
Swarm Intelligence manuscript No.
(will be inserted by the editor)

Set-Based Particle Swarm Optimization applied to the
Multidimensional Knapsack Problem

Joost Langeveld · Andries P. Engelbrecht

Received: date / Accepted: date

Abstract Particle swarm optimization algorithms have been successfully applied to dis-
crete-valued optimization problems. However, in many cases the algorithms have been tai-
lored specifically for the problem at hand. This paper proposes a generic set-based particle
swarm optimization algorithm for use on discrete-valued optimization problems that can
be formulated as set-based problems. A detailed sensitivity analysis of the parameters of
the algorithm is conducted. The performance of the proposedalgorithm is then compared
against three other discrete particle swarm optimization algorithms from literature using the
multidimensional knapsack problem, and is shown to statistically outperform the existing
algorithms.

Keywords Discrete Optimization· Multidimensional Knapsack Problem· Particle Swarm
Optimization· Set-Based Optimization Problem

1 Introduction

Particle Swarm Optimization (PSO) has established itself as a valuable tool in the field of
continuous optimization. Proposed by Kennedy and Eberhart(1995), it was inspired by the
movement of flocking birds. In order to solve discrete-valued optimization problems (DOP),
a number of variations of PSO have been proposed, starting with the binary PSO algorithm
by Kennedy and Eberhart (1997). Since then, a variety of different discrete PSO methods
have been developed. Typical applications of discrete PSOsare problems that involve or-
dering (Wang et al., 2003; Clerc, 2004), scheduling (Abraham et al., 2006; Tasgetiren et al.,
2004), or feature selection (Tu et al., 2008). Many such problems are combinatorial, which
gives the problems additional structure. This structure has been used to develop problem
specific optimization methods (Li et al., 2008).

Joost Langeveld
Department of Computer Science, University of Pretoria
E-mail: jclangev@gmail.com

Andries P. Engelbrecht
Department of Computer Science, University of Pretoria
Tel.: +27 12 420 3578
E-mail: engel@cs.up.ac.za

2 Joost Langeveld, Andries P. Engelbrecht

This paper introduces a new generic set-based PSO algorithmcalled Set-Based PSO
(SBPSO) and compares its performance in solving discrete-valued optimization problems,
specifically set-based problems, to existing PSO algorithms. The term generic means that
no problem specific information is used in the algorithm other than in the objective func-
tion. This allows the algorithm to be seemlessly applied without alteration to any DOP that
allows for a set-based representation of the solution. The set-based approach is chosen as
an alternative to the more traditional binary string implementations of discrete PSO and the
permutation implementation often used for combinatorial optimization problems. Thus a
particle position is defined as a set of elements. This has theimportant implication that the
size of the particle position can change as the algorithm executes, and also that the positions
of the particles in the swarm will, in general, have different sizes.

The multidimensional knapsack problem (MKP) is chosen as the test problem because
it can be formulated as a set-based optimization problem andit allows for straight-forward
objective function evaluation of particles. Thus the SBPSOcan be evaluated, and compared
to alternative PSO algorithms, based only on the quality of the solutions determined by the
PSO algorithm and not aided by domain specific operators. It is acknowledged that problem
specific algorithms can yield better solutions, but the scope of this paper is to find an efficient
generic set-based PSO algorithm to apply to DOPs exemplifiedby the MKP.

The remainder of this paper is structured as follows: first a brief overview of the con-
tinuous PSO algorithm is given. Then a review of existing discrete PSO algorithms and
existing set-based PSO algorithms is provided. Section 3 describes the SBPSO algorithm.
Section 4 formally defines the MKP, and existing studies thatuse swarm intelligence to
solve the MKP are highlighted. Section 5 explains the experimental procedure conducted,
and describes how the control parameters of the individual PSO algorithms were tuned. Sec-
tion 6 uses the results of the parameter tuning process to conduct a sensitivity analysis of
the SBPSO control parameters. Section 7 lists the results ofapplying the tuned PSO algo-
rithms to the MKP test problems, followed by conclusions andan indication of future work
in section 8.

2 Particle Swarm Optimization

This section gives a brief overview of the continuous PSO algorithm, and describes three
swarm topologies used in PSO. This is followed by a review of existing discrete and set-
based PSO algorithms.

2.1 Continuous Particle Swarm Optimization

Kennedy and Eberhart (1995) were the first to propose an optimization algorithm inspired
by bird flocking behavior. The first PSO algorithm was developed to solve optimization
problems with continuous-valued parameters. Each particle has a positionx in the search
space, and a velocityv indicating direction and step-size of change in current position. Each
particle keeps track of the quality of the solution to the optimization problem it represents,
the best position it has visited in the past,y, and the best position visited in the past by a
particle in its neighborhood, denotedŷ.

Let i be a particle in ann-dimensional search space with velocityvi = (vi)
n
j=1, po-

sition xi = (xi)
n
j=1, personal best positionyi = (yi)

n
j=1, and neighborhood best position

Set-Based Particle Swarm Optimization applied to the Multidimensional Knapsack Problem 3

ŷi = (ŷi)
n
j=1. The original velocity update equation,

vi, j(t +1) = vi, j(t)+c1r1, j(t) [yi, j(t)−xi, j(t)]+c2r2, j(t) [ŷi, j(t)−xi, j(t)] (1)

computes the magnitude of change in the particle’s positionin each dimensionj, wherec1

is the cognitive component weight,c2 is the social component weight, andr1 andr2 aren-
dimensional random vectors with eachr1. j , r2, j ∼U(0,1) drawn independently. The position
is updated by adding the updated velocity to the current position:

xi, j(t +1) = xi, j(t)+vi, j(t +1) (2)

To improve the performance of the algorithm and to better control the balance between
exploration of new areas of the search space and exploitation of promising areas, various ad-
ditions have been proposed. A first addition was by Eberhart et al. (1996), who proposedve-
locity clampingwhich restricts the velocity to a predetermined maximum in each dimension.
After the velocity has been updated, but before the positionupdate, the velocity clamping,

vi, j(t +1) = min{max{vi, j (t +1),Vmin, j},Vmax, j} (3)

is applied, whereVmin, j andVmax, j with Vmin, j <Vmax, j denote the minimum and maximum
velocity in a single dimensionj.

An addition proposed by Shi and Eberhart (1998) was a scalar,ω , called theinertia
weight, which determines the acceleration or deceleration in the current direction. The in-
ertia weight scales the component indicating the particle’s current velocity,vi, j(t), in equa-
tion (1), resulting in an alternative velocity update equation,

vi, j(t +1) = ω vi, j(t)+c1r1, j(t) [yi, j(t)−xi, j(t)]+c2r2, j(t) [ŷi, j(t)−xi, j(t)] (4)

Algorithm 1 describes the flow of the PSO algorithm for a maximization problem with
objective functionf : Rn −→ R. A similar definition is easily obtained for a minimization
problem.

2.2 Swarm Topologies

One of the strengths of PSO is the flow of information through the swarm due to the inter-
action of the particles. Particles with a good objective function value attract other particles,
hopefully to good areas of the search space. Particles that have found a good solution attract
particles for which they are the best neighbor. If two particles i and j are not connected (not
in each other’s neighborhood), then they can not directly attract each other. If a common
neighbork is attracted to a good solutioni and becomes a good solution itself, such that it
is the best solution in the neighborhood ofj, then j can be said to be indirectly influenced
by i. For each particle, the social structure, called the swarm topology, determines which
particles it can be attracted to.

Kennedy and Eberhart (1995) proposed two possible social structures for the particle
neighborhoods, and called the two resulting algorithms theglobal best (gbest) PSO and
local best (lbest) PSO. The gbest PSO uses astar topology, while the lbest PSO uses aring
topology. The ring topology is a loosely connected topology, while the star topology is one
where each particle is directly connected to all other particles in the swarm. A study of
the impact of the swarm topology was done by Kennedy and Mendes (2002), considering
various topologies, including random, star, Von Neumann and ring topologies. Kennedy and
Mendes (2002) suggested that theVon Neumanntopology, which has an intermediate level
of connectivity, can be a good choice for a particle swarm.

4 Joost Langeveld, Andries P. Engelbrecht

Algorithm 1: Continuous PSO for Maximization Problems
SetN equal to the number of particles in the swarm;
for i = 1, . . . ,N do

Initialize xi uniformly random over the search space ;
Initialize vi = 0 ;
Calculatef (xi) ;
Initialize f (yi) =−∞ ;
Initialize f (ŷi) =−∞ ;

end
while stopping condition is falsedo

for i = 1, . . . ,N do
// set the personal best position ;
if f (xi)> f (yi) then

yi = xi ;
end
// set the neighborhood best position ;
for all neighbors l of particle ido

if (f (yi)> f (ŷl) then
ŷl = yi ;

end
end

end
for i = 1, . . . ,N do

Updatevi according to equation (4);
Updatexi according to equation (2);
Calculate solution qualityf (xi);

end
end

2.3 Discrete Particle Swarm Optimization

This section reviews PSO algorithms developed to solve DOPs, namely the binary PSO,
the modified binary PSO, the probability binary PSO, the angle modulated PSO, fuzzy and
rank-based binary PSO algorithms, and PSO algorithms that redefine the meaning of particle
positions, velocities, and arithmetic operators.

Binary PSO: Kennedy and Eberhart (1997) were the first to define a discreteversion of the
PSO algorithm, referred to as the binary PSO (BPSO). In this algorithm the particle positions
are binary strings, while the velocities exist in continuous space. Velocities are mapped to a
scalar value between 0 and 1 using a sigmoidal transformation function,S. This scalar value
is interpreted as the probability that the corresponding part of the binary position string is bit
1. The velocity update equation of the BPSO algorithm is the same as equation (4). Using
the transformation function,

S
(
vi, j(t +1)

)
=

1

1+e−vi, j (t+1)
(5)

the position update becomes

xi, j(t+1) =

{
1 if r3, j < S

(
vi, j(t +1)

)

0 otherwise
(6)

wherer3, j is an independent random variable, uniformly distributed on (0,1). Eberhart et al.
(2001) proposed to use velocity clamping as defined in equation (3) in BPSO to prevent
saturation of the sigmoid function.

Set-Based Particle Swarm Optimization applied to the Multidimensional Knapsack Problem 5

Many variants of the BPSO algorithm have been proposed: Khanesar et al. (2007) de-
fined a BPSO that has separate velocity terms depending on whether a bit in the current
position vectorx is 0 or 1, Gao et al. (2006) removed the randomness from the position
update step, and Yang et al. (2004) proposed the quantum BPSOby introducing the idea of
a superposition of states.

Modified Binary PSO:Shen et al. (2004) proposed the modified binary PSO (MBPSO) to
select variables in multiple linear regression and partialleast-squares modeling. The velocity
update equation of MBPSO is the same as equation (4). For the position update, each bit
xi, j(t) in the position vectorxi(t) is updated according to:

xi, j(t +1) =





xi, j(t) if 0 ≤ vi, j(t +1)≤ pstat

yi, j(t) if pstat< vi, j(t +1) ≤ 0.5(1+ pstat)
ŷi, j(t) if 0.5(1+ pstat) < vi, j(t +1) ≤ 1

(7)

wherepstat is a parameter in(0,1) called thestatic probability.
Shen et al. (2004) stated that after the velocity and position updates have been applied,

a fraction of particles “are forced to fly randomly not following the two best particles”.
This statement has been interpreted as a random re-initialization of both the velocity and
the position of a percentage of the swarm at each iteration, similar to Ma et al. (2010). The
fraction of particles that is re-initialized at each iteration is denoted bypreset.

Probability Binary PSO:Wang et al. (2008) proposed a variant of BPSO called the prob-
ability binary PSO (PBPSO) and applied this to the MKP. The velocity update equation of
PBPSO is the same as for continuous PSO given in equation (2).A continuous-valued posi-
tion, x′, is introduced, which is updated according to equation (4).A linear transformation,

L
(
x′i, j(t +1)

)
=

x′i, j(t+1)−Rmin

Rmax−Rmin
(8)

is used to transform the continuous-valued position into a binary-valued position,x, using

xi, j(t +1) =

{
1 if r i, j < L

(
x′i, j(t +1)

)

0 otherwise
(9)

where eachr i, j is an independent random variable, uniformly distributed on (0,1). The
parametersRmin and Rmax used in the linear transformation are usually chosen such that
Rmax > 0 andRmin = −Rmax. (Menhas et al., 2011) extended the PBPSO algorithm to also
include a mutation operator. After application of the linear transformation in equation (8),
each bit was given a probabilitypmut ∈ [0,1] of mutating, resulting in the position update,

xi, j(t +1) =

{
1−xi, j (t +1) if r i, j < pmut

xi, j(t +1) otherwise
(10)

where eachr i, j is an independent random variable, uniformly distributed on (0,1).

Angle modulation:Pampara et al. (2005) developed a different approach to converting the
continuous-valued velocity of PSO to a binary string by applying the concept ofangle mod-
ulation. Angle modulation PSO starts with a swarm of particles in a continuous four di-
mensional space, and uses a continuous PSO algorithm to update the particle velocities
and positions. For each particle, the four position components are used as parameters for a
trigonometric function, and this function is sampledn times to generate ann-dimensional
bit-string. If the function produces a positive value, thenbit 1 is recorded, otherwise bit 0 is
recorded.

6 Joost Langeveld, Andries P. Engelbrecht

Fuzzy binary PSO approaches:Fuzzy logic has also been used to construct discrete PSO
algorithms. Where the particle position in binary PSO is a binary vector with a “crisp”
separation of bits into 0 and 1, fuzzy binary PSO instead has aposition vector with fuzzy
bits. It uses a membership functionµ to indicate a truth value in[0,1] for the degree to
which each fuzzy bit has value 1. The fuzzy PSO algorithm works in continuous space and
a separate mechanism calleddefuzzificationis used to convert the fuzzy particle position
into a binary vector. The first published article on using a fuzzy approach to the discrete
PSO is by (Shi and Eberhart, 2001). Pang et al. (2004a) and Shen et al. (2006) provided
refinements to the fuzzy method and applied it to the traveling salesman problem (TSP). Du
et al. (2005) applied their fuzzy PSO to the shape matching problem, while Abraham et al.
(2006); Liu et al. (2010); Liu and Abraham (2007) applied fuzzy discrete PSO algorithms
to job scheduling problems and to the quadratic assignment problem.

Rank ordering approaches:A different approach is where discrete PSO algorithms use the
concept of rank ordering to transform a continuous-valued position to a discrete-valued posi-
tion. Tasgetiren et al. (2004) introduced such a modification to the continuous PSO algorithm
and applied it to scheduling problems, exemplified by the single machine total weighted tar-
diness problem. Solutions for such scheduling problems aresequences or permutations of
tasks that indicate the order in which the tasks are performed. A candidate solution is rep-
resented as a sequenceSi = [si,1, . . . ,si,n] of the numbers 1, . . . ,n, where eachsi,k is unique
and denotes one of then tasks to be scheduled.

The particle velocities and positions are updated according to equations (4) and (2)
respectively. Each position,xi , is then translated to a sequenceSi using thesmallest position
value(SPV) rule. The SPV rule takes the position component,xi, j , with the smallest value
in xi , and setssi,1 equal to j. Then it takes the next smallest position component,xi,k, and
setssi,2 = k. This process continues until the sequenceSi has been filled.

Similar algorithms have been proposed by Pang et al. (2004b), who used thegreater
value priority to transform the continuous-valued positionxi to a sequenceSi and applied
the resulting PSO algorithm to the TSP. Liu et al. (2007) usedan almost identical approach
calledrank order valueand applied this method to the flow shop scheduling problem (FSSP).

Redefined PSO operators:Clerc (2004) formulated a discrete PSO algorithm by redefining
the particles, velocities and operators used in PSO. A general mathematical specification is
given as well as an implementation that is then applied to theTSP. A particle position is
defined as a sequence ofN+1 arcs between nodes, whereN is the number of nodes in the
TSP. A velocity is defined as a list ofexchange operations(i, j), where nodesi and j in a
position are swapped. Special operations are also defined for subtraction of two positions,
the addition of two velocities, and the multiplication of a scalar and a velocity. These new
operators are then used in a formulation of the velocity update equation in the discrete PSO
that is very similar to equation (4) used in continuous PSO.

Wang et al. (2003), Zhang et al. (2007), and Zhong et al. (2007) proposed similar ap-
proaches to modifying the PSO operators and each applied theresulting PSO to the TSP.
Garcı́a et al. (2006) applied an adapted PSO algorithm to theresponse time variability
problem, where the particle velocity is defined as an orderedlist of transformations called
movements. Benameur et al. (2009) proposed a similar discrete PSO and applied it to the
frequency assignment problem. Chandrasekaran et al. (2006) applied a discrete PSO with
redefined operators to the FSSP, where the velocity is a set oftranspositions with ordering
values. The transpositions contained in the velocity are applied to the position in the order
of high to low ordering values.

Set-Based Particle Swarm Optimization applied to the Multidimensional Knapsack Problem 7

2.4 Particle Swarm Optimization using Sets

In literature, a number of PSO algorithms that use mathematical sets already exist. It is the
opinion of this paper, however, that these existing methodsare not truly set-based or not
always generically applicable to all set-based optimization problems.

The algorithm proposed by Correa et al. (2006) for attributeselection and the related
algorithm by Bock and Hettenhausen (2012) for ontology alignment both have set-like char-
acteristics, but both contain problem specific elements. Especially, the concept of apersonal
likelihood that requires each element in a particle position to have itsown partial objective
function value, prevents these algorithms from being applied to many discrete optimization
problems, including the MKP.

Veenhuis (2008) proposed a generic, set-based definition ofa PSO algorithm. Velocities
and positions in this algorithm are both defined as sets. However, the chosen update equa-
tions lead the velocities and positions to always increase in size, an effect calledset bloating.
To counter this, a reduction operator with a relatively complex clustering mechanism was
introduced. This clustering mechanism requires a functionthat defines the distance between
any two set elements, while a general mathematical set does not support the concept of
distance. Veenhuis (2008) has therefore chosen a problem specific distance function. This
means that the algorithm is no longer truly generic, and in its current form is not applicable
to discrete problems such as the MKP.

Neethling and Engelbrecht (2006) proposed the set-based algorithm called SetPSO and
applied it to RNA structure prediction. The problem is defined as finding the correct stems
(bindings of base pairs) in the RNA structure from the set of all possible stems. Particle
positions are defined as sets of stems. In the position update, three probabilities help de-
termine which elements are added and which elements are removed from the position. Al-
though generically applicable, recent work (Langeveld andEngelbrecht, 2011) has shown
that SetPSO performs less well on the MKP than other PSO methods.

Chen et al. (2010) proposed a generic set-based PSO method called S-PSO that can be
used to adjust a continuous PSO algorithm to a discrete one. S-PSO was applied to the TSP
and the MKP. The candidate solution represented by a particle position is called a set, but
has a fixed size, where for each “dimension” of the set an element is chosen from a set of
available elements. Thus the position can not be called a true set. Velocity is defined as a
set with possibilities, which grows in size as the algorithm runs. Positions are rebuilt at each
iteration using a constructive process that may include heuristic operators. Wu et al. (2010)
applied a variant of S-PSO based on (continuous) constriction PSO to the problem of cloud
computing workflow scheduling.

Khan and Engelbrecht (2010) proposed an algorithm called fuzzy PSO (FPSO) to op-
timize the topology design of distributed local area networks (DLANs). The term fuzzy in
FPSO refers to the fuzzy aggregation operator, theunified And-Or operator, that is used to
aggregate the multiple objectives in the DLAN topology design problem into a single objec-
tive function. The particle position is defined as a set of links between nodes in the network.
The number of links in the position is exactlyN−1, whereN is the number of nodes in the
network. The particle velocity is defined as a set oflink exchange operations, which remove
a single link in the position and replace it by another. Because the size of the position is
fixed, the algorithm is not generally applicable to discreteproblems such as the MKP.

8 Joost Langeveld, Andries P. Engelbrecht

3 Set-Based Particle Swarm Optimization

This section describes in detail the SBPSO first mentioned in(Langeveld and Engelbrecht,
2011), which is revised and investigated in much more detailin this paper. SBPSO can be
applied to any DOP which can be defined as set-based optimization problems. Section 3.1
defines the SBPSO set-based concepts, while sections 3.2 and3.3 respectively redefine the
arithmetic operators and PSO update equations to operate onsets.

3.1 Set-Based Concepts

SBPSO defines a particle’s position and velocity as mathematical sets. The position is a set
of elements from the universe of discourseU , that is, the universe of elements defined by the
problem. The velocity is a set ofoperation pairsdefined below. The solution that SBPSO
finds for the optimization problem is thus the best position found by the swarm, represented
as a set of elements fromU .

The definitions below assume that SBPSO is applied to a maximization task, but a sim-
ilar definition for a minimization task is easily derived from this. Let

– U = {en}n∈NU be the universe of discourse containing all elements,en, of which there
are a finite numberNU ,

– Xi(t) be the position of particlei at iterationt, a subset ofU ,
– Vi(t) be the velocity of particlei at iterationt,
– f be the objective function to be optimized,
– Yi(t) be the personal best position of particlei, that is,Yi(t) = Xi(τ), τ ∈ {1, . . . , t}, such

that f
(
Yi(t)

)
= f

(
Xi(τ)

)
= max{ f (Xi(s)

∣∣s= 1, . . . , t},
– Ŷi(t) be the neighborhood best position for particlei at iterationt, that is,Ŷi(t) = Yj(t)

for the particlej in i’s neighborhood that maximizesf
(
Yj(t)

)
.

Figure 1(a) shows a particle positionX(t) as a set in the universeU . This universe and math-
ematical sets in general do not have a spatial structure, so the placements of the elements
denoted with small squares is arbitrary and no elements can be said to be close to or far
away from each other.

The PSO paradigm is built on the idea of movement through the search space, using the
concept of velocity. For SBPSO this idea of movement needs tobe defined. In continuous
PSO, attraction of a particle to its personal best position partly determines the particle’s
velocity. In SBPSO the same attraction to the personal best applies. Figure 1(b) shows a
particle positionX(t) and personal best positionY(t). HereX(t) andY(t) are shown to
partially overlap, though this is not necessarily true. Themovementof X(t) towards Y(t)
in SBPSO means that the two sets are made more similar by removing elements fromX(t)
that are not inY(t) (pictured as⋄), and by adding toX(t) missing elements that are inY(t)
(pictured as *). Elements that are in bothX(t) andY(t) are not affected by this attraction,
nor are elements that lie outside bothX(t) andY(t).

The velocity is defined as a set ofoperation pairs, where an operation pair is the addition
or deletion of a single element. An operation pair is denoted as(±,e), with (+,e) for the
addition of elemente∈U and(−,e) for the deletion of elemente. The velocity of particle
i, Vi(t), is then written as{vi,1, . . . ,vi,k} = {(±,eni,1), . . . ,(±,eni,k)}, wherek is the number
of operation pairs inVi(t), and eacheni, j is an element inU identified by the indexni, j .

As an example, consider positionX = {a,c} and velocityV = {(+,b),(−,c)} consisting
of two operation pairs. Adding velocityV to positionX means that elementb is added while
elementc is removed, resulting in a new position,X′ = {a,b}.

Set-Based Particle Swarm Optimization applied to the Multidimensional Knapsack Problem 9

r

r

r

r

r

r

rr
r

r

r

r r

r

r

r

r
r

r

r

r r

r

r

r

r

r
r

r r

X(t)

(a)

ld

r

r

r

r

r

*r
r

r

r

r r

r

r

r

r
r

r

r

r r

r

*

*

r

ld
ld

r r

X(t)

Y(t)

(b)

Fig. 1 Particle positions in SBPSO: (a) shows a particle positionX(t) in SBPSO is a set in the universeU .
The small squares represent elements in the universeU . (b) shows a particle positionX(t) and a particle’s
personal best positionY(t). The open diamonds (⋄) represent elements inX(t) that arenot in Y(t), and the
asterisks (*) represent elements inY(t) that arenot in X(t).

Attraction towards the personal bestY(t) does not have to mean that the positionX(t)
moves to the personal best position in one step such thatX(t +1) = Y(t). Velocity update
equation (4) contains the attraction toyi(t) asc1r1(t) [yi(t)−xi(t)], meaning that the dif-
ference betweenyi, j(t) andxi, j(t) is scaled by a factorγ j(t) = c1r1, j(t), for all j = 1, . . . ,n.
If γ j(t) = 1, thenxi, j(t +1) = yi, j(t), if the other terms of equation (4) are disregarded. If
γ j(t)< 1 thenxi(t) is pulled only partly towardsyi(t) in dimensionj, while if γ j(t)> 1 then
xi(t) will overshootyi(t) in dimensionj. In a set-based representation, this overshooting is
difficult to define because there is no direction forX(t) to overshootY(t) sinceU has no
spatial structure. In contrast, forX(t +1) = γ(t)[Y(t)−X(t)], the caseγ(t) < 1 can be de-
fined in a set-based representation, by making only some and not all of the changes required
to turn setX(t) intoY(t). Figure 2(a) shows this in action, assumingγ(t) = 0.5. The setX(t)
requires six changes to “move to”Y(t): the three elements indicated as⋄ need to be deleted
from X(t), and the three elements indicated as * need to be added toX(t). The scaling by a
factor of 0.5 means only three of these changes, selected randomly, are made toX(t). This
results in the new position,X(t +1).

The attraction ofX(t) to the particle’s neighborhood best position works in a similar
manner. Figure 2(b) shows positionsX(t),Y(t), andŶ(t) to partially overlap, with one com-
mon element indicated by a triangle (△), although this does not necessarily happen in prac-
tice. However, should an element be present in all three setsX(t),Y(t), andŶ(t), then the
above described attraction toY(t) andŶ(t) cannot lead to the removal of this element from
X(t). Also the attraction toY(t) andŶ(t) cannot lead to the addition of any element to
X(t) that is outside of bothY(t) andŶ(t). Such elements are indicated with symbol ‘+’ in
figure 2(b). For both cases a mechanism needs to be included inSBPSO to ensure that the

10 Joost Langeveld, Andries P. Engelbrecht

ld

r

r

r

r

r

*r
r

r

r

r r

r

r

r

r
r

r

r

r r

r

*

*

r

ld
ld

r r

X(t)

Y(t)

X(t +1)

removed

added

(a)

r

+

+

+

r

+

rr
+

r

+

r r
+

+

+
+

+
+

+

+ +

+

r

r

+

r
r

ut r

X(t)

Y(t)
Ŷ(t)

(b)

Fig. 2 Particle attraction and movement in SBPSO: (a) shows how a particle moves from its current position
X(t) in direction of its personal best positionY(t) to its new positionX(t +1), (b) shows a particle position
X(t), its personal best positionY(t), and the neighborhood best positionŶ(t).

whole universeU is in theory reachable from every possible starting position1. These two
mechanisms are defined in section 3.2.

For a strict mathematical definition of position, velocity,and objective function, denote
with P(U) the power set (that is, the set of all subsets) ofU . A position Xi(t) is an ele-
ment ofP(U). The objective functionf maps a position to a quality score inR, written as
f : P(U)→ R . The velocityVi(t) is generally defined as a function that maps a position

to a new position, that is,Vi(t) : P(U)→ P(U).
Note that the definition of velocity using operation pairs isnarrower than the general

mapping,V : P(U)→ P(U). Consider for exampleU = {0,1}, and mappingV such that

1. V(/0) = /0 (V can not contain any additions),
2. V(U) =U (V can not contain any deletions),
3. V({0}) = {1} (requires one addition and one deletion), and
4. V({1}) = {0} (requires one addition and one deletion).

Then,V is a valid mapping fromP(U) toP(U) that can not be denoted as a set of additions
and deletions.

3.2 Set-Based Operators

To describe SBPSO mathematically, new operators are defined. These operators act on ve-
locities (sets of operation pairs) and positions (sets of elements fromU) to replicate the PSO
concept of velocity and position updates. Special operators are defined to allow (i) a particle
position to add elements that are not in the personal bestYi(t) nor in the neighborhood best

1 Consider a particlei in SBPSO. Because the swarm usually consists of multiple particles, movement of
particles other thani can changêYi(t) by finding a new best candidate solution. This can then causeŶi(t) to
contain an elemente that was first outside ofXi(t),Yi(t), andŶi(t). So strictly speaking only elements that are
outside ofXj (t) andYj (t) for all particles j in the swarm (and hence also outsideŶj (t) for all j) can not be
added toXi(t) by the attraction mechanism. Similarly, only an elemente that is contained inXj (t) andYj (t)
for all particles j in the swarm is one that can not be removed by the attraction mechanism.

Set-Based Particle Swarm Optimization applied to the Multidimensional Knapsack Problem 11

Ŷi(t), and (ii) a particle position to remove elements that are present inXi(t) as well as both
Yi(t) andŶi(t).

The addition of two velocities, V1⊕V2, is a mapping⊕ : P({+,−}×U)2 → P({+,−}×
U), that takes two velocities as input and yields a new velocity. Denoted asV1 ⊕V2, the
mapping is defined as the simple union of the two sets of operation pairs:

V1⊕V2 =V1∪V2. (11)

The difference between two positions, X1⊖X2, is a mapping⊖ : P(U)2 →P({+,−}×U),
that takes two positions as input and yields a velocity. If a particle moves by the resulting
velocity, the difference between the two positionsX1 andX2 is the “distance” that is traversed
in one step. This mapping is defined as a set of operation pairsthat indicate the steps required
to convertX2 into X1 using additions and removals of single elements:

X1⊖X2 =
(
{+}× (X1\X2)

)
∪

(
{−}× (X2\X1)

)
. (12)

Therefore,X1⊖X2 is the union of (i) the product of{+} and all elements inX1 not inX2 (all
such elements are added) and (ii) the product of{−} and all elements inX2 not in X1 (all
such elements are removed). This operator thus yields the velocity V to get fromX2 to X1.

The multiplication of a velocity by a scalar,η⊗V, is a mapping⊗ : [0,1]×P({+,−}×U)→ P({+,−}×U)
that takes a scalar and a velocity and yields a velocity. The mapping is defined to mean pick-
ing a subset of⌊η ×|V|⌋ elements at random from velocityV to yield a new velocity. Here
⌊x⌋ for x ∈ R

+ denotes the largestν ∈ N for which x ≥ ν . The operandη is restricted to
values in[0,1] since sets can not have a negative number of elements and setsdo not allow
multiple instances of the same element. Note that 0⊗V = /0 and 1⊗V =V.

The addition of a velocity and a position, X⊞V, is a mapping⊞ : P(U)×P({+,−}×U)→ P(U)
that takes a position and a velocity and yields a position. Recall that a velocity is itself a
function that maps a position to a new position. The operator⊞ is defined as the action of
applying the velocity functionV to the positionX:

X⊞V =V(X) (13)

This is further specified as applying the full set of operation pairsV = {v1, . . .vn} to the
positionX one-by-one and, for each operation pair, one element is added to X or removed
from X.

Section 3.1 referred to two special mechanisms to remove elements fromX(t) that are
in X(t)∩Y(t)∩Ŷ(t) and to add elements toX(t) from outside ofX(t)∪Y(t)∪Ŷ(t). These
mechanisms are explained below.

The removal of elementsin X(t)∩Y(t)∩ Ŷ(t) from a positionX(t) uses the operator⊙−.
Denotedβ ⊙− S, whereS is shorthand for the set of elementsX(t)∩Y(t)∩ Ŷ(t), this is
a mapping⊙− : [0, |S|]×P(U)→ P({+,−}×U), which takes a scalar and a set of el-
ements, and yields a velocity. The operator⊙− is implemented asrandomly selectinga
number of elements determined byβ from S to remove fromX(t) and constructs operation
pairs that are deletions:

β ⊙− S= {−}× (
Nβ ,S
|S| ⊗S) (14)

12 Joost Langeveld, Andries P. Engelbrecht

The number of elements that are selected fromS is denoted byNβ ,S, and defined as

Nβ ,S= min{|S|,⌊β⌋+1I{r<β−⌊β⌋}} (15)

for a random numberr ∼ U(0,1). Here 1I{bool} is the indicator function with 1I{bool} = 1
if bool= true and 1I{bool} = 0 if bool= f alse. Thus the number of elements selected is at
least⌊β⌋, and the fractional remainderβ −⌊β⌋ is the probability of the number of elements
selected being one larger. The number of elements is also capped at the number of elements
in S, which in turn means thatβ is also capped at the number of elements inS.

The choice is made torandomlyselect elements fromS instead of spending more com-
putational effort to select good candidate elements for removal fromX(t). Note that the aim
of this operation is to allow exploration of the entire search space. It will likely lead to a
worse objective function value at present, as the element removed fromX(t) is likely of
“good quality” given that it is included in both the personalbest and the neighborhood best.
The assumption is that any extra effort to select a better element to remove fromX(t) will
yield only a limited return above that from random selection.

The addition of elementsoutside ofX(t)∪Y(t)∪ Ŷ(t) to X(t) uses the operator⊙+. De-
notedβ ⊙+ A, whereA is shorthand for the set of elementsU\

(
X(t)∪Y(t)∪Ŷ(t)

)
, this is

a mapping⊙+ : [0, |A|]×P(U)→ P({+,−}×U), which takes a scalar and a set of el-
ements, and yields a velocity. The operator⊙+ is implemented to usemarginal objective
functioninformation for the positionX(t) to choose which elements fromA to add toX(t),
and constructs operation pairs that are additions. The marginal objective function value of
elemente for a particle with positionX(t) is defined as the objective function value of a
new particle with position equal toX(t) plus e, that is,X(t)∪{e}. A k-tournament selection
algorithm incorporating this marginal objective functioninformation is used to select ele-
ments to add toX(t) and is outlined in algorithm 2. The implementation of the operator⊙+

thus depends on the parameterk used in the tournament selection, and is denoted as⊙+
k .

The operator⊙+
k thus is defined as

β ⊙+
k A= {+}×k-Tournament Selection(A,Nβ ,A) (16)

whereNβ ,A, the number of elements to be added toX(t), is defined as in equation (15). The
number of elements to be added is capped at the number of elements in A, which in turn
means thatβ is also capped at the number of elements inA.

Algorithm 2: k-Tournament Selection(A,N)
SetVtemp= /0 ;
for n= 1, . . . ,N do

for j = 1, . . . ,k do
Randomly selectej from A;
Setscorej = f

(
X(t)∪{ej}

)
;

end
Selectm∈ {1, . . . ,k} such thatscorem = maxj{scorej};
SetVtemp=Vtemp⊕ ({+}×em);

end
ReturnVtemp;

In summary,β ⊙+
k A means selectingNβ ,A, possibly overlapping, elements{ej}

Nβ ,A
j=1 ,

where each elementej in turn is the best performing in a tournament ofk elements selected

Set-Based Particle Swarm Optimization applied to the Multidimensional Knapsack Problem 13

randomly fromA. The best performing elemente′ here means maximizing the objective
function value ofXi ∪{e′}. Note that a higher value ofβ leads to more elements fromA
being added to the positionX(t), while a higher value ofk means the algorithm is more
greedy in selecting which elements to add.

Extra computational effort is exerted in SBPSO by using thek-tournament selection
to find a “good“ element to add toX(t): an additionalk objective function evaluations are
required. This is done because the setA will, in general, contain many elements that lead
to a worse objective function value when added toX(t). Good elements to add toX(t) will
thus tend to be rare. The assumption made in this paper is thatthe extra effort to locate these
good elements is worth the extra objective function evaluations.

3.3 Update Equations

Using the redefined operators from section 3.2, the velocityupdate equation for SBPSO
used in this paper is

Vi(t+1) = c1r1⊗
(
Yi(t)⊖Xi(t)

)
⊕ c2r2⊗

(
Ŷi(t)⊖Xi(t)

)

⊕
(
c3r3⊙

+
k Ai(t)

)
⊕

(
c4r4⊙

− Si(t)
)

(17)

whereAi(t)=U\
(
Xi(t)∪Yi(t)∪Ŷi(t)

)
andSi(t)=Xi(t)∩Yi(t)∩Ŷi(t). Parameters arec1,c2∈

[0,1], c3,c4 ∈ [0, |U |], and the random numbersr i are all independently drawn from the uni-
form distribution on(0,1). Besides the additional velocity components involving⊙− and
⊙+

k , one more difference between equation (17) for SBPSO and equation (4) is the absence
of an inertia term. This can be explained by looking at the position update equation for
SBPSO:

Xi(t +1) = Xi(t)⊞Vi(t +1) (18)

The velocityVi(t +1) is a set of operation pairs{(±,e1), . . . ,(±,em)} that is fully applied
to the positionXi(t), where each operation pair is an addition or a deletion. Oncean element
e has been added to the positionXi(t), adding the element again has no impact as a set can
only contain a single instance of each element. Therefore, once the velocity has been applied
to Xi(t), each operation pair inVi(t +1) will have no impact if applied toXi(t +1). Hence,
there is no need to include part ofVi(t) in Vi(t+1), which is what the inertia term would do.
The SBPSO algorithm is given in algorithm 3.

Note that the order in which the operation pairs fromVi(t+1) are applied toXi(t) is not
relevant, because the individual additions and deletionsvi, j in Vi(t +1) from equation (17)
can overlap, but cannotcancel each other out. In other words, there can not be aj1 6= j2 such
thatvi, j1 = (+,e) andvi, j2 = (−,e) are two operation pairs inVi(t+1) for the same element
e. To illustrate, assume thatVi(t+1) contains both(+,e) and(−,e) for some elemente:

– Since attraction towardsYi(t) or Ŷi(t) can only create deletions for elements that are in
Xi(t)\

(
Yi(t)∪ Ŷi(t)

)
, while the⊙− operation can only create deletions for elements in

Si(t), the presence of deletion(−,e) in Vi(t +1) implies thate∈ Xi(t).
– Since attraction towardsYi(t) or Ŷi(t) can only create additions for elements that are in

Xi(t)\
(
Yi(t)∪ Ŷi(t)

)
, while the⊙+

k operation can only create additions for elements in
Ai(t), the presence of addition(+,e) in Vi(t+1) implies thate /∈ Xi(t) or e∈

(
U\Xi(t)

)
.

– Fore it must then hold thate∈ Xi(t)∩
(
U\Xi(t)

)
= /0. Therefore, such anecan not exist

in Vi(t +1).

14 Joost Langeveld, Andries P. Engelbrecht

Algorithm 3: Set-Based PSO algorithm (SBPSO) for Maximization Problems

SetN equal to the number of particles in the swarm;
for i = 1, . . . ,N do

Initialize Xi as random subset ofU ;
Initialize Vi = /0 ;
Calculatef (Xi) ;
Initialize f (Yi) =−∞ ;

Initialize f (Ŷi) =−∞ ;
end
while stopping condition is falsedo

for i = 1, . . . ,N do
// set the personal best position ;
if f (Xi)> f (Yi) then

Yi = Xi ;
end
// set the neighborhood best position ;
for all neighbors l of particle ido

if (f (Yi)> f (Ŷl) then
Ŷl =Yi ;

end
end

end
for i = 1, . . . ,N do

UpdateVi according to equation (17);
UpdateXi according to equation (18);
Calculatef (Xi);

end
end

4 Multidimensional Knapsack Problem

The multidimensional knapsack problem (MKP), also called the multidimensional zero-one
knapsack or rucksack problem, is a well-known NP-complete optimization problem (Gens
and Levner, 1980). The aim is to maximize the total value of all items to be put in a knapsack,

max
n

∑
i=1

vixi (19)

subject to the zero-one constraints

xi ∈ {0,1}, ∀i ∈ {1, . . . ,n} (20)

and weight constraints
n

∑
i=1

wi, jxi ≤Cj , ∀ j ∈ {1, . . . ,m} (21)

There aren items in total, each with valuevi . The binary variablexi indicates whether the
item i is present in the knapsack or not. The problem hasm weight constraints, where for
each constraintj the itemi has a weightwi, j and for each constraint the total weight∑i wi, j xi

may not exceed the capacityCj . In the remainder of this paper, all mention of the MKP’s
constraints refer to the weight constraints, as the zero-one constraints are considered part of
the definition of the MKP as a class of problems.

Set-Based Particle Swarm Optimization applied to the Multidimensional Knapsack Problem 15

A well-formulated multidimensional knapsack problem alsoadheres to the value con-
straints

vi > 0, i ∀i ∈ {1, . . . ,n} (22)

and constraints on the total weight

wi, j ≤Cj <
n

∑
i=1

wi, j , ∀i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m} (23)

Note that any zero-one integer problem with non-negative coefficients can be formulated as
a MKP. The first mention of such problems was with regards to capital budgeting (Lorie and
Savage, 1955). A recent overview of exact methods and analytical approximations for the
MKP can be found in (Puchinger et al., 2010). Population based optimization algorithms
have also been applied to the MKP including genetic algorithms (GA) (Chu and Beasley,
1998; Khuri et al., 1994), ant colony optimization (Kong et al., 2008), as well as PSO. Kong
and Tian (2006) used the binary PSO which includes a heuristic repair operator to avoid
infeasible solutions, while Hembecker et al. (2007) used penalty functions to steer the search
towards solutions that satisfy the MKP’s constraints. Labed et al. (2011) proposed a hybrid
GA binary PSO algorithm that includes a crossover operator and a separate repair operator
that modifies positions to represent feasible solutions to the MKP. Wang et al. (2008) used
the MKP to compare the binary PSO to two other discrete PSO variants, namely MBPSO
and PBPSO.

Recent studies into the MKP frequently use the benchmark problems mentioned in Chu
and Beasley (1998) to compare the performance of algorithms. These problems that are
available on-line at the Operations Research Library (ORLib) athttp://people.brunel.
ac.uk/~mastjjb/jeb/orlib/mknapinfo.html, are divided into two sets: small MKP
and large MKP. The small MKP is a collection of 55 problems that have been mentioned
in literature prior to the paper by Chu and Beasley (1998). The large MKP is a collection
of 270 randomly generated MKPs with number of itemsn = 100,250, or 500, number of
constraintsm= 5,10, or 30, and tightness ratio 0.25,0.50, or 0.75. The tightness ratio,
denotedr , was used in the construction of the problems as follows: first the weightswi, j and
valuesvi were chosen randomly. Then the capacity constraint variablesCj in equation (21)
were set according to

Cj = r
m

∑
i=1

wi, j , ∀ j ∈ {1, . . . ,m} (24)

The three choices for each of the three parametersn,m, andr yield 27 different problem
specifications. For each problem specification, ten probleminstances are included in the
problem set.

In general, these three problem parameters have the following effects on the MKP search
space:

– a larger number of items,n, increases the search space and hence makes the problem of
finding the optimum harder,

– a larger number of constraints,m, makes the feasible part of the search space smaller,
and

– a larger tightness ratio,r , means that the weight constraints arelessrestrictive and that
the feasible part of the search space becomes larger.

16 Joost Langeveld, Andries P. Engelbrecht

For the small MKPs, the optimal solutions are known, whilst this is not the case for all of
the large MKPs. To be able to compare results for the large MKPs, Chu and Beasley (1998)
obtained an upper bound for the objective function value by solving the linear programming
(LP) relaxation of the large MKPs. The LP relaxation of the problem changes the zero-one
constraint in equation (20) onxi from an integer constraint to a continuous constraint:

xi ∈ [0,1], ∀i ∈ {1, . . . ,n} (25)

thereby making the problemeasierto solve and no longer NP-hard. The LP relaxed version
of the MKP can efficiently be solved using standard linear programming solvers (Chu and
Beasley, 1998).

5 Experimental Procedure

This section describes the experimental procedure followed for the purposes of this study.
Section 5.1 describes the configuration of the algorithms used in the comparisons with
SBPSO as well as the configuration of SBPSO itself. The problem sets with small and large
MKPs mentioned in section 4 are then split into a set of tuningproblems and a set of test
problems, and the objective function is explicitly stated.Section 5.2 gives an explanation
of the procedure used to tune the parameters of each algorithm, and provides the parameter
values obtained from the tuning process.

5.1 Algorithm Configurations

Algorithms: The proposed SBPSO algorithm is compared to three other PSO algorithms:
BPSO by Kennedy and Eberhart (1997), MBPSO by Shen et al. (2004), and PBPSO by
Zhen et al. (2008). Refer to section 2.3 for detailed descriptions of these algorithms. These
algorithms were chosen because they do no incorporate any domain specific methods such
as a repair operator.

For BPSO, MBPSO, and PBPSO the candidate solution is directly represented by bi-
nary-valued particle positions: the bit values are directly interpreted as thexi values in equa-
tion (19). That is, a particle indicates the assignment of items to the knapsack. For SBPSO,
in order to evaluate a solution, thexi from equation (19) are set to 1 for all items that are
included in the particle position set, and set to 0 for all items that are not.

Swarm size:An important parameter in PSO algorithms is the number of particles in the
swarm. While the optimal number of particles for a specific algorithm-problem pair can be
problem dependent, this study used the same number of particles for all algorithms and for
all problems in each problem set: for small MKPs the number ofparticles was set to 25,
while for large MKPs the number of particles was set to 50.

Topologies: Each of the four PSO algorithms is used with each of the following three
topologies: star, ring, and Von Neumann. This results in 12 algorithm-topology pairs. The
pairs with a star topology are referred to as global best PSO shortened to GB in the tables in
the remainder of this document. Similarly, the pairs with a ring topology are referred to as
local best PSO shortened to LB, and the pairs with a Von Neumann topology are referred to
as VN in the tables.

Set-Based Particle Swarm Optimization applied to the Multidimensional Knapsack Problem 17

Particles organized in a swarm topology are considered connected if they are in each
other’s neighborhood. Particles that are not in each other’s neighborhood are connected in-
directly due to overlap between neighborhoods. If, for example, particlei is not connected
to particle j, but the two particles share a common neighbork, then the pathi −k− j con-
nects particlesi and j in the topology. The distance between two particles in a topology is
determined by theshortestpath that connects the two particles. For particlesi and j from
the example, thei−k− j path is the shortest path, and the distance betweeni and j thus is 2.
The average distance across all possible pairs in a swarm, called theaverage shortest path
length, is a measure of how connected the swarm is.

A swarm with the star topology always has an average shortestpath length of 1, as each
particle is in each other particle’s neighborhood. For the Von Neumann topology, the average
shortest path length depends on the number of particles in the swarm. For swarms of 25 and
50 particles, the Von Neumann topology leads to average shortest path lengths of 2.5 and
3.5 respectively. For the ring topology, the average shortest path length depends not only on
the swarm size, but also on the neighborhood size. A neighborhood size of 4 was chosen for
the experiments of this study, such that the swarms with a ring topology are less connected
than those using either of the other two topologies. This resulted in average shortest path
lengths for swarms with the ring topology of 3.5 for a swarm of25 particles, and 6.6 for a
swarm of 50 particles.

Therefore, in the experiments conducted, swarms with the star topology were the most
connected, swarms with the ring topology were the least connected, and swarms with the
Von Neumann topology had an intermediate level of connectedness.

Problem set:The MKPs used in the experiments consist of two main problem sets: 55
small MKPs and 270 large MKPs as described in section 4. The problem name reflects the
filename from the ORLib source the problem comes from, plus a number indicating which
problem from that file it refers to. For example, “mknap2-3” is the third problem found in
the filemknap2.txt. The two sets of problems were each further split into a tuning set used
to find the best parameters for the algorithms, and a test set that is used to compare the
performance of the tuned algorithms.

For the small MKPs, a tuning set of 15 problems was manually chosen. The remaining
40 problems formed the test set. Which small MKPs were selected for the tuning set and
which for the test set is summarized in table 1. The tuning setwas chosen to reflect the
range of problem sizes in the entire set of 55 problems, with the number of variablesn
ranging from 20 to 90, and the number of constraintsm ranging from 2 to 30.

The three smallest problems (mknap1-1, mknap1-2, mknap1-3) were left out of the tun-
ing set on purpose, as the search spaces for these problems are small (26 = 64, 210 = 1024,
and 215 = 32768 possible solutions respectively) and hence the problems are quite simple
to solve. For simple problems, little difference is to be expected in the performance of the
algorithm control parameters, so the problems yield littleinformation on which parameters
are best.

For the large MKP, the total set of 270 problems consists of 27subsets of problems,
each of which contains 10 random instances for a given combination of problem parameters
n,m, and tightness ratior . For the tuning set, one problem was selected at random from
each of the 27 subsets, and the remaining 243 problems formedthe test set. The 27 tuning
problems, each with the number of variables, the number of constraints, and tightness ratios
are summarized in table 2.

18 Joost Langeveld, Andries P. Engelbrecht

Table 1 Split of 55 small MKPs into 15 tuning and 40 test problems

Tuning Set Test Set
problem n m problem n m problem n m problem n m

mknap1-4 20 10 mknap1-1 6 10 mknap2-23 50 5 mknap2-42 34 4
mknap1-5 28 10 mknap1-2 10 10 mknap2-24 60 5 mknap2-43 18 2
mknap2-10 71 2 mknap1-3 15 10 mknap2-25 60 5 mknap2-44 20 10
mknap2-15 30 5 mknap1-6 39 5 mknap2-27 60 5 mknap2-46 37 30
mknap2-17 40 5 mknap1-7 50 5 mknap2-29 70 5 mknap2-47 28 4
mknap2-2 60 30 mknap2-1 60 30 mknap2-3 24 2 mknap2-5 24 2
mknap2-20 50 5 mknap2-11 30 5 mknap2-30 70 5 mknap2-6 24 2
mknap2-26 60 5 mknap2-12 30 5 mknap2-31 70 5 mknap2-7 24 2
mknap2-28 70 5 mknap2-13 30 5 mknap2-32 80 5 mknap2-8 24 2
mknap2-33 80 5 mknap2-14 30 5 mknap2-34 80 5 mknap2-9 71 2
mknap2-39 90 5 mknap2-16 40 5 mknap2-35 80 5
mknap2-4 24 2 mknap2-18 40 5 mknap2-36 90 5
mknap2-41 27 4 mknap2-19 40 5 mknap2-37 90 5
mknap2-45 40 30 mknap2-21 50 5 mknap2-38 90 5
mknap2-48 35 4 mknap2-22 50 5 mknap2-40 90 5

Table 2 Large MKPs selected for tuning

problem n m r problem n m r problem n m r

mknapcb1-6 100 5 0.25 mknapcb4-3 250 5 0.25 mknapcb7-1 500 5 0.25
mknapcb1-17 100 5 0.50 mknapcb4-12 250 5 0.50 mknapcb7-19 500 5 0.50
mknapcb1-27 100 5 0.75 mknapcb4-27 250 5 0.75 mknapcb7-30 500 5 0.75

mknapcb2-7 100 10 0.25 mknapcb5-7 250 10 0.25 mknapcb8-10 500 10 0.25
mknapcb2-11 100 10 0.50 mknapcb5-20 250 10 0.50 mknapcb8-16 500 10 0.50
mknapcb2-22 100 10 0.75 mknapcb5-21 250 10 0.75 mknapcb8-26 500 10 0.75

mknapcb3-3 100 30 0.25 mknapcb6-7 250 30 0.25 mknapcb9-8 500 30 0.25
mknapcb3-20 100 30 0.50 mknapcb6-16 250 30 0.50 mknapcb9-18 500 30 0.50
mknapcb3-24 100 30 0.75 mknapcb6-23 250 30 0.75 mknapcb9-26 500 30 0.75

Objective function:The MKP is defined as a maximization problem. The objective function
used was the same for all the PSO algorithms. For particles that represent a feasible solution
to the MKP, that is, which satisfy allm constraints in equation (21), the objective function
value was set equal to the sum of the values of the items in the particle. Particles that do
not represent a feasible solution because they violate at least one of the constraints in equa-
tion (21), were assigned a objective function value of minusinfinity. Since a particle uses
its position to represent a solution, the objective function value of a particle is computed as
f
(
X(t)

)
, defined as

f
(
X(t)

)
=





n

∑
i=1

vi xi if ∀ j ∈ {1, . . . ,m} :
n

∑
i=1

wi, jxi ≤Cj

−∞ if ∃ j ∈ {1, . . . ,m} :
n

∑
i=1

wi, jxi >Cj

(26)

In order to facilitate a comparison of results across different problems, the results in
section 7 do not show the raw objective function values. For the small MKPs, the error
between the best objective function value found and the known optimum is shown. Since the
optimal solutions are not known for all the large MKPs, for these problems the error between

Set-Based Particle Swarm Optimization applied to the Multidimensional Knapsack Problem 19

the best found objective function value and the LP relaxation bound is shown instead. The
LP relaxation bounds were obtained using the Java wrapper oflp solve 5.5, which is based
on the revised simplex method2.

Initialization: Particles were initialized randomly for each algorithm-topology pair. For the
BPSO, MBPSO, and PBPSO algorithms, the positions were initialized randomly in{0,1}n,
while the velocities for BPSO and PBPSO were initialized randomly in [−1,1]n, following
(Eberhart and Shi, 2001). For PBPSO the continuous-valued positions,x′ i(0), were initial-
ized as0, to ensure that no initial bias was included in the discrete-valued positions,xi(0).
For the SBPSO algorithm, the positions were randomly initialized, such that each element
had a 0.5 chance of being included, and all velocities were initialized as an empty set.

Stopping conditions:For each independent run of an algorithm, the same stopping condi-
tions were applied:

1. the best objective function value in the swarm equaled theknown optimum (in case of
small MKPs) or equaled the LP relaxed bound (in case of large MKPs),

2. the best objective function value in the swarm had not improved for 2500 iterations, or
3. more than 5000 iterations had passed.

Number of independent runs:PSO is a stochastic optimization algorithm, and thus individ-
ual runs of the algorithm can have different results. Hence,multiple independent runs of the
algorithms have to be executed and the average performance reported. For the small MKPs,
30 independent runs were used for tuning the algorithms and 100 independent runs were
used to ascertain the average performance on the test problems. For the large MKPs, 30 in-
dependent runs were used both for tuning the algorithms and to determine the performance
on the test problems.

5.2 Control Parameter Tuning

This section describes how each of the 12 algorithm-topology pairs was tuned on both
problem sets separately. Section 5.2.1 describes how the parameter tuning was performed.
Sections 5.2.2 and 5.2.3 summarize the resulting best control parameter values for each
algorithm-topology pair.

5.2.1 Parameter Tuning Process

While a number of efficient parameter tuning approaches exist, for example, F-Race (Bi-
rattari et al., 2002), the tuning process described in this section is more appropriate for the
sensitivity analysis conducted in Section 6.

For each of the 12 algorithm-topology pairs, a similar process was used to tune the
algorithm’s parameters, although the number of control parameters differed: MBPSO has
only two parameters, while BPSO has four, PBPSO has six, and SBPSO has five parameters.
Each algorithm-topology was tuned twice: once on the tuningset of small MKPs and once
on the large MKPs. The end result of the parameter tuning thuswas a total of 24 tuned
parameter combinations.

2 M. Berkelaar, K. Eikland, P. Notebaert,lpsolve version 5.5, http://lpsolve.sourceforge.net/5.5/

20 Joost Langeveld, Andries P. Engelbrecht

Table 3 lists the ranges within which each parameter for eachof the PSO algorithms was
tuned. For each of the four PSO algorithms, 128 parameter combinations were generated
that span the parameter space. Only static control parameters were considered. In order
to generate the parameter combinations in a manner that ensures that the parameter space
was covered well, sequences of Sobol pseudo-random numberswere used according to the
method proposed by Franken (2009).

Table 3 Parameter ranges used in tuning the four PSO algorithms

algorithm BPSO PBPSO algorithm MBPSO SBPSO

ω [0.50, 0.99] [0.50, 0.99] pstat [0.00, 1.00]
c1 [0.00, 5.00] [0.00, 5.00] preset [0.00, 1.00]
c2 [0.00, 5.00] [0.00, 5.00] c1 [0.00, 1.00]

Vmax [1.00, 10.00] [1.00, 10.00] c2 [0.00, 1.00]
R [1.00, 100.00] c3 [0.50, 5.00]

pmut [0.00, 0.50] c4 [0.50, 5.00]
k {1, . . . ,9}

Even though the number of dimensions of the parameter space differs depending on the
PSO algorithm, the same number of parameter combinations was used in tuning each of the
algorithm-topology pairs on each of the problem sets. Hence, for the MBPSO algorithm,
which has only two parameters, the parameter combinations provided a denser covering of
the (smaller) parameter space than for the other PSO algorithms which each has at least four
parameters.

Note that the tuning process used the same parameter combinations for each of the PSO
algorithms for each of the three topologies, and on both problem sets. Thus, for example,
in tuning BPSO using a star topology on the small MKPs, the same 128 parameter com-
binations were considered as in tuning BPSO using a Von Neumann topology on the large
MKPs.

The next step in the tuning process was to determine the best parameter combination for
each of the algorithm-topology pairs on each of the problem sets. To do this, 30 independent
runs were conducted for each of the parameter combinations,on all the tuning problems in
the problem set. For each problem, the average of the best objective function value achieved
by each of the 128 parameter combinations over the 30 runs wasdetermined. The parameter
combinations were ranked in order of the average objective function value for each prob-
lem separately. Next, theaverage rankwas determined for each parameter combination by
averaging over all the problems. The parameter combinationwith the lowest average rank
was deemed best and chosen as the tuning result. This method weighed the contribution of
each tuning problem equally, and by using the rank of the objective function value instead of
the objective function itself, a fair comparison was made using problems that have different
optima and different search landscapes.

The results of tuning the 12 algorithm-topology pairs on thesmall MKPs and the large
MKPs are discussed in sections 5.2.2 and 5.2.3 respectively.

5.2.2 Small Multidimensional Knapsack Problems

Table 4 summarizes the best parameters found using the parameter tuning procedure de-
scribed in section 5.2.1, for each of the algorithm-topology pairs on the small MKPs.

Set-Based Particle Swarm Optimization applied to the Multidimensional Knapsack Problem 21

Table 4 Tuned parameters for small MKPs

algorithm BPSO PBPSO
topology GB LB VN GB LB VN

ω 0.9211 0.9594 0.9709 0.6876 0.6455 0.6455
c1 4.6094 2.8125 4.4141 0.7422 4.2969 4.2969
c2 1.3281 1.5625 1.9922 0.5078 4.7656 4.7656

Vmax 5.9219 7.1875 5.1484 3.3203 4.2344 4.2344
R 37.352 64.422 64.422

pmut 0.0742 0.0391 0.0391

algorithm MBPSO SBPSO
topology GB LB VN GB LB VN

pstat 0.4844 0.4766 0.4766
preset 0.3906 0.3203 0.3203
c1 0.9297 0.5156 0.5156
c2 0.2266 0.4531 0.4531
c3 1.3086 1.8359 1.8359
c4 2.1523 2.2578 2.2578
k 7 7 7

For BPSO, the attraction to the neighborhood best particle,c1, increased as the swarm
topology was less connected: highest for gbest BPSO, lowestfor lbest BPSO. The attraction
to the personal best,c2, ranged from 1.3 for the star topology to 2.0 for the Von Neumann
topology, and was clearly smaller than the values forc1. The inertia weightω was high for
each of the three topologies, as was theVmax, which was above 5 in all cases.

For PBPSO, the best parameter value combinations for lbest PBPSO and the Von Neu-
mann topology were the same, but the best parameter values found for gbest PBPSO were
quite different, mainly with much lowerc1 andc2 values. Note that, compared to BPSO, the
inertia weight for the best parameter value combinations for PBPSO was much smaller.

For MBPSO, the three values found for the static probability, pstat, were similar and
comparable to the value of 0.5 used by the original authors, Shen et al. (2004). The value
of presetof 32% to 39% was, however, more than triple the 10% used by Shen et al. (2004),
indicating that a high proportion of random resets was beneficial.

For SBPSO, the parameter value combinations for the ring andVon Neumann topologies
were the same, while for the star topology a different parameter value combination was
optimal with a much higherc1 and lowerc2. Section 6 gives a detailed analysis of the
sensitivity of SBPSO’s parameters using the tuning results.

5.2.3 Large Multidimensional Knapsack Problems

Table 5 summarizes the best parameter values found using theparameter tuning procedure
described in section 5.2 for each of the algorithm-topologypairs on the large MKPs.

For BPSO, the best parameter value combinations found on thelarge MKPs were exactly
the same for each of the three topologies, characterized by ahigh inertia weightω , high
Vmax andc2 > c1. The latter inequality indicates a stronger attraction to the neighborhood
best position than to the personal best position, which is the reverse of the results found for
BPSO on the small MKPs, wherec1 > c2.

For PBPSO, the ring and the Von Neumann topologies yielded the same best parameter
value combination. For all three topologies, the values found for the inertia weight,ω , were

22 Joost Langeveld, Andries P. Engelbrecht

Table 5 Tuned parameters for large MKPs

algorithm BPSO PBPSO
topology GB LB VN GB LB VN

ω 0.9785 0.9785 0.9785 0.6263 0.7373 0.7373
c1 2.4609 2.4609 2.4609 3.8672 2.7344 2.7344
c2 4.1016 4.1016 4.1016 3.6328 1.9531 1.9531

Vmax 9.2266 9.2266 9.2266 8.9453 7.0469 7.0469
R 74.477 82.984 82.984

pmut 0.0117 0.0078 0.0078

algorithm MBPSO SBPSO
topology GB LB VN GB LB VN

pstat 0.4531 0.2266 0.3828
preset 0.1094 0.0703 0.1016
c1 0.9297 0.3672 0.3672
c2 0.2266 0.9141 0.9141
c3 1.3086 1.5898 1.5898
c4 2.1523 1.3086 1.3086
k 7 3 3

similar. These values are also very similar to the corresponding values found during tuning
on the small MKPs: a relative difference of only 10%-14% was seen. For all three topologies,
the parameter values found forVmax, R, and pmut showed some differences between those
for gbest PBPSO and the other two topologies. But these differences are much smaller than
the large difference for these parameter values compared tothe tuning results on the small
MKPs. On the large MKPs, the best values forVmax andRwere much higher. Also, the values
for pmut were lower, indicating that having many random mutations was less helpful on the
large MKPs. For the gbest PBPSO, the best values forc1 andc2 resulted in much higher
values than those found for the small MKPs, while lbest PBPSOand the Von Neumann
topology yielded lower values than on the small MKPs.

For MBPSO there was some variation in the best values ofpstat compared to the values
found on the small MKPs: a lower value was found on the large MKPs for both the gbest
and lbest MBPSO, while for the Von Neumann topology,pstat was higher on the large MKP.
For preset, the best values found were close to the 10% used by Shen et al.(2004).

For SBPSO, the best parameter values found for gbest SBPSO were exactly the same
as those found on the small MKPs. The best parameter values for lbest SBPSO and the
Von Neumann topology matched, but were quite different thanthose found on the small
MKP: the attraction to the personal best,c2, was much higher for the larger MKPs, while
the attraction to the neighborhood best,c1, was lower.

6 Sensitivity Analysis of Set-Based Particle Swarm Optimization

This section analyzes the sensitivity of SBPSO to differentvalues of its control parameters.
Such sensitivity analysis is important, as little is yet known about what are good values for
its control parameters.

The sensitivity analysis procedure is summarized in section 6.1, followed by the results
for each of the three topologies, star, ring with neighborhood size of 4, and Von Neumann
in sections 6.2, 6.3 and 6.4 respectively. A discussion of the relative performance of SBPSO
parameters is given in section 6.5.

Set-Based Particle Swarm Optimization applied to the Multidimensional Knapsack Problem 23

6.1 Sensitivity Analysis Procedure

The sensitivity of the performance of SBPSO to each individual control parameter was in-
vestigated using cumulative histograms. For each individual parameter, the horizontal axis
of the histogram consists of bins which divide the parameterrange into equally sized sub-
ranges. The vertical axis displays the number of parameter value combinations that fall in
each bin, split into four groups based on the performance of the parameter value combina-
tion in the tuning process. If a particular bin for an individual parameter contains a large
number of parameter combinations that are considered “good”, this implies that the sub-
range for the individual parameter associated with the bin is good. This section describes
how the histograms were constructed, resulting in a histogram for each of the three SBPSO-
topology combinations, for each of the five control parameters. In total, 15 histograms were
generated.

Note that a good parameter value combination for SBPSO requires that all five param-
eters individually have a good or at least reasonable value:if even one parameter has a bad
value, the parameter value combination as a whole performs badly. The consequence of this
is that, if a specific parameter value combination performs badly, this gives little information
on whether theindividual parameter values in that combination are good or bad: any sin-
gle individual parameter value could be bad, or all values could be bad. Therefore, it is the
parameter value combinations that perform wellas a wholewhich contain information on
the individual parameters. Hence, the sensitivity analysis focused on the 25% of parameter
value combinations that performed best in the tuning process.

The performance of a parameter value combination was set equal to its average rank
on the small MKPs and the large MKPs tuning sets combined, with each of the two tuning
sets weighed equally. The full procedure to construct the histograms used in the following
sections consisted of the following steps:

1. For each parameter value combination, the performance was set equal to 0.5 times the
average rank on the small MKPs tuning set plus 0.5 times the average rank on the large
MKPs tuning set.

2. The parameter value combinations were then themselves ranked based on the perfor-
mance calculated in step 1.

3. The ranked parameter value combinations were split into quartiles, labeled A for the
best 25%, B and C for the next two quartiles respectively, andD for the worst 25% of
parameter value combinations3.

4. Then, for each individual parameter, the parameter rangewas split into bins:
(a) parameter values forc1 andc2 took values in the range[0.0,1.0], with the values

grouped into the 10 bins,[0.0,0.1), [0.1,0.2), . . . , [0.9,1.0];
(b) parameter values forc3 andc4 took values in the range[0.5,5.0], with the values

grouped into the nine bins,[0.5,1.0), [1.0,1.5), . . . , [4.5,5.0]; and
(c) parameter values fork took values in the range 1, . . . ,9, with the values grouped into

nine bins containing one value each.
These bins form the horizontal axis of the histogram.

5. For each individual parameter, the parameter value combinations were allocated one by
one to a bin, based on the value of the individual parameter inthe combination. In each
bin, a count was kept of the number of parameter value combinations labeled A, B, C,
and D separately. Consider, for example, the parameter value combination labeled A

3 The parameter value combinations with label A are considered to be good combinations, those with label
B are considered reasonable combinations.

24 Joost Langeveld, Andries P. Engelbrecht

with values(0.95,0.52,2.03,3.17,3). Allocating this parameter value combination to
a bin for the individual parameterc1 entailed increasing by one the count of label A
combinations in the sub-range bin[0.9,1.0].

6. For each individual parameter, a cumulative histogram was then constructed with, for
each bin, the number of label A combinations at the bottom in black, on top of which
the number of label B combinations is given in dark gray, and on top of that the number
of label C combinations in light gray. The remaining parameter value combinations with
label D were stacked at the top and “shown” in white.

7. As a final step, each of the bins was scaled to[0,1] for ease of comparison, as not all
parameter value bins contained the same number of parametervalue combinations4.

Each histogram can be interpreted in the same manner: the black graph at the bottom
shows the distribution of good parameter value combinations (labeled A for the best 25%
combinations) for the individual parameter across the bins. The dark grey graph stacked on
top of the black graph similarly shows the distribution of reasonable-but-not-good parameter
value combinations (labeled B). Because the histogram is stacked, the top of the dark grey
graph is the sum of the fractions of label A and label B combinations in each bin, indicating
the fraction of parameter value combinations that are reasonable or better.

Note that, for the acceleration parametersc1 to c4, the bin labels on the horizontal axis of
the histograms identify thelower boundaryof the sub-range linked to that bin. For example,
the bin forc1 labeled 0.3 identifies the sub-range[0.3,0.4), and the bin forc3 labeled 1.5
identifies the sub-range[1.5,2.0).

6.2 Global Best Set-Based Particle Swarm Optimization

Figure 3 shows the resulting histograms for the parameter sensitivity analysis on the gbest
SBPSO.

For gbest SBPSO, highc1 values led to better results: parameters in the rangec1 ≥ 0.8
covered 20% of the parameter space but accounted for more than 45% of label A (the best
quantile) parameter combinations. For thec1 bins withc1 < 0.4, only a few combinations
were labeled A. For parameterc2, the best results were found in the sub-range[0.3,0.6),
which accounted for half the combinations labeled A. Valuesfor c2 up to 0.3 resulted in bad
performance. Forc3 most of the best parameter values were in the range[1.5,3.5), while
the performance of those four bins was approximately the same. Forc4 parameter values
between 1.5 and 4.0 scored best, with higher bins performing slightly better,except for the
[3.0,3.5) bin. Larger values ofk (indicating that a larger tournament was used to select each
element to add based on marginal objective function values)led to better results, but the
difference across the bins was quite small.

4 Note that, by construction, the parameter value bins for an individual parameter contain almost the same
number of parameter value combinations. For parametersc1 andc2, the 128 combinations were divided over
10 equally sized bins, resulting in 12 or 13 combinations in each bin. For parametersc3, c4, andk, the 128
combinations were divided over nine equally sized bins, resulting in 14 or 15 combinations in each bin. By
dividing the results in each bin by the total number of combinations in the bin, the number of combinations
with each label was changed instead into the fraction of all combinations with that label, so that results are
better comparable across bins.

Set-Based Particle Swarm Optimization applied to the Multidimensional Knapsack Problem 25

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

cu
m

u
la

ti
v

e
sc

o
re

s

parameter value bins - c1

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

cu
m

u
la

ti
v

e
sc

o
re

s

parameter value bins - c2

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

cu
m

u
la

ti
v

e
sc

o
re

s

parameter value bins - c3

(c)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

cu
m

u
la

ti
v

e
sc

o
re

s

parameter value bins - c4

(d)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1 2 3 4 5 6 7 8 9 10

cu
m

u
la

ti
v

e
sc

o
re

s

parameter value bins - k

(e)

Fig. 3 Sensitivity analysis of gbest SBPSO parameters: (a)c1, (b) c2, (c) c3, (d) c4, and (e)k.

6.3 Local Best Set-Based Particle Swarm Optimization

Figure 4 shows the resulting histograms for the parameter sensitivity analysis on the lbest
SBPSO with neighborhood size 4.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

cu
m

u
la

ti
v

e
sc

o
re

s

parameter value bins - c1

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

cu
m

u
la

ti
v

e
sc

o
re

s

parameter value bins - c2

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

cu
m

u
la

ti
v

e
sc

o
re

s

parameter value bins - c3

(c)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

cu
m

u
la

ti
v

e
sc

o
re

s

parameter value bins - c4

(d)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1 2 3 4 5 6 7 8 9 10

cu
m

u
la

ti
v

e
sc

o
re

s

parameter value bins - k

(e)

Fig. 4 Sensitivity analysis of lbest SBPSO parameters: (a)c1, (b) c2, (c) c3, (d) c4, and (e)k.

For lbest SBPSO, highc1 values led to better performance: parameters in the range
c1 ≥ 0.8 covered 20% of the parameter space but accounted for more than 47% of label A
parameter value combinations. Lowc1 values had few results labeled A, especially those for
c1 < 0.3. For parameterc2, the best values were found in the range[0.5,0.6), but all bins with
c2 > 0.4 scored comparably well, while valuesc2 < 0.4 clearly performed worse. The best

26 Joost Langeveld, Andries P. Engelbrecht

c3 parameter values were in the range[1.0,2.5), and performance worsened proportionally
for parameter values further away from 2.0. For c4, the two bins[2.0,2.5) and [3.5,4.0)
clearly had the most good results, while the parameter values between 2.5 and 3.5 scored
worse. Larger values ofk led to more good results, but onlyk = 1 clearly performed worse
based on the fraction of label A combinations. Combining label A and label B contributions
resulted in no significant difference between the performance of each of the nine values of
k: any value ofk led to the same number of reasonable parameter value combinations.

6.4 Von Neumann Set-Based Particle Swarm Optimization

Figure 5 shows the resulting histograms for the parameter sensitivity analysis on SBPSO
with the Von Neumann topology.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

cu
m

u
la

ti
v

e
sc

o
re

s

parameter value bins - c1

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

cu
m

u
la

ti
v

e
sc

o
re

s

parameter value bins - c2

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

cu
m

u
la

ti
v

e
sc

o
re

s

parameter value bins - c3

(c)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

cu
m

u
la

ti
v

e
sc

o
re

s

parameter value bins - c4

(d)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1 2 3 4 5 6 7 8 9 10

cu
m

u
la

ti
v

e
sc

o
re

s

parameter value bins - k

(e)

Fig. 5 Sensitivity analysis of Von Neumann SBPSO parameters: (a)c1, (b) c2, (c) c3, (d) c4, and (e)k.

For SBPSO with the Von Neumann topology, highc1 values led to better performance:
parameters in the rangec1 ≥ 0.8 covered 20% of the parameter space but accounted for more
than 46% of good parameter value combinations. Lowc1 values had few good parameter
value combinations, especially those forc1 < 0.3. For parameterc2, the best results were
found in the range[0.5,0.6), but all bins withc2 > 0.4 scored comparably well. Forc3, the
best parameter values were in the range[1.5,2.5), and performance worsened proportionally
for parameter values further away from 2.0. For c4 the two bins[2.0,2.5) and [3.5,4.0)
clearly had the best results, while the values between 2.5 and 3.5 scored worse. Combining
label A and label B, the valuesc4 < 1.5 scored worse, but all valuesc4 ≥ 1.5 performed at
least reasonably. For parameterk, high values led to a higher proportion of label A results,
but all valuesk≥ 6 scored comparably. Combining label A and label B contributions, there
was no significant difference between the performance of each of the nine values ofk: any
value ofk led to the same number of reasonable parameter value combinations.

Set-Based Particle Swarm Optimization applied to the Multidimensional Knapsack Problem 27

6.5 Relative Importance of Control Parameters

In general, not all control parameters for SBPSO are expected to have the same impact on
performance. For example, the conclusion in sections 6.2 to6.4 for parameterk was that
very little difference was seen between values 1 through 9 with respect to reasonable-to-
good performance. In contrast, for parameterc1, values of 0.8 or higher clearly were an
indication of better performance, while values of 0.3 or lower were detrimental. Therefore,
the performance of the SBPSO algorithm on the MKP is more sensitive to parameterc1, than
to parameterk. This section contains a systematic investigation of the relative sensitivity of
the five SBPSO parameters.

A measure of the distribution of performance of an individual parameter can serve as
an indication of the sensitivity of SBPSO to that parameter.As argued in section 6.1, most
information about the performance of an individual parameter can be gained from looking at
“good” parameter value combinations only, where good was defined as the best 25% (label
A) parameter value combinations. Therefore, for each individual parameter, the distribution
of the label A combinations was used as a proxy for the distribution of the performance.

For each parameter, and each of the three topologies, the distribution of label A combi-
nations across bins was converted to a single measurement using the following steps:

1. For each bin, the fraction of label A parameter value combinations was obtained, and
the fractions themselves were ordered from high to low.

2. The sum of thehighestfive fractions was labeledf ractionhigh.
3. The sum of thelowestfive fractions was labeledf ractionlow.
4. The sensitivity score was then defined as the difference,f ractionhigh− f ractionlow.

Note that for parametersc3, c4, andk, only nine bins were used, such that the bin ranked fifth
was included in bothf ractionhigh and f ractionlow and drops out of the sensitivity score.

The sensitivity score ranges between 0% and 100%. A score of 0% means that all bins
contained exactly the same fraction of label A combinations, indicating that good parameter
value combinations show little to no sensitivity to the individual parameter. A score of 100%
means that at least five bins containedzero label A combinations, but that these combina-
tions are instead concentrated in the remaining bins. For this case, good parameter value
combinations show a high sensitivity to the individual parameter.

Table 6 summarizes the resulting sensitivity score for eachindividual parameter, split by
the topology used, and ranks the sensitivity scores of the five parameters for each topology.

Table 6 Performance distribution per individual control parameter

parameter GB SBPSO rank GB LB SBPSO rank LB VN SBPSO rank VN

c1 58% (1) 52% (2) 48% (2)
c2 31% (4) 25% (4) 16% (5)
c3 53% (2) 62% (1) 65% (1)
c4 41% (3) 39% (3) 33% (3)
k 20% (5) 22% (5) 25% (4)

The sensitivity scores indicated that the performance of SBPSO had the highest sensi-
tivity to control parametersc1 (attraction to the personal best) andc3 (the maximum number
of elements to add to the solution set randomly). Hence, it can be concluded that, when ap-
plying SBPSO to the MKP, these two parameters are the most important to be tuned well.

28 Joost Langeveld, Andries P. Engelbrecht

This result held for all three topologies investigated. Allthree topologies were the least sen-
sitive to parametersc2 (attraction to the neighborhood best) andk (the size of the tournament
used).

Note that an equal amount of tuning effort was expended on allfive SBPSO parameters:
the process described in section 5.2 meant finding the best out of 128 randomly chosen
parameter value combinations spread evenly across the five dimensional parameter space.

7 Results of Experiments

This section describes the results of the experiments conducted using the tuned algorithm-
topology pairs. Section 7.1 explains the statistical procedure used to compare the perfor-
mance of the algorithm-topology pairs. Sections 7.2 and 7.3discuss the results of the exper-
iments on the small and large MKPs respectively.

For both the small MKPs and the large MKPs, the respective results sections each con-
tain five tables comparing the performance of the algorithm-topology pairs: the first three
tables each summarize and compare the performance of the four PSO algorithms using a
single topology. The fourth table compares the results of each of the four PSO algorithms,
across all of the topologies. The final table has more detailed results per problem and com-
pares the four PSO algorithms using each algorithm’s best performing topology.

7.1 Procedure for Statistical Comparison

The algorithm-topology pairs were compared for statistically significant differences in per-
formance using the Iman-Davenport test (ID-test) (Iman andDavenport, 1980), which is a
refinement of the better known Friedman test (Friedman, 1937). The ID-test was used to an-
alyze the performance, measured as the average error5 on each of the test problems, which
is equivalent to using the actual objective function values. The null hypothesis of the ID-test
was that all algorithm-topology pairs had the same median performance. The significance
level α was chosen as 0.05.

In case the ID-test rejected the null-hypotheses and showeda significant difference in
the performance of the algorithm-topology pairs, further post-hoc tests were performed in
order to determine which of the algorithm-topology pairs outperformed the other pairs. The
post-hoc test used was that proposed by Nemenyi (1963), which considers the differences in
the average rank of the performance over all problems.

For the Nemenyi test, theZ-score (the normalized distance in average rank of the average
error) was used as input:

Z =
|R1−R2|√

k (k+1)
6 N

(27)

whereRi is the average rank of the average error for algorithm-topology pairi, k is the total
number of algorithm-topology pairs being compared, andN is the number of test problems
on which the pairs were compared. This standard normally distributed Z-score was then
translated into ap-value.

5 The error is defined as the deviation from the known optimum for the small MKPs, and as the deviation
from the LP relaxation bound for the large MKPs.

Set-Based Particle Swarm Optimization applied to the Multidimensional Knapsack Problem 29

Because the post-hoc tests involved multiple pair-wise comparisons, the significance
level needed to be adjusted in order to maintain equal family-wise error rates. For this pur-
pose the Holm-Bonferroni method (Holm, 1979) was used: the largest difference in average
rank found in the Nemenyi test was compared at significance level α , the second largest
difference was compared at significance levelα/2, and thek-th largest difference was com-
pared at significance levelα/k.

TheZ-score, the associatedp-value, and the Holm-adjustedα are provided in the bot-
tom rows of each table in the following two sections. If ap-value is smaller than the Holmα
mentioned below it, the algorithm-topology pairunderperformedthe best pair in the com-
parison by a statistically significant margin. For the best performing algorithm-topology
pair, the average error score is shown inbold. If the ID-test indicated a statistically signifi-
cant difference in performance, but the post-hoc tests did not indicate a single best pair, all
algorithm-topology pairs that were indistinguishable from the best are shown in bold.

7.2 Small Multidimensional Knapsack Problems

Results for the 40 small MKP test problems are summarized in tables 7, 8, and 9 for the
star, ring, and Von Neumann topologies respectively. Each table lists the average and stan-
dard deviation of the error (the best objective function value found compared to the known
optimum), and the average rank of the errors. This is followed by the average and standard
deviation of the success rate (shortened SR in the tables), and the average rank of the suc-
cess rate. The success rate of an algorithm-topology pair ona single MKP was defined as
the percentage of independent runs that were successful in finding the optimum. The next
two rows in each table shed light on the consistency of the algorithm: the row labeled “#
perfect” reports the number of problems for which all independent runs found the optimum,
and the row labeled “# failure” reports the number of problems for which all independent
runs failed to find the optimum.

For the algorithm-topology comparisons that are reported in each of the tables in this
section, the ID-test indicated that the median performanceshowed statistically significant
differences. Hence, in all five cases, post-hoc tests were conducted and the results are re-
ported at the bottom of the respective tables.

Table 7 shows that the gbest SBPSO outperformed the other three algorithms with a star
topology by a statistically significant margin. If success rate was used as the performance
measure instead of average error, gbest SBPSO also performed best in a statistically signif-
icant manner (p-values andα ’s are not shown). The average success rate of gbest SBPSO
was 82.5%, while the second best performer was gbest PBPSO with an average success rate
of 51.4%.

For all 40 problems, the success rate for the gbest SBPSO exceeded or matched that of
the other three gbest PSO algorithms. Gbest SBPSO was also more consistent than the other
gbest PSO algorithms, as the optimum was found in all independent runs for 21 out of 40
problems. For the other three algorithms, the optimum was found in all independent runs for
at most five problems.

Table 8 shows that the lbest SBPSO outperformed the other three algorithms with a ring
topology by a statistically significant margin. If success rate was used as the performance
measure instead of average error, lbest SBPSO also performed best in a statistically signif-
icant manner. The average success rate of LB SBPSO was 81.9%,while the second best
performer was lbest PBPSO, scoring an average success rate of 63.4%.

30 Joost Langeveld, Andries P. Engelbrecht

Table 7 Summary of small MKP test results for the star topology. Boldface indicates statistically significant
outperformance.

GB BPSO GB MBPSO GB PBPSO GB SBPSO
problem error (rank) error (rank) error (rank) error (rank)

average error 1.117 % (2.80) 1.089 % (3.56) 0.628 % (2.45) 0.444 % (1.19)
stdev error 1.913 % 1.592 % 1.625 % 1.640 %

average SR 42.8 % (2.81) 29.9 % (3.38) 51.4 % (2.50) 82.5 % (1.31)
stdev SR 41.3 % 34.7 % 35.1 % 31.8 %

perfect 5 (2.5) 3 (4) 5 (2.5) 21 (1)
failure 11 (4) 4 (2) 4 (2) 4 (2)

Z-score 5.58 8.21 4.36
p-value 0.0000 0.0000 0.0000
Holm α 0.0250 0.0500 0.0167

Table 8 Summary of small MKP test results for the ring topology. Boldface indicates statistically significant
outperformance.

LB BPSO LB MBPSO LB PBPSO LB SBPSO
problem error (rank) error (rank) error (rank) error (rank)

average error 0.841 % (2.95) 0.639 % (3.35) 0.521 % (2.31) 0.440 % (1.39)
stdev error 1.716 % 1.620 % 1.634 % 1.641 %

average SR 50.3 % (2.93) 45.7 % (3.24) 63.4 % (2.28) 81.9 % (1.56)
stdev SR 43.3 % 37.4 % 36.8 % 33.2 %

perfect 7 (3) 4 (4) 12 (2) 23 (1)
failure 10 (4) 4 (2) 4 (2) 4 (2)

Z-score 5.40 6.79 3.19
p-value 0.0000 0.0000 0.0007
Holm α 0.0250 0.0500 0.0167

For 38 out of 40 problems, the success rate for the lbest SBPSOexceeded or matched
that for the other three lbest PSO algorithms. Lbest SBPSO was also more consistent than
the other local best PSO algorithms, as the optimum was foundin all independent runs
for 23 out of the 40 problems. For the other three algorithms,the optimum was found in
all independent runs for at most 12 problems. Note that the number of problems solved
perfectly by lbest PBPSO (that is, 12) is significantly higher than was the case for the gbest
PBPSO (that is, five).

Table 9 shows that SBPSO with a Von Neumann topology outperformed the other three
PSO algorithms by a statistically significant margin. If success rate was used as the per-
formance measure instead of average error, SBPSO with a Von Neumann topology also
performed best in a statistically significant manner. The average success rate of the Von Neu-
mann SBPSO was 82.7%, while the second best performer was theVon Neumann PBPSO
with an average success rate of 64.8%.

For 37 out of the 40 problems the success rate for SBPSO with the Von Neumann topol-
ogy exceeded or matched that for the other three PSO algorithms. SBPSO was also more
consistent than the other PSO algorithms using the Von Neumann topology, as the opti-
mum was found in all independent runs for 23 out of 40 problems. For the other three
algorithms, the optimum was found in all independent runs for at most 12 problems. The

Set-Based Particle Swarm Optimization applied to the Multidimensional Knapsack Problem 31

Table 9 Summary of small MKP test results for the Von Neumann topology. Bold face indicates statistically
significant outperformance.

VN BPSO VN MBPSO VN PBPSO VN SBPSO
BPSO VN MBPSO VN PBPSO VN SBPSO VN

problem error (rank) error (rank) error (rank) error (rank)

average error 0.609 % (2.81) 0.613 % (3.45) 0.510 % (2.28) 0.439 % (1.46)
stdev error 1.635 % 1.623 % 1.633 % 1.641 %

average SR 56.6 % (2.76) 48.6 % (3.31) 64.8 % (2.36) 82.7 % (1.56)
stdev SR 41.1 % 35.3 % 36.8 % 32.6 %

perfect 9 (3) 4 (4) 12 (2) 25 (1)
failure 6 (4) 4 (2) 4 (2) 4 (2)

Z-score 4.68 6.89 2.84
p-value 0.0000 0.0000 0.0023
Holm α 0.0250 0.0500 0.0167

number of problems solved perfectly by PSO algorithms usingthe Von Neumann topol-
ogy closely matched the results for the corresponding lbestPSO algorithms, with only lbest
BPSO (seven out of 40) scoring differently than BPSO with theVon Neumann topology
(nine out of 40).

Table 10 compares the performance of the three algorithm-topology pairs for each PSO
algorithm separately. For BPSO, MBPSO, and PBPSO, the ID-tests yielded ap-value less
than 0.0001, indicating that a statistically significant difference in performance existed. For
all three algorithms, it was the star topology that underperformed, while no statistically sig-
nificant difference in performance was seen between the ringtopology and the Von Neumann
topology.

For BPSO, the difference in performance between the ring topology and the Von Neu-
mann topology yielded ap-value of 0.1314 using the Nemenyi post-hoc test at a Holmα
of 0.0250. Therefore, although Von Neumann BPSO performed best, the difference in error
with lbest BPSO was not statistically significant. The Von Neumann BPSO also scored best
on the average success rate, the number of problems solved perfectly, and the number of
problems on which the algorithm failed.

For MBPSO, the difference in performance between the ring topology and the Von Neu-
mann topology yielded ap-value of 0.1635 using the Nemenyi post-hoc test at a Holmα of
0.0250. Therefore, although Von Neumann MBPSO performed best, the difference in error
with lbest MBPSO was not statistically significant. There was little difference in the number
of problems which the MBPSO algorithm-topology pairs solved perfectly, and no difference
at all in the number of problems on which they failed. With reference to success rate, gbest
MBPSO clearly underperformed lbest MBPSO and Von Neumann MBPSO.

For PBPSO, the difference in performance between the ring topology and the Von Neu-
mann topology yielded ap-value of 0.1515 using the Nemenyi post-hoc test at a Holmα
of 0.0250. Therefore, although Von Neumann PBPSO performedbest, the difference in er-
ror with lbest PBPSO was not statistically significant. In all listed measures, gbest PBPSO
clearly underperformed, while there was very little difference between lbest PBPSO and the
Von Neumann PBPSO, with tied scores in the number of perfectly solved problems as well
as the number of problems on which they both failed.

For SBPSO, the ID-test yielded ap-value of 0.5134, which indicated that the null hy-
pothesis of equal performance of gbest SBPSO, lbest SBPSO, and Von Neumann SBPSO

32 Joost Langeveld, Andries P. Engelbrecht

Table 10 Summary of small MKP test results compared across topologies. Bold face indicates statistically
significant outperformance.

GB BPSO LB BPSO VN BPSO
Measure error (rank) error (rank) error (rank)

avg error 1.117 % (2.65) 0.841 % (1.80) 0.609 % (1.55)
stdev error 1.913 % 1.716 % 1.635 %
average SR 42.8 % (2.45) 50.3 % (2.03) 56.6 % (1.53)
stdev SR 41.3 % 43.3 % 41.1 %
perfect 5 (3) 7 (2) 9 (1)
failure 11 (3) 10 (2) 6 (1)

Z-score 4.92 1.12
p-value 0.0000 0.1314
Holm α 0.0500 0.0250

GB MBPSO LB MBPSO VN MBPSO
Measure error (rank) error (rank) error (rank)

avg error 1.089 % (2.93) 0.639 % (1.65) 0.613 % (1.43)
stdev error 1.592 % 1.620 % 1.623 %
average SR 29.9 % (2.78) 45.7 % (1.68) 48.6 % (1.55)
stdev SR 34.7 % 37.4 % 35.3 %
perfect 3 (3) 4 (1.5) 4 (1.5)
failure 4 (2) 4 (2) 4 (2)

Z-score 6.71 0.98
p-value 0.0000 0.1635
Holm α 0.0500 0.0250

GB PBPSO LB PBPSO VN PBPSO
Measure error (rank) error (rank) error (rank)

avg error 0.628 % (2.68) 0.521 % (1.78) 0.510 % (1.55)
stdev error 1.625 % 1.634 % 1.633 %
average SR 51.4 % (2.4) 63.4 % (1.9) 64.8 % (1.7)
stdev SR 35.1 % 36.8 % 36.8 %
perfect 5 (3) 12 (1.5) 12 (1.5)
failure 4 (2) 4 (2) 4 (2)

Z-score 5.05 1.03
p-value 0.0000 0.1515
Holm α 0.0500 0.0250

GB SBPSO LB SBPSO VN SBPSO
Measure error (rank) error (rank) error (rank)

avg error 0.444 % (2.13) 0.440 % (2.01) 0.439 % (1.86)
stdev error 1.640 % 1.641 % 1.641 %
average SR 82.5 % (2.09) 81.9 % (2.04) 82.7 % (1.88)
stdev SR 31.8 % 33.2 % 32.6 %
perfect 21 (3) 23 (2) 25 (1)
failure 4 (2) 4 (2) 4 (2)

Z-score 1.21 0.67
p-value 0.1131 0.2514
Holm α 0.0500 0.0250

Set-Based Particle Swarm Optimization applied to the Multidimensional Knapsack Problem 33

wasnot rejected. Therefore, no statistically significant difference in performance could be
found between the three topologies for SBPSO. The listed measures for SBPSO all indicated
that there was little difference in performance between thethree SBPSO algorithm-topology
pairs: the relative difference in the average errors of the three pairs was 1.1%, while the rel-
ative difference in the average success rate of the three pairs was 1.0%. Only the number
of problems solved perfectly showed some differentiation,as gbest SBPSO solved 21 out
of the 40 problems perfectly, while lbest SBPSO completely solved 23 problems, and Von
Neumann SBPSO 25 problems.

Table 11 shows a problem-by-problem comparison of the four PSO algorithms. Each
PSO algorithm is paired with the topology that performed best for that PSO algorithm,
which was the Von Neumann topology in each case. The statistical comparison of the four
algorithm-topology pairs is therefore the same as that shown in table 9 and not repeated in
table 11.

The four problems for which SBPSO with the Von Neumann topology failed to find the
optimum in all independent runs are mknap2-6, mknap2-11, mknap2-13, and mknap2-18.
The other 11 algorithm-topology pairs all similarly failedfor these four problems. For the
algorithm-topology pairs combining the Von Neumann topology with SBPSO, PBPSO, and
MBPSO respectively, these four problems were also the only failures. For the Von Neumann-
BPSO pair, additionally problems mknap2-43 and mknap2-47 caused failures.

Excluding the four problems on which SBPSO completely failed to find the optimum (a
success rate of 0%), thelowest success raterecorded for SBPSO on any of the remaining 36
problems was reasonable: 50% for gbest SBPSO (average success rate on the 36 problems of
89.2%), 20% for lbest SBPSO (average success rate of 88.5%),and 30% for SBPSO using
the Von Neumann topology (average success rate of 89.4%).

7.3 Large Multidimensional Knapsack Problems

Results for the 243 large MKPs are summarized in tables 12, 13, and 14 for the star, ring, and
Von Neumann topology respectively. Each table lists the average and standard deviation of
the error (the best objective function value found comparedto the LP relaxation bound), and
the average rank of the errors. The average error is shown on three different cross-sections
of the problem set (refer to section 4 for details on these parameters and the problem set):

1. The number of items,n, with values 100, 250, and 500.
2. The number of constraints,m, with values 5, 10, and 30.
3. The tightness ratio,r , with values 0.25, 0.50, and 0.75.

The ID-test indicated that, for the algorithm-topology comparisons that are reported
in each of the tables, the median performance showed statistically significant differences.
Hence, for all five cases post-hoc tests were conducted and the results are reported at the
bottom of the respective tables.

Table 12 summarizes the large MKP results for the four PSO algorithms, each using the
star topology. The table shows that the gbest SBPSO was the best performing algorithm: it
scored the smallest average error of 1.74%, and the average rank of the error shown on the
same line was exactly 1, meaning that gbest SBPSO was the bestperforming algorithm on
each of the 243 test problems. The post-hoc tests showed thatthe outperformance of gbest
SBPSO was also statistically significant: pair-wise comparisons with the three other PSO
algorithms yieldedZ-scores above 10, which resulted inp-values smaller than 10−22. Gbest
PBPSO was the second best performer on 193 problems, gbest BPSO performed second

34 Joost Langeveld, Andries P. Engelbrecht

Table 11 Small MKP test results for the best algorithm-topology pairs per algorithm. Bold face indicates
statistically significant outperformance.

VN BPSO VN MBPSO VN PBPSO VN SBPSO
problem n m error (rank) error (rank) error (rank) error (rank)

mknap1-1 6 10 0 % (2.5) 0 % (2.5) 0 % (2.5) 0 % (2.5)
mknap1-2 10 10 0.212 % (4) 0 % (2) 0 % (2) 0 % (2)
mknap1-3 15 10 0 % (2.5) 0 % (2.5) 0 % (2.5) 0 % (2.5)
mknap1-6 39 5 0.093 % (1.5) 0.278 % (4) 0.093 % (1.5) 0.104 % (3)
mknap1-7 50 5 0.235 % (3) 0.280 % (4) 0.097 % (2) 0.054 % (1)
mknap2-1 60 30 0.087 % (3) 0.285 % (4) 0.030 % (2) 0 % (1)
mknap2-3 28 2 0 % (2) 0.143 % (4) 0 % (2) 0 % (2)
mknap2-5 28 2 0.308 % (3) 0.335 % (4) 0.095 % (2) 0.054 % (1)
mknap2-6 28 2 3.943 % (4) 3.820 % (3) 3.792 % (2) 3.698 % (1)
mknap2-7 28 2 0.647 % (2) 0.799 % (4) 0.689 % (3) 0.278 % (1)
mknap2-8 28 2 0.359 % (3) 0.883 % (4) 0.268 % (2) 0.110 % (1)
mknap2-9 105 2 0.206 % (1) 0.453 % (4) 0.225 % (2) 0.247 % (3)
mknap2-11 30 5 0.399 % (2) 0.451 % (4) 0.402 % (3) 0.348 % (1)
mknap2-12 30 5 0.157 % (3) 0.141 % (2) 0.198 % (4) 0 % (1)
mknap2-13 30 5 3.209 % (2.5) 3.209 % (2.5) 3.209 % (2.5) 3.209 % (2.5)
mknap2-14 30 5 0.038 % (3) 0.031 % (2) 0.116 % (4) 0 % (1)
mknap2-16 40 5 0.066 % (2) 0.118 % (4) 0.072 % (3) 0 % (1)
mknap2-18 40 5 9.409 % (3) 9.465 % (4) 9.408 % (2) 9.407 % (1)
mknap2-19 40 5 0 % (2) 0.017 % (4) 0 % (2) 0 % (2)
mknap2-21 50 5 0.002 % (3) 0.025 % (4) 0 % (1.5) 0 % (1.5)
mknap2-22 50 5 0 % (2) 0.095 % (4) 0 % (2) 0 % (2)
mknap2-23 50 5 0 % (2.5) 0 % (2.5) 0 % (2.5) 0 % (2.5)
mknap2-24 60 5 0.009 % (3) 0.157 % (4) 0.006 % (2) 0 % (1)
mknap2-25 60 5 0.005 % (2) 0.055 % (4) 0.006 % (3) 0 % (1)
mknap2-27 60 5 0 % (2) 0.035 % (4) 0 % (2) 0 % (2)
mknap2-29 70 5 0.007 % (2) 0.333 % (4) 0.012 % (3) 0 % (1)
mknap2-30 70 5 0 % (2) 0.140 % (4) 0 % (2) 0 % (2)
mknap2-31 70 5 0 % (2) 0.125 % (4) 0 % (2) 0 % (2)
mknap2-32 80 5 0.030 % (3) 0.133 % (4) 0 % (1.5) 0 % (1.5)
mknap2-34 80 5 0.002 % (3) 0.043 % (4) 0 % (1.5) 0 % (1.5)
mknap2-35 80 5 0.144 % (3) 0.263 % (4) 0.029 % (2) 0 % (1)
mknap2-36 90 5 0.069 % (3) 0.125 % (4) 0.022 % (2) 0 % (1)
mknap2-37 90 5 0.165 % (3) 0.279 % (4) 0.048 % (2) 0 % (1)
mknap2-38 90 5 0.452 % (4) 0.420 % (3) 0.149 % (2) 0.008 % (1)
mknap2-40 90 5 0.351 % (4) 0.208 % (3) 0.180 % (2) 0.001 % (1)
mknap2-42 34 4 0.280 % (4) 0.201 % (3) 0.126 % (2) 0.010 % (1)
mknap2-43 29 2 0.883 % (4) 0.340 % (3) 0.311 % (2) 0.017 % (1)
mknap2-44 20 10 1.183 % (4) 0.359 % (3) 0.248 % (2) 0 % (1)
mknap2-46 37 30 0.985 % (4) 0.290 % (2) 0.351 % (3) 0 % (1)
mknap2-47 28 4 0.437 % (4) 0.181 % (2) 0.205 % (3) 0.002 % (1)

average 0.609 % (2.81) 0.613 % (3.45) 0.510 % (2.28) 0.439 % (1.46)

perfect 9 (3) 4 (4) 12 (2) 25 (1)
failure 6 (4) 4 (2) 4 (2) 4 (2)

best for the remaining 50 problems, and gbest MBPSO usually ranked last out of the four
algorithm-topology pairs.

The relative performance of the four PSO algorithms using the star topology was stable
across each of the three splits of the problem set, with gbestSBPSO> gbest PBPSO> gbest
BPSO> gbest MBPSO in each individual split except one: for the 243/3 = 81 problems

Set-Based Particle Swarm Optimization applied to the Multidimensional Knapsack Problem 35

Table 12 Summary of large MKP test results for the star topology. Boldface indicates statistically significant
outperformance.

GB BPSO GB MBPSO GB PBPSO GB SBPSO
Measure error (rank) error (rank) error (rank) error (rank)

average error 4.679 % (2.909) 5.619 % (3.885) 3.250 % (2.206) 1.740 % (1.000)
stdev error 3.468 % 2.723 % 1.718 % 1.170 %

n 100 3.831 % (2.877) 5.160 % (3.889) 2.568 % (2.235) 1.260 % (1.000)
n 250 4.679 % (2.877) 5.663 % (3.889) 3.286 % (2.235) 1.758 % (1.000)
n 500 5.526 % (2.975) 6.034 % (3.877) 3.896 % (2.148) 2.201 % (1.000)

m 5 3.037 % (2.383) 4.354 % (4.000) 3.134 % (2.617) 1.875 % (1.000)
m 10 3.942 % (3.012) 5.521 % (3.988) 2.763 % (2.000) 1.553 % (1.000)
m 30 7.057 % (3.333) 6.983 % (3.667) 3.853 % (2.000) 1.791 % (1.000)

r 0.25 8.253 % (3.122) 8.664 % (3.659) 5.264 % (2.220) 3.141 % (1.000)
r 0.50 3.751 % (2.831) 5.344 % (4.000) 2.799 % (2.169) 1.355 % (1.000)
r 0.75 1.909 % (2.769) 2.712 % (4.000) 1.613 % (2.231) 0.676 % (1.000)

Z-score 16.30 24.63 10.30
p-value 0.0000 0.0000 0.0000
Holm α 0.0250 0.0500 0.0167

with m= 5, gbest BPSO (average rank 2.383) scored better than gbest PBPSO (average rank
2.617). Here the symbol ‘>’ is used to mean “has a lower (better) average rank than”.

A difference in performance was seen with regards to the split of the problems based
on the number of items,n: a larger number of items led to a higher average error for each
of the gbest PSO algorithms. However, this effect was not equally strong for each of the
algorithms: for problems withn= 500 compared to those withn = 100, the average error
of gbest SBPSO was 75% higher, while for gbest MBPSO the increase in average error was
only 16%.

Problems with tightness ratior = 0.25 were most challenging for all gbest PSO algo-
rithms, with the average error substantially higher than for problems withr = 0.50 or 0.75.
A smallerr means that each of themweight constraints is more restrictive (lower capacity),
which, in general, has two effects on the optimal solution compared to that forproblems
with a higher tightness ratio:

1. the optimal solution using a smallr contains fewer items, and
2. the objective function value at the optimum using a smallr is lower, as fewer items are

included in the knapsack.

Table 13 summarizes the large MKP results for the four PSO algorithms, each using the
ring topology. The table shows that the lbest SBPSO was the best performing algorithm with
an average rank of 1.333. The ID-test and post-hoc tests confirmed that lbest SBPSO outper-
formed each of the other three pairs, but the difference in performance between lbest SBPSO
and lbest PBPSO was smaller than that seen between gbest SBPSO and gbest PBPSO in ta-
ble 12.

The relative performance of the four PSO algorithms using the ring topology was stable
across each of the three splits of the problem set into three subsets, with lbest SBPSO>
lbest PBPSO> lbest MBPSO> lbest BPSO, except for two cases:

1. for the problems withm= 5, lbest PBPSO (average rank 1.000) scored better than lbest
SBPSO (average rank 2.000) on all 81 problems in the subset, while lbest BPSO (aver-
age rank 3.210) scored better than lbest MBPSO (average rank3.790), and

36 Joost Langeveld, Andries P. Engelbrecht

Table 13 Summary of large MKP test results for the ring topology. Boldface indicates statistically significant
outperformance.

LB BPSO LB MBPSO LB PBPSO LB SBPSO
Measure error (rank) error (rank) error (rank) error (rank)

average error 7.006 % (3.737) 3.922 % (2.959) 3.650 % (1.971) 2.292 % (1.333)
stdev error 5.037 % 2.059 % 2.591 % 1.331 %

n 100 6.348 % (3.778) 3.044 % (2.852) 3.101 % (2.037) 1.767 % (1.333)
n 250 6.951 % (3.753) 3.917 % (2.938) 3.626 % (1.975) 2.366 % (1.333)
n 500 7.719 % (3.679) 4.805 % (3.086) 4.221 % (1.901) 2.743 % (1.333)

m 5 3.091 % (3.210) 3.289 % (3.790) 1.994 % (1.000) 2.334 % (2.000)
m 10 7.520 % (4.000) 3.654 % (2.963) 3.112 % (2.037) 2.075 % (1.000)
m 30 10.407 % (4.000) 4.824 % (2.123) 5.842 % (2.877) 2.468 % (1.000)

r 0.25 11.961 % (3.829) 6.185 % (2.817) 6.059 % (2.024) 3.893 % (1.329)
r 0.50 5.817 % (3.723) 3.608 % (3.060) 3.066 % (1.892) 1.957 % (1.325)
r 0.75 3.063 % (3.654) 1.878 % (3.000) 1.738 % (2.000) 0.966 % (1.346)

Z-score 20.53 13.88 5.45
p-value 0.0000 0.0000 0.0000
Holm α 0.0500 0.0250 0.0167

2. for the problems withm= 30, lbest MBPSO (average rank 2.123) scored better than
lbest PBPSO (average rank 2.877).

The relative performance of the lbest MBPSO and lbest PBPSO algorithm-pairs was
correlated with the number of constraints,m: lbest MBPSO performed relatively better for
an increasing number of constraints, while lbest PBPSO performed relatively worse with
increasingm. For both lbest PBPSO and lbest MBPSO the average error increased when
m increased, but for lbest PBPSO this deterioration was worse. For all the lbest PSO algo-
rithms, the average error was most sensitive to changes inr .

A possible explanation for lbest PBPSO having outperformedlbest SBPSO on problems
with m= 5, is that the lbest SBPSO algorithm was better tuned to the problems with a larger
number of constraints (m= 10 or 30), while the lbest PBPSO algorithm was better tuned
for problems with fewer constraints. An alternative explanation is that thek-tournament
selection used in LB SBPSO helped the particles stay in the feasible part of the solution
space. This feature has extra value in the case of a larger number of constraints, where
particles will encounter the edge of the feasible part of thesolution space more often.

Table 14 shows that the Von Neumann SBPSO was the best performing algorithm with
an average rank of 1.342. The ID-test and post-hoc tests confirmed that the Von Neumann
SBPSO outperformed each of the other three pairs, with the Von Neumann PBPSO scoring
second best. The difference in performance between the Von Neumann SBPSO and the
Von Neumann PBPSO was approximately the same as seen betweenlbest SBPSO and lbest
PBPSO in table 13.

The relative behavior of the four PSO algorithms using the Von Neumann topology was
the same as that seen for the lbest PSO algorithms in table 13:across each of the three splits
of the problem set, the result was Von Neumann SBPSO> Von Neumann PBPSO> Von
Neumann MBPSO> Von Neumann BPSO in each individual split, except for two cases:

1. for the problems withm= 5, the Von Neumann PBPSO (average rank 1.000) performed
best on all 81 problems in the subset, with the Von Neumann SBPSO (average rank

Set-Based Particle Swarm Optimization applied to the Multidimensional Knapsack Problem 37

Table 14 Summary of large MKP test results for the von Neumann topology. Bold face indicates statistically
significant outperformance.

VN BPSO VN MBPSO VN PBPSO VN SBPSO
Measure error (rank) error (rank) error (rank) error (rank)

average error 6.973 % (3.823) 3.403 % (2.811) 3.348 % (2.025) 2.249 % (1.342)
stdev error 5.039 % 1.742 % 2.533 % 1.275 %

n 100 6.291 % (3.815) 2.647 % (2.790) 2.762 % (2.049) 1.772 % (1.346)
n 250 6.920 % (3.864) 3.418 % (2.765) 3.330 % (2.037) 2.294 % (1.333)
n 500 7.707 % (3.790) 4.145 % (2.877) 3.954 % (1.988) 2.680 % (1.346)

m 5 3.076 % (3.469) 2.980 % (3.506) 1.783 % (1.000) 2.433 % (2.025)
m 10 7.465 % (4.000) 3.191 % (2.914) 2.847 % (2.086) 2.046 % (1.000)
m 30 10.377 % (4.000) 4.039 % (2.012) 5.416 % (2.988) 2.266 % (1.000)

r 0.25 11.943 % (3.976) 5.382 % (2.610) 5.739 % (2.085) 3.789 % (1.329)
r 0.50 5.775 % (3.855) 3.089 % (2.819) 2.693 % (2.000) 1.917 % (1.325)
r 0.75 3.023 % (3.628) 1.658 % (3.013) 1.533 % (1.987) 0.981 % (1.372)

Z-score 21.18 12.54 5.83
P-value 0.0000 0.0000 0.0000
Holm α 0.0500 0.0250 0.0167

2.025) scoring second best. Also the Von Neumann BPSO (average rank 3.469) narrowly
outperformed the Von Neumann MBPSO (average rank 3.506), and

2. for the problems withm= 30, the Von Neumann MBPSO (average rank 2.012) scored
better than the Von Neumann PBPSO (average rank 2.988).

Table 15 compares the performance of the three topologies for each algorithm over all
the large MKPs. For each PSO algorithm, the ID-tests yieldeda p-value below 0.0001,
indicating that a statistically significant difference in performance existed between the three
topologies. Due to space restrictions, theZ-scores,p-values, and Holmα ’s for the Nemenyi
post-hoc tests have been excluded from table 15. However, the largest of thesep-values was
0.0011 with a Holmα of 0.0167. Therefore, it was confirmed that, for each PSO algorithm, a
single topology performed best by a statistically significant margin: for MBPSO and PBPSO
the Von Neumann topology scored best, while for BPSO and SBPSO it was the star topology
that scored best.

For BPSO, the gbest BPSO performed much better than BPSO using either of the other
two topologies. The average error was 4.68% for gbest BPSO, with lbest BPSO and the Von
Neumann BPSO scoring 7.01% and 6.97% respectively. The gbest BPSO scored best on
198 out of 243 problems, but was outperformed on problems with few constraints (m= 5)
combined with a high tightness ratio ofr = 0.75. Here gbest BPSO performed worst out
of the three BPSO pairs on the entire subset of 27 problems. For problems withm= 5 and
r = 0.5, gbest BPSO’s performance was comparable to the other two pairs and yielded an
average rank of 1.944.

For MBPSO, the relative performance of the three topologieswas very stable across the
entire problem set with the Von Neumann MBPSO scoring the best (with an average rank of
1.010), lbest MBPSO achieved an average rank of 1.990, and gbest MBPSO scored worst on
all problems. The Von Neumann MBPSO failed to outperform lbest MBPSO on only three
of the 243 problems.

For the PBPSO, the Von Neumann PBPSO performed best with reference to the average
rank of errors, with an average rank of 1.5. However, gbest PBPSO achieved a lower average

38 Joost Langeveld, Andries P. Engelbrecht

Table 15 Summary of large MKP test results compared across topologies. Bold face indicates statistically
significant outperformance.

GB BPSO LB BPSO VN BPSO
Measure error (rank) error (rank) error (rank)
average error 4.679 % (1.340) 7.006 % (2.510) 6.973 % (2.150)
stdev error 3.468 % 5.000 % 5.000 %
n 100 3.831 % (1.296) 6.348 % (2.537) 6.291 % (2.167)
n 250 4.679 % (1.327) 6.951 % (2.531) 6.920 % (2.142)
n 500 5.526 % (1.395) 7.719 % (2.451) 7.707 % (2.154)
m 5 3.037 % (2.019) 3.091 % (2.179) 3.076 % (1.802)
m 10 3.942 % (1.000) 7.520 % (2.704) 7.465 % (2.296)
m 30 7.057 % (1.000) 10.407 % (2.636) 10.377 % (2.364)
r 0.25 8.253 % (1.037) 11.961 % (2.555) 11.943 % (2.409)
r 0.50 3.751 % (1.307) 5.817 % (2.530) 5.775 % (2.163)
r 0.75 1.909 % (1.692) 3.063 % (2.429) 3.023 % (1.878)

GB MBPSO LB MBPSO VN MBPSO
Measure error (rank) error (rank) error (rank)
average error 5.619 % (3.000) 3.922 % (1.990) 3.403 % (1.010)
stdev error 2.723 % 2.100 % 1.700 %
n 100 5.160 % (3.000) 3.044 % (1.988) 2.647 % (1.012)
n 250 5.663 % (3.000) 3.917 % (2.000) 3.418 % (1.000)
n 500 6.034 % (3.000) 4.805 % (1.975) 4.145 % (1.025)
m 5 4.354 % (3.000) 3.289 % (1.963) 2.980 % (1.037)
m 10 5.521 % (3.000) 3.654 % (2.000) 3.191 % (1.000)
m 30 6.983 % (3.000) 4.824 % (2.000) 4.039 % (1.000)
r 0.25 8.664 % (3.000) 6.185 % (2.000) 5.382 % (1.000)
r 0.50 5.344 % (3.000) 3.608 % (1.988) 3.089 % (1.012)
r 0.75 2.712 % (3.000) 1.878 % (1.974) 1.658 % (1.026)

GB PBPSO LB PBPSO VN PBPSO
Measure error (rank) error (rank) error (rank)
average error 3.250 % (1.860) 3.650 % (2.650) 3.348 % (1.500)
stdev error 1.718 % 2.600 % 2.500 %
n 100 2.568 % (1.790) 3.101 % (2.667) 2.762 % (1.543)
n 250 3.286 % (1.864) 3.626 % (2.654) 3.330 % (1.481)
n 500 3.896 % (1.914) 4.221 % (2.617) 3.954 % (1.469)
m 5 3.134 % (3.000) 1.994 % (2.000) 1.783 % (1.000)
m 10 2.763 % (1.568) 3.112 % (2.951) 2.847 % (1.481)
m 30 3.853 % (1.000) 5.842 % (2.988) 5.416 % (2.012)
r 0.25 5.264 % (1.695) 6.059 % (2.646) 5.739 % (1.659)
r 0.50 2.799 % (1.904) 3.066 % (2.663) 2.693 % (1.434)
r 0.75 1.613 % (1.974) 1.738 % (2.628) 1.533 % (1.397)

GB SBPSO LB SBPSO VN SBPSO
Measure error (rank) error (rank) error (rank)
average error 1.740 % (1.000) 2.292 % (2.570) 2.249 % (2.430)
stdev error 1.170 % 1.300 % 1.300 %
n 100 1.260 % (1.000) 1.767 % (2.519) 1.772 % (2.481)
n 250 1.758 % (1.000) 2.366 % (2.636) 2.294 % (2.364)
n 500 2.201 % (1.000) 2.743 % (2.543) 2.680 % (2.457)
m 5 1.875 % (1.000) 2.334 % (2.173) 2.433 % (2.827)
m 10 1.553 % (1.000) 2.075 % (2.549) 2.046 % (2.451)
m 30 1.791 % (1.000) 2.468 % (2.975) 2.266 % (2.025)
r 0.25 3.141 % (1.000) 3.893 % (2.659) 3.789 % (2.341)
r 0.50 1.355 % (1.000) 1.957 % (2.566) 1.917 % (2.434)
r 0.75 0.676 % (1.000) 0.966 % (2.468) 0.981 % (2.532)

Set-Based Particle Swarm Optimization applied to the Multidimensional Knapsack Problem 39

error, scoring 3.25% while the Von Neumann PBPSO had an average error of 3.35%. This
can be explained by the more consistent behavior of gbest PBPSO: its standard deviation of
the error was 1.72%, while for the Von Neumann PBPSO this was 2.5%. The Von Neumann
PBPSO scored well for problems withm= 5, but scored badly for problems withm= 30:
the difference in average error on the two subsets was 5.42%−1.78%= 3.63%. For gbest
PBPSO the sensitivity to the problem parameterm was much smaller, and the difference
between the subset on which it performed best (m = 10) and worst (m = 30) was only
3.85%−2.76%= 1.09%.

For SBPSO, the star topology was most successful, with gbestSBPSO performing best
on all 243 problems. Little difference in performance was observed between lbest SBPSO
and the Von Neumann SBPSO, which is probably related to the fact that the same control
parameter values were used for both pairs (refer to table 5 for the parameter values). Hence,
the only difference between the pairs was that the Von Neumann SBPSO has a more closely
connected swarm compared to lbest SBPSO. Only for the split of the problem set based
on the number of constraints,m, some difference in performance was seen between lbest
SBPSO and the Von Neumann SBPSO, where lbest SBPSO performedbetter on problems
with m= 5, and the Von Neumann PBPSO performed better on problems with m= 30.
Considering the number of constraints, both lbest SBPSO andthe Von Neumann SBPSO
performed best on the subset of problems withm= 10. Having a more closely connected
swarm helped the Von Neumann SBPSO on problems with more constraints.

A detailed comparison of the four PSO algorithms, each usingits best performing topol-
ogy, is given in table 16. The four best performing algorithm-topology pairs are gbest BPSO,
Von Neumann MBPSO, Von Neumann PBPSO, and gbest SBPSO. With an average error
of 1.72%, gbest SBPSO scored better than the other three pairs, with the second best pair,
Von Neumann PBPSO, scoring an average error of 3.32 %. The ID-test followed by post-
hoc tests indicated that gbest SBPSO outperformed the otherthree pairs by a statistically
significant margin.

For gbest SBPSO, the average rank was 1.26, followed by Von Neumann PBPSO, Von
Neumann MBPSO, and gbest BPSO with average ranks of 2.13, 2.81, and 3.80 respectively.
The gbest SBPSO had the lowest error on 179 of the 243 problems, and was second best on
the remaining 64, for which the Von Neumann PBPSO scored besteach time. Gbest BPSO
performed worst on 194 problems, and the second worst on the remaining 47.

Each of the first 27 rows of table 16 represents results for thesubset of nine problems that
correspond to the given MKP parametersn,m, andr . For all 27 problem subsets, the ID-test
indicated a difference in performance across the four algorithm-topology pairs. However, in
only two cases was a single algorithm-topology pair shown tooutperform the other three6:
Gbest SBPSO statistically outperformed forn= 100,m= 10,r = 0.25 andn= 250,m= 10,
r = 0.25. For each of the remaining 25 problems, the post-hoc testsdid not indicate a single
best algorithm-topology pair, but instead resulted in two best pairs with indistinguishable
performance: no significant difference could be seen between the two best performing pairs,
while the two worst pairs underperformed the best two in a statistically significant man-
ner. For nine out of 25 problem specifications, all withm= 30, gbest SBPSO and the Von
Neumann MBPSO performed best, while gbest BPSO and the Von Neumann PBPSO un-
derperformed. For the remaining 16 out of 25 cases, gbest SBPSO and the Von Neumann
PBPSO performed best, while gbest BPSO and the Von Neumann MBPSO underperformed.

6 Even if all problems yield the same ranks, resulting in average rankings of 1, 2, 3, and 4 for the four
algorithm-topology pairs, the post-hoc Nemenyi test didnotshow a statistically significant difference between
ranks 1 and 2, at a confidence level ofα = 0.05, which led to a Holmα of 0.0167 for the comparison of the
two best performing pairs.

40 Joost Langeveld, Andries P. Engelbrecht

Table 16 Large MKP results for the best algorithm-topology pairs peralgorithm. Bold face indicates statis-
tically significant outperformance.

GB BPSO VN MBPSO VN PBPSO GB SBPSO
n m r error (rank) error (rank) error (rank) error (rank)

100 5 0.25 3.772 % (3.67) 3.625 % (3.33) 1.757 % (1) 1.951 % (2)
100 5 0.50 1.835 % (3.56) 1.774 % (3.44) 0.796 % (1) 0.873 % (2)
100 5 0.75 1.155 % (3.89) 1.077 % (3.11) 0.504 % (1.56) 0.505 % (1.44)

100 10 0.25 5.334 % (4) 4.064 % (2.56) 4.052 % (2.44) 2.181 % (1)
100 10 0.50 2.384 % (4) 2.160 % (3) 1.868 % (2) 0.853 % (1)
100 10 0.75 1.217 % (3.56) 1.206 % (3.44) 1.031 % (2) 0.399 % (1)

100 30 0.25 11.396 % (4) 5.132 % (2) 8.411 % (3) 2.773 % (1)
100 30 0.50 4.786 % (4) 3.057 % (2) 3.902 % (3) 1.195 % (1)
100 30 0.75 2.327 % (3.13) 1.566 % (2) 2.364 % (3.88) 0.540 % (1)

250 5 0.25 5.182 % (3.67) 4.995 % (3.33) 3.066 % (1) 3.294 % (2)
250 5 0.50 2.680 % (3.67) 2.617 % (3.33) 1.437 % (1) 1.541 % (2)
250 5 0.75 1.390 % (3.67) 1.362 % (3.33) 0.740 % (1.56) 0.735 % (1.44)

250 10 0.25 6.917 % (4) 4.895 % (2.67) 4.801 % (2.33) 2.845 % (1)
250 10 0.50 3.161 % (3.95) 2.904 % (3.05) 2.312 % (2) 1.186 % (1)
250 10 0.75 1.546 % (3.75) 1.522 % (3.25) 1.237 % (2) 0.561 % (1)

250 30 0.25 12.765 % (4) 6.333 % (2) 9.356 % (3) 3.451 % (1)
250 30 0.50 5.556 % (4) 3.921 % (2) 4.308 % (3) 1.471 % (1)
250 30 0.75 2.738 % (4) 2.055 % (2) 2.595 % (3) 0.670 % (1)

500 5 0.25 6.349 % (3.67) 6.299 % (3.33) 4.565 % (1) 4.749 % (2)
500 5 0.50 3.134 % (3.33) 3.219 % (3.67) 2.026 % (1.44) 2.066 % (1.56)
500 5 0.75 1.837 % (3.5) 1.849 % (3.5 1.157 % (1.33) 1.160 % (1.67)

500 10 0.25 8.357 % (4) 5.943 % (3) 5.652 % (2) 3.404 % (1)
500 10 0.50 3.776 % (4) 3.522 % (3) 2.677 % (2) 1.455 % (1)
500 10 0.75 1.889 % (3.5) 1.905 % (3.5 1.399 % (2) 0.726 % (1)

500 30 0.25 14.189 % (4) 7.089 % (2) 10.003 % (3) 3.592 % (1)
500 30 0.50 6.398 % (4) 4.655 % (2.11) 4.822 % (2.89) 1.593 % (1)
500 30 0.75 3.083 % (4) 2.378 % (2) 2.811 % (3) 0.764 % (1)

average 4.635 % (3.80) 3.375 % (2.81) 3.320 % (2.13) 1.723 % (1.26)

Z-score 21.68 13.22 7.34
p-value 0.0000 0.0000 0.0000
Holm α 0.0500 0.0250 0.0167

The performance of the Von Neumann PBPSO deteriorated for larger values ofm, com-
pared to the other algorithm-topology pairs in table 16. TheVon Neumann PBPSO outper-
formed the other three pairs on problems withm= 5, but the difference with gbest SBPSO
became smaller for larger values ofr . For problems withm= 10, the Von Neumann PBPSO
performed second best on 74 out of 81 problems. However, for problems withm= 30, the
Von Neumann PBPSO ranked better than third only once out of 81problems, and performed
worse than both gbest SBPSO and the Von Neumann MBPSO. As mentioned in the discus-
sion of the results in table 13, the parameters chosen for theVon Neumann PBPSO (which
were the same as for lbest PBPSO) were probably better suitedto problems with a lower
number of constraints.

Set-Based Particle Swarm Optimization applied to the Multidimensional Knapsack Problem 41

8 Conclusions and Future Work

This paper introduced set-based particle swarm optimization (SBPSO) as a generic par-
ticle swarm optimization (PSO) algorithm for use on discrete optimization problems that
can be described as set-based problems. In addition to the attraction to personal best and
neighborhood best positions, two mechanisms were includedin SBPSO to ensure that the
algorithm could explore the entire search space. These mechanisms were described in gen-
eral terms, and a specific implementation of each was chosen for use in the experiments. The
first mechanism stated that elements were removed randomly from the intersection of the
current position,X(t), the personal best position,Y(t), and the neighborhood best position,
Ŷ(t). The second mechanism stated that elements outside the union of X(t), Y(t), andŶ(t),
were chosen to be added to the position via ak-tournament selection and using marginal
objective function values.

The multidimensional knapsack problem (MKP) was chosen as the optimization prob-
lem to evaluate the performance of SBPSO, using a large number of benchmark problems
from literature. SBPSO was compared to three existing discrete PSO algorithms, namely bi-
nary PSO (BPSO), modified binary PSO (MBPSO), and probability binary PSO (PBPSO).
Each algorithm was evaluated using one of three swarm topologies, that is, the star topology,
the ring topology with neighborhood size 4, and the Von Neumann topology. This resulted
in 12 algorithm-topology pairs.

A Sobol pseudo-random number generator was used to generatelow-discrepancy se-
quences in the parameter space to help tune each algorithm-topology pair separately, once
on a set of small MKP, and once on a set of large MKP, for a total of 24 different tuning
tasks. The same number of parameter value combinations wereevaluated for each tuning
task, and the best performing parameter value combination yielded the parameter values
used in the testing phase.

A sensitivity analysis of SBPSO with respect to different values of its control parame-
ters was done. This showed that the performance of SBPSO was most sensitive toc1 (the
attraction to personal best) andc3 (the number of elements to add from outside the union of
X(t), Y(t), andŶ(t)).

For both the small MKPs as well as the large MKPs, and for each of the three swarm
topologies used, the results showed that SBPSO outperformed the other three algorithms by
a statistically significant margin. These results also heldwhen the best performing topology
was chosen for each PSO algorithm. The results also showed that the Von Neumann topology
was the best topology to use for each of the algorithms on the small MKPs. For the large
MKPs, the star topology was best for BPSO and SBPSO, while theVon Neumann topology
was best for MBPSO and PBPSO.

The overall conclusion is that SBPSO performed better than the three other discrete
PSO algorithms over a range of MKPs using different swarm topologies. These results were
statistically significant at a significance level ofα = 0.05.

The goal of this paper wasnot to find the best algorithm for solving the MKP, but to
propose a generic set-based PSO. State-of-the-art algorithms for solving the MKP perform
better, for example the genetic algorithm described by Chu and Beasley (1998), which in-
corporates a domain specific repair operator. This algorithm perfectly solved all small MKP,
while on the large MKP it recorded an average error of 0.54%. Of the algorithm-pairs tested
in this paper, gbest SBPSO performed best on the large MKP with an average error of 1.72%.
However, it is emphasized that SBPSO does not make use of any domain specific operators
to improve performance.

42 Joost Langeveld, Andries P. Engelbrecht

The next steps will be to evaluate the SBPSO algorithm on different problems, includ-
ing feature selection. Also, the contribution of the specific implementation chosen for the
operators⊙− and⊙+ to the performance of SBPSO will be investigated. The performance
of SBPSO, should domain specific operators be included, willalso be investigated.

References

Abraham, A., Liu, H., Zhang, W., and Chang, T.-G. (2006). Scheduling jobs on computa-
tional grids using fuzzy particle swarm algorithm. In Gabrys, B., Howlett, R., and Jain,
L., editors,Knowledge-Based Intelligent Information and EngineeringSystems, volume
4252 ofLecture Notes in Computer Science, pages 500–507. Springer, Berlin/Heidelberg.

Benameur, L., Alami, J., and El Imrani, A. (2009). A new discrete particle swarm model for
the frequency assignment problem. InProceedings of the IEEE/ACS International Con-
ference on Computer Systems and Applications, pages 139–144, Piscataway, NJ. IEEE
Press.

Birattari, M., Stützle, T., Paquete, L., and Varrentrapp,K. (2002). A racing algorithm for
configuring metaheuristics. InProceedings of the Genetic and Evolutionary Computation
Confernece, pages 11–18, San Francisco. Morgan Kaufmann.

Bock, J. and Hettenhausen, J. (2012). Discrete particle swarm optimisation for ontology
alignment.Information Sciences, 192(0):152–173.

Chandrasekaran, S., Ponnambalam, S., Suresh, R., and Vijayakumar, N. (2006). A hybrid
discrete particle swarm optimization algorithm to solve flow shop scheduling problems.
In Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems, pages
1–6, Piscataway, NJ. IEEE Press.

Chen, W.-N., Zhang, J., Chung, H., Zhong, W.-L., Wu, W.-G., and Shi, Y. (2010). A novel
set-based particle swarm optimization method for discreteoptimization problems.IEEE
Transactions on Evolutionary Computation, 14(2):278–300.

Chu, P. and Beasley, J. (1998). A genetic algorithm for the multidimensional knapsack
problem.Journal of Heuristics, 4:63–86.

Clerc, M. (2004). Discrete particle swarm optimization illustrated by the traveling sales-
man problem. In Onwubolu, G. and Babu, B., editors,New Optimization Techniques in
Engineering, pages 219–239. Springer, Berlin/Heidelberg.

Correa, E., Freitas, A., and Johnson, C. (2006). A new discrete particle swarm optimization
algorithm applied to attribute selection in a bioinformatics data set. InProceedings of the
Genetic and Evolutionary Computation Conference, pages 35–42, New York, NY. ACM
Press.

Du, J.-X., Huang, D.-S., Zhang, J., and Wang, X.-F. (2005). Shape matching using fuzzy
discrete particle swarm optimization. InProceedings of the IEEE Swarm Intelligence
Symposium, pages 405–408, Piscataway, NJ. IEEE Press.

Eberhart, R. C., Kennedy, J., and Shi, Y. (2001).Swarm intelligence. Morgan Kaufmann
series in evolutionary computation. Elsevier, Amsterdam.

Eberhart, R. C. and Shi, Y. (2001). Particle swarm optimization: developments, applica-
tions and resources. InProceedings of the IEEE Congress on Evolutionary Computation,
volume 1, pages 81–86, Piscataway, NJ. IEEE Press.

Eberhart, R. C., Simpson, P. K., and Dobbins, R. W. (1996).Computational Intelligence PC
tools. AP Professional, Boston, MA.

Set-Based Particle Swarm Optimization applied to the Multidimensional Knapsack Problem 43

Franken, N. (2009). Visual exploration of algorithm parameter space. InProceedings of
the IEEE Congress on Evolutionary Computation, pages 389–398, Piscataway, NJ. IEEE
Press.

Friedman, M. (1937). The use of ranks to avoid the assumptionof normality implicit in the
analysis of variance.Journal of the American Statistical Association, 32(200):675–701.

Gao, F., Cui, G., Zhao, Q., and Liu, H. (2006). Application ofimproved discrete parti-
cle swarm algorithm in partner selection of virtual enterprise. International Journal of
Computer Science and Network Security, 6(3A):208–212.

Garcı́a, A., Pastor, R., and Corominas, A. (2006). Solving the response time variability
problem by means of metaheuristics.Frontiers in artificial intelligence and applications,
146:187–196.

Gens, G. and Levner, E. (1980). Complexity of approximationalgorithms for combinatorial
problems: a survey.Special Interest Group on Algorithms and Computation Theory News,
12:52–65.

Hembecker, F., Lopes, H. S., and Godoy, J. W. (2007). Particle swarm optimization for the
multidimensional knapsack problem. InProceedings of the International Conference on
Adaptive and Natural Computing Algorithms, Part I, pages 358–365, Berlin/Heidelberg.
Springer.

Holm, S. (1979). A simple sequentially rejective multiple test procedure.Scandinavian
Journal of Statistics, 6(2):pp. 65–70.

Iman, R. and Davenport, J. (1980). Approximations of the critical region of the Friedman
statistic.Communications in Statistics Part A - Theory and Methods, 9(6):571–595.

Kennedy, J. and Eberhart, R. (1997). A discrete binary version of the particle swarm al-
gorithm. In Proceedings of the World Multiconference on Systemics, Cybernetics and
Informatics, volume 5, pages 4101–4109, Piscataway, NJ. IEEE Press.

Kennedy, J. and Eberhart, R. C. (1995). Particle swarm optimisation. InProceedings of the
IEEE International Conference on Neural Networks, pages 1942–1948, Piscataway, NJ.
IEEE Press.

Kennedy, J. and Mendes, R. (2002). Population structure andparticle swarm performance.
In Proceedings of the IEEE Congress on Evolutionary Computation, volume 2, pages
1671–1676, Piscataway, NJ. IEEE Press.

Khan, S. and Engelbrecht, A. (2010). A fuzzy particle swarm optimization algorithm for
computer communication network topology design.Applied Intelligence, 36:1–17.

Khanesar, M., Teshnehlab, M., and Shoorehdeli, M. (2007). Anovel binary particle swarm
optimization. InProceedings of the Mediterranean Conference on Control andAutoma-
tion, Piscataway, NJ. IEEE Press.

Khuri, S., Bäck, T., and Heitkötter, J. (1994). The zero/one multiple knapsack problem and
genetic algorithms. InProceedings of the ACM Symposium on Applied Computing, pages
188–193, New York, NY. ACM Press.

Kong, M. and Tian, P. (2006). Apply the particle swarm optimization to the multidimen-
sional knapsack problem. In Rutkowski, L., Tadeusiewicz, R., Zadeh, L., and Zurada,
J., editors,Proceedings of the International Conference on Artificial Intelligence and
Soft Computing, volume 4029 ofLecture Notes in Computer Science, pages 1140–1149.
Springer, Berlin/Heidelberg.

Kong, M., Tian, P., and Kao, Y. (2008). A new ant colony optimization algorithm for the
multidimensional knapsack problem.Computers & Operations Research, 35(8):2672–
2683.

Labed, S., Gherboudj, A., and Chikhi, S. (2011). A modified hybrid particle swarm op-
timization algorithm for multidimensional knapsack problem. International Journal of

44 Joost Langeveld, Andries P. Engelbrecht

Computer Applications, 34(2):11–16.
Langeveld, J. and Engelbrecht, A. P. (2011). A generic set-based particle swarm optimiza-

tion algorithm. InProceedings of the International Conference on Swarm Intelligence,
Cergy, France. EISTI.

Li, B.-B., Wang, L., and Liu, B. (2008). An effective PSO-based hybrid algorithm for
multiobjective permutation flow shop scheduling.IEEE Transactions on Systems, Man
and Cybernetics, Part A: Systems and Humans, 38(4):818–831.

Liu, B., Wang, L., and Jin, Y.-H. (2007). An effective PSO-based memetic algorithm for
flow shop scheduling.IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 37(1):18–27.

Liu, H. and Abraham, A. (2007). An hybrid fuzzy variable neighborhood particle swarm
optimization algorithm for solving quadratic assignment problems.Journal of Universal
Computer Science, 13(9):1309–1331.

Liu, H., Abraham, A., and Hassanien, A. E. (2010). Scheduling jobs on computational
grids using a fuzzy particle swarm optimization algorithm.Future Generation Computer
Systems, 26(8):1336–1343.

Lorie, J. H. and Savage, L. J. (1955). Three problems in rationing capital.The Journal of
Business, 28:229.

Ma, C.-X., Qian, L., Wang, L., Menhas, M. I., and Fei, M.-R. (2010). Determination of the
PID controller parameters by modified binary particle swarmoptimization algorithm. In
Proceedings of the Chinese Control and Decision Conference, pages 2689–2694, Piscat-
away, NJ. IEEE Press.

Menhas, M. I., Wang, L., Fei, M.-R., and Ma, C.-X. (2011). Coordinated controller tuning of
a boiler turbine unit with new binary particle swarm optimization algorithm.International
Journal of Automation and Computing, 8:185–192.

Neethling, C. and Engelbrecht, A. (2006). Determining RNA secondary structure using
set-based particle swarm optimization. In Yen, G., Lucas, S., Fogel, G., Kendall, G.,
Salomon, R., Zhang, B.-T., Coello, C., and Runarsson, T., editors, Proceedings of the
IEEE Congress on Evolutionary Computation, pages 1670–1677, Piscataway. NJ. IEEE
Press.

Nemenyi, P. (1963).Distribution-free multiple comparisons. PhD thesis, Princeton Univer-
sity, Princeton, NJ, USA.

Pampara, G., Franken, N., and Engelbrecht, A. (2005). Combining particle swarm opti-
misation with angle modulation to solve binary problems. InProceedings of the IEEE
Congress on Evolutionary Computation, volume 1, pages 89–96, Piscataway, NJ. IEEE
Press.

Pang, W., Wang, K.-P., Zhou, C.-G., and Dong, L.-J. (2004a).Fuzzy discrete particle swarm
optimization for solving traveling salesman problem. InProceedings of the IEEE Interna-
tional Conference on Computer and Information Technology, pages 796–800, Piscataway,
NJ. IEEE Press.

Pang, W., Wang, K.-P., Zhou, C.-G., Dong, L.-J., Liu, M., Zhang, H.-Y., and Wang, J.-Y.
(2004b). Modified particle swarm optimization based on space transformation for solving
traveling salesman problem. InProceedings of the International Conference on Machine
Learning and Cybernetics, volume 4, pages 2342–2346, Piscataway, NJ. IEEE Press.

Puchinger, J., Raidl, G. R., and Pferschy, U. (2010). The multidimensional knapsack prob-
lem: Structure and algorithms.INFORMS Journal on Computing, 22:250–265.

Shen, B., Yao, M., and Yi, W. (2006). Heuristic information based improved fuzzy discrete
PSO method for solving TSP. InProceedings of the Pacific Rim International Conference
on Artificial intelligence, pages 859–863, Berlin/Heidelberg. Springer.

Set-Based Particle Swarm Optimization applied to the Multidimensional Knapsack Problem 45

Shen, Q., Jiang, J.-H., Jiao, C.-X., li Shen, G., and Yu, R.-Q. (2004). Modified particle
swarm optimization algorithm for variable selection in MLRand PLS modeling: QSAR
studies of antagonism of angiotensin II antagonists.European Journal of Pharmaceutical
Sciences, 22(2-3):145–152.

Shi, Y. and Eberhart, R. C. (1998). A modified particle swarm optimizer. InProceedings of
the IEEE International Conference on Evolutionary Computation, pages 69–73, Piscat-
away, NJ. IEEE Press.

Shi, Y. and Eberhart, R. C. (2001). Fuzzy adaptive particle swarm optimization. InPro-
ceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages 101–106,
Piscataway, NJ. IEEE Press.

Tasgetiren, M. F., Sevkli, M., Liang, Y.-C., and Gencyilmaz, G. (2004). Particle swarm
optimization algorithm for permutation flowshop sequencing problem. In Dorigo, M.,
Birattari, M., Blum, C., M.Gambardella, L., Mondada, F., and Stützle, T., editors,Ant
Colony, Optimization and Swarm Intelligence, volume 3172 ofLecture Notes in Com-
puter Science, pages 366–385. Springer, Berlin/Heidelberg.

Tu, C.-J., Chuang, L.-Y., Chang, J.-Y., and Yang, C.-H. (2008). Feature selection using
PSO-SVM.IAENG International Journal of Computer Science, 33:111–116.

Veenhuis, C. (2008). A set-based particle swarm optimization method. In Rudolph, G.,
Jansen, T., Lucas, S., Poloni, C., and Beume, N., editors,Proceedings of the Parallel
Problem Solving from Nature Conference, volume 5199 ofLecture Notes in Computer
Science, pages 971–980. Springer, berlin/Heidelberg.

Wang, K.-P., Huang, L., Zhou, C.-G., and Pang, W. (2003). Particle swarm optimization for
traveling salesman problem. InProceedings of the International Conference on Machine
Learning and Cybernetics, volume 3, pages 1583–1585, Piscataway, NJ. IEEE Computer
Society.

Wang, L., Wang, X., Fu, J., and Zhen, L. (2008). A novel probability binary particle swarm
optimization algorithm and its application.Journal of Software, 3(9):28–35.

Wu, Z., Ni, Z., Gu, L., and Liu, X. (2010). A revised discrete particle swarm optimiza-
tion for cloud workflow scheduling. InProceedings of the International Conference on
Computational Intelligence and Security, pages 184–188, Piscataway, NJ. IEEE Press.

Yang, S., Wang, M., and Jiao, L. (2004). A quantum particle swarm optimization. InPro-
ceedings of the IEEE Congress on Evolutionary Computation, volume 1, pages 320–324,
Piscataway, NJ. IEEE Press.

Zhang, C., Sun, J., Wang, Y., and Yang, Q. (2007). An improveddiscrete particle swarm
optimization algorithm for TSP. InProceedings of the IEEE/WIC/ACM International
Conferences on Web Intelligence and Intelligent Agent Technology, pages 35–38, Piscat-
away, NJ. IEEE Computer Society.

Zhen, L., Wang, L., Wang, X., and Huang, Z. (2008). A novel PSO-inspired probability-
based binary optimization algorithm. InProceedings of the International Symposium on
Information Science and Engineering, volume 2, pages 248–251, Oulu. Academy Pub-
lisher.

Zhong, W.-L., Zhang, J., and Chen, W.-N. (2007). A novel discrete particle swarm opti-
mization to solve traveling salesman problem. InProceedings of the IEEE Congress on
Evolutionary Computation, pages 3283–3287, Piscataway, NJ. IEEE Press.

