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Abstract 
 
Population-type models, accounting for phenomena such as population lifetimes, mixing patterns, 
recruitment patterns, genetic evolution and environmental conditions, can be usefully applied to the 
biology of HIV infection and viral replication.  A simple dynamic model can explore the effect of a 
vaccine-like stimulus on the mortality and infectiousness, which formally looks like fertility, of 
invading virions; the mortality of freshly infected cells; and the availability of target cells, all of which 
impact on the probability of infection.  Variations on this model could capture the importance of the 
timing and duration of different key events in viral transmission, and hence be applied to questions 
of mucosal immunology.  The dynamical insights and assumptions of such models are compatible 
with the continuum of between- and within-individual risks in sexual violence, and may be helpful in 
making sense of the sparse data available on the association between HIV transmission and sexual 
violence. 
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Introduction 
 
Throughout this special issue, the question of sexual violence is addressed from a number of points 
of view, and with various methodologies.  This article focuses on understanding the biology of sexual 
transmission (the passage of virions from one person to another) through genital mucosa, and 
regards overt sexual violence as part of a continuum of risk factors.   
 
We argue that the investigation of transmission risk can benefit from the use of simple models, and 
from the application of standard modelling techniques such as rescaling of state variables (factors 
indicating the current state of the system) and parameters (model inputs that capture specific 
dynamical rules, especially rates, in a quantitative fashion), to identify qualitatively different model 
behavior, such as having stable or unstable equilibria, or exhibiting a harmful or protective effect of a 
given stimulus.  
 
A concern which traditionally  arises  in building models for biological processes is how to capture 
enough detail to make the model ‘realistic’, while keeping it simple enough to be formally or 
computationally tractable, and with few enough parameters that data can be obtained to ‘fit’ or 
‘calibrate’ the model sensibly. Our approach,  which is rather conventional in the applied 
mathematical analysis of dynamical systems, and is routinely applied within the growing field of 
biophysics, has not, as far as we are aware, been systematically applied to the problem of HIV 
transmission – probably partly because movement of infectious material from person to person 
during intercourse is not a system readily amenable to controlled manipulation and observation. 
However, even working within the data-poor regime in which this field finds itself, this paradigm has 
the potential to assist with hypothesis generation and study design: using these tools, many regimes 
of diverse systems can be summarised into a far smaller number of formally distinct models, the use 
of which reduces technical difficulty and facilitates the transfer of intuition. 
 
Models of processing around the transmission event itself may be useful to shed light on questions 
such as 

• Are risk factors altered moderately or substantially by sexual violence, relative to consensual 
sex? 

• Are men participating in ongoing sexual violence at particularly high risk of acquisition due to 
penile trauma, leading in turn to a particularly high risk in the subsequent exposure of 
women during acute infection of these men? 

• What is the plausible range of benefit from topical or systemic post exposure prophylaxis for 
rape survivors, and over what time scale? 

• What specific parameters (such as diffusion length scales, time scales, intermediate event 
counts, cell densities, etc.) might be measurable in live animal models, explants, or culture 
experiments, which would correspond to factors impacting the above questions? 

 
To demonstrate these ideas, we outline a simple model which was originally developed to support 
thinking about HIV vaccines, and then discuss how the model’s mathematical form can be 
reinterpreted in a different context. Parameters can be modified to accommodate, while they are 
reinterpreted as, factors other than those originally intended. Beside the focus of this issue on sexual 
violence, a mature transmission model should shed some light on topical and systemic pre-exposure 
and post-exposure prophylaxis (PreP/PEP), vaccine development1, hormonal contraception2, 
treatment as prevention (TasP)3, cervical ectopy4, differences in viral replication due to the site of 
infection5, and the biological impacts of sexual violence on the risk of HIV transmission and 
acquisition.  
 
 



Modelling HIV Transmission  
 
Population dynamics-type models6,7,8 have been widely used to describe systems of cells and virions 
to assist in understanding viral replication and evolution, and even, in particular, to specific aspects 
of early infection9, but, to the authors’ knowledge, have not been applied to the process of 
transmission itself.  One interesting finding from studies of early infection is that the pattern of 
genetic diversity of HIV virus in the weeks after transmission is only consistent, in about three 
quarters of infections, with the transmission of a single genotype, which has typically been 
interpreted as the transmission of a single virion10,. An alternative view is that descendants of other 
variants may be undetectable because critical early events, or relatively minor differences in 
replicative fitness, accumulate exponentially over viral life cycles to produce a strong dominance by 
the descendants of one of several founder variants. Nevertheless, it is biologically plausible to model 
transmission risk as the likelihood of establishing a single founder strain, which facilitates 
simplifications of the models relative to a more general case where there are many possible 
pathways to infection, involving a wide range of possible numbers of transmitted virions.  
 
Starting from this view, a population dynamics-type model11,12 was previously developed by Welte 
and Walwyn13 in order to capture the initial exposure of susceptible immune system cells to HIV 
virions.  Whether or not an exposure develops into systemic infection is determined by random 
events within a lifecycle model which includes background and immune system-mediated hazards for 
invading free virions, cell invasion leading to a first generation of infected cells, and cell-to-cell 
transmission of virions.  The initial design of this model attempted to capture the following important 
characteristics of infection: 
 

• The probability of transmission (male to female) is low14,15  and approximately proportional 
to viral exposure dose and endocervical susceptible lymphocytes. 

• Successful transmission is mostly due to the survival of a single genotype16, suggesting that 
there is significant screening of the initial HIV in semen dose and that only a very small 
number of wild-type virions break through the immune barrier(s). 

• Higher rates of transmission are found in the presence of genital tract inflammation and 
other sexually transmitted diseases17,18.  

• The epithelial layer can be considered as an initial 'barrier zone'19. Generally this barrier zone 
is effective, but once breached, the infection spreads to local T cells and macrophages, and 
also the interstitial dendritic cells, following which the infection spreads rapidly as a result of 
the formation of dendritic/T cell clusters which migrate into the regional lymph nodes. 

• The probability of transmission has been seen to increase in early vaccine trials20,21. 
 
We consider the development of appropriate population-dynamic models of initial infection to be a 
long term process, requiring new inputs and insights into the very early stages of infection22. For the 
purpose of exploration, we developed a simplistic model based on the following: 
 

• We assume that the susceptible individual is challenged by a number of free virions, such as 
an HIV-positive male exposing a sexual partner to HIV-bearing semen. 

• The invading virions are characterised by a mortality 𝜇 (probability per unit time of 
irreversible virion disintegration) and a ‘fertility’  𝑓 (probability per unit time of infecting a 
cell). 

• Any infected cells produced by invading virions are subject to a mortality λ (probability per 
unit time of irreversible cell disintegration). 

• For a characteristic time 𝑇, first-generation infected cells, assumed to be superficially located 
by virtue of having encountered free virus, have negligible prospects of spawning virions in 



sufficient proximity to other susceptible cells for there to be a chance of generating second-
generation infected cells. 

• A first-generation infected cell which survives for a time 𝑇 has a high chance of reaching a 
locus of more susceptible cells, leading thereafter to the rapid establishment of a systemic 
infection. 

 
Using standard survival analysis, we explore this model when all rates are presumed to be constant, 
although in principle, all of  𝜇 , λ and 𝑓 are potentially functions of time. Survival to time 𝑇 is given by  
 

𝑆(𝑇) = 𝑆 = 𝑒−𝜆𝑇 
 
The probability of a single virion successfully infecting a cell is given by its expected net fertility  
 

𝐹 =
𝑓

𝑓 +  𝜇
 

 
which just expresses cell invasion as a fraction of the total environmental opportunity and hazard, 
where  𝜇 = 𝜇𝑏  + 𝜇𝑖, the baseline and immune-induced mortalities. Any first-generation infected cell 
has a probability of survival for a time 𝑇, and the probability that a single invading virion leads to an 
infected second-generation cell after time 𝑇 is then given by  
 

𝑃 = 𝐹𝑆 = 𝑓
𝑓+ 𝜇

 𝑒−𝜆𝑇 ≪ 1. 

 
 
 
 
We now demonstrate the qualitative application of our ultimately very formal quantitative model 
with the intention of exploring generic questions such as: 
 

• Does the system behave in qualitatively different ways for different ranges of parameter 
values? 

• Are there interesting trade-offs between forces or factors, or is there synergy? 
• Are superficially separate factors really distinguishable, and do they require independent 

assessment and measurement, or do they ultimately manifest only in combinations which 
can be observed through their net/combined effect? 

• Can an analysis of the model outputs help to build intuition and formulate concrete 
hypotheses which feed into experimental designs? 

 
Returning to our demonstration model, the probability that an exposure becomes an established 
infection depends explicitly on four parameters which capture the hypothetical dynamical rules: 𝜇, λ, 
𝑇 and 𝑓. It is unlikely that these can each be reliably measured at present, so we consider a slightly 
abstract approach.  A perturbation of the system, such as the administration of a vaccine designed to 
elicit a neutralising antibody response, was initially of interest. While it is impossible to predict how a 
vaccine might affect each parameter of the system, it is common, across very wide categories of 
models, for small perturbations to dynamical systems to have at least an initial regime where most 
parameters respond linearly to the perturbation, especially if the perturbation does not cause very 
fundamental changes in the system. If one has knowledge of the dynamics, this simple impact on the 
parameters (i.e. the rules) can be translated, using mathematical techniques, into the much harder-
to-guess, -intuit, or -observe, impact on the system state. 
 



Given these simplifying assumptions, we can use standard modelling methods to construct all 
possible ‘intrinsic’ parameters of the system, noting in particular the dimensionless parameters, i.e. 
those without arbitrary units for such quantities as time, size, etc. Because the size of these 
dimensionless parameters (which are often ratios of parameters of the same units/dimension) are 
independent of the practical choice of measurement units, they can be used to provide ‘intrinsic’ 
criteria, which determine the qualitative regimes of the system. Importantly, this allows us to state in 
a logically consistent manner whether effects are small or large, synergistic or antagonistic. As 
illustrated in the original vaccine application, an antibody vaccine affects the system in the following 
ways: 
 

• It increases the probability of incoming virions being neutralised, thereby increasing 𝜇 
• It leads to general immune system activation, hence increasing the density of available target 

cells23, or an increase in 𝑓. 
 

 

 

Fig. 1. Risk of infection after stimulation by a “neutralizing antibody vaccine” of strength α, relative to risk of 

infection before stimulation, given the relative efficiency ϴ of a specific vs. general immune system response.  

 
Without providing any particular numerical values for individual underlying parameters, it can be 
formally shown (as demonstrated numerically in Figure 1) that the effect of the vaccine is beneficial, 
or deleterious, depending on whether the ratio of the ‘relative’ efficiency of these two effects is 
greater, or less than, one, respectively, as captured by the “universal response parameter” ϴ:  



 

𝜃 =
𝑓0𝜇′

𝑓′𝜇0
=

𝜇′
𝜇0
𝑓′
𝑓0 

 

 
where the primed symbols are the rates of change of the parameters with respect to imposition of 
the perturbation.  Formally, this is derived by Taylor-expanding the probability of transmission, in the 
case of a perturbation,  around the value in the absence of a perturbation, and taking the ratio of the 
perturbed and unperturbed values. Importantly, because the density of susceptible cells is directly 
proportional to the parameter 𝑓, but the density of neutralizing antibodies is proportional only to a 
portion, µi,  of µ, it is likely that 𝜃 < 1, i.e. that the probability of infection will be increased by an 
immune response which increases the density of a broad range of immune cells, all susceptible to 
infection and of which only a portion act as neutralizing agents.. This formal relationship suggests 
direct measurements of changes in 𝜇 and 𝑓, which might be measurable in-vitro, or in non-human 
primate models. 
 
A CTL-stimulating vaccine can be defined as one which 

• Increases the mortality (λ) of the first generation of infected cells 
• Generally activates the immune system, as in the case of the antibody vaccine, hence 

increasing the parameter 𝑓. 
 
 
Now it can be shown that the relative risk of transmission, as a function of the strength α of the 
vaccine stimulus, and a more complex notion of relative efficiency Γ is given (see Fig. 2) by 
 

𝑅(𝛼) =
1 + 𝛼

1 +  𝜃𝛼
𝑒−Γ𝛼 

 
where  
 

Γ =
𝑓0𝑇𝜆′

𝑓′
 

 
This shows quite different, and more complex behaviour, in that, under the model assumptions, a 
suitably ‘strong’ stimulus will always be protective, but that depending on the parameter Γ, which 
captures the trade-off of the various components of immune system stimulus, the perturbation may 
need to be ‘sufficiently large’. This is the result of non-linearity in the way the various parameters 
enter the dynamics.  
 
Variations on this theme of the vaccine stimulus can be considered. For example: 
 

• The transit time T within which a primary infected cell needs to encounter further target cells 
would be shortened by mucosal trauma or inflammation24,25, which in turn could be studied 
in relation to mechanical or chemical stresses. 

• Stress, nutrition, and general (as opposed to genital) trauma could be linked to systemic 
immune activation or suppression, leading to changes in 𝑓 (perhaps in either direction). 



 

Fig. 2. Risk of infection after stimulation by a “CTL vaccine” of strength α, relative to risk of infection 

before stimulation, given the relative efficiency Γ of a specific vs. general immune system response. 

 
• Correlation to acute infection, such as in serial violent encounters involving disproportional 

risk of recent acquisition by men, may lead to ‘recently transmitted’ virus, selected for larger 
values of 𝑓 (more efficient cell entry), or smaller values of 𝜇 (greater structural stability, or 
evasion of neutralising agents). 
 

 As noted earlier, an initial assumption of this model is that transmission risk is proportional to viral 
dose.  More recent work has shown that this risk appears to scale non-linearly with viral load26,27. At 
levels below 100,000 RNA copies per ml, the risk of transmission can be predicted using a power law 
between the two variables (i.e. a linear correlation based on the logarithmically transformed data).  
However at higher viral loads, further increases in RNA copies per ml are not associated with a 
greater risk of transmission28,29,30.  It has been pointed out that it is more biologically plausible, and a 
good fit to the data, to view this as a linear increase for smaller viral loads, and a saturation for 
higher viral loads. 
 
This interpretation is consistent with the view that sexual contacts at low viral loads carry minimal 
risk, but extra viral load does indeed increase risk in direct proportion to viral load up to the 
saturation point, beyond which this effect is insignificant relative to other factors.  The latter may 
include saturation kinetics of T cell responses and the dynamics of macrophage recruitment.  It was 
noted previously that counting transmitted virions is not straightforward, so that it is unclear 
whether multiple transmissions are as uncommon as they superficially seem (about a quarter of 



cases). This aspect warrants further investigation, and in particular whether, and which, microscopic 
factors sensitively affect acquisition risk.  It is plausible, and disconcerting, that violence-associated 
risk factors may be a substantial contributor to the risk of infection, if not epidemiologically, then 
potentially still at the level of the individual. 
 
 
Conclusion 
 
Our purpose in this article is to outline the utility of a simple statistical model in identifying  
important dynamical regimes, as defined by a set of broadly conceptualised mathematical 
parameters, and hence developing relevant experimental hypotheses.  
 
Model equations cannot distinguish between any external factors which have the same effect on the 
model parameters. Hence, a pre-exposure prophylaxis regimen which inhibits reverse transcription 
could also be seen as reducing viral ‘fertility’ 𝑓; and other active ingredients, or pharmacological 
actions, could induce changes (perhaps in either direction) in general inflammation of, or immune 
cell trafficking to, the mucosal interface (collectively influencing the parameter 𝜆). Emotional and 
physical trauma associated with violence could also affect immunity to infectious diseases, but the 
relationship between stress and the immune system is complex: for instance, although chronic stress 
has a negative impact on immune function, short-term stress may boost immune activity, including 
natural-killer-cell activity and leukocyte release31.  
 
 
Traditionally, modelling is dichotomised into ‘deterministic’ and ‘stochastic’ (probabilistic / statistical) 
rules. The former tend to capture abstract ‘rules’, and also the emergent or average behaviour of 
systems of sufficient size. In work on HIV transmission, mature probabilistic models are mainly the 
ones used for conventional ‘data analysis’ such as estimation of associations between ‘risk-factors’ 
and ‘outcome’. The crucial processes of transmission, at the individual level, are highly variable and 
unpredictable. Modelling and unpacking these processes explicitly will involve hybrid models which 
have proven difficult to construct, mainly due to a lack of detailed data to assist in model selection. 
We argue that these difficulties can be addressed, in part, by using immature models to generate 
hypotheses about early post-exposure events and the variability and correlates of risk, and to 
sharpen experimental designs and analyses through the improved characterisation of intrinsic system 
behaviors. 

 
References: 

                                                           
1 Saunders KO, Rudicell RS, Nabel GJ. The design and evaluation of HIV-1 vaccines. AIDS 2012; 26(10): 1293-
1302.  
2 Baeten JM, Lavreys L, Overbaugh J. The influence of hormonal contraceptive use on HIV-1 transmission and 
disease progression. Clinical Infectious Diseases 2007; 47:945-951.   
Blish CA, Baeten JM.: Hormonal contraception and HIV-1 transmission. American Journal of Reproductive 
Immunology 2011; 65(3): 302-307.  
3 Granich RM, Gilks CF, Dye C, De Cock KM, Williams BG. Universal voluntary HIV testing with immediate 
antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model. Lancet 2009; 
373(9657): 48-57.  
4 Moss GB, Clemetson D, D’Costa L, Plummer FA, Ndinya-Achola JO, Reilly M, Holmes KK, Piot P, Maitha GM, 
Hillier SL, Kiviat NC, Cameron CW, Wamola IA, Kreiss JK: Association of cervical ectopy with heterosexual 
transmission of human immunodeficiency virus: results of a study of couples in Nairobi, Kenya. Journal of 
Infectious Diseases 1991; 164(3): 588-591.   



                                                                                                                                                                                     
5 Hladik F, McElrath MJ: Setting the stage—HIV host invasion. Nature Reviews Immunology 2008; 8(6): 447-
457.  
6 Nowak MA, May RM. 2000. Virus Dynamics. New York: Oxford University Press.  
7 Perelson AS, Nelson PW. 1999. Mathematical analysis of HIV-1 dynamics in vivo. SIAM Review 41:3-44.  
8 Perelson AS. 2002. Modelling viral and immune system dynamics. Nature Reviews Immunology (2): 28-36. 
9 Lee HY, Giorgi EE, Keele BF, et al. Modeling sequence evolution in acute HIV-1 infection. Journal of Theoretical 
Biology 2009; 261: 341-360.  
10 Fischer W, Ganusov VV, Giorgi EE, Hraber PT, Keele BF, Leitner T, Han CS, Gleasner CD, Green L, Lo C-C, Nag 
A, Wallstrom TC, Wang S, McMichael AJ, Haynes BF, Hahn BH, Perelson AS, Borrow P, Shaw GM, Bhattacharya 
T, Korber BT. Transmission of single HIV-1 genomes and dynamics of early immune escape revealed by ultra-
deep sequencing. PlOS One 5(8): e12303. doi:10.1371/journal.pone.0012303. 
11 Turchin P. Complex Population Dynamics: a Theoretical/Empirical Synthesis. Princeton: Princeton University 
Press, 2003.  
12 Alstad D. Basic Populus Models of Ecology. Upper Saddle River, New Jersey: Prentice-Hall, 2003.  
13 Welte A, Walwyn D: Mathematical modelling of acute infection: what can it tell us about the challenges of 
vaccine design? Poster Presentation, International AIDS Vaccine Conference, Cape Town, 2008.  
14 Hughes JP, Baeten JM, Lingappa JR, Magaret AS, Wald A, de Bruyn G, Kiarie J, Inambao M, Kilembe W, 
Farquhar C, Celum C, Partners in Prevention HSV/HIV Transmission Study Team: Estimating the impact of 
plasma HIV-1 RNA reductions on heterosexual HIV-1 transmission risk. PLoS One 2010; 5(9): e12598. 
doi:10.1371/journal.pone.0012598.  
15 Wawer MJ, Gray RH, Sewankambo NK, Serwadda D, Li X, Laeyendecker O, Kiwanuka N, Kigozi G, Kiddugavu 
M, Lutalo T, Nalugoda F, Wabwire-Mangen F, Meehan MP, Quinn TC: Rates of HIV-1 transmission per coital act, 
by stage of HIV-1 infection, in Rakai, Uganda. Journal of Infectious Diseases 2005; 191(9): 1403-1409.  
16 Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG, Sun C, Grayson T, Wang S, Li H, 
Wei X, Jiang C, Kirchherr JL, Gao F, Anderson JA, Ping L-H, Swanstrom R, Tomaras GD, Blattner WA, Goepfert 
PA, Kilby JM, Saag MS, Delwart EL, Busch MP, Cohen MS, Montefiori DC, Haynes BF, Gaschen B, Athreya GS, Lee 
HY, Wood N, Seoighe C, Perelson AS, Bhattacharya T, Korber BT, Hahn BH, Shaw GM: Identification and 
characterization of transmitted  and early founder virus envelopes in primary HIV-1 infection. Proceedings of 
the National Academy of Sciences of the United States of America 2008; 105(21): 7552-7557.  
17 Fox J, Fidler S: Sexual transmission of HIV-1. Antiviral Research 2010; 85(1): 276-85. 
18 Johnson LF, Lewis DA. The effect of genital tract infections on HIV-1 shedding in the genital tract: A 
systematic review and meta-analysis. Sexually Transmitted Diseases 2008; 35(11): 946—959. 
19 Alfsen A, Yu H, Magerus-Chatinet A, Schmitt A, Bomsel M: HIV-1-infected blood mononuclear cells form an 
integrin- and agrin-dependent viral synapse to induce efficient HIV-1 transcytosis across epithelial cell 
monolayer. Molecular Biology of the Cell 2005; 16(9): 4267-4279.  
20 P.B. Gilbert et al. Correlation between immunologic responses to a recombinant glycoprotein 120 vaccine 
and incidence of HIV-1 infection in a phase 3 HIV-1 preventive vaccine trial. Journal of Infectious Diseases 2005; 
191:666-677. 
21 B. Autran et al. Greater viral rebound and reduced time to resume antiretroviral therapy after therapeutic 
immunization with the ALVAC-HIV vaccine (vCP1452). AIDS 2008; 22:1313-1322. 
22 Haase AT. Targeting early infection to prevent HIV-1 mucosal transmission. Nature 2010; 464: 217-223.  
23 Zhang Z-Q, Wietgrefe SW, Li Q, Dykhuisen Shore M, Duan L, Reilly C, Lifson JD, Haase AT. Roles of substrate 
availability and infection of resting and activated CD4+T cells in transmission and acute simian 
immunodeficiency virus infection. Proceedings of the National Academy of Sciences of the United States of 
America 2004; 101(15): 5640-5645.  
24 Kaushic C: HIV-1 infection in the female reproductive tract: role of interactions between HIV-1 and genital 
epithelial cells. American Journal of Reproductive Immunology 2011; 65(3): 253-260.  
25 HIV-1 female-to-male sexual transmission: evaluation of circumcised and uncircumcised penile tissue. Dinh 
M,  Anderson M,  Gioia C, McRaven M, Okocha Z, Cianci G, Hirbod T, Kigozi G, Prodger J, Kaul R, Kong X, Gray R, 
Hope T.  Conference presentation, XIX International AIDS Conference, 2012, Washington DC. 
26 Fraser C, Hollingsworth TD, Chapman R, de Wolf F, Hanage WP. Variation in HIV-1 set-point viral load: 
epidemiological analysis and an evolutionary hypothesis. Proceedings of the National Academy of Sciences of 
the United States of America 2007; 104: 17441-17446.  
27 Williams BG, Lima V, Gouws E: Modelling the impact of antiretroviral therapy on the epidemic of HIV. Current 
HIV Research 2011; 9: 367-382.  



                                                                                                                                                                                     
28 Attia S, Egger M, Muller M, Zwahlen M, Low N. Sexual transmission of HIV according to viral load and 
antiretroviral therapy: systematic review and meta-analysis. AIDS 2009; 23: 1397-1404.  
29 Donnell D, Baeten JM, Kiarie J, Thomas KK, Stevens W, Cohen CR, McIntyre J, Lingappa JR, Celum C, for the 
Partners in Prevention HSV/HIV Study Team. Heterosexual HIV-1 transmission after initiation of antiretroviral 
therapy: a prospective cohort analysis. Lancet 2009; 375(9731): 2092-2098.  
30 Lingappa JR, Hughes JP, Wang RS, Baeten JM, Celum C, Gray GE, Stevens WS, Donnell D, Campbell MS, 
Farquhar C, Essex M, Mullins JI, Coombs RW, Rees H, Corey L, Wald A, for the Partners in Prevention HSV/HIV 
Study Team. Estimating the impact of plasma HIV-1 RNA reductions on heterosexual HIV-1 transmission 
reduction risk. Plos One 2010; 5(9): e12598. Doi:10.1371/journal.pone.0012598.   
31 Glaser R, Kiecolt-Glaser JK: Stress-induced immune dysfunction: implications for health. Nature Reviews 
Immunology 2005; 5:243-251.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


