The property of k-colourable graphs is uniquely decomposable

Izak Broere*
Department of Mathematics and Applied Mathematics
University of Pretoria
Pretoria, South Africa
Michael J. Dorfling
Department of Mathematics
University of Johannesburg
Johannesburg, South Africa

Abstract

An additive hereditary graph property is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. If $\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}$ are graph properties, then a $\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}\right)$-decomposition of a graph G is a partition E_{1}, \ldots, E_{n} of $E(G)$ such that $G\left[E_{i}\right]$, the subgraph of G induced by E_{i}, is in \mathcal{P}_{i}, for $i=1, \ldots, n$. The sum of the properties $\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}$ is the property $\mathcal{P}_{1} \oplus \cdots \oplus \mathcal{P}_{n}=\{G \in \mathcal{I}$: G has a $\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}\right)$-decomposition\}. A property \mathcal{P} is said to be decomposable if there exist non-trivial additive hereditary properties \mathcal{P}_{1} and \mathcal{P}_{2} such that $\mathcal{P}=\mathcal{P}_{1} \oplus \mathcal{P}_{2}$. A property is uniquely decomposable if, apart from the order of the factors, it can be written as a sum of indecomposable properties in only one way. We show that not all properties are uniquely decomposable; however, the property of k-colourable graphs \mathcal{O}^{k} is a uniquely decomposable property.

Keywords: graph property, decomposable property

[^0]
1. Introduction

For any undefined basic graph theoretical concepts the reader is referred to [3]. The class of all finite simple graphs is denoted by \mathcal{I}. A graph property is a nonempty isomorphism-closed subclass of \mathcal{I}. Notation and terminology of concepts related to graph properties are taken from [1] and of concepts related to products of graphs are taken from [5].

The fact that H is a subgraph of G is denoted by $H \subseteq G$ and $H \leq G$ means that H is an induced subgraph of G. The disjoint union of two graphs G and H is denoted by $G \cup H$. A property \mathcal{P} is called hereditary if $G \in \mathcal{P}$ and $H \subseteq G$ implies $H \in \mathcal{P} ; \mathcal{P}$ is called induced-hereditary if $G \in \mathcal{P}$ and $H \leq G$ implies $H \in \mathcal{P} ; \mathcal{P}$ is called additive if $G \cup H \in \mathcal{P}$ whenever $G \in \mathcal{P}$ and $H \in \mathcal{P}$.

Example 1.1. Some well-known additive hereditary properties are given in the list below.

$$
\begin{aligned}
& \mathcal{O}=\{G \in \mathcal{I}: E(G)=\emptyset\} \\
& \mathcal{S}_{k}=\{G \in \mathcal{I}: \text { the maximum degree of } G \text { is at most } k\} \\
& \mathcal{I}_{k}=\left\{G \in \mathcal{I}: G \text { does not contain } K_{k+2}\right\}
\end{aligned}
$$

The properties \mathcal{I} and \mathcal{O} are defined to be the trivial properties and an edgeless graph is called a trivial graph. We use the phrase G has property \mathcal{P} to denote the fact that $G \in \mathcal{P}$.

2. Decomposability

Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}$ be graph properties. A $\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}\right)$-decomposition of a graph G is a partition E_{1}, \ldots, E_{n} of $E(G)$ such that $G\left[E_{i}\right]$, the subgraph of G induced by E_{i}, has property \mathcal{P}_{i}, for $i=1, \ldots, n$. (In this context it is convenient to regard the empty set \emptyset as a set inducing a subgraph with every property \mathcal{P}.) We denote by $\mathcal{P}_{1} \oplus \cdots \oplus \mathcal{P}_{n}$ the property $\left\{G \in \mathcal{I}: G\right.$ has a $\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}\right)$-decomposition $\}$. It is easy to see that if \mathcal{P}_{i} is additive and (induced-)hereditary for every i, then $\mathcal{P}_{1} \oplus \cdots \oplus \mathcal{P}_{n}$ is also additive and (induced-)hereditary.

If \mathbb{K} is a set of properties and $\mathcal{P} \in \mathbb{K}$ then \mathcal{P} is said to be decomposable in \mathbb{K} if there exist non-trivial properties \mathcal{P}_{1} and \mathcal{P}_{2} in \mathbb{K} such that $\mathcal{P}=\mathcal{P}_{1} \oplus \mathcal{P}_{2}$;
otherwise \mathcal{P} is said to be indecomposable in \mathbb{K}. We usually use for \mathbb{K} the lattice \mathbb{L}^{a} of all additive hereditary properties of graphs or the lattice $\mathbb{L}^{a} \leq$ of all additive induced-hereditary graph properties - see [1] for more details on these lattices.

The property $\mathcal{P} \circ \mathcal{Q}$ is the vertex-analogue of $\mathcal{P} \oplus \mathcal{Q}$. For the sake of completeness we give the necessary definitions: For given properties $\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}$, a $\operatorname{vertex}\left(\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{n}\right)$-partition of a graph G is a partition V_{1}, \ldots, V_{n} of $V(G)$ such that for each $i=1, \ldots, n$ the induced subgraph $G\left[V_{i}\right]$ has property \mathcal{P}_{i}. The product $\mathcal{P}_{1} \circ \cdots \circ \mathcal{P}_{n}$ of the properties $\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}$ is now defined as the set of all graphs having a vertex $\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}\right)$-partition. Each \mathcal{P}_{i} is called a factor of this product. If $\mathcal{P}_{1}=\cdots=\mathcal{P}_{n}=\mathcal{P}$, then we write $\mathcal{P}^{n}=\mathcal{P}_{1} \circ \cdots \circ \mathcal{P}_{n}$. As an example we note that \mathcal{O}^{k} denotes the class of all k-colourable graphs.

A property \mathcal{R} is reducible if there are properties \mathcal{P} and \mathcal{Q} such that $\mathcal{R}=\mathcal{P} \circ \mathcal{Q}$; otherwise it is irreducible. This paper is motivated by the following unique factorisation theorem [6] (see also [7]).

Theorem 2.1. Every reducible property $\mathcal{P} \neq \mathcal{I}$ in \mathbb{L}_{\leq}^{a} is uniquely factorisable into irreducible factors in \mathbb{L}_{\leq}^{a} (up to the order of the factors).

The following result shows that there is no corresponding result for decompositions of properties.

Theorem 2.2. Let $\mathcal{P}_{1}=\{G \in \mathcal{I}$: Every component of G is either a triangle or triangle-free $\}$. Then $\mathcal{P}_{1} \oplus \mathcal{S}_{1}=\mathcal{I}_{1} \oplus \mathcal{S}_{1}$ from which it follows that $\mathcal{I}_{1} \oplus \mathcal{S}_{1}$ is not uniquely decomposable.

Proof. For the non-trivial inclusion, let $G \in \mathcal{P}_{1} \oplus \mathcal{S}_{1}$ and let E_{1}, E_{2} be a $\left(\mathcal{P}_{1}, \mathcal{S}_{1}\right)$ decomposition of $E(G)$. Let E^{\prime} consist of exactly one edge from each component of $G\left[E_{1}\right]$ isomorphic to K_{3} and let $E^{\prime \prime}=\left\{e \in E_{2}: e\right.$ is adjacent to an edge of $\left.E^{\prime}\right\}$. Let $E_{1}^{\prime}=\left(E_{1} \backslash E^{\prime}\right) \cup E^{\prime \prime}$ and $E_{2}^{\prime}=\left(E_{2} \backslash E^{\prime \prime}\right) \cup E^{\prime}$. Clearly $G\left[E_{2}^{\prime}\right] \in \mathcal{S}_{1}$. Also, $G\left[E_{1}^{\prime}\right] \in \mathcal{I}_{1}$ since it is obtained from the triangle-free graph $F=G\left[E_{1} \backslash E^{\prime}\right]$ by adding a set of disjoint edges $E^{\prime \prime}$ such that every edge in $E^{\prime \prime}$ has its vertices in different components of F.

A similar argument shows that the above example is but a special case of the following: For all positive integers k and m such that $k \leq m, \mathcal{S}_{k} \oplus \mathcal{I}_{m}=\mathcal{S}_{k} \oplus \mathcal{P}_{m}$ where $\mathcal{P}_{m}=\left\{G \in \mathcal{I}:\right.$ Every component of G is either a K_{m+2} or K_{m+2}-free $\}$.

3. The unique decomposability of \mathcal{O}^{k}

In order to prove that \mathcal{O}^{k} is uniquely decomposable in \mathbb{L}_{\leq}^{a} we need a few results on homomorphism properties.

A homomorphism of a graph G to a graph H is a function f from $V(G)$ into $V(H)$ such that if $u v \in E(G)$ then $f(u) f(v) \in E(H)$; if such a function exists, we write $G \rightarrow H$. For a given graph H we denote by $\rightarrow H$ the (additive hereditary) property $\{G \in \mathcal{I}: G \rightarrow H\} . \rightarrow H$ is called a hom property.

The disjunction of two graphs G and H, denoted by $G \vee H$, is the graph with vertex set $V(G) \times V(H)=\{(g, h): g \in V(G)$ and $h \in V(H)\}$ and edge set $\left\{\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right): g_{1} g_{2} \in E(G)\right.$ or $\left.h_{1} h_{2} \in E(H)\right\}$.

Using the standard notation \bar{H} for the complement of a graph H we write $G[n]$ for $G \vee \overline{K_{n}}$ and call $G[n]$ a multiplication of G.

Some basic properties of the disjunction, multiplications and homomorphism properties are given below.
Lemma 3.1. For all graphs G, H and F and positive integers k and n :

1. $G \vee H=H \vee G$.
2. $(G \vee H) \vee F=G \vee(H \vee F)$.
3. $G \rightarrow H$ iff $G \subseteq H[k]$ for some k.
4. $\rightarrow G=\rightarrow H$ iff $G \rightarrow H$ and $H \rightarrow G$.
5. $\rightarrow H=\rightarrow H[k]$.
6. $\mathcal{O}^{k}=\rightarrow K_{k}$.

Theorem 3.2. Let G and H be graphs. Then $\rightarrow G \oplus \rightarrow H=\rightarrow(G \vee H)$.
Proof. First we show that $G \vee G^{\prime} \in \rightarrow G \oplus \rightarrow G^{\prime}$ for all G^{\prime}. An appropriate $(\rightarrow$ $G, \rightarrow G^{\prime}$)-decomposition E_{1}, E_{2} of $G \vee G^{\prime}$ is given by letting $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \in E_{1}$ iff $u_{1} u_{2} \in E(G)$.

In order to prove now that $\rightarrow(G \vee H) \subseteq \rightarrow G \oplus \rightarrow H$ we suppose that $K \in \rightarrow(G \vee H)$. Then, by Lemma $3.1(3), K \subseteq(G \vee H)[k]$ for some k. But, by the definition of $G[k]$ and Lemma 3.1(2), $(G \vee H)[k]=(G \vee H) \vee \overline{K_{k}}=$ $G \vee\left(H \vee \overline{K_{k}}\right)=G \vee(H[k])$. Therefore, with $G^{\prime}=H[k]$, it follows that $K \in \rightarrow$ $G \oplus \rightarrow H[k]=\rightarrow G \oplus \rightarrow H$, using Lemma 3.1(5).

Now suppose that $F \in \rightarrow G \oplus \rightarrow H$ and let E_{1}, E_{2} be a $(\rightarrow G, \rightarrow H)$ decomposition of F. Then there exist homomorphisms $g:\left(V(F), E_{1}\right) \rightarrow G$ and $h:\left(V(F), E_{2}\right) \rightarrow H$. Now define $f: F \rightarrow G \vee H$ by $f(v)=(g(v), h(v))$ for all $v \in V(F)$. In order to show that f is a homomorphism, let $u v \in E(F)$. Then $f(u) f(v)=(g(u), h(u))(g(v), h(v))$. If $u v \in E_{1}$ then $g(u) g(v) \in E(G)$ hence $f(u) f(v) \in E(G \vee H)$. Similarly, if $u v \in E_{2}$ then $f(u) f(v) \in E(G \vee H)$. Therefore f is a homomorphism, proving that $F \in \rightarrow(G \vee H)$.

Corollary 3.3. For all positive integers a and b, $\mathcal{O}^{a b}=\mathcal{O}^{a} \oplus \mathcal{O}^{b}$.
Proof. $\mathcal{O}^{a b}=\rightarrow K_{a b}=\rightarrow\left(K_{a} \vee K_{b}\right)=\rightarrow K_{a} \oplus \rightarrow K_{b}=\mathcal{O}^{a} \oplus \mathcal{O}^{b}$.
For graphs G and H we define the lexicographic product $H \circ G$ of G and H to be the graph with vertex set $V(H) \times V(G)$ and edge set $\left\{\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)\right.$: $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(G)$ or $\left.u_{1} u_{2} \in E(H)\right\}$. We let $H \circ \mathcal{P}$ be the class of all subgraphs of graphs of the form $H \circ G, G \in \mathcal{P}$.

The edges of the lexicographic product $H \circ G$ of two graphs H and G take the following two forms:

- For a given vertex $u_{1} \in V(H)$, the edges of the form $\left(u_{1}, v_{1}\right)\left(u_{1}, v_{2}\right)$ with $v_{1} v_{2} \in E(G)$; these we call edges of type u_{1}.
- For a given edge $u_{1} u_{2} \in E(H)$, the edges of the form $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)$ with $v_{1}, v_{2} \in V(G)$; these we call edges of type $u_{1} u_{2}$.

A colouring of the edge set $E(F)$ of a subgraph F of $H \circ G$ is called good if, for each $u_{1} \in V(H)$, all the edges of type u_{1} have the same colour and, for each $u_{1} u_{2} \in E(H)$, all the edges of type $u_{1} u_{2}$ have the same colour. (For different vertices (edges) of H, the colours of the edges of the type associated with these vertices (edges respectively) need not be the same.)

Next we consider two graphs $F \subseteq H \circ G$ and $F^{\prime} \subseteq H \circ G^{\prime}$. If there is an isomorphism $f: V(F) \rightarrow V\left(F^{\prime}\right)$ of F onto F^{\prime} such that, for all $(u, v) \in V(F)$, $f(u, v) \in\{u\} \times V\left(G^{\prime}\right)$, then we say that f is position-sensitive and we write $F \cong{ }_{p s} F^{\prime}$.

With F and F^{\prime} as in the previous paragraph (but not necessarily isomorphic), we write $F^{\prime} \rightarrow^{g} F$ if for every 2-colouring of $E\left(F^{\prime}\right)$ there is an induced subgraph $K \leq F^{\prime}$ such that the inherited colouring of $E(K)$ is a good colouring and $F \cong_{p s} K . F^{\prime} \rightarrow^{g} F$ means that, with respect to any 2-edge colouring of F^{\prime}, there is a well-coloured position-sensitive copy of F in F^{\prime}.

A property $\mathcal{P} \in \mathbb{L}_{\leq}^{a}$ is called H-Ramsey if for every $F \in H \circ \mathcal{P}$ there is an $F^{\prime} \in H \circ \mathcal{P}$ such that $F^{\prime} \rightarrow^{g} F$; if $H=K_{2}$ it is called a bipartite Ramsey property. The well-known Bipartite Ramsey Lemma (see for instance Lemma 9.3 .3 of [4]) states that the property \mathcal{O} is bipartite Ramsey.

Lemma 3.4. Let \mathcal{P} be a bipartite Ramsey property and let H be any graph. Then \mathcal{P} is H-Ramsey.

Proof. We imitate the partite construction due to Nešetřil and Rödl in [8] where the special case with $\mathcal{P}=\mathcal{O}$ (and $H=K_{n}$) is proved. We first prove the following statement: For any $e=u_{1} u_{2} \in E(H)$ and $G \in H \circ \mathcal{P}$ there is a $G^{\prime} \in H \circ \mathcal{P}$ such that $G^{\prime} \rightarrow^{e} G$, where we mean by this notation that for any 2-colouring of $E\left(G^{\prime}\right)$ there is a $K \leq G^{\prime}$ such that $G \cong_{p s} K$ and all type $u_{1} u_{2}$ edges have the same colour, all type u_{1} edges have the same colour, and all type u_{2} edges have the same colour in the 2-colouring K inherits from G^{\prime}.

We construct G^{\prime} as follows: For $i=1,2$, let $V_{i}=\left\{(u, v) \in V(G): u=u_{i}\right\}$. Let $B \in K_{2} \circ \mathcal{P}$ be the subgraph of G induced by $V_{1} \cup V_{2}$. Since \mathcal{P} is bipartite Ramsey, there exists a $B^{\prime} \in K_{2} \circ \mathcal{P}$ such that $B^{\prime} \rightarrow^{g} B$. For every induced subgraph $B^{\prime \prime}$ of B^{\prime} such that $B^{\prime \prime} \cong_{p s} B$ we add a copy of $G-E(B)$ to B^{\prime} and we identify the vertices corresponding to vertices of $V_{1} \cup V_{2}$ with the corresponding vertices of $B^{\prime \prime}$. It is easy to see that G^{\prime} has the required properties.

Now let $E(H)=\left\{e_{1}, \ldots, e_{m}\right\}$. For any $G \in \mathcal{P}$, we repeat the above construction to obtain graphs G_{1}, \ldots, G_{m} such that $G_{m} \rightarrow^{e_{m}} G_{m-1} \rightarrow^{e_{m-1}}$ $G_{m-2} \rightarrow{ }^{e_{m-2}} \cdots \rightarrow^{e_{2}} G_{1} \rightarrow^{e_{1}} G$ from which it follows that $G_{m} \rightarrow^{g} G$.

In our next result we use the notation $H=H_{1} \uplus H_{2}$ to denote that $V(H)=$ $V\left(H_{1}\right)=V\left(H_{2}\right)$ and $E(H)=E\left(H_{1}\right) \cup E\left(H_{2}\right)$, with $E\left(H_{1}\right) \cap E\left(H_{2}\right)=\emptyset$.

Theorem 3.5. Let $\rightarrow H \subseteq \mathcal{P} \oplus \mathcal{Q}, \mathcal{P}, \mathcal{Q} \in \mathbb{L}_{<}^{a}$. Then there exist graphs H_{1} and H_{2} such that $\rightarrow H \subseteq \rightarrow H_{1} \oplus \rightarrow H_{2}$ with $\rightarrow H_{1} \subseteq \mathcal{P}, \rightarrow H_{2} \subseteq \mathcal{Q}$ and $H=H_{1} \uplus H_{2}$.

Proof. Let G be any graph in $\rightarrow H$. Then $G \subseteq H[k]=H \circ \overline{K_{k}}$ for some k. By Lemma 3.4 (with $\mathcal{P}=\mathcal{O}$), there exists a graph $G^{\prime} \subseteq H \circ \overline{K_{\ell}}$, for some ℓ, such that $G^{\prime} \rightarrow^{g} G$. Then $G^{\prime} \in \rightarrow H$, so that $G^{\prime} \in \mathcal{P} \oplus \mathcal{Q}$. Consider therefore any $(\mathcal{P}, \mathcal{Q})$-colouring c of $E\left(G^{\prime}\right)$. By the Lemma there is a K such that c restricted to $E(K)$ is a good colouring of K and $K \cong_{p s} G$. Therefore every $G \in \rightarrow H$ has a $\operatorname{good}(\mathcal{P}, \mathcal{Q})$-colouring, if we regard G as a subgraph of $H \circ \overline{K_{k}}$ for some k.

Any such good colouring induces a colouring of $E(H)$ in a natural way. Since there are finitely many colourings of $E(H)$ there is a colouring $c^{\prime}=E_{1}, E_{2}$ of $E(H)$ such that every graph $G \in \rightarrow H$ has a $\operatorname{good}(\mathcal{P}, \mathcal{Q})$-colouring that induces c^{\prime}. (Otherwise we could find a disjoint union of finitely many graphs in $\rightarrow H$ with no good $(\mathcal{P}, \mathcal{Q})$-colouring.) Set $H_{1}=\left(V(H), E_{1}\right)$ and $H_{2}=\left(V(H), E_{2}\right)$. Clearly, $H \in \rightarrow H_{1} \oplus \rightarrow H_{2}$ and since $\rightarrow H_{1} \oplus \rightarrow H_{2}$ is a hom-property by Theorem 3.2, it follows that $\rightarrow H \subseteq \rightarrow H_{1} \oplus \rightarrow H_{2}$.

By the choice of $c^{\prime}, \rightarrow H_{1} \subseteq \mathcal{P}$ and $\rightarrow H_{2} \subseteq \mathcal{Q}$, and we clearly have $H=H_{1} \uplus H_{2}$.

Corollary 3.6. For any graph H, if $\rightarrow H$ is decomposable in \mathbb{L}_{\leq}^{a} then $\rightarrow H$ is decomposable in $\mathcal{H O} \mathcal{M}=\{\rightarrow H: H \in \mathcal{I}\}$.

The next result is useful in the proof of our main result. Here we use the following standard notation: $\omega(G)$ is the clique number of a graph $G, \chi(G)$ is the chromatic number of G and $\alpha(G)$ is the independence number of G.

Lemma 3.7. Let G and H be graphs. Then

1. $\omega(G \vee H) \leq \omega(G) \chi(H) \leq \chi(G \vee H)$.
2. $\alpha(G \vee H)=\alpha(G) \alpha(H)$.
3. $\rightarrow H=\mathcal{O}^{k}$ iff $\omega(H)=\chi(H)=k$.

Proof.

1. In order to prove the first inequality, let K be a complete subgraph of $G \vee H$ and let F be any edgeless induced subgraph of H. Then $\mid V(K) \cap(V(G) \times$ $V(F)) \mid \leq \omega(G)$ since $G \vee F=G[d]$ with $d=|V(F)|$, and $\omega(G[d])=\omega(G)$. Since $V(H)$ can be partitioned into $\chi(H)$ independent sets it follows that $|V(K)| \leq \omega(G) \chi(H)$.
For the second inequality we take any complete subgraph K of G of order $\omega(G)$. Then $\chi(K \vee H)=\omega(G) \chi(H)$ and $K \vee H \subseteq G \vee H$.
2. If $K=\left\{\left(g_{1}, h_{1}\right), \ldots,\left(g_{k}, h_{k}\right)\right\}$ is an independent subset of $V(G \vee H)$ then $K_{G}=\left\{g_{1}, \ldots, g_{k}\right\}$ and $K_{H}=\left\{h_{1}, \ldots, h_{k}\right\}$ are independent subsets of $V(G)$ and $V(H)$, respectively. Then $|K| \leq\left|K_{G} \times K_{H}\right|=\left|K_{G}\right|\left|K_{H}\right| \leq \alpha(G) \alpha(H)$. Also, if K_{1} and K_{2} are independent subsets of G and H, respectively, then $K_{1} \times K_{2}$ is an independent subset of $G \vee H$, hence $\alpha(G \vee H)=\alpha(G) \alpha(H)$.
3. If $\rightarrow H=\mathcal{O}^{k}$ then $k \leq \omega(H) \leq \chi(H) \leq k$. If $\omega(H)=\chi(H)=k$ then $H \rightarrow K_{k} \rightarrow H$ hence $\rightarrow H=\mathcal{O}^{k}$ by Lemma 3.1.

Theorem 3.8. Let p_{1}, \ldots, p_{n} be prime numbers and let $k=p_{1} \cdots p_{n}$. Then the property \mathcal{O}^{k} has the unique decomposition $\mathcal{O}^{p_{1}} \oplus \cdots \oplus \mathcal{O}^{p_{n}}$ in \mathbb{L}_{\leq}^{a}.

Proof. Let k be any positive integer. We show that if $\mathcal{O}^{k}=\mathcal{P} \oplus \mathcal{Q}$, with $\mathcal{P}, \mathcal{Q} \in$ \mathbb{L}_{\leq}^{a}, then there exists an integer a such that $\mathcal{P}=\mathcal{O}^{a}$. Then, if $\mathcal{O}^{k}=\mathcal{P}_{1} \oplus \cdots \oplus \mathcal{P}_{m}$ with \mathcal{P}_{i} indecomposable for every i, it follows that for every $i, \mathcal{P}_{i}=\mathcal{O}^{q_{i}}$ for some q_{i}. Since \mathcal{P}_{i} is indecomposable q_{i} must be prime by Corollary 3.3. The result then follows from the unique factorisation of integers and Corollary 3.3.

Suppose therefore that $\mathcal{O}^{k}=\mathcal{P} \oplus \mathcal{Q}, \mathcal{P}, \mathcal{Q} \in \mathbb{L}_{\leq}^{a}$. Since $\mathcal{O}^{k}=\rightarrow K_{k}$ we have, by Theorem 3.5 and Theorem 3.2, that there exist H_{1} and H_{2} such that $\mathcal{O}^{k}=$ $\rightarrow\left(H_{1} \vee H_{2}\right), \rightarrow H_{1} \subseteq \mathcal{P}, \rightarrow H_{2} \subseteq \mathcal{Q}$ and $H_{1} \uplus H_{2}=K_{k}$. First we show that $\rightarrow H_{1}=\mathcal{O}^{a}$ for some a. By Lemma 3.7 we must show that $\omega\left(H_{1}\right)=\chi\left(H_{1}\right)$: By the same lemma we have that $k=\omega\left(H_{1} \vee H_{2}\right) \leq \omega\left(H_{2}\right) \chi\left(H_{1}\right) \leq \chi\left(H_{1} \vee H_{2}\right)=k$, hence $k=\omega\left(H_{2}\right) \chi\left(H_{1}\right)$. Also, since $H_{1} \uplus H_{2}=K_{k}$, we have that $\overline{H_{1}}=H_{2}$ so that $\omega\left(H_{1}\right)=\alpha\left(H_{2}\right)$ and $\omega\left(H_{2}\right)=\alpha\left(H_{1}\right)$. Now, $k=\chi\left(H_{1} \vee H_{2}\right) \geq \frac{\left|V\left(H_{1} \vee H_{2}\right)\right|}{\alpha\left(H_{1} \vee H_{2}\right)}=$ $\frac{\left|V\left(H_{1}\right)\right|\left|V\left(H_{2}\right)\right|}{\alpha\left(H_{1}\right) \alpha\left(H_{2}\right)}=\frac{k^{2}}{\omega\left(H_{2}\right) \omega\left(H_{1}\right)}$.

Hence $\omega\left(H_{1}\right) \geq \frac{k}{\omega\left(H_{2}\right)}=\chi\left(H_{1}\right)$, from which it follows that $\omega\left(H_{1}\right)=\chi\left(H_{1}\right)$.
Similarly, $\rightarrow H_{2}=\mathcal{O}^{b}$ for some b. Since $\mathcal{O}^{k}=\rightarrow H_{1} \oplus \rightarrow H_{2}$ it follows that $k=a b$. Suppose now that $\mathcal{O}^{a} \subset \mathcal{P}$ and let $G \in \mathcal{P}$ be such that $\chi(G)>a$.

Then the graph $F=G \vee K_{b}$ has chromatic number greater than $a b=k$ but $F \in \mathcal{P} \oplus \mathcal{Q}$, a contradiction. Therefore $\mathcal{P}=\mathcal{O}^{a}$.

4. Conclusion

It would be of interest to characterise those properties which are uniquely decomposable in \mathbb{L}^{a} (or \mathbb{L}_{\leq}^{a}). In particular, it is easy to see that for every product of properties \mathcal{P}^{k} we have $\mathcal{P}^{k}=\mathcal{P} \oplus \mathcal{O}^{k}$, and hence $\mathcal{P} \oplus \mathcal{O}^{p_{1}} \oplus \cdots \oplus \mathcal{O}^{p_{n}}$ if $k=p_{1} \cdots p_{n}$, and the following question arises: For which indecomposable \mathcal{P} is this the unique decomposition of \mathcal{P}^{k} into indecomposable properties?

We can construct a hom property $\rightarrow H$ which does not have a unique decomposition into indecomposable properties, even if we restrict the properties to hom properties. Our proof relies on the fact that the complementary graph \bar{H} is disconnected. We do not know if there is such a graph H with a connected complement.

References

[1] M. Borowiecki, I. Broere, M. Frick, P. Mihók, G. Semanišin, A survey of hereditary properties of graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5-50.
[2] I. Broere, M. J. Dorfling, The decomposability of additive hereditary properties of graphs, Discussiones Mathematicae Graph Theory 20 (2000) 281291.
[3] G. Chartrand, L. Lesniak, P. Zhang, Graphs \& Digraphs, fifth ed., Taylor \& Francis, Boca Raton, 2011.
[4] R. Diestel, Graph theory, fourth ed., Graduate Texts in Mathematics, 173, Springer, Heidelberg, 2010.
[5] W. Imrich, S. Klavžar, Product graphs, structure and recognition, WileyInterscience series in discrete mathematics and optimization, Wiley, New York, 2000.
[6] P. Mihók, Unique factorization theorem, Discussiones Mathematicae Graph Theory 20 (2000) 143-153.
[7] P. Mihók, G. Semanišin, R. Vasky, Additive and hereditary properties of graphs are uniquely factorizable into irreducible factors, J. Graph Theory 33 (2000) 44-53.
[8] J. Nešetřil, V. Rödl, Simple proof of the existence of restricted Ramsey graphs by means of a partite construction, Combinatorica 1(2) (1981) 199202.

[^0]: * Corresponding author

 Email addresses: izak.broere@up.ac.za (Izak Broere), michaeljd@telkomsa.net (Michael J. Dorfling)

