-model (MMcca) forecast system suggests that the dominant modes of 4 

predictor variability (three or four canonical modes that produce the best forecast 5 

results over the retro-active forecast period) are partly related to different 6 

influences of ENSO on southern African mid-summer rainfall (Fauchereau et al., 7 

2008) since the correlations between the Oceanic Niño Index (ONI; 8 

www.cpc.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml) and 9 

the three leading canonical temporal scores of the predictor (combined 850 hPa 10 

geopotential height fields) are respectively 0.5017 (p<0.01), -0.5337 (p<0.01) and 11 

-0.3023 (p<0.05) over the 43-year period. The question may arise then what 12 

added benefit there may be in running multi-model systems that consist of 13 

physical models that are primarily ENSO driven, over a simple statistical model 14 

that uses Pacific Ocean SSTs as predictors and is much cheaper to run. This 15 

question is answered by referring back to Figure 2. The gray dashed line is the 16 

4th order polynomial that is fitted to the area-averaged Spearman’s correlation 17 

obtained by using a simple statistical model (CCA) with central and eastern 18 

equatorial Pacific Ocean SST (170° E to 80° W; 20° N to 20° S) as predictor. 19 

Although there is convergence in the performance of the forecasting systems 20 

towards the end of the cross-validation period, the multi-model outscores the 21 

simple model throughout. This result suggests that the coupled models’ 22 

downscaled forecasts include additional forecast information that cannot be 23 



 23 

derived from equatorial Pacific SST alone, which justifies the use of physical 1 

forecast models to predict seasonal rainfall variability over southern Africa. Take 2 

note that the introduction here of the statistical model was not to set an easy to 3 

beat baseline skill level, but to demonstrate that the skill of the GCMs comes 4 

from climatological forcings beyond the central and eastern equatorial Pacific 5 

Ocean. 6 

 7 

The multi-model DJF rainfall forecast performance during the El Niño (8 8 

seasons), La Niña (7 seasons) and neutral (7 seasons) years over the 22-year 9 

retro-active period are shown in Figure 7 to 9. The forecasts for the ENSO and 10 

non-ENSO years are separately taken from the retro-active forecasts prior to 11 

calculating the verification statistics for these years. Since the skill calculations 12 

are based on only a few cases (7 or 8) they may be sensitive to sampling errors. 13 

ROC calculations are however less sensitive to sampling errors than reliability 14 

diagrams (Troccoli et al., 2008). Figure 7 presents area-averaged ROC scores 15 

and it is shown that on average the multi-model is able to discriminate the above-16 

normal and below-normal rainfall categories during ENSO years, but fails to do 17 

so during neutral years (averaged ROC scores are below 0.5 for both 18 

categories). Moreover, the multi-model performs best predicting drought during El 19 

Niño years and floods during La Niña years, but there is skill in predicting wet El 20 

Niño and dry La Niña seasons over southern Africa too. This result is further 21 

manifested in the geographical distribution of ROC scores for the above- and 22 

below-normal rainfall categories and for ENSO and neutral years as shown in 23 
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Figure 8. Large patterns of ROC scores in excess of 0.5 are seen for the El Niño 1 

and La Niña cases, but much smaller areas associated with neutral years are 2 

found. The multi-model therefore performs poorly during neutral years. The 3 

reliability diagrams for rainfall prediction during El Niño and La Niña years are 4 

shown in Figure 9. Forecasts are again over-confident, but as is found with the 5 

ROC scores there is skill in predicting both drought and wet seasons during El 6 

Niño years and predicting wet and drought seasons during La Niña years. The 7 

forecasts at least correctly indicate increases and decreases in the probabilities 8 

of the wet and dry events. 9 

 10 

4. Discussion and conclusions 11 

 12 

Southern African mid-summer probabilistic rainfall prediction skill has been 13 

assessed by using forecasts from state-of-the-art fully coupled models that are 14 

empirically downscaled and combined in order to produce multi-model forecasts. 15 

Forecast performance was tested over a retro-active period of 22 years that 16 

mimics an operational forecast configuration. Multi-model forecasts outscore 17 

single model forecasts and can be used with confidence during El Niño and La 18 

Niña seasons. In addition, the two multi-model forecast approaches produce 19 

about equally skilful forecasts.  20 

 21 

The robustness of the MOS equations was tested and found that although 22 

forecast skill may not be constant in time, especially with short training periods, 23 



 25 

the dominant modes of variability included in the equations remain similar for a 1 

variety of training periods. Regardless of this variation in skill, multi-model 2 

performance consistently outscored a simple statistical model that only includes 3 

equatorial Pacific Ocean SST variability as predictor. The improved multi-model 4 

forecasts are therefore a result of the system’s ability to include forecast 5 

information in addition to the signal originating from the central and eastern 6 

equatorial Pacific Ocean. Both single model downscaled forecasts and multi-7 

model forecasts seems to be able to discriminate between different observed 8 

situations such as below-normal and above-normal DJF rainfall seasons, 9 

notwithstanding the result that forecasts are overconfident. Prediction of wet or 10 

dry conditions during ENSO years is also skilful, but little skill has been found 11 

predicting DJF rainfall when the equatorial Pacific Ocean is in a neutral state. 12 

Predictions during El Niño seasons are strongly overconfident, but are less so for 13 

rainfall predictions during La Niña seasons.  14 

 15 

The paper has demonstrated that multi-model systems are able to provide useful 16 

operational mid-summer rainfall forecasts over southern Africa, but only during 17 

ENSO years. Rainfall forecasts for southern Africa produced by the EUROSIP 18 

multi-model, that consists of later versions of the three coupled GCMs discussed 19 

here, made near the end of 2009 for the 2009/10 DJF El Niño season show 20 

mostly enhanced probabilities for dry conditions to occur. A similar forecast was 21 

also issued by other international centres such as the IRI, and also by the South 22 

African Weather Service. Moreover, summer rainfall forecasts for 2009/10 issued 23 
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to the South African public was made with high confidence, partly based on the 1 

result that multi-models can produce reliable drought forecasts and because of 2 

the confidence in summer rainfall forecasts during El Niño seasons. However, 3 

DJF rainfall over South Africa was anomalously high, especially over the central 4 

and western parts of that country (http://www.weathersa.co.za) and so the 5 

observed wet 2009/10 austral summer season over the region was largely 6 

missed by most forecasting systems. Further model development (e.g. 7 

Engelbrecht et al., 2007) and modelling studies on how models represent the 8 

coupled system over southern Africa are therefore warranted.  9 

 10 
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Figure captions  4 

 5 

Figure 1. Area-averaged observed (thick line) DJF rainfall (mm) over Africa south 6 

of 10° S, versus cross-validation forecasts (thin lines) from the two multi-models 7 

described in the text. El Niño (E) and La Niña (L) seasons are also shown. The 8 

arrow indicates where the retro-active test period starts. The years on the x-axis 9 

refer to the December months of the DJF seasons.  10 

 11 

Figure 2. Variation in cross-validation forecast skill predicting DJF rainfall over 12 

southern Africa as reflected by area-averaged Spearman’s correlation values. 13 

The thick black solid line (4th order polynomial) and associated thin black solid 14 

line show the MMcca multi-model’s performance as a function of cross-validation 15 

training period, while the thick black dotted and thin black dotted lines represent 16 

the ECHAM4.5-MOM3-DC2 coupled model. The remaining gray lines represent 17 

the statistical model that uses equatorial Pacific Ocean SST as predictor. The 18 

arrow indicates where the retro-active test period starts. 19 

 20 

Figure 3. ROC scores, averaged over the southern African domain, for the 21 

above-normal and below-normal rainfall categories. Scores for the single models 22 

and for the two multi-models are shown.  23 
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 1 

Figure 4. ROC score differences between the a) MMeqw multi-model and the 2 

single models, and b) MMcca multi-model and single models. Positive ROC 3 

score differences are where the multi-models are superior.  4 

 5 

Figure 5. Reliability diagrams and frequency histograms for above- and below-6 

normal DJF rainfall forecasts produced by the single models. The thick black 7 

curves and black bars of the histogram represent the below-normal rainfall 8 

category, while the thick black dotted curves and white bars of the histogram 9 

represent the above-normal rainfall category. For perfect reliability the curves 10 

should fall on top of the thick black diagonal line. The thin solid and dotted lines 11 

are respectively the weighted least-squares regression lines of the above-normal 12 

and below-normal reliability curves.  13 

 14 

Figure 6. As in Figure 5, but for the two multi-models.  15 

 16 

Figure 7. ROC scores, averaged over the southern African domain, for the 17 

above-normal and below-normal rainfall categories during El Niño, La Niña and 18 

neutral seasons. Scores for the MMcca multi-model are shown. 19 

 20 

Figure 8. ROC scores of the MMcca multi-model, for El Niño, La Niña and neutral 21 

seasons, and for the above- and below-normal rainfall categories. ROC scores 22 

≥0.5 are shaded.  23 
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 1 

Figure 9. As in Figure 5, but for rainfall predictions during El Niño and La Niña 2 

seasons using the MMcca multi-model.  3 

 4 



Figure 1. Area-averaged observed (thick line) DJF rainfall (mm) over Africa south of 10°S, versus cross-validation forecasts (thin lines) from the two
multi-models described in the text. El Niño (E) and La Niña (L) seasons are also shown. The arrow indicates where the retroactive test period starts.
The years on the x-axis refer to the December months of the DJF seasons



Figure 2. Variation in cross-validation forecast skill predicting DJF rainfall over southern Africa as reflected by area-averaged Spearman's correlation
values. The thick black solid line (4th-order polynomial) and associated thin black solid line show the MMcca multi-model's performance as a function of
cross-validation training period, while the thick black dotted and thin black dotted lines represent the ECHAM4.5-MOM3-DC2 coupled model. The
remaining gray lines represent the statistical model that uses equatorial Pacific Ocean SST as predictor. The arrow indicates where the retroactive test
period starts



Figure 3. ROC scores, averaged over the southern African domain, for the above-normal and
below-normal rainfall categories. Scores for the single models and for the two multi-models are
shown
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MMeqw) for the two categories show more or less an
even split in terms of the areas of positive and neg-
ative score differences. This result indicates that both
multi-model approaches are not much different in their
ability to discriminate events from non-events, and that
the MMcca is only slightly better able to produce reliable
high-probability below-normal rainfall forecasts. Such
forecasts are often made for southern Africa during El
Niño seasons.

It has been shown that both the single and multi-
models have the ability to discriminate between different
observed situations. However, the multi-models outscore
the single models, both in terms of discrimination and
reliability. Since southern African mid-summer rainfall
is influenced by the state of the equatorial Pacific Ocean,
there is a need to investigate how skilful a multi-model
predicts the two rainfall categories during ENSO and
during neutral events separately.

(a)

Figure 4. ROC score differences between the (a) MMeqw multi-model and the single models, and (b) MMcca multi-model and single models.
Positive ROC score differences are where the multi-models are superior.
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(b)

Figure 4. (Continued ).

3.3. Multi-model forecast performance during ENSO
years

CCA pattern and time series analysis (Barnett and
Preisendorfer, 1987) of the multi-model (MMcca) fore-
cast system suggests that the dominant modes of pre-
dictor variability (three or four canonical modes that
produce the best forecast results over the retro-active
forecast period) are partly related to different influ-
ences of ENSO on southern African mid-summer rain-
fall (Fauchereau et al., 2008) since the correlations
between the Oceanic Niño Index (ONI; www.cpc.noaa.

gov/products/analysis monitoring/ensostuff/ensoyears.
shtml) and the three leading canonical temporal scores
of the predictor (combined 850 hPa geopotential height
fields) are, respectively, 0.5017 (p < 0.01), −0.5337
(p < 0.01) and −0.3023 (p < 0.05) over the 43-year
period. The question may arise then what added benefit
there may be in running multi-model systems that con-
sist of physical models that are primarily ENSO driven,
over a simple statistical model that uses Pacific Ocean
SSTs as predictors and is much cheaper to run. This ques-
tion is answered by referring back to Figure 2. The gray
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Figure 5. Reliability diagrams and frequency histograms for above- and below-normal DJF rainfall forecasts produced by the single
models. The thick black curves and black bars of the histogram represent the below-normal rainfall category, while the thick black
dotted curves and white bars of the histogram represent the above-normal rainfall category. For perfect reliability the curves should
fall on top of the thick black diagonal line. The thin solid and dotted lines are respectively the weighted least-squares regression lines
of the above-normal and below-normal reliability curves.



Figure 6. As in Figure 5, but for the two multi-models.



Figure 7. ROC scores, averaged over the southern African domain, for the above-normal and below-normal rainfall categories during
El Ni˜no, La Ni˜na and neutral seasons. Scores for the MMcca multi-model are shown.
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Figure 8. ROC scores of the MMcca multi-model, for El Niño, La Niña and neutral seasons, and for the above- and below-normal rainfall
categories. ROC scores ≥0.5 are shaded.

and drought seasons during La Niña years. The forecasts
at least correctly indicate increases and decreases in the
probabilities of the wet and dry events.

4. Discussion and conclusions

Southern African mid-summer probabilistic rainfall pre-
diction skill has been assessed by using forecasts from
state-of-the-art fully coupled models that are empirically

downscaled and combined in order to produce multi-
model forecasts. Forecast performance was tested over a
retroactive period of 22 years that mimics an operational
forecast configuration. Multi-model forecasts outscore
single model forecasts and can be used with confidence
during El Niño and La Niña seasons. In addition, the two
multi-model forecast approaches produce about equally
skilful forecasts.

The robustness of the MOS equations was tested and
found that although forecast skill may not be constant in

Copyright  2010 Royal Meteorological Society Int. J. Climatol. 32: 303–314 (2012)



Figure 9. As in Figure 5, but for rainfall predictions during El Ni˜no and La Ni˜na seasons using the MMcca multi-model.




