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Abstract

We use Cavalieri’s principle to develop a novel integration technique
which we call Cavalieri integration. Cavalieri integrals differ from Rie-
mann integrals in that non-rectangular integration strips are used. In
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this way we can use single Cavalieri integrals to find the areas of some
interesting regions for which it is difficult to construct single Riemann
integrals.

We also present two methods of evaluating a Cavalieri integral by
first transforming it to either an equivalent Riemann or Riemann-Stieltjes
integral by using special transformation functions h(x) and its inverse
g(x), respectively. Interestingly enough it is often very difficult to find
the transformation function h(x), whereas it is very simple to obtain its
inverse g(x).

1 Introduction

We will use Cavalieri’s principle to develop a novel integration technique which
can be used to almost effortlessly find the area of some interesting regions for
which it is rather difficult to construct single Riemann integrals. We will call
this type of integration Cavalieri integration. Although the term Cavalieri in-
tegration has been used selectively in literature [1, 2], it is important to note
that in those sources it refers to the technique used by Cavalieri to determine∫
xndx = xn+1

n+1 + C and not to the approach discussed in this paper. The lit-
erature abounds with student difficulties on the Calculus topics of limits and
definite integrals [3, 4, 5, 6, 7, 8], and as such our approach presents a fresh, new
and interesting way to gain deeper insight and understanding into the process of
integration. As the name of the proposed integral suggests, Cavalieri integration
is based on the well known Cavalieri principle, stated here without proof [9]:

Theorem 1.1 (Cavalieri’s principle). Suppose two regions in a plane are in-
cluded between two parallel lines in that plane. If every line parallel to these
two lines intersects both regions in line segments of equal length, then the two
regions have equal areas.

∆x ∆x

A B

Figure 1: Simple illustration of Cavalieri’s principle in R2, with area A = area
B.

Inspired by Cavalieri’s principle, we pose the following question: what hap-
pens when we replace the usual rectangular integration strip of the Riemann
sum with an integration strip that has a non-rectangular shape? It turns out
that such a formulation leads to a consistent scheme of integration with a few
surprising results.
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By considering non-rectangular integration strips we form a Cavalieri sum
which can either be transformed to a normal Riemann sum (of an equivalent
region) by using a transformation function h(x), or to a Riemann-Stieltjes sum
by using the inverse transformation function g(x).

The main result of Cavalieri integration can be demonstrated by using a
simple example. Consider the region bounded by the x-axis and the lines f(x) =
x, a(y) = 1 − y and b(y) = 4 − y, shown in Figure 2.A. Notice that we cannot
express the area of this region as a single Riemann integral. We can however
calculate the area of this region by using a single Cavalieri integral:

Area =

∫ b(y)

a(y)

f(x) dx,

which is related to a Riemann integral and a Riemann-Stieltjes integral as fol-
lows: ∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx =

∫ b′

a′
f(x) dg(x).

For the present example we have the following result, since h(x) = x/2 and
g(x) = 2x: ∫ 4−y

1−y
x dx =

∫ 4

1

x

2
dx =

∫ 2

0.5

x d2x = 3.75.

The transformed regions f ◦ h(x) (corresponding to the Riemann formulation)
and f(x) ·g′(x) (corresponding to the Riemann-Stieltjes formulation) are shown
in Figure 2.B and Figure 2.C, respectively.
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Figure 2: Illustration of Cavalieri integration by example.

In this paper we will show how to find the transformation function h(x) and
its inverse g(x).

The concept of using variations on the Riemann integral for educational en-
richment has been proposed before. In [4, 7] it is proposed to use the Cavalieri-

Wallis integral, (CW)
∫ b
a
f(x)dx, as a precursor when teaching Riemann inte-

gration. The Cavalieri-Wallis integral differs completely from our approach as
it does not give the area under f(x) but the ratio of that area to the area of
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a circumscribed rectangle. The Cavalieri-Wallis integral does not employ non-
rectangular infinitesimals and as such is less useful than the Cavalieri integral
for educational enrichment.

We first give a brief overview of classical integration theory (Section 2), fol-
lowed by the derivation of Cavalieri integration in Section 3. Finally we present
a number of fully worked examples in Section 4, which clearly demonstrate how
Cavalieri integration can be applied to a variety of regions.

2 Classical Integration Theory

One of the oldest techniques for finding the area of a region is the method of
exhaustion, attributed to Antiphon [10]. The method of exhaustion finds the
area of a region by inscribing inside it a sequence of polygons whose areas
converge to the area of the region. Even though classical integration theory
is a well established field there are still new results being added in modern
times. For example, in the very interesting paper by Ruffa [11] the method of
exhaustion was generalized, which lead to an integration formula that is valid
for all Riemann integrable functions:

∫ b

a

f(x)dx = (b− a)

∞∑

n=1

2n−1∑

m=1

(−1)m+12−nf

(
a+

m(b− a)

2n

)
.

Classical integration theory is however very different from the method of
exhaustion, and is mainly attributed to Newton, Leibniz and Riemann. Newton
and Leibniz discovered the fundamental theorem of Calculus independently and
developed the mathematical notation for classical integration theory. Riemann
formalized classical integration by introducing the concept of limits to the foun-
dations established by Newton and Leibniz. However, the true father of classical
integration theory is probably Bonaventura Cavalieri (1598–1647).

Cavalieri devised methods for computing areas by means of ‘indivisibles’
[12]. In the method of indivisibles, a region is divided into infinitely many
indivisibles, each considered to be both a one-dimensional line segment, and an
infinitesimally thin two-dimensional rectangle. The area of a region is then found
by summing together all of the indivisibles in the region. However, Cavalieri’s
method of indivisibles was heavily criticized due to the “indivisible paradox”,
described next [12].

2.1 Indivisible paradox

Consider a scalene triangle, ∆ABC, shown in Figure 3.A. By dropping the
altitude to the base of the triangle, ∆ABC is partitioned into two triangles of
unequal area. If both the left (∆ABD) and right (∆BDC) triangles are divided
into indivisibles then we can easily see that each indivisible (for example EF )
in the left triangle corresponds to an equal indivisible (for example GH) in the
right triangle. This would seem to imply that both triangles must have equal
area!
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Figure 3: Cavalieri’s indivisible paradox.

Of course this argument is clearly flawed. To see this, we can investigate it
more closely from a measure-theoretic point of view, as shown in Figure 3.B.
Drawing a strip of width ∆y through the triangle and calculating the pre-image
of this strip produces two intervals on the x-axis with unequal width. Letting
∆y → 0 produces the two indivisibles EF and GH. However, it does not matter
how small you make ∆y, the two interval lengths ∆x1 and ∆x2 will never be
equal. In other words, the area that EF and GH contributes to the total area
of the triangle must be different.

There is a simple way to avoid the specific paradox illustrated in Figure 3.A:
instead of using indivisibles parallel to the y-axis, we use indivisibles parallel to
BC, as shown in Figure 3.C. Then each pair of corresponding indivisibles IJ
in ∆ABD and JK in ∆BDC clearly has different lengths almost everywhere.
Therefore the areas of ∆ABD and ∆BDC need not be the same.

This trick of considering indivisibles (or infinitesimals) other than those
parallel to the y-axis forms the basis of Cavalieri integration, in which non-
rectangular integration strips will be used.

3 Cavalieri Integration

We present a method of integration which we will refer to as Cavalieri integra-
tion, in which the primary difference from ordinary Riemann integration is that
more general integration strips can be used. In some sense the Cavalieri integral
can also be seen as a generalization of the Riemann integral, in that the Cava-
lieri formulation reduces to the ordinary Riemann integral when the integration
strips are rectangular. That is not to say that the Cavalieri integral extends the
class of Riemann-integrable functions. In fact, the class of Cavalieri-integrable
functions is exactly equivalent to the class of Riemann-integrable functions.
However, the Cavalieri integral allows us to express the areas of some regions
as single integrals for which we would have to write down multiple ordinary
Riemann integrals.

3.1 Preliminaries and Definitions

In order to develop (and clearly present) the Cavalieri integration theory, a
number of definitions must first be introduced. Also note that we will restrict
our attention to integration in R2, with coordinate axes x and y.
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Definition 3.1 (Translational function). A continuous function a(y) is called a
translational function with respect to a continuous function f(x) on the interval
[a, b] if {x ∈ R|a◦f(x)+z = x} is a singleton, for every z ∈ (b−a) and a(0) = a.

The above definition says that any continuous function a(y) which intersects
a continuous function f(x) exactly once for an arbitrary translation on the x-
axis within the interval [a, b] is called a translational function. Two examples of
translational functions are shown in Figure 4.A and Figure 4.B, and Figure 4.C
presents an example of a linear function a(y) which is not translational with
respect to f(x).

y

f(x)

x
a b

a(y)

A.

y

f(x)

x
a b

a(y)

B.

y

f(x)

x
a b

a(y)

C.

Figure 4: Examples of translational, and non-translational functions.

Definition 3.2 (Cavalieri region R). Let R be any region (in R2) bounded by
a nonnegative function f(x) (which is continuous on the interval [a′, b′]), the
x-axis, and the boundary functions a(y) and b(y), where a(y) is a translational
function, b(y) := a(y)+(b−a). Furthermore we have that a′ and b′ are the unique
x-values for which a(y) and b(y) intersect f(x), respectively; and a = a(0) and
b = b(0). Then R is called the Cavalieri region bounded by f(x),a(y), b(y) and
the x-axis.

y

f

x
a b

R

a(y)

b(y)

a′ b′

E

φ

Figure 5: A Cavalieri region R with integration boundaries a(y) and b(y), and
an equivalent region E with integration boundaries x = a and x = b.

The Cavalieri integral (which we will formally define in Definition 3.20) can
be related to an ordinary Riemann integral through a particular transformation
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h, which we will consider in some detail below. It may be useful to think of
this transformation (at least intuitively) as transforming any Cavalieri region R
into an equivalent region E with equal area (see Figure 5), but with integration
boundaries x = a and x = b. That is, the area of the equivalent region E can

easily be expressed in terms of an ordinary definite integral
∫ b
a
φ(x) dx.

Definition 3.3 (Transformation function h). Let a(y) be a translational func-
tion. The mapping h : [a, b] → [a′, b′], which maps x1i ∈ [a, b] to x2i ∈ [a′, b′], is
defined as h(x1i ) := {x2i ∈ [a′, b′] : a(f ◦ x2i ) + [x1i − a] = x2i , a = a(0)}, which
we will refer to as the transformation function (we will prove that it is indeed a
function below).

Proposition 3.4. The mapping h : [a, b]→ [a′, b′] is a function.

Proof. That h is a function follows directly from the definition of a translational
function (Definition 3.1), since we know that {a ◦ f(x2i ) + [x1i − a] = x2i } must
be singular for every [x1i − a] ∈ (b− a). That is, h maps every point x1i ∈ [a, b]
to exactly one point x2i ∈ [a′, b′].

Proposition 3.5. The transformation function h is strictly monotone on [a, b].

Proof. Let R be a Cavalieri region bounded by f(x), a(y), b(y) and the x-axis,
as shown in Figure 6. Two possibilities may arise.

Case I: {a ◦ f(x) = x} = a′ ⇒ h is strictly increasing:
Consider any translation of a(y), a(y)+∆c, s.t. a+∆c ∈ (a, b). Since the domain
D(f) ≥ a′, and since a(y) intersects f(x) at a′, the translation a(y)+∆c cannot
also intersect f(x) at a′. Instead, we clearly have that a(y) + ∆c must intersect
f(x) at a point c′ > a′ on D(f).

We now define A as the region bounded by the translational functions a(y)
and a(y) + ∆c, and the lines y = a′ and y = b′ (see Figure 6). The continuous
function f(x) on the interval [a′, b′] must lie within the region A, since any point
of f(x) outside of this region would imply that a(y) cannot be a translational
function. That is, if f(x) has points outside of region A, then there exists a
translation of a(y) s.t. a(y) intersects f(x) at more than one point.

Now consider any translation of a(y), a(y) + ∆d, where ∆d > ∆c and ∆d ∈
(a, b]. Suppose that a(y) + ∆d induces a point d′, with a′ < d′ < c′. That is,
a(y) + ∆d intersects f(x) at some point in region A.

The functions a(y) + ∆c and a(y) + ∆d are continuous on the interval y ∈
[0, γ], where γ := {a ◦ f(x) + ∆d = x} (in fact, any translational function must
be continuous on y ∈ R). Now let Ψ := a(y) + ∆c−

(
a(y) + ∆d

)
, which is again

a continuous function on [0, γ]. Since c < d and c′ > d′ by assumption, it follows
that Ψ(0) < 0 and Ψ(γ) > 0. From the intermediate value theorem it follows
that there exists a point α ∈ [0, γ] s.t. Ψ(α) = 0. That is, a(α)+∆c = a(α)+∆d.
But this is impossible, since a(y) + ∆d is a translation of a(y) + ∆c. Therefore
c′ = h(c) < h(d) = d′.

Since ∆c is arbitrary and d > c ⇒ h(d) > h(c), h is strictly increasing on
[a, b].
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Case II: {a ◦ f(x) = x} = b′ ⇒ h is strictly decreasing:
The second case can be proved in a similar manner as Case I above, in which
case h is a strictly decreasing function with the order of the induced partition
P2 reversed.

Since h is either strictly increasing (Case I) or strictly decreasing (Case II),
it is strictly monotone on [a, b].

a′ d′ c′ a

α

c d b′ b

y

x

f(x)

a(y) b(y)

γ
A

∆c
∆d

a(y) + ∆c

a(y) + ∆d

Figure 6: Sketch for the proof of Proposition 3.5.

Proposition 3.6. The transformation function h is continuous on [a, b].

Proof. Choose an arbitrary value x1∗ ∈ [a, b] such that x1∗ = a + c. We can
now define a sequence (x1i ) with x1i = x1∗ + 1

i , ∀ i ∈ N. Now (x1i ) → x1∗ as
i → ∞. The sequence of functions

(
a(y) + [x1i − x1∗ + c]

)
has x-intercepts

equal to (x1i ). The mapping h now generates a new sequence (x2i ) s.t. ∀ i,
x2i = {x2i : a ◦ f(x2i ) + [x1i − x1∗ + c] = x2i }. Now taking the limit as i→∞

lim
i→∞

x2i = lim
i→∞

[a ◦ f(x2i ) + (x1i − x1∗ + c) = x2i ]

= lim
i→∞

[a ◦ f(x2i ) + (
1

i
+ c) = x2i ]

= [a ◦ f(x2i ) + ( lim
i→∞

1

i
+ c) = x2i ]

= [a ◦ f(x2i ) + c) = f(x2i )]

= [a(x2i ) + [x1∗ − a]) = f(x2i )]

= x2∗

This shows that x2i → x2∗ as x1i → x1∗ assuming [a ◦ f(x2i ) + [x1∗ − a]) = f(x2i )]
has one unique solution, which must be the case since a(y) is a translational
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function. The function h must be continuous at x1∗ since x2i → x2∗ as x1i → x1∗.
Since x1∗ is arbitrary, h is a continuous function on [a, b].

Proposition 3.7. The transformation function h is bijective on [a, b].

Proof. That h is injective on [a, b] follows from the fact that h is strictly mono-
tone on [a, b] (by Proposition 3.5). Furthermore h is clearly surjective on [a, b],
since it is continuous on [a, b] (by Proposition 3.6). Since h is both injective and
surjective on [a, b], h is also bijective on [a, b].

3.2 Derivation of Cavalieri Integration

Since we want to derive the Cavalieri integral – which uses more general inte-
gration strips than the rectangles of the Riemann integral – we first need to
formally define valid integration strips.

Definition 3.8 (Integration strip). An integration strip is an area bounded
below by the x-axis, on the left by a translational function a(y) w.r.t. f(x) on
[a, b], from the right by b(y) = a(y) + (b− a), and from above by the line y = c.

An example of three integration strips is given in Figure 7, where Figure 7.A
corresponds to the usual Riemann integration strip.

y = c

x

a(y)

b(y)

A.

a(y)

b(y)

y = c

x
B.

b(y)

a(y)

y = c

x
C.

Figure 7: Three integration strips with integration boundaries a(y) and b(y).

From Cavalieri’s principle it follows that we can easily compute the area of
any integration strips.

Proposition 3.9 (Cavalieri’s principle for integration strips.). The area of an
integration strip is equal to

A = (b− a)c.

Proof. The area of an integration strip can be determined by calculating the
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area between the curves b(y) and a(y) with the definite integral

A =

∫ c

0

b(y)− a(y) dy

=

∫ c

0

(b− a) dy

= (b− a)y
∣∣∣
c

0

= (b− a)c.

In order to find the area of a Cavalieri region R, we need to associate two
related partitions P1 and P2 to the region R.

Definition 3.10. A partition of [a, b] is a finite set P of points x0, x1, . . . , xn
such that a = x0 < x1 < · · · < xn = b. We describe P by writing:

P = {x0, x1, . . . , xn}.

The n subintervals into which a partition P = {x0, x1, . . . , xn} divides [a, b]
are
[x0, x1], [x1, x2], . . . , [xn−1, xn]. Their lengths are x1−x0, x2−x1, . . . , xn−xn−1,
respectively. We denote the length xk − xk−1 of the kth subinterval by ∆xk.
Thus

∆xk = xk − xk−1
and we define

∆x0 := 0.

We now choose any partition P1 = {x10, x11, . . . , x1n} of [a, b], and we inscribe
over each subinterval derived from P1 the largest integration strip that lies
inside the Cavalieri region R. Since both boundaries of any integration strip
are necessarily translations of the translational function a(y), we can apply the
transformation function h to the partition P1. If the transformation function h is
strictly increasing, the restriction of h to the partition P1 induces a new partition
P2 = {x20, x21, . . . , x2n} as shown in Figure 8. Otherwise, if h is strictly decreasing,
the restriction of h induces a reversed partition P2 = {x2n, x2n−1, . . . , x20}. In the
rest of this document we will assume that h is strictly increasing, without any
loss of generality.

Since we have assumed that f is continuous and nonnegative on [a′, b′], we
know from the Maximum-Minimum theorem that for each k between 1 and
n there exists a smallest value mk of f on the kth subinterval [x2k−1, x

2
k]. If

we choose mk as the height of the kth integration strip Rk, then Rk will be
the largest (tallest) integration strip that can be inscribed in R over [x1k−1, x

1
k].

Doing this for each subinterval, we create n inscribed strips R1, R2, . . . , Rn, all
lying inside the region R. For each k between 1 and n the strip Rk has base
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a = x10 x11 x12 x13 · · ·x1k−1 x1k x1n = b

R1 R2 R3 Rk Rn

∆x1k

mk · · ·· · ·

x1n−1· · ·

x20
x21

x22 x23 x2k−1 x2k

x2n−1

x2n

Figure 8: The lower Cavalieri sum of f(x) for a partition P1 on [a, b].

[x1k−1, x
1
k] with width ∆x1k and has height mk. Hence the area of Rk is the

product mk∆x1k (by Cavalieri’s principle). The sum

L(P1, f, h) =

n∑

k=1

mk∆x1k, (lower Cavalieri sum)

where
mk = inf

x
f(x), h(x1i−1) = x2i−1 ≤ x ≤ x2i = h(x1i )

is called the lower Cavalieri sum and should be no larger than the area of R.
The lower Cavalieri sum is represented graphically in Figure 8. Recall that the
lower Riemann sum is defined similarly, that is

L(P, f) =

n∑

k=1

mk∆xk, (lower Riemann sum)

where
mk = inf

x
f(x), xi−1 ≤ x ≤ xi

and P = {x0, x1, . . . , xn} is a partition on [a, b], and the integration strips are
rectangular. The lower Riemann sum is represented graphically in Figure 9.

Irrespective of how we define the area of the Cavalieri region R, this area
must be at least as large as the lower Cavalieri sum L(P1, f, h) associated with
any partition P1 of [a, b].

By a procedure similar to the one that involves inscribing integration strips
to compute a lower Cavalieri sum, we can also circumscribe integration strips
and compute an upper Cavalieri sum as shown in Figure 10.

Let P1 = {x10, x11, . . . , x1n} be a given partition of [a, b], and let f be continu-
ous and nonnegative on [a′, b′]. The Maximum-Minimum Theorem implies that
for each k between 1 and n there exists a largest value Mk of f on the kth inte-
gration strip Rk, such that Rk will be the smallest possible strip circumscribing
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y

f

x
a = x0 x1 x2 x3 · · ·xk−1 xk · · ·xn−1 xn = b

R1 R2 R3 Rk Rn

∆xk

mk · · ·· · ·R1

Figure 9: The Lower Riemann Sum of f(x) for a partition P on [a, b].

y

f

x
a = x10 x11 x12 x13 · · ·x1k−1 x1k x1n = b

R1 R2 R3 Rk Rn

∆x1k

Mk · · ·· · ·

x1n−1· · ·

x20
x21

x22 x23 x2k−1 x2k

x2n−1

x2n

Figure 10: The upper Cavalieri sum of f(x) for a partition P1 on [a, b].

the appropriate portion of R. The area of Rk is Mk∆x1k, and the sum

U(P1, f, h) =

n∑

k=1

Mk∆x1k, (upper Cavalieri sum)

where
Mk = sup

x
f(x), h(x1i−1) = x2i−1 ≤ x ≤ x2i = h(x1i )

is called the upper Cavalieri sum of f associated with the partition P1. The
upper Cavalieri sum is represented graphically in Figure 10. Recall that the
upper Riemann sum is defined similarly, that is

U(P, f) =

n∑

k=1

Mk∆xk, (upper Riemann sum)

where
Mk = sup

x
f(x), xi−1 ≤ x ≤ xi

and P = {x0, x1, . . . , xn} is a partition on [a, b], and the integration strips are
rectangular. The upper Riemann sum is represented graphically in Figure 11.
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y
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x
a = x0 x1 x2 x3 · · ·xk−1 xk · · ·xn−1 xn = b

R1 R2 R3 Rk Rn

∆xk

Mk · · ·· · ·

Figure 11: The upper Riemann sum of f(x) for a partition P on [a, b].

Irrespective of how we define the area of the Cavalieri region R, this area
must be no larger than the upper Cavalieri sum U(P1, f, h) for any partition P1

of [a, b].
The assumption that f must be nonnegative on [a′, b′] can now be dropped.

Assuming only that f is continuous on [a′, b′], we still define the lower and upper
Cavalieri sums of f for a partition P1 of [a, b] by

L(P1, f, h) =

n∑

k=1

mk∆x1k

and

U(P1, f, h) =

n∑

k=1

Mk∆x1k,

where for any integer k between 1 and n, mk and Mk are the minimum and
maximum values of f on [x2k−1, x

2
k], respectively.

Remark 3.11. In the rest of this document we will repeatedly make use of
the following notation. We will let f(x) be any continuous function on the
interval [a′, b′]. We will also assume that a(y) is some translational function
w.r.t. f(x) on the interval [a, b], with which we’ll associate a partition P1.
Furthermore, we will let h denote the transformation function which maps the
partition P1 ⊂ [a, b] to the partition P2 ⊂ [a′, b′]. Of course, b(y) must be a
particular translation on the x-axis of a(y), such that b(y) = a(y) + (b − a),
where a = a(0) and b = b(0) as defined previously. Finally, we have that a′ and
b′ are the unique x-values for which a(y) and b(y) intersect f(x), respectively.

Definition 3.12 (Cavalieri sum). For each k ∈ N from 1 to n, let t2k be an
arbitrary number in [x2k−1, x

2
k] ⊆ [a′, b′]. Then the sum

C(P1, f, h) =

n∑

k=1

f(t2k)∆x1k = f(t21)∆x11 + f(t22)∆x12 + · · ·+ f(t2n)∆x1n

is called a Cavalieri sum for f on [a, b].
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Recall that a Riemann sum for f on [a, b] is defined similarly, that is

R(P, f) =

n∑

k=1

f(tk)∆xk = f(t1)∆x1 + f(t2)∆x2 + · · ·+ f(tn)∆xn,

where P = {x0, x1, . . . , xn} is any partition of [a, b], and tk is an arbitrary
number in [xk−1, xk] ⊆ [a, b].

Proposition 3.13. The lower Cavalieri sum L(P1, f, h) is equivalent to the
lower Riemann sum L(P1, f ◦ h), that is

L(P1, f, h) = L(P1, f ◦ h) (3.1)

and the upper Cavalieri sum U(P1, f, h) is equivalent to the upper Riemann sum
U(P1, f ◦ h):

U(P1, f, h) = U(P1, f ◦ h). (3.2)

Proof. We first consider the lower sums of (3.1). Since the transformation func-
tion h is strictly monotone, continuous and bijective on [a, b] we can choose
values of x2i to minimize the value of f in the interval [x2k−1, x

2
k] and so mini-

mizing f ◦ h in the interval [x1k−1, x
1
k]. The proof of (3.2) is similar.

Remark 3.14. Proposition 3.13 will be used repeatedly to prove many of the
remaining results for Cavalieri integration, since existing results for Riemann
sums will hold trivially for the corresponding Cavalieri sums.

We now give two important results from Riemann integration theory.

Proposition 3.15. Suppose P = {x0, x1, . . . , xn} is a partition of the closed
interval [a, b], and f a bounded function defined on that interval. Then we have:

• The lower Riemann sum is increasing with respect to refinements of par-
titions, i.e. L(P ′, f) ≥ L(P, f) for every refinement P ′ of the partition
P.

• The upper Riemann sum is decreasing with respect to refinements of par-
titions, i.e. U(P ′, f) ≤ U(P, f) for every refinement P ′ of the partition
P.

• L(P, f) ≤ R(P, f) ≤ U(P, f) for every partition P.

Proof. The proof is taken from [13]. The last statement is simple to prove: take
any partition P = {x0, x1, . . . , xn}. Then inf{f(x), xk−1 ≤ x ≤ xk} ≤ f(tk) ≤
sup{f(x), xk−1 ≤ x ≤ xk} where tk is an arbitrary number in [xk−1, xk] and
k = 1, 2, . . . , n. That immediately implies that L(P, f) ≤ R(P, f) ≤ U(P, f).
The other statements are somewhat trickier. In the case that one additional
point t0 is added to a particular subinterval [xk−1, xk], let ck = sup f(x) in the
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interval [xk−1, xk], Ak = sup f(x) in the interval [xk−1, t0], Bk = sup f(x) in
the interval [x0, xk]. Then ck ≥ Ak and ck ≥ Bk so that:

ck(xk − xk−1) = ck(xk − t0 + t0 − xk−1)

= ck(xk − t0) + ck(t0 − xk−1)

≥ Bk(xk − t0) +Ak(x0 − tk−1),

which shows that if P = {x0, x1, . . . , xk, xk−1, . . . , xn} and P ′ = {x0, x1, . . . , xk, t0,
xk−1, . . . , xn} then U(P ′, f) ≤ U(P, f). The proof for a general refinement P ′
of P uses the same idea plus an elaborate indexing scheme. No more details
should be necessary. The proof for the statement regarding the lower sum is
analogous.

Proposition 3.16. Let f be continuous on [a, b]. Then there is a unique number
I satisfying

L(P, f) ≤ I ≤ U(P, f)

for every partition P of [a, b].

Proof. The proof is taken from [14]. From Proposition 3.15 it follows that every
lower sum of f on [a, b] is less than or equal to every upper sum. Thus the
collection L of all lower sums is bounded above (by an upper sum) and the
collection U of all upper sums is bounded below (by any lower sum). By the
Least Upper Bound Axiom, L has a least upper bound L and U has a greatest
lower bound G. From our preceding remarks it follows that

L(P, f) ≤ L ≤ G ≤ U(P, f)

for each partition P of [a, b]. Moreover, any number I satisfying

L(P, f) ≤ I ≤ U(P, f)

for each partition P of [a, b] must satisfy

L ≤ I ≤ G

since L is the least upper bound of the lower sums and G is the greatest lower
bound of the upper sums. Hence to complete the proof of the theorem it is
enough to prove that L = G. Let ε > 0. Since f is continuous on [a, b], it
follows that f is uniformly continuous on [a, b]. Thus there is a δ > 0 such
that if x and y are in [a, b] and |x − y| < δ, then |f(x) − f(y)| < ε

b−a . Let
P = {x0, x1, . . . , xn} be a partition of [a, b] such that ∆xk < δ for 1 ≤ k ≤ n,
and let Mk and mk be, respectively, the largest and smallest values of f on
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[xk−1, xk]. Then

U(P, f)− L(P, f) =

n∑

k=1

Mk∆xk −
n∑

k=1

mk∆xk

=

n∑

k=1

(Mk −mk)∆xk

<
ε

b− a
n∑

k=1

∆xk

=
ε

b− a (b− a)

= ε.

Since L(P, f) ≤ L ≤ G ≤ U(P, f), it follows that 0 ≤ G − L ≤ U(P, f) −
L(P, f) ≤ ε. Since ε was arbitrary, we conclude that L = G.

Definition 3.17 (Definite Riemann integral). Let f be continuous on [a, b]. The
definite Riemann integral of f from a to b is the unique number I satisfying

L(P, f) ≤ I ≤ U(P, f)

for every partition P of [a, b]. This integral is denoted by

∫ b

a

f(x) dx.

We now state (and prove) the equivalent of Proposition 3.15 for lower and
upper Cavalieri sums:

Proposition 3.18. We clearly have:

• The lower Cavalieri sum is increasing with respect to refinements of parti-
tions, i.e. L(P ′1, f, h) ≥ L(P1, f, h) for every refinement P ′1 of the partition
P1.

• The upper Cavalieri sum is decreasing with respect to refinements of par-
titions, i.e. U(P ′1, f, h) ≤ U(P1, f, h) for every refinement P ′1 of the parti-
tion P1.

• L(P1, f, h) ≤ C(P1, f, h) ≤ U(P1, f, h) for every partition P1.

Proof. The proof follows trivially from Proposition 3.13 and Proposition 3.15
(since every Cavalieri sum corresponds to an equivalent Riemann sum).

Proposition 3.19. Let f be continuous on [a′, b′]. Then there is a unique
number I satisfying

L(P1, f, h) ≤ I ≤ U(P1, f, h)

for every partition P1 of [a, b].
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Proof. The proof follows trivially from Proposition 3.13 and Proposition 3.16.

We can now finally define the Cavalieri integral:

Definition 3.20 (Definite Cavalieri integral). Let f be continuous on [a′, b′].
The definite Cavalieri integral of f(x) from a(y) to b(y) is the unique number I
satisfying

L(P1, f, h) ≤ I ≤ U(P1, f, h)

for every partition P1 of [a, b]. This integral is denoted by

∫ b(y)

a(y)

f(x) dx.

Definition 3.21. Let R be any Cavalieri region as given in Definition 3.2 then
the area A of the region R is defined to be

A =

∫ b(y)

a(y)

f(x) dx.

Proposition 3.22. The following Cavalieri and Riemann integrals are equiva-
lent: ∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx.

Proof. By noting that L(P1, f ◦ h) = L(P1, f, h) ≤ I ≤ U(P1, f, h) = U(P1, f ◦
h), the proof follows trivially from Proposition 3.13, Proposition 3.16 and Propo-
sition 3.19.

Theorem 3.23. For any ε > 0 there is a number δ > 0 such that the fol-
lowing statement holds: If any subinterval of P1 has length less than δ, and if
x2k−1 ≤ t2k ≤ x2k for each k between 1 and n, then the associated Cavalieri sum∑n
k=1 f(t2k)∆x1k satisfies.

∣∣∣∣∣

∫ b(y)

a(y)

f(x) dx−
n∑

k=1

f(t2k)∆x1k

∣∣∣∣∣ < ε.

Proof. This proof was adapted from [14]. For any ε > 0 choose δ > 0 such that
if x and y are in [a′, b′] then |x − y| < δ, then |f(x) − f(y)| < ε

b′−a′ . If P1 is

chosen so that ∆x1k < δ for each k, then by Proposition 3.19,

U(P1, f, h)− L(P1, f, h) ≤ ε.

Moreover, if x2k−1 ≤ t2k ≤ x2k for 1 ≤ k ≤ n, then

mk ≤ f(t2k) ≤Mk.
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It follows that

L(P1, f, h) =

n∑

k=1

mk∆x1k ≤
n∑

k=1

f(t2k)∆x1k ≤
n∑

k=1

Mk∆x1k = U(P1, f, h).

Since

L(P1, f, h) ≤
∫ b(y)

a(y)

f(x) dx ≤ U(P1, f, h),

we conclude that ∣∣∣∣∣

∫ b(y)

a(y)

f(x) dx−
n∑

k=1

f(t2k)∆x1k

∣∣∣∣∣ < ε.

By combining Proposition 3.22 and Theorem 3.23 we finally have

∫ b(y)

a(y)

f(x) dx = lim
n→∞

n∑

k=1

f(t2k)∆x1k

= lim
n→∞

n∑

k=1

f ◦ h(t1k)∆x1k

=

∫ b

a

f ◦ h(x) dx,

where the last line follows from the well known fact that the limit of a Riemann
sum equals the Riemann integral.

3.3 The Cavalieri integral as a Riemann-Stieltjes integral

When evaluating a Cavalieri integral from a(y) to b(y), it may sometimes be
more convenient to consider an equivalent Riemann-Stieltjes integral from a′ to
b′ than the ordinary Riemann integral from a to b.

To transform the Cavalieri integral into an equivalent Riemann-Stieltjes in-
tegral, we will make use of the inverse transformation function g := h−1 (which
is guaranteed to exist, since h is a bijective function).

Definition 3.24 (Inverse transformation function g). Let a(y) be a transla-
tional function. The mapping g : [a′, b′] → [a, b], which maps x2i ∈ [a′, b′] to
x1i ∈ [a, b], is defined as g(x2i ) := x2i − a ◦ f(x2i ) + a, which we will refer to as
the inverse transformation function.

Proposition 3.25. The following Cavalieri and Riemann-Stieltjes integrals are
equivalent: ∫ b(y)

a(y)

f(x) dx =

∫ b′

a′
f(x) dg(x).
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Proof. From Theorem 3.23 we have

∫ b(y)

a(y)

f(x) dx = lim
n→∞

n−1∑

i=0

f(x2i )∆x
1
i . (3.3)

By noting that ∆x1i = x1i+1 − x1i = g(x2i+1)− g(x2i ), and that g(a′) = a and
g(b′) = b, we can re-write (3.3) as

∫ b(y)

a(y)

f(x) dx = lim
n→∞

n−1∑

i=0

f(x2i )
[
g(x2i+1)− g(x2i )

]
,

which we recognize as the Riemann-Stieltjes integral
∫ b′
a′
f(x) dg(x), as required.

Whenever g is differentiable, we can conveniently express the Cavalieri inte-
gral simply in terms of f(x) and a(y):

∫ b(y)

a(y)

f(x) dx =

∫ b′

a′
f(x)

[
1− da(y)

dy
◦ f(x) · df(x)

dx

]
dx.

4 Cavalieri Integration: Worked Examples

Several fully worked examples of Cavalieri integration are given below. We
first present a simple example of Cavalieri integration from first principles (Ex-
ample 4.1), followed by the integration of a Cavalieri region in which f(x) is
nonlinear (Example 4.2). In Example 4.3 the boundary functions are also non-
linear, followed by Example 4.4 in which the boundary function b(y) is no longer
required to be a translation of a(y). In Example 4.5 we show that the trans-
formation function h can be fiendishly difficult to find, but we show that the
Riemann-Stieltjes formulation leads to a much simpler solution in Example 4.6.
In Example 4.7 we show that the Cavalieri integral can be used to integrate
non-Cavalieri regions (with a(y) non-translational), and in Example 4.8 we show
that the transformation function h can be strictly decreasing. Finally, in Ex-
ample 4.9 we show that the Cavalieri integral can be used in some instances
where the function f(x) is not even defined. All the examples given to justify
the introduction of Cavalieri’s integration can be done with the classical change
of variables in the plane using the Jacobian determinant.

Example 4.1 (Cavalieri integration from first principles; f(x), a(y) and b(y)
linear). Consider the Cavalieri region bounded by the x-axis and the lines f(x) =
x, a(y) = 1− y, and b(y) = 4− y. This region is shown in Figure 12.

Also consider a partition (x1i )
n
i=0 on the x-axis such that a = x10 < x11 <

· · · < x1n = b, and ∆x1i = x1i+1 − x1i . We can form the Cavalieri integral (using
the left hand rule) as follows:

∫ b(y)

a(y)

f(x) dx = lim
n→∞

n−1∑

i=0

f(x2i )∆x
1
i . (4.1)
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Figure 12: Region bounded by the x-axis and the lines f(x) = x, a(y) = 1− y,
and b(y) = 4− y.

The partition points x2i as used in the Cavalieri sum is shown in Figure 13.
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Figure 13: Partition points x2i as used in the Cavalieri sum.

To transform the Cavalieri sum given in (4.1) into an ordinary Riemann sum,
we must find an expression for x2i in terms of the partition points x1i , for all
i = 0, 1, . . . , n. First consider the collection of functions {a(y) + [x1i − a] = x2i :
i = 0, 1, . . . , n}. To find the partition points x2i in terms of x1i we substitute the
function f(x2i ) for y to obtain:

a ◦ f(x2i ) + [x1i − 1] = x2i

−x2i + x1i = x2i

x2i =
x1i
2
,

so that we have the general expression x2i = h(x1i ), with h(x) = x/2.
Finally this allows us to rewrite the Cavalieri integral from (4.1) as an equiv-
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alent Riemann integral:

∫ b(y)

a(y)

f(x) dx = lim
n→∞

n−1∑

i=0

f(x2i )∆x
1
i

= lim
n→∞

n−1∑

i=0

f ◦ h(x1i )∆x
1
i

=

∫ b

a

f ◦ h(x) dx. (4.2)

Evaluating the Riemann integral of (4.2) with a = 1 and b = 4 we obtain

∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx

=
1

2

∫ 4

1

x dx

=
1

4
x2
∣∣∣
4

1

= 3.75,

which we can quickly verify to be correct by evaluating the area of the region
shown in Figure 12 with ordinary Riemann integration:

∫ 2

0

x dx+

∫ 4

2

4− x dx−
∫ 1

2

0

x dx−
∫ 1

1
2

1− x dx = 3.75

=

∫ b(y)

a(y)

f(x) dx.

Example 4.2 (Cavalieri integration; f(x) nonlinear). Consider the Cavalieri
region bounded by the x-axis and the functions f(x) = x2, a(y) = 1 − y, and
b(y) = 4 − y. This region is shown in Figure 14, along with the strips of
integration.

The area of this region can be calculated with the Cavalieri integral

∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx. (4.3)

To evaluate (4.3) we first need to find h using Definition 3.3:

a ◦ f(x2i ) + [x1i − 1] = x2i

−(x2i )
2 + 1 + x1i − 1 = x2i

(x2i )
2 + x2i − x1i = 0

x2i =
1

2

(√
4x1i + 1− 1

)

= h(x1i ).
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Figure 14: Region bounded by the x-axis and the functions f(x) = x2, a(y) =
1− y, and b(y) = 4− y.

We can now calculate (4.3) with h(x) = 1
2 (
√

4x+ 1− 1) as follows

∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx

=
1

4

∫ 4

1

(
√

4x+ 1− 1)2 dx

= − 1

96
(4x+ 1)(−12x+ 8

√
4x+ 1− 9)

∣∣∣
4

1

= 9 +
1

12
(5
√

5− 17
√

17)

≈ 4.09063.

One can also compute the area under consideration (see Figure 14) using
ordinary Riemann integration:

∫ 1
2 (
√
17−1)

0

x2 dx+

∫ 4

1
2 (
√
17−1)

4− x dx

−
∫ 1

2 (
√
5−1)

0

x2 dx−
∫ 1

1
2 (
√
5−1)

1− x dx ≈ 4.09063

≈
∫ b(y)

a(y)

f(x) dx.

Example 4.3 (Cavalieri integration; f(x), a(y) and b(y) nonlinear). Consider
the Cavalieri region bounded by the x-axis and the functions f(x) = x2, a(y) =
2 −√y, and b(y) = 4 −√y. This region is shown in Figure 15, along with the
strips of integration.

The area of this region can be calculated with the Cavalieri integral

∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx. (4.4)
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Figure 15: Region bounded by the x-axis and the functions f(x) = x2, a(y) =
2−√y, and b(y) = 4−√y.

To evaluate (4.4) we first need to find h:

a ◦ f(x2i ) + [x1i − 2] = x2i

−x2i + 2 + x1i − 2 = x2i

x2i =
1

2
x1i

= h(x1i ).

We can now calculate (4.4) with h(x) = x/2 as follows

∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx

=
1

4

∫ 4

2

x2 dx

=
1

12
x3
∣∣∣
4

2

=
14

3
.

We can once again verify our answer above by computing the area of the
region shown in Figure 15 with ordinary Riemann integration:

∫ 2

0

x2 dx+

∫ 4

2

(4− x)2 dx−
∫ 1

0

x2 dx−
∫ 2

1

(2− x)2 dx =
14

3

=

∫ b(y)

a(y)

f(x)dx.

Example 4.4 (Cavalieri integration; b(y) not a translation of a(y)). Consider
the Cavalieri region bounded by the x-axis and the functions f(x) =

√
x, a(y) =

2− y2, and b(y) = 4− y. This region is shown in Figure 16.
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Figure 16: Region bounded by the x-axis and the functions f(x) =
√
x, a(y) =

2− y2, and b(y) = 4− y.
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Figure 17: Region bounded by the x-axis and the functions f(x) =
√
x and

b(y) = 4− y.

To obtain the shaded area bounded in Figure 16 we will subtract the two
Cavalieri integrals shown in Figure 17 and Figure 18. That is, we will compute
the desired area by evaluating A−B.

The area of A can be calculated with the Cavalieri integral

∫ b(y)

−y
f(x) dx =

∫ b

0

f ◦ h1(x) dx. (4.5)

To evaluate (4.5) we first need to find h1:

−f(x2i ) + x1i = x2i

−
√
x2i + x1i = x2i

√
x2i + x2i − x1i = 0

x2i =
(
x1i +

1

2

)
− 1

2

√
4x1i + 1

= h1(x1i ).
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We can now calculate (4.5) with h1(x) = (x+ 0.5)− 0.5
√

4x+ 1 as follows:
∫ b(y)

−y
f(x) dx =

∫ b

0

f ◦ h1(x) dx

=

∫ 4

0

√
(x+ 0.5)− 0.5

√
4x+ 1 dx

=
1

12
(4x+ 1)

3
2 − 1

2
x− 1

8

∣∣∣∣∣

4

0

≈ 3.75773.

The area of B can be calculated with the Cavalieri integral (see Figure 18)
∫ a(y)

−y2
f(x) dx =

∫ a

0

f ◦ h2(x) dx. (4.6)
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√
x
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Figure 18: Region bounded by the x-axis and the functions f(x) =
√
x and

a(y) = 2− y2.

To evaluate (4.6) we first need to find h2:

−(f(x2i ))
2 + x1i = x2i

−x2i + x1i = x2i

x2i =
1

2
x1i

We can now calculate (4.6) with h2(x) = x/2 as
∫ a(y)

−y2
f(x) dx =

∫ a

0

f ◦ h2(x) dx

=

∫ 2

0

√
0.5x dx

=
2x

3
2

3
√

2

∣∣∣∣∣

2

0

=
4

3
.
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Finally we obtain the desired area A − B =
∫ b(y)
−y f(x) dx −

∫ a(y)
−y2 f(x) dx ≈

3.75773− 4

3
≈ 2.42440.

Example 4.5 (Cavalieri integration; h difficult to find). Consider the Cavalieri
region bounded by the x-axis and the functions f(x) = x2, a(y) = 1 − y2, and
b(y) = 4 − y2. This region is shown in Figure 19, along with the strips of
integration.

0 1 2 3 4

1

2

3
f(x) = x2

a(y) = 1− y2

b(y) = 4− y2

x

y

Figure 19: Region bounded by the x-axis and the functions f(x) = x2, a(y) =
1− y2, and b(y) = 4− y2.

The area of this region can be calculated with the Cavalieri integral

∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx. (4.7)

To evaluate (4.7) we first need to find h:

a ◦ f(x2i ) + [x1i − 1] = x2i

−(x2i )
4 + 1 + x1i − 2 = x2i

(x2i )
4 + x2i − x1i = 0.

Solving for x2i in terms of x1i produces h(x) which is equal to:

h(x) =
1

2

√
2√
G(x)

−G(x)− 1

2

√
G(x) (4.8)

with

G(x) =
3
√√

3.
√

256x3 + 27 + 9
3
√

2.3
2
3

−
4 3

√
2
3x

3
√√

3.
√

256x3 + 27 + 9
.
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We can now calculate (4.7) with h(x) given by (4.8) as follows:

∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx

=

∫ 4

1

(
1

2

√
2√
G(x)

−G(x)− 1

2

√
G(x)

)2

dx

≈ 3.46649,

which we will once again verify by using ordinary Riemann integration:

∫ 1.28378

0

x2 dx+

∫ 4

1.28378

√
4− x dx

−
∫ 0.724492

0

x2 dx−
∫ 1

0.724492

√
1− x dx ≈ 3.46649

≈
∫ b(y)

a(y)

f(x) dx.

Example 4.6 (Riemann-Stieltjes formulation). Consider the Cavalieri region
bounded by the x-axis and the functions f(x) = x2, a(y) = 1 − y, and b(y) =
4 − y. This region is shown in Figure 20, along with the strips of integration.
Note that this is the same region as studied in Example 4.2. We will show
that the Riemann-Stieltjes formulation is considerably simpler than the direct
method in which we need to find h explicitly.

0 1 2 3 4

1

2

3

4
f(x) = x2

a(y) = 1− y

b(y) = 4− y

x

y

Figure 20: Region bounded by the x-axis and the functions f(x) = x2, a(y) =
1− y, and b(y) = 4− y.

The area of this region can be calculated with the Cavalieri integral

∫ b(y)

a(y)

f(x) dx =

∫ b′

a′
f(x) dg(x). (4.9)
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To evaluate (4.9) we first need to find g using Definition 3.24:

x1i = x2i − a ◦ f(x2i ) + 1

= (x2i )
2 + x2i

= g(x2i ).

We can now calculate (4.9) with g(x) = x2 + x as follows

∫ b(y)

a(y)

f(x) dx =

∫ b′

a′
f(x) dg(x)

=

∫ b′

a′
f(x)g′(x) dx

=

∫ 1
2 (
√
17−1)

1
2 (
√
5−1)

x2(2x+ 1) dx

=
x4

2
+
x3

3

∣∣∣∣∣

1
2 (
√
17−1)

1
2 (
√
5−1)

≈ 4.09063,

which is the same as obtained in Example 4.2.

Example 4.7 (Cavalieri integration; a(y) non-translational). Consider the non-
Cavalieri region R shown in Figure 21.A:

0 1 2

1

2

3

4
(2, 4)

a(y) = 1
2y

f(x) = x2

x

y

R

A.

0 1 2

1

2

3

4
(2, 4)

a(y) = 1
2y

f(x) = x2

x

y

b(y) = 1
2y +

1
2

AR1
=
∫ 1

2y+
1
2

1
2y

x2dx

R1

B.

0 1 2

1

2

3

4
(2, 4)

a(y) = 1
2y

f(x) = x2

x

y

b(y) = 1
2y +

1
2

AR2
=
∫ 1

2y+
1
2

1
2y

x2dx

R2

C.

Figure 21: The region bounded by f(x) = x2 and a(y) = 1
2y.
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The area of this region can be calculated with the double integral:

AR =

∫ 4

0

∫ √y
1
2y

1 dx dy

=

∫ 4

0

x
∣∣∣
√
y

1
2y
dy

=

∫ 4

0

√
y − 1

2
y dy

=
2

3
y

3
2 − 1

4
y2
∣∣∣
4

0

=
4

3
,

and also with the integral:

AR =

∫ 2

0

2x− x2 dx

= x2 − 1

3
x3
∣∣∣
2

0

=
4

3
.

We can also calculate the area AR with the difference between two Cava-
lieri integrals. The two areas being subtracted are shown in Figure 21.B and
Figure 21.C.

AR = AR1 −AR2

=

∫ 1
2y+

1
2

1
2y

x2 −
∫ 1

2y+
1
2

1
2y

x2

=

∫ 1
2

0

f ◦ h1(x) dx−
∫ 1

2

0

f ◦ h2(x) dx

=

∫ 1
2

0

(
1 +
√

1− 2x
)2
dx−

∫ 1
2

0

(
1−
√

1− 2x
)2
dx

=
4

3
.

Example 4.8 (Cavalieri integration; h strictly decreasing). Consider the Cava-
lieri region bounded by the x-axis and the functions f(x) = 3−2x, a(y) = 2−y,
and b(y) = 3− y. This region is shown in Figure 22.

The area of this region can be calculated with the Cavalieri integral

∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx. (4.10)
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1

2

3

f(x) = 3− 2x

a(y) = 2− y

b(y) = 3− y

x

y

Figure 22: Region bounded by the x-axis and the functions f(x) = 3 − 2x,
a(y) = 2− y, and b(y) = 3− y.

To evaluate (4.10) we first need to find h:

a ◦ f(x2i ) + [x1i − 2] = x2i

⇒ x2i = 3− x1i ,

so that h(x) = 3− x.
We can now calculate (4.10) as follows

∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx

=

∫ 3

2

2x− 3 dx

= x2
∣∣∣
3

2
− 3x

∣∣∣
3

2

= 2.

Example 4.9 (Cavalieri integration; f(x) not defined). Consider the normal
Riemann integration task given below (shown in Figure 23):

∫ 1

0

√
1− x dx−

∫ 0.5

0

√
0.5− x dx =

∫ 1

0

1− y2 dy −
∫ √0.5

0

0.5− y2 dy ≈ 0.431.

Note that the shaded region in Figure 23 is not a Cavalieri region, since f(x)
is not even defined. Nevertheless, we can compute this area as a single Cavalieri
integral as follows. We find the transformation function h by equating

a(x2i ) + [x1i − 0.5] = x2i
∣∣
x2
i=0

,

where the x2i on the right hand side is set to zero since the region is bounded
from the left by x = 0, and the x2i on the left hand side remains unchanged,
since we are really interested in the y-intercepts of each translation of a(y).
Therefore we find

x2i = h(x1i ) =
√
x1i ,
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0 0.5 1

1

0.5

b(y) = 1− y2

a(y) = 0.5− y2

x

y
x = 0

Figure 23: Region bounded by the x-axis, the line x = 0 and the functions
a(y) = 0.5− y2 and b(y) = 1− y2.

so that we can compute the shaded area as

∫ b(y)

a(y)

(x = 0) dx =

∫ b

a

h(x) dx

=

∫ 1

0.5

√
x dx

≈ 0.431.

5 Conclusion

We have presented a novel integral
∫ b(y)
a(y)

f(x) dx in which non-rectangular inte-

gration strips were used. We also presented two methods of evaluating Cavalieri

∆x ∆x

f f ◦ h

fg′

A B

C

area A = area B = area C

a b a bb′a′

a′ b′

Figure 24: Relationships between Cavalieri (region A), Riemann (region B) and
Riemann-Stieltjes (region C) integrals.
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integrals by establishing the following relationships between Cavalieri, Riemann
and Riemann-Stieltjes integrals:

∫ b(y)

a(y)

f(x) dx =

∫ b

a

f ◦ h(x) dx =

∫ b′

a′
f(x) dg(x),

which is equivalent to noting that

Area A = Area B = Area C,

as shown in Figure 24.

The reason for calling
∫ b(y)
a(y)

f(x) dx the Cavalieri integral should now become

transparently clear: the area of region B is equal to the area of region A by
Cavalieri’s principle.
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