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Abstract

Increasing electricity costs coupled with lower prices for some metals such as

platinum group metals, require a reevaluation of the operation of grinding

processes. Demand side management (DSM) has received increasing atten-

tion in the field of industrial control as an opportunity to reduce operating

costs. DSM through grinding mill power load shifting is presented in this

paper using model predictive control and a real-time optimizer. Simulation

results indicate that mill power load shifting can potentially achieve cost re-

ductions of $9.90 /kg of unrefined product when applied to a run-of-mine

(ROM) ore milling circuit processing platinum bearing ore. DSM is however

still not economically feasible when there is a demand to continuously run

the milling circuit at maximum throughput.
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1. Introduction

As energy costs increase, the operating procedures of energy intensive

processes should be reevaluated in order to find cost saving opportunities.

One such process is the run-of-mine (ROM) ore milling circuit used in the

mineral processing industry.

ROM ore milling circuits are used for primary grinding of ore so that

valuable minerals within the ore can be liberated, separated, and concen-

trated in downstream processes (Hodouin, 2011). ROM ore milling circuits

have been identified as the most energy intensive unit processes in a mineral

processing plant (Wei & Craig, 2009a).

In addition to being an energy intensive process, ROM ore milling circuits

are also complicated processes to control. Difficulties in the control of ROM

ore milling circuit result from integrating features with strong disturbances,

large time delays, non-linearities, and strong interactions (Coetzee, 2009).

The fineness of the milling circuit product is used as a measure of its quality

(Muller & De Vaal, 2000) and is a major determinant of the effectiness of

downstream separation and concentration processes (Craig et al., 1992).

The concept of demand side management (DSM) was formalized in the

1980s by Gellings (1985). DSM presents a shift from the traditional supply-

demand strategy of electricity load control as it encourages customers to

assist in electricity load control by managing demand. This management of

demand allows customers to indirectly control the load shape of the utility.

Demand side management projects can be categorized as energy efficiency,

time-of-use (TOU), demand response, and spinning reserve projects (Palen-

sky & Dietrich, 2011). Time-of-use tariffs are used by electricity utilities to
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encourage consumers to move their demand from peak periods to off-peak

periods by using different tarrifs for the respective periods.

Load shifting as a DSM technique has received increasing attention in

recent years as electricity utilities encourage customers to reduce peak de-

mands. Load shifting is performed in response to the TOU tariffs imple-

mented by utilities. Reduced peak demands result in less stress on power

generation facilities during peak periods and help maintain a stable reserve

margin (Palensky & Dietrich, 2011).

While the mining sector accounts for approximately 15 % of electricity

consumption in South Africa (Eskom, 2012a), little has been published in

the open literature on the implementation of DSM in the sector.

DSM techniques that have been studied within the mining sector include

hoist scheduling techniques for a deep level mine (Badenhorst et al., 2011),

scheduling techniques for water pumping in underground mines (van Staden

et al., 2011), and an optimal control model for conveyors in a colliery (Middel-

berg et al., 2009). These studies have shown that operating costs associated

with electricity consumption may be reduced by shifting the load according

to TOU tariffs.

DSM, specifically load shifting, presents an opportunity for the control

community to contribute to profitability improvements of processes. Projects

aimed at retrofitting older plant equipment with new energy efficient equip-

ment are associated with capital expenditure and often long payback periods

which discourage the implementation of such projects. Implementation of

load shifting projects require less capital expenditure while offering potential

reduction of operating expenditure (Bauer & Craig, 2008).
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Traditionally ROM ore milling circuits have been controlled to achieve

maximum throughput as the cost of electricity was low. Electricity has how-

ever become increasingly expensive. This paper focuses on the production

of platinum group metals (PGMs) of which South Africa produced approxi-

mately 75 % of the total world output in 2011 (Jansen, 2012). The cost of

electricity in South Africa has increased by an average 27 % for the period

2008-2012 (Eskom, 2012a; NERSA, 2012), and all indications are that annual

double digit increases will be applied for the foreseeable future.

A number of studies in the optimization of milling circuits have been per-

formed at the supervisory control layer. An expert system based on IF-THEN

logic was developed to optimize mill power in order to achieve maximum

throughput on a milling circuit (Borell et al., 1996). A fuzzy logic rule-based

supervisory controller was developed to achieve the maximum transfer of en-

ergy to the mill charge (Steyn et al., 2010). An on-line economic performance

optimizer was also developed, but the cost of energy was not considered in

the economic objective function (Radhakrishnan, 1999).

The traditional control of ROM ore milling circuits must therefore be

reevaluated to determine whether operating at maximum throughput remains

effective. An implementation of mill power load shifting to realize a reduc-

tion of operating costs associated with electricity consumption is therefore

developed. This reduction of operating expenditure is also evaluated against

the performance of a ROM ore milling circuit controller that does not take

DSM into account.
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Figure 1: ROM ore milling circuit adapted from Coetzee et al. (2010).

2. ROM ore milling circuit

2.1. Introduction

The ROM ore milling circuit (see Fig. 1) used for this study consists of a

semi-autogenous (SAG) mill, a sump, and a hydrocyclone. Grinding occurs

within the SAG mill using steel balls and the ore. Water is pumped into the

mill to create a slurry to promote grinding and flow through the mill. The

sump is used to adjust the density of the slurry and acts as a buffer in the

circuit. The hydrocyclone is used to split in-specification material from the

out-of-specification material.

Ore is fed to the SAG mill at approximately 90 t/h. The ore is mixed with

feed water, steel balls, and underflow from the cyclone. A slurry is formed

within the mill which can be classified into coarse ore, fines, and water as

described in Section 2.2. Fines are classified as particles within specification,
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specifically smaller than 75 µm. Coarse ore is classified as particles out-of-

specification. The slurry leaves the mill through a discharge grate at the end

of the mill and is fed into a sump.

In the sump water is added to dilute the slurry to achieve a desired density

and to facilitate transport through the circuit. The diluted slurry is then

pumped to the hydrocyclone. The hydrocyclone splits the particles in the

slurry so that approximately 80 % of the overflow stream is made up of fines.

The overflow stream is sent to downstream separation and concentration

processes. The underflow consists primarily of coarse ore which is fed back

to the mill for regrinding.

Separation of the liberated product of a milling circuit can be achieved us-

ing e.g. flotation or leaching. For this study it is assumed that the PGMs are

separated using a flotation circuit (Hodouin, 2011). The recovery of PGMs

in the separation stage is dependent on the product particle size produced by

the milling circuit i.e. the cyclone overflow. The relationship between PGM

recovery and particle size used for this study is given in Fig. 2.

2.2. Milling circuit model

A non-linear model was developed for the milling circuit as described in

Coetzee et al. (2010) and Le Roux et al. (2012). The non-linear model was

validated using real plant data as described in Le Roux et al. (2012). The

model is made up of four modules that together simulate the closed loop

milling circuit. The modules are a feeder, mill, sump, and hydrocyclone

module.

The feeder module is used to combine the solids feed, mill inlet water

feed, and ball feed with the underflow of the cyclone which are all fed to the
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Figure 2: Recovery as a function of particle size, adapted from Wei & Craig (2009b).

mill. The mill module is used to simulate the grinding action within the mill.

The sump module is used to simulate the state of the sump and the cyclone

module is used to simulate the classification process within the hydrocyclone.

For this study the mill module is of particular interest as it is mill power

draw that will be shifted according to TOU tariffs. The mill power draw

model originates from the mill module and will be discussed here. A full

discussion of the modules is given in Coetzee et al. (2010) and Le Roux et al.

(2012) and will not be repeated here.

The mill power model is a function of mill load, the mill rheology factor,

and the fraction of critical mill speed, referred to from here on as mill speed

(SPD). Mill load is defined as the fraction of the mill filled, and the rheology

factor is used to describe the fluidity of the slurry based on the mill states.
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Table 1: Mill model parameters
Variable Nom Description

εws 0.6 Maximum water-to-solids volumetric ratio at

zero slurry flow.

Pmax 2000 Maximum mill motor power. [kW]

δPv 1 Power-change parameter for volume.

vPmax 0.45 Fraction of mill volume filled for maximum

power.

δPs 1 Power-change parameter for fraction solids.

ϕPmax 0.51 Rheology factor for maximum mill power.

αP 0.82 Fraction power reduction per fractional reduc-

tion from maximum mill speed.

vmill 100 Mill volume [m3]

χP 0 Cross-term for maximum power.

The rheology factor is given by

ϕ =

√
max [0, (Xmw − (1/εws − 1) ·Xms)]

Xmw

. (1)

The effect of rheology on power consumption is given by

Zr =
ϕ

ϕPmax
− 1, (2)

and the effect of mill load on power consumption is given by

Zx =
Xmw +Xms +Xmr +Xmb

vPmax · vmill
− 1. (3)

Mill power consumption is given by

PWR = Pmax · {1− δPv · Z2
x

−2 · χP · δPv · δPs · Zx · Zr − δPs · Z2
r} · (SPD)αP .

(4)

The parameters used for the mill model are given in Table 1. The states

of the milling circuit are given in Table 2. The states of the mill are the

holdups of water (Xmw), ore (Xms), fine ore (Xmf ), rocks (Xmr), and steel

balls (Xmb). The states of the sump are the holdups of water (Xsw), ore
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Table 2: Milling circuit states
Variable Min Max OP Description

Xmw 0 50 8.01
The holdup of water in the

mill. [m3]

Xms 0 50 8.78
The holdup of ore in the

mill. [m3]

Xmf 0 50 3.24
The holdup of fine ore in

the mill. [m3]

Xmr 0 50 16.98
The holdup of rock in the

mill. [m3]

Xmb 0 20 6.22
The holdup of balls in the

mill. [m3]

Xsw 0 30 15.14
The holdup of water in the

sump. [m3]

Xss 0 30 3.43
The holdup of ore in the

sump. [m3]

Xsf 0 30 1.26
The holdup of fine ore in

the sump. [m3]

(Xss), and fine ore (Xsf ). The holdup of ore (Xms and Xss) is considered the

holdup of in-specification ore (fine ore) plus out-of-specification ore (coarse

ore). The steady-state operating points of the states are also given in Table 2.

2.3. Control objectives

Run-of-mine ore milling circuits are inherently difficult processes to con-

trol. They exhibit integrating features with strong external disturbances,

large time delays, non-linearities, and strong interactions (Coetzee, 2009).

The control of milling circuits using model predictive control (MPC) has

however been shown to be effective (Muller & De Vaal, 2000; Coetzee et al.,

2010; Niemi et al., 1997; Ramasamy et al., 2005; Chen et al., 2007, 2008).

Traditionally the control objectives for a ROM ore milling circuit can be

given as (Craig & MacLeod, 1995)

1. improve the quality of the product by increasing the fineness of the

grind and decreasing product size fluctuations,
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Table 3: Milling circuit CVs and MVs
Variable Min Max OP W Description

Controlled variables

PSE 60 90 82.0 200
Product particle

size. [% < 75µm]

LOAD 30 50 40.0 10
Percentage of the

mill filled. [%]

SLEV 2 38 18.6 8
Level of the sump.

[m3]

PWR 0 2000 1855 200
Power draw of the

mill motor. [kW]

TPT 0 200 92.0 –

Throughput (con-

sists of coarse and

fine solids). [t/h]

Manipulated variables

CFF 400 500 470.4 10−5

Flow-rate of slurry

from the sump to

the cyclone. [m3/h]

MFS 0 200 92.0 10−4 Feed-rate of ore to

the circuit. [t/h]

MIW 0 100 30.7 –
Flow-rate of water

to the mill. [m3/h]

SFW 0 400 304.3 10−5 Flow-rate of water

to the sump. [m3/h]

SPD 70 100 92.7 1
Percentage of criti-

cal mill speed. [%]

MFB 0 4 2 –
Feed-rate of balls to

the mill. [t/h]

2. maximize throughput,

3. minimize consumption of grinding media, and

4. minimize power consumption

The control objectives are however not all complementary and therefore

require certain trade-offs. A frequently applied trade-off is to rather maximize

throughput than minimize power consumption. This trade-off is often applied

owing to the high value of the product compared to the traditionally low cost

of electricity in South Africa (Coetzee, 2009).

In recent years the cost of electricity has significantly increased in South
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Africa and will continue increasing (Eskom, 2012a; NERSA, 2012) as indi-

cated earlier. In addition to the cost of electricity increasing, the reserve

margins have decreased, resulting in a less reliable supply. The control ob-

jectives for the mill power load shifting controller were therefore updated to

the following:

1. maintain milling circuit stability,

2. maintain a constant product size and decrease product size fluctuations

around this value,

3. maintain a specified average throughput over a seven day horizon, and

4. minimize the costs associated with power consumption.

2.4. Controlled and manipulated variables

Traditionally the controlled variables (CVs) for a ROM ore milling circuit

are product particle size (PSE), the percentage of the mill volume filled

(LOAD), and sump level (SLEV). The manipulated variables (MVs) most

commonly used to control the milling circuit are the flow-rate of water to the

mill (MIW), the feed-rate of ore to the circuit (MFS), the flow rate of slurry

from the sump to the cyclone (CFF), and the flow-rate of water to the sump

(SFW) (Wei & Craig, 2009a; Coetzee et al., 2010; Olivier et al., 2012).

Owing to the trade-off between throughput and power, mill power is

generally not controlled directly (Coetzee, 2009). In order to perform mill

power load shifting on the milling circuit, mill power (PWR) must however

be added as a CV. PSE is controlled as the product quality of a ROM ore

milling circuit is related to PSE. Mill load and sump level have integrating

characteristics and must therefore be controlled to maintain milling circuit

stability.
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The traditional MVs are used to control the milling circuit in this study

with mill speed (SPD) added to achieve functional controllability (Skogestad

& Postlethwaite, 2005). The flow-rate of water to the mill (MIW) is ratio

controlled to the feed-rate of ore to the circuit in order to maintain a relatively

constant solids-to-water ratio within the mill.

The addition of balls to the milling circuit is often performed manually

and the feed-rate of balls to the mill (MFB) is therefore not used as an MV.

MFB is kept constant at the nominal value of 2 t/h. Based on the mill power

model, mill power can be controlled by manipulating the hold-up within the

mill, the rheology factor, and mill speed (SPD). Mill speed has the most

direct effect on mill power and is therefore used as an MV.

In a recent survey that addressed the control of grinding mill circuits,

90 % of the respondents reported that an electric motor is typically used as

the actuator for mill speed (Wei & Craig, 2009b). In order to use mill speed

as an MV it is necessary to have a variable speed drive (VSD) to regulate

the speed of the mill motor. For this study it is assumed that such a VSD is

available.

The controlled and manipulated variables of the milling circuit are given

in Table 3. The operating range, operating point, and controller weighting of

each of the variables are also presented in the table. The controller weightings

are further discussed in Section 3.2.

3. Regulatory control

Model predictive controllers have been shown to perform better than sin-

gle loop PI(D) controllers for ROM ore milling circuits (Muller & De Vaal,
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2000; Coetzee et al., 2010; Niemi et al., 1997; Ramasamy et al., 2005; Chen

et al., 2007, 2008). Following recent trends a linear model predictive con-

troller was developed to stabilize the system and implement mill power load

shifting at the regulatory control level.

3.1. Linear model

In this paper the non-linear plant model described in Section 2.2 is con-

trolled using a linear model predictive controller. A linear model was derived

by performing system identification (SID) on the non-linear model around

the operating point given in Table 2 (Ljung, 1999). The linear model is given

by 
∆PSE

∆LOAD

∆SLEV

∆PWR

 =


g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44




∆CFF

∆MFS

∆SFW

∆SPD

 . (5)

All transfer functions are given with time constants in hours. The transfer

functions between PSE and the MVs as given in (5) are

g11(s) =
6.994× 10−3(2.188s− 1)

(0.432s+ 1)
e−0.011s,

g12(s) =
−9.478× 10−2

(0.483s+ 1)
e−0.064s,

g13(s) =
4.481× 10−2

(0.339s+ 1)
e−0.011s,

g14(s) =
0.108

(0.574s+ 1)
e−0.014s.

(6)
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The transfer functions between LOAD and the MVs are

g21(s) =
1.770× 10−2(9.728s+ 1)

s(0.817s+ 1)
,

g22(s) =
9.556× 10−2

s
,

g23(s) =
−1.444× 10−2(8.850s+ 1)

s(0.663s+ 1)
,

g24(s) =
−1.050

(7.2s+ 1)
.

(7)

The transfer functions between SLEV and the MVs are

g31(s) =
−0.769

s
,

g32(s) =
0.876

s
,

g33(s) =
0.677

s
,

g34(s) =
−0.883

s
.

(8)

The transfer functions between PWR and the MVs are

g41(s) =
3.577(1.610s+ 1)

(6.329s+ 1)
e−0.014s,

g42(s) =
8.990

(1.93s+ 1)
,

g43(s) =
1.605(0.0075s+ 1)

(0.782s+ 1)
e−0.014s,

g44(s) =
73.57(9.643s+ 1)

(4.576s+ 1)(0.001s+ 1)
.

(9)

The linear plant model was identified through SID using step response

data generated by the non-linear plant model. First order transfer functions

with time delay were fitted to the step response data. Where the first order
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transfer functions did not produce an accurate fit, a zero was added to the

model form to improve the fit.

The PWR/SPD transfer function, g44(s), however does not conform to

the general model form as it has a single zero in an overdamped second-order

transfer function. Analytically it can be argued that for (τp1 = 4.576) �

(τp2 = 0.001), setting τp2 → 0 gives a similar response. This simplification

however results in a poor model for PWR/SPD. The time constant τp2 =

0.001 relates to the fast initial response of PWR as SPD is changed as can

be identified in (4).

As mill speed changes the states within the mill begin to change. The

time constants τp1 = 4.576 and τz = 9.643 therefore relate to the decay of

mill power as the effect of rheology on mill power, Zr, and the effect of mill

load on mill power, Zx, begin to change (see (2) and (3)). The fit of the

PWR/SPD transfer function compared to the step response validation data

is presented in Fig. 3.

The fit of all the models are not presented in this paper owing to space

constraints. The models are however similar to those presented by Hulbert

et al. (1990) for a ROM ore milling circuit.

3.2. Model predictive controller

The MPC controller was designed using the linear model from (5) to

control the non-linear plant model described in Section 2.2. The objective of

the controller is given by

min
u
V (u,x0), (10)

s.t. y ∈ Y,u ∈ U, (11)

15



100 120 140 160 180
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time (hours)

ΔP
W
R
 
(
k
W
)

PWR vs SPD

 

 

Linear Model
Non−Linear Model

Figure 3: Fit of the PWR/SPD transfer function (g44(s)) based on the step response

validation data.

y = g(x0,u), (12)

Y = {y ∈ Rny |yl ≤ y ≤ yu},

U = {u ∈ Rnu |ul ≤ u ≤ uu},

|∆u| ≤ ∆umax,

(13)

V (u,x0) =

Np∑
i=1

(Ysp − y)TQ(Ysp − y)

+
Nc∑
i=1

∆uTR∆u,

(14)

where u represents the manipulated variables, x the states with initial states

x0, y, the controlled variables, and Ysp the set-points.

The constraints for the CVs are given by yu and yl respectively. The

upper constraints of the MVs are given by uu and the lower constraints by

ul. The maximum rate constraints on the MVs are given by

∆umax =
[

1.00 0.08 1.00 0.005
]T

(15)

16



The matrices Q and R are diagonal weighting matrices for the controlled

and manipulated variables respectively. The weights are given in Table 3.

The weights were chosen to achieve the control objectives listed in Sec-

tion 2.3. The MV weights were chosen so that CFF and SFW are prefer-

entially used by setting their respective weights lowest. MFS has a slightly

higher weight, while SPD has the highest weight so as to discourage changes

in mill speed.

The effect of SLEV and LOAD set-point deviations on the objective func-

tion were set to approximately 20 times less than that of PSE and PWR

set-point deviations. The effect of PSE and PWR set-point deviations on

the objective function were made equivalent. These weight choices resulted

in slightly detuned sump level and mill load control while implementing tight

control on particle size and mill power.

The sampling time of the controller, ∆TMPC , is 10 s (Craig & MacLeod,

1995). Based on MPC tuning guidelines the prediction horizon, Np, should

cover the largest settling time, Ts, of the plant (Np = Ts/∆TMPC) (Se-

borg et al., 2004). The largest settling time is approximately 28 h for the

LOAD/SPD transfer function which relates to a prediction horizon of 10000

moves. Such a large prediction horizon is computationally infeasible.

The sampling time of the controller cannot be increased much from 10 s as

the dynamics between the MVs and SLEV are relatively fast. For example,

if CFF is at the maximum constraint (500 m3/h) and SFW at its minimum

constraint (0 m3/h), it will take 134 s for the sump to run dry if the SLEV

was at the nominal value of 18.6 m3. Significantly increasing the sampling

interval will therefore result in the violation of control objective (1). A trade-
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off must be made between the fast and slow dynamics of the milling circuit

unless a multirate controller is implemented (Halldorsson et al., 2005).

The choice of prediction horizon was modified to be based on the longest

settling time between PSE and the MVs. The prediction horizon was there-

fore chosen as 830 moves, corresponding to 2.3 h, the settling time for the

PSE/SPD transfer function. This choice of prediction horizon resulted in a

computationally intensive controller. The prediction horizon was iteratively

shortened to determine the shortest horizon that achieved similar results.

The final prediction horizon that satisfied the control objectives as given in

Section 2.3 was Np = 40.

The number of control moves, Nc, should be chosen to be small enough to

prevent the controller from being too aggressive but large enough such that

a sufficient portion of the prediction horizon contains control action (Seborg

et al., 2004). The control horizon was therefore chosen as Nc = 4. Blocking

is implemented to distribute the control moves over the prediction horizon.

The blocking vector that is used is [4 8 12 16], allowing each successive

control move to persist for a longer period than the last.

4. Supervisory control

In order to choose the set-points for the mill power load shifting controller,

a non-linear cost function was developed to be minimized. The cost function

was developed as a loss function based on turnover and the costs associated

with electricity consumption. The supervisory control layer has a sampling

time ∆TRTO = 30 min, while the regulatory control layer has a sampling

time ∆TMPC = 10 s.
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Table 4: Variables used for the supervisory control cost function
Variable Units Description

L(uSS ,ySS) US$
Loss as a function of steady-state MVs

and CVs.

It(uSS ,ySS) US$
Turnover as a function of steady state

MVs and CVs.

Ct(ySS) US$
Electricity cost as a function of steady-

state CVs.

N h
Window over which L(uSS ,ySS) is eval-

uated.

∆TRTO h Sampling interval of the RTO.

HG g/t Approximate head grade of ore.

PADJ $/g
Price of the product at the output of the

flotation process.

Pmarket $/troy oz Market price for platinum.

uSS2
t/h

Steady-state feed-rate of ore to the mill

(MFSSS).

ySS1
%

Steady-state product particle size

(PSESS).

ySS4
kW Steady-state mill power draw (PWRSS).

ϑ(ySS1
) %

Recovery within flotation process as a

function of PSESS .

c(t) $/kWh Electricity tariff at time t.

4.1. Cost function

The cost function is given by

L(uSS,ySS) =

N/∆TRTO∑
t=1

[Ct(ySS)− It(uSS,ySS)] , (16)

where Ct(y) is the cost associated with electricity consumption, It(u,y) is

the turnover to which the ROM ore milling circuit contributes, and N is

the window over which the cost function is evaluated. The turnover and

electricity cost functions are discussed below. The variables used for the

turnover and electricity cost function are summarized in Table 4.
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4.1.1. Turnover

The turnover associated with the milling circuit product is given by

It(uSS,ySS) = ∆TRTO ×HG× PADJ × uSS2(t)× ϑ(ySS1(t)), (17)

where ∆TRTO is the sampling interval in hours, HG is the approximate head

grade of the mined ore given as 3 g/t, uSS2 is the steady-state feed-rate of

ore to the mill (MFS) which relates to the throughput over an hour, and

ϑ(ySS1(t)) is the recovery in percent within the flotation circuit as a function

of steady-state PSE (ySS1). The relationship between recovery and particle

size, as given in Fig. 2, is

ϑ(ySS1(t)) = −0.009776y2
SS1

(t) + 1.705ySS1(t)− 2.955. (18)

The mineral price, PADJ , is the price of the product at the output of

the flotation circuit. The price is adjusted from the market price of refined

platinum to the separated product, or concentrate, produced by the flotation

circuit. This adjustment is made so that a comparison of the electricity costs

of only the milling circuit can be made to the income associated with the

process itself. The adjusted price is given by

PADJ = (0.032)× (0.75)× Pmarket, (19)

where 0.032 is the conversion factor between gram and troy ounce, 0.75

represents the percentage of the costs associated with the mining, liberation,

and separation processes upstream of the refining process (Cramer, 2008),

and Pmarket is the market price for platinum, given as $1600 /troy oz.
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Table 5: Eskom time-of-use periods (Eskom, 2012b)
Period Weekdays Saturdays Sundays

00:00 - 06:00 Off-peak Off-peak Off-peak

06:00 - 07:00 Standard Off-peak Off-peak

07:00 - 10:00 Peak Standard Off-peak

10:00 - 12:00 Standard Standard Off-peak

12:00 - 18:00 Standard Off-peak Off-peak

18:00 - 20:00 Peak Standard Off-peak

20:00 - 22:00 Standard Off-peak Off-peak

22:00 - 24:00 Off-peak Off-peak Off-peak

Table 6: Eskom time-of-use tariffs ($/kWh) (Eskom, 2012b)

Period
High demand season

(Jun.-Aug.)

Low demand season

(Sep.-May)

Peak 0.2303 0.0644

Standard 0.0600 0.0395

Off-peak 0.0321 0.0277

4.1.2. Electricity costs

Electricity consumption is calculated based on the average mill power

draw every half hour. Electricity cost is then calculated based on the half

hourly electricity consumption billed at the applicable TOU tariff for that

half hour. This function is given by

Ct(ySS) = ∆TRTO × ySS4(t)× c(t×∆TRTO), (20)

where ySS4 is the steady-state mill power draw given by PWR in (4) and

c(t × ∆TRTO) is the applicable TOU tariff for the given period in US$ as

given in Tables 5 and 6.

4.2. Constraints

The cost function (16) is related here to the milling circuit model by ob-

taining the steady-state of the linear model (5) used for the controller. The
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steady-state models for the transfer functions g21(s), g22(s), g23(s), g31(s),

g32(s), g33(s), and g34(s) were calculated as the gain at the end of the sam-

pling interval (t = 30 min) as these transfer functions contain integrators.

The steady-state model is given by

ySS = GSS · uSS, (21)

where GSS is given by
−7.0× 10−3 −9.5× 10−2 4.5× 10−2 0.11

8.1× 10−2 4.8× 10−2 −7.0× 10−2 −1.1

−0.39 0.44 0.34 −0.44

3.6 9.0 1.6 74

 (22)

In addition to using the steady-state model as equality constraints for the

cost function, the input and output constraints had to be included too. The

CV constraints used in the cost function were made 10 % tighter than those

used by the regulatory MPC controller as given in (13) and Table 3 while the

MV constraints remained the same. The resulting CV constraints are given

by

yl =
[

63.0 32.0 5.6 1550
]T

yu =
[

87.0 48.0 34.4 1950
]T

.
(23)

In addition to the constraints on the controlled and manipulated variables,

the average throughput was implemented using an equality constraint. The

average throughput refers to the throughput over the seven day period for

which the optimization is done. The throughput constraint is implemented

as

TPTave × 24× 7 =

N/∆TRTO∑
t=1

∆TRTO × uSS2(t), (24)
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where TPTave is the average throughput over the seven day period (24 h × 7)

and uSS2(t) is the steady-state feed-rate of ore to the milling circuit (MFSSS)

at time t.

The throughput constraint originates from the assumption that ore can

be supplied to the milling circuit at a certain rate, i.e. a buffer in the form

of a silo or storage facility lies between the source of ore and the milling

circuit. The average throughput rate of the milling circuit must therefore be

the same as the average feed-rate of ore supplied to the milling circuit over

a seven day period.

4.3. Real-time optimizer

In order to take dynamic changes in the mineral price, electricity price,

and throughput availability into account, the loss minimization function is

implemented as a real-time optimizer (RTO). The formulation of the RTO

is as follows

min
uSS

L(uSS,ySS), (25)

s.t. ySS ∈ Y,uSS ∈ U, (26)

Y = {ySS ∈ Rny |yl ≤ ySS ≤ yu},

U = {uSS ∈ Rnu|ul ≤ uSS ≤ uu},

|∆uSS| ≤ ∆TRTO/∆TMPC ×∆umax,

TPTave =
1

168
×

168/∆TRTO∑
t=1

∆TRTO × uSS2(t).

(27)

The RTO is implemented with a sampling interval, ∆TRTO, of 30 min.

The minimization of the cost function was formulated with a window of

N = 168 h (7 days). The window is made this length in order to take

advantage of the cheaper electricity over weekends where throughput can be
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Table 7: Optimal set-points
Period Season PSE LOAD SLEV PWR

P
H

L

81.2

81.5

32.0

32.0

5.71

5.71

1550

1701

S
H

L

81.8

81.9

32.0

32.0

5.75

5.73

1794

1809

OP
H

L

82.9

82.8

32.0

32.0

5.78

5.75

1950

1939

increased to compensate for the lower throughput during the week where

electricity is on average more expensive.

4.4. Resulting set-points

The optimal set-points, Ysp, resulting from the optimal steady-state in-

puts, uSSopt, are calculated from

Ysp = GSS · uSSopt. (28)

The set-points calculated by the RTO for an average weekly throughput

of 90 t/h and the electricity tariffs given in Table 6 are presented in Table 7

where P, S, and OP represent the peak, standard, and off-peak tariff periods

respectively. H and L represent the high and low demand seasons respec-

tively. The throughput of 90 t/h was chosen arbitrarily for the purposes

of this study. In an industrial setting it will be chosen to meet particular

production targets.

4.4.1. Set-point implementation

The RTO calculates optimal set-points for PSE, LOAD, SLEV, and PWR.

Implementing all four optimal set-points simultaneously decreases the stabil-

ity of the ROM ore milling circuit. As discussed in Section 2.3, it is important
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to minimize variations in PSE as well as maintain milling circuit stability.

The PSE set-point should be chosen in order to maximize recovery down-

stream from the milling circuit, i.e. the set-point should be 87 % to achieve

maximum flotation recovery as indicated in Figure 2. Theoretically speaking

therefore the PSE set-point should be kept at this nominal value. There is

however a trade-off between PSE and throughput (Bauer & Craig, 2008), i.e.

the higher the PSE the lower the throughput, resulting in a milling circuit

usually being operated below the maximum recovery PSE value. The RTO

results therefore show that the PSE should be 81.2 %, 81.8 %, and 82.9 %

during peak, standard, and off-peak periods respectively. To reduce varia-

tions in PSE though, the PSE set-point is maintained at 82 % which lies in

the middle of the range of the RTO results.

Additional design choices were made to improve milling circuit stability.

The set-points of LOAD and SLEV were maintained at the nominal values,

which are in the middle of the respective operating regions. By maintaining

the sump level set-point and marginally relaxing sump level control, control

of particle size is improved. Similarly maintaining the mill load set-point

while allowing increased variations in mill load, improves control of particle

size and mill power.

The only set-point that is changed is the mill power set-point.

4.4.2. Set-point filtering

Mill power set-point changes are filtered using a first-order filter. Without

filtering, step and ramp function mill power set-point changes result in the

sump running dry. The set-point change filter (with the time constant in
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hours) is given by

GPWR(s) =
1

0.1s+ 1
. (29)

Using the set-point filter for mill power with the designed time constant

allows the set-point to settle in approximately 0.4 h.

5. Results

5.1. Simulation setup

Simulations were performed on the non-linear ROM ore milling circuit

model using the linear model predictive controller described in Sections 2.2

and 3.2 respectively. Three sets of simulations were performed. Measurement

noise was simulated through additive Gaussian white noise on each of the

outputs.

The first simulation was performed to determine the power consumption

for maximum throughput without mill power load shifting. The second sim-

ulation was used to determine the baseline power consumption when no mill

power load shifting was performed. The third simulation was performed with

mill power load shifting aimed at maximizing profit. For the simulations,

profit is considered as the turnover less the operating costs for electricity

consumption.

5.1.1. Fixed power simulations

The maximum achievable average throughput for the milling circuit model

is approximately 97 t/h. The mill power associated with a throughput of

97 t/h is approximately 1950 kW, which was chosen as the power set-point

for the maximum throughput simulation.
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The average throughput of 90 t/h that was arbitrarily chosen for the

baseline simulation relates to 93 % of the maximum average throughput

of the milling circuit. The baseline simulation was performed to evaluate

the performance of mill power load shifting on a milling circuit not running

at maximum throughput. The mill power associated with a throughput of

90 t/h is approximately 1850 kW, which was chosen as the power set-point.

The CVs and MVs for the fixed power simulations are not shown in this

paper.

A number of factors can affect the average throughput at which a milling

circuit operates. These factors include low availability of ore from the mine,

restricted throughput of the downstream processes, and even attempts to

reduce operating costs.

5.1.2. Mill power load shifting simulation

The set-points for the mill power load shifting simulation were calculated

using the RTO. The average weekly throughput was chosen as 90 t/h (the

same as the baseline simulation) so that comparisons could be made between

the mill power load shifting simulation and the baseline simulation. The

controlled variables for the mill power load shifting simulation over a one-

week period (168 h) during the high demand season are presented in Fig. 4

and the manipulated variables in Fig. 5. The controlled and manipulated

variables for the low demand season are given in Fig. 6 and 7 respectively.

5.2. Simulation results

The simulation results are presented as electricity cost savings, through-

put losses, and cost improvement per unit of unrefined platinum.
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Figure 4: Controlled variables for the high demand mill power load shifting simulation.

The solid lines indicate the CVs, the dash-dotted lines the set-points, and the dashed lines

the constraints.
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Figure 5: Manipulated variables for the high demand mill power load shifting simulation.

The solid lines indicate the MVs and the dashed lines the constraints.
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Figure 6: Controlled variables for the low demand mill power load shifting simulation.

The solid lines indicate the CVs, the dash-dotted lines the set-points, and the dashed lines

the constraints.
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Figure 7: Manipulated variables for the low demand mill power load shifting simulation.

The solid lines indicate the MVs and the dashed lines the constraints.
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Table 8: Electricity costs (US$/week)

Simulation
High demand

season

Low demand

season

Max Throughput 13, 032.30 6, 783.39

Baseline 12, 418.98 6, 464.08

Load Shifting 11, 965.05 6, 369.86

5.2.1. Electricity cost reduction

The electricity costs are calculated by taking the average power consump-

tion of the mill every hour and billing it at the relevant TOU tariff. The total

electricity cost is then calculated by summing the hourly electricity cost over

the simulation horizon. Total electricity cost is given by

Ctot =
168∑
t=1

c(t)×∆TMPC

1/∆TMPC−1∑
i=0

[PWR(t+ i/∆TMPC)]

 , (30)

where PWR(t+i/∆TMPC) is the mill power at sampling instant t+i/∆TMPC ,

c(t) is the TOU tariff applicable at time t as given in Table 6, and ∆TMPC

is the sampling interval of the MPC controller.

The electricity costs, in US dollars per week, for each of the simulations

are given in Table 8. The electricity cost for the mill power load shifting sim-

ulation is lower than the two fixed power simulations as would be expected.

The electricity costs for the high demand season are approximately twice the

costs for the low demand season.

5.2.2. Throughput losses

The average throughput achieved for both the baseline and mill power

load shifting simulations was 90.94 t/h. The average throughput achieved

for the maximum throughput simulation was 96.80 t/h. The income based
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Table 9: Income (US$/week)
Simulation Income

Max Throughput 1, 338, 599

Baseline 1, 257, 745

Load Shifting 1, 257, 794

on average throughput and product particle size were calculated by

Itot = 168×HG× PADJ × TPTachieved × ϑ(PSEachieved), (31)

where TPTachieved is the average throughput over the simulation horizon given

by

TPTachieved = 168/∆TMPC

168/∆TMPC∑
t=1

[TPT (t/∆TMPC)] . (32)

PSEachieved is the average product particle size over the simulation hori-

zon given by

PSEachieved = 168/∆TMPC

168/∆TMPC∑
t=1

[PSE(t/∆TMPC)] . (33)

HG is the head grade of the mined ore given as 3 g/t, PADJ is the adjusted

price as in (19), and ϑ(PSEachieved) is the recovery based on average PSE

given by (18). The weekly income based on the average throughput and

product particle size for each simulation is presented in Table 9.

5.2.3. Cost improvement per unit production

The cost improvement per unit production is based on only the baseline

and mill power load shifting simulations as the throughput achieved for each

of the simulations was the same. The cost improvement was calculated using

Cimprovement =
[Ctot(baseline) − Ctot(load shifting)]

TPTachieved ×HG
, (34)
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where TPTachieved is the weekly throughput achieved (15278 t), HG is the

head grade (3 g/t), Ctot(baseline) is the total weekly electricity cost for the

baseline simulation, and Ctot(loadshifting) is the total weekly electricity cost for

the mill power load shifting simulation. The cost improvement was calculated

as $9.90 and $2.05 per kilogram of unrefined platinum produced for the high

and low demand season respectively.

5.2.4. Ore inventory storage

When performing power load shifting it is necessary to have some stor-

age facility, such as a silo, that acts as a buffer between the upstream ore

supply and the milling circuit. It is generally not economically feasible to

perform mill power load shifting on a milling circuit where the upstream ore

supply is higher than the average throughput of the circuit as is illustrated

in Section 5.2.2, and this case will therefore not be considered.

The RTO is designed to take the upstream ore supply into account and

match the average milling circuit throughput to the supply of ore while min-

imizing the cost function. The storage facility is therefore only necessary for

storing ore when the circuit throughput is reduced during peak tariff periods

and then increased during off-peak periods.The change in the holdup of ore

within the silo can be given by

dXso

dt
, Vsi − Vso, (35)

where Xso [t] is the holdup of ore within the silo (Xso(0) = 0), Vsi [t/h] is

the feed-rate of ore from upstream into the silo chosen to be 90.94 t/h, and

Vso [t/h] is the feed-rate of ore to the milling circuit (Vso = MFS).

The maximum additional holdups of ore within the silo for the high and
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low demand season mill power load shifting simulations are 249.5 t and 173.0 t

respectively. The daily average throughput for both mill power load shifting

simulations is 2182.6 t. The maximum holdup within the silo is therefore

11.4 % and 7.9 % of the daily average throughput for the high and low

demand season simulations respectively.

If the stockpile is sized such that the safety stock covers one week’s worth

of production or 15278.2 t, (Jacobs et al., 2009), the maximum additional

holdups owing to DSM are 1.6 % and 1.1 % of the week’s safety stock capacity

for the high and low demand seasons respectively. Such a small increase in

inventory should not lead to any additional inventory storage costs.

5.2.5. Milling circuit stability

As can be observed in Fig. 4 and 6, the controlled variables remained

comfortably within the constraints for the mill power load shifting simulation.

The control over product particle size remained tight with a mean of 82.03,

and standard deviation of 0.0031.

The manipulated variables CFF, MFS, and SFW remain comfortably

within their constraints. This indicates that the controller is not running at

its limit and has room to maneuver if disturbances are introduced (Olivier

et al., 2012).

5.2.6. Disturbances

Disturbances were not introduced for the simulations performed as much

work has been done in the area of disturbance rejection. MPC is sensitive

to large disturbances and disturbance observers have been developed that

significantly attenuate the effect of disturbances on milling circuits (Olivier
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et al., 2012; Yang et al., 2010).

6. Conclusion

It has been shown that by controlling mill power using mill speed that

the operating costs attributed to power consumption can be reduced without

sacrificing product quality. The control of mill power was implemented using

a linear model predictive controller on a non-linear plant model.

The results of the simulation study indicate that performing mill power

load shifting on a milling circuit not running at full capacity is more cost ef-

fective than simply running at a lower mill power. With increasing electricity

costs this is an important consideration.

The simulations show that for a 2 MW mill running at approximately 93 %

of achievable capacity, a cost saving of $9.90 /kg of unrefined platinum can

be achieved using mill power load shifting. For mills that run at maximum

throughput capacity mill power load shifting is not necessarily economically

feasible as the income associated with the additional product produced has

a larger effect on profitability than the cost of electricity.

For mines that implement power scheduling the benefits of mill power load

shifting should also be evaluated according to maximum demand charges. In

order to evaluate the maximum demand charges, the maximum demand of

already implemented scheduling operations should be added to the maximum

demand for mill power load shifting.

The advantage of using an RTO is that the optimizer is run on-line and

can take changes in ore availability into account. The RTO can also take

dynamic changes of electricity cost and mineral price into account. Though
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the profitability can be added to an MPC cost function, using an RTO allows

for a decoupling between economic objectives and control objectives in the

supervisory and regulatory control layers respectively.

By using this regulatory/supervisory control layer approach with a con-

troller and RTO the stability of the system can be prioritized. Economic

optimization can then be performed when the system is stable without re-

quiring a trade-off between stability and economic performance.

Implementation of mill power load shifting is dependent on the milling

circuit design. An ore supply storage facility is needed to buffer the ore supply

during the week when electricity is expensive and throughput is reduced. For

a controller that controls mill power based on mill speed it is necessary that

the mill motor is equipped with a variable speed drive. Finally it is necessary

to have an accurate real-time measurement of product particle size.
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