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Abstract1

A new deterministic model for the transmission dynamics of two strains of in-2

fluenza is designed and used to qualitatively assess the role of cross-immunity on3

the transmission process. It is shown that incomplete cross-immunity could in-4

duce the phenomenon of backward bifurcation when the associated reproduction5

number is less than unity. The model undergoes competitive exclusion (where6

Strain i drives out Strain j to extinction whenever R0i > 1 > R0j ; i, j =7

1, 2, i ̸= j). For the case where infection with one strain confers complete im-8

munity against infection with the other strain, it is shown that the disease-free9

equilibrium of the model is globally-asymptotically stable whenever the repro-10

duction number is less than unity. In the absence of cross-immunity, the model11

can have a continuum of co-existence endemic equilibria (which is shown to be12

globally-asymptotically stable for a special case). When infection with one strain13

confers incomplete immunity against the other. Numerical simulations of the14

model show that the two strains co-exist, with Strain i dominating (but not15

driving out Strain j), whenever R0i > R0j > 1.16

Keywords: cross-immunity; multiple strains; equilibria; co-existence; stability.17
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1 Introduction18

One of the important problems in mathematical epidemiology is the study of the trans-19

mission dynamics of diseases with multiple strains in the presence of partial or com-20

plete immunity. Consequently, the mathematical modeling of diseases with multiple21

pathogen strains, such as dengue fever, HIV/AIDS, influenza, malaria and West Nile22

virus, has received considerable attention (see, for instance, [1, 2, 12, 15, 19, 27, 29, 23,23

26, 34, 39] and some of the references therein). These studies have, in general, focussed24

on the determination of threshold condition(s) for the co-existence of the strains, as25

well as the evaluation of the role of cross-immunity (defined as a scenario where in-26

fection with one strain confers partial or complete protection against infection with27

another strain) in the transmission dynamics of the disease strains.28

In a multi-strain dynamics situation, infection by one or more of the strains may29

modify the sensitivity to infection by the other strains [15, 23, 26, 29, 38]. Some30

of the main questions of epidemiological interest, in studies of modeling multi-strain31

dynamics, are:32

(i) which strain(s) will dominate in the long run (i.e., does competitive exclusion33

phenomenon occurs)?34

(ii) under what conditions will the strains co-exist?35

(iii) what is the effect of cross-immunity (partial or complete) on the multi-strain36

dynamics?37

These questions could be addressed using the threshold quantity known as the basic38

reproduction number of the disease [3, 4, 27], which represents the average number of39

secondary cases generated by a typical infected individual in a completely susceptible40

population. Past research has estimated that the reproduction number of the 1918-41

1919 influenza pandemic and other seasonal strains of influenza ranged between 1.542

and 5.4 [15, 16, 17, 18, 21, 26, 35, 36].43

Using an SIQR deterministic model for the dynamics of two strains of influenza44

in the presence of isolation of symptomatic cases, Nuno et al. [29] showed that cross-45

immunity and host isolation could induce sustained periodic oscillations. Bremmerman46

and Thieme [8] shows the phenomenon of competitive exclusion (where the strain47

with the largest reproduction number persists and eliminates the remaining strains)48

in a simple model with multiple strains (similar results were obtained in [11, 20, 23]).49

Gumel [26] shows co-existence of two strains (avian and mutant) of influenza when50

their reproduction numbers exceed unity using avian-human model in the presence of51

isolation (system does not undergo competitive exclusion).52

The aim of this study is to rigorously assess the role of cross-immunity on the53

transmission dynamics of two strains of influenza in a population. To achieve this54

objective, a new deterministic model (which extends the model in [29]) will be designed.55
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The paper is organized as follows. The extended model is formulated in Section 256

and analysed in Section 3.57

2 Formulation of Mathematical Model58

The model is based on the transmission dynamics of two strains of influenza. The total59

population at time t, denoted by N(t), is subdivided into susceptible (S(t)); exposed60

to strain i (i = 1, 2) (Ei); infectious with strain i (Ii); recovered from strain i (Ri);61

recovered from strain i and exposed to strain j (i, j = 1, 2 i ̸= j) (Eij); recovered from62

strain i and infectious with strain j (Iij); and individuals recovered from infection with63

both strains (M), so that64

N(t) = S(t)+E1(t)+I1(t)+R1(t)+E2(t)+I2(t)+R2(t)+E12(t)+I12(t)+E21(t)+I21(t)+M(t).

The model to be considered is given by the following deterministic system of non-linear65

differential equations (where a dot represents differentiation with respect to t; and all66

associated parameters are non-negative for all t ≥ 0):67

Ṡ = Π+ ξM − β1S(η1E1 + I1)

N
− β2S(η2E2 + I2)

N
− β12S(η12E12 + I12)

N

− β21S(η21E21 + I21)

N
− µS,

Ė1 =
β1(η1E1 + I1)

N
S +

β21(η21E21 + I21)

N
S − σ1E1 − µE1,

İ1 = σ1E1 − γ1I1 − µI1 − δ1I1,

Ṙ1 = γ1I1 − θ2
β2R1(η2E2 + I2)

N
− θ2

β12R1(η12E12 + I12)

N
− µR1,

Ė2 =
β2(η2E2 + I2)

N
S +

β12(η12E12 + I12)

N
S − σ2E2 − µE2,

İ2 = σ2E2 − γ2I2 − µI2 − δ2I2,

Ṙ2 = γ2I2 − θ1
β1R2(η1E1 + I1)

N
− θ1

β21R2(η21E21 + I21)

N
− µR2,

Ė12 = θ2
β2R1(η2E2 + I2)

N
+ θ2

β12R1(η12E12 + I12)

N
− σ12E12 − µE12,

˙I12 = σ12E12 − γ12I12 − µI12 − δ12I12,

Ė21 = θ1
β1R2(η1E1 + I1)

N
+ θ1

β21R2(η21E21 + I21)

N
− σ21E21 − µE21,

˙I21 = σ21E21 − γ21I21 − µI21 − δ21I21,

Ṁ = γ12I12 + γ21I21 − ξM − µM,

(1)

where Π is the recruitment rate into the community, ξ is the rate of loss of natural68

immunity by recovered individuals, βi (where i = 1, 2 here and elsewhere below) is the69

infection rate with strain i, βij (i, j = 1, 2; i ̸= j) represents the transmission rate for70
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individuals who recovered from strain i but exposed to strain j and µ is the natural71

death rate. The modification parameters ηi < 1 accounts for the assumed reduction72

of exposed individuals (those in the Ei classes) in relation to infectious individuals (in73

the Ii classes); the parameters ηij are similarly defined.74

Furthermore, σi is the transition rate of individuals exposed with strain i (i.e.,75

those in the Ei class) to the corresponding infectious (Ii) class (the parameters σij are76

similarly defined). The parameters γi and δi represent, respectively, the recovery rates77

and disease-induced death rate of individuals infected with strain i (the parameters γij78

and δij are defined similarly). The modification parameters 0 ≤ θi ≤ 1 account for the79

assumed reduction of susceptibility to strain j of individuals who recovered from strain80

i (i.e., 0 ≤ θi ≤ 1) captures the cross-immunity of individuals who recovered from one81

strain against acquiring infection with the other). These parameters are described in82

Table 1, and a flow diagram of the model is depicted in Figure 1.83

The model (1) is an extension of the two-strain influenza model developed by Nuno84

et al. [29], by85

(i) adding epidemiological compartments for exposed individuals (E1, E2, E12 and86

E21). The incubation period of influenza is 1-4 days (average is about 2 days)87

[14];88

(ii) allowing for disease transmission by exposed individuals (at reduced rates βiηi89

for those with primary infection; and βijηij for those with secondary infection).90

Clinical evidence suggests that individuals infected with an influenza virus can91

transmit infection even before the onset of symptoms (typically a day before92

symptoms develop) [14];93

(iii) allowing heterogeneity in transmission due to recovery from infection with one94

strain (i.e., individuals in the Eij and Iij classes transmit infection at different95

rates in comparison to those in the corresponding Ei and Ii classes). Same rate96

(βi) is used in Nuno et al. [29], for disease transmission by individuals infected97

with strain i (regardless of whether or not the infected individuals recover from98

strain j). Clinical studies show differential heterogeneity in disease transmission99

by individuals previously infected with different disease strain [9, 17, 25];100

(iv) allow for the loss of natural immunity in individuals who recovered from both101

strains (at the rate ξ) [6].102

It should be noted that, unlike in [29], the model (1) does not incorporate the isolation103

of symptomatic cases (i.e., while isolation-adjusted incidence is used to model the104

infection rate in [29], standard incidence function is used in (1); the reader may refer105

to [15] for the disadvantages associated with implementing isolation strategy, including106

the difficulty of detecting infected individuals and the cost of isolation in the context107
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of influenza). Furthermore, the model (1) can also be used for any influenza-like illness108

(where exposed individuals can transmit infection) with two strains. In addition to the109

above extensions, rigorous qualitative analysis will be provided for the resulting model.110

2.1 Basic Properties of the Model111

For the model (1) to be epidemiologically meaningful, it is important to prove that all112

its state variables are non-negative for all time (t). In other words, the solutions of the113

model (1) with positive initial data will remain positive for all t ≥ 0. The following114

result can be proven (see, for instance, [8, 22, 24, 37, 40])115

Theorem 1 Let the initial data S(0) > 0, E1(0) > 0, I1(0) > 0, R1(0) > 0, E2(0) >116

0, I2(0) > 0, R2(0) > 0, E12(0) > 0, I12(0) > 0, E21(0) > 0, I21(0) > 0, M(0) > 0,117

then the solutions S, E1, I1, R1, E2, I2, R2, E12, I12, E21, I21, M of the model (1) are118

positive for all t ≥ 0. Furthermore,119

lim sup
t→∞

N(t) ≤ Π

µ
.

2.1.1 Invariant region120

Lemma 1 The region121

Ω =

{
(S, E1, I1, R1, E2, I2, R2, E12, I12, E21, I21, M) ∈ R12

+ :

S + E1 + I1 +R1 + E2 + I2 +R2 + E12 + I12 + E21 + I21 +M ≤ Π

µ

}

is positively-invariant for the model (1).122

Proof. Adding the equations in the model system (1) gives123

dN(t)

dt
= Π− µN(t)− (δ1I1 + δ2I2 + δ12I12 + δ21I21). (2)

It follows from (2) that124

dN(t)

dt
≤ Π− µN(t). (3)

Thus (using standard comparison theorem [32]), N(t) ≤ N(0)e−µ(t) + Π
µ
[1− e−µ(t)].125

In particular, N(t) ≤ Π/µ. Thus, Ω is positively-invariant. Hence, it is sufficient to126

consider the dynamics of the model (1) in Ω. In this region, the model can be considered127

as been epidemiologically and mathematically well-posed [27]. �128
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2.2 Stability of Disease-Free Equilibria (DFE)129

2.2.1 Local stability130

The DFE of the model (1) is given by131

E0 = (S∗, E∗
1 , I

∗
1 , R

∗
1, E

∗
2 , I

∗
2 , R

∗
2, E

∗
12, I

∗
12, E

∗
21, I

∗
21,M

∗),

=

(
Π

µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
.

(4)

The linear stability of E0 can be established using the next generation operator method132

on system (1). Using the notation in [41], the matrices F (for the new infection terms)133

and V (of the transition terms) are given, respectively, by134

F =



β1η1 β1 0 0 0 0 β21η21 β21

0 0 0 0 0 0 0 0

0 0 β2η2 β2 β12η12 β12 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


,

V =



K1 0 0 0 0 0 0 0

−σ1 K2 0 0 0 0 0 0

0 0 K3 0 0 0 0 0

0 0 −σ2 K4 0 0 0 0

0 0 0 0 K5 0 0 0

0 0 0 0 −σ12 K6 0 0

0 0 0 0 0 0 K7 0

0 0 0 0 0 0 −σ21 K8


,

where, K1 = µ + σ1, K2 = µ + γ1 + δ1, K3 = µ + σ2, K4 = µ + γ2 + δ2, K5 =135

µ+ σ12, K6 = µ+ γ12 + δ12, K7 = µ+ σ21 and K8 = µ+ γ21 + δ21.136

It follows that the basic reproduction number of the model (1), denoted by R0, is137

given by (where ρ is the spectral radius)138

R0 = ρ(FV −1) = max{R01,R02},

where R01 and R02 are the associated reproduction numbers for strain 1 and strain 2,139

respectively, given by140
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R01 =
β1(η1K2 + σ1)

K1K2

and R02 =
β2(η2K4 + σ2)

K3K4

. (5)

Lemma 2 The DFE, E0, of the model (1) is locally-asymptotically stable (LAS) if141

R0 < 1, and unstable if R0 > 1.142

The threshold quantity, R0 = max{R01,R02}, is the basic reproduction number of the143

disease [3, 4, 27]. It represents the average number of secondary cases generated by a144

typical infected individual in a completely susceptible population. The epidemiological145

implication of Lemma 2 is that when R0 is less than unity, a small influx of infected146

individuals into the community would not generate large outbreaks, and the disease147

dies out in time.148

2.2.2 Backward bifurcation analysis149

It is instructive to characterize the types of bifurcation the model (1) may undergo.150

We claim the following result (the proof is given in Appendix A):151

Theorem 2 The model (1) exhibits backward bifurcation at R0 = 1 whenever a bifur-152

cation coefficient, denoted by a (and given by (32)), is positive.153

The public health implication of the backward bifurcation phenomenon of the model154

(1) is that the classical epidemiological requirement of having the reproduction number155

(R0) to be less than unity, while necessary, is no longer sufficient for the effective control156

of the disease. In other words, the backward bifurcation property of the model (1)157

makes effective diseases control difficult. It is worth stating that, setting θ1 = θ2 = 0158

in the inequality (32) gives (noting that all parameters of the model are positive and159

β∗
1 > 0 is given in Appendix A):160

a = −4µ

Π

[
β∗
1(η1K2 + σ1)

σ1

+
β2(η2K4 + σ2)

σ2

](
2 +

K2

σ1

+
K4

σ2

+
γ1 + γ2

µ

)
< 0. (6)

Thus, it follows from Theorem 4.5 in [13] that the model (1) does not undergo backward161

bifurcation in this setting. Hence, this study shows that the backward bifurcation162

phenomenon of the model (1) is caused by the incomplete cross-immunity property163

of the model (0 < θ1, θ2 < 1). A global asymptotic stability result is established164

below for the DFE of the model (to completely rule out backward bifurcation for165

the case when infection with one strain confers complete cross-immunity against the166

other strain). It is worth stating that the phenomenon of backward bifurcation is not167

rigorously established in the study by Nuno et al. [29] (the phenomenon was shown168

using numerical simulations). This, to the authors’ knowledge, is the first time it is169

rigorously shown that incomplete cross-immunity could induce backward bifurcation170

in the transmission dynamics of two strains of influenza. Garba and Gumel [23] also171

established similar result in the dynamics of two strains of dengue fever.172
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2.3 Global Stability of DFE: Special Case θ1 = θ2 = 0173

Consider the model (1), for the case when infection with one strain confers complete174

immunity against infection with the other strain (i.e., θ1 = θ2 = 0). It follows, by175

setting θ1 = θ2 = 0 in (1), that E12 → 0, I12 → 0, E21 → 0, I21 → 0 and M → 0176

as t → ∞. Thus, the last five equations of the model decouple, so that the model (1)177

reduces to:178

Ṡ = Π− λ1S − λ2S − µS,

Ė1 = λ1S −K1E1,

İ1 = σ1E1 −K2I1,

Ṙ1 = γ1I1 − µR1,

Ė2 = λ2S −K3E2,

İ2 = σ2E2 −K4I2,

Ṙ2 = γ2I2 − µR2.

(7)

where, now, λ1 =
β1(η1E1 + I1)

N
and λ2 =

β2(η2E2 + I2)

N
.179

The dynamics of the reduced model (7) will be considered in the following invariant180

region181

Γ =

{
(S,E1, I1, R1, E2, I2, R2) ∈ R7

+ : N ≤ Π

µ

}
. (8)

The DFE of the reduced model is given by Er
0 = (S,E1, I1, R1, E2, I2, R2) =

(
Π
µ
, 0, 0, 0, 0, 0, 0

)
.182

The model (7) has the same reproduction number, R0 = max{R01,R02}, as model (1).183

Theorem 3 The DFE, Er
0 , of the reduced model (7) is GAS in Γ whenever R0 ≤ 1.184

Proof. Consider the Lyapunov function for the model (7):185

F =

(
η1K2 + σ1

K1

)
E1 + I1 +

(
η2K4 + σ2

K3

)
E2 + I2, (9)

with Lyapunov derivative given by186
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Ḟ =

(
η1K2 + σ1

K1

)
Ė1 + İ1 +

(
η2K4 + σ2

K3

)
Ė2 + İ2,

=

(
η1K2 + σ1

K1

)[
β1(η1E1 + I1)

N
S −K1E1

]
+ σ1E1 −K2I1

+

(
η2K4 + σ2

K3

)[
β2(η2E2 + I2)

N
S −K3E2

]
+ σ2E2 −K4I2,

≤
(
η1K2 + σ1

K1

)[
β1(η1E1 + I1)−K1E1

]
+ σ1E1 −K2I1

+

(
η2K4 + σ2

K3

)[
β2(η2E2 + I2)−K3E2

]
+ σ2E2 −K4I2 since S ≤ N in Γ,

= β1

(
η1K2 + σ1

K1

)
(η1E1 + I1)− (η1K2 + σ1)E1 + σ1E1 −K2I1

+ β2

(
η2K4 + σ2

K3

)
(η2E2 + I2)− (η2K4 + σ2)E2 + σ2E2 −K4I2,

= K2R01(η1E1 + I1)− η1K2E1 −K2I1 +K4R02(η2E2 + I2)− η2K4E2 −K4I2,

= K2R01(η1E1 + I1)− (η1E1 + I1)K2 +K4R02(η2E2 + I2)− (η2E2 + I2)K4,

= K2(η1E1 + I1)(R01 − 1) +K4(η2E2 + I2)(R02 − 1).

Thus Ḟ ≤ 0 if R0 = max{R01,R02} ≤ 1 with Ḟ = 0 if E1 = I1 = E2 = I2 = 0.187

Substituting E1 = I1 = E2 = I2 = 0 in the first equation in (7) shows that S(t) → Π/µ188

as t → ∞. Similarly, substituting E1 = I1 = E2 = I2 = 0 in the equations for R1 and189

R2 show that (R1, R2) → (0, 0) as t → ∞. Further, the largest compact invariant set190

in {(S,E1, I1, R1, E2, I2, R2) ∈ Γ : dF/dt = 0} is the singleton {Er
0}. It follows, from191

the LaSalle’s Invariance Principle [33], that every solution to the equations in (7) with192

initial conditions in Γ converges to the DFE Er
0 as t → ∞. �193

194

This result shows that, for the case when infection with one strain confers complete195

immunity against the other strain, the DFE of the model (1) is GAS (hence, the disease196

(i.e., both strains) will be eliminated from the community if R0 < 1 in this case). It197

should be mentioned that such global-asymptotic result was not established for the198
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DFE of the model presented by Nuno et al. [29].199

3 Existence and Stability of Boundary Equilibria200

The approach in [23, 31] will be used to explore the possibility of the existence and201

stability of the positive equilibria (i.e., equilibria where at least one of the infected202

variables of the model (1) is non-zero). Let203

E12 = (S∗∗, E∗∗
1 , I∗∗1 , R∗∗

1 , E∗∗
2 , I∗∗2 , R∗∗

2 , E∗∗
12 , I

∗∗
12 , R

∗∗
12, E

∗∗
21 , I

∗∗
21 ,M

∗∗)

represents any arbitrary equilibrium of the model (1). Further, let204

λ∗∗
1 =

β1(η1E
∗∗
1 + I∗∗1 ) + β21(η21E

∗∗
21 + I∗∗21 )

N∗∗ and λ∗∗
2 =

β2(η2E
∗∗
2 + I∗∗2 ) + β12(η12E

∗∗
12 + I∗∗12 )

N∗∗
(10)

be the forces of infection of strains 1 and 2, respectively, at endemic steady-state (where205

N∗∗ is the total population size at the endemic steady-state). Solving the equations in206

(1) at endemic steady-state gives207

S∗∗ =
Π

A1

, E∗∗
1 =

Πλ∗∗
1

K1A1

, I∗∗1 =
Πλ∗∗

1 σ1

K1K2A1

, R∗∗
1 =

Πλ∗∗
1 σ1γ1

K1K2A1A3

,

E∗∗
2 =

Πλ∗∗
2

K3A1

, I∗∗2 =
Πλ∗∗

2 σ2

K3K4A1

, R∗∗
2 =

Πλ∗∗
2 σ2γ2

K3K4A1A2

, E∗∗
12 =

Πλ∗∗
1 λ∗∗

2 σ1γ1θ2
K1K2K5A1A3

,

I∗∗12 =
Πλ∗∗

1 λ∗∗
2 σ1σ3γ1θ2

K1K2K5K6A1A3

, E∗∗
21 =

Πλ∗∗
1 λ∗∗

2 σ2γ2θ1
K3K4K7A1A2

, I∗∗21 =
Πλ∗∗

1 λ∗∗
2 σ2σ4γ2θ1

K3K4K7K8A1A2

,

M∗∗ =
Πλ∗∗

1 λ∗∗
2 σ2θ1(γ3K8 + γ4σ4)

K3K4K7K8K9A1A2

,

(11)

with A1 = λ∗∗
1 + λ∗∗

2 + µ, A2 = λ∗∗
1 θ1 + µ and A3 = λ∗∗

2 θ2 + µ.208

209

The equilibria of the model (1) can then be obtained by finding the fixed-points of210

the equation211

x = Φ(x) =

 ϕ1(λ
∗∗
1 , λ∗∗

2 )

ϕ2(λ
∗∗
1 , λ∗∗

2 )

 , where x =

 λ∗∗
1

λ∗∗
2

 . (12)
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3.1 Strain 1-only Boundary Equilibrium (E1)212

Setting λ∗∗
2 = 0 in (11) gives the following general form of the strain 1-only boundary213

equilibrium (denoted by E1)214

E1 =
(
S∗
1 , E

∗
1 , I

∗
1 , R

∗
1, 0, 0, 0, 0, 0, 0, 0, 0

)
where,215

S∗
1 =

Π

λ∗∗
1 + µ

, E∗
1 =

λ∗∗
1 Π

K1(λ∗∗
1 + µ)

, I∗1 =
λ∗∗
1 Πσ1

K1K2(λ∗∗
1 + µ)

, R∗
1 =

λ∗∗
1 Πσ1γ1

K1K2µ(λ∗∗
1 + µ)

.

We claim the following.216

Theorem 4 The model (1) has a unique and LAS strain 1-only boundary equilibrium,217

E1, whenever R02 < 1 < R01.218

Proof. Consider, first of all, the model (1) with strain 2-only (i.e., the case where all219

components of Strain 1 are removed from the model). The following result can be220

proven (see Appendix B for the proof):221

Lemma 3 In the absence of Strain 1, the DFE of the model (1) with strain 2-only is222

GAS in Ω whenever R02 ≤ 1.223

It is clear from the fixed-point system, (12) with (11), that ϕ2(λ
∗∗
1 , 0) = 0. Thus,224

a fixed-point of ϕ1(λ
∗∗
1 , λ∗∗

2 ) is obtained by solving the equation ϕ1(λ
∗∗
1 , 0) = λ∗∗

1 . It225

follows, after some algebraic manipulations, that λ∗∗
1 is the root of the equation226

x1λ
∗∗
1 + y1 = 0, (13)

where, x1 = σ1(µ + γ1) + µK2 and y1 = µK1K2(1 − R01). Clearly, the coefficient x1227

is always positive, and y1 is positive (negative) if R01 is less than (greater than) unity,228

respectively. Further, it should be stated that for E1 to exist, it is necessary that strain229

2 does not (i.e., R02 < 1). Thus, a unique strain 1-only boundary equilibrium exists230

whenever R02 < 1 < R01.231

Let R02 < 1 (so that strain 2 dies out, in line with Lemma 3). The local stability232

property of E1 is established by evaluating Jacobian of the system (11) at (λ∗∗
1 , λ∗∗

2 ).233

This gives.234

235

J(λ∗∗
1 , λ∗∗

2 ) =


∂ϕ1(λ

∗∗
1 , λ∗∗

2 )

∂λ∗∗
1

∂ϕ1(λ
∗∗
1 , λ∗∗

2 )

∂λ∗∗
2

∂ϕ2(λ
∗∗
1 , λ∗∗

2 )

∂λ∗∗
1

∂ϕ2(λ
∗∗
1 , λ∗∗

2 )

∂λ∗∗
2

 ,236
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so that,237

238

J(λ∗∗
1 , 0) =


1

R01

∂ϕ1(λ
∗∗
1 , λ∗∗

2 )

∂λ∗∗
2

∣∣∣∣
(λ∗∗

1 ,0)

0
R02

R01

 .239

For stability, we require 1
R01

< 1 (i.e., R01 > 1) and R02

R01
< 1 (i.e., R02 < R01). Com-240

bining all these, and noting that R02 ≤ 1, shows that the boundary equilibrium, E1, is241

LAS provided R02 < 1 < R01. �242

243

The boundary equilibrium E1 can be shown to be GAS for a special case as below.244

Consider the model (1) with the associated disease-induced mortality rates (δ1, δ2, δ12, δ21)245

set to zero. Setting δ1 = δ2 = δ12 = δ21 = 0 in (1) gives N(t) → Π
µ
as t → ∞. Let246

β̃i =
µβi

Π
and β̃ij =

µβij

Π
, so that247

λ1 = β̃1(η1E1 + I1) + β̃21(η21E21 + I21) and λ2 = β̃2(η2E2 + I2) + β̃12(η12E12 + I12).(14)

Furthermore, let248

Ω0 =

{
(S, E1, I1, R1, E2, I2, R2, E12, I12, E21, I21, M) ∈ Ω :

E1 = I1 = E2 = I2 = E12 = I12 = E21 = I21 = 0

}
.

We claim the following result.249

Theorem 5 Let R02 < 1, so that λ∗∗
2 = 0 and strain 2 dies out. The unique strain250

1-only boundary equilibrium, E1 of the model (1) with (14), is GAS in Ω\Ω0, whenever251

R02 < 1 < R01.252

Proof. Consider the model (1) with (14). Further, let R02 < 1 < R01, so that the253

boundary equilibrium E1 exists (Theorem 4) and strain-2 dies out (Lemma 3). Consider254

the following non-linear Lyapunov function, of Goh-Volterra type (functions of this type255

have been used in the mathematical ecology/epidemiology literature, such as those in256

[7, 22, 26, 28]):257

F = S − S∗∗ − S∗∗ln

(
S

S∗∗

)
+ E1 − E∗∗

1 − E∗∗
1 ln

(
E1

E∗∗
1

)
+

(
K1 − β̃1η1S

∗∗

σ1

)[
I1 − I∗∗1 − I∗∗1 ln

(
I1
I∗∗1

)]
,

with Lyapunov derivative,258

Ḟ = Ṡ − S∗∗

S
Ṡ + Ė1 −

E∗∗
1

E1

Ė1 +

(
K1 − β̃1η1S

∗∗

σ1

)(
İ1 −

I∗∗1
I1

İ1

)
,
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so that,259

Ḟ = Π− λ1S − µS − S∗∗

S
(Π− λ1S − µS) + λ1S −K1E1 −

E∗∗
1

E1

(λ1S −K1E1)

+

(
K1 − β̃1η1S

∗∗

σ1

)[
σ1E1 −K2I1 −

I∗∗1
I1

(σ1E1 −K2I1)

]
.

Hence,260

Ḟ = Π

(
1− S∗∗

S

)
+ µS∗∗

(
1− S

S∗∗

)
+ β̃1S

∗∗I1 + β̃2S
∗∗I2

− β̃1η1SE
∗∗
1 − β̃1SI1

E∗∗
1

E1

+K1E
∗∗
1 − K1K2I1

σ1

+
β̃1η1S

∗∗K2I1
σ1

−K1E1
I∗∗1
I1

+
K1K2I

∗∗
1

σ1

+ β̃1η1S
∗∗E1

I∗∗1
I1

− β̃1η1S
∗∗K2I

∗∗
1

σ1

.

(15)

It can be shown from the model (1) with (14) and λ∗∗
2 = 0, at endemic steady-state,261

that262

Π = β̃1(η1E
∗∗
1 + I∗∗1 )S∗∗ + µS∗∗,

K1E
∗∗
1 = β̃1(η1E

∗∗
1 + I∗∗1 )S∗∗, σ1E

∗∗
1 = K2I

∗∗
1 , γ1I

∗∗
1 = µR1

∗∗.
(16)

Substituting the relations in (16) into (15) gives263

Ḟ = [β̃1η1S
∗∗E∗∗

1 + β̃1S
∗∗I∗∗1 + µS∗∗]

(
1− S∗∗

S

)
+ µS∗∗

(
1− S

S∗∗

)
− β̃1η1SE

∗∗
1 − β̃1SI1

E∗∗
1

E1

β̃1η1S
∗∗E∗∗

1 + β̃1S
∗∗I∗∗1 − β̃1η1S

∗∗E∗∗
1

I1
I∗∗1

− β̃1S
∗∗I∗∗1

E1I
∗∗
1

E∗∗
1 I1

+ β̃1S
∗∗I∗∗1 ,

which can be simplified to,264

= µS∗∗
(
2− S∗∗

S
− S

S∗∗

)
+ β̃1η1S

∗∗E∗∗
1

(
2− S∗∗

S
− S

S∗∗

)

+ β̃1S
∗∗I∗∗1

(
3− S∗∗

S
− E1I

∗∗
1

E∗∗
1 I1

− I1E
∗∗
1 S

I∗∗1 E1S∗∗

)
.

(17)

Finally, since the arithmetic mean exceeds the geometric mean, the following inequal-265

ities from (17) hold:266

2− S∗∗

S
− S

S∗∗ ≤ 0, 3− S∗∗

S
− E1I

∗∗
1

E∗∗
1 I1

− I1E
∗∗
1 S

I∗∗1 E1S∗∗ ≤ 0.
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Thus, Ḟ ≤ 0 for R01 > 1. Hence, F is a Lyapunov function on Ω. The proof is com-267

pleted as in the proof of Theorem 3. �268

269

Figures 2A-B depict simulations for the case where R02 < 1 < R01, showing the270

persistence of strain 1, while strain 2 dies out.271

3.2 Strain 2-only Boundary Equilibrium (E2)272

Setting λ∗∗
1 = 0 in (11) gives the following general form of the strain 2-only boundary273

equilibrium (denoted by E2)274

E2 =
(
S∗
2 , 0, 0, 0, E

∗
2 , I

∗
2 , R

∗
2, 0, 0, 0, 0, 0

)
,

where,275

S∗
2 =

Π

λ∗∗
2 + µ

, E∗
2 =

λ∗∗
2 Π

K3(λ∗∗
2 + µ)

, I∗2 =
λ∗∗
2 Πσ2

K3K4(λ∗∗
2 + µ)

, R∗
2 =

λ∗∗
2 Πσ2γ2

K3K4µ(λ∗∗
2 + µ)

.

The following result can be shown using the approach in Section 3.1.276

Theorem 6 The model (1) has a unique and LAS strain 2-only boundary equilibrium,277

E2, whenever R01 < 1 < R02.278

Furthermore, the result below holds (see Appendix C for the proof):279

Theorem 7 The unique strain 2-only boundary equilibrium E2, of the model (1) with280

(14), is GAS in Ω \ Ω0, whenever R01 < 1 < R02.281

Numerical simulations for the case when R01 < 1 < R02, depicted in Figure 3, show282

that strain 1 dies out while strain 2 establishes itself at steady-state. Thus, the model283

undergoes competitive exclusion, with Strain i driving out Strain j if R0i > 1 >284

R0j (i, j = 1, 2; i ̸= j). It should be mentioned that the results for the boundary285

equilibria of the model (1) are consistent with those reported in [19, 20, 23], associated286

with the modeling of the spread of dengue fever. The numerical simulations carried out287

in this study are based on using the parameter values tabulated in Table 2, which are288

consistent with the transmission dynamics of influenza (in particular, 1.5 < R01,R02 <289

5.4 [15, 16, 17, 18, 21, 26, 35, 36]).290

Exploring the possible existence of co-existence equilibria of the model (1) theoret-291

ically proved to be quite challenging (due to its large size and nonlinearity). However,292

numerical simulations suggest that the model (1) has a co-existence (endemic) equi-293

librium (where both strains co-exist) whenever R0i > R0j > 1; i, j = 1, 2; i ̸= j).294
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Furthermore, although the strain with the higher reproduction number dominates the295

other, the two strains always co-exist (i.e., the strain with the higher reproduction296

number does not drive out the other strain to extinction) as depicted in Figures 4A297

and B. The two strains co-exist for the case when R0i = R0j > 1 (i ̸= j) (Figure 4C).298

This suggest the following conjecture.299

Conjecture 1 The model (1) has a unique co-existence equilibrium whenever R0i >300

R0j > 1.301

It is worth mentioning, unlike in Theorems 5 and 7, that the global-asymptotic sta-302

bility of the associated boundary equilibria of the model considered in [29] was not303

established.304

3.3 Existence and Stability of Co-existence (Endemic) Equi-305

libria: Special Case θ1 = θ2 = 0306

The existence of co-existence (endemic) equilibrium of the model (1) is explored for the307

special case where infection with one strain confers complete immunity against infection308

with the other strain (i.e. θ1 = θ2 = 0). Consider the model (1) with θ1 = θ2 = 0309

(or, equivalently, the reduced model (7)). Let E2 = (S∗∗, E∗∗
1 , I∗∗1 , R∗∗

1 , E∗∗
2 , I∗∗2 , R∗∗

2 )310

represent any arbitrary equilibrium of the reduced model (7). It should be recalled311

that, in this setting,312

λ∗∗
1 =

β1(η2E
∗∗
1 + I∗∗1 )

N∗∗ and λ∗∗
2 =

β2(η2E
∗∗
2 + I∗∗2 )

N∗∗ . (18)

Substituting the expressions in (11) into (18) gives,313

λ∗∗
1 =

µK3K4λ
∗∗
1 β1(η1K2 + σ1)

µK1K2K3K4 + λ∗∗
1 Q1 + λ∗∗

2 Q2

and λ∗∗
2 =

µK1K2λ
∗∗
2 β2(η2K4 + σ2)

µK1K2K3K4 + λ∗∗
1 Q1 + λ∗∗

2 Q2

,

(19)

where, Q1 = K3K4[σ1(µ+ γ1) +K2µ] and Q2 = K1K2[σ2(µ+ γ2) +K4µ].314

The expressions in (19) can be re-written as:315

λ∗∗
1 =

µK3K4λ
∗∗
1 β1(η1K2 + σ1)

µK1K2K3K4 + λ∗∗
1 Q1 + λ∗∗

2 Q2

≡ λ∗∗
1 µK1K2K3K4R01

µK1K2K3K4 + λ∗∗
1 Q1 + λ∗∗

2 Q2

,

λ∗∗
2 =

µK1K2λ
∗∗
2 β2(η2K4 + σ2)

µK1K2K3K4 + λ∗∗
1 Q1 + λ∗∗

2 Q2

≡ λ∗∗
2 µK1K2K3K4R02

µK1K2K3K4 + λ∗∗
1 Q1 + λ∗∗

2 Q2

.

(20)

It follows from (20) that316

λ∗∗
1 Q1 + λ∗∗

2 Q2 = µK1K2K3K4(R01 − 1),

λ∗∗
1 Q1 + λ∗∗

2 Q2 = µK1K2K3K4(R02 − 1).

(21)
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Since the left-hand sides of the equations in (21) are always positive, it is necessary317

that R01 > 1 and R02 > 1. If R01 ̸= R02, then the system (21) is inconsistent (and318

there is no positive co-existence equilibrium in this case). Hence, for the two equations319

in (21) to be consistent, it is necessary that R01 = R02 > 1. It follows then that320

a continuum (family) of endemic equilibria will arise in this case. That is, setting321

R01 = R02 = R0i > 1 implies that322

λ∗∗
1 Q1 + λ∗∗

2 Q2 = µK1K2K3K4(R0i − 1), (22)

so that 0 < λ∗∗
1 < µK1K2K3K4(R01−1)

Q1
and 0 < λ∗∗

2 < µK1K2K3K4(R02−1)
Q2

. This result is323

summarized below.324

Theorem 8 The model (1) with θ1 = θ2 = 0 (or, equivalently, (7)) has a continuum325

of positive co-existence equilibria, denoted by En
c (n ∈ Z+), whenever the following326

conditions hold327

(i) R01 = R02 = R0i > 1,328

329

(ii) 0 < λ∗∗
1 < µK1K2K3K4(R01−1)

Q1
,330

331

(iii) 0 < λ∗∗
2 < µK1K2K3K4(R02−1)

Q2
,332

333

and no co-existence equilibria otherwise.334

We claim the following result.335

Theorem 9 Let Rn
c =

L0+
√

L2
0−4L1

2
, (n ∈ Z+), with

L0 =

(
∂ϕ1

∂λ∗∗
1

+
∂ϕ2

∂λ∗∗
2

)∣∣∣∣
(λ∗∗

1 ,λ∗∗
2 )

and L1 =

(
∂ϕ1

∂λ∗∗
1

∂ϕ2

∂λ∗∗
2

− ∂ϕ1

∂λ∗∗
2

∂ϕ2

∂λ∗∗
1

)∣∣∣∣
(λ∗∗

1 ,λ∗∗
2 )

.

Then, the family of co-existence equilibria, En
c , of (7) is LAS whenever Rn

c < 1, for336

each n ∈ Z+.337

Proof. Evaluating the Jacobian of Φ at each (λ∗∗
1 , λ∗∗

2 ) in the regions (i) to (iii), gives338

339

J(λ∗∗
1 , λ∗∗

2 ) =


∂ϕ1(λ∗∗

1 ,λ∗∗
2 )

∂λ∗∗
1

∂ϕ1(λ∗∗
1 ,λ∗∗

2 )

∂λ∗∗
2

∂ϕ2(λ∗∗
1 ,λ∗∗

2 )

∂λ∗∗
1

∂ϕ2(λ∗∗
1 ,λ∗∗

2 )

∂λ∗∗
2

,

 ,340

341

with eigenvalues given by the roots of the characteristic polynomials342
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Λ2 − ΛL0 + L1 = 0.

It can be shown that the dominant eigenvalue of J(λ∗∗
1 , λ∗∗

2 ) is Λ = |Rn
c |. Thus, the343

family of co-existence endemic equilibria, En
c , is LAS whenever |Rn

c | < 1 for each n.344

�345

346

Figures 5A and B illustrate the existence of the continuum of co-existence equilibria347

when the two reproduction numbers are equal and greater than unity (R01 = R02 >348

1). It is worth stating that the phenomenon of having infinitely many co-existence349

equilibria has been observed in other epidemiological settings, such as in the study of350

the dynamics of multiple strains of TB [11], dengue fever [23] and HIV [39].351

3.3.1 Global stability of continuum of co-existence equilibria: special case352

δ1 = δ2 = 0353

Here, the global stability of the continuum of co-existence equilibria of the model (7)354

is given for the special case where the disease-induced mortality rates (δ1 and δ2) are355

set to zero. Setting δ1 = δ2 = 0 in (7) shows that N → Π
µ
as t → ∞. Furthermore, let356

β̃1 =
β1µ
Π

and β̃2 =
β2µ
Π
. It follows from (7), with N = Π/µ, that357

λ1 = β̃1(η1E1 + I1) and λ2 = β̃2(η2E2 + I2). (23)

Define358

Γ0 =

{
(S,E1, I1, R1, E2, I2, R2) ∈ Γ : E1 = I1 = E2 = I2 = 0

}
,

the stable manifold of the DFE (Er
0 ). We claim the following.359

Theorem 10 Consider the model (7) with (23). The continuum of co-existence equi-360

libria of the model is GAS in Γ \ Γ0 if R01 = R02 > 1.361

Proof. Consider the model (7) with (23) and R01 = R02 = R0 > 1, so that the362

continuum of equilibria of the model exists. Further, consider the following Lyapunov363

function:364

F = S − S∗∗ − S∗∗ln

(
S

S∗∗

)
+ E1 − E∗∗

1 − E∗∗
1 ln

(
E1

E∗∗
1

)
+ E2 − E∗∗

2 − E∗∗
2 ln

(
E2

E∗∗
2

)
+

(
K1 − β̃1η1S

∗∗

σ1

)[
I1 − I∗∗1 − I∗∗1 ln

(
I1
I∗∗1

)]
+

(
K3 − β̃2η2S

∗∗

σ2

)[
I2 − I∗∗2 − I∗∗2 ln

(
I2
I∗∗2

)]
,
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with Lyapunov derivative,365

Ḟ = Ṡ − S∗∗

S
Ṡ + Ė1 −

E∗∗
1

E1

Ė1 + Ė2 −
E∗∗

2

E2

Ė2 +

(
K1 − β̃1η1S

∗∗

σ1

)(
İ1 −

I∗∗1
I1

İ1

)
+

(
K3 − β̃2η2S

∗∗

σ2

)(
İ2 −

I∗∗2
I2

İ2

)
,

so that,366

Ḟ = Π− λ1S + λ2S − µS − S∗∗

S
(Π− λ1S + λ2S − µS)

+ λ1S −K1E1 −
E∗∗

1

E1

(λ1S −K1E1) + λ2S −K3E2 −
E∗∗

2

E2

(λ2S −K3E2)

+

(
K1 − β̃1η1S

∗∗

σ1

)[
σ1E1 −K2I1 −

I∗∗1
I1

(σ1E1 −K2I1)

]
+

(
K3 − β̃2η2S

∗∗

σ2

)[
σ2E2 −K4I2 −

I∗∗2
I2

(σ2E2 −K4I2)

]
.

Hence,367

Ḟ = Π

(
1− S∗∗

S

)
+ µS∗∗

(
1− S

S∗∗

)
+ β̃1S

∗∗I1 + β̃2S
∗∗I2

− β̃1η1SE
∗∗
1 − β̃1SI1

E∗∗
1

E1

+K1E
∗∗
1 − β̃2η2SE

∗∗
2 − β̃2SI2

E∗∗
2

E2

+K3E
∗∗
2

− K1K2I1
σ1

+
β̃1η1S

∗∗K2I1
σ1

−K1E1
I∗∗1
I1

+
K1K2I

∗∗
1

σ1

+ β̃1η1S
∗∗E1

I∗∗1
I1

− β̃1η1S
∗∗K2I

∗∗
1

σ1

− K3K4I2
σ2

+
β̃2η2S

∗∗K4I2
σ2

−K3E2
I∗∗2
I2

+
K3K4I

∗∗
2

σ2

+ β̃2η2S
∗∗E2

I∗∗2
I2

− β̃2η2S
∗∗K4I

∗∗
2

σ2

.

(24)

It can be shown from the model (7) with (23), at endemic steady-state, that368

Π = β̃1(η1E
∗∗
1 + I∗∗1 )S∗∗ + β̃2(η2E

∗∗
2 + I∗∗2 )S∗∗ + µS∗∗,

K1E
∗∗
1 = β̃1(η1E

∗∗
1 + I∗∗1 )S∗∗, σ1E

∗∗
1 = K2I

∗∗
1 , γ1I

∗∗
1 = µR1

∗∗

K3E
∗∗
2 = β̃2(η2E

∗∗
2 + I∗∗2 )S∗∗, σ2E

∗∗
2 = K4I

∗∗
2 , γ2I

∗∗
2 = µR2

∗∗.

(25)

Substituting the relations in (25) into (24) gives369

Ḟ = [β̃1η1S
∗∗E∗∗

1 + β̃1S
∗∗I∗∗1 + β̃2S

∗∗η2E
∗∗
2 + β̃2S

∗∗I∗∗2 + µS∗∗]

(
1− S∗∗

S

)
+

µS∗∗
(
1− S

S∗∗

)
− β̃1η1SE

∗∗
1 − β̃1SI1

E∗∗
1

E1

β̃1η1S
∗∗E∗∗

1 + β̃1S
∗∗I∗∗1 − β̃2η2SE

∗∗
2 −

β̃2SI2
E∗∗

2

E2

+ β̃2S
∗∗η2E

∗∗
2 + β̃2S

∗∗I∗∗2 − β̃1η1S
∗∗E∗∗

1

I1
I∗∗1

− β̃1S
∗∗I∗∗1

E1I
∗∗
1

E∗∗
1 I1

+

β̃1S
∗∗I∗∗1 − β̃2S

∗∗I∗∗2
E2I

∗∗
2

E∗∗
2 I2

+ β̃2S
∗∗I∗∗2 ,

(26)
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which can be simplified to,370

= µS∗∗
(
2− S∗∗

S
− S

S∗∗

)
+ β̃1η1S

∗∗E∗∗
1

(
2− S∗∗

S
− S

S∗∗

)
+ β̃2η2S

∗∗E∗∗
2

(
2− S∗∗

S
− S

S∗∗

)

+ β̃1S
∗∗I∗∗1

(
3− S∗∗

S
− E1I

∗∗
1

E∗∗
1 I1

− I1E
∗∗
1 S

I∗∗1 E1S∗∗

)
+ β̃2S

∗∗I∗∗2

(
3− S∗∗

S
− E2I

∗∗
2

E∗∗
2 I2

− I2E
∗∗
2 S

I∗∗2 E2S∗∗

)
.

(27)

Finally, since the arithmetic mean exceeds the geometric mean, the following inequal-371

ities from (27) hold:372

2− S∗∗

S
− S

S∗∗ ≤ 0, 3− S∗∗

S
− E1I

∗∗
1

E∗∗
1 I1

− I1E
∗∗
1 S

I∗∗1 E1S∗∗ ≤ 0,

3− S∗∗

S
− E2I

∗∗
2

E∗∗
2 I2

− I2E
∗∗
2 S

I∗∗2 E2S∗∗ ≤ 0.

Furthermore, since I∗∗1 and I∗∗2 approaches their endemic state as t → ∞, it follows373

that, R1(t) → γ1I∗∗1
µ

and R2(t) → γ2I∗∗2
µ

. Thus, Ḟ ≤ 0 for R01 = R02 = R0 > 1. Hence,374

F is a Lyapunov function on Γ. The proof is completed as in the proof of Theorem 3. �375

376

It should be emphasized that the global asymptotic stability results in Section 3 were377

not shown in some of the earlier related studies such as those in [23, 29].378

379

Conclusions380

A new deterministic model for the transmission dynamics of two strains of influenza is381

designed and rigorously analyzed. Some of the theoretical and epidemiological findings382

of the study are:383

(i) The model (1) has a locally-asymptotically stable disease-free equilibrium when-384

ever the associated reproduction number (R0) is less than unity. This model385

undergoes the phenomenon of backward bifurcation, where the stable disease-386

free equilibrium co-exists with a stable endemic equilibrium. This phenomenon387

is caused by the incomplete cross-immunity property of the model. For the case388

when infection with one strain confers complete immunity against the other, the389

DFE of the model is shown to be globally-asymptotically stable when R0 < 1.390

(ii) For the case when infection with one strain confers incomplete immunity against391

the other, the model (1) exhibits the phenomenon of competitive exclusion, where392

strain i drives out strain j whenever the associated reproduction number R0i >393

1 > R0j, where (i, j = 1, 2; i ̸= j). Global asymptotic stability properties of394
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the two boundary equilibria are established for the case where disease-induced395

mortality is zero.396

(iii) Numerical simulations of the model (with partial cross-immunity) show that the397

two strains coexist with strain i dominating, but not driving out strain j, if398

R0i > R0j > 1.399

(iv) The model can have a continuum of co-existence equilibria when R0 > 1 for the400

case when infection with one strain confers complete immunity against the other401

strain. The continuum of equilibria is shown to be globally-asymptotically stable402

for a special case.403
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Appendix A: Proof of Theorem 2411

Proof. Suppose412

Ee = (S∗∗, E∗∗
1 , I∗∗1 , R∗∗

1 , E∗∗
2 , I∗∗2 , R∗∗

2 , E∗∗
12 , I

∗∗
12 , E

∗∗
21 , I

∗∗
21 ,M

∗∗) (28)

represents any arbitrary endemic equilibrium of the model (1) (that is, an equilibrium in413

which at least one of the infected components is non-zero). The existence of backward414

bifurcation will be explored using the Centre Manifold theory [10, 13, 41]. To apply415

this theory, it is convenient to carry out the following change of variables. Let S =416

x1, E1 = x2, I1 = x3, R1 = x4, E2 = x5, I2 = x6, R2 = x7, E12 = x8, I12 =417

x9, E21 = x10, I21 = x11, and M = x12, so that N = x1 + x2 + x3 + x4 + x5 +418

x6 + x7 + x8 + x9 + x10 + x11 + x12. Further, by using the vector notation X =419

(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12)
T , the model (1) can be written in the form420

dX
dt

= F (X), with (f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12)
T , as follows:421

dx1

dt
≡ f1 = Π+ ξx12 − λ1x1 − λ2x1 − µx1,

dx2

dt
≡ f2 = λ1x1 −K1x2,

dx3

dt
≡ f3 = σ1x2 −K2x3,

dx4

dt
≡ f4 = γ1x3 − θ2λ2x4 − µx4,

dx5

dt
≡ f5 = λ2x1 −K3x5,

dx6

dt
≡ f6 = σ2x5 −K4x6,

dx7

dt
≡ f7 = γ2x6 − θ1λ1x7 − µx7,

dx8

dt
≡ f8 = θ2λ2x4 −K5x8,

dx9

dt
≡ f9 = σ12x8 −K6x9,

dx10

dt
≡ f10 = θ1λ1x7 −K7x10,

dx11

dt
≡ f11 = σ21x11 −K8x11,

dx12

dt
≡ f12 = γ12x9 + γ21x11 −K9x12,

(29)

with the forces of infection given by422

λ1 =
β1(η1x2 + x3) + β21(η21x10 + x11)

12∑
i=1

xi

, λ2 =
β2(η2x5 + x6) + β12(η12x8 + x9)

12∑
i=1

xi

.

21



Consider the case when R0 = 1. Suppose, further, that β1 = β∗
1 is chosen as a423

bifurcation parameter. Solving for β1 = β∗
1 from R0 = 1 in (5) gives424

β1 = β∗
1 =

K1K2

η1K2 + σ1

.

The Jacobian of the transformed system (1) at the DFE, E0 with β1 = β∗
1 , is given by425

426

J∗ =



−µ −β∗
1η1 −β∗

1 0 −β2η2 −β2 0 −β3η3 −β3 β4η4 −β4 ξ

0 β∗
1η1 −K1 β∗

1 0 0 0 0 0 0 β4η4 β2 0

0 σ1 −K2 0 0 0 0 0 0 0 0 0

0 0 γ1 −µ 0 0 0 0 0 0 0 0

0 0 0 0 β2η2 −K3 β2 0 β3η3 β3 0 0 0

0 0 0 0 σ2 −K4 0 0 0 0 0 0

0 0 0 0 0 γ2 −µ 0 0 0 0 0

0 0 0 0 0 0 0 −K5 0 0 0 0

0 0 0 0 0 0 0 σ3 −K6 0 0 0

0 0 0 0 0 0 0 0 0 K7 0 0

0 0 0 0 0 0 0 0 0 σ4 −K8 0

0 0 0 0 0 0 0 0 0 γ3 γ4 −K9



,427

428

where K9 = µ + ξ. The Jacobian (J∗) of the linearized system has a simple zero429

eigenvalue (with all other eigenvalues having negative real part). Hence, the Centre430

Manifold Theory [10, 13, 41] can be used to analyse the dynamics of the system (29).431

In particular, Theorem 4.5 in [13] will be used.432

In order to apply Theorem 4.5 in [13], the following computation are necessary. The433

right eigenvector of J(E0)|β1=β∗
1
is given by w = (ω1, ω2, .., ω12)

T ,434

435

where,436

ω1 = −
[
(η1K2 + σ1)

β∗
1

σ1

+ (η2K4 + σ2)
β2ω6

σ2

]
1

µ
,

ω2 =
K2

σ1

, ω3 = 1, ω4 =
γ1
µ
, ω5 =

K4ω6

σ2

, ω6 = ω6, ω7 =
γ2ω6

µ
,

ω8 = ω9 = ω10 = ω11 = ω12 = 0.

(30)

Similarly, the components of the left eigenvector of J∗ (corresponding to the zero437

eigenvalue), denoted by v = [v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12], satisfying v ·w =438

1, are given by,439

v1 = 0, v2 =
σ1K1

K1K2 + σ1β∗
1

, v3 =
β∗
1v2
K1

, v4 = 0, v5 = 0, v6 = 0,

v7 = 0, v8 = 0, v9 = 0, v10 =
(K8β4η4 + σ4)v2

K7K8

, v11 =
β4v2
K8

, v12 = 0.

(31)
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Computation of bifurcation coefficient a440

441

It can be shown, by computing the associated non-zero partial derivatives of F (x)442

(evaluated at the DFE E0) that443

a =
2µ

Π

[
β∗
1(η1K2 + σ1)

σ1

+
β2(η2K4 + σ2)

σ2

]
×{[

θ2β21(η21K8 + σ21)

σ21

+
θ1β12(η12K6 + σ12)

σ12

]
− 2

(
2 +

K2

σ1

+
K4

σ2

+
γ1 + γ2

µ

)}
.

(32)

Computation of bifurcation coefficient b444

445

Substituting the eigenvectors v and w and the respective partial derivatives (eval-446

uated at the DFE E0) into the expression447

448

b =
12∑

k,i=1

vkwi
∂2fk

∂xi∂β∗
1

(0, 0) =
η1K2 + σ1

σ1

> 0.

Since the coefficient b is automatically positive, it follows that the model (1) (or449

its transformed equivalent (29)) will undergo backward bifurcation if the coefficient a,450

given by (32), is positive. �451

452

Appendix B: Proof of Lemma 3453

Proof. Consider the the model (1) with strain 1-only (i.e., let R02 < 1, so that strain454

2 dies out as in Theorem 4). Further, let R01 > 1 Lyapunov function:455

F =

(
η1K2 + σ1

K1

)
E1 + I1, (33)

with Lyapunov derivative given by456
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Ḟ =

(
η1K2 + σ1

K1

)
Ė1 + İ1,

=

(
η1K2 + σ1

K1

)[
β1(η1E1 + I1)

N
S −K1E1

]
+ σ1E1 −K2I1

≤
(
η1K2 + σ1

K1

)[
β1(η1E1 + I1)−K1E1

]
+ σ1E1 −K2I1, since S ≤ N in Ω,

= β1

(
η1K2 + σ1

K1

)
(η1E1 + I1)− (η1K2 + σ1)E1 + σ1E1 −K2I1,

= K2R01(η1E1 + I1)− η1K2E1 −K2I1 = K2R01(η1E1 + I1)− (η1E1 + I1)K2,

= K2(η1E1 + I1)(R01 − 1) ≤ 0. if R01 > 1

The proof is completed using the same approach as in the proof of Theorem 3. �457

458

Appendix C: Proof of Theorem 7459

Proof. Consider the model (1) with (14), λ∗∗
1 = 0 and R01 < 1 < R02 (so that the460

associated unique strain 2-only boundary equilibrium of the model exists). Further,461

consider the following Lyapunov function:462

F = S − S∗∗ − S∗∗ln

(
S

S∗∗

)
+ E2 − E∗∗

2 − E∗∗
2 ln

(
E2

E∗∗
2

)
+

(
K3 − β̃2η2S

∗∗

σ2

)[
I2 − I∗∗2 − I∗∗2 ln

(
I2
I∗∗2

)]
,

with Lyapunov derivative,463

Ḟ = Ṡ − S∗∗

S
Ṡ + Ė2 −

(
E∗∗

2

E2

Ė2 +
K3 − β̃2η2S

∗∗

σ2

)(
İ2 −

I∗∗2
I2

İ2

)
,

so that,464

Ḟ = Π− λ2S − µS − S∗∗

S
(Π− λ2S − µS) + λ2S −K3E2 −

E∗∗
2

E2

(λ2S −K3E2)

+

(
K3 − β̃2η2S

∗∗

σ2

)[
σ2E2 −K4I2 −

I∗∗2
I2

(σ2E2 −K4I2)

]
.
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Hence,465

Ḟ = Π

(
1− S∗∗

S

)
+ µS∗∗

(
1− S

S∗∗

)
+ β̃2S

∗∗I2

− β̃2η2SE
∗∗
2 − β̃2SI2

E∗∗
2

E2

+K3E
∗∗
2 − K3K4I2

σ2

+
β̃2η2S

∗∗K4I2
σ2

−K3E2
I∗∗2
I2

+
K3K4I

∗∗
2

σ2

+ β̃2η2S
∗∗E2

I∗∗2
I2

− β̃2η2S
∗∗K4I

∗∗
2

σ2

.

(34)

It can be shown from the model (1) with (14) and λ∗∗
2 = 0, at endemic steady-state,466

that467

Π = β̃2(η2E
∗∗
2 + I∗∗2 )S∗∗ + µS∗∗,

K3E
∗∗
2 = β̃2(η2E

∗∗
2 + I∗∗2 )S∗∗, σ2E

∗∗
2 = K4I

∗∗
2 , γ2I

∗∗
2 = µR2

∗∗.
(35)

Substituting the relations in (35) into (34) gives468

Ḟ = [β̃2η2S
∗∗E∗∗

2 + β̃2S
∗∗I∗∗2 + µS∗∗]

(
1− S∗∗

S

)
+ µS∗∗

(
1− S

S∗∗

)
− β̃2η2SE

∗∗
2 − β̃2SI2

E∗∗
2

E2

β̃2η2S
∗∗E∗∗

2 + β̃2S
∗∗I∗∗2 − β̃2η2S

∗∗E∗∗
2

I2
I∗∗2

− β̃2S
∗∗I∗∗2

E2I
∗∗
2

E∗∗
2 I2

+ β̃2S
∗∗I∗∗2 ,

which can be simplified to,469

= µS∗∗
(
2− S∗∗

S
− S

S∗∗

)
+ β̃2η2S

∗∗E∗∗
2

(
2− S∗∗

S
− S

S∗∗

)

+ β̃2S
∗∗I∗∗2

(
3− S∗∗

S
− E2I

∗∗
2

E∗∗
2 I2

− I2E
∗∗
2 S

I∗∗2 E2S∗∗

)
.

(36)

Finally, since the arithmetic mean exceeds the geometric mean, the following inequal-470

ities from (17) hold:471

2− S∗∗

S
− S

S∗∗ ≤ 0, 3− S∗∗

S
− E2I

∗∗
2

E∗∗
2 I2

− I2E
∗∗
2 S

I∗∗2 E2S∗∗ ≤ 0.

The proof is completed using the same approach as in the proof of Theorem 3. �472
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Table 1: Description of variables and parameters of the model (1)580

581

Variable Interpretation

S Population of susceptible individuals

Ei (i = 1, 2) Population of individuals exposed to (latently-infected with) strain i

Ii Population of infectious (symptomatically-infected) individuals with strain i

Ri Population of individuals who recovered from strain i

Eij ( i = 1, 2; i ̸= j) Population of individuals who recovered from strain i but exposed to strain j

Iij ( i = 1, 2; i ̸= j) Population of infectious (with symptoms) individuals who recovered from

strain i and infectious with strain j

M Population of individuals who recovered from infection with both strains

Parameter Interpretation

Π Recruitment rate
1
µ

Average lifespan

βi, βij Transmission rates

ηi, ηij Modification parameters

γi, γij Recovery rates

σi Progression rate from Ei to Ii classes

θi Modification parameter of reduced infectivity due to cross-immunity

δi, δij Disease-induced death rates

ξ Rate of loss of natural immunity

582

583

Table 2: Parameter Values584

585

Parameter kazaure1 Value Reference

Π 100 days−1 Assumed

ξ 0.4 day−1 Assumed

µ 0.00004 day−1(1/µ = 68 years) [26, 29, 30]

β1, β2, β12, β21 [0.3,1] day−1 [29]

η1, η2, η12, η21 0.5 [30]

γ1, γ2, γ12, γ21 0.1428 day−1 [30]

δ1, δ2, δ12, δ21 0.04227 day−1 [37]

σ1, σ2, σ12, σ21 0.5 day−1 [30]

θ1, θ2 0.5 [29]

586
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Figure 1: Schematic diagram of the model (1).
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Figure 2: Simulations of the model (1). (A) Population of individuals infected with

strain 1 (E1 + I1 + E21 + I21); (B) Population of individuals infected with strain 2

(E2 + I2 + E12 + I12). Parameter values used are: β1 = 0.6, β2 = 0.1, β12 = 0.3, β21 =

0.5 (so that, R02 = 0.6402 < 1 < R01 = 3.8410). Other parameter values used are as

given in Table 2.

32



0 100 200 300 400 500
0

2000

4000

6000

8000

10000

12000

14000

time (Days)

In
di

vi
du

al
s 

In
fe

ct
ed

 w
ith

 S
tr

ai
n 

1

(A)

0 100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

time (Days)

In
di

vi
du

al
s 

In
fe

ct
ed

 w
ith

 S
tr

ai
n 

2

(B)

Figure 3: Simulations of the model (1). (A) Population of individuals infected with

strain 1 (E1 + I1 + E21 + I21); (B) Population of individuals infected with strain 2

(E2 + I2 + E12 + I12). Parameter values used are: β1 = 0.1, β2 = 0.6, β12 = 0.5, β21 =

0.5 (so that, R01 = 0.6402 < 1 < R02 = 3.2008). Other parameter values used are as

given in Table 2.
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Figure 4: Simulations of model (1) showing co-existence equilibria for: (A) R01 >

R02 > 1, β1 = 0.6, β2 = 0.3 (so that, R01 = 3.8410,R02 = 1.9205) (B) R02 > R01 >

1, β1 = 0.3, β2 = 0.6, β12 = 0.5, β21 = 0.5, (so that, R02 = 3.8410,R01 = 1.9205)

(C) R01 = R02 > 1, β1 = 0.6, β2 = 0.6 (so that, R01 = 3.8410,R02 = 3.8410). Other

parameter values used are as given in Table 2.
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Figure 5: Simulations of the reduced model (7), showing continuum of positive co-

existence equilibria for: (A) strain 1 (E1 + I1 +E21 + I21); and (B) strain 2 (E2 + I2 +

E12 + I12). Parameter values used are: β1 = 0.6, β2 = 0.6, β12 = 0.5, β21 = 0.5, θ1 =

0, θ2 = 0 ( so that, R01 = R02 = 3.8410). Other parameter values used are as given in

Table 2.
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