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Abstract: 

The dynamic deterrence model (DDM) represents an analytical framework widely used 

for analyzing compliance with fishery regulations aiming for sustainable fishery 

management. However, applications of the DDM have so far been limited to the case of 

constant probability of detection that assumes independence of the length of time to 

detection. This paper modifies the DDM to allow for more flexible and broader 

specification by introducing, for the first time, two important variables to the supply of 

offences function, namely evasion activity and enforcement efforts and accommodating 

inconstant probability of detection specifications. Determinants of probability of 

detection are specified and important potential extensions of the modified DDM are 
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discussed in this paper. The relative magnitude of the effects of each of these 

determinants on probability of detection, however, remains an important empirical 

question that requires further investigation for prioritization of policy actions. 

 

Keywords:   Dynamics; Illegal fishing; Profit functions; proportional hazard rate 

 

1. Introduction 

In natural resource modelling, dynamic models have been developed to analyze 

allocation of resources over time (inter-temporal allocation decisions). The dynamic 

deterrence model (DDM) is one example of an analytical framework widely used for 

analyzing compliance with fishery regulations aiming for sustainable fishery 

management. The two periods DDM, first developed by Davis (1988) postulates that 

violators seek to maximize their expected discounted profit over two periods, where in 

the first period, offenders gain from illegal activities until they get caught and pay a fine, 

after which they will engage only in legal activities in the second period. 

The applications of DDM have so far been limited to the case of constant probability of 

detection that assumes independence of the length of time to detection (Akpalu, 

2008/2009; Davis, 1988; Leung, 1991). The factors that determine the probability of 

detection function also lack clarity in explanation in this model. As probability of 

detection is considered to be a salient issue of compliance, better understanding of this 

function is very important. There are good reasons to believe that probability of detection 

could be time-dependent. The Cox’s proportional hazard function allows this hypothesis 
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to be accommodated and provides a better explanation of factors influencing probability 

of detection.  

 

Inconstancy of probability of detection could be influenced by factors beyond the control 

of violators. For instance, the probability of the violator being caught is small in an 

artisanal setting but higher when the fishing industry is highly commercialised. Other 

sources of inconstancy of probability of detection include violator’s aversion to the risk 

of being arrested, which varies over time because of age or simply luck or any factor that 

is assumed to make the hazard rate change over time.  Three important modifications to 

the standard DDM are suggested in this paper to allow for a more flexible specification 

and better explanation of the factors determining compliance with regulations. 

 

The paper proceeds by defining the extensions to the existing analytical framework of 

compliance models in next section. Section three formally develops the adapted model 

and its extensions. Section four concludes the paper with suggestions for potential further 

extensions of the DDM. 

 

 2. Extending the current analytical framework 

This study adapts the standard DDM introducing three important modifications: allowing 

for random detection time, relaxing the assumption of constant probability of detection 

and employing frequency rather than intensity of violation as a measure of violation rate. 
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2.1. Allowing for random time of detection 

 

Although the DDM segregates violation rate into two periods, namely, before and after 

getting caught, all previous literature using this model formulates the choice problem to 

be optimised over an infinite time horizon. The transition between the two periods is 

therefore not clear. This study assumes that time of detection is a random variable that 

defines the end of the first period and the start of the second period, which then extends 

to infinity in period two. Splitting the two periods would then result in an easier 

distinction between the violation and compliance periods within the decision time 

horizon.  

  

2.2. Inconstant probability of detection 

 

A key contribution of this study is that it adapts the DDM to allow for inconstancy of 

probability of detection by employing the Cox proportional hazard function to represent 

it. The probability of detection is thus defined as a function of the multiple of two terms, 

namely, a constant individual characteristics function and a time-variant hazard function.  

 

2.3 Measuring violation rate by frequency instead of intensity of violation 

The rate of violation in the DDM is measured either by frequency of violation (number of 

times a fisher violates regulations) in static models (Eggert and Lokina 2010; Hatcher and 

Gordon 2005, Sutinen and Kuperan 1999; King and Sutinen 2010 and Furlong 1991) or 

intensity of violation, which is measured by the proportion of illegal catch compared to 
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the total catch in dynamic models (Akpalu 2008). Intensity of violation may be applicable 

in the context of developed countries but it is highly unlikely to work well in developing 

countries where fishers can easily escape detection and where monitoring and 

enforcement of regulation is weak.  

3. The DDM for compliance 

The DDM adapted for this study assumes that violators enjoy incremental profits from 

violation in the first period until detected at timeτ , which marks the end of the first 

period. The offender is then punished at the end of the first period and begins to behave 

legally thereafter (to compare between the standard and modified DDMs see annex A). 

 

Suppose that the goal of an individual fisher who violates mesh size regulation is to 

maximize his/her profit from the two periods before and after being caught. The profit 

from fishing illegally in the first period is defined as 𝜋(𝑚). The violation rate m should 

accordingly be positive (m>0) during the first period and zero through period two. We 

assume that the gain from violation increases with m at a decreasing rate, i.e. 𝜕𝜋(𝑚)
𝜕𝑚

>

0 &
 

𝜕2𝜋(𝑚)
𝜕𝑚2 < 0. Assuming that after being caught, the fisher will only fish legally (i.e. 

m=0) and gets a constant profit net of the fine F, we define profit in the second period 

as 𝜋(𝑛). A perfect selectivity assumption is hold in this case, i.e. nets with the legal mesh 

size can harvest only mature stock, and those with the illegal mesh size can harvest both 

mature and immature stock.                                                                                                                                                                                

Moreover, we assume that in absolute terms, illegal fishing is more profitable than legal 

fishing.   
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  𝜋(𝑚) > 𝜋(𝑛)                (1) 

As stated earlier, we assume that in the first period, the violator will fish until he/she is 

caught at a random time τ in the future, given that she has never been caught before. The 

second period starts from the random time τ  when the fisher is caught and required to 

pay a fine F, which incorporates a fixed amount of money and the cost of the illegal net, 

which will be seized immediately. The violator’s inter-temporal expected profit is 

accordingly given by: 

 

𝐽(𝑚,𝑛) = 𝑚𝑎𝑥𝑚  𝐸�∫ 𝑒−𝛿𝜏𝜏
0  𝜋(𝑚)𝑑𝑡 + ∫ 𝑒−𝛿𝜏𝜋(𝑛)  𝑑𝑡 − 𝑒−𝛿𝜏𝐹  ∞

𝜏 �   (2) 

 

Where J(.) is the value function, E is the mathematical expectation , δ  is the discount 

rate, )(mπ and )(nπ are, respectively, the profit from illegal and legal fishing, τ  is the 

random time when the second period starts (the time the fisher is caught and required to 

pay the fine F).  

 

Two factors motivate the formulation of this model. First, in most of the developing 

countries, the management regime is known as “regulated open access” where fishers can 

catch as much as they can as long as obeying some regulations such as mesh size 

regulations as considered in this paper.  

 

Secondly, although violators do generally recidivate, because of poverty and difficulty in 

buying an illegal net (expensive), we assume that the fisher is highly unlikely to 
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recidivate, following literature (Akpalu 2008). This implies that this model is closer to 

developing countries situations. 

 

Like previous models (Davis 1988; Leung 1991; Akpalu 2008/2009) we assume that the 

violator does not know the exact time of detection, but has information about the 

probability distribution of time of detection. Accordingly, we specify a continuous 

distribution of time of detection τ   with a probability density function - pdf g(τ ) and 

cumulative density function - cdf G(τ ) such that g(τ ) = dG(τ )/dτ , where ∞≤ τ0 . 

Then, the violator’s objective function is to maximize the expected discounted profits 

from fishing illegally in the first period and legally after getting caught, subject to the 

survival time (the details of this calculation are presented in Annex A).  

     

𝐽(. ) = 𝑚𝑎𝑥𝑚 �𝜋(𝑚)
𝛿

− �𝜋(𝑚)−𝜋(𝑛)+𝐹
𝛿

� 𝐸𝑒−𝛿𝜏�      (3) 

 

The interpretation of this equation is important. The first term is the discounted expected 

benefit from illegal fishing for an infinite time horizon, and the second and third parts 

(between brackets) illustrate the penalty that the violator should pay when getting caught, 

which includes lost net gains from illegal fishing (difference between legal & illegal 

fishing profits) plus the fine imposed F.  

 

The use of expected utility or profit is motivated by the fact that the gain from violation is 

not guaranteed, since violators might get caught at any time. All previous specifications 

used both density function and cumulative functions to represent probability distribution 
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of detection time. Here we use the mathematical expectation with respect to the density 

function. 

 

The goal of the violator is then to maximize equation 3, subject to probability of 

detection. We explain in the following section the new specification of inconstant 

probability of detection introduced to the DDM for the first time.  

 

So far in the literature, the probability of detection function has been modelled as 

constant over time, while some attempts have considered influences of probability of 

detection to vary only with violation rate m but still independent of time (Leung 1991). 

Accordingly influences of important factors were not explicitly entered in the supply of 

offence function of the deterrence model. This study modifies previous specifications of 

the hazard function to allow for better understanding of influences of factors determining 

noncompliance by relaxing key assumptions.  

 

To relax the assumption of constancy of probability of detection; we adopt Cox’s 

proportional hazard model (CXPHM). This model is mostly used in survival analysis 

(Cox 1972) commonly applied to analysis of data in different fields of sciences such as 

medicine, environmental health, criminology, and marketing (Jenkins 2005; Lee and Go 

1997). The said model is particularly popular in medical sciences when measuring the 

survival of patients with serious diseases. This study used the CXPHM to define survival 

time, which is linked to the hazard rate (probability of detection) in order to define the 

density function with the following general expression: 
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H(𝒯,𝑚, 𝑣, 𝑛) = ℬ(𝑚, 𝑣,𝑁)ℎ(𝒯), or 

Pr(𝒯,𝑚, 𝑣,𝑛) = ℬ(𝑚, 𝑣,𝑁)ℎ(𝒯)             0 ≤ ℬ ≤ 1 and   𝑑𝛽
𝑑𝑚

> 0   (4) 

 

Previous DDM specifications assumed probability of detection to be a function of 

violation rate m (i.e. Pr(m)). Equation 4 above introduces key modifications in the 

standard DDM previous formulations. The right-hand side of equation 4 includes two 

hazard functions: the first (.)β  is the individual-specific hazard function, which does not 

depend onτ , whereas the second (the baseline hazard function) τ(h ) depends on time but 

not on β  factors. The latter function is the one that determines whether the hazard rate is 

constant, decreasing or increasing, explained further below. Equation 4 implies that 

probability of detection is linearly related to individual hazard function (.)β  , which is 

expected to increase with the crime rate (m) and decrease with enforcement (N) and 

evasion activities (v) as cited in the literature (Charles et al. 1999). The important 

implication of the above CXPHM specification is that the baseline hazard function can 

accommodate constant and inconstant time dependence.  

 

Most of the literature on survival analysis using the Cox proportional hazard rate assumes 

an exponential distribution because of ease and convenience in computation. However, 

this assumption does not have a realistic survival time in real life (Bender et al. 2003). 

The most frequently used distribution for survival time is the Weibull distribution (Lee 

and Go, 1997). Using this type of distribution allows for the three situations of constant, 

decreasing or increasing probability of detection. 
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We accordingly specify the following proportional hazard rate function:  

 

 ℎ(𝜏) = 𝑔�𝑚,𝑣,𝑁,𝒯�
1−𝐺�𝑚,𝑣,𝑁,𝒯�                     (5) 

Applying some calculations and rearrangements of terms to link the proportional hazard 

rate and the pdf, both formulas are equated. Then the density function as a function of the 

proportional hazard rate is given as follows (see Annex B for details): 

            

𝑔(𝜏,𝑚,𝑁, 𝑣) = ℬ(𝑚, 𝑣,𝑁)ℎ(𝒯)e−ℬ(𝑚,𝑣,𝑁)∫ ℎ(𝒯)𝑑𝜏𝑡
0                                                  (6) 

 

Incorporating this into the value function specified in equation 3 the violator’s 

maximization problem can then be written as:   

               

𝐽(. ) =  𝑚𝑎𝑥𝑚  �
𝜋(𝑚)
𝛿 � − �𝜋(𝑚)−𝜋(𝑛)+𝐹

𝛿 � ∫ 𝑔(𝒯,𝑚,𝑣,𝑁)∞
0  𝑒−𝛿𝒯 𝑑𝑡   (7) 

 

Therefore, the net gain from violation is the expected discounted value of illegal fishing 

minus the discounted expected penalty. The last term represents the discounted density of 

time of detection, which is a function of explanatory variables (m, v, N), determining the 

hazard rate and rate of violation.  For simplicity, the last term of equation (7) will be 

replaced by the following formula throughout the text: 

        

𝐷(𝜏,𝑚,𝑁, 𝑣) = ∫ 𝑔(𝒯,𝑚,𝑣,𝑁)∞
0  𝑒−𝛿𝒯 𝑑𝑡         (8) 
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According to the standard DDM, Probability of detection has a concave relation with m 

(Davis, 1988) which implies that 

𝜕𝐷
𝜕𝑚

> 0
 

Substituting equation (8) in the value function, gives the following form: 

 

𝐽 =  𝑚𝑎𝑥𝑚  �
𝜋(𝑚)
𝛿 � − �𝜋(𝑚)−𝜋(𝑛)+𝐹

𝛿 �  𝐷(𝜏,𝑚,𝑁, 𝑣)                (9)
 

 
   

 

The optimal level of violation is obtained from the first order conditions by 

differentiating the objective function with respect to m to decide on the optimal amount 

of m that maximizes the profit through the optimal path. For the violator to maximise 

her/his profit, equation (9) is assumed to satisfy concavity conditions (annex C):  

 

𝜕𝐽
𝜕𝑚

= 0 = �𝜕𝜋(𝑚)/𝜕𝑚
𝛿 � [1−𝐷] − �𝜋(𝑚)−𝜋(𝑛)+𝐹

𝛿 � 𝜕𝐷𝜕𝑚     (10)
 

          

𝜕2𝐽
𝜕𝑚2 > 0          (11)

 
          

Denoting the first order condition in equation 10 by K, we have:  

                                                    

𝐾 = �𝜕𝜋(𝑚)
𝜕𝑚 � [1−𝐷] − [𝜋(𝑚)− 𝜋(𝑛) + 𝐹] 𝜕𝐷𝜕𝑚                                                              (12)
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Solving 12 for optimal frequency of violation level (m*) and differentiating m* with 

respect to its arguments, we can perform comparative static analysis of the influences of 

introduced factors on the frequency of violation, particularly punishment severity F, 

evasion efforts v, and enforcement measures N. 

 

4.  Calculation of the effect of each factor on the rate of violation 

Invoking the implicit function theorem for function K(m*(α), α), where α is a vector of 

the set of arguments in the model and m is at its optimal level m* (to simplify 

presentations we hereafter omit the *), the following hold for each argument αj at the 

optimum level m*: 

 

* 0
j j j

dK K m K
d mα α α

∂ ∂ ∂
= + =
∂ ∂ ∂  Or in other words:  m

KKm
jj ∂
∂

∂
∂

−=
∂
∂ /

αα   (13) 

 

Using the above, we can derive the following comparative static’ results 

  4.1  Influence of fine severity (F) on frequency of violation 

𝜕𝐾
𝜕𝐹

= − 𝜕𝐷
𝜕𝑚

< 0                               (14) 

For result 14 to have the expected negative sign supporting the theoretical expectation 

that higher deterrence will reduce violation, 
m
D
∂
∂  has to be positive, implying that 

probability of detection (density function of detection time D) must be higher with more 

frequent violations (higher m, or 0>
∂
∂
m
D ). This seems to support plausible hypotheses 

about compliance with regulation. 
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4.2   Influence of evasion efforts (v) on frequency of violation 

 

𝜕𝐾
𝜕𝑉

= − 𝜕
𝜕𝑉
�𝜕𝜋(𝑚)
𝜕𝑚 𝐷+ [𝜋(𝑚) − 𝜋(𝑛) + 𝐹] 𝜕𝐷𝜕𝑚� < 0      (15)                              

 
 

It is implicit that gains from illegal fishing π(m) increase with more violation (i.e. ∂π/∂m 

≥ 0) and that violation brings higher gains (π(m) – π(n) ≥ 0). Since F and D are both 

positive, and as implied by result 15 above 0>
∂
∂
m
D  (higher violation rates increase 

probability of detection), then result 16 suggests that investment in evasion efforts is 

inversely related to violation rate (i.e. a negative sign on 15).  This result is consistent 

with theoretical hypotheses (Charles et al, 1999) which suggests that evasion activity 

decreases gains from violation since it increases the cost of attempting safer violation and 

hence lowers the need for more frequent violations (reducing the need for more frequent 

attempts to violate). This is the first time that such hypothesis is tested as allowed by the 

current specification of the DDM and also invokes an important implication in terms of 

the trade-off between higher evasion efforts (v) and higher rates of violation (frequency 

m) in fishers’ decision making, to which we will return later. 

4.3 Influence of enforcement measures (N) on frequency of violation 

 

           𝜕𝐾
𝜕𝑁

= − 𝜕
𝜕𝑁
�𝜕𝜋(𝑚)
𝜕𝑚 𝐷+ [𝜋(𝑚) − 𝜋(𝑛) + 𝐹] 𝜕𝐷𝜕𝑚� < 0    (16) 

  

The same arguments made under result 15 hold and hence the negative sign of result 16, 

implying that an increase in enforcement discourages violation. 
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4.4  Influence of discount rate measures on frequency of violation 

             

𝜕𝐾
𝜕𝛿

= −
𝜕𝜋(𝑚)
𝜕𝑚

𝜕𝐷
𝜕𝛿

− [𝜋(𝑚) − 𝜋(𝑛) + 𝐹]
𝜕
𝜕𝑚� 

𝜕𝐷
𝜕𝛿� > 0                                                   (17)   

 

Since the discount rate and the function D are negatively related (see annex D), the 

overall sign is positive, implying that increase in the discount rate increases frequency of 

violation. This result has been previously reported in the literature (Akpalu, 2008). 

 

 

5.     Concluding remarks 

 

In this paper, we modify the DDM in two specific ways to allow for a more flexible and 

broader specification. First, we introduce time as a random variable in the distribution of 

the density function to accommodate inconstant probability of detection by using a 

proportional hazard rather than the survival hazard used in existing literature. Second, we 

employ frequency rather than intensity of violation as a measure of violation rate. These 

extensions introduce two variables into the supply of offences function, which are 

evasion activity v and enforcement N, a major feature of this paper and a contribution to 

existing literature on compliance.   

 

The method of comparative static was used to derive important analytical results that are 

in line with theory and prior results reported in the literature. It shows that violation 

decreases with higher fines, and greater evasion and enforcement levels. Derived 

comparative static’ results suggest important potential modifications to the DDM. For 
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instance, it is clear that the profit from illegal activity depends on both evasion efforts (v) 

and violation rate (frequency m). This implies that the model can be reformulated to have 

two control variables, m and v. In such a case, the violator will seek to choose the optimal 

combination of these two variables. Thus, a useful extension of the DDM is to consider 

the trade-off between these two choices and possibilities of substitution.  

 

The modified DDM can be used to empirically simulate influences of key determinants 

of compliance under alternative formulations. For example, the discounted density 

function that is used to model probability of detection in this paper can assume different 

distribution functions, which allows for the three possibilities of constant, increasing and 

decreasing probability of detection employing the Weibull distribution. Therefore, 

simulation and sensitivity analyses can be performed and outcomes compared under the 

three situations. This may be implemented through maximising the deterrence model in 

equation 9 subject to the proportional hazard equation 4 on any optimization algorithm. 

 

The relative magnitude of the effects of each of the determinants on probability of 

detection, however, remains an important empirical question that requires further 

investigation for prioritization of policy actions. For example, a regression analysis of the 

determinants of probability of detection can be used by applying the Weibull proportional 

hazard regression model, using the programme SAS as explained by the literature in the 

medical and criminology fields. This is done by choosing the appropriate independent 

variables assumed to affect this probability (in the case of this paper, these are the 

variable that measured enforcement, avoidance activities and violation rate) and another 
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variable that is dependent on time, such as age, as the baseline function (Bender et al., 

2003; Lee and Go, 1997; Bodenhorn and Price, 2009; Maddan et al., 2008). This kind of 

data is rarely found especially in developing countries. 

 

Applications of the model developed in this study are not limited to the fishery case but 

can be generalised to management and regulation of other natural resources such as 

exploitation of common property forest, water and grazing lands and hunting of wildlife. 
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Annex A. Modifying the standard DDM 

 

(Comparing the standard and modified model) 

 

The standard DDM postulates maximizing the following value function: 

𝑣(. ) = � 𝑒−𝛿𝑡 
∞

0
𝜋(𝑚) (1 − 𝐺(𝑡)) + 𝜋(𝑛) 𝐺(𝑡) − 𝑅𝐹𝑔(𝑡)𝑑𝑡   

Where 𝑣(. )  is the violation rate, )(mπ and )(nπ are, respectively, profit from illegal and 

legal fishing; G(t) and [1-G(t)] are, respectively, probability of being caught and not 

caught; F is the fine imposed on illegal fishing; R is the probability that a fisher is fined 

given that s/he is detected; and δ is the discount rate. Defining probability of being 

detected (hazard rate) Pr(m)) as:  

Pr(𝑚) =
𝑔(𝑡)

1 − 𝐺(𝑡)

=
−𝑑(1 − 𝐺(𝑡)/𝑑𝑡

1 − 𝐺(𝑡)
                                                                                             

       
 

Pr(𝑚) = −𝑑𝑙𝑛(1−𝐺(𝑡)/𝑑𝑡
𝑑(𝑡)

   
                           

            
 

Integrating both sides, we reach: 

� Pr(𝑚)
t

0
𝑑𝑡 − 𝑙𝑛(1 − 𝐺(𝑡))                                                                                                        

 

 

ln{1 − G(t)} = −� Pr(𝑚)
t

0
𝑑𝑡 ℎ𝑒𝑛𝑐𝑒{1 − G(t)} = exp −� Pr(𝑚)

t

0
𝑑𝑡                            
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Then the values of the density and cumulative functions are: 

 

{1 − 𝐺(𝑡)} = 𝑒−∫ Pr(𝑚)𝑑𝑡∞
0 ;   {𝐺(𝑡)} = 1 − 𝑒−𝑃𝑟(𝑚)𝑡  𝑎𝑛𝑑{𝑔(𝑡)}

= 𝑃𝑟 (𝑚)𝑒−𝑃𝑟(𝑚)𝑡                                                                              

    
      

Substituting the values of 𝑔(𝑡) and 𝐺(𝑡) in equation and assuming that all other variables 

are constant over time, we get the value function of each violator 

 

𝑣(. ) =
𝜋(𝑚) − 𝑅𝐹𝑃𝑟(𝑚)

𝛿 + Pr (𝑚)
 +

𝜋(𝑛)
𝛿

     

 

This is the same value function alternatively expressed in this paper as: 

 

𝐽(. ) = 𝑚𝑎𝑥𝑚 ��
𝜋(𝑚)
𝛿 � −  �

𝜋(𝑚) − 𝜋(𝑛) + 𝐹
𝛿 � 𝐸 𝑒−𝛿𝒯 � 

 

Where, 𝑬 �𝒆−𝜹𝓣 � = ∫ 𝒈(. )∞
𝟎  𝒆−𝜹𝓣 𝒅𝒕 

The main modification we introduce is in the specification of g(.) as we make g vary over 

time and influenced by individual hazard function factors such as evasion and 

enforcement activities. This defines a new value function: 

 

𝐽(. ) =  𝑚𝑎𝑥𝑚  �
𝜋(𝑚)
𝛿 � −  �

𝜋(𝑚)− 𝜋(𝑛) + 𝐹
𝛿 �� 𝑔(𝒯,𝑚,𝑣,𝑛)

∞

0
 𝑒−𝛿𝒯 𝑑𝑡 

 



 21 

This section shows all the steps for the integration to calculate the expected net present 

value of illegal gain using the modified two times dynamic deterrence model. 

           Where  𝜋(𝑚) = 𝜋𝑚 𝑎𝑛𝑑    𝜋(𝑛) = 𝜋𝑛,  

 

𝐽 (. )       =  𝑚𝑎𝑥𝑚  𝐸∫ 𝑒−𝛿 𝜋𝑚𝑑𝑡+ 𝐸∫ 𝑒−𝒮  ∞
𝒯

𝒯
0 𝜋𝑛𝑑𝑡 − 𝑒−𝛿𝒯 𝐹 1

𝛿    .................................A1 

              =  𝑚𝑎𝑥𝑚  𝐸� 𝑒−𝛿  𝜋𝑚𝑑𝑡 + 𝐸� 𝑒−𝒮  [𝜋𝑚 − 𝜋𝑛]
∞

𝒯

𝒯

0
𝑑𝑡 − 𝑒−𝛿𝒯 𝐹

1
𝛿    

 

       =  𝑚𝑎𝑥𝑚  𝐸 � 𝑒−𝛿  𝑑𝑡 + 𝐸 [𝜋𝑚 − 𝜋𝑛]� 𝑒−𝒮  
∞

𝒯

𝒯

0
𝑑𝑡 − 𝑒−𝛿𝒯 𝐹

1
𝛿    

 

      =  𝑚𝑎𝑥𝑚  𝐸�𝜋𝑚 
∞→

=

−−
t

t

te

0δ

δ

−  [𝜋𝑚 − 𝜋𝑛]
∞→

=

−−
t

t

te

τ

δ

δ
− 𝑒−𝛿𝒯 𝐹 1

𝛿    � 

�      =  𝑚𝑎𝑥𝑚  𝐸 �
𝜋𝑚
𝛿    

 −  [𝜋𝑚−𝜋𝑛]
𝛿

𝑒−𝛿𝒯 – 𝑒−𝛿𝒯 𝐹 1
𝛿    
� 

�      =  𝑚𝑎𝑥𝑚  𝐸 �
𝜋𝑚
𝛿    

 −  [𝜋𝑚−𝜋𝑛+𝐹]
𝛿

𝑒−𝛿𝒯 � ………………………………………A2 

�      =  𝑚𝑎𝑥𝑚  �
𝜋𝑚
𝛿    

 −  [𝜋𝑚−𝜋𝑛+𝐹]
𝛿

� 𝐸�𝑒−𝛿𝒯 �  

�      =  𝑚𝑎𝑥𝑚  �
𝜋𝑚
𝛿    

 −  [𝜋𝑚−𝜋𝑛+𝐹]
𝛿

� ∫ 𝑔(𝜏,𝑚,𝑁, 𝑣)𝑒−𝛿𝒯 𝑑𝜏∞
0

.................................A3 

 

Equation (A-1) is the discounted net present value of a fisher who violates the first period 

(first term) plus the gain from the second period (second term). After in between 

calculation and integration, we reached equation A-2, which give us the exact expected 

discount profit from violation, the first term is the gain from violation and the second 

term is the amount of penalty that the fisher gets after being caught (the difference 

between legal and illegal plus fine) the outcome will be the pure gain from violation. 
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In equations A-3, we insert the value of the expectation parameter, which is the net 

present value of the time of detection.  

 

Annex B. Calculating the Probability density (the relations between the density 

function and proportional hazard rate) 

 

This is straightforward calculation to get the proportional density function g(.) from the 

hazard formula and inserts the final results in the maximisation equation.  

 

Pr(𝒯,𝑚, 𝑣,𝑛) = ℬ(𝑚, 𝑣,𝑛)ℎ(𝒯)                                                                  

 

With the survival function given by: 

 

ℎ(𝜏) =  
𝑔(𝜏,𝑚,𝑛, 𝑣)

1 − 𝐺(𝜏,𝑚, 𝑛, 𝑣)                                                                              

 

                   

    =  
𝑑𝐺(𝜏,𝑚,𝑛, 𝑣)

𝑑𝜏
1 − 𝐺(𝜏,𝑚, 𝑛, 𝑣)                                                                                    

 

                     =  
−𝑑(1 − 𝐺(𝜏,𝑚, 𝑛, 𝑣))/𝑑𝜏

1 − 𝐺(𝜏,𝑚,𝑛, 𝑣)                                                  
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                 =  
−𝑑𝑙𝑛(1 − 𝐺(𝜏,𝑚,𝑛, 𝑣))/𝑑𝜏

𝑑𝜏
                                               

 

 

Integrating both sides we get 

 

� h(𝜏,𝑚,𝑛, 𝑣)𝑑𝜏 =  − 𝑙𝑛{1 − 𝐺(𝜏,𝑚,𝑛, 𝑣)}                                        
𝒯

0
 

−� h(𝜏,𝑚, 𝑛, 𝑣)𝑑𝜏 =   𝑙𝑛{1 − 𝐺(𝜏,𝑚,𝑛, 𝑣)}
𝒯

0
                                                        

Hence 

1 − 𝐺(𝜏,𝑚,𝑛, 𝑣) = exp �−� ℎ(𝜏,𝑚,𝑛, 𝑣)𝑑𝜏
𝑡

0
�                                 

 

Which can written as 

 

1 − 𝐺(𝜏,𝑚,𝑛, 𝑣) = e�−∫ h(𝜏,𝑚,𝑛,𝑣)𝑑𝜏𝑡
0 �                                                       

 

If the periodic harvest in this model is assumed to be constant overtime then 

 

1 − 𝐺(𝜏,𝑚,𝑛, 𝑣) = e(−∫ h(𝜏,𝑚,𝑛,𝑣)𝑑𝜏𝑡
0 )                                                       

−𝐺(𝜏,𝑚,𝑛, 𝑣) = e(−ℬ(𝑚,𝑣,𝑛)ℎ(𝒯)                                                        

 

                       𝐺(𝜏,𝑚,𝑛, 𝑣) = 1 − e−ℬ(𝑚,𝑣,𝑛)∫ ℎ(𝒯)𝑑𝜏𝑡
0                                              
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And, 

𝑔(𝜏,𝑚,𝑛, 𝑣) = ℬ(𝑚, 𝑣,𝑛)ℎ(𝒯)e−ℬ(𝑚,𝑣,𝑛)∫ ℎ(𝒯)𝑑𝜏𝑡
0                             

 

Substituting fro 𝑔(𝜏,𝑚,𝑛, 𝑣) in the value function we obtain: 

 

𝐽 =  𝑚𝑎𝑥𝑚  �
𝜋(𝑚)
𝛿 � − �

𝜋(𝑚)− 𝜋(𝑛) + 𝐹
𝛿 �� 𝑔(𝒯,𝑚.𝑣,𝑛)

∞

0
 𝑒−𝒮𝒯 𝑑𝑡. 

                                                                                                                              

Annex C 

Calculation of the first and second order condition 

For the violator to maximise his profit the value function should be concave.  

 

    𝜕𝐽
𝜕𝑚

= 0 = �𝜕𝜋(𝑚)/𝜕𝑚
𝛿 � [1−𝐷] − �𝜋(𝑚)−𝜋(𝑛)+𝐹

𝛿 � 𝜕𝐷𝜕𝑚 

 

𝜕2𝐽
𝜕𝑚2 = �

1− 𝐷
𝛿

𝜕2𝜋
𝜕𝑚2� − �

𝜕2𝐷
𝜕𝑚2

𝜋(𝑚)− 𝜋(𝑛) + 𝐹
𝛿 +

𝜕𝐷
𝜕𝑚�

𝜕𝜋/𝜕𝑚
𝛿 ��  

 

        = 1
𝛿
�(1− 𝐷) 𝜕

2𝜋(𝑚)
𝜕𝑚2 − 𝜕𝜋(𝑚)

𝜕𝑚
𝜕𝐷
𝜕𝑚� − �𝜕

2𝐷
𝜕𝑚2 �

𝜋(𝑚)−𝜋(𝑛)+𝐹
𝛿

�� < 0  
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Annex (D) 

Relation between probability of detection and the discount rate 

 

The relation between probability of detection and the discount rate is calculated as 

follows: 

𝐷(𝜏,𝑚,𝑁, 𝑣) = � 𝑔(𝒯,𝑚,𝑣,𝑛)
∞

0
 𝑒−𝛿𝒯 𝑑𝑡 

Then  

𝜕𝐷
𝜕𝛿

= −� 𝜏𝑔(. )
∞

0
 𝑒−𝛿𝒯 𝑑𝑡 
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