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Abstract Particle swarm optimization algorithms have been sucu#gsdpplied to dis-
crete-valued optimization problems. However, in many sdle algorithms have been tai-
lored specifically for the problem at hand. This paper prepasgeneric set-based particle
swarm optimization algorithm for use on discrete-valuetirjzation problems that can
be formulated as set-based problems. A detailed sengitivialysis of the parameters of
the algorithm is conducted. The performance of the propadgatithm is then compared
against three other discrete particle swarm optimizatigarahms from literature using the
multidimensional knapsack problem, and is shown to stedily outperform the existing
algorithms.
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1 Introduction

Particle Swarm Optimization (PSO) has established itseH &aluable tool in the field of
continuous optimization. Proposed by Kennedy and Ebe(h885), it was inspired by the
movement of flocking birds. In order to solve discrete-vedloptimization problems (DOP),
a number of variations of PSO have been proposed, startitgthsé binary PSO algorithm
by Kennedy and Eberhart (1997). Since then, a variety oéudfit discrete PSO methods
have been developed. Typical applications of discrete P8®groblems that involve or-
dering (Wang et al., 2003; Clerc, 2004), scheduling (Abnaleh al., 2006; Tasgetiren et al.,
2004), or feature selection (Tu et al., 2008). Many such lprab are combinatorial, which
gives the problems additional structure. This structure heen used to develop problem
specific optimization methods (Li et al., 2008).
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This paper introduces a new generic set-based PSO algociitied Set-Based PSO
(SBPSO) and compares its performance in solving discraiged optimization problems,
specifically set-based problems, to existing PSO algosthfine term generic means that
no problem specific information is used in the algorithm often in the objective func-
tion. This allows the algorithm to be seemlessly appliedhauit alteration to any DOP that
allows for a set-based representation of the solution. Eidased approach is chosen as
an alternative to the more traditional binary string impéerations of discrete PSO and the
permutation implementation often used for combinatorietirnization problems. Thus a
particle position is defined as a set of elements. This hasrtpertant implication that the
size of the particle position can change as the algorithrawgrs, and also that the positions
of the particles in the swarm will, in general, have diffdrsizes.

The multidimensional knapsack problem (MKP) is chosen agébt problem because
it can be formulated as a set-based optimization problemitaiidws for straight-forward
objective function evaluation of particles. Thus the SBR&6 be evaluated, and compared
to alternative PSO algorithms, based only on the qualithefdolutions determined by the
PSO algorithm and not aided by domain specific operators at¢knowledged that problem
specific algorithms can yield better solutions, but the saxfithis paper is to find an efficient
generic set-based PSO algorithm to apply to DOPs exemphfigde MKP.

The remainder of this paper is structured as follows: firstief loverview of the con-
tinuous PSO algorithm is given. Then a review of existingcidite PSO algorithms and
existing set-based PSO algorithms is provided. Sections8ritees the SBPSO algorithm.
Section 4 formally defines the MKP, and existing studies thegt swarm intelligence to
solve the MKP are highlighted. Section 5 explains the expenital procedure conducted,
and describes how the control parameters of the individ8& RlIgorithms were tuned. Sec-
tion 6 uses the results of the parameter tuning process uctm sensitivity analysis of
the SBPSO control parameters. Section 7 lists the resulipm/ing the tuned PSO algo-
rithms to the MKP test problems, followed by conclusions andndication of future work
in section 8.

2 Particle Swarm Optimization

This section gives a brief overview of the continuous PS®@ritlgm, and describes three
swarm topologies used in PSO. This is followed by a reviewxidteng discrete and set-
based PSO algorithms.

2.1 Continuous Particle Swarm Optimization

Kennedy and Eberhart (1995) were the first to propose an @gatiiron algorithm inspired
by bird flocking behavior. The first PSO algorithm was devebbpo solve optimization
problems with continuous-valued parameters. Each partias a positiox in the search
space, and a velocityindicating direction and step-size of change in currenttjprs Each
particle keeps track of the quality of the solution to theimptation problem it represents,
the best position it has visited in the pagtand the best position visited in the past by a
particle in its neighborhood, denotgd

Let i be a particle in am-dimensional search space with velocity= (vi)rj‘:l, po-
sition xj = (xi)’j‘zl, personal best positiog; = (yi)rj‘:l, and neighborhood best position
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¥i = (%1){_;. The original velocity update equation,
Vij(t+1) = Vij(t) +care(t) [ij(t) =% ()] +Carzj(t) [%5(t) — % j(t)] @)

computes the magnitude of change in the particle’s positi@ach dimensior), wherec;

is the cognitive component weight is the social component weight, andandr, aren-
dimensional random vectors with eagly, r2 j ~U (0, 1) drawn independently. The position
is updated by adding the updated velocity to the currentiposi

Xivj(t-ﬁ-l)ZXLJ'(t)—l-Vi,j(t-ﬁ-l) (2

To improve the performance of the algorithm and to bettetrobthe balance between
exploration of new areas of the search space and explaitatipromising areas, various ad-
ditions have been proposed. A first addition was by Eberhaitt €1996), who proposede-
locity clampingwhich restricts the velocity to a predetermined maximurreichedimension.
After the velocity has been updated, but before the positfmtate, the velocity clamping,

Vi j (t+1) = min{max{viyj (t+ 1),Vmin.j },Vmaxj} 3

is applied, wher&min j andVmaxj With Vinin j < Vmaxj denote the minimum and maximum
velocity in a single dimensioi.

An addition proposed by Shi and Eberhart (1998) was a saalacalled theinertia
weight which determines the acceleration or deceleration in theent direction. The in-
ertia weight scales the component indicating the partidatrent velocityy; j (t), in equa-
tion (1), resulting in an alternative velocity update eiprat

Vij(t+1) = wvij(t) +cirej(t) ij(t) —xij (O] +carzj(t) [ () —xi ;0] (4)

Algorithm 1 describes the flow of the PSO algorithm for a méaxation problem with
objective functionf : R" — R. A similar definition is easily obtained for a minimization
problem.

2.2 Swarm Topologies

One of the strengths of PSO is the flow of information throughdwarm due to the inter-
action of the particles. Particles with a good objectivecfion value attract other particles,
hopefully to good areas of the search space. Particles dvatfbund a good solution attract
particles for which they are the best neighbor. If two p&gtcand j are not connected (not
in each other’s neighborhood), then they can not directhaeit each other. If a common
neighbork is attracted to a good solutiorand becomes a good solution itself, such that it
is the best solution in the neighborhood jothenj can be said to be indirectly influenced
by i. For each patrticle, the social structure, called the swapology, determines which
particles it can be attracted to.

Kennedy and Eberhart (1995) proposed two possible sociadtates for the particle
neighborhoods, and called the two resulting algorithmsgdilobal best gbesy PSO and
local best Ipbes) PSO. The gbest PSO usestar topology, while the Ibest PSO usesiag
topology. The ring topology is a loosely connected topo)agyile the star topology is one
where each particle is directly connected to all other pladiin the swarm. A study of
the impact of the swarm topology was done by Kennedy and Me(2i#)2), considering
various topologies, including random, star, Von Neumardhrarg topologies. Kennedy and
Mendes (2002) suggested that ¥@n Neumannopology, which has an intermediate level
of connectivity, can be a good choice for a particle swarm.
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Algorithm 1: Continuous PSO for Maximization Problems

SetN equal to the number of particles in the swarm;
fori=1,...,Ndo

Initialize x; uniformly random over the search space ;
Initialize vi =0;
Calculatef (xi) ;
Initialize f(y;) = —o0;
Initialize f(9;) =

end
while stopping condition is falsdo
fori=1,...,Ndo
// set the personal best position ;
if f(xi)> f(yi)then

Yi = Xi;
end
// set the neighborhood best position ;
for all neighbors | of particle do

if (f(yi) > (1) then

Y =V

end
end
end
fori=1,...,Ndo
Updatev; according to equation (4);
Updatex; according to equation (2);
Calculate solution qualityf (x;);

end
end

2.3 Discrete Particle Swarm Optimization

This section reviews PSO algorithms developed to solve D@&wely the binary PSO,
the modified binary PSO, the probability binary PSO, the amgbdulated PSO, fuzzy and
rank-based binary PSO algorithms, and PSO algorithmsehafine the meaning of particle
positions, velocities, and arithmetic operators.

Binary PSO: Kennedy and Eberhart (1997) were the first to define a diseegtgon of the
PSO algorithm, referred to as the binary PSO (BPSO). In thishm the particle positions
are binary strings, while the velocities exist in contins@pace. Velocities are mapped to a
scalar value between 0 and 1 using a sigmoidal transformétioction,S. This scalar value
is interpreted as the probability that the correspondingqfahe binary position string is bit
1. The velocity update equation of the BPSO algorithm is #maesas equation (4). Using
the transformation function,

1

Svit+1) = T

(®)

the position update becomes

it = (& Rt .

wherers j is an independent random variable, uniformly distributed®1). Eberhart et al.
(2001) proposed to use velocity clamping as defined in egug8) in BPSO to prevent
saturation of the sigmoid function.
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Many variants of the BPSO algorithm have been proposed: &@ret al. (2007) de-
fined a BPSO that has separate velocity terms depending othevhe bit in the current
position vectorx is 0 or 1, Gao et al. (2006) removed the randomness from thiéiqros
update step, and Yang et al. (2004) proposed the quantum BR8@oducing the idea of
a superposition of states.

Modified Binary PSO:Shen et al. (2004) proposed the modified binary PSO (MBPSO) to
select variables in multiple linear regression and pad&gdt-squares modeling. The velocity
update equation of MBPSO is the same as equation (4). Forasiign update, each bit
X;,j(t) in the position vectok;(t) is updated according to:

Xi,j () ?fO <Vij(t+1) < pstat
X,j(t+1) = q ¥i,j(t) if Pstar<Vi,j(t+1) < 0.5(1+ Pstar) @)
9i.j(t) if0.5(1+ pstar) < Vi j(t+1) <1

wherepsiatis @ parameter 0, 1) called thestatic probability

Shen et al. (2004) stated that after the velocity and positjpdates have been applied,
a fraction of particles “are forced to fly randomly not follmg the two best particles”.
This statement has been interpreted as a random re-igiiimin of both the velocity and
the position of a percentage of the swarm at each iterationlas to Ma et al. (2010). The
fraction of particles that is re-initialized at each itévatis denoted bypreses

Probability Binary PSO:Wang et al. (2008) proposed a variant of BPSO called the prob-
ability binary PSO (PBPSO) and applied this to the MKP. Thiesity update equation of
PBPSO is the same as for continuous PSO given in equatioA ()ntinuous-valued posi-
tion, X/, is introduced, which is updated according to equationA4inear transformation,
X j(t+1) — Rmin
L(x;(t+1)) R R 8)
is used to transform the continuous-valued position intmary-valued positionx, using

xi(t+1) :{1 ifrij<L(;(t+1))

0 otherwise
where eaclr; j is an independent random variable, uniformly distributed(6,1). The
parameterfRnin and Rnax used in the linear transformation are usually chosen suah th
Rmnax > 0 andRmin = —Rmax- (Menhas et al., 2011) extended the PBPSO algorithm to also
include a mutation operator. After application of the lineansformation in equation (8),
each bit was given a probabilifymu: € [0, 1] of mutating, resulting in the position update,

9)

N 1= xj(t+1) ifrij < pmut
% j(t+1) = {ijj(t‘F 1)  otherwise

where eachn; j is an independent random variable, uniformly distributed®1).

(10)

Angle modulation:Pampara et al. (2005) developed a different approach tcecting the
continuous-valued velocity of PSO to a binary string by gjmg the concept ofingle mod-
ulation. Angle modulation PSO starts with a swarm of particles in atiooous four di-
mensional space, and uses a continuous PSO algorithm taeutida particle velocities
and positions. For each particle, the four position comptsare used as parameters for a
trigonometric function, and this function is sampledimes to generate amdimensional
bit-string. If the function produces a positive value, thénl is recorded, otherwise bit O is
recorded.
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Fuzzy binary PSO approache$iuzzy logic has also been used to construct discrete PSO
algorithms. Where the particle position in binary PSO is @maby vector with a “crisp”
separation of bits into 0 and 1, fuzzy binary PSO instead hassd#ion vector with fuzzy
bits. It uses a membership functignto indicate a truth value ifi0, 1] for the degree to
which each fuzzy bit has value 1. The fuzzy PSO algorithm wdmkcontinuous space and
a separate mechanism callddfuzzificationis used to convert the fuzzy particle position
into a binary vector. The first published article on using azfuapproach to the discrete
PSO is by (Shi and Eberhart, 2001). Pang et al. (2004a) and &hal. (2006) provided
refinements to the fuzzy method and applied it to the tragedadesman problem (TSP). Du
et al. (2005) applied their fuzzy PSO to the shape matchinglem, while Abraham et al.
(2006); Liu et al. (2010); Liu and Abraham (2007) appliedzZydiscrete PSO algorithms
to job scheduling problems and to the quadratic assignnrebtgm.

Rank ordering approachesA different approach is where discrete PSO algorithms use th
concept of rank ordering to transform a continuous-valuesitipn to a discrete-valued posi-
tion. Tasgetiren et al. (2004) introduced such a modificettiche continuous PSO algorithm
and applied it to scheduling problems, exemplified by thglsimachine total weighted tar-
diness problem. Solutions for such scheduling problemsegeences or permutations of
tasks that indicate the order in which the tasks are perforrecandidate solution is rep-
resented as a sequerf§e= [S 1,...,S ] of the numbers 1..,n, where eacls; is unique
and denotes one of thretasks to be scheduled.

The particle velocities and positions are updated accgrétnequations (4) and (2)
respectively. Each position;, is then translated to a sequergeising thesmallest position
value(SPV) rule. The SPV rule takes the position compongnt, with the smallest value
in xj, and sets 1 equal toj. Then it takes the next smallest position compongt, and
setss » = k. This process continues until the sequefcleas been filled.

Similar algorithms have been proposed by Pang et al. (2004 used thegreater
value priority to transform the continuous-valued positionto a sequenc& and applied
the resulting PSO algorithm to the TSP. Liu et al. (2007) umedlmost identical approach
calledrank order valueand applied this method to the flow shop scheduling problesSH.

Redefined PSO operator€lerc (2004) formulated a discrete PSO algorithm by redagini
the particles, velocities and operators used in PSO. A géneathematical specification is
given as well as an implementation that is then applied toTtBB. A particle position is
defined as a sequenceldft 1 arcs between nodes, whedds the number of nodes in the
TSP. A velocity is defined as a list ekchange operationg, j), where nodes andj in a
position are swapped. Special operations are also defimexlifitraction of two positions,
the addition of two velocities, and the multiplication of @akar and a velocity. These new
operators are then used in a formulation of the velocity tgpdguation in the discrete PSO
that is very similar to equation (4) used in continuous PSO.

Wang et al. (2003), Zhang et al. (2007), and Zhong et al. (Rp@aposed similar ap-
proaches to modifying the PSO operators and each appliectsiodting PSO to the TSP.
Garcia et al. (2006) applied an adapted PSO algorithm tadbponse time variability
problem, where the particle velocity is defined as an ordésedf transformations called
movementsBenameur et al. (2009) proposed a similar discrete PSO pyplikd it to the
frequency assignment problem. Chandrasekaran et al. Y2@@ied a discrete PSO with
redefined operators to the FSSP, where the velocity is a serafpositions with ordering
values. The transpositions contained in the velocity apieg to the position in the order
of high to low ordering values.
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2.4 Particle Swarm Optimization using Sets

In literature, a number of PSO algorithms that use mathealagets already exist. It is the
opinion of this paper, however, that these existing mettardsnot truly set-based or not
always generically applicable to all set-based optimaragiroblems.

The algorithm proposed by Correa et al. (2006) for attritagkection and the related
algorithm by Bock and Hettenhausen (2012) for ontologyratignt both have set-like char-
acteristics, but both contain problem specific elementseé&isally, the concept of personal
likelihood that requires each element in a particle position to havewts partial objective
function value, prevents these algorithms from being &pojpio many discrete optimization
problems, including the MKP.

Veenhuis (2008) proposed a generic, set-based definitialP&O algorithm. Velocities
and positions in this algorithm are both defined as sets. Mervéhe chosen update equa-
tions lead the velocities and positions to always increaséezi, an effect calleset bloating
To counter this, a reduction operator with a relatively cterglustering mechanism was
introduced. This clustering mechanism requires a fundtiahdefines the distance between
any two set elements, while a general mathematical set dotesupport the concept of
distance. Veenhuis (2008) has therefore chosen a problenifispdistance function. This
means that the algorithm is no longer truly generic, andsicutrrent form is not applicable
to discrete problems such as the MKP.

Neethling and Engelbrecht (2006) proposed the set-bagedthim called SetPSO and
applied it to RNA structure prediction. The problem is defires finding the correct stems
(bindings of base pairs) in the RNA structure from the setlbpassible stems. Particle
positions are defined as sets of stems. In the position upttete probabilities help de-
termine which elements are added and which elements areveehfimm the position. Al-
though generically applicable, recent work (Langeveld Bndelbrecht, 2011) has shown
that SetPSO performs less well on the MKP than other PSO migtho

Chen et al. (2010) proposed a generic set-based PSO methed $8PSO that can be
used to adjust a continuous PSO algorithm to a discrete cR&@was applied to the TSP
and the MKP. The candidate solution represented by a panisition is called a set, but
has a fixed size, where for each “dimension” of the set an eleimehosen from a set of
available elements. Thus the position can not be calledeaget Velocity is defined as a
set with possibilitieswhich grows in size as the algorithm runs. Positions areiltedt each
iteration using a constructive process that may includeisiguoperators. Wu et al. (2010)
applied a variant of S-PSO based on (continuous) constni®SO to the problem of cloud
computing workflow scheduling.

Khan and Engelbrecht (2010) proposed an algorithm callegyf®SO (FPSO) to op-
timize the topology design of distributed local area neksqiDLANS). The term fuzzy in
FPSO refers to the fuzzy aggregation operator,uthiied And-Or operatqgrthat is used to
aggregate the multiple objectives in the DLAN topology dagiroblem into a single objec-
tive function. The patrticle position is defined as a set dfdibetween nodes in the network.
The number of links in the position is exacty— 1, whereN is the number of nodes in the
network. The particle velocity is defined as a selrif exchange operationsvhich remove
a single link in the position and replace it by another. Bseathe size of the position is
fixed, the algorithm is not generally applicable to discpateblems such as the MKP.
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3 Set-Based Particle Swarm Optimization

This section describes in detail the SBPSO first mentiongédangeveld and Engelbrecht,
2011), which is revised and investigated in much more detahis paper. SBPSO can be
applied to any DOP which can be defined as set-based optiornizatoblems. Section 3.1
defines the SBPSO set-based concepts, while sections 32 &nekpectively redefine the
arithmetic operators and PSO update equations to operaeten

3.1 Set-Based Concepts

SBPSO defines a particle’s position and velocity as matheataets. The position is a set
of elements from the universe of discoutsgthat is, the universe of elements defined by the
problem. The velocity is a set @iperation pairsdefined below. The solution that SBPSO
finds for the optimization problem is thus the best positiounid by the swarm, represented
as a set of elements frobh.

The definitions below assume that SBPSO is applied to a maation task, but a sim-
ilar definition for a minimization task is easily derived ffinchis. Let

— U = {en}nen, be the universe of discourse containing all elemesisof which there
are a finite numbeny,

— Xi(t) be the position of particleat iterationt, a subset o/,

— Vj(t) be the velocity of particle at iterationt,

— f be the objective function to be optimized,

- Yi(t) be the personal best position of particl¢hat is,Yi(t) = Xi(1), T € {1,...,t}, such
that f (Y;(t)) = f(Xi(1)) = max{f(Xi(s)|s=1,....t},

— Yi(t) be the neighborhood best position for parti'cm iterationt, that is,Y;(t) = Yi(t)
for the particlej in i's neighborhood that maximizeig(Y;(t)).

Figure 1(a) shows a particle positidtft) as a set in the univeré. This universe and math-
ematical sets in general do not have a spatial structurdyesplacements of the elements
denoted with small squares is arbitrary and no elements easainl to be close to or far
away from each other.

The PSO paradigm is built on the idea of movement throughdhech space, using the
concept of velocity. For SBPSO this idea of movement needietdefined. In continuous
PSO, attraction of a particle to its personal best positiartlyp determines the particle’s
velocity. In SBPSO the same attraction to the personal lpgdtes. Figure 1(b) shows a
particle positionX(t) and personal best positiofi(t). Here X(t) andY(t) are shown to
partially overlap, though this is not necessarily true. Tin@vemenbf X(t) towards Yt)
in SBPSO means that the two sets are made more similar by negnelements fronX(t)
that are not ir¥ (t) (pictured as), and by adding tX(t) missing elements that are ¥t)
(pictured as *). Elements that are in botlit) andY(t) are not affected by this attraction,
nor are elements that lie outside botft) andY (t).

The velocity is defined as a setapberation pairswhere an operation pair is the addition
or deletion of a single element. An operation pair is denotetta®), with (+,e) for the
addition of elemene € U and(—, e) for the deletion of elemereg. The velocity of particle
i, Vi(t), is then written aqVi1,...,Vik} = {(£,€n ), .., (£, €, )}, wherek is the number
of operation pairs iv(t), and eacheh is an element |rt1J identified by the indexy; .

As an example, consider posmdn: {a,c} and velocityV = {(+,b), (—,c)} consisting
of two operation pairs. Adding velocily to positionX means that elemebtis added while
elementc is removed, resulting in a new positiok, = {a, b}.
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Fig. 1 Particle positions in SBPSO: (a) shows a particle posi¢t) in SBPSO is a set in the universe
The small squares represent elements in the univérge) shows a particle positioK(t) and a particle’s
personal best positio¥i(t). The open diamonds)) represent elements X(t) that arenotin Y(t), and the
asterisks (*) represent elementsyi(t) that arenotin X(t).

Attraction towards the personal be&tt) does not have to mean that the posithft)
moves to the personal best position in one step suchXftat 1) = Y(t). Velocity update
equation (4) contains the attractionydt) asciri(t) [yi(t) —xi(t)], meaning that the dif-
ference betwee ;(t) andx; j(t) is scaled by a factoy;(t) = cyryj(t), forall j=1,...,n.

If yj(t) =1, thenx; j(t+1) =y (t), if the other terms of equation (4) are disregarded. If
y;(t) < 1thenx;(t) is pulled only partly towardg;(t) in dimensionj, while if y; (t) > 1 then

xi (t) will overshooty;(t) in dimensionj. In a set-based representation, this overshooting is
difficult to define because there is no direction ¥t) to overshootY(t) sinceU has no
spatial structure. In contrast, fof(t + 1) = y(t)[Y(t) — X(t)], the case/(t) < 1 can be de-
fined in a set-based representation, by making only someatradlrof the changes required
to turn sefX(t) into Y (t). Figure 2(a) shows this in action, assumirft) = 0.5. The seK(t)
requires six changes to “move t&(t): the three elements indicated<@seed to be deleted
from X(t), and the three elements indicated as * need to be add¢(t YoThe scaling by a
factor of Q5 means only three of these changes, selected randomly,aare toX(t). This
results in the new positiorX (t + 1).

The attraction ofX(t) to the particle’s neighborhood best position works in a Eimi
manner. Figure 2(b) shows positioXst), Y (t), and\?(t) to partially overlap, with one com-
mon element indicated by a trianglé), although this does not necessarily happen in prac-
tice. However, should an element be present in all threeXsgisY (t), and¥ (t), then the
above described attractionYdt) and¥ (t) cannot lead to the removal of this element from
X(t). Also the attraction tof(t) and Y (t) cannot lead to the addition of any element to
X(t) that is outside of botl (t) andY(t). Such elements are indicated with symbol ‘+' in
figure 2(b). For both cases a mechanism needs to be includeBR$O to ensure that the
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u B emoved

@ (b)

Fig. 2 Particle attraction and movement in SBPSO: (a) shows howteclgamoves from its current position
X(t) in direction of its personal best positidf{t) to its new positionX (t + 1), (b) shows a particle position
X(t), its personal best positiori(t), and the neighborhood best positio(t).

whole universaJ is in theory reachable from every possible starting pasiti@hese two
mechanisms are defined in section 3.2.

For a strict mathematical definition of position, velocaynd objective function, denote
with #2(U) the power set (that is, the set of all subsets)ofA position X;(t) is an ele-
ment of 2(U). The objective functiorf maps a position to a quality scorelty written as

f: 2(U) = R. The velocityVi(t) is generally defined as a function that maps a position
to a new position, that isy;(t) : 2(U) — £(U).

Note that the definition of velocity using operation pairs@érower than the general
mappingV : Z(U) — £ (U). Consider for example = {0,1}, and mapping/ such that

1. V(0) = 0 (V can not contain any additions),

2. V(U) =U (V can not contain any deletions),

3. V({0}) = {1} (requires one addition and one deletion), and
4. V({1}) = {0} (requires one addition and one deletion).

Then,V is a valid mapping fron¥?(U ) to £2(U ) that can not be denoted as a set of additions
and deletions.

3.2 Set-Based Operators

To describe SBPSO mathematically, new operators are defliede operators act on ve-
locities (sets of operation pairs) and positions (setsarheints fronJ) to replicate the PSO

concept of velocity and position updates. Special opesatr defined to allow (i) a particle
position to add elements that are not in the personal¥g&stnor in the neighborhood best

1 Consider a particléin SBPSO. Because the swarm usually consists of multipléces, movement of
particles other thancan chang&;(t) by finding a new best candidate solution. This can then c¥iiseto
contain an elemeretthat was first outside of; (t),Y;(t), andYi(t). So strictly speaking only elements that are
outside ofX;(t) andY;j(t) for all particlesj in the swarm (and hence also outslﬁét) for all j) can not be
added toX; (t) by the attraction mechanism. Similarly, only an elemetitat is contained i (t) andY; t)
for all particlesj in the swarm is one that can not be removed by the attractiarhamesm.
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Yi(
Yi

t), and (ii) a particle position to remove elements that aregueinX;(t) as well as both
t) andY;(t).

The addition of two velocities, 1\ Vs, is a mappingd : Z({+,—} xU)? = 2({+,-} x
U), that takes two velocities as input and yields a new velo@gnoted ad/; @ Vo, the
mapping is defined as the simple union of the two sets of cperptirs:

V1 ®Vo =V UVs. (11)

The difference between two positions, Xz, is a mapping> : 2(U)? — 2({+, -} xU),
that takes two positions as input and yields a velocity. Ih#iple moves by the resulting
velocity, the difference between the two positiosandX; is the “distance” that is traversed
in one step. This mapping is defined as a set of operationtpairgdicate the steps required
to convertX; into X; using additions and removals of single elements:

X16% = ({+} % (X1\0) U ({~} x 0@\X0)). (12)

Therefore X3 © X is the union of (i) the product df+} and all elements iX; not in Xz (all
such elements are added) and (ii) the producf-ef and all elements ixX; not in Xy (all
such elements are removed). This operator thus yields tbeityeV to get fromX; to X;.

The multiplication of a velocity by a scalan ®V, is a mapping? : [0,1] x Z({+,—} xU) = 2({+,-} >
that takes a scalar and a velocity and yields a velocity. Taepimg is defined to mean pick-

ing a subset ofn x |V|| elements at random from veloci¥y to yield a new velocity. Here

|x| for x € R* denotes the largest € N for which x > v. The operand is restricted to

values in[0, 1] since sets can not have a negative number of elements aribseds allow

multiple instances of the same element. Note thadM0= 0 and 19V =V.

The addition of a velocity and a position, B/, is a mappingB : Z(U) x Z({+,—} xU) — 2(U)
that takes a position and a velocity and yields a positiorcaRehat a velocity is itself a
function that maps a position to a new position. The oper@tis defined as the action of
applying the velocity functio¥ to the positionX:

XV =V(X) (13)

This is further specified as applying the full set of operatgairsV = {vi,...vy} to the
positionX one-by-one and, for each operation pair, one element isdaid¢ or removed
from X.

Section 3.1 referred to two special mechanisms to removeesits fromX t
in X(t)NY(t)NY(t) and to add elements ¥(t) from outside ofX(t) UY (t) UY(
mechanisms are explained below.

) that are
t). These

The removal of elementim X(t) NY(t) N Y(t) from a positionX (t) uses the operatap .
DenotedB ®~ S, whereS is shorthand for the set of elementst) NY(t) NY(t), this is

a mappingo~ : [0,|9]] x £2(U) — 2({+,—} xU), which takes a scalar and a set of el-
ements, and yields a velocity. The operator is implemented asandomly selecting
number of elements determined Byfrom Sto remove fromX(t) and constructs operation
pairs that are deletions:

Bo~S={-}x (LY (14)
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The number of elements that are selected fRisidenoted byNg s, and defined as

Ngs=min{|S, B+ ;g g3} (15)

for a random number ~ U(0,1). Here Xy, is the indicator function with g, = 1
if bool = true and Yoo = O if bool = false Thus the number of elements selected is at
least| B |, and the fractional remaind@r— | 8| is the probability of the number of elements
selected being one larger. The number of elements is alg®dagt the number of elements
in S, which in turn means tha is also capped at the number of elementS.in

The choice is made tmndomlyselect elements fror§instead of spending more com-
putational effort to select good candidate elements fooraifromX(t). Note that the aim
of this operation is to allow exploration of the entire séaspace. It will likely lead to a
worse objective function value at present, as the elemenbved fromX(t) is likely of
“good quality” given that it is included in both the persobalst and the neighborhood best.
The assumption is that any extra effort to select a bettenexé to remove fronX(t) will
yield only a limited return above that from random selection

The addition of elementsutside ofX(t) UY(t) UY(t) to X(t) uses the operatap™. De-
notedf &+ A, whereA is shorthand for the set of elemet§ (X(t) UY () UY (1)), this is

a mappingo™ : [0,]A]] x 2(U) — 2({+,—} xU), which takes a scalar and a set of el-
ements, and yields a velocity. The operatot is implemented to usmarginal objective
functioninformation for the positiorX(t) to choose which elements frofto add toX(t),
and constructs operation pairs that are additions. Theinargbjective function value of
elemente for a particle with positionX(t) is defined as the objective function value of a
new particle with position equal %(t) plus g that is,X(t) U {e}. A k-tournament selection
algorithm incorporating this marginal objective functioriormation is used to select ele-
ments to add t&X(t) and is outlined in algorithm 2. The implementation of theraper ©*
thus depends on the paramekensed in the tournament selection, and is denoted,as
The operator;! thus is defined as

B ®y A= {+} x k-Tournament Selectigi, Ny ») (16)

whereNg a, the number of elements to be addei), is defined as in equation (15). The
number of elements to be added is capped at the nhumber of migined, which in turn
means thag is also capped at the number of elementa.in

Algorithm 2: k-Tournament SelectioA(N)

SetVtemp=10;
forn=1,...,Ndo
for j=1,...,kdo
Randomly selecgj from A;
Setscorg = f(X(t)U{ej});
end
Selectme {1,... Kk} such thascore, = maxj{scorg };
Setvtemp:Vtemp@ ({+} X @m);
end
ReturnViemp

. . . N
In summary,f3 @QA means selectinfg A, possibly overlapping, elementg; Jﬁf
where each elemesj in turn is the best performing in a tournamenkalements selected
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randomly fromA. The best performing elemest here means maximizing the objective
function value ofX; U {€/}. Note that a higher value @ leads to more elements frof
being added to the positiod(t), while a higher value ok means the algorithm is more
greedy in selecting which elements to add.

Extra computational effort is exerted in SBPSO by using kieurnament selection
to find a “good" element to add t4(t): an additionak objective function evaluations are
required. This is done because the Aetill, in general, contain many elements that lead
to a worse objective function value when addedtb). Good elements to add ¥(t) will
thus tend to be rare. The assumption made in this paper ithhaktra effort to locate these
good elements is worth the extra objective function evaduat

3.3 Update Equations

Using the redefined operators from section 3.2, the velagiyate equation for SBPSO
used in this paper is

Vit+1) = cne (%) eX(1) @ crze () eX(1)
@ (Cgfg@ﬁ—Ai(t)) D (c4r4®‘3(t)) (17)

whereA; (t) = U\ (X (t) UY (1) UYi(1)) andS (t) = X (t) NYi(t) NYi(t). Parameters am, ¢, €
[0,1], c3,ca € [0, |U][], and the random numbersare all independently drawn from the uni-
form distribution on(0,1). Besides the additional velocity components involving and
®k+, one more difference between equation (17) for SBPSO anatiequ(4) is the absence
of an inertia term. This can be explained by looking at theitjpys update equation for
SBPSO:

Xi(t+1) =X (t)BVi(t+1) (18)

The velocityVi(t + 1) is a set of operation paiff=+,e1),...,(+,em)} that is fully applied
to the positionX;(t), where each operation pair is an addition or a deletion. @nadement
e has been added to the positi¥{t), adding the element again has no impact as a set can
only contain a single instance of each element. Therefores the velocity has been applied
to Xi(t), each operation pair it (t + 1) will have no impact if applied te(t + 1). Hence,
there is no need to include part\ft) in Vi (t + 1), which is what the inertia term would do.
The SBPSO algorithm is given in algorithm 3.

Note that the order in which the operation pairs frértt 4 1) are applied to(t) is not
relevant, because the individual additions and deletipnsn Vi(t + 1) from equation (17)
can overlap, but camot cancel each other out. In other words, there can notjheaj» such
thatvi j, = (+,€) andv; j, = (—, e) are two operation pairs ¥ (t + 1) for the same element
e. To illustrate, assume th#(t + 1) contains both{+,e) and(—, e) for some elemerg:

— Since attraction toward¥(t) or Y;(t) can only create deletions for elements that are in
X (1)\ (Yi(t) U\?i(t)), while the®™ operation can only create deletions for elements in
S(t), the presence of deletign-,e) in Vi(t + 1) implies thate € X (t).

— Since attraction toward¥(t) or Y;(t) can only create additions for elements that are in
X (0)\ (Yi(t) U\?i(t)), while the®,” operation can only create additions for elements in
Ai(t), the presence of additidrt, €) in Vi (t 4 1) implies thate ¢ X (t) oree (U\X(t)).

— Foreit must then hold thag € X; (t) N (U\Xi(t)) = 0. Therefore, such amcan not exist
inVi(t+1).
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Algorithm 3: Set-Based PSO algorithm (SBPSO) for Maximization Problems

SetN equal to the number of particles in the swarm;
fori=1,...,Ndo

Initialize X; as random subset bf ;

Initialize Vi =0 ;

Calculatef (X) ;

Initialize f(Y;) = —o0;

Initialize (%) = —oo;

end
while stopping condition is falsdo
fori=1,...,Ndo
// set the personal best position ;
if £(X)> f(Y;)then
Yi =X
end
// set the neighborhood best position ;
for all neighbors | of particle do

it (f(¥) > f(%) then
Yi=Y;

end
end
end
fori=1,...,Ndo
UpdateV; according to equation (17);
UpdateX; according to equation (18);
Calculatef (Xi);

end
end

4 Multidimensional Knapsack Problem

The multidimensional knapsack problem (MKP), also callermultidimensional zero-one
knapsack or rucksack problem, is a well-known NP-completéxozation problem (Gens
and Levner, 1980). The aim is to maximize the total valuelofeahs to be put in a knapsack,

n

max i;vi Xi 19)
subject to the zero-one constraints
X €{0,1}, vie {1,...,n} (20)
and weight constraints
iiwi,jxi <Cj,Vje{l,....m} (21)

There aren items in total, each with valug. The binary variableg indicates whether the
item i is present in the knapsack or not. The problem tmageight constraints, where for
each constraini the itemi has a weighty; ; and for each constraint the total weightw; j x;
may not exceed the capaciBy. In the remainder of this paper, all mention of the MKP’s
constraints refer to the weight constraints, as the zeeoeonstraints are considered part of
the definition of the MKP as a class of problems.
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A well-formulated multidimensional knapsack problem adgtheres to the value con-
straints

vi>0,i Vvie{l...,n} (22)

and constraints on the total weight
n
Wi'jSCj<ziWi‘j’ Vie{l,...,n},je{1,....m} (23)
i=

Note that any zero-one integer problem with non-negatiedfimients can be formulated as
a MKP. The first mention of such problems was with regards pitaebudgeting (Lorie and
Savage, 1955). A recent overview of exact methods and écellypproximations for the
MKP can be found in (Puchinger et al., 2010). Population @agsimization algorithms
have also been applied to the MKP including genetic algoit{GA) (Chu and Beasley,
1998; Khuri et al., 1994), ant colony optimization (Kong kf 2008), as well as PSO. Kong
and Tian (2006) used the binary PSO which includes a heurigpair operator to avoid
infeasible solutions, while Hembecker et al. (2007) usethftg functions to steer the search
towards solutions that satisfy the MKP’s constraints. ldabeal. (2011) proposed a hybrid
GA binary PSO algorithm that includes a crossover operatdraaseparate repair operator
that modifies positions to represent feasible solutionsiéoMKP. Wang et al. (2008) used
the MKP to compare the binary PSO to two other discrete PS@ntar namely MBPSO
and PBPSO.

Recent studies into the MKP frequently use the benchmarlgnus mentioned in Chu
and Beasley (1998) to compare the performance of algoritfithese problems that are
available on-line at the Operations Research Library (@R&ihttp://people.brunel.
ac.uk/~mastjjb/jeb/orlib/mknapinfo.html, are divided into two sets: small MKP
and large MKP. The small MKP is a collection of 55 problemg theve been mentioned
in literature prior to the paper by Chu and Beasley (1998 Hnge MKP is a collection
of 270 randomly generated MKPs with number of items 100,250, or 500, humber of
constraintsm = 5,10, or 30, and tightness ratia2®,0.50, or Q75. The tightness ratio,
denoted, was used in the construction of the problems as followd:tfiessweightsw; ; and
valuesy; were chosen randomly. Then the capacity constraint vasahlin equation (21)
were set according to

m
Ci=r ZWL]', vjie{l,...,m} (24)
i=

The three choices for each of the three parametgrs andr yield 27 different problem
specifications. For each problem specification, ten problestances are included in the
problem set.

In general, these three problem parameters have the folipeffects on the MKP search
space:

— alarger number of items), increases the search space and hence makes the problem of
finding the optimum harder,

— a larger number of constraints), makes the feasible part of the search space smaller,
and

— a larger tightness ratio, means that the weight constraints lgsrestrictive and that
the feasible part of the search space becomes larger.
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For the small MKPs, the optimal solutions are known, whhsg ts not the case for all of
the large MKPs. To be able to compare results for the large 8)KIPu and Beasley (1998)
obtained an upper bound for the objective function valuedbyiisg the linear programming
(LP) relaxation of the large MKPs. The LP relaxation of thelpem changes the zero-one
constraint in equation (20) o from an integer constraint to a continuous constraint:

X €10,1], Vie{1,...,n} (25)

thereby making the probleeasierto solve and no longer NP-hard. The LP relaxed version
of the MKP can efficiently be solved using standard lineagponming solvers (Chu and
Beasley, 1998).

5 Experimental Procedure

This section describes the experimental procedure foliofee the purposes of this study.
Section 5.1 describes the configuration of the algorithmediua the comparisons with

SBPSO as well as the configuration of SBPSO itself. The prolsiets with small and large

MKPs mentioned in section 4 are then split into a set of tumrablems and a set of test
problems, and the objective function is explicitly stat8ection 5.2 gives an explanation
of the procedure used to tune the parameters of each algomtid provides the parameter
values obtained from the tuning process.

5.1 Algorithm Configurations

Algorithms: The proposed SBPSO algorithm is compared to three other Rjg@itams:
BPSO by Kennedy and Eberhart (1997), MBPSO by Shen et al4j2@@dd PBPSO by
Zhen et al. (2008). Refer to section 2.3 for detailed detorip of these algorithms. These
algorithms were chosen because they do no incorporate angidaspecific methods such
as a repair operator.

For BPSO, MBPSO, and PBPSO the candidate solution is diregpiresented by bi-
nary-valued particle positions: the bit values are diseictlerpreted as theg values in equa-
tion (19). That is, a particle indicates the assignmentesfii to the knapsack. For SBPSO,
in order to evaluate a solution, tlxefrom equation (19) are set to 1 for all items that are
included in the particle position set, and set to O for athisethat are not.

Swarm size:An important parameter in PSO algorithms is the number digles in the
swarm. While the optimal number of particles for a specifgoathm-problem pair can be
problem dependent, this study used the same number oflpartir all algorithms and for
all problems in each problem set: for small MKPs the numbepasficles was set to 25,
while for large MKPs the number of particles was set to 50.

Topologies: Each of the four PSO algorithms is used with each of the foligwthree
topologies: star, ring, and Von Neumann. This results inl§@r&ghm-topology pairs. The
pairs with a star topology are referred to as global best A®@ened to GB in the tables in
the remainder of this document. Similarly, the pairs witling topology are referred to as
local best PSO shortened to LB, and the pairs with a Von Neart@gology are referred to
as VN in the tables.



Set-Based Particle Swarm Optimization applied to the Mintensional Knapsack Problem 17

Particles organized in a swarm topology are consideredextad if they are in each
other’s neighborhood. Particles that are not in each athesighborhood are connected in-
directly due to overlap between neighborhoods. If, for gu@mparticlei is not connected
to particlej, but the two particles share a common neighkdhen the path—k— j con-
nects particles and j in the topology. The distance between two particles in altgpois
determined by thehortestpath that connects the two particles. For particlasd j from
the example, the— k— j path is the shortest path, and the distance betwaed | thus is 2.
The average distance across all possible pairs in a swalied theaverage shortest path
length is a measure of how connected the swarm is.

A swarm with the star topology always has an average shqréistiength of 1, as each
particle is in each other particle’s neighborhood. For the Meumann topology, the average
shortest path length depends on the number of particlegisvlarm. For swarms of 25 and
50 particles, the Von Neumann topology leads to averagdaesigrath lengths of 2.5 and
3.5 respectively. For the ring topology, the average skbpath length depends not only on
the swarm size, but also on the neighborhood size. A neifioloalr size of 4 was chosen for
the experiments of this study, such that the swarms withgatdpology are less connected
than those using either of the other two topologies. Thislted in average shortest path
lengths for swarms with the ring topology of 3.5 for a swarn2bfparticles, and 6.6 for a
swarm of 50 particles.

Therefore, in the experiments conducted, swarms with #etgpology were the most
connected, swarms with the ring topology were the least @cted, and swarms with the
Von Neumann topology had an intermediate level of conneetesl

Problem set:The MKPs used in the experiments consist of two main probleta: $5
small MKPs and 270 large MKPs as described in section 4. Tolelgm name reflects the
filename from the ORLib source the problem comes from, plugraber indicating which
problem from that file it refers to. For example, “mknap2-8'the third problem found in
the file mknap2.txt The two sets of problems were each further split into a wiset used
to find the best parameters for the algorithms, and a teshagetd used to compare the
performance of the tuned algorithms.

For the small MKPs, a tuning set of 15 problems was manualbseh. The remaining
40 problems formed the test set. Which small MKPs were sadeftr the tuning set and
which for the test set is summarized in table 1. The tuningaset chosen to reflect the
range of problem sizes in the entire set of 55 problems, withrtumber of variablea
ranging from 20 to 90, and the number of constramtsanging from 2 to 30.

The three smallest problems (mknapl1-1, mknapl1-2, mknapde& left out of the tun-
ing set on purpose, as the search spaces for these problemailt (£ = 64, 210 = 1024,
and 25 = 32768 possible solutions respectively) and hence the gmublare quite simple
to solve. For simple problems, little difference is to be&oged in the performance of the
algorithm control parameters, so the problems yield littfermation on which parameters
are best.

For the large MKP, the total set of 270 problems consists of@¥sets of problems,
each of which contains 10 random instances for a given caatibimof problem parameters
n,m, and tightness ratio. For the tuning set, one problem was selected at random from
each of the 27 subsets, and the remaining 243 problems faitmea@st set. The 27 tuning
problems, each with the number of variables, the number mstecaints, and tightness ratios
are summarized in table 2.
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Table 1 Split of 55 small MKPs into 15 tuning and 40 test problems

Tuning Set Test Set

problem n mj| problem n m problem n m problem n m
mknapl-4 20 10| mknapl-1 6 10| mknap2-23 50 5| mknap2-42 34 4
mknapl-5 28 10| mknapl-2 10 10 mknap2-24 60 5| mknap2-43 18 2
mknap2-10 71 2|| mknapl-3 15 10 mknap2-25 60 5| mknap2-44 20 10
mknap2-15 30 5| mknapl-6 39 5| mknap2-27 60 5| mknap2-46 37 30
mknap2-17 40 5|| mknapl-7 50 5| mknap2-29 70 5| mknap2-47 28 4
mknap2-2 60 30| mknap2-1 60 30 mknap2-3 24 2| mknap2-5 24 2
mknap2-20 50 5| mknap2-11 30 5| mknap2-30 70 5| mknap2-6 24 2
mknap2-26 60 5|| mknap2-12 30 5| mknap2-31 70 5| mknap2-7 24 2
mknap2-28 70 5| mknap2-13 30 5| mknap2-32 80 5| mknap2-8 24 2
mknap2-33 80 5|| mknap2-14 30 5| mknap2-34 80 5| mknap2-9 71 2
mknap2-39 90 5|| mknap2-16 40 5| mknap2-35 80 5
mknap2-4 24 2|| mknap2-18 40 5| mknap2-36 90 5
mknap2-41 27 4|| mknap2-19 40 5| mknap2-37 90 5
mknap2-45 40 3(| mknap2-21 50 5| mknap2-38 90 5
mknap2-48 35 4|| mknap2-22 50 5| mknap2-40 90 5

Table 2 Large MKPs selected for tuning

problem n m r | problem n m r | problem n m r

mknapcb1-6 100 5 .@5| mknapcb4-3 250 5 .@5| mknapcb7-1 500 5 .@5
mknapcb1-17 100 5 .B0 | mknapch4-12 250 5 .B0 | mknapcb7-19 500 5 .80
mknapcb1-27 100 5 .05 | mknapcb4-27 250 5 .05 | mknapcb7-30 500 5 .05

mknapcb2-7 100 10 .85 | mknapcb5-7 250 10 .25 | mknapcb8-10 500 10 .B5
mknapcb2-11 100 10 .BO | mknapcb5-20 250 10 .80 | mknapch8-16 500 10 .80
mknapcb2-22 100 10 .®5 | mknapch5-21 250 10 .05 | mknapcb8-26 500 10 .85

mknapcb3-3 100 30 .85 | mknapch6-7 250 30 .25 | mknapcb9-8 500 30 .25
mknapcb3-20 100 30 .B0 | mknapch6-16 250 30 .80 | mknapcb9-18 500 30 .80
mknapcb3-24 100 30 .©5 | mknapch6-23 250 30 .05 | mknapch9-26 500 30 .05

Objective function: The MKP is defined as a maximization problem. The objectivetion
used was the same for all the PSO algorithms. For partickesepresent a feasible solution
to the MKP, that is, which satisfy ath constraints in equation (21), the objective function
value was set equal to the sum of the values of the items indhecle. Particles that do
not represent a feasible solution because they violatest tee of the constraints in equa-
tion (21), were assigned a objective function value of mimdigity. Since a particle uses
its position to represent a solution, the objective funttialue of a particle is computed as
f(X(t)), defined as

n

ZVi X if Vje{l,...,m}: iwi_jxi <C;
FX(1) =14 = = (26)

n
—o0 if 3]6{1,...,m}:21Wi_in > C;
i=

In order to facilitate a comparison of results across différproblems, the results in
section 7 do not show the raw objective function values. Rerdmall MKPs, the error
between the best objective function value found and the kraptimum is shown. Since the
optimal solutions are not known for all the large MKPs, fazgk problems the error between
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the best found objective function value and the LP relaxaliound is shown instead. The
LP relaxation bounds were obtained using the Java wrapdersiflve 5.5which is based
on the revised simplex methéd

Initialization: Particles were initialized randomly for each algorithrpdtogy pair. For the
BPSO, MBPSO, and PBPSO algorithms, the positions weralizigd randomly i 0, 1}",
while the velocities for BPSO and PBPSO were initializedd@mly in [—1,1]", following
(Eberhart and Shi, 2001). For PBPSO the continuous-valosiipns,x’;(0), were initial-
ized as0, to ensure that no initial bias was included in the discieteed positionsx;(0).
For the SBPSO algorithm, the positions were randomly iliea, such that each element
had a 05 chance of being included, and all velocities were initiadi as an empty set.

Stopping conditions:For each independent run of an algorithm, the same stoppindi-c
tions were applied:

1. the best objective function value in the swarm equaledktivgvn optimum (in case of
small MKPs) or equaled the LP relaxed bound (in case of larg@®)),

2. the best objective function value in the swarm had not awgud for 2500 iterations, or

3. more than 5000 iterations had passed.

Number of independent rung?SO is a stochastic optimization algorithm, and thus imdivi
ual runs of the algorithm can have different results. Hemagtiple independent runs of the
algorithms have to be executed and the average performapoged. For the small MKPs,
30 independent runs were used for tuning the algorithms @0diridependent runs were
used to ascertain the average performance on the test pralf®r the large MKPs, 30 in-
dependent runs were used both for tuning the algorithmsaddtermine the performance
on the test problems.

5.2 Control Parameter Tuning

This section describes how each of the 12 algorithm-topologirs was tuned on both
problem sets separately. Section 5.2.1 describes how thenpger tuning was performed.
Sections 5.2.2 and 5.2.3 summarize the resulting bestatquéirameter values for each
algorithm-topology pair.

5.2.1 Parameter Tuning Process

While a number of efficient parameter tuning approacheg,dxis example, F-Race (Bi-
rattari et al., 2002), the tuning process described in thitien is more appropriate for the
sensitivity analysis conducted in Section 6.

For each of the 12 algorithm-topology pairs, a similar pescevas used to tune the
algorithm’s parameters, although the number of controapaters differed: MBPSO has
only two parameters, while BPSO has four, PBPSO has six, BRES has five parameters.
Each algorithm-topology was tuned twice: once on the tusiigof small MKPs and once
on the large MKPs. The end result of the parameter tuning Wass a total of 24 tuned
parameter combinations.

2 M. Berkelaar, K. Eikland, P. Notebaefsolve version 5.5http://Ipsolve.sourceforge.net/5.5/
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Table 3 lists the ranges within which each parameter for ettte PSO algorithms was
tuned. For each of the four PSO algorithms, 128 parametebic@ations were generated
that span the parameter space. Only static control paresnetre considered. In order
to generate the parameter combinations in a manner thatesnthat the parameter space
was covered well, sequences of Sobol pseudo-random numkeeesused according to the
method proposed by Franken (2009).

Table 3 Parameter ranges used in tuning the four PSO algorithms

algorithm BPSO PBPSO | algorithm MBPSO SBPSO
A} [0.50, 0.99] [0.50, 0.99] Pstat [0.00, 1.00]
C1 [0.00, 5.00] [0.00, 5.00] Preset [0.00, 1.00]
C2 [0.00, 5.00] [0.00, 5.00] C1 [0.00, 1.00]
Vimax [1.00,10.00]  [1.00, 10.00] C2 [0.00, 1.00]
R [1.00, 100.00] C3 [0.50, 5.00]
Prmut [0.00, 0.50] C4 [0.50, 5.00]
k {1,...,9}

Even though the number of dimensions of the parameter spffeesdlepending on the
PSO algorithm, the same number of parameter combinatioasiged in tuning each of the
algorithm-topology pairs on each of the problem sets. Hefarethe MBPSO algorithm,
which has only two parameters, the parameter combinationgded a denser covering of
the (smaller) parameter space than for the other PSO digmitvhich each has at least four
parameters.

Note that the tuning process used the same parameter cdiobgdor each of the PSO
algorithms for each of the three topologies, and on bothlprotsets. Thus, for example,
in tuning BPSO using a star topology on the small MKPs, thees&a@8 parameter com-
binations were considered as in tuning BPSO using a Von Nenrtgpology on the large
MKPs.

The next step in the tuning process was to determine the bemtngter combination for
each of the algorithm-topology pairs on each of the problets.§o do this, 30 independent
runs were conducted for each of the parameter combinationall the tuning problems in
the problem set. For each problem, the average of the besttodai function value achieved
by each of the 128 parameter combinations over the 30 rungetasmined. The parameter
combinations were ranked in order of the average objectinetion value for each prob-
lem separately. Next, th@verage rankvas determined for each parameter combination by
averaging over all the problems. The parameter combinatitimthe lowest average rank
was deemed best and chosen as the tuning result. This metigted the contribution of
each tuning problem equally, and by using the rank of theaibgefunction value instead of
the objective function itself, a fair comparison was madegiproblems that have different
optima and different search landscapes.

The results of tuning the 12 algorithm-topology pairs onghmeall MKPs and the large
MKPs are discussed in sections 5.2.2 and 5.2.3 respectively

5.2.2 Small Multidimensional Knapsack Problems

Table 4 summarizes the best parameters found using the gamataning procedure de-
scribed in section 5.2.1, for each of the algorithm-topglpgirs on the small MKPs.
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Table 4 Tuned parameters for small MKPs

algorithm BPSO PBPSO

topology GB LB VN GB LB VN
W 0.9211  0.9594 0.9709 0.6876 0.6455  0.6455
c1 4.6094 2.8125  4.4141 0.7422 4.2969  4.2969
C2 1.3281 15625  1.9927 0.5078 4.7656  4.7656
Vmax 5.9219  7.1875  5.1484 3.3203 4.2344 4.2344
R 37.352  64.422 64.422
Pmut 0.0742  0.0391  0.0391

algorithm MBPSO SBPSO

topology GB LB VN GB LB VN

Pstat 0.4844  0.4766  0.4764
Preset 0.3906  0.3203  0.3203

C1 0.9297 0.5156  0.5156
C 0.2266  0.4531  0.4531
C3 1.3086 1.8359  1.8359
Ca 21523  2.2578  2.2578
k 7 7 7

For BPSO, the attraction to the neighborhood best partigléncreased as the swarm
topology was less connected: highest for gbest BPSO, Idaektest BPSO. The attraction
to the personal bestp, ranged from 1.3 for the star topology to 2.0 for the Von Nenma
topology, and was clearly smaller than the valuesciorThe inertia weighto was high for
each of the three topologies, as was¥hgy, which was above 5 in all cases.

For PBPSO, the best parameter value combinations for IEBREP and the Von Neu-
mann topology were the same, but the best parameter valued for gbest PBPSO were
quite different, mainly with much lower; andc, values. Note that, compared to BPSO, the
inertia weight for the best parameter value combination®®PSO was much smaller.

For MBPSO, the three values found for the static probabifity,; were similar and
comparable to the value of®used by the original authors, Shen et al. (2004). The value
of presetof 32% to 39% was, however, more than triple the 10% used by 8hal. (2004),
indicating that a high proportion of random resets was beiagfi

For SBPSO, the parameter value combinations for the ring/andNeumann topologies
were the same, while for the star topology a different patamealue combination was
optimal with a much highec; and lowerc,. Section 6 gives a detailed analysis of the
sensitivity of SBPSO’s parameters using the tuning results

5.2.3 Large Multidimensional Knapsack Problems

Table 5 summarizes the best parameter values found usingatheneter tuning procedure
described in section 5.2 for each of the algorithm-topolpgis on the large MKPs.

For BPSO, the best parameter value combinations found dargieeMKPs were exactly
the same for each of the three topologies, characterizedtighainertia weightw, high
Vimax @andc, > ¢;. The latter inequality indicates a stronger attractionhi meighborhood
best position than to the personal best position, whichdag¢hierse of the results found for
BPSO on the small MKPs, whem > cp.

For PBPSO, the ring and the Von Neumann topologies yieldeddime best parameter
value combination. For all three topologies, the valuesdbior the inertia weightc, were
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Table 5 Tuned parameters for large MKPs

algorithm BPSO PBPSO

topology GB LB VN GB LB VN
W 0.9785 0.9785 0.9789 0.6263 0.7373  0.7373
c1 24609 2.4609 2.4609 3.8672 2.7344 2.7344
C2 41016 4.1016  4.1016 3.6328 1.9531  1.9531
Vmax 9.2266  9.2266  9.2266 8.9453  7.0469  7.0469
R 74477 82984  82.984
Pmut 0.0117 0.0078 0.0078

algorithm MBPSO SBPSO

topology GB LB VN GB LB VN

Pstat 0.4531  0.2266  0.3828
Preset 0.1094  0.0703  0.1014

C1 0.9297 0.3672 0.3672
C2 0.2266 0.9141 0.9141
C3 1.3086 1.5898  1.5898
Ca 2.1523 1.3086  1.3086
k 7 3 3

similar. These values are also very similar to the corredimgnvalues found during tuning
on the small MKPs: a relative difference of only 10%-14% weexs For all three topologies,
the parameter values found fdfax, R, and pmyt Showed some differences between those
for gbest PBPSO and the other two topologies. But theseréliffees are much smaller than
the large difference for these parameter values comparte tuning results on the small
MKPs. On the large MKPs, the best values\ggx andRwere much higher. Also, the values
for pmut Were lower, indicating that having many random mutations lgas helpful on the
large MKPs. For the gbest PBPSO, the best valuesf@ndc; resulted in much higher
values than those found for the small MKPs, while Ibest PBRBO the Von Neumann
topology yielded lower values than on the small MKPs.

For MBPSO there was some variation in the best valugggfcompared to the values
found on the small MKPs: a lower value was found on the largePdifor both the gbest
and Ibest MBPSO, while for the Von Neumann topology,: was higher on the large MKP.
For preses the best values found were close to the 10% used by Shen(20a4).

For SBPSO, the best parameter values found for gbest SBP &0 ewxactly the same
as those found on the small MKPs. The best parameter valudbest SBPSO and the
Von Neumann topology matched, but were quite different ttimse found on the small
MKP: the attraction to the personal best, was much higher for the larger MKPs, while
the attraction to the neighborhood best,was lower.

6 Sensitivity Analysis of Set-Based Particle Swarm Optimiation

This section analyzes the sensitivity of SBPSO to diffekahties of its control parameters.
Such sensitivity analysis is important, as little is yet\wnoabout what are good values for
its control parameters.

The sensitivity analysis procedure is summarized in sed@ia, followed by the results
for each of the three topologies, star, ring with neighbothsize of 4, and Von Neumann
in sections 6.2, 6.3 and 6.4 respectively. A discussionefdhative performance of SBPSO
parameters is given in section 6.5.
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6.1 Sensitivity Analysis Procedure

The sensitivity of the performance of SBPSO to each ind&idwntrol parameter was in-
vestigated using cumulative histograms. For each indaliparameter, the horizontal axis
of the histogram consists of bins which divide the paramegtege into equally sized sub-
ranges. The vertical axis displays the number of parameteilexcombinations that fall in
each bin, split into four groups based on the performancbeparameter value combina-
tion in the tuning process. If a particular bin for an indivéd parameter contains a large
number of parameter combinations that are considered “gdloid implies that the sub-
range for the individual parameter associated with the $igood. This section describes
how the histograms were constructed, resulting in a hiatogor each of the three SBPSO-
topology combinations, for each of the five control paramsetie total, 15 histograms were
generated.

Note that a good parameter value combination for SBPSO nesjthat all five param-
eters individually have a good or at least reasonable vilegen one parameter has a bad
value, the parameter value combination as a whole perfoauly.blhe consequence of this
is that, if a specific parameter value combination perforadyy this gives little information
on whether thendividual parameter values in that combination are good or bad: any sin
gle individual parameter value could be bad, or all valuadd:be bad. Therefore, it is the
parameter value combinations that perform vealla wholewhich contain information on
the individual parameters. Hence, the sensitivity anali@used on the 25% of parameter
value combinations that performed best in the tuning pmces

The performance of a parameter value combination was setl égjuts average rank
on the small MKPs and the large MKPs tuning sets combinedh @ach of the two tuning
sets weighed equally. The full procedure to construct teeograms used in the following
sections consisted of the following steps:

1. For each parameter value combination, the performanseseteequal to 0.5 times the
average rank on the small MKPs tuning set plus 0.5 times tbege rank on the large
MKPs tuning set.

2. The parameter value combinations were then themselnégdaased on the perfor-
mance calculated in step 1.

3. The ranked parameter value combinations were split intoties, labeled A for the
best 25%, B and C for the next two quartiles respectively, Bridr the worst 25% of
parameter value combinatichs

4. Then, for each individual parameter, the parameter ramgesplit into bins:

(a) parameter values fay andc; took values in the rangf.0,1.0], with the values
grouped into the 10 bin$0.0,0.1),[0.1,0.2),...,[0.9,1.0];

(b) parameter values farz andcs took values in the rangf.5,5.0], with the values
grouped into the nine bin§).5,1.0),[1.0,1.5),...,[4.5,5.0]; and

(c) parameter values fértook values in the range 1. ,9, with the values grouped into
nine bins containing one value each.

These bins form the horizontal axis of the histogram.

5. For each individual parameter, the parameter value auattibns were allocated one by
one to a bin, based on the value of the individual parametéireicombination. In each
bin, a count was kept of the number of parameter value cortibivalabeled A, B, C,
and D separately. Consider, for example, the parametee \@mbination labeled A

3 The parameter value combinations with label A are consitierée good combinations, those with label
B are considered reasonable combinations.
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with values(0.95,0.52,2.03 3.17,3). Allocating this parameter value combination to
a bin for the individual parameter, entailed increasing by one the count of label A
combinations in the sub-range 49, 1.0].

6. For each individual parameter, a cumulative histograra than constructed with, for
each bin, the number of label A combinations at the bottomlaeky on top of which
the number of label B combinations is given in dark gray, amtp of that the number
of label C combinations in light gray. The remaining paraangtlue combinations with
label D were stacked at the top and “shown” in white.

7. As afinal step, each of the bins was scale{Dtd] for ease of comparison, as not all
parameter value bins contained the same number of paravadtiercombinatiorfs

Each histogram can be interpreted in the same manner: thk gtaph at the bottom
shows the distribution of good parameter value combinatitebeled A for the best 25%
combinations) for the individual parameter across the.tihg dark grey graph stacked on
top of the black graph similarly shows the distribution csenable-but-not-good parameter
value combinations (labeled B). Because the histogranagket, the top of the dark grey
graph is the sum of the fractions of label A and label B comiams in each bin, indicating
the fraction of parameter value combinations that are restsle or better.

Note that, for the acceleration parameterso c4, the bin labels on the horizontal axis of
the histograms identify thewer boundaryof the sub-range linked to that bin. For example,
the bin forc; labeled 03 identifies the sub-rang@.3,0.4), and the bin forc labeled 15
identifies the sub-rangé.5,2.0).

6.2 Global Best Set-Based Particle Swarm Optimization

Figure 3 shows the resulting histograms for the parametesitsgty analysis on the gbest
SBPSO.

For gbest SBPSO, high values led to better results: parameters in the range 0.8
covered 20% of the parameter space but accounted for maret8% of label A (the best
guantile) parameter combinations. For thebins withc; < 0.4, only a few combinations
were labeled A. For parametes, the best results were found in the sub-raf@8,0.6),
which accounted for half the combinations labeled A. Vafoes, up to Q3 resulted in bad
performance. Focz most of the best parameter values were in the rdtige3.5), while
the performance of those four bins was approximately thees&worc, parameter values
between 15 and 40 scored best, with higher bins performing slightly betsscept for the
[3.0,3.5) bin. Larger values dk (indicating that a larger tournament was used to select each
element to add based on marginal objective function vallezk}o better results, but the
difference across the bins was quite small.

4 Note that, by construction, the parameter value bins fondividual parameter contain almost the same
number of parameter value combinations. For parametesadc,, the 128 combinations were divided over
10 equally sized bins, resulting in 12 or 13 combinationsaiahebin. For parameters, c4, andk, the 128
combinations were divided over nine equally sized bingjltesy in 14 or 15 combinations in each bin. By
dividing the results in each bin by the total number of coraboms in the bin, the number of combinations
with each label was changed instead into the fraction ofathlnations with that label, so that results are
better comparable across bins.



Set-Based Particle Swarm Optimization applied to the Mintensional Knapsack Problem 25

P P
o 0.9 o 0.9
o 08 o 08
2 07 2 07
o 06 o 06
Z 05 5
= 04 =
= 03 =
g 02 g
=
© 0}]1 3 0
0.0 0.1 0203 0.4 0.5 0.6 0.7 0.8 0.9 0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9
parameter value bins - ¢; parameter value bins - ¢,
@ (b)
7] 1 172 1 7] L
o 0.9 o 0.9 o 0.9
8 08 g 08 S 08
2 07 2 07 Q 07
o 06 o 06 o 06
Z 05 Z 05 Z 05
= 04 = 04 T 04
= 03 S 03 S 03
£ 02 £ 02 g 02
= =
1 0.(1) N 0.(1) . ov(l)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 123 45678910
parameter value bins - C3 parameter value bins - ¢4 parameter value bins - K
© (d) (e)

Fi

g. 3 Sensitivity analysis of gbest SBPSO parametersc{alb) ¢z, (c) ¢z, (d) ¢4, and (e)k.

6.3 Local Best Set-Based Particle Swarm Optimization

Figure 4 shows the resulting histograms for the parametitagty analysis on the Ibest
SBPSO with neighborhood size 4.
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Fig. 4 Sensitivity analysis of Ibest SBPSO parametersc{a}b) c;, (c) cs, (d) cs, and (ek.

For Ibest SBPSO, higls; values led to better performance: parameters in the range
¢ > 0.8 covered 20% of the parameter space but accounted for mamedt?o of label A
parameter value combinations. Laeyvalues had few results labeled A, especially those for
¢1 < 0.3. For parametesy, the best values were found in the ra@®, 0.6), but all bins with
c2 > 0.4 scored comparably well, while values < 0.4 clearly performed worse. The best
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cz parameter values were in the rar{@e9, 2.5), and performance worsened proportionally
for parameter values further away fronD2For c4, the two bins[2.0,2.5) and [3.5,4.0)
clearly had the most good results, while the parameter sddeéwveen 5 and 35 scored
worse. Larger values dfled to more good results, but orlky= 1 clearly performed worse
based on the fraction of label A combinations. Combininglaband label B contributions
resulted in no significant difference between the perfoceanf each of the nine values of
k: any value ok led to the same number of reasonable parameter value caiobsa

6.4 Von Neumann Set-Based Particle Swarm Optimization

Figure 5 shows the resulting histograms for the parametesitdaty analysis on SBPSO
with the Von Neumann topology.
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Fig. 5 Sensitivity analysis of Von Neumann SBPSO parameters; (dp) ¢z, (C) ¢z, (d) ¢4, and (e)k.

For SBPSO with the Von Neumann topology, higihvalues led to better performance:
parameters in the range > 0.8 covered 20% of the parameter space but accounted for more
than 46% of good parameter value combinations. logwalues had few good parameter
value combinations, especially those far< 0.3. For parametec,, the best results were
found in the rangg0.5,0.6), but all bins withc, > 0.4 scored comparably well. Fag, the
best parameter values were in the rafig8, 2.5), and performance worsened proportionally
for parameter values further away fron02For ¢4 the two bins[2.0,2.5) and [3.5,4.0)
clearly had the best results, while the values between 213d@nscored worse. Combining
label A and label B, the valuesg < 1.5 scored worse, but all values > 1.5 performed at
least reasonably. For paramekehigh values led to a higher proportion of label A results,
but all valuesk > 6 scored comparably. Combining label A and label B contriing, there
was no significant difference between the performance di e&the nine values df: any
value ofk led to the same number of reasonable parameter value catiobsa
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6.5 Relative Importance of Control Parameters

In general, not all control parameters for SBPSO are exgddotbave the same impact on
performance. For example, the conclusion in sections 6&24dor parametek was that
very little difference was seen between values 1 throught@ wispect to reasonable-to-
good performance. In contrast, for parametgrvalues of 0.8 or higher clearly were an
indication of better performance, while values of 0.3 oréowvere detrimental. Therefore,
the performance of the SBPSO algorithm on the MKP is moreithem parametec;, than
to parametek. This section contains a systematic investigation of thetive sensitivity of
the five SBPSO parameters.

A measure of the distribution of performance of an individparameter can serve as
an indication of the sensitivity of SBPSO to that parameisrargued in section 6.1, most
information about the performance of an individual paranean be gained from looking at
“good” parameter value combinations only, where good wéinee as the best 25% (label
A) parameter value combinations. Therefore, for each iddal parameter, the distribution
of the label A combinations was used as a proxy for the digioh of the performance.

For each parameter, and each of the three topologies, ttndi®n of label A combi-
nations across bins was converted to a single measuremiegttbs following steps:

1. For each bin, the fraction of label A parameter value coiidns was obtained, and
the fractions themselves were ordered from high to low.

2. The sum of thérighestfive fractions was labeledractionign.

3. The sum of théowestfive fractions was labelefiractiongy.

4. The sensitivity score was then defined as the differefr@stion,igh — fractiongy.

Note that for parameters, ¢4, andk, only nine bins were used, such that the bin ranked fifth
was included in bottfractionyig, and fractiong,, and drops out of the sensitivity score.

The sensitivity score ranges between 0% and 100%. A scor&ah®ans that all bins
contained exactly the same fraction of label A combinatigmdicating that good parameter
value combinations show little to no sensitivity to the indual parameter. A score of 100%
means that at least five bins contairestolabel A combinations, but that these combina-
tions are instead concentrated in the remaining bins. ksrctise, good parameter value
combinations show a high sensitivity to the individual paeger.

Table 6 summarizes the resulting sensitivity score for @adiiidual parameter, split by
the topology used, and ranks the sensitivity scores of tiegpfarameters for each topology.

Table 6 Performance distribution per individual control paramete

parameter| GB SBPSO  rank GB| LB SBPSO rank LB | VN SBPSO  rank VN

o 58% 1) 52% 0] 48% @)
c2 31% () 25% (4) 16% ()
cs 53% 0] 62% 1) 65% 1)
cs 41% @3) 39% ®3) 33% ®3)
k 20% (5) 22% (5) 25% @)

The sensitivity scores indicated that the performance d?SB had the highest sensi-
tivity to control parameters; (attraction to the personal best) anydthe maximum number
of elements to add to the solution set randomly). Hence nitogaconcluded that, when ap-
plying SBPSO to the MKP, these two parameters are the mosirtamt to be tuned well.
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This result held for all three topologies investigated.tAliee topologies were the least sen-
sitive to parameters, (attraction to the neighborhood best) dnthe size of the tournament
used).

Note that an equal amount of tuning effort was expended divalSBPSO parameters:
the process described in section 5.2 meant finding the beésifdl28 randomly chosen
parameter value combinations spread evenly across theifinendional parameter space.

7 Results of Experiments

This section describes the results of the experiments avedwsing the tuned algorithm-
topology pairs. Section 7.1 explains the statistical pdoce used to compare the perfor-
mance of the algorithm-topology pairs. Sections 7.2 andlid@uss the results of the exper-
iments on the small and large MKPs respectively.

For both the small MKPs and the large MKPs, the respectiwdteesections each con-
tain five tables comparing the performance of the algoritopslogy pairs: the first three
tables each summarize and compare the performance of th&® &0 algorithms using a
single topology. The fourth table compares the results ofi ed the four PSO algorithms,
across all of the topologies. The final table has more detadsults per problem and com-
pares the four PSO algorithms using each algorithm’s be&inpeing topology.

7.1 Procedure for Statistical Comparison

The algorithm-topology pairs were compared for statidificgignificant differences in per-
formance using the Iman-Davenport test (ID-test) (Iman Radenport, 1980), which is a
refinement of the better known Friedman test (Friedman, 193 ID-test was used to an-
alyze the performance, measured as the average emaach of the test problems, which
is equivalent to using the actual objective function valdége null hypothesis of the ID-test
was that all algorithm-topology pairs had the same mediafopeance. The significance
level o was chosen as.@5.

In case the ID-test rejected the null-hypotheses and shewgghificant difference in
the performance of the algorithm-topology pairs, furthestghoc tests were performed in
order to determine which of the algorithm-topology pairgpeuformed the other pairs. The
post-hoc test used was that proposed by Nemenyi (1963) hwebigsiders the differences in
the average rank of the performance over all problems.

For the Nemenyi test, thé-score (the normalized distance in average rank of the geera
error) was used as input:

_ [Ri—Ry|
K(kiD)

6N

z (27)

whereR; is the average rank of the average error for algorithm-tmgobairi, k is the total
number of algorithm-topology pairs being compared, Bnd the number of test problems
on which the pairs were compared. This standard normallyillised Z-score was then
translated into g-value.

5 The error is defined as the deviation from the known optimunite small MKPs, and as the deviation
from the LP relaxation bound for the large MKPs.
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Because the post-hoc tests involved multiple pair-wise paieons, the significance
level needed to be adjusted in order to maintain equal famie error rates. For this pur-
pose the Holm-Bonferroni method (Holm, 1979) was used:adlgeist difference in average
rank found in the Nemenyi test was compared at significanoal te, the second largest
difference was compared at significance lev¢R, and thek-th largest difference was com-
pared at significance levei/k.

The Z-score, the associatgevalue, and the Holm-adjustex are provided in the bot-
tom rows of each table in the following two sections. [f-@alue is smaller than the Holmn
mentioned below it, the algorithm-topology painderperformedhe best pair in the com-
parison by a statistically significant margin. For the bestfgrming algorithm-topology
pair, the average error score is showrboid. If the ID-test indicated a statistically signifi-
cant difference in performance, but the post-hoc tests didnalicate a single best pair, all
algorithm-topology pairs that were indistinguishablenfrthe best are shown in bold.

7.2 Small Multidimensional Knapsack Problems

Results for the 40 small MKP test problems are summarizedbtes 7, 8, and 9 for the
star, ring, and Von Neumann topologies respectively. Eabletlists the average and stan-
dard deviation of the error (the best objective functioruealound compared to the known
optimum), and the average rank of the errors. This is foltbie the average and standard
deviation of the success rate (shortened SR in the tabled)h&@ average rank of the suc-
cess rate. The success rate of an algorithm-topology padrgingle MKP was defined as
the percentage of independent runs that were successfuldimdi the optimum. The next
two rows in each table shed light on the consistency of therilkgn: the row labeled “#
perfect” reports the number of problems for which all indegent runs found the optimum,
and the row labeled “# failure” reports the number of proldeior which all independent
runs failed to find the optimum.

For the algorithm-topology comparisons that are reponteeach of the tables in this
section, the ID-test indicated that the median performastm®ved statistically significant
differences. Hence, in all five cases, post-hoc tests wardumed and the results are re-
ported at the bottom of the respective tables.

Table 7 shows that the gbest SBPSO outperformed the otlesr #ifigorithms with a star
topology by a statistically significant margin. If succeaterwas used as the performance
measure instead of average error, gbest SBPSO also peddiesein a statistically signif-
icant manner §-values andx’s are not shown). The average success rate of gbest SBPSO
was 82.5%, while the second best performer was gbest PBP®@mvaverage success rate
of 51.4%.

For all 40 problems, the success rate for the gbest SBPS@dxder matched that of
the other three gbest PSO algorithms. Gbest SBPSO was ateccomsistent than the other
gbest PSO algorithms, as the optimum was found in all indédgatnruns for 21 out of 40
problems. For the other three algorithms, the optimum wasdan all independent runs for
at most five problems.

Table 8 shows that the Ibest SBPSO outperformed the othes #igorithms with a ring
topology by a statistically significant margin. If succeaterwas used as the performance
measure instead of average error, Ibest SBPSO also peddye® in a statistically signif-
icant manner. The average success rate of LB SBPSO was 8W8i%é,the second best
performer was Ibest PBPSO, scoring an average success G8e186.
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Table 7 Summary of small MKP test results for the star topology. Haltk indicates statistically significant

outperformance.

GB BPSO GB MBPSO GB PBPSO GB SBPSO
problem error  (rank) error  (rank) error  (rank) error  (rank)
average errof 1.117% (2.80)| 1.089% (3.56)| 0.628% (2.45)| 0.444% (1.19)
stdev error | 1.913 % 1.592 % 1.625 % 1.640 %
average SR | 428% (2.81) 299% (3.38)| 51.4% (250) 825% (1.31)
stdev SR 41.3% 34.7% 35.1% 31.8%

# perfect 5 (25) 3 (4) 5 (25) 21 (1)
# failure 11 (4) 4 (2) 4 (2) 4 (2)
Z-score 5.58 8.21 4.36

p-value 0.0000 0.0000 0.0000

Holm a 0.0250 0.0500 0.0167

Table 8 Summary of small MKP test results for the ring topology. Bfalde indicates statistically significant

outperformance.

LB BPSO LB MBPSO LB PBPSO LB SBPSO
problem error  (rank) error  (rank) error  (rank) error  (rank)
average erroff 0.841% (2.95) 0.639% (3.35)] 0.521% (2.31)] 0.440% (1.39)
stdev error 1.716 % 1.620 % 1.634 % 1.641 %
average SR 50.3% (2.93)] 45.7% (3.24)] 63.4% (2.28)] 819% (1.56)
stdev SR 43.3% 37.4% 36.8% 332%

# perfect 7 (3) 4 (4) 12 (2) 23 (1)
# failure 10 (4) 4 (2) 4 (2) 4 (2)
Z-score 5.40 6.79 3.19

p-value 0.0000 0.0000 0.0007

Holm a 0.0250 0.0500 0.0167

For 38 out of 40 problems, the success rate for the Ibest SB8&eded or matched
that for the other three Ibest PSO algorithms. Lbest SBPS©®al& more consistent than
the other local best PSO algorithms, as the optimum was fauradl independent runs
for 23 out of the 40 problems. For the other three algorithiing,optimum was found in
all independent runs for at most 12 problems. Note that thebew of problems solved
perfectly by Ibest PBPSO (that is, 12) is significantly higtien was the case for the gbest
PBPSO (that is, five).

Table 9 shows that SBPSO with a Von Neumann topology outpaed the other three
PSO algorithms by a statistically significant margin. If se&s rate was used as the per-
formance measure instead of average error, SBPSO with a ¥amBinn topology also
performed best in a statistically significant manner. Trexage success rate of the Von Neu-
mann SBPSO was 82.7%, while the second best performer wadthideumann PBPSO

with an average success rate of 64.8%.

For 37 out of the 40 problems the success rate for SBPSO vétkiach Neumann topol-
ogy exceeded or matched that for the other three PSO algwitEBPSO was also more
consistent than the other PSO algorithms using the Von Neont@pology, as the opti-
mum was found in all independent runs for 23 out of 40 probleRws the other three
algorithms, the optimum was found in all independent rumsatamost 12 problems. The
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Table 9 Summary of small MKP test results for the Von Neumann toppl&gpld face indicates statistically
significant outperformance.

VN BPSO VN MBPSO VN PBPSO VN SBPSO

BPSO VN | MBPSO VN PBPSO VN SBPSO VN
problem error  (rank) error  (rank) error  (rank) error  (rank)
average erroff 0.609% (2.81) 0.613% (3.45) 0.510% (2.28) 0.439% (1.46)
stdev error 1.635% 1.623 % 1.633 % 1.641 %
average SR | 56.6% (2.76)] 486% (3.31)] 64.8% (2.36) 827% (1.56)
stdev SR 41.1% 35.3% 36.8% 32.6 %
# perfect 9 (3) 4 (4) 12 (2) 25 (1)
# failure 6 (4) 4 (2) 4 (2) 4 (2)
Z-score 4.68 6.89 2.84
p-value 0.0000 0.0000 0.0023
Holm o 0.0250 0.0500 0.0167

number of problems solved perfectly by PSO algorithms usiregVon Neumann topol-
ogy closely matched the results for the corresponding B8 algorithms, with only Ibest
BPSO (seven out of 40) scoring differently than BPSO with e Neumann topology
(nine out of 40).

Table 10 compares the performance of the three algoritipolegy pairs for each PSO
algorithm separately. For BPSO, MBPSO, and PBPSO, the $B-tgelded go-value less
than 0.0001, indicating that a statistically significarftastience in performance existed. For
all three algorithms, it was the star topology that unddgvered, while no statistically sig-
nificant difference in performance was seen between thaopaogy and the Von Neumann
topology.

For BPSO, the difference in performance between the ringlogy and the Von Neu-
mann topology yielded @-value of 0.1314 using the Nemenyi post-hoc test at a Holm
of 0.0250. Therefore, although Von Neumann BPSO perfornest, khe difference in error
with Ibest BPSO was not statistically significant. The VoruNenn BPSO also scored best
on the average success rate, the number of problems solviettthe and the number of
problems on which the algorithm failed.

For MBPSO, the difference in performance between the ripglagy and the Von Neu-
mann topology yielded p-value of 0.1635 using the Nemenyi post-hoc test at a Holof
0.0250. Therefore, although Von Neumann MBPSO performat] bee difference in error
with Ibest MBPSO was not statistically significant. Thereswtile difference in the number
of problems which the MBPSO algorithm-topology pairs sdiperfectly, and no difference
at all in the number of problems on which they failed. Withereihce to success rate, gbest
MBPSO clearly underperformed Ibest MBPSO and Von Neumani®BIB.

For PBPSO, the difference in performance between the ripgidgy and the Von Neu-
mann topology yielded @-value of 0.1515 using the Nemenyi post-hoc test at a Holm
of 0.0250. Therefore, although Von Neumann PBPSO perforipestl the difference in er-
ror with Ibest PBPSO was not statistically significant. Ihliasted measures, gbest PBPSO
clearly underperformed, while there was very little diffece between Ibest PBPSO and the
Von Neumann PBPSO, with tied scores in the number of peyfscilved problems as well
as the number of problems on which they both failed.

For SBPSO, the ID-test yieldedmvalue of 0.5134, which indicated that the null hy-
pothesis of equal performance of gbest SBPSO, Ibest SBR&0Oyan Neumann SBPSO
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Table 10 Summary of small MKP test results compared across topaogield face indicates statistically

significant outperformance.

GB BPSO LB BPSO VN BPSO
Measure error  (rank) error  (rank) error  (rank)
avg error 1.117% (2.65)| 0.841% (1.80) | 0.609% (1.55)
stdev error | 1.913 % 1.716 % 1.635 %
average SR| 428% (2.45)| 503% (2.03)| 56.6% (1.53)
stdev SR 41.3 % 43.3% 41.1%
# perfect 5 (3) 7 (2) 9 (1)
# failure 11 (3) 10 (2) 6 (1)
Z-score 4.92 1.12
p-value 0.0000 0.1314
Holm a 0.0500 0.0250

GB MBPSO LB MBPSO VN MBPSO
Measure error  (rank) error  (rank) error  (rank)
avg error 1.089% (293)| 0.639% (1.65)| 0.613% (1.43)
stdev error | 1.592 % 1.620 % 1.623 %
average SR| 299% (2.78)| 457% (1.68)| 486% (1.55)
stdev SR 34.7% 37.4% 35.3%
# perfect 3 (3) 4 (15) 4 (15)
# failure 4 (2) 4 (2) 4 (2)
Z-score 6.71 0.98
p-value 0.0000 0.1635
Holm o 0.0500 0.0250

GB PBPSO LB PBPSO VN PBPSO
Measure error  (rank) error  (rank) error  (rank)
avg error 0.628% (2.68)| 0.521% (1.78) | 0.510% (1.55)
stdev error | 1.625 % 1.634 % 1.633 %
average SR| 51.4% (2.4) 63.4% (1.9) 648% (1.7)
stdev SR 35.1% 36.8% 36.8%
# perfect 5 (3) 12 (1.5) 12 (15)
# failure 4 (2) 4 (2) 4 (2)
Z-score 5.05 1.03
p-value 0.0000 0.1515
Holm a 0.0500 0.0250

GB SBPSO LB SBPSO VN SBPSO
Measure error  (rank) error  (rank) error  (rank)
avg error 0.444% (2.13)| 0.440% (2.01)| 0.439% (1.86)
stdev error | 1.640 % 1.641 % 1.641 %
average SR| 825% (2.09)| 819% (2.04)| 827% (1.88)
stdev SR 31.8% 33.2% 32.6 %
# perfect 21 (3) 23 (2) 25 (1)
# failure 4 (2) 4 (2) 4 (2)
Z-score 1.21 0.67
p-value 0.1131 0.2514
Holm a 0.0500 0.0250
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wasnot rejected. Therefore, no statistically significant diffece in performance could be

found between the three topologies for SBPSO. The listedsorea for SBPSO all indicated

that there was little difference in performance betweernhhse SBPSO algorithm-topology

pairs: the relative difference in the average errors of linegt pairs was 1.1%, while the rel-
ative difference in the average success rate of the thres pas 1.0%. Only the number
of problems solved perfectly showed some differentiatemgbest SBPSO solved 21 out
of the 40 problems perfectly, while Ibest SBPSO completelyed 23 problems, and Von

Neumann SBPSO 25 problems.

Table 11 shows a problem-by-problem comparison of the f&® Rlgorithms. Each
PSO algorithm is paired with the topology that performedt fes that PSO algorithm,
which was the Von Neumann topology in each case. The statistomparison of the four
algorithm-topology pairs is therefore the same as that shioviable 9 and not repeated in
table 11.

The four problems for which SBPSO with the Von Neumann togplailed to find the
optimum in all independent runs are mknap2-6, mknap2-1hapR-13, and mknap2-18.
The other 11 algorithm-topology pairs all similarly failéat these four problems. For the
algorithm-topology pairs combining the Von Neumann togglavith SBPSO, PBPSO, and
MBPSO respectively, these four problems were also the aillyrés. For the Von Neumann-
BPSO pair, additionally problems mknap2-43 and mknap2adiéed failures.

Excluding the four problems on which SBPSO completely &hitefind the optimum (a
success rate of 0%), thewest success ratecorded for SBPSO on any of the remaining 36
problems was reasonable: 50% for gbest SBPSO (averagessuate on the 36 problems of
89.2%), 20% for Ibest SBPSO (average success rate of 886#)30% for SBPSO using
the Von Neumann topology (average success rate of 89.4%).

7.3 Large Multidimensional Knapsack Problems

Results for the 243 large MKPs are summarized in tables 12814 for the star, ring, and
Von Neumann topology respectively. Each table lists theageeand standard deviation of
the error (the best objective function value found compa#odtie LP relaxation bound), and
the average rank of the errors. The average error is showhrea different cross-sections
of the problem set (refer to section 4 for details on thesarpaters and the problem set):

1. The number of items, with values 100, 250, and 500.
2. The number of constraints), with values 5, 10, and 30.
3. The tightness ratig, with values 0.25, 0.50, and 0.75.

The ID-test indicated that, for the algorithm-topology quarisons that are reported
in each of the tables, the median performance showed gtaligtsignificant differences.
Hence, for all five cases post-hoc tests were conducted anckthlts are reported at the
bottom of the respective tables.

Table 12 summarizes the large MKP results for the four PSOrigfgns, each using the
star topology. The table shows that the gbest SBPSO was si@é&dorming algorithm: it
scored the smallest average error of 1.74%, and the avemagef the error shown on the
same line was exactly 1, meaning that gbest SBPSO was thedréstming algorithm on
each of the 243 test problems. The post-hoc tests showeththatitperformance of gbest
SBPSO was also statistically significant: pair-wise conggeas with the three other PSO
algorithms yielded-scores above 10, which resultedpfvalues smaller than 162. Gbest
PBPSO was the second best performer on 193 problems, gb&® BErformed second
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Table 11 Small MKP test results for the best algorithm-topology paier algorithm. Bold face indicates
statistically significant outperformance.

VN BPSO VN MBPSO VN PBPSO VN SBPSO
problem n m error  (rank) error  (rank) error  (rank) error  (rank)
mknapl-1 | 6 10 0% (25) 0% (25) 0% (25) 0% (25)
mknapl-2 | 10 10| 0.212% (4) 0% (2) 0% (2) 0% (2)
mknapl-3 | 15 10 0% (25) 0% (25) 0% (25) 0% (25)
mknapl-6 | 39 0.093% (1.5)|0278% (4) [0.093% (15)| 0.104% (3)
mknapl-7 | 50 0.235% (3) |0.280% (4) [0.097% (2) | 0.054% (1)
mknap2-1 | 60 0.087% (3) |0.285% (4) |[0.030% (2) 0% (1)
mknap2-3 | 28 0% (2) |0143% (4) 0% (2) 0% (2)
mknap2-5 | 28 0.308% (3) |0.335% (4) |[0.095% (2) | 0.054% (1)
mknap2-6 | 28 3.943% (4) |3820% (3) [3.792% (2) | 3.698% (1)
mknap2-7 | 28 0.647% (2) |0.799% (4) |[0689% (3) | 0.278% (1)

mknap2-8 | 28
mknap2-9 | 105
mknap2-11| 30

0.359% (3) |0.883% (4) |0.268% (2) | 0.110% (1)
0.206% (1) |0.453% (4) |0225% (2) | 0.247% (3)
0.399% (2) |0.451% (4) |0.402% (3) | 0.348% (1)

mknap2-12| 30 0157% (3) |0.141% (2) |0.198% (4) 0% (1)
mknap2-13| 30 3.209% (25)]3.209% (2.5)3.209% (25)|3.200% (25)
mknap2-14| 30 0.038% (3) |0.031% (2) [0.116% (4) 0% (1)
mknap2-16| 40 0.066% (2) |0.118% (4) |0.072% (3) 0% (1)
mknap2-18| 40 9.409% (3) |9.465% (4) |9.408% (2) | 9.407% (1)
mknap2-19| 40 0% (2) |0.017% (4) 0% (2) 0% (2)
mknap2-21| 50 0.002% (3) |0.025% (4) 0% (15) 0% (15)
mknap2-22| 50 0% (2) |0.095% (4) 0% (2) 0% (2)
mknap2-23| 50 0% (25) 0% (25) 0% (25) 0% (2.5)
mknap2-24| 60 0.009% (3) |0.157% (4) |0.006% (2) 0% (1)
mknap2-25 60 0.005% (2) |0.055% (4) |0.006% (3) 0% (1)
mknap2-27| 60 0% (2) |0.035% (4) 0% (2) 0% (2)
mknap2-29| 70 0.007% (2) |0.333% (4) [0.012% (3) 0% (1)
mknap2-30| 70 0% (2) |0140% (4) 0% (2) 0% (2)
mknap2-31| 70 0% (2) |0125% (4) 0% (2) 0% (2)
mknap2-32| 80 0.030% (3) |0.133% (4) 0% (15) 0% (15)
mknap2-34| 80 0.002% (3) |0.043% (4) 0% (15) 0% (15)
mknap2-35 80 0.144% (3) |0.263% (4) [0.029% (2) 0% (1)
mknap2-36| 90 0.069% (3) |0.125% (4) |0.022% (2) 0% (1)
mknap2-37| 90 0.165% (3) |0279% (4) |0.048% (2) 0% (1)

mknap2-38| 90
mknap2-40| 90
mknap2-42| 34
mknap2-43| 29

0.452% (4) |0.420% (3) |0.149% (2) | 0.008% (1)
0.351% (4) |0.208% (3) |0.180% (2) | 0.001% (1)
0280% (4) |0201% (3) |0126% (2) | 0.010% (1)
0.883% (4) |0.340% (3) |0.311% (2) | 0.017% (1)

mknap2-44| 20 1.183% (4) |{0.359% (3) |0.248% (2) 0% (1)
mknap2-46| 37 0985% (4) |0290% (2) [0.351% (3) 0% (1)
mknap2-47| 28 0437% (4) |0181% (2) |[0.205% (3) | 0.002% (1)
average | | 0.609% (2.81) 0.613% (3.45) 0.510% (2.28) 0.439% (1.46)
# perfect 9 (3) 4 (4) 12 (2) 25 (1)
# failure 6 (4) 4 (2) 4 (2) 4 (2)

best for the remaining 50 problems, and gbest MBPSO usueatiged last out of the four
algorithm-topology pairs.

The relative performance of the four PSO algorithms usiegstar topology was stable
across each of the three splits of the problem set, with gBRBSO> gbest PBPSG- gbest
BPSO> gbest MBPSO in each individual split except one: for the /243 81 problems
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Table 12 Summary of large MKP test results for the star topology. Baé indicates statistically significant
outperformance.

GB BPSO GB MBPSO GB PBPSO GB SBPSO
Measure error (rank) error (rank) error (rank) error (rank)
average error 4.679% (2.909)5.619% (3.885)3.250% (2.206)1.740% (1.000)
stdev error 3.468 % 2.723% 1.718 % 1.170 %
n 100|3.831% (2.877)5.160% (3.889)2.568% (2.235)1.260% (1.000)

=}

250|4.679% (2.877)5.663% (3.889)3.286% (2.235)1.758% (1.000)
500|5.526 % (2.975)6.034% (3.877)3.896% (2.148)2.201% (1.000)

5 [3.037% (2.383)4.354% (4.000)3.134% (2.617)1.875% (1.000)
10 |3.942% (3.012)5521% (3.988)2.763% (2.000)1.553% (1.000)
30 |7.057% (3.333)6.983% (3.667)3.853% (2.000)1.791% (1.000)

0.25|8.253% (3.122)8.664% (3.659)5.264% (2.220)3.141% (1.000)
0.50(3.751% (2.831)5.344% (4.000)2.799 % (2.169)1.355% (1.000)
0.75/1.909% (2.769)2.712% (4.000)1.613% (2.231)0.676 % (1.000)

=}

333

- =

bl

Z-score 16.30 24.63 10.30
p-value 0.0000 0.0000 0.0000
Holm a 0.0250 0.0500 0.0167

with m=15, gbest BPSO (average rank 2.383) scored better than gBES® (average rank
2.617). Here the symbob’ is used to mean “has a lower (better) average rank than”.

A difference in performance was seen with regards to thé spthe problems based
on the number of items): a larger number of items led to a higher average error fon eac
of the gbest PSO algorithms. However, this effect was noalgstrong for each of the
algorithms: for problems witlm = 500 compared to those with= 100, the average error
of gbest SBPSO was 75% higher, while for gbest MBPSO the &iserén average error was
only 16%.

Problems with tightness ratio= 0.25 were most challenging for all gbest PSO algo-
rithms, with the average error substantially higher tharpfoblems withr = 0.50 or Q75.

A smallerr means that each of theweight constraints is more restrictive (lower capacity),
which, in general has two effects on the optimal solution compared to thapfoblems
with a higher tightness ratio:

1. the optimal solution using a smaltontains fewer items, and
2. the objective function value at the optimum using a smadllower, as fewer items are
included in the knapsack.

Table 13 summarizes the large MKP results for the four PSOrigfgns, each using the
ring topology. The table shows that the Ibest SBPSO was tstepleeforming algorithm with
an average rank of 1.333. The ID-test and post-hoc testgoadithat Ibest SBPSO outper-
formed each of the other three pairs, but the differencelifopaance between lbest SBPSO
and Ibest PBPSO was smaller than that seen between ghesO&BI)best PBPSO in ta-
ble 12.

The relative performance of the four PSO algorithms usiegiting topology was stable
across each of the three splits of the problem set into thubsets, with Ibest SBPSO
Ibest PBPSG> Ibest MBPSO> Ibest BPSO, except for two cases:

1. for the problems witlm =5, Ibest PBPSO (average rank 1.000) scored better than Ibest
SBPSO (average rank 2.000) on all 81 problems in the subkég lvest BPSO (aver-
age rank 3.210) scored better than Ibest MBPSO (average3raaR), and
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Table 13 Summary of large MKP test results for the ring topology. Bfalck indicates statistically significant
outperformance.

LB BPSO LB MBPSO LB PBPSO LB SBPSO
Measure error (rank) error (rank) error (rank) error (rank)
average error 7.006 % (3.737)3.922% (2.959) 3.650% (1.971)2.292% (1.333)
stdev error 5.037 % 2.059 % 2.591 % 1.331%
n 100| 6.348% (3.778)3.044% (2.852) 3.101% (2.037)1.767 % (1.333)

=}

250| 6.951% (3.753]3.917% (2.938) 3.626% (1.975)2.366% (1.333)
500| 7.719% (3.679)]4.805% (3.086) 4.221% (1.901)2.743% (1.333)

=}

m 5 3.091% (3.210)3.289% (3.790)1.994% (1.000)| 2.334% (2.000)
m 10 | 7.520% (4.000)3.654% (2.963) 3.112% (2.037)2.075% (1.000)
m 30 |10.407% (4.000)4.824% (2.123) 5.842% (2.877)2.468% (1.000)
r 0.25]11.961% (3.829)6.185% (2.817) 6.059% (2.024)3.893% (1.329)
r 0.50| 5.817% (3.723)3.608% (3.060) 3.066% (1.892)1.957% (1.325)
r 0.75| 3.063% (3.654)1.878% (3.000) 1.738% (2.000) 0.966% (1.346)
Z-score 20.53 13.88 5.45
p-value 0.0000 0.0000 0.0000
Holm a 0.0500 0.0250 0.0167

2. for the problems withm = 30, Ibest MBPSO (average rank 2.123) scored better than
Ibest PBPSO (average rank 2.877).

The relative performance of the Ibest MBPSO and Ibest PBPg§@Qitom-pairs was
correlated with the number of constraints, lbest MBPSO performed relatively better for
an increasing number of constraints, while Ibest PBPSQopedd relatively worse with
increasingm. For both Ibest PBPSO and Ibest MBPSO the average errorasedewhen
mincreased, but for Ibest PBPSO this deterioration was wéigeall the Ibest PSO algo-
rithms, the average error was most sensitive to changes in

A possible explanation for Ibest PBPSO having outperforthedt SBPSO on problems
with m= 15, is that the Ibest SBPSO algorithm was better tuned to thiglgams with a larger
number of constraintan{= 10 or 30), while the Ibest PBPSO algorithm was better tuned
for problems with fewer constraints. An alternative exjplon is that thek-tournament
selection used in LB SBPSO helped the particles stay in thsilfie part of the solution
space. This feature has extra value in the case of a largebetai constraints, where
particles will encounter the edge of the feasible part ofsthletion space more often.

Table 14 shows that the Von Neumann SBPSO was the best péerfpeaigorithm with
an average rank of 1.342. The ID-test and post-hoc testsremdithat the Von Neumann
SBPSO outperformed each of the other three pairs, with tmeNéumann PBPSO scoring
second best. The difference in performance between the \émidnn SBPSO and the
Von Neumann PBPSO was approximately the same as seen bébgseBBPSO and Ibest
PBPSO in table 13.

The relative behavior of the four PSO algorithms using the Meumann topology was
the same as that seen for the Ibest PSO algorithms in tabbeldss each of the three splits
of the problem set, the result was Von Neumann SBBS@n Neumann PBPSG Von
Neumann MBPSQG- Von Neumann BPSO in each individual split, except for twoesas

1. for the problems witlm =5, the Von Neumann PBPSO (average rank 1.000) performed
best on all 81 problems in the subset, with the Von NeumannSEBRaverage rank
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Table 14 Summary of large MKP test results for the von Neumann topolBgld face indicates statistically
significant outperformance.

VN BPSO VN MBPSO VN PBPSO VN SBPSO
Measure error (rank) error (rank) error (rank) error (rank)
average error 6.973% (3.823)3.403% (2.811) 3.348% (2.025)2.249% (1.342)
stdev error 5.039 % 1.742 % 2.533% 1.275%
n 100| 6.291% (3.815)2.647% (2.790) 2.762% (2.049)1.772% (1.346)

=}

250| 6.920% (3.864)3.418% (2.765) 3.330% (2.037)2.294% (1.333)
500| 7.707% (3.790)]4.145% (2.877) 3.954% (1.988)2.680% (1.346)

=}

m 5 3.076 % (3.469)2.980% (3.506)1.783% (1.000)| 2.433% (2.025)
m 10 | 7.465% (4.000)3.191% (2.914) 2.847% (2.086)2.046% (1.000)
m 30 [10.377% (4.000)4.039% (2.012) 5.416% (2.988) 2.266 % (1.000)
r 0.25]11.943% (3.976)5.382% (2.610) 5.739% (2.085)3.789% (1.329)
r 0.50| 5.775% (3.855)3.089% (2.819) 2.693% (2.000)1.917% (1.325)
r 0.75| 3.023% (3.628)1.658% (3.013) 1.533% (1.987)0.981% (1.372)
Z-score 21.18 12.54 5.83
P-value 0.0000 0.0000 0.0000
Holm a 0.0500 0.0250 0.0167

2.025) scoring second best. Also the Von Neumann BPSO @&eaak 3.469) narrowly
outperformed the Von Neumann MBPSO (average rank 3.506), an

2. for the problems witlm = 30, the Von Neumann MBPSO (average rank 2.012) scored
better than the Von Neumann PBPSO (average rank 2.988).

Table 15 compares the performance of the three topologresaich algorithm over all
the large MKPs. For each PSO algorithm, the ID-tests yielagdvalue below 0.0001,
indicating that a statistically significant difference erformance existed between the three
topologies. Due to space restrictions, #rgcores p-values, and Holnar'’s for the Nemenyi
post-hoc tests have been excluded from table 15. Howeeelathest of thesp-values was
0.0011 with a Holnor of 0.0167. Therefore, it was confirmed that, for each PSOrailgn, a
single topology performed best by a statistically signifiaaargin: for MBPSO and PBPSO
the Von Neumann topology scored best, while for BPSO and EBP8as the star topology
that scored best.

For BPSO, the gbest BPSO performed much better than BPS@ eisier of the other
two topologies. The average error was 4.68% for gbest BP&0|vest BPSO and the Von
Neumann BPSO scoring 7.01% and 6.97% respectively. Thet @RSO scored best on
198 out of 243 problems, but was outperformed on problemis f@iv constraintsro = 5)
combined with a high tightness ratio of= 0.75. Here gbest BPSO performed worst out
of the three BPSO pairs on the entire subset of 27 problemrrBblems withm =5 and
r = 0.5, gbest BPSQO’s performance was comparable to the otheraws and yielded an
average rank of 1.944,

For MBPSO, the relative performance of the three topologias very stable across the
entire problem set with the Von Neumann MBPSO scoring thé(eth an average rank of
1.010), Ibest MBPSO achieved an average rank of 1.990, azst iBPSO scored worst on
all problems. The Von Neumann MBPSO failed to outperfornsiddBPSO on only three
of the 243 problems.

For the PBPSO, the Von Neumann PBPSO performed best witterefe to the average
rank of errors, with an average rank of 1.5. However, gbef1%B achieved a lower average
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Table 15 Summary of large MKP test results compared across topaogield face indicates statistically
significant outperformance.

GB BPSO LB BPSO VN BPSO

Measure error  (rank) error  (rank) error  (rank)
average error 4679% (1.340)| 7.006% (2.510) 6.973% (2.150)
stdev error 3.468 % 5.000 % 5.000 %
n 100 | 3.831% (1.296)| 6.348% (2.537) 6.291% (2.167)
n 250 | 4.679% (1.327)| 6.951% (2.531) 6.920% (2.142)
n 500 | 5.526 % (1.395)| 7.719% (2.451) 7.707% (2.154)
m 5 [3.037% (2.019)| 3.091% (2.179) 3.076% (1.802)
m 10 | 3.942% (1.000)| 7.520% (2.704) 7.465% (2.296)
m 30 | 7.057% (1.000)| 10.407% (2.636) 10.377% (2.364)
r 0.25| 8.253% (1.037)| 11.961% (2.555) 11.943% (2.409)
r 0.50| 3.751% (1.307)| 5.817% (2.530) 5775% (2.163)
r 0.75| 1.909% (1.692)| 3.063% (2.429) 3.023% (1.878)

GB MBPSO LB MBPSO VN MBPSO
Measure error  (rank) error  (rank) error  (rank)
average error 5.619% (3.000) 3.922% (1.990) 3.403% (1.010)
stdev error 2.723 % 2.100 % 1.700 %
n 100 | 5.160% (3.000) 3.044% (1.988) 2.647% (1.012)
n 250 | 5.663% (3.000) 3.917% (2.000) 3.418% (1.000)
n 500 | 6.034% (3.000) 4.805% (1.975) 4.145% (1.025)
m 5 | 4354% (3.000) 3.289% (1.963) 2.980% (1.037)
m 10 | 5521% (3.000) 3.654% (2.000) 3.191% (1.000)
m 30 | 6.983% (3.000) 4.824% (2.000) 4.039% (1.000)
r 0.25| 8.664% (3.000) 6.185% (2.000) 5.382% (1.000)
r 0.50 | 5.344% (3.000) 3.608% (1.988) 3.089% (1.012)
r 0.75| 2.712% (3.000) 1.878% (1.974) 1.658% (1.026)

GB PBPSO LB PBPSO VN PBPSO
Measure error  (rank) error  (rank) error  (rank)
average error 3.250% (1.860) 3.650% (2.650) 3.348% (1.500)
stdev error 1.718 % 2.600 % 2.500 %
n 100 | 2.568% (1.790)| 3.101% (2.667) 2.762% (1.543)
n 250 | 3.286% (1.864) 3.626% (2.654) 3.330% (1.481)
n 500 | 3.896% (1.914) 4.221% (2.617) 3.954% (1.469)
m 5 | 3.134% (3.000) 1.994% (2.000) 1.783% (1.000)
m 10 | 2.763% (1.568)| 3.112% (2.951) 2.847% (1.481)
m 30 | 3.853% (1.000)| 5.842% (2.988) 5416% (2.012)
r 0.25|5264% (1.695)| 6.059% (2.646) 5.739% (1.659)
r 0.50| 2.799% (1.904) 3.066% (2.663) 2.693% (1.434)
r 0.75| 1.613% (1.974) 1.738% (2.628) 1.533% (1.397)

GB SBPSO LB SBPSO VN SBPSO
Measure error  (rank) error  (rank) error  (rank)
average error 1.740% (1.000)| 2.292% (2.570) 2.249% (2.430)
stdev error 1.170 % 1.300 % 1.300 %
n 100 | 1.260% (1.000)| 1.767% (2.519) 1.772% (2.481)
n 250 | 1.758 % (1.000)| 2.366% (2.636) 2.294% (2.364)
n 500 | 2.201% (1.000)| 2.743% (2.543) 2.680% (2.457)
m 5 | 1.875% (1.000)| 2.334% (2.173) 2.433% (2.827)
m 10 | 1.553% (1.000)| 2.075% (2.549) 2.046% (2.451)
m 30 [1.791% (1.000)| 2.468% (2.975) 2.266% (2.025)
r 0.25| 3.141% (1.000)| 3.893% (2.659) 3.789% (2.341)
r 0.50| 1.355% (1.000)| 1.957% (2.566) 1.917% (2.434)
r 0.75| 0.676 % (1.000)| 0.966% (2.468) 0.981% (2.532)
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error, scoring 3.25% while the Von Neumann PBPSO had an geesaor of 3.35%. This
can be explained by the more consistent behavior of gbesEPBRs standard deviation of
the error was 1.72%, while for the Von Neumann PBPSO this we#% 2The Von Neumann
PBPSO scored well for problems with= 5, but scored badly for problems with= 30:
the difference in average error on the two subsets w&2%— 1.78% = 3.63%. For gbest
PBPSO the sensitivity to the problem parametewas much smaller, and the difference
between the subset on which it performed best= 10) and worst fh = 30) was only
3.85%— 2.76% = 1.09%.

For SBPSO, the star topology was most successful, with GBBSO performing best
on all 243 problems. Little difference in performance waseed between Ibest SBPSO
and the Von Neumann SBPSO, which is probably related to ttiettiat the same control
parameter values were used for both pairs (refer to table théoparameter values). Hence,
the only difference between the pairs was that the Von Near&8PSO has a more closely
connected swarm compared to Ibest SBPSO. Only for the dpliieoproblem set based
on the number of constraints), some difference in performance was seen between Ibest
SBPSO and the Von Neumann SBPSO, where Ibest SBPSO perfdaretted on problems
with m=5, and the Von Neumann PBPSO performed better on problentsmvt 30.
Considering the number of constraints, both Ibest SBPSCtlamd/on Neumann SBPSO
performed best on the subset of problems wite- 10. Having a more closely connected
swarm helped the Von Neumann SBPSO on problems with morereants.

A detailed comparison of the four PSO algorithms, each ussrgest performing topol-
ogy, is given in table 16. The four best performing algorittopology pairs are gbest BPSO,
Von Neumann MBPSO, Von Neumann PBPSO, and gbest SBPSO. Walkieaage error
of 1.72%, gbest SBPSO scored better than the other threg péih the second best pair,
Von Neumann PBPSO, scoring an average error of 3.32 %. ThedDfollowed by post-
hoc tests indicated that gbest SBPSO outperformed the titres pairs by a statistically
significant margin.

For gbest SBPSO, the average rank was 1.26, followed by Vamidan PBPSO, Von
Neumann MBPSO, and gbest BPSO with average ranks of 2.13,8h8l 3.80 respectively.
The gbest SBPSO had the lowest error on 179 of the 243 propblerdsvas second best on
the remaining 64, for which the Von Neumann PBPSO scoreddaest time. Gbest BPSO
performed worst on 194 problems, and the second worst orethaining 47.

Each of the first 27 rows of table 16 represents results fosibset of nine problems that
correspond to the given MKP parametarm, andr. For all 27 problem subsets, the ID-test
indicated a difference in performance across the four #dlgurtopology pairs. However, in
only two cases was a single algorithm-topology pair showoutperform the other thrée
Gbest SBPSO statistically outperformed fioe 100,m= 10,r = 0.25 andn = 250,m= 10,

r = 0.25. For each of the remaining 25 problems, the post-hoc déstsot indicate a single
best algorithm-topology pair, but instead resulted in tvestlpairs with indistinguishable
performance: no significant difference could be seen beatweetwo best performing pairs,
while the two worst pairs underperformed the best two in &ssteally significant man-
ner. For nine out of 25 problem specifications, all with= 30, gbest SBPSO and the Von
Neumann MBPSO performed best, while gbest BPSO and the Vombien PBPSO un-
derperformed. For the remaining 16 out of 25 cases, ghesSSB#hd the Von Neumann
PBPSO performed best, while gbest BPSO and the Von NeumariS@Binderperformed.

6 Even if all problems yield the same ranks, resulting in ayereankings of 1, 2, 3, and 4 for the four
algorithm-topology pairs, the post-hoc Nemenyi testrditishow a statistically significant difference between
ranks 1 and 2, at a confidence leveloo 0.05, which led to a Holmr of 0.0167 for the comparison of the
two best performing pairs.
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Table 16 Large MKP results for the best algorithm-topology pairs algorithm. Bold face indicates statis-
tically significant outperformance.

GB BPSO VN MBPSO VN PBPSO GB SBPSO
n m r error (rank) error (rank) error (rank) error (rank)
100 5 0.25| 3.772% (3.67) 3.625% (3.33) 1.757% (1) [1951% (2)
100 5 050 1.835% (3.56) 1.774% (3.44) 0.796¢% (1) |0.873% (2)
100 5 0.75| 1.155% (3.89) 1.077% (3.11) 0.504% (1.56)|0.505% (1.44)
100 10 0.25 5334% (4) | 4064% (256) 4.052% (2.44)2181% (1)
100 10 050 2.384% (4) | 2160% (3) | 1.868% (2) |0.853% (1)
100 10 0.75 1.217% (3.56) 1.206% (3.44) 1.031% (2) |0.399% (1)
100 30 0.2511.396% (4) |5132% (2) 8411% (3) |2773% (1)
100 30 050 4.786% (4) [3.057% (2) 3.902% (3) [1.195% (1)
100 30 0.75 2.327% (3.13) 1.566% (2) 2.364% (3.88)0.540% (1)
250 5 0.25| 5.182% (3.67) 4995% (3.33) 3.066% (1) |3.294% (2)
250 5 050 2.680% (3.67) 2.617% (3.33) 1437% (1) [1541% (2)
250 5 0.75| 1.390% (3.67) 1.362% (3.33) 0.740% (1.56)|0.735% (1.44)
250 10 0.25 6.917% (4) | 4895% (2.67) 4.801% (2.33)2845% (1)
250 10 0.50 3.161% (3.95) 2904% (3.05) 2.312% (2) |1.186% (1)
250 10 0.75 1.546% (3.75) 1.522% (3.25) 1.237% (2) |0561% (1)
250 30 0.2512.765% (4) [6.333% (2) 9356% (3) [3451% (1)
250 30 050 5556% (4) [3921% (2) 4308% (3) |1.471% (1)
250 30 0.75 2.738% (4) |2.055% (2) 2595% (3) |0.670% (1)
500 5 0.25| 6.349% (3.67) 6.299% (3.33) 4565% (1) |4.749% (2)
500 5 050 3.134% (3.33) 3.219% (3.67) 2.026% (1.44)|2.066% (1.56)
500 5 075 1.837% (35)| 1.849% (35| 1.157% (1.33)|1.160% (1.67)
500 10 0.25 8357% (4) | 5943% (3) | 5652% (2) |3.404% (1)
500 10 050 3.776% (4) | 3.522% (3) | 2677% (2) |1455% (1)
500 10 0.75 1.889% (3.5)[1905% (35| 1.399% (2) |0.726% (1)
500 30 0.2514.189% (4) |7.089% (2) |10.003% (3) [3.592% (1)
500 30 050 6.398% (4) |4.655% (2.11)| 4.822% (2.89)1.593% (1)
500 30 0.75 3.083% (4) |23718% (2) 2811% (3) |0.764% (1)
average | 4635% (3.80) 3.375% (2.81) 3.320% (2.13)1.723% (1.26)
Z-score 21.68 13.22 7.34
p-value 0.0000 0.0000 0.0000
Holm o 0.0500 0.0250 0.0167

The performance of the Von Neumann PBPSO deterioratedriger@alues ofm, com-
pared to the other algorithm-topology pairs in table 16. Vae Neumann PBPSO outper-
formed the other three pairs on problems witk= 5, but the difference with gbest SBPSO
became smaller for larger valuesrofor problems witim= 10, the Von Neumann PBPSO
performed second best on 74 out of 81 problems. However,ridsigms withm = 30, the
Von Neumann PBPSO ranked better than third only once out pf@ilems, and performed
worse than both gbest SBPSO and the Von Neumann MBPSO. Asomedtin the discus-
sion of the results in table 13, the parameters chosen fovaheNeumann PBPSO (which
were the same as for Ibest PBPSO) were probably better doiteblems with a lower
number of constraints.
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8 Conclusions and Future Work

This paper introduced set-based particle swarm optinozafsBPSO) as a generic par-
ticle swarm optimization (PSO) algorithm for use on disereptimization problems that
can be described as set-based problems. In addition to ttiaetain to personal best and
neighborhood best positions, two mechanisms were inclid&BPSO to ensure that the
algorithm could explore the entire search space. Theseanerhs were described in gen-
eral terms, and a specific implementation of each was chas@risé in the experiments. The
first mechanism stated that elements were removed randoonty the intersection of the
current positionX(t), the personal best positioxi(t), and the neighborhood best position,
Y(t). The second mechanism stated that elements outside the afidt), Y (t), and¥ (t),
were chosen to be added to the position vietaurnament selection and using marginal
objective function values.

The multidimensional knapsack problem (MKP) was chosema®ptimization prob-
lem to evaluate the performance of SBPSO, using a large nuafteenchmark problems
from literature. SBPSO was compared to three existing eisd?SO algorithms, namely bi-
nary PSO (BPSO), modified binary PSO (MBPSO), and probghiiitary PSO (PBPSO).
Each algorithm was evaluated using one of three swarm tgjasipthat is, the star topology,
the ring topology with neighborhood size 4, and the Von Nenmiapology. This resulted
in 12 algorithm-topology pairs.

A Sobol pseudo-random number generator was used to gedenattiscrepancy se-
quences in the parameter space to help tune each algootwiegy pair separately, once
on a set of small MKP, and once on a set of large MKP, for a tdt&4odifferent tuning
tasks. The same number of parameter value combinationsevateated for each tuning
task, and the best performing parameter value combinaiieided the parameter values
used in the testing phase.

A sensitivity analysis of SBPSO with respect to differeniiues of its control parame-
ters was done. This showed that the performance of SBPSO wsissansitive t@; (the
attraction to personal best) angl(the number of elements to add from outside the union of
X(t), Y(t), and¥ (t)).

For both the small MKPs as well as the large MKPs, and for ed¢heothree swarm
topologies used, the results showed that SBPSO outperdotimesother three algorithms by
a statistically significant margin. These results also kdidn the best performing topology
was chosen for each PSO algorithm. The results also showtththVon Neumann topology
was the best topology to use for each of the algorithms onnfadl MKPs. For the large
MKPs, the star topology was best for BPSO and SBPSO, whil¥dheéNeumann topology
was best for MBPSO and PBPSO.

The overall conclusion is that SBPSO performed better thanttiree other discrete
PSO algorithms over a range of MKPs using different swarroltagies. These results were
statistically significant at a significance level@f= 0.05.

The goal of this paper wasot to find the best algorithm for solving the MKP, but to
propose a generic set-based PSO. State-of-the-art lgwaritor solving the MKP perform
better, for example the genetic algorithm described by GiiiBeasley (1998), which in-
corporates a domain specific repair operator. This algorjibrfectly solved all small MKP,
while on the large MKP it recorded an average error of 0.54%h®algorithm-pairs tested
in this paper, gbest SBPSO performed best on the large MKiPamitiverage error of 1.72%.
However, it is emphasized that SBPSO does not make use ofcengid specific operators
to improve performance.
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The next steps will be to evaluate the SBPSO algorithm oermifft problems, includ-
ing feature selection. Also, the contribution of the spedifiplementation chosen for the
operators®~ and®™ to the performance of SBPSO will be investigated. The parémce
of SBPSO, should domain specific operators be included algitl be investigated.
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