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ABSTRACT

We present an overview of common methods for modelling a signal contaminated by noise. Specifically
discussed are the structure imposed on a model, the properties the noise assumed, some common statistical
distributions for the noise and the Signal-to-Noise ratio as an indicator of the quality of the contaminated
signal.

1. INTRODUCTION

A signal can be defined as ‘a function that conveys information about the behaviour of a system or at-
tributes of some phenomenon’ (Priemer, 1991). The term noise is most commonly known in its original
setting as acoustic interference, however can be generalized to a ‘random error, in which there are unpre-
dictable variations in the measured signal from moment to moment or from measurement to measurement’
(O’Haver, 2012). Examples of signals are photographs, a radio emitting sound or the stock-price over time.
Common examples of noise that will distort these examples of signals are random speckles, often called
salt-and-pepper noise, in photographs, background static-hiss in radio and the small day to day fluctua-
tions of the stock price which may hide an increasing trend. An understanding of the noise inherent in a
measured signal is useful in the development of noise removal techniques. This paper presents common
noise modelling techniques in signals as a precursor to future work in noise removal techniques and is
intended as a starting point for the statistics of signal processing and noise modelling.

2. COMMON METHODS FOR MODELLING A NOISY SIGNAL

The following notation will be used: for an arbitrary space T , and for t∈T , the true signal will be denoted
by S(t), the noise contaminating the true signal by N(t), and the observed signal by X(t), that is, the raw
data obtained containing both the signal and the noise components. The space T can be one-dimensional
or multidimensional, discrete or continuous, in order that all of the models are defined in a general manner.
The models described below all assume S(t) and N(t) are independent for each t ∈ T .
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Fig. 1: Illustration of additive (center) and multiplicative (right) noise (N(2, 0.04)) models on a periodic
signal (left). The multiplicative model distorts the signal more drastically than the additive noise model
(both in vertical location and scale).

Additive noise: This is the simplest most common model for a contaminated signal where the contami-
nated signal X is the sum of the true signal S and the noise N , represented as, X(t)=S(t)+N(t), t∈T.
Multiplicative Noise: This type of noise is modelled iasX(t)=S(t)N(t), t∈T. In some applications (see
for example Petrou & Petrou (2010)) it is convenient to transform multiplicative noise into additive noise
by taking the logarithm so that logX(t) = logS(t)+logN(t). Notice that this transformation assumes
that N(t) and S(t) are strictly positive values, a reasonable assumption since one would often expect
multiplicative noise to distort the signal by random stretching or shrinking rather than to change its sign.
Also note that E[logN(t)]=0 if and only if E[N(t)]=1.

Figure 1 illustrates the additive and multiplicative noise models.

Impulse Noise: This noise describes the random occurrence of sudden sharp spikes (Yaroslavsky, 2000)
and can be modelled in general as: X(t) = (1 − e)S(t) + eN(t) where e = 1 with probability p and 0

with probability 1−p. Two important impulse-noise distributions are the Bernoulli-Gaussian and Poisson-
Gaussian model where the Bernoulli and Poisson distributions govern the impulse occurrence in the two
models respectively and the Gaussian distribution the impulse magnitude in both (Vaseghi, 2000). A
common manifestation of impulse noise is salt-and-pepper noise in images. In an 8-bit gray-scale image,
pixel values range from 0 to 255 (completely black to completely white) but impulse noise can be enough
to spike a pixel value beyond these bounds in which case the pixel is entirely dominated by noise. Salt-
and-pepper noise model can thus be modelled as 255 with probability αp, 0 with probability (1−α)p and
S(t) with probability 1−p where 0≤α, p≤1.

3. SOME DESCRIPTORS AND STATISTICAL PROPERTIES REGARDING NOISE

The type of noise found in measured raw data is generally categorized according to its specific properties.
Several common properties are described below.

Independence: The noise N(t) is said to be independent on T if, for every ai < bi we have P [a1 ≤
N(t1)≤b1, . . . , ak≤N(tk)≤bk]=

∏k
i=1 P [ai ≤ N(ti)≤bi], for distinct elements of T , t1, . . . , tk (Bain &

Engelhardt, 1992), so that the value of the noise experienced at each ti ∈ T is unaffected by the noise at
any other tj ∈ T . This assumption is common, (Fabris-Rotelli et al., 2010; Rank et al., 1999).
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Fig. 2: Illustration of impulse noise (N(127, 100)) (center) and salt-and-pepper noise (right). The param-
eters used were α = 0.5 and p = 0.1.

Zero-mean (unbiased) noise: Noise is said to be zero-mean or unbiased if its expected value is zero,
namely E[N(t)] = 0. This assumption is associated with additive noise. If the mean of the noise is known
to be non-zero, then the noise can be transformed to be zero-mean simply by subtracting this mean from
the noisy signal (Petrou & Petrou, 2010).

Correlation: Correlation is a statistical measure of dependence between two variables. The correlation
between two random variables A and B is defined as corr(A,B) = cov(A,B)

σAσB
where σ2

A, σ
2
B denote the

variance of A and B respectively although often in signal processing the denominator in this expression
is omitted (see for example Leneman & Lewis (1966); Yaroslavsky (2000)). Correlation within an ele-
ment occurs when corr[N(t), S(t)] 6= 0 for each value of t, implying that the noise is signal-dependent.
An example is Poisson noise (Section 4). Autocorrelation, correlation between elements, occurs when
corr[N(t), N(t+ r)] 6=0 where t, t+ r∈T are distinct. Certain methods, for example the 3-point moving-
average smoother, of signal processing can introduce autocorrelated noise into the signal.

Stationarity:N(·) is said to be stationary on T if, for t1, t2, . . . , tn∈T , and t1+k, . . . , tn+k∈T for some
k, the joint distribution ofN(t1), . . . , N(tn) is the same as the joint distribution ofN(t1+k), . . . , N(tn+k),
see Esch et al. (2010). Leneman & Lewis (1966) assume weakly stationarity where only the first two
moments of the noise are stationary on T . Under this assumption corr(t, t + r) depends only on r , the
‘geographical’ relationship between the two elements (Goossens et al., 2008).

Colour: In electric signals a common method of describing noise is by its frequency power spectrum
representing signal power at different frequencies (as opposed to different times), namely how much signal
lies in each of the frequency bands (O’Haver, 2012). Any continuous periodic signal sk with frequency
ωk can be written as a sum of possibly infinite terms of sinusoidal signals varying in frequency (Shatkay,
1995). The average power of the original signal can then be calculated as Pk = 1

Q

∫ Q
0
s2k(t)dt where

Q denotes the period. The concept of seperating a signal into many sinusoidal components of different
frequencies can be generalised to non-periodic, discrete and even random signals via the (Discrete) Fourier
Transform. The Fourier transform of signal X(t) at frequency ω is given by F (ω) =

∫∞
−∞ e

−2πiωtX(t)dt

(Shatkay, 1995) and will often result in a complex value F (ω) = a(ω)+b(ω)i. The power spectrum is
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then P (ω) = |F (ω)|2 for each ω. If the frequency spectrum of the noise N(t) is known, the power is
defined as P = E[N2(t)] so that the high power frequencies are those with high variance due noise. So
these frequencies are expected to be more corrupted by noise. The colour of the noise describes power as
being proportional to 1/fβ for varying values of β where f denotes frequency. White noise (β = 0) and
pink noise (β = 1) are the most common noise colours. White noise assumes a constant power frequency
spectrum implying equal noise strength at all frequencies (similarly white light is comprised of equal
amounts the colours of the spectrum). While this type of noise is in practice impossible since it requires
infinite energy (Carter, 2002), it is still very widely used (see Pauluzzi & Beaulieu (2000)) and occurs
in statistics as i.i.d noise. Pink noise (Carter, 2002) exhibits a decrease in noise strength as frequency
increases. In O’Haver (2012) pink noise is just defined with more power at the lower end of the spectrum
and 1/f noise is defined as a subset of pink noise. Pink noise is commonly found in electronics (Ohguro
et al., 2012) and other applications. Other noise colours, such as brown, grey or green, exist however they
are less common.

4. COMMON DISTRIBUTIONS FOR NOISE AND SIGNALS USED IN MODELS

We now examine some commonly used distributions and the reasons for their usage.

Gaussian distribution: This is the most commonly used distribution when modelling noise (O’Haver
(2012); Pauluzzi & Beaulieu (2000); Rank et al. (1999)) since observed signal noise is often the sum
of many random events, the Central Limit Theorem dictates an approximate Gaussian distribution under
certain conditions (O’Haver, 2012). Gaussian noise is used in the modelling of electric current noise -
where it is typical to experience shot noise (random movement of electrons), thermal noise, flicker noise
(from unknown origin) and burst noise (due to imperfections in semiconductors) (Carter, 2002).

Poisson distribution: The Poisson distribution occurs when counting the number of events at each t∈T ,
so that X(·)∼Poisson(·). An example of a noise commonly modelled by the Poisson distribution is shot
noise (Petrou & Petrou, 2010). A common occurrence of this type of noise is in a grayscale image, where
pixel signal intensity is as a result of the number of discrete photons observed at that pixel. Of course, it is
well-known that the Poisson distribution converges to the Gaussian distribution as its parameter increases
(Bain & Engelhardt, 1992) and hence if the signal has a reasonably high expected value, the Normal
distribution is a reasonable approximation for noise of this type (reinforcing the common usage of the
Gaussian model). However, use of the Normal distribution makes no assumption as to the relationship
between signal strength and the magnitude of the noise, whereas the Poisson distribution implicitly does,
since its variance is equal to its mean (which is, in this case, the pure-signal intensity) (Wentzell & Brown,
2000). Poisson noise is thus an example of signal-dependent noise.

Rayleigh distribution: The Rayleigh distribution is useful in describing the magnitude of signals in the
complex plane. Suppose X(t)=at+bti is a complex number where i=

√
−1 and at, bt are identically and

independently N(0, σ2) distributed. Then, the magnitude of X(t) at t is given by ||X(t)|| =
√
a2t + b2t
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which has a Rayleigh(σ) distribution. The Rayleigh distribution is commonly used in medical imaging to
model speckle noise. MRI scanners measure the magnitude of a complex signal created by changes in the
magnetic field and are hence often modelled using the Rayleigh or the more general, the Rice/Rician dis-
tribution (Wang et al., 2011). R =

√
a2t + b2t is said to haveRice(α, σ) distribution if at ∼N(α cos(θ), σ2)

and bt ∼N(α sin(θ), σ2) are independently distributed and θ is real. The expressions for the normal mean
parameters are related to the polar form of a complex number, namely c = α(cos(θ) + i sin(θ)).
Stable distributions: Random variableX is said to be stable if, for independent variablesX1, X2, with the
same distribution asX and for a,b>0, there exists some c>0 and some d∈ R such that aX1+bX2

d
=cX+d

(Nolan, 2007). The importance of stable distributions in signal processing is primarily as a result of the
Generalised Central Limit Theorem which states that if the sum of i.i.d. random variables with finite or
infinite variance converges to a distribution by increasing the number of variables, the limit distribution
must be stable (Scheaffer & Young, 2009). In most cases stable distributions lack a closed form density
function, however they can be described by their characteristic function: X is stable if and only if X has
characteristic function

E [exp(iuX)] =

{
exp

(
−γα|u|α

[
1− iβ(tan πα

2
)sgn(u)

]
+ iδu

)
α 6= 1

exp
(
−γ|u|

[
1 + iβ 2

π
sgn(u) log |u|

]
+ iδu

)
α = 1

where α ∈ (0, 2] determines the thickness of the tails, β ∈ [−1, 1] is a skewness parameter, γ ≥ 0 is a
scale parameter, δ ∈ R is a location parameter, and sgn(·) is the sign function (Nolan, 2007). Note that this
is only one of many parametrizations of the characteristic function. In probability theory the characteristic
function is simply the Fourier transform of the probability density function (Papoulis, 1991).
Setting β = 0, we obtain the the symmetric α-stable distributions (SαS) class. Like the Gaussian distri-
bution, SαS models are smooth, unimodal, symmetric with respect to the median and bell-shaped (Shao
& Nikias, 1993) however the SαS distribution is more versatile due to the characteristic exponent α. The
thickness of the tails increases as the value of α decreases (Tsakalides & Chrysostomos, 1998). Setting
α = 2 yields the Gaussian distribution (Nolan, 2007) hence the SαS distribution is always thicker-tailed
than (or equivalent to) the Gaussian distribution. This thicker tail makes the SαS distribution more suitable
than the Gaussian distribution for modelling signals prone to large spikes and outliers and in fact this is
their primary use (Shao & Nikias, 1993). It should also be noted that, for α 6= 2, the SαS distribution has
infinite variance hence noise removal techniques relying on finite variance are not appropriate for stable
distributions (Shao & Nikias, 1993). An interesting comparison between the Gaussian distribution and the
SαS distribution in approximating real-world audio signals is done in (Georgiou et al., 1999).

5. SIGNAL TO NOISE RATIO (SNR)

The Signal to Noise Ratio (abbreviated SNR) is a measurement of the amount of meaningful information
(the underlying true signal) compared to the amount of unwanted information (the noise) in an observed
signal, that is, a measure of signal strength, and is commonly used to compare signal acquisition methods
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Fig. 3: Illustration of the Rose criterion: from left to right - original image, SNR = 9 (strong), 5(medium)
and 1(weak)

or hardware (Parish et al., 2000). There are several different mathematical definitions for SNR but most
have the common feature of being the ratio of some measure of location of the signal to some measure
of spread of the noise. A definition of SNR that fits this description is SNR = µs

σn
(Parish et al., 2000),

where µs denotes the mean of the signal and σ2
n denotes the variance of the noise. This definition of SNR

has the drawback that, if µs = 0, we will always have SNR = 0. Hence this definition of SNR is usually
applied to strictly non-negative signals, thus ensuring µs > 0 unless S(t) = 0 for all t ∈ T , in which
case we are only observing noise. An application where this definition is useful is in images where µs is
the signal intensity (a strictly non-negative value) and σ2

n is the variance of the signal intensity (Watanabe
et al., 2002). The Rose criterion states that, using this definition for the SNR, an SNR value of at least 5
is required for the human eye to distinguish features in an image with 100% certainty (Bushberg, 2002),
in other words an SNR of less than 5 indicates the noise in the image overpowers the true signal. Figure 3
illustrates the Rose criterion. For a periodic signal oscillating around 0 (and hence interchanging between
positive and negative values), we must find another way to measure the strength of the signal compared
to that of the noise. Observing that in this case the amplitude of the signal is an indication of the signal
strength, a proposed solution is to replace the mean of the signal in the formula with the amplitude of the
signal, that is, SNR = amplitude of signal

σn
(Fabris-Rotelli et al., 2010). This definition can be modified for

signals with varying amplitudes to SNR = average amplitude of signal
σn

(O’Haver, 2012).

For a deterministic signal, a definition which seems commonly used in electrical engineering is SNR =
Ps

Pn
(Pauluzzi & Beaulieu, 2000) where Ps and Pn denote the average power of the signal and noise respec-

tively. Power is the rate of energy transferal and is calculated for a signal as Ps = 1
tu−tl

∫ tu
tl
S2(t)dt and

similarly for noise. For discrete power, the integrals are simply replaced with summations. Note that this
value can be interpreted as the average value for the signal squared calculated over the time period [tl, tu].
Bearing this interpretation in mind, when the signal is no longer deterministic but rather a stationary
stochastic process, we have that Ps and Pn are unbiased estimators for E[S2(t)] and E[N2(t)] respec-
tively. If the noise has a zero-mean (i.e. E[N(t)] = 0) then using the well known identity var[N(t)] =

E[N2(t)] + E[N(t)]2, it follows that Pn is an unbiased estimator for σ2
n. It should be noted at this point

that all of the above definitions fail when the noise has infinite variance since limσ→∞
a
σ
= 0 for all a,
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implying that all these definitions will have SNR = 0. This problem can be overcome by using some
other measure of spread for the noise (for example, in the SαS distribution, the dispersion parameter γ
plays a role analogous to variance (Shao & Nikias, 1993)).

6. CONCLUSION

This paper has been intended as an introduction into the methods in which noise is commonly handled
in literature. A broad overview has been given of the models often associated with noise, some common
characteristics of noise and some distributions with which noise is often associated with no emphasis
being made on any one specific application. Furthermore, the Signal-to-Noise Ratio was discussed as
an often used method of quantifying the strength of a signal versus amount of noise present. Several
definitions of the Signal-to-Noise Ratio were presented for use in different applications. Future work will
be the investigation of methods of modelling noise in more specific applications, such as images, as well
as an investigation on the different methods of noise removal with comparisons being made as to their
effectiveness under different noise-types.
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