Simulating for Better Performance of Cosira Manufacturing
 Using Simulation Modelling to Improve Manufacturing System and Flow

PJ van Ginkel - 22106503
9/5/2012

ACKNOWLEDGEMENTS

This project would not have realised without the support and advice of a few key people. Special thanks must go out to the following people for their part played in this report:

- Prof Paul Kruger, for his role as project leader
- Mr Mandla Matshiane (Lab Assistant), for assisting with the Arena Simulation Licence
- Mr Paul da Silva (COO of Cosira), for allowing me full access to Cosira and its information
- Mr Nico Beukes (Planning Manager at Cosira), for assisting in the collection of information
- Nadine van Ginkel (Author's Wife), for always understanding and supporting.

ABSTRACT

Since the economic downturn in 2009 Cosira International found that the order winning criteria came down to supply price. The order qualifying criteria became reliable delivery and quick response times.

This project will look at the Cosira Vulcan manufacturing plant and its operation. This workshop will be optimised though computer simulation in order to streamline the manufacturing process and thus increasing the potential profitability of the manufacturing division.

TABLE OF CONTENTS

Acknowledgements
Abstract ii
ntroduction 1
Background of Cosira International 1
Project Aim 3
Problem Statement 3
Project Goal 4
Project Objectives 5
Project Approach 5
Literature Review 6
Introduction to Literature Review 6
Project Environment: Job Shop 6
Definition of a Job Shop 6
Characteristics of a Job Shop 7
Project Environment: Fabrication Shop 8
Definition of a Fabrication Shop 8
Available Industrial Engineering Methods, Tools and Techniques 8
Lean Manufacturing 8
Just-In-Time Manufacturing 9
Line/Resource Balancing 9
Theory of Constraints 10
Simulation Modelling 12
Selection of Appropriate Industrial Engineering Methods, Tools and Techniques 12
Line/Resource Balancing 12
Theory of Constraints 12
Simulation Modeling 13
Development of Supplementary Methods, Tools and Techniques 13
Data and Information Gathering and Analysis 13
Material Flow 13
Decisions and Assumptions 13
Decision 1 - Arena: Student or Full Version 13
Counter Decision - Arena: Student or Full Version 14
Decision 2 - Simulating Overhead Cranes 14
Decision 3 - Job Size / Complexity 14
Decision 4 - Workshop Areas to Simulate 15
Decision 5 - Animating the Simulation 16
Assumption 1 - Material Supply is Perfect 16
Assumption 2 - Material Handling is Effective 16
Assumption 3 - Machine Breakdowns are Negligible 16
Assumption 4 - Absenteeism is Negligible 17
Data Gathering 17
Production Tracking Sheets 17
CNC Performance 19
Fabrication Performance 19
Data Analysis 20
CNC Machines 20
Fabrication 23
Quality Control 24
Design and problem Solving 24
Base Model 24
Suprising Results 25
Productivity Analysis 25
Could it be Better 26
Improved Model - Line Balancing 26
Line Balancing Model 1 27
Line Balancing - Model 2 28
Improved Model - TOC 29
TOC - Model 1 29
TOC - Model 2 30
Final Model - a Holistic Improvement 31
Design and Solution Evaluation 32
Project Implemenation and Benefits 32
Implementation 32
Improvement Expectation 33
Conclusion 33
Bibliography 34
Appendices 35
Appendix 1 - Material Flow Diagram 35
Appendix 2 - CNC Update Files 36
Appendix 3 - Cosira Vulcan Workshop Layout 38
Appendix 4 - Throughput Time Reports from Simulations 39
Appendix 4A - Base Model Simulation 39
Appendix 4B - Line Balancing Model 1 Simulation 41
Appendix 4C - Line Balancing Model 2 Simulation 43
Appendix 4D - TOC Model 1 Simulation 45
Appendix 4E - TOC Model 2 Simulation 47
Appendix 4F - Final Model Simulation 49
Appendix 5 - Queues Overview Reports for Simulations 51
Appendix 5A - Base Model Simulation 51
Appendix 5B - Line Balancing Model 1 Simulation 54
Appendix 5C - Line Balancing Model 2 Simulation 57
Appendix 5D - TOC Model 1 Simulation 60
Appendix 5E - TOC Model 2 Simulation 63
Appendix 5F - Final Model Simulation 66

TABLE OF FIGURES

Figure 1 - How the Mighty Fall (5 steps) 4
Figure 2 - Project Purpose 5
Figure 3 - Project Approach and Implementation 6
Figure 4 - Principles of Lean 9
Figure 5 - Unbalanced Line 10
Figure 6 - Balanced Line 10
Figure 7 - Process of On-going Improvement (TOC) 11
Figure 8 - Drum - Buffer - Rope System 12
Figure 9 - Material Flow of Cosira Manufacturing (See Appendix A for Larger Image) 13
Figure 10 - Cosira Work Types 14
Figure 11 - Cosira Vulcan Workshop Layout 16
Figure 12 - Production Tracking/Planning Sheet 18
Figure 13 - Time Studies Sheet 19
Figure 14 - Individual Saw Performance Curves 20
Figure 15 - CNC Plasma Machine Performance Graphs 22
Figure 16 - Angle Machine Performance Graphs 23
Figure 17 - VA Time for Workshop Processes 25
Figure 18 - Part of Arena Generated Report 01 26
Figure 19 - Part of Arena Generated Report 02 27
Figure 20 - Part of Arena Generated Report 03 28
Figure 21 - Part of Arena Generated Report 04 28
Figure 22 - VA Time for Workshop Processes 02 29
Figure 23 - VA Time for Workshop Processes 03 31
TABLE OF TABLES
Table 1 - Manufacturing Environment Comparison 7
Table 2 - Cosira Work Type Mix 15
Table 3 - Plate work VA Matrix 19
Table 4 - Structural VA Matrix 19
Table 5 - Work type fabrication times 24Table 6 - Preparation Times per Operation30

INTRODUCTION

BACKGROUND OF COSIRA INTERNATIONAL

1988: John da Silva Senior has the vision to start a small, entrepreneurial, family-owned business in Heriotdale, Johannesburg, occupying just one portion of what later became known as Cosira Shop 1. The
 business starts off with only three staff members, as a second tier supplier to larger
fabricators. Through John da Silva Senior's inspired leadership and his recognition of the need for personalised, flexible, reliable service, the business quickly becomes known as a reputable supplier to the steel industry in South Africa. Built on the strong cornerstones of quality, timely delivery and correct pricing, the Cosira Group starts to grow.

1999: This was a significant growth point for the group as it became a first tier supplier for the Anglo Platinum Waterval 400 KTPM concentrator. This led to the award of other key projects including Maandagshoek concentrator and the Pietersburg smelter; all of which bear testimony to Cosira's ability to not only operate successfully at a new level, but indeed to set the industry benchmark for project execution.

2000: Cosira enters the new millennium as an industry-leading first tier supplier to the South African steel industry, and doubles its turnover year-on-year from 2000 to 2006.

2001: Cosira decides to change its vision from that of only being a steel fabricator to a construction company, otherwise known as 'the construction solutions group'. This precipitates the establishment of Cosira Developments, the retail and industrial property construction and development project arm which later became a separate group within the Silva Group Holdings group of companies called Moreland Investments.

2002: Cosira sees the need to develop a fully integrated approach to structural steel detailing and fabrication. Despite the prevailing economic slump in the industry at the time, Cosira strikes out and invests substantially in a draughting facility with

CAD/CAM technology, making it possible to own the process at all stages of the manufacturing cycle.

Cosira handles all aspects of project management, planning, detailing, fabrication, corrosion protection and finishing, site erection, commissioning and construction management, thereby offering turnkey solutions at optimum efficiency.

Cosira also invests in its first CNC (Computer Numerically Controlled) equipment.
Furthermore, in 2002, Cosira acknowledges that, for the company to continue on its successful growth path, it must offer the industry the full range of services, from detailing and fabrication, right through to commissioning of projects. Cosira employs key leaders and skills in site construction and thereby establishes a site construction SMPP arm to the business.

2003: Cosira sees the need to operate as a fully South African company, and to this end initiates negotiations with the TIH Group.

2004: In January 2004, following the conclusion of a black empowerment deal with the TIH Group, the company became the first major black empowered structural steel fabrication, mechanical, platework and piping construction company in South Africa. Now officially, the 'Cosira Group', it is initially accredited by the South African Mining Preferential Procurement Forum (SAMPPF).

The Group has one structural steel shop in operation. Over the next two years, a further three steel shops are opened and become operational, further testimony to Cosira's successful growth trajectory over this time period.

2005: In 2005, the Cosira Group initiates further diversification into related industries with the establishment of Cosira IMS (Industrial and Mining Solutions), which provides solutions and equipment for the industrial and mining sector.

In the same year, Cosira Towers is established as a transmission line and cellular tower business, targeting the tremendous opportunities taking place on the African continent in the cellular and electricity transmission and distribution markets.

2006: The Group wins the Export Category Steel Award for the Dangote Cement Conveyer Project exported to Nigeria.

2007: In response to the significant personnel and skills shortages in South Africa, the Cosira Group concludes a strategic supply partnership with Paradigm HR Solutions in order to secure reliable source of quality, skilled resources.

The Group wins the Export Category Steel Award for the Snap Lake Diamond Recovery project exported to Canada.

2008: Cosira proudly makes a ground breaking investment and starts construction of state-of-the-art facilities, such as the new Vulcania premises - 'Cosira Vulcan'.

Cosira is one of the winners of the overall Steel Award for 2008, for their structural steelwork on Soweto's ground breaking Maponya Mall.

Communications tower supplier, Cosira Towers, grows to the stage where it becomes an independent subsidiary of the Cosira Group, known as Cosira Towers.

A new subsidiary is founded - Cosira Electrical and Instrumentation Projects - to broaden the comprehensive turnkey offering of the Cosira Group.

2009: The Cosira Group celebrates its $21^{\text {st }}$ anniversary, with the launch in October 2009 of Cosira Vulcan, the Group's flagship fabrication investment, a world-class, state-of-the-art facility, which is one of the most technologically-advanced, efficient structural steel fabrication facilities today.

The Group also wins the largest single contract to date, and the first in the allimportant South African power generation sector - the Turbine Hall Contract for the Medupi Power Station project by Eskom, managed by Alstom.

Cosira is also awarded ISO9001:2008 accreditation and Level 6 Empowerdex BBBEE certification.

2011: Cosira Manufacturing hit a milestone by producing more than 2500 tonnes in the month of October from its Cosira Vulcan plant and almost 3000 tonnes from all plants and sub-contractors combined.
(Cosira International, 2012)

PROJECT AIM

PROBLEM STATEMENT

Early in 2012 the shareholders and top management of the Cosira Group informed all staff members of the acquisition of Cosira Group by First Tech Group. This handover will be gradual over the following 18 months. The reason for the transaction is not clear at all, however from the inside there is some evidence that Cosira was on the verge of going under. When looking at the five steps of a great company's "death" according to Jim Collins' How the Mighty Fall (Collins, 2009)

- Step 1: Hubris born of success - As is evident from Cosira's background; it is no surprise that Cosira will have a positive attitude about their performance.
- Step 2: Undisciplined pursuit of more - Recent expansions to the workshop were done and brand new equipment was installed to the value of R50'000'000 without considering the current market trends.
- Step 3: Denial of risk and peril - For the past two years Cosira was unsuccessful in being awarded any significant new contracts. However the contracts running at the moment is still enough to keep the company going for a few years and thus the company appears to be doing well.
- Step 4: Grasping for salvation - In 2011 Cosira started the process of looking for a willing buyer with large enough infrastructure and reach to bring in new work to the company.
- Step 5: Capitulation to irrelevance or death - This step is not reached yet by Cosira and according to Jim Collins a company can still survive and prosper when it has not yet reached this step.

Figure 1 - How the Mighty Fall (5 steps)
The reason why Cosira has not been successful in being awarded contracts is purely financially rooted. Cosira is not able to tender for the same price as the competitors; it is even more cost effective to tender using the fabrication facilities of sub-contractors.

Cosira's manufacturing division is bulky, non-reactive and ineffective. With the initial analysis showing that the resources are not properly balanced and that there are unwanted bottlenecks in the workshop which may be a result of the layout of the workshop.

```
PROJECT GOAL
```

The main goal of this project is improving the profitability of the manufacturing division of Cosira International.

PROJECT OBJECTIVES

The following objectives will contribute to achieving the main goal of the project:

- Determine the real current capacity of the workshop based on the actual operation of the workshop.
- Streamlining the resource balance of the manufacturing division.
- Improving the throughput time of work in the workshop.
- Increasing the potential capacity of the workshop.

Figure 2 - Project Purpose

PROJECT APPROACH

The first part of the project was to observe and evaluate the manufacturing department of Cosira. Based on this evaluation possible problems were then identified.

The next step was to research, describe and compile a literature review of the problems that were identified. This is followed by the collection and initial analysis of any relevant data that will be used later to confirm the assumptions of the current problems.

Part of the data analysis process is to determine the nature of the processes in terms of process times, material handling speed, time and discipline, resource usage and movements, etc. This information will be used in the next step; which is the development of an Arena Simulation Model that resembles the current status of the Cosira Manufacturing workshop. This model will be used to confirm whether the data collected is accurate, and if the problems identified in the initial stages of the project were correct.

In an attempt to improve the performance of the workshop, and to eliminate to a large extent the problems within the workshop, the simulation model will be adjusted a few time focussing on a specific problem at a time.

These models will then be scrutinised and a single model will then be designed based on the sum of best sections of each of the previous models. This model will then be used to compile a possible performance improvement report, as well as the implementation plan to accomplish the improvements in a sustainable method.

Figure 3 - Project Approach and Implementation

LITERATURE REVIEW

INTRODUCTION TO LITERATURE REVIEW

The literature review will firstly attempt to define the environment of the problem, as well as various technical aspects related to the specific environment. This will be followed by the industrial engineering techniques that are available for addressing issues in the specific environment, as well as the selection of the appropriate techniques for this project.

PROJECT ENVIRONMENT: JOB SHOP

DEFINITION OF A JOB SHOP

The following definition of a job shop is given in (Aquilano, Chase, \& Jacobs, 2006):
"Production of small batches of a large number of different products, most of which require a different set or sequence of processing steps."

The figure below shows the positioning of the job shop relative to other manufacturing environments: (NetMBA.com)

Table 1 - Manufacturing Environment Comparison
Cosira Manufacturing is the perfect example of a job shop with an average of 2'000 tonnes of structural steel assemblies being dispatched every month from the 30 '000 ${ }^{2}$ workshop. This equates to between 4'500 and 9'000 assemblies (based on work mix for the month) of which 95% are different from any other assembly worked on. Each assembly is made up of a number of parts that need to be produced in the same workshop, this means that the workshop needs to produce up to 40 '000 parts, in addition to assembling them, of which more than 80% are different from the rest.

CHARACTERISTICS OF A JOB SHOP

LAYOUT AND ROUTING

In a job shop layout, similar machines and operations are usually grouped together. This means that a part will have to be routed from one area to another according to the processes needed to be performed on the specific part. This might result in a part having to visit a certain area of the workshop more than once. The layout of the workshop needs to be designed to minimise material handling costs and inventory build-up. (Aquilano, Chase, \& Jacobs, 2006), (Answers.com)

EMPLOYEES

The employees in a job shop are usually highly skilled employees with the correct training to operate the machines in the workshop. (Answers.com) Job shops also employ more employees than most other manufacturing environments due to the "random" nature of the work being performed.

INFORMATION

Information is the most curtail part of a job shop business. Information is required to do everything in the business; from quoting/tendering, generating works orders, routing, scheduling the project, etc.

Information is gathered using job sheets and time cards in order to perform labour and production cost calculations. The records with this information should be kept up to date to assist with quoting of future jobs. (Answers.com)

SCHEDULING

In a job shop a job is characterised by its route / processing requirements and its priority. In a job shop the job mix determines the routing of the jobs, this means that the jobs will not necessarily be completed in the same order they arrived, but in such an order as to minimise machine set-ups and change-overs. (Answers.com)

PROJECT ENVIRONMENT: FABRICATION SHOP

DEFINITION OF A FABRICATION SHOP

A fabrication shop (like Cosira's manufacturing workshop) is in a sense a specialised job shop.

Fabrication is an industrial term that refers to the building of metal structures by preparing parts (cutting, drilling, punching, shearing, and sawing) and building metal assemblies from these parts (Wikipedia.org). The building of the assemblies always requires a high level of skill with initial assembly being performed by a trained artisan (like a boiler maker).

AVAILABLE INDUSTRIAL ENGINEERING METHODS, TOOLS AND TECHNIQUES

Many industrial engineering techniques and tools are available to investigate and improve the output of fabrication facilities. The following techniques were considered for this project:

LEAN MANUFACTURING

Lean is a production control technique for eliminating waste from the organisation. (Lean Manufacturing Japan.com)

The implementation of lean manufacturing are guided by the following five steps: (Lean.org)

Figure 4 - Principles of Lean

1. Specify the value of the output relative to the end user's perception of value
2. Identify that value stream of production, and try to eliminate those steps that do not add value, and are not necessary for production
3. Tighten the sequence of occurrence of these steps in order to create smooth flow
4. Allow customers to "pull value" from the upstream activities (this is the value refinement stage)
5. In this step the refined value definition is introduced into the value stream and the process repeats itself into infinity

JUST-IN-TIME MANUFACTURING
Just-In-Time (JIT) manufacturing is one method of achieving lean manufacturing. The aim of JIT manufacturing is to reduce waste. According to (Tompkins, White, Boser, \& Tanchoco, 2003) the seven types of waste are:

- Waste arising from overproduction
- Waste arising from time on hand (waiting)
- Waste arising from transporting
- Waste arising from processing itself
- Waste arising from unnecessary stock on hand
- Waste arising from unnecessary motion
- Waste arising from producing defective goods

The reduction of waste is achieved by providing the right amount of the right material, in the right condition (quality), at the right place (routing), at the right time (scheduling), in the right position, in the right sequence (job sheet), and for the right costs (budget), by using the right method. (Tompkins, White, Boser, \& Tanchoco, 2003)

Line balancing is an operations research method of assigning operations to workstations in an assembly line, in such a way that the assignment be optimal in some way (Falkenauer). Line balancing aims at reducing bottlenecks as well as excess capacity (Six Sigma Material).

Figure 5 - Unbalanced Line
Figure 5 above shows the processing time of a general 5 process assembly line that has not been balanced. The result of this unbalanced line will cause some form of wastes mentioned in the previous section. Looking at the graph in figure 5, process 2 will wait for material from process 1 . If process 2 receives material as and when required it will over supply to process 3 , which will in turn create large WIP build-up and another form of waste. Process 3 and 5 are almost in balance and should not cause too much wastage. But process 4 is again taking too long. The idea is to redesign the processes and divide tasks between the processes (or add resources to processes) that will cause the processes to have close to the same duration.

Figure 6 - Balanced Line
Figure 6 above shows the processing time for a newly defined four process assembly line with balanced activity durations.
"A chain is only as strong as its weakest link."
The theory of constraints (TOC) applied this idiom to processes, divisions and businesses (Wikipedia.org). The TOC are explained very well by Eliyahu M. Goldratt in his book "The Goal". The Goal demonstrates the TOC in an everyday situation in a language that everyone will understand. The following key points are highlighted in this book (Goldratt, 2004):

TOC is also a cycle of on-going improvement as is displayed below.

Figure 7 - Process of On-going Improvement (TOC)

1. A practical way to identify a constraint is to look for the largest pile of idle WIP, in most cases the constraint will be the process immediately following the idle WIP.
2. There are various ways to exploit the constraint; the main objective is to have the process constraining the system work as hard as possible with the available resources.
3. The objective here is to find other processes (non-constraints) in the workshop that can assist the constraining process to catch up the production requirements.
4. Here the constraining process should permanently be improved, again there are a few ways to achieve this, some ways are buying new / more equipment that can do the job, reengineer the process, change the layout of the workshop, etc.
5. To prevent inertia there needs to be a system regulating the speed of production. This system is described as the "Drum-Buffer-Rope" system in the book.
a. The constraint is the drum. It keeps the beat for the rest of the production to follow.
b. Buffer stock should be maintained just after the constraint in case of a system failure.
c. The processes following the constraint are the rope, they will indicate when the constraint is failing to produce as required.

Figure 8 - Drum - Buffer - Rope System

SIMULATION MODELLING

Simulation modelling is an important part of engineering design, used for training purposes, to save time and money, to optimise a system, to predict performance, to enhance understanding of system behaviour, and to examine worst case scenarios (Hewitt).

Simulation also refers to a wide collection of methods and tools to "copy" the behaviour of real systems; simulation is usually done with computer based software (Kelton, Sadowski, \& Sturrock, 2004).

Simulation packages, such as Arena and Simio, are good tools to use in the simulation of fabrication facilities, since the simulation model is based on basic flow chart procedures and since most companies have their processes mapped out, it can be imported into the simulation package.

SELECTION OF APPROPRIATE INDUSTRIAL ENGINEERING METHODS, TOOLS AND TECHNIQUES

After evaluating the mentioned techniques, the following techniques were selected for the project:

LINE/RESOURCE BALANCING

Initial investigations have shown that there are a resource balance issue within the assembly department. Line balancing will resolve a lot of in-department throughput problems. Line balancing however would probably not work for the whole workshop.

THEORY OF CONSTRAINTS

In investigating TOC, it became clear that this would be a very convenient production improvement project for the whole manufacturing workshop. The main reason for this is that
the constraint can be artificially selected and maintained in order to regulate the effective flow of work through the workshop applying the Drum-Buffer-Rope principal.

SIMULATION MODELING

Since physical experiments in a production shop are very expensive and disruptive to production, and it takes a long time to see results (not yet knowing if the results will be positive or negative), computer based simulation will be the ideal tool to design and evaluate the possible production improvement projects. This project will evaluate the current and possible improvement models of the Cosira manufacturing workshop using Arena simulation software.

DEVELOPMENT OF SUPPLEMENTARY METHODS, TOOLS AND TECHNIQUES

The techniques and tools discussed in the previous section are sufficient for this project, and thus no supplementary methods will be required.

DATA AND INFORMATION GATHERING AND ANALYSIS

MATERIAL FLOW

Figure 9 - Material Flow of Cosira Manufacturing (See Appendix A for Larger Image)
The diagram above shows a very simple flow of material through the Cosira Manufacturing plant. A larger (more legible) version of this flow diagram was included in an appendix to this document.

DECISIONS AND ASSUMPTIONS

After looking at the material flow through the workshop, and before doing intensive data analysis, some decisions and assumptions pertaining to the simulation model need to be specified in order to know what data to collect and how to analyse the data. These decisions and assumptions are listed below.

DECISION 1-ARENA: STUDENT OR FULL VERSION

The first decision regarding the gathering and analysis of data was to decide on the version of Arena that would be used for simulating the manufacturing department of Cosira, and how this would influence the data analysis. There are two versions to be considered, the free
student version, and the full version which requires a license dongle to work. The main difference between the versions is the number of entities running in the simulation. The student version allows for 150 entities, and the full version for unlimited entities. After considering the logistical issues in trying to use the full version of the software the decision was taken to simulate using the limitations of the student version. The following step was to determine how to simulate with the restrictions of the student version of Arena while still representing accurate information.

COUNTER DECISION - ARENA: STUDENT OR FULL VERSION

As mentioned in Decision 1, the student version would be used to model. After several attempts to make the simulation work failed the decision was reversed to using the full version. A licence for the full version of the software was borrowed from the University of Pretoria.

DECISION 2 - SIMULATING OVERHEAD CRANES

The standard version of Arena does not allow for the overhead crane as a type of transporter, there are an after-market crane simulation module available from a company in Argentina, this however is not a free version and will not be considered. Since cranage is not considered to be a restraint in Cosira's manufacturing plant, it does not have to be modelled in great detail. Only simple routing will be used for material movement in the workshop.

DECISION 3 - JOB SIZE / COMPLEXITY

Although each contract / job that is processed by Cosira is unique, they can be categorized into a couple of simple work types as the diagram below shows:

Figure 10-Cosira Work Types

Each of these seven work types have sub types based on average assembly masses. The decision that needed to be made was how to simulate the workshop using generalisations on work type, but still portray an accurate view of the workshop. The decision was made easier by looking at the order book of Cosira for the foreseeable future with a job mix as in the table below:

Main Work Type	\% of Order Book	Work Type	\% of Order Book
Plate Girders	5%	Beams	2%
		Columns	2%
	Structural	Rafters	1%
Plate Work		Normal	35%
		Gantries	20%

Table 2 - Cosira Work Type Mix
Based on the work type mix the decision was made to only simulate for four types of work; both structural and both Plate Work types.

DECISION 4 - WORKSHOP AREAS TO SIMULATE

The initial plan was to simulate the whole workshop, but based on decision 1 (using the student version of Arena and adapting the model to fit the limitations of the student version) not all areas of the workshop can be simulated. When looking at the layout of the workshop, there are two main departments; prep / supply department and fabrication department.

The prep / supply department again consists of the CNC department with all the machines to cut, punch, drill, and shape material, and a Plate Girder Shaft Assembly department, the latter was not simulated based on Decision 3, but all the CNC machines will be simulated.

The fabrication department consists of four fabrication bays all doing all types of work, but in different ratios. For that reason only one bay was simulated (as a general fabrication bay) where a quarter of all the jobs flowing through the workshop were processed by this bay.

All work not processed by the general fabrication bay was only discarded from the simulation after prep / supply to stay within the limitations of the student version of Arena.

Figure 11-Cosira Vulcan Workshop Layout

DECISION 5 - ANIMATING THE SIMULATION

Since all the results from the simulation will be analysed and presented in this report, a decision was made to only animate the simulation after all academic parts of the project is completed.

Animation will only be done to improve the aesthetic feel of the simulation and will not be considered a priority.

ASSUMPTION 1 - MATERIAL SUPPLY IS PERFECT

The first major assumption for this project is that the supply of material is "perfect". In other words all material required for a job is delivered in full and on time. Although this does not reflect reality, partial delivery can be viewed as an assignable cause of variation and should be handled by management.

ASSUMPTION 2 - MATERIAL HANDLING IS EFFECTIVE

As mentioned in Decision 2, the assumption is that material handling can be considered as effective and sufficient. It will not be considered as a constraint and will therefore not form part of the proposed improved solution.

ASSUMPTION 3 - MACHINE BREAKDOWNS ARE NEGLIGIBLE

Although breakdowns do occur currently, the implementation of a scheduled maintenance plan should decrease the possibility of the machines breaking down and causing unplanned down time. Since the aim of the project is to find ways of improving throughput time, the ideal workshop would be simulated and any improvement from there would be carried over to the real world workshop.

ASSUMPTION 4 - ABSENTEEISM IS NEGLIGIBLE

Again as mentioned above, the idea is to simulate the ideal workshop and improve throughput thereof. The assumption of absenteeism is aimed at making the simulation of resources simpler.

DATA GATHERING

PRODUCTION TRACKING SHEETS

A vast amount of raw data has been collected from Cosira's production tracking and MRP systems. This data shows clearly the duration each part/assembly spends at any particular are in the workshop. The images on the next page show a section from the production tracking sheets for the parts up to the staging area, and the assemblies from the staging area up the dispatch (each phase of each contract has a set of sheets like this).

The only problem with these sheets is that the idle time of the material could not be identified, further investigation was needed to determine idle vs. value adding time.

Figure 12 - Production Tracking/Planning Sheet

CNC PERFORMANCE

The foreman of the CNC department captures each day's performance of each machine in a file that forms part of the monthly management report. From this file, the following CNC machines were analysed to get the part processing time:

- All CNC Saws
- All CNC Plasma Machines (for plate preparation)
- All Angle- and Flat Bar Machines

This file gives an accurate figure for daily output from each machine.

FABRICATION PERFORMANCE

As mentioned earlier, the production tracking sheets don't indicate the actual value adding time of each discipline vs. the idle time of the material in that section of the workshop. Since batch processing is used in some areas of the workshop, it is inevitable to have material waiting to be processed.

Time studies along with interviews of the artisans and their supervisors yielded the following VA matrices for the boiler making and welding in the fabrication department.

Work Type			Mass of Assembly	No of Parts on Assembly	Activity		Duration to Complete Activity
St	PG	PW			BM	WLD	
x			586 kG	7	\times		$2+45 \mathrm{Min}$
\times			280 KG	4	\times		$1+36 \mathrm{Min}$
\times			635 KG	14		\times	4 H 28 Min
	\times		2340 KG	22	\times		$11+50 \mathrm{Min}$
\times			238 kG	17	\times		2 H 13 Min
x			137 kG	4		x	1 H 10 Min
x			552 KG	13		x	4 H 16 Min

Figure 13 - Time Studies Sheet

| Platework Matrix (Hours/Ton) for Artisans | | |
| :--- | :---: | :---: | :---: |
| | UNDERPANS | |
| [Incl deckplates, etc] | NORMAL | |
| [Head shoots, etc.] | | | \(\left.\begin{array}{c}COMPLEX

[Conical /rolled /

bevelled curves, tubular]\end{array}\right]\)

Table 3 - Plate work VA Matrix

Hot Rolled Hours / Ton for All Artisans						
0		1	2	3	4	5
		0-0.2 Ton/Assy	0.2-0.5 Ton/Assy	0.5-1.5 Ton/Assy	1.5-4 Ton/Assy	4 + Ton/Assy
W	1 Part/Assy	0.83	0.33	0.25	0.15	0.11
A	2-5 Parts/Assy	12.00	4.57	2.80	1.75	0.91
B	6-10 Parts/Assy	22.67	10.93	5.95	2.68	1.58
C	11-20 Parts/Assy	38.00	19.00	9.03	4.15	2.58
D	$20+$ Parts/Assy	140.00	48.57	18.50	8.00	5.14

Table 4 - Structural VA Matrix

DATA ANALYSIS

The data analysis was a tedious task, extrapolating information from the planning/tracking sheets, time studies and other production update sheets, and finding a logical work matrix with acceptable duration distributions to use as the inputs and parameters of the model.

CNC MACHINES

The information from the CNC update files were analysed for a period of three months with similar job mix than was decided to use for the simulation, and yielded the following results.

SAWS

Cosira Operates 3 CNC saws, as well as one manually operated saw that forms part of the CNC configuration of saws, the data shows the following items per hour data; where the blue curve shows a normal distribution using the mean and standard deviation obtained from the captured data, and the purple curve shows the actual data gathered. Saw 28 has a much flatter line, and deviates the furthest from the normal curve, the fact that this is the manually operated saw might be the reason for this.

Figure 14 - Individual Saw Performance Curves
Since the data for the saws included cutting of plate girders, which takes a very long time, the simulated jobs will be allocated with a complexity factor to accommodate for the size of the sections being cut.

The data that was used to create the graphs above was sufficient to allocate cutting times to the machines being simulated using the following distributions for each saw:

- Saw 21: Parts leave the machine in a Poisson distribution with a mean of 25.21 minutes per part.
- Saw 6: Parts leave the machine in a Poisson distribution with a mean of 21.92 minutes per part.
- Saw 28: Parts leave the machine in a Poisson distribution with a mean of 22.85 minutes per part.
- Saw Old BDL: Parts leave the machine in a Poisson distribution with a mean of 19.98 minutes per part.

It is important to note that these times include setup times of the machines as well as possible maintenance that were done during the time period, making assumption 3 possible for the simulation.

Saw 28 will however not be used for simulation purposes as was only recently converted to a CNC Saw, and used to be run as a manual saw to cut the odd small part or batch.

CNC PLASMA MACHINES

The following graphs are similar to the graphs for the saw, and were obtained using the data from the same timeframe as for the saws. It is clear that the plasma machines are not as predictable in terms of cutting a part as the saws.

Figure 15 - CNC Plasma Machine Performance Graphs
For the sake of the simulation, the cutting times can be approximated as follows:

- Old Peddinghaus Plasma: Parts leave the machine in a Poisson distribution with a mean of 8.80 minutes per part.
- New Peddinghaus Plasma: Parts leave the machine in a Poisson distribution with a mean of 9.07 minutes per part.
- Lind Plasma: Parts leave the machine in a Poisson distribution with a mean of 7.61 minutes per part.

As with the saws, it is important to note that these times include setup times of the machines as well as possible maintenance that were done during the time period, making assumption 3 possible for the simulation.

ANGLE MACHINES

The angle machines are exclusively used for gantry jobs, and the following graph shows the output of the two machines. Data from the same timeframe was used to get these graphs.

Figure 16-Angle Machine Performance Graphs
As with the plasma machines, the angle machines does not give the most predictable performance figures, but was also be roughly extrapolated to give the following output distributions that was used in the simulation:

- FICEP 166: Parts leave the machine in a Poisson distribution with a mean of 5.42 minutes per part.
- FICEP 206: Parts leave the machine in a Poisson distribution with a mean of 6.53 minutes per part.

As with the saws and plasma machines, it is important to note that these times include setup times of the machines as well as possible maintenance that were done during the time period, making assumption 3 possible for the simulation.

```
FABRICATION
```

As mentioned in a previous section, certain performance matrices were defined for fabrication based on time studies and interviews with artisans as well as their supervisors. Since the decision was made to only simulate four work types, a fabrication time must have been selected for these four work types that would work in the simulation. These times are as follows (for a generic assembly that was simulated):

Work Type	Boiler Maker Time	Welder Time
Structural - Normal	1h45m (Normally Distributed)	2h30m (Normally Distributed)
Structural - Gantries	5 h 00 m (Normally Distributed)	9 h 00 m (Normally Distributed)
Plate Work - Normal	12 h 00 m (Normally Distributed)	24 h 00 m (Normally Distributed)
Plate Work - Complex	28h00m (Normally Distributed)	50 h 00 m (Normally Distributed)

Table 5 - Work type fabrication times
The fact that the times are fluctuating (normal distribution) allows for realistic conditions as not all assemblies are the same, however, most assemblies of a certain job type are similar to a degree.

QUALITY CONTROL

Cosira Manufacturing does 100% inspection at two stages of production, one is just after the boiler maker completed the assembly, and the next is just before despatch, the latter might include client inspection as the contract requires.

According to the data analysed, the first in-line inspection rejects an average of 5% of assemblies. When a reject occurs the boiler maker needs to redo his work at 150% of the original duration to complete the assembly.

It was calculated that about 1% of assemblies inspected at the final inspection stage are rejected for welding mistakes. This work must be redone by the welder at the same duration as he originally worked to complete the job.

DESIGN AND PROBLEM SOLVING

BASE MODEL

Using all the data collected and defined in the previous section of this report, the base model was simulated. The results from this model were then used to determine where to improve the "process" and to compare the results from the improved model to the base model.

After running ten replications of one month each the average throughput time for work scheduled for bay 2, was 195.6 hours, as can be seen in Appendix 4A, from being loaded onto the machines up to the point where the jobs were ready to be dispatched. This result
made a lot of sense since this had been accomplished before. It is however not the current norm in the workshop.

SUPRISING RESULTS

Although visual inspection of the workshop would suggest that the major problem was the time it took the artisans to do their work, the model painted a different picture where not all artisans could be kept busy all the time. The model showed that as soon as work was packed into packing list for fabrication it flowed relatively smooth through the rest of the workshop, with occasional delays between boiler making and welding, and between welding and cleaning. The graph below was taken from the report generated by Arena and shows the value-add times for the various processes over a period of one month. Please note that the first eight bars indicate the eight boilermakers (each assigned to his own workstation).

Figure 17 - VA Time for Workshop Processes
The simulation assigned work to the first available resource looking sequentially at the options, that is why they are not equally busy all the time.

The reason for this discrepancy is discussed in the next section.

PRODUCTIVITY ANALYSIS

In 2009 Mr Gavin Smith, an industrial engineer working for Cosira, conducted productivity studies by randomly walking through the workshop, and noting how many people were adding value (busy actually working), and how many people were not adding value.

The numbers that were generated by this study was shocking and revealed that on average only about 40% of the artisans were busy adding value at any time of day. This experiment was repeated in 2012 after the management of Cosira announced that the company had
been sold. This experiment yielded even lower value-add time than before. More people were having small informal "meetings" rather than working/adding value.

COULD IT BE BETTER

The results from the simulation were a true revelation as to the inherent potential that there still is to improve the throughput time of the workshop, and ultimately improving the profitability of the organisation.

The improved models are discussed in more detail in the next sections of this report.

IMPROVED MODEL - LINE BALANCING

The following picture shows part of the report that was generated by Arena for Queues (All reports relating to queues are included as Appendices to this report) in front of processes, and one place where there was a serious bottleneck or delay was in the laydown are between welding and fettling, as seen in the report.

Figure 18 - Part of Arena Generated Report 01
This clearly stood out as an area that could benefit if the resources were more balanced. This however was not the only problem, cranes operators are not trained to recognise what movements are more critical than others. For example, material moved from a laydown are to a production area is more important than material moving into a laydown area.

The reason why this investigation focussed on the queues in the laydown areas is because this is where things go wrong very easily. Steel assemblies are big and heavy, which causes these laydown areas to become piles of steel, where the new work gets stacked on the old work, and thus results in the new work being lifted off first as well, leaving the old work
sometimes for months without moving from the same laydown area. This fact was not modelled, but would dramatically affect the throughput time of some of the jobs.

LINE BALANCING MODEL 1

The first change that was made towards balancing the line was to add one more fettling area and one more fettler to the line, as this also is the cheapest resource in the workshop. Another change was to change the priority of the movement by the crane as mentioned above, achieving this only requires some training in operating procedures.

Appendix 4B shows the results of this change on throughput time. Again ten replications of one month each was run. This simulation yielded a throughput time of 184.6 hours, an improvement of about 6%. This also had a tremendous impact on the time work waited in the laydown area before fettling as can be seen in the image taken from the simulation report.

Figure 19 - Part of Arena Generated Report 02
This change in the crane behaviour did have a negative effect on the time material had to wait to be moved from the welding area to the fettling laydown area. But as can be seen by the results, the overall result is an improvement of the throughput time of the workshop.

This change did not affect the boiler making in any sense, and the utilisation of the boiler makers remained unchanged.

The next area of concern was the laydown area before the welders, looking as the image below, it does only have an average waiting time of 20 hours, the maximum waiting time for the simulation was over 100 hours, and material waiting that long only costs the company money.

PJ van Ginkel - 22106503

Waiting Time	Average	Half Width	Minimum Value	Maximum Value
Wait for Machine 5.Queue	25.4799	(Insufficient)	0.00	63.2120
Wait for Machine 6.Queue	23.4160	(Insufficient)	0.00	73.2438
Wait for Machine 7.Queue	7.0601	1.88032	0.00	23.6897
Wait for Machine-Q.Qucue	9.5729	(Insumicient)	0.00	34.8892
Wait for Weld Station.Queue	20.4868	(Insufficient)	0.00	104.64
Weld at Station 4.Queue	8.6777	(Insufficient)	0.00	40.8464
Weld at Station 2.Queue	7.2576	(Insufficient)	0.00	27.6304
Weld at Station 3.Queue	9.0623	(Insufficient)	0.00	31.3968
Weld at Station 4.Queue	7.9272	(Insufficient)	0.00	34.3194
Weld at Station 5.Queue	5.7997	(Insufficient)	0.00	30.5969
Weld at Station 6.Queue	7.0842	(Insufficient)	0.00	32.4087
Other				

Figure 20 - Part of Arena Generated Report 03

LINE BALANCING - MODEL 2

The numbers shown in Figure 20 above regarding the wait time for jobs to go to the welding indicated yet another resource imbalance. This resulted in another improved line balancing model, where one welder was added, and the rules for the crane movements as explained for the first line balancing model was expanded for the crane moving steel between the boiler makers and the welders. The changes that were made in the line balancing 1 model remained the same for this model.

As can be seen in Appendix 4C, this change resulted in further improvement of the throughput time from 195.6 for the base model, and 184.6 hours for the first line balancing model to 164.3 hours, which translates to an improvement of about 16% in throughput time.

This also reduced waiting time in the laydown area for welding by a large degree, as can be seen in the next image, as taken from the report for the simulation.

Waiting Time	Average	Half Width	Minimum Value	Maximum Value
Wait for Machine 5.Queue	18.4111	(Insufficient)	0.00	50.8594
Wait for Machine 6.Queue	20.3335	(Insufficient)	0.00	57.6863
Wait for Machine 7.Queue	9.8039	(Correlated)	0.00	35.4314
Wait for Machine 8 Queue	16.3772	(Incufficient)	0.0	45.6793
Nait for Weld Station.Queue	0.9739	(Insufficient)	0.00	17.2063
Weld at Station 1.Queue	5.5207	(Insunticient)	0.00	15.0780
Weld at Station 2.Queue	5.5889	(Insufficient)	0.00	20.0592
Weld at Station 3.Queue	6.0808	(Insufficient)	0.00	18.1938
Weld at Station 4.Queue	2.4801	(Insufficient)	0.00	15.3036

These changes still did not address the imbalance when it comes to the utilisation of the boiler makers as can be seen in Figure 22, showing the VA times for the various processes in the workshop, with the first eight columns representing the times for the boiler makers. Form this it is almost justifiable to let go one or two boiler makers is exchange for the additional labour introduced at welding and fettling, but it is also to be noted that the next section will focus on improving the delivery of work to the boilermakers and might yet result in much better utilisation of the boiler maker (the most expensive worker in the workshop).

Figure 22 - VA Time for Workshop Processes 02

IMPROVED MODEL - TOC

One clear constraint in the workshop is the packing since it is the area with the largest amount of work waiting to be processed. This however is only half accurate, since the packing department rely on different parts coming from different machines, they can only pack what they have available to pack. It is clear from this statement that the synchronisation between the machines (planning of the machines) is a problem. Line balancing will not be feasible in this case as this would influence the number of machines (high capital items). TOC seems to be a good method to apply here.

TOC - MODEL 1

Currently the general rule is to send one job to one machine (e.g. all the plates of the job to New Plasma, all the angles to Ficep A166, and all the sections to Saw 6) which results in all parts waiting in a line to be processed, this created long queues of raw steel as some machines and much shorter queues at other machines. The first idea to be simulated was to distribute the job between all the machines, thus reducing the time a job needs to wait for a machine to be processed.

Using the initial base model as the base for this model, and ignoring the changes that were made when using line balancing, this simulation yielded the following results:

As per Appendix 4D, throughput time improved from 195.6 hours for the base model to 185 hours for the TOC 1 model, this translates to an improvement of about 5% on throughput time. This however did not improve the situation in the packing area; it only resulted in a shorter wait for the machines and more effective utilisation of the machines.

TOC - MODEL 2

The problem with TOC 1 model was that it did not address the real constraint in the part preparation are, namely the synchronisation of the parts. To understand this better, one needs to understand the rules of planning the current workshop processes; work is being set out for specific machines in advance, and all processes in the preparation area are performed in the same sequence. This means then some jobs are scheduled for a machine that is busy processing a very time consuming job, and as a result the planned job needs to wait a long time for the machine to finish its current job. It also means that some jobs plates will be cut way in advance to the sections or angles (as an example). This next model looked at the time each machine would take to prepare a job and based on this, each job's preparation operation sequence will be different, always starting the preparation of the job at the process with the longest lead time. The following table shows the calculation for the different jobs' preparation lead times per operation:

Job Type	Structural	Gantries	Plate Work - Simple	Plate Work - Complex
No of Plates	4	8	10	10
Parts per Plate	20	13	4	4
Time to Process Plate Part	$00: 08: 30$	$00: 08: 30$	$00: 08: 30$	$00: 08: 30$
Total Prep Time for all Plate Parts	$\mathbf{1 1 : 2 0 : 0 0}$	$\mathbf{1 4 : 4 4 : 0 0}$	$\mathbf{0 5 : 4 0 : 0 0}$	$\mathbf{0 5 : 4 0 : 0 0}$
No of Sections	15	8	5	5
Parts per Section	5	2	4	4
Time to Process Section Part	$0: 15: 40$	$0: 13: 25$	$0: 13: 25$	$0: 13: 25$
Total Prep Time for all Section Parts	$\mathbf{1 9 : 3 5 : 0 0}$	$\mathbf{3 : 3 4 : 4 0}$	$\mathbf{4 : 2 8 : 2 0}$	$\mathbf{4 : 2 8 : 2 0}$
No of Angles	0	16	10	10
Parts per Angle	0	4	8	8
Time to Process Angle Part	$0: 05: 59$	$0: 05: 59$	$0: 05: 59$	$\mathbf{0 : 0 5 : 5 9}$
Total Prep time for all Angle Parts	$\mathbf{0 : 0 0 : 0 0}$	$\mathbf{6 : 2 2 : 5 6}$	$\mathbf{7 : 5 8 : 4 0}$	$\mathbf{7 : 5 8 : 4 0}$

Table 6 - Preparation Times per Operation
The table shows that the sequence for the preparation operations for the different job types are as follows:

- Structural: Saw Sections \rightarrow Cut Plates
- Gantries:

Cut Plates \rightarrow Cut Angles \rightarrow Saw Sections

- Plate Work (Both): Cut Angles \rightarrow Cut Plates \rightarrow Saw Sections

These sequences are based on the average job selection for the simulation, and in reality each job's sequence should be individually determined.

Another change to the planning rule would be that no job's preparation would start before the process with the longest lead time does not have a machine available to process this job. This means that all the jobs (job cards) will be queued in front of its slowest process, and will only be started as soon as there is space on a machine for that process. The job cards for the subsequent processes will be added to the queues of that process as soon as the slowest process has started. This ensures that work will be distributed equally between machines and will suffer the shortest possible waiting time before being processed.

These rules were applied to the base model, again ignoring any previous changes to the model and according to Appendix 4E yielded an improvement in throughput time from 195.6 hours for the base model to 184.1 hours for this improved model; which translates to an improvement of 6% in throughput time.

Although some parts still waited a long time to be packed, it did decrease the amount of material in the CNC area (waiting on the conveyors) and increased the control over material being prepared.

Figure 23 - VA Time for Workshop Processes 03
Figure 23 above also shows some improvement in the utilisation of the boiler makers when compared to Figure 22.

FINAL MODEL - A HOLISTIC IMPROVEMENT

For the final model, the TOC 2 model, which focussed on the synchronisation of preparation functions were combined with the Line Balancing 2 Model, which focussed on reducing the laydown/wait times after boiler making and welding.

Appendix 4F shows the resulting average throughput time for the ten replications over a one month period and yields an average throughput time for work scheduled for bay 2 of 154.4 hours. Which is a 21% improvement from the base model's 195.6 hours.

DESIGN AND SOLUTION EVALUATION

The final model as discussed above included the following operational changes:

- Operational Rule Changes:
- Crane operators to focus on moving work towards waiting processes, before moving work from processes to laydown areas
- Preparation process sequence to be changed to start with sequence with longest lead time, and end with process with shortest lead time, to be calculated per job
- Job cards to be queued before each process and sent to the first available machine for that process to ensure faster processing times and better distribution of workload to machines
- Operation Structure Changes:
- One additional welder and one additional fettler per workshop fabrication bay

Most of the changes are operating procedure changes and can be implemented through some basic training.

PROJECT IMPLEMENATION AND BENEFITS

IMPLEMENTATION

The implementation of this proposal will be very simple and could include the following activities:

- Training of Crane Operators: This should not take more than 2 to 3 hours per crane operator and can be done with a group of crane operators at once, depending on operational needs of the manufacturing department.
- Training of Preparation Programmer: This training is more involved as it would include the calculations of lead times for each job, and then how to create and queue the job cards for the new procedure. This would take about one week per programmer and should be done one-on-one and not in a group
- Employing of Extra Staff: This part of the improvement is the only part that will cost the company money, the improvement gained from this would definitely be worth it. Since there are many people looking for employment in the sector, finding the correct candidate should not take long.

IMPROVEMENT EXPECTATION

Like any new procedure, results will not be evident overnight, but if these changes are implemented, the throughput time for jobs in the workshop could increase by as much as 21% creating the opportunity to introduce more work into the workshop, improving customer satisfaction and improving possible profitability.

CONCLUSION

This report showed the results of simulation models of Cosira's manufacturing facility and the possible improvements that can be seen within the facility by implementing small yet effective changes in the operation. It however remains to be said that these are not the only ways Cosira could improve throughput and production figures and that these changes will only result in improvements if it is supported by top management and effectively "enforced" to the general worker level.

BIBLIOGRAPHY

Answers.com. (n.d.). Job Shop: Definition from Answers.com. Retrieved May 7, 2012, from Answers.com: http://www.answers.com/topic/job-shops\#ixzz1uACTOIXc

Aquilano, Chase, \& Jacobs. (2006). Operations Management of Competitve Advantage with Global Cases. New York: McGraw-Hill Irwin.

Collins, J. (2009). How the Mighty Fall and Why Some Companies Never Give In. Random House Business Books.

Cosira International. (2012). Milestones and Track Record. (virtuosa) Retrieved from Cosira Group: www.cosiragroup.com/about-us/milestones-and-track-record/

Falkenauer, E. (n.d.). Line Blancing in the Real World. International Conference on Product Lifecycle Management (p. 10). Brussels: Optimal Design.

Goldratt, E. M. (2004). The Goal: a Process of Ongoing Improvement. Gonldratt Group.
Hewitt, S. T. (n.d.). Interfaces to Enhance User-Directed Experimentation with Simulation Models of Discrete-Event Systems. Maryland: University of Maryland.

Kelton, W. D., Sadowski, R. P., \& Sturrock, D. T. (2004). Simulation with Arena. New York: McGrawHill.

Lean Manufacturing Japan.com. (n.d.). Lean Manufacturing. Retrieved May 7, 2012, from Lean Manufacturing: http://www.lean-manufacturing-japan.com/

Lean.org. (n.d.). What is Lean - Priciples. Retrieved May 7, 2012, from Lean Enterprise Institute: http://www.lean.org/WhatsLean/Principles.cfm

NetMBA.com. (n.d.). Net MBA - Operations - Process Strcture. Retrieved May 7, 2012, from Net MBA Business Knowledge Centre: http://www.netmba.com/operations/process/structure/

Six Sigma Material. (n.d.). Six Sigma Material - Line Balancing. Retrieved May 7, 2012, from Six Sigma Material: http://www.six-sigma-material.com/Line-Balancing.html

Tompkins, J. A., White, J. A., Boser, Y. A., \& Tanchoco, J. M. (2003). Facilities Planning. Hoboken: John Wiley \& Sons, Inc.

Wikipedia.org. (n.d.). Wikipedia - Theory of Constraints. Retrieved May 7, 2012, from Wikipedia, the Free Encyclopedia: http://en.wikipedia.org/wiki/Theory_of_constraints

Wikipedia.org. (n.d.). Wikipedia.org - Fabrication (Steel). Retrieved May 7, 2012, from Wikipedia, the Free Encyclopedia: http://en.wikipedia.org/wiki/Fabrication_(metal)

APPENDICES

APPENDIX 1 - MATERIAL FLOW DIAGRAM

APPENDIX 2 - CNC UPDATE FILES

$$
\text { PJ van Ginkel - } 22106503
$$

APPENDIX 4 - THROUGHPUT TIME REPORTS FROM SIMULATIONS

APPENDIX 4A - BASE MODEL SIMULATION

COSIRA Model V1						Replications: 10
Replication 1	Start Tme:	120.00	Stop Time:	720.00	Time Units: Hours	
Tally						
Expression		Average	Har Wcth	Minimum	Maxdmum	
TPTme	138.68	(Insumficlent)	51.2066	272.07		
Replication 10						

Tally

	Expression	Awerage	Hair Wath	Minimum	Maxnum
TPTime	221.79	(Insumiclent)	39.8205	386.62	
Replication 2					

Tally

Expression	Average	Hair Wcth	Minimum	Maxdmum	
TPTime	149.66	(Insumicient)	46.0269	281.87	
Replication 3	Start Tme:	120.00	Stop Time:	720.00	Time Unts:

Tally

		Awerage	Hair Woth	Minimum	Maximum
TPTime	299.19	(Insumficlent)	88.3800	414.05	
Replication 4					

Tally

Expresslon	Awerage	Haif Wcth	Minimum	Maxdmum
TPTime	199.25	(Insuffclent)	67.3074	451.00

Replication 5	Start Tme:	120.00	Stop Time:	720.00	Time Unts:

Replication 5	Start Time:	120.00	Stop Time:	720.00	Time Units: Hours

Tally

Expression	Awerage	Haif Wath	Minimum	Maximum		
TPTime	136.04	(Insumfient)	28.7262	290.71		
Replication 6						

Tally

Expression		Anerage	Har Wcth	Minimum	Maxdmum
TPTime		201.15	(Insumficlent)	37.5690	397.56
Replication 7	Start Time:	120.00	Tme:	Time U	Hours

Tally

Expression	Awerage	Haif Wath	Minimum	Maximum		
TPTime	226.21	(Insumficient)	73.1053	372.19		
Replication 8						

Tally

Expression	Awerage	Haif Wcth	Minimum	Maximum	
TPTime	161.47	(Insumclent)	40.7767	355.19	
Replication 9					

Tally

Expression	Awerage	Haif Wcth	Minimum	Maxdmum
TPTime	226.74	(Insumficlent)	66.2525	483.96

Unnamed Project \quad Replications: 1

Replication 1	Start Time:	24.00	Stop Time:	360.00	Time Units:

APPENDIX 4B - LINE BALANCING MODEL 1 SIMULATION

01:33:23 PM	User Specified October 12, 2012
COSIRA Model V2_1	Replications: 10

| Replication 1 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Tally
Expression
TPTime
Replication 10

Tally

Expression	Average	Half Width	Minimum	Maximum
TPTime	181.27	(Insufficient)	30.5454	473.29

| Replication 2 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Start Time: | 120.00 | Stop Time: | 720.00 | Time Units: Hours |

Tally

| Expression | Average | Half Width | Minimum | Maximum | |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: |
| TPTime | 190.69 | (Insufficient) | 49.5147 | 407.74 | |
| Replication 3 | | | | | |

Tally

Expression	Average	Half Width	Minimum	Maximum		
TPTime	237.77	(Correlated)	54.0300	432.63		
Replication 4						

01:33:23 PM
COSIRA Model V2_1
Replication 5

Tally

Expression	Average	Half Width	Minimum	Maximum	
TPTime	301.33	(Insufficient)	80.6094	506.21	
Replication 8					

Tally

Expression	Average	Half Width	Minimum	Maximum
TPTime	121.2405	(Insufficient)	43.0149	246.28

Replication 9

Start Time:	120.00	Stop Time:	720.00	Time Units:

Tally

Expression	Average	Half Width	Minimum	Maximum
TPTime	190.68	(Correlated)	51.7632	533.91

```
APPENDIX 4C - LINE BALANCING MODEL 2 SIMULATION
```

Replication 1	Start Time:	120.00	Stop Time:	720.00	Time Units: Hours

Tally

Expression	Awerage	Haif Wath	Minimum	Maxmum
TPTime	196.49	(Correlated)	41.6255	404.31

Replication 10	Start Time:	120.00	Stop Time:	720.00	Time Units: Hours

Tally

Expression	Awerage	Haif Woth	Mininum	Maxmum		
TPTime	145.43	(Insumficient)	20.2556	367.36		
Replication 2						

Tally

Expression	Average	Half Woth	Minimum	Maximum	
TPTime	230.73	(Insumficient)	36.4584	452.33	
Replication 3	Start Time:	120.00	Stop Time:	720.00	Tine Units: Hours

Tally

Expression	Average	Haif Wcth	Minimum	Maximum
TPTime	168.83	(Insufficlent)	72.4054	378.31

Replication 4	Start Time:	120.00	Stop Time:	720.00	Time Units: Hours

Tally

Expression	Awerage	Haif Wath	Minimum	Maximum
TPTime	176.84	(Correlated)	69.2802	324.18

Replication 5	Start Time:	120.00	Stop Time:	720.00	Time Units: Hours

COSIRA Model V2_2 Replicallons:

Replication 5	Start Time:	120.00	Stop Time:	720.00	Time Units: Hours

Tally

Expression	Average	Har Wath	Minimum	Maximum	
TPTime	168.08	(Correlated)	53.9317	402.49	
Replication 6					

Tally

Expression	Awerage	Haif Wath	Minimum	Maximum
TPTime	154.28	(Correlated)	46.1320	353.06

Replication 7	Start Time:	120.00	Stop Time:	720.00	Time Units:

Tally

Expression	Average	Harwacth	Minimum	Maxdmum	
TPTime	131.64	(Correlated)	43.3199	301.08	
Replication 8					

Tally

Expression	Awerage	Har Wath	Minimum	Maxdmum	
TPTime	147.50	(Insumicient)	24.7754	364.94	
Replication 9	Start Tme:	120.00	Stop Time:	720.00	Time Unts: Hours

Tally

Expression	Average	Haif Wcth	Minimum	Maxdmum
TPTime	128.23	(Insumficlent)	21.2960	276.91

```
APPENDIX 4D - TOC MODEL 1 SIMULATION
```

COSIRA Model V3_1

Replication 1	Start Time:	120.00	Stop Time:	720.00	Time Units:

Tally

Expression	Average	Haif Wcth	Minimum	Maxdmum
TPTime	140.14	(Insufficient)	30.5108	352.07

Replication 10	Start Time:	120.00	Stop Time:	720.00	Tlme Units: Hours

Tally

Expression	Awerage	Haif Wath	Minimum	Maxmum		
TPTime	197.79	(Insumfient)	43.4822	406.19		
Replication 2						

Tally

Expression	Awerage	Haif Woth	Minimum	Maxdmum	
TPTime	253.78	(Insufficient)	108.74	435.81	
Replication 3					

Tally

Expression	Awerage	Haif Wcth	Minimum	Maxdmum
TPTime	124.86	(Insumiclent)	34.5474	253.61

Replication 4	Start Time:	120.00	Stop Time:	720.00	Time Units:

Tally

Expression	Average	Haif Wcth	Minimum	Maxdmum
TPTime	118.46	(Insufficlent)	33.4465	242.72

Replication 5	Start Time:	120.00	Stop Time:	720.00	Time Units: Hours

APPENDIX 4E - TOC MODEL 2 SIMULATION

01:30:16PM
User Specified

COSIRA Model V3_3				Replications: 10	
Replication 1	Start Time:	120.00	Stop Time:	720.00	Time Units: Hours

Tally

Expression	Average	Half Width	Minimum	Maximum		
TPTime	191.84	(Insufficient)	67.2022	347.09		
Replication 10						

Tally

Expression	Average	Half Width	Minimum	Maximum		
TPTime	189.01	(Insufficient)	21.6827	446.04		
Replication 2						

Tally

Expression	Average	Half Width	Minimum	Maximum	
TPTime	178.98	(Insufficient)	69.2969	335.11	
Replication 3					

Tally

Expression	Average	Half Width	Minimum	Maximum	
TPTime	164.89	(Insufficient)	65.0383	362.19	
Replication 4					

Tally

Expression	Average	Half Width	Minimum	Maximum	
TPTime	160.87	(Insufficient)	39.7846	397.48	
Replication 5					

[^0]| COSIRA Model V3_3 | | | | Replications: 10 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Replication 5 | | | | | |

Tally

Expression	Average	Half Width	Minimum	Maximum	
TPTime	204.31	(Insufficient)	44.4015	347.23	
Replication 6	Start Time:	120.00	Stop Time:	720.00	Time Units: Hours

Tally

Expression	Average	Half Width	Minimum	Maximum		
TPTime	208.08	(Insufficient)	52.3904	403.56		
Replication 7						

Tally

Expression	Average	Half Width	Minimum	Maximum	
TPTime	202.61	(Insufficient)	46.1461	460.29	
Replication 8					

Tally

Expression	Average	Half Width	Minimum	Maximum	
TPTime	202.46	(Insufficient)	28.0153	424.93	
Replication 9					

Tally

Expression	Average	Half Width	Minimum	Maximum
TPTime	143.41	(Insufficient)	41.2275	288.39

COSIRA Model V4_1				Replications: 10	
Replication 1	Start Time:	120.00	Stop Time:	720.00	Time Units: Hours

Tally

Expression	Average	Half Width	Minimum	Maximum	
TPTime	176.27	(Insufficient)	47.8209	316.92	
Replication 10					

Tally

Expression	Average	Half Width	Minimum	Maximum		
TPTime	128.58	(Insufficient)	34.7394	280.58		
Replication 2						

Tally

Expression	Average	Half Width	Minimum	Maximum	
TPTime	190.16	(Insufficient)	54.6595	427.95	
Replication 3					

Tally

Expression	Average	Half Width	Minimum	Maximum
TPTime	195.80	(Insufficient)	48.0831	501.64

Replication 4	Start Time:	120.00	Stop Time:	720.00	Time Units:

Tally

Expression	Average	Half Width	Minimum	Maximum	
TPTime	178.53	(Insufficient)	29.6128	435.18	
Replication 5	Start Time:	120.00	Stop Time:	720.00	Time Units: Hours

COSIRA Model V4_1				Replications: 10	
Replication 5	Start Time:	120.00	Stop Time:	720.00	Time Units: Hours

Tally

Expression	Average	Half Width	Minimum	Maximum	
TPTime	116.63	(Insufficient)	42.7647	290.30	
Replication 6					

Tally

Expression	Average	Half Width	Minimum	Maximum		
TPTime	117.61	(Insufficient)	31.8794	293.29		
Replication 7	Start Time:	120.00	Stop Time:	720.00	Time Units: Hours	
Tally						
Expression						
TPTime	181.64	(Insufficient)	43.0967	350.24		
Replication 8						

Tally

| Expression | Average | Half Width | Minimum | Maximum | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| TPTime | 129.06 | (Insufficient) | 49.4433 | 275.38 | |
| | | | | | |
| Replication 9 | Start Time: | 120.00 | Stop Time: | 720.00 | Time Units: Hours |

Tally

Expression	Average	Half Width	Minimum	Maximum
TPTime	134.52	(Insufficient)	43.9613	326.77

APPENDIX 5 - QUEUES OVERVIEW REPORTS FOR SIMULATIONS

APPENDIX 5A - BASE MODEL SIMULATION

Replications: 1 Time Unita: Hours
Queue

Time

Waiting Time	Aversge	Har Wath	$\begin{gathered} \text { Minimum } \\ \text { value } \end{gathered}$	$\begin{gathered} \text { Maximum } \\ \text { Volue } \end{gathered}$
Match 1.Queve2	6.2934	2.15044	0.00	46.9743
Match 2. Queue1	10.5056	(Insumclent)	0.00	51.2914
Match 2. Queve2	8.1777	(Insufflent)	0.00	47.9005
New Paddinghaus.Queve	1.3687	0.235911239	0.00	9.8167
Oid Paddinghaus. Queue	1.4919	0.132207656	0.00	10.0167
PrePack Ang. Queue	1.3107	(Comelated)	0.00	7.9923
Prepack at LIND.Queve	0.00102267	0.000243235	0.00	0.04305938
Prepack at New Peddinghaus. Queve	0.00105055	0.000340093	0.00	0.04607018
Prepack at Old	0.00082669	0.000276803	0.00	0.04466766
Peddinghaus. Queve Prepack at Sams.Queue	0.00000397	0.000008522	0.00	0.01321217
Seaze Forkult at old Plasma.Queue	4.5710	(Insumclent)	0.00	13.8462
Selze Crane 7. .Queve	0.2782	(Insumclent)	0.00	5.0285
Selze Crane 8 EM 1.Queve	4.5782	(Insumclent)	0.00	14.6505
Selze Crane 8 BM 2. Queve	4.3296	(Insumclent)	0.00	14.1750
Selze Crane 8 BM 3.Queue	3.8233	(Insumclent)	0.00	14.5760
Selze Crane 8 BM 4.Queve	3.9842	(Insumclent)	0.00	14.6207
Selze Crane 8 BM 5.Queve	5.1826	(Insumclent)	0.00	14.2871
Selze Crane 8 BM 6.Queve	2.2620	(Insumclent)	0.00	13.6712
Selze Crane 8 BM 7.Queve	0.4896	(Insumclent)	0.00	0.7888
Selze Crane 8 BM 8. Queue	9.9509	(Insumclent)	0.4006	14.5105
Selze Crane 8 for Reweld. Queue	2.3654	(Insumclent)	0.00	9.2508
Selze Crane 8 for Weld. Queve	0.9612	(Comelated)	0.00	14.4167
Selze Crane 9 for Fettle.Cueue	1.8193	(Insumclent)	0.00	15.6667
Selze Crane 9 Wi. Queve	6.8588	(Insumclent)	0.00	15.2466
Selze Crane 9 W2. Queve	5.9566	(Insumclent)	0.00	15.0897
Selze Crane 9 W3.Queve	6.0184	(Insumclent)	0.00	15.6151
Selze Crane 9 W4. Queve	6.7404	(Insumclent)	0.00	14.8823
Selze Crane 9 WS.Queve	5.6891	(Insumclent)	0.00	14.4687
Selze Crane 9 W6.Queve	5.6310	(Insumclent)	0.00	15.6667
Selze Forkilit at AMCueve	4.4506	(Insumclent)	0.00	14.0311
Selze Forkilt at LIND.Queue	4.9165	(Insumclent)	0.00	13.9810
Selze Forkilit at New Plasma Cueue	4.3402	(Insumclent)	0.00	13.6817
Walt for Fettie station.Queve	102.19	(Insumclent)	0.00	201.08
Walt for Mackine 1.Queue	20.8145	(Insumclent)	0.00	56.2707
Walt for Mactine 2. Queue	22.0186	(Insufflent)	0.00	62.3183
Walt for Mactine 3.Queue	19.1675	(Insumclent)	0.00	44.6908
Walt for Mactine 4. Queue	18.5288	(Insumilent)	0.00	50.8185
Walt for Machine 5.Queue	22.3112	(Insumclent)	0.00	67.5722
Walit for Mactine 6.Queue	18.0954	(Insumclent)	0.00	67.9476

Model Fiename: C-IUJsers|PJVGinkelMy Studesi2012ISem 2IBPJ 410-420, SimulationiCosira Fage $26 \quad$ of 38

COSIRA Model V1

Replications: 1 Time Unita: Hours

Queue

Time

Waiting Time	Aversge	Har Whath	Minimum Value	Maximum Vasue
Walt for Machine 7.Queue	5.5569	1.39753	0.00	27.0159
Wall for Machine 8.Queue	11.3341	(Insumflent)	0.00	35.0530
Walt for Weld Staton.Queue	9.5460	3.73914	0.00	40.4573
Weld at Station 1.Queve	9.4287	(Insufficlent)	0.00	31.6265
Weld at Station 2 . Queue	5.6192	(Insumblent)	0.00	23.7050
Weld at Station 3.Queve	6.1707	(Insumilient)	0.00	30.9343
Weld at Station 4.Queue	6.8163	(Insuffient)	0.00	30.9543
Weld at Station 5. Queue	5.7459	(Insumblent)	0.00	29.4006
Weld at Station 6. Queue	3.5800	(Insufficlent)	0.00	16.8817

Other

APPENDIX 5B - LINE BALANCING MODEL 1 SIMULATION

01:38:08PM		Fit one full page to window		October 12, 2012
COSIRA Model V2_1				
Replicatons:	1	Time Unta:	Hours	
Queue				

Time

Time

Waiting Time	Aversge	Har Wath	$\begin{gathered} \text { Minimum } \\ \text { value } \end{gathered}$	$\begin{gathered} \text { Maximum } \\ \text { Vaviue } \end{gathered}$
LIND.Queve	1.3978	0.217579181	0.00	9.5833
Match 1.Queve1	5.8085	1.98959	0.00	53.8456
Match 1.Queve2	4.0447	1.54925	0.00	34.0245
Match 2. Queve1	2.5745	(Insumclent)	0.00	21.2988
Match 2. Queue2	10.6610	(Insumclent)	0.00	56.0003
New Paddinghaus. Queve	1.4438	0.238788606	0.00	10.6333
Oid Paddinghaus. Queue	1.3934	0.249529073	0.00	10.0333
PrePack Ang. Queue	1.6397	(Comelated)	0.00	82308
Prepack at LIND. Queve	0.00107206	0.000260601	0.00	0.04677305
Preoack at New Pedinghaus. Cueve	0.00112328	0.000285733	0.00	0.04634434
$\begin{aligned} & \text { Prepack at Old } \\ & \text { Pedinghaus. Cueve } \end{aligned}$	0.00107604	(Correated)	0.00	0.04514249
Prepack at Sams.Queue	0.00	0.000000000	0.00	0.00
Seaze Forklit at old Plasma.Queue	5.4501	(Insumclent)	0.00	13.9864
Selze Crane 7.Cueve	0.1691	(Insumclent)	0.00	4.7103
Selze Crane 8 BM 1.Queue	3.4772	(Insumclent)	0.00	20.4072
Selze Crane 8 BM 2. Queue	4.6057	(Insumclent)	0.00	17.9981
Selze Crane 8 BM 3. Queue	4.2745	(Insumclent)	0.00	19.9638
Selze Crane 8 EM 4. Queue	3.2105	(Insumclent)	0.00	18.3552
Selze Crane 8 EM 5. Queue	4.1025	(Insumclent)	0.00	17.3356
Selze Crane 8 BM 6.Queue	3.8074	(Insumclent)	0.00	16.9008
Selze Crane 8 BM 7.Queue	7.1115	(Insumclent)	0.00	18.1673
Selze Crane 8 EM 8. Queue	0.2002	(Insumclent)	0.00	0.7890
Selze Crane 8 for Reweld. Queve	3.8530	(Insumclent)	3.8530	3.8530
Selze Crane 8 for Weld. Cueue	0.8656	(Insumblent)	0.00	14.4184
Selze Crane 9 for Fettle.Cueue	1.0551	(Insumclent)	0.00	14.3777
Selze Crane 9 W1. Queve	13.6322	(Insumclent)	0.00	37.5485
Selze Crane 9 W2. Queve	14.0766	(Insumclent)	0.00	41.1973
Selze Crane 9 W3. Queve	12.9788	(Insumclent)	0.00	41.2294
Selze Crane 9 W4. Queve	12.9596	(Insumclent)	0.00	33.5130
Selze Crane 9 W5.Queve	14.2537	(Insumclent)	0.00	42.1413
Selze Crane 9 W6. Queve	13.5456	(Insumclent)	0.00	41.1349
Selze Forkilit at AMQueve	4.3070	(Insumclent)	0.00	13.8910
Selze Forkilt at LIND.Queue	4.9139	(Insumclent)	0.00	13.7292
Selze Forkilit at New Plasma Queue	5.4700	(Insumclent)	0.00	13.9476
Walt for Fettle station Queve	0.5906	(Insumclent)	0.00	15.7500
Walt for Mackine 1.Queue	21.2856	(Insumclent)	0.00	71.7963
Walt for Mactine 2. Queue	19.6793	(Insumclent)	0.00	76.7745
Walit for Machine 3.Queue	16.9086	(Insumclent)	0.00	64.4769
Wailf for Mactine 4. Queue	25.3411	(Insumblent)	0.00	82.8423

[^1]| 01:38:08PM | Category Overview | | | | October 12, 2012 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| COSIRA Model V2_1 | | | | | |
| Replicatons: 1 Time Unita: | Hours | | | | |
| Queue | | | | | |
| Time | | | | | |
| Wating Time | Aversge | Har Wath | $\begin{gathered} \text { Minimum } \\ \text { velue } \end{gathered}$ | $\begin{gathered} \text { Maximum } \\ \text { value } \end{gathered}$ | |
| Valif for Mactine 5.Queue | 25.4799 | (Insumblent) | 0.00 | 63.2120 | |
| Walt for Mackine 6.Queue | 23.4160 | (Insumblent) | 0.00 | 73.2438 | |
| Walt for Mackine 7.Queue | 7.0601 | 1.88032 | 0.00 | 23.6897 | |
| Walt for Mackine 8.Queue | 9.5729 | (Insumblent) | 0.00 | 34.8892 | |
| Walt for Weld Staton.Queue | 20.4858 | (Insumblent) | 0.00 | 104.64 | |
| Weld at Station 1. Queve | 8.6777 | (Insumblent) | 0.00 | 40.8464 | |
| Weld at Station 2 Queve | 7.2576 | (Insumclent) | 0.00 | 27.6304 | |
| Weld at Station 3. Queve | 9.0623 | (Insumblent) | 0.00 | 31.3968 | |
| Weld at Station 4 . Queve | 7.9272 | (Insumblent) | 0.00 | 34.3194 | |
| Weld at Station 5 . Queve | 5.7997 | (Insumblent) | 0.00 | 30.5969 | |
| Weld as Station 6 . Queve | 7.0842 | (Insumclent) | 0.00 | 32.4087 | |

01:46:47PM	Category Overview				October 12, 2012
COSIRA Model V2_2					
Replicatons: 1 Time Untr:	Hours				
Queue					
Time					
Wating Time	Aversge	Har wath	Minimum velue	Maximum Value	
Batch Ang Assy. Queue	0.9846	(Comelated)	0.00	51.5959	
Batch Ang Pack Llst.Queve	0.1537	(Insumplent)	0.00	1.9838	
Batch Assembiles 5.Queue	0.4037	0.037379243	0.00	8.2859	
Batch Pack Lust 4. Queve	1.7008	(Comelated)	0.00	13.2750	
Batch Pit Assemblles 1.Queve	0.5579	(Comelated)	0.00	7.5125	
Batch PIt Assemblles 2. Queve	0.5891	0.117936702	0.00	8.3475	
Batch Pit Assemblles 3.Queve	0.6306	(Comelated)	0.00	8.4392	
Batch Pit Pack Lust 1. Queve	1.5460	0.197184949	0.00	9.6407	
Batch Pit Pack List 2 . Queve	1.2638	0.208099879	0.00	9.4831	
Batch Pit Pack Lst 3.Queve	0.9534	(Insumclent)	0.00	8.9853	
BM at Station 1.Queue	7.7263	(Insumclent)	0.00	24.3769	
BM at Station 2. Queue	9.2205	(Insumclent)	0.00	21.3795	
BM at Station 3.Queue	9.0727	(Insumclent)	0.00	23.9358	
BM at Station 4.Queue	9.3965	(Insumclent)	0.00	24.4358	
BM at Station 5.Queue	4.3282	(Insumclent)	0.00	11.1207	
BM at Station 6.Queue	11.7817	(Insumclent)	0.00	24.1858	
BM at Stalton 7.Queue	0.00	(Insumclent)	0.00	0.00	
BM at Station 8.Queue	8.7231	(Insumclent)	0.00	20.0962	
CNC Old BoL Queue	0.8197	0.127245155	0.00	8.3333	
CNC Sam 21.Queue	0.8121	0.166506991	0.00	9.4167	
CNC Saw 6. Queue	0.8460	0.128523053	0.00	8.6667	
Fettle at St1. Queue	5.0822	(Insumclent)	0.00	20.4437	
Fettle at St2.Queue	6.1986	(Insumclent)	0.00	23.7421	
Fettle at St3.Queue	3.6860	(Insumclent)	0.00	14.9652	
Fettle at StA.Queue	4.8202	(Insumclent)	0.00	15.6730	
Fettle at St5.Queue	4.5469	(Insumilent)	0.00	17.4680	
Ficep A165 Angle. Queve	0.4133	0.043871656	0.00	7.8833	
Ficep A205 Angle. Cueve	0.5046	0.066586959	0.00	8.1833	
Hoid for Bay 2.Cueve	3.5831	(Insumclent)	0.00	28.3786	
Inspect at F1.Queue	3.6354	(Insumclent)	0.00	12.7322	
Inspect at F2.Queue	5.1925	(Insumclent)	0.00	12.7748	
Inspect at F3.Queue	2.7443	(Insumclent)	0.00	13.7633	
Inspect at F4.Queue	3.6793	(Insumclent)	0.00	12.5441	
Inspect at F5.Queue	3.2690	(Insumclent)	0.00	13.4884	
Inspect BM ST 1.Queve	4.1636	(Insumclent)	0.00	14.1152	
Inspect BM ST 2.Queue	5.6933	(Insumclent)	0.00	13.1534	
Inspect BM ST 3.Queue	6.1269	(Insumclent)	0.00	14.2413	
Inspect BM ST 4.Queve	5.5890	(Insumclent)	0.00	13.6448	
Inspect BM ST 5.Queue	3.4926	(Insumclent)	0.00	8.2958	
Inspect BM ST 6.Queue	6.8887	(Insumclent)	0.00	14.8660	
Inspect BM ST 7.Queue	8.8956	(Insumclent)	8.8956	8.8956	
Inspect BM ST 8.Queue	2.0828	(Insumclent)	0.00	52478	
Model Filename: C.WUsers\|PJVGInkel	My Studes	20121Sem 21BP	-42015im	on/Cosira	25 of 38

COSIRA Model V2_2

Replicatons: 1 Time Unita: Hours

Queue

Time

Waiting Time				
	Aversge	Har Wath	Minimum	Maive

[^2]

APPENDIX 5D - TOC MODEL 1 SIMULATION

02:57:37PM Category Overview October 12, 2012

COSIRA Model V3_1
Replications: 1 Time Unita: Hours

Queue

Time

02:57:37PM Category Overview October 12, 2012

COSIRA Model V3_1
Replications: 1 Time Unita: Hours

Queue

Time

Waiting Time	Aversge	Har Wath	$\begin{gathered} \text { Mirimum } \\ \text { value } \end{gathered}$	$\begin{gathered} \text { Marimum } \\ \text { vevue } \end{gathered}$
Match 1.Queve2	4.8711	1.66569	0.00	37.2333
Match 2. Queve1	14.2085	(Insumclent)	0.00	43.5341
Match 2. Queve2	2.1748	(Insumclent)	0.00	23.0888
New Paddinghaus.Queve	1.4489	0.232047628	0.00	10.9000
Oid Paddinghaus.Queue	1.4611	0.242698058	0.00	10.1167
PrePack Ang. Queue	1.3691	0.293402261	0.00	4.5515
Prepack at LIND. Queve	0.00133473	0.000268520	0.00	0.05250958
Prepack at New Peddinghaus. Queue	0.00132762	0.000390421	0.00	0.05091529
Prepack at old Peddinghaus. Queve	0.00100360	0.000239258	0.00	0.04932401
Prepack at Sams.Queue	0.00001242	0.000026252	0.00	0.03926745
Seaze Forklit at old Plasma.Queue	4.6213	(insumclent)	0.00	13.9209
Selze Crane 7.Queve	0.2156	(Insumblent)	0.00	7.0833
Selze Crane 8 BM 1. Queue	2.4701	(insumclent)	0.00	13.6851
Selze Crane 8 BM 2. Queue	2.7197	(Insumclent)	0.00	12.7959
Selze Crane 8 BM 3.Queue	3.3276	(Insumclent)	0.00	14.2969
Selze Crane 8 BM 4. Queue	3.5295	(Insumclent)	0.00	13.8578
Selze Crane 8 BM 5. Queue	4.6539	(Insumclent)	0.00	13.7614
Selze Crane 8 EM 6. Queue	3.1936	(insumclent)	0.00	11.5974
Selze Crane 8 EM 7. Queue	0.2611	(insumclent)	0.00	0.8243
Selze Crane 8 EM 8 . Queve	0.00	(Insumclent)	0.00	0.00
Selze Crane 8 for	3.3995	(Insumclent)	3.3995	3.3995
Reweld. Cueue Selze Crane 8 for Weld. Queue	1.1243	(Insumclent)	0.00	14.3333
Selze Crane 9 for Fettle.Cueue	1.4058	(Insumclent)	0.00	14.6667
Selze Crane 9 W1. Queve	5.0158	(Insumclent)	0.00	13.3643
Selze Crane 9 W2. Queve	5.0676	(insumclent)	0.00	14.2367
Selze Crane 9 W3.Queve	6.7690	(Insumclent)	0.00	13.9055
Selze Crane 9 W4. Queve	4.8288	(Insumclent)	0.00	13.9675
Selze Crane 9 WS.Queve	4.0477	(Insumclent)	0.00	13.5833
Selze Crane 9 W6. Queve	3.3659	(insumclent)	0.00	14.2960
Selze Forkilit at AM Queue	3.9494	(Insumclent)	0.00	13.9563
Selze Forkilt at LIND. Queue	4.6897	(Insumclent)	0.00	13.8933
Selze Forklif at New Plasma. Queue	4.7088	(Insumclent)	0.00	13.9901
Walt for Fettle Station Queve	4.4455	(insumclent)	0.00	38.2754
Walit for Mactine 1.Queue	13.1851	(Insumclent)	0.00	45.9598
Walt for Machine 2.Queue	12.8771	(insumclent)	0.00	48.4264
Walt for Machine 3.Queue	10.1681	(Insumclent)	0.00	37.4764
Walt for Machine 4. Queue	14.2118	(Insumclent)	0.00	53.3347
Walt for Machine 5.Queue	14.6030	(insumclent)	0.00	53.0180
Walt for Machine 6.Queue	12.8014	(Insumclent)	0.00	43.5598

[^3]
COSIRA Model V3_1

Replications: 1 Time Unita: Hours

Queue

Time

Waiting Time	Aversge	Harl Wath	Minimum Value	Maximum Value
Wall for Machine 7.Queue	5.4169	(Insufficlent)	0.00	16.2696
Walt for Machine 8.Queue	6.2168	(Insuffient)	0.00	20.6966
Walt for Weld Station.Queue	48.1005	(Insufficlent)	0.00	166.11
Weld at Station 1.Queve	15.2672	(Insumilent)	0.00	119.24
Weld at Station 2 . Queue	15.6832	(Insumblent)	0.00	97.9084
Weld at Station 3.Queve	16.0181	(Insumilient)	0.00	77.2082
Weld at Station 4 . Queue	10.7125	(Insuffient)	0.00	87.8993
Weld at Station 5.Queve	11.1162	(Insumilent)	0.00	75.2206
Weld at Station 6.Queue	9.5192	(Insumident)	0.00	68.1367
Other				

01:42:37PM Category Overview October 15, 2012

COSIRA Model V3_3a

Replications: 1 Time Units: Hours

Queue

Time

COSIRA Model V3_3a

Replications: 1 Time Units: Hours

Queue

Time

COSIRA Model V3_3a
Replications: 1 Time Units: Hours

Queue

Time

Waiting Time	Average	Harf Width	Minimum Value	Maximum Value
Wait for Machine 1.Queue	5.9051	(Insufficient)	0.00	21.2000
Wait for Machine 2.Queue	5.7104	(Insufficient)	0.00	19.3626
Wait for Machine 3.Queue	4.3064	(Insufficient)	0.00	16.3167
Wait for Machine 4.Queue	5.9939	(Insufficient)	0.00	17.6415
Wait for Machine 5.Queue	6.1886	(Insufficient)	0.00	24.5085
Wait for Machine 6.Queue	4.6583	(Insufficient)	0.00	22.5833
Wait for Machine 7.Queue	3.2077	(Correlated)	0.00	11.3000
Wait for Machine 8.Queue	3.5316	0.470094261	0.00	12.6538
Wait for Weld Station.Queue	73.8459	(Correlated)	0.00	127.39
Weld at Station 1.Queve	10.8024	(Insufficient)	0.00	33.4534
Weld at Station 2.Queve	7.1267	(Insufficient)	0.00	40.8884
Weld at Station 3.Queve	7.1661	(Insufficient)	0.00	33.9576
Weld at Station 4.Queve	6.1478	(Insufficient)	0.00	22.0479
Weld at Station 5.Queve	6.7443	(Insufficient)	0.00	18.9829
Weld at Station 6.Queve	5.6521	(Insufficient)	0.00	33.9598

Other

COSIRA Model V4_1

Replications: 1 Time Units: Hours

Queue

Time

COSIRA Model V4_1

Replications: 1 Time Units: Hours

Queue

Time

COSIRA Model V4 1

Replications: 1 Time Units: Hours

Queue

Time

Waiting Time	Average	Har Woth	Minimum Value	Maximum Value
Seize Forklift at LIND.Queue	5.1901	(Insufficient)	0.00	13.8599
Seize Forklift at New Plasma.Queve	4.8564	(Insufficient)	0.00	13.9592
Wait for Fettle Station.Queve	9.6067	(Insufficient)	0.00	44.7173
Wait for Machine 1.Queue	8.8427	(Insufficient)	0.00	32.9833
Wait for Machine 2.Queue	10.5060	(Insufficient)	0.00	39.7110
Wait for Machine 3.Queue	6.6611	(Insufficient)	0.00	31.8898
Wait for Machine 4.Queue	12.7730	(Insufficient)	0.00	43.8500
Wait for Machine 5.Queue	13.9383	(Insufficient)	0.00	41.1500
Wait for Machine 6.Queue	12.8098	(Insufficient)	0.00	39.2500
Wait for Machine 7.Queue	5.1123	0.682866950	0.00	17.1667
Wait for Machine 8.Queue	6.8523	(Insufficient)	0.00	20.0091
Wait for Weld Station.Queue	9.5697	(Insufficient)	0.00	52.7909
Weld at Station 1.Queve	12.3746	(Insufficient)	0.00	58.6376
Weld at Station 2.Queve	7.8692	(Insufficient)	0.00	45.8138
Weld at Station 3.Queve	7.8272	(Insufficient)	0.00	37.8384
Weld at Station 4.Queve	8.4860	(Insufficient)	0.00	55.2762
Weld at Station 5.Queve	5.4085	(Insufficient)	0.00	55.6026
Weld at Station 6. Queve	6.8389	(Insufficient)	0.00	43.6050
Weld at Station 7.Queve	6.9415	(Insufficient)	0.00	26.6224
Other				

[^0]: Model Fliename: C:IUsers\PJuGinkelMy StudiesL2012\Sem 2\BPJ410-4201SimulationlCosira Page 1 of 2

[^1]: Model Fliename: C-IUsersiPJVGinkelMy Studesi2012ISem 2IBPJ 410-420ISimulation/Cosira Fage 26 of 38

[^2]: Model Fliename: C:UJsers/PJVGinkelMy Studesi20121Sem 2BPPJ 410-4201SimulationiCosira
 Page
 25 of 38

[^3]: Model Fiename: C:1UsersIPJVGInkelMy Studesi2012LSem 2IBPJ 410-420ISimulationiCosira

