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Abstract

A new deterministic model for the transmission dynamics of two strains of in-
fluenza is designed and used to qualitatively assess the role of cross-immunity on
the transmission process. It is shown that incomplete cross-immunity could in-
duce the phenomenon of backward bifurcation when the associated reproduction
number is less than unity. The model undergoes competitive exclusion (where
Strain 4 drives out Strain j to extinction whenever Ro; > 1 > Ro;; 4, =
1,2,i # j). For the case where infection with one strain confers complete im-
munity against infection with the other strain, it is shown that the disease-free
equilibrium of the model is globally-asymptotically stable whenever the repro-
duction number is less than unity. In the absence of cross-immunity, the model
can have a continuum of co-existence endemic equilibria (which is shown to be
globally-asymptotically stable for a special case). When infection with one strain
confers incomplete immunity against the other. Numerical simulations of the
model show that the two strains co-exist, with Strain ¢ dominating (but not
driving out Strain j), whenever Ro; > Ro; > 1.
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1 Introduction

One of the important problems in mathematical epidemiology is the study of the trans-
mission dynamics of diseases with multiple strains in the presence of partial or com-
plete immunity. Consequently, the mathematical modeling of diseases with multiple
pathogen strains, such as dengue fever, HIV/AIDS, influenza, malaria and West Nile
virus, has received considerable attention (see, for instance, [1, 2, 12, 15, 19, 27, 29, 23,
26, 34, 39] and some of the references therein). These studies have, in general, focussed
on the determination of threshold condition(s) for the co-existence of the strains, as
well as the evaluation of the role of cross-immunity (defined as a scenario where in-
fection with one strain confers partial or complete protection against infection with
another strain) in the transmission dynamics of the disease strains.

In a multi-strain dynamics situation, infection by one or more of the strains may
modify the sensitivity to infection by the other strains [15, 23, 26, 29, 38]. Some
of the main questions of epidemiological interest, in studies of modeling multi-strain
dynamics, are:

(i) which strain(s) will dominate in the long run (i.e., does competitive exclusion
phenomenon occurs)?

(ii) under what conditions will the strains co-exist?

(iii) what is the effect of cross-immunity (partial or complete) on the multi-strain
dynamics?

These questions could be addressed using the threshold quantity known as the basic
reproduction number of the disease [3, 4, 27|, which represents the average number of
secondary cases generated by a typical infected individual in a completely susceptible
population. Past research has estimated that the reproduction number of the 1918-
1919 influenza pandemic and other seasonal strains of influenza ranged between 1.5
and 5.4 [15, 16, 17, 18, 21, 26, 35, 36].

Using an SIQR deterministic model for the dynamics of two strains of influenza
in the presence of isolation of symptomatic cases, Nuno et al. [29] showed that cross-
immunity and host isolation could induce sustained periodic oscillations. Bremmerman
and Thieme [8] shows the phenomenon of competitive exclusion (where the strain
with the largest reproduction number persists and eliminates the remaining strains)
in a simple model with multiple strains (similar results were obtained in [11, 20, 23]).
Gumel [26] shows co-existence of two strains (avian and mutant) of influenza when
their reproduction numbers exceed unity using avian-human model in the presence of
isolation (system does not undergo competitive exclusion).

The aim of this study is to rigorously assess the role of cross-immunity on the
transmission dynamics of two strains of influenza in a population. To achieve this
objective, a new deterministic model (which extends the model in [29]) will be designed.
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The paper is organized as follows. The extended model is formulated in Section 2
and analysed in Section 3.

2 Formulation of Mathematical Model

The model is based on the transmission dynamics of two strains of influenza. The total
population at time ¢, denoted by N(t), is subdivided into susceptible (S(t)); exposed
to strain ¢ (i = 1,2) (F;); infectious with strain i (I;); recovered from strain i (R;);
recovered from strain ¢ and exposed to strain j (i,7 = 1,2 i # j) (E;;); recovered from
strain ¢ and infectious with strain j (I;;); and individuals recovered from infection with
both strains (M), so that

N(t)=St)+E1(t)+11(t)+Ri(t)+Ea(t)+1o(t)+Ra(t)+ Era(t)+11o(t)+Eoy () + 1oy (£)+M ().

The model to be considered is given by the following deterministic system of non-linear
differential equations (where a dot represents differentiation with respect to t; and all
associated parameters are non-negative for all ¢ > 0):

BrS(mEy + 1) B BaS(neEy + 1) B P12 (M2 Bz + 112)

S = II+&M—
e N N N
Bo1S(n21 Ea1 + Iy
- N - MS7
. Ei+1T E I
B = Br(mEy + 1)S+521(7721 21 + 21)8—01E1—ME1,
] N N
L = o By =l —ply — 014,
R1 o ) 5231(772]52 + 1) 6, BraRi(maEre + 112) LR,
. By + 1 E I
B, = Bao(neEs + 2)S+512(7712 12 + IQ)S—UzEz—MEz,
, N N (1)
]2 = CTQEQ — ’}/2]2 — IMIQ — 52]2,
. Ro(mE,+ 1 R E I
By = roly— 0151 2(77;%1 + 1) B 01521 2(7721N 91 + I91) R,
. R Ey+1 R E Ji
En, = 9252 1(772N2 + Is n 92ﬁ12 1(7712N 12+ 112) — o13E1s — 1Fha,
]iz = o012k — 712112 - M]12 - 5121127
. Ro(mE;+ 1 R E I
Ey — 9151 2(772\[1 + 1) n 91521 2(772;\7 91 + I21) R
In = o9l — a1l — plyn — 0 1o,
M = vyl + 21l — EM — pM,

where II is the recruitment rate into the community, £ is the rate of loss of natural
immunity by recovered individuals, ; (where i = 1,2 here and elsewhere below) is the
infection rate with strain ¢, 8;; (i,7 = 1,2; i # j) represents the transmission rate for
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individuals who recovered from strain ¢ but exposed to strain j and p is the natural
death rate. The modification parameters 7; < 1 accounts for the assumed reduction
of exposed individuals (those in the E; classes) in relation to infectious individuals (in
the I; classes); the parameters 7),; are similarly defined.

Furthermore, o; is the transition rate of individuals exposed with strain i (i.e.,
those in the E; class) to the corresponding infectious (I;) class (the parameters o;; are
similarly defined). The parameters ~; and 0; represent, respectively, the recovery rates
and disease-induced death rate of individuals infected with strain ¢ (the parameters ;;
and d;; are defined similarly). The modification parameters 0 < §; < 1 account for the
assumed reduction of susceptibility to strain j of individuals who recovered from strain
i (i.e., 0 <6; <1) captures the cross-immunity of individuals who recovered from one
strain against acquiring infection with the other). These parameters are described in
Table 1, and a flow diagram of the model is depicted in Figure 1.

The model (1) is an extension of the two-strain influenza model developed by Nuno
et al. [29], by

(i) adding epidemiological compartments for exposed individuals (Fy, FEs, Ejs and
Fs1). The incubation period of influenza is 1-4 days (average is about 2 days)
[14];

(ii) allowing for disease transmission by exposed individuals (at reduced rates f;n;
for those with primary infection; and S;;7;; for those with secondary infection).
Clinical evidence suggests that individuals infected with an influenza virus can
transmit infection even before the onset of symptoms (typically a day before
symptoms develop) [14];

(iii) allowing heterogeneity in transmission due to recovery from infection with one
strain (i.e., individuals in the E;; and I;; classes transmit infection at different
rates in comparison to those in the corresponding E; and I; classes). Same rate
(6;) is used in Nuno et al. [29], for disease transmission by individuals infected
with strain ¢ (regardless of whether or not the infected individuals recover from
strain j). Clinical studies show differential heterogeneity in disease transmission
by individuals previously infected with different disease strain [9, 17, 25];

(iv) allow for the loss of natural immunity in individuals who recovered from both
strains (at the rate &) [6].

It should be noted that, unlike in [29], the model (1) does not incorporate the isolation
of symptomatic cases (i.e., while isolation-adjusted incidence is used to model the
infection rate in [29], standard incidence function is used in (1); the reader may refer
to [15] for the disadvantages associated with implementing isolation strategy, including
the difficulty of detecting infected individuals and the cost of isolation in the context



of influenza). Furthermore, the model (1) can also be used for any influenza-like illness
(where exposed individuals can transmit infection) with two strains. In addition to the
above extensions, rigorous qualitative analysis will be provided for the resulting model.

2.1 Basic Properties of the Model

For the model (1) to be epidemiologically meaningful, it is important to prove that all
its state variables are non-negative for all time (¢). In other words, the solutions of the
model (1) with positive initial data will remain positive for all ¢ > 0. The following
result can be proven (see, for instance, [8, 22, 24, 37, 40])

Theorem 1 Let the initial data S(0) > 0, E1(0) > 0, I;(0) > 0, R1(0) > 0, E5(0) >
0, I5(0) > 0, R2(0) > 0, E12(0) > 0, I12(0) > 0, E9(0) > 0, I5;(0) > 0, M(0) > 0,
then the solutions S, E1, Iy, Ry, Es, Iy, Ry, E19, I, Fa1, Io1, M of the model (1) are
positive for all t > 0. Furthermore,

limsup N (t) <

t—o00

= [H

2.1.1 Invariant region

Lemma 1 The region

Q = {<S7 E17 Il? R17 E27 [27 R27 El?a [127 E217 1217 M) S R}E :

II
S+E1+[1+R1+E2+[2+32+E12+[12+E21+121+MSE}

is positively-invariant for the model (1).

Proof. Adding the equations in the model system (1) gives
dN(t)

“a =11 — puN(t) — (6111 + 921> + 12112 + 021121). (2)
It follows from (2) that
dN (t
0 < v (3)

Thus (using standard comparison theorem [32]), N(t) < N(0)e ) + %[1 — e HY)],
In particular, N(t) < II/u. Thus, Q is positively-invariant. Hence, it is sufficient to
consider the dynamics of the model (1) in €. In this region, the model can be considered
as been epidemiologically and mathematically well-posed [27]. U
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2.2 Stability of Disease-Free Equilibria (DFE)
2.2.1 Local stability
The DFE of the model (1) is given by

gO = (5*7 Eikr[ik?RT?E;J ];7 R;a ET27IT27E;17];17M*)7

4
—(E,o,o,o,o,o,o,o,o,o,o,o). )
W

The linear stability of & can be established using the next generation operator method
on system (1). Using the notation in [41], the matrices F' (for the new infection terms)
and V' (of the transition terms) are given, respectively, by

Bim B 0 0 0 0 Bonar B
0 0 0 0 0 0 0 0
0 0 Boma B2 Bz Pro 0 0
Ja 0 0 0 0 0 0 0 0
0 0 0 0 0 0 01’
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
(K, 0 0 0 0 0 0 0]
—o1 K9 0 0 0 0 0 0
0 0 K3 O 0 0 0 0
V= 0 0 —o0y Ky 0 0 0 0
0 0 0 0 K;x 0 0 01’
0 0 0 0 —o12 Kg 0 0
0 0 0 0 0 0 Ky 0
0 0 0 0 0 0 —oy K

where, K1 = p+ o0y, Ko = p+n+90, Ks = p+ 09, Ky = i+ 75+ 0o, K5 =
p+ o2, Ke = p1+ 12 + 012, K7 = p+ o021 and Kg = p + Y1 + 021

It follows that the basic reproduction number of the model (1), denoted by Ry, is
given by (where p is the spectral radius)

Ro = p(FV_l) = max{Ro1, Roz2},

where Ry and Rge are the associated reproduction numbers for strain 1 and strain 2,
respectively, given by



Bi(mKa + o1) Ba(n2K4 + 02)
2 7 and == e 5}
Kk, o Re KK, (5)
Lemma 2 The DFE, &, of the model (1) is locally-asymptotically stable (LAS) if

Ro < 1, and unstable if Rg > 1.

Ro1 =

The threshold quantity, Ro = maz{Ro1, Roz2}, is the basic reproduction number of the
disease [3, 4, 27]. It represents the average number of secondary cases generated by a
typical infected individual in a completely susceptible population. The epidemiological
implication of Lemma 2 is that when R is less than unity, a small influx of infected
individuals into the community would not generate large outbreaks, and the disease
dies out in time.

2.2.2 Backward bifurcation analysis

It is instructive to characterize the types of bifurcation the model (1) may undergo.
We claim the following result (the proof is given in Appendix A):

Theorem 2 The model (1) exhibits backward bifurcation at Ro = 1 whenever a bifur-
cation coefficient, denoted by a (and given by (32)), is positive.

The public health implication of the backward bifurcation phenomenon of the model
(1) is that the classical epidemiological requirement of having the reproduction number
(Ro) to be less than unity, while necessary, is no longer sufficient for the effective control
of the disease. In other words, the backward bifurcation property of the model (1)
makes effective diseases control difficult. It is worth stating that, setting 8; = 6, = 0
in the inequality (32) gives (noting that all parameters of the model are positive and
Bt > 0 is given in Appendix A):

= 94 224 14
a 0 o = + + +

Ap [ B (K + 01) n Ba(n2 Ky + 02)} ( Ky Ky m+ 72) 0. (6)
01 02

Thus, it follows from Theorem 4.5 in [13] that the model (1) does not undergo backward
bifurcation in this setting. Hence, this study shows that the backward bifurcation
phenomenon of the model (1) is caused by the incomplete cross-immunity property
of the model (0 < 61,0, < 1). A global asymptotic stability result is established
below for the DFE of the model (to completely rule out backward bifurcation for
the case when infection with one strain confers complete cross-immunity against the
other strain). It is worth stating that the phenomenon of backward bifurcation is not
rigorously established in the study by Nuno et al. [29] (the phenomenon was shown
using numerical simulations). This, to the authors’ knowledge, is the first time it is
rigorously shown that incomplete cross-immunity could induce backward bifurcation
in the transmission dynamics of two strains of influenza. Garba and Gumel [23] also
established similar result in the dynamics of two strains of dengue fever.
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2.3 Global Stability of DFE: Special Case 6; =6, =0

Consider the model (1), for the case when infection with one strain confers complete
immunity against infection with the other strain (i.e., 6 = 6, = 0). It follows, by
setting 0, = 0y = 0 in (1), that Ej9 — 0, 15 — 0, E9y — 0, Iy — 0 and M — 0
as t — oo. Thus, the last five equations of the model decouple, so that the model (1)

reduces to:
S = II—X\S— XS — S,
Ey = MS—K B,
jl = o1k — Koy,
R:l = mli — phRy, (7)
Ey, = S — K3E;,
jz = ook — Kyls,

Ry = 7vls — pRs.
Br(mEy + 1) Po(neEs + 13)

where, now, \; = and Ay = — N
The dynamics of the reduced model (7) will be considered in the following invariant
region
IT
F:{(57E17]1,R17E2,12,Rz)ERiiNS—}- (8)
L

The DFE of the reduced model is given by & = (S, F1, I1, Ry, Es, 15, Rs) = (%, 0,0,0,0,0, 0) .
The model (7) has the same reproduction number, Ry = max{Ro1, Ro2}, as model (1).

Theorem 3 The DFE, &, of the reduced model (7) is GAS in I whenever Ry < 1.

Proof. Consider the Lyapunov function for the model (7):

Ky + K, +
F— Nile + 01 B+ 1, + Todly + 02 By + I, (9)
K, K

with Lyapunov derivative given by



. K. . . K . ;
F= (’71 ;{+01)E1 + I+ (%;—W)EQ + I,
1 3
K Ey+1
— (Th }2(_’_ 01) |:B1<771 ]\; Tt I)S — K1E1:| + O'1E1 — K2[1
1
K Ey+ 1
+ (Th ;(—i_ 02) [62(772 ]\? + 2)5 — K3E2:| + o9 Fy — Kyls,
3
Ko +o
S (771 ;{ 1) |:ﬁ1(771E1 + [1) - K1E1‘| + UlEl - KQ[l
1
K
+ (772 ;{—i_ JQ) {52(772E2 + 1) — K3E2} + 02l — Kyl since S <N in T,
3
Ky+o
=t (%) (mEr+ 1) — (mK2 + 01) By + 01 By — KoLy
1
Ki+o
+ o <772 ;f 2) (2B + 12) = (02 Ky + 09) Ey + 0By — Kyl
3

= KoRor(mEL + 1) — mEEy — Koly + KyRoa(noEa + 1) — o Ky Ey — Ky,
= KoRo1(mEL+ 1) — (mEy + 1)Ky + KyRos(ne Es + 1) — (o B + 1) Ky,

= Ko(mE1L +1)(Ror — 1) + Ka(neEs + L) (Ro2 — 1).

Thus F < 0 if Ry = max{Ro;, Re2} < 1 with F = 0if By = I, = E, = I, = 0.
Substituting £y = I} = Ey = I, = 0 in the first equation in (7) shows that S(¢) — II/u
as t — oo. Similarly, substituting £y, = [ = E5 = I, = 0 in the equations for R; and
Ry show that (Ry, Ry) — (0,0) as t — oo. Further, the largest compact invariant set
in {(S, E1, L1, Ry, Es, Ir, Ry) € I' : dF/dt = 0} is the singleton {&£]}. It follows, from
the LaSalle’s Invariance Principle [33], that every solution to the equations in (7) with
initial conditions in I' converges to the DFE & as ¢t — oo. U

This result shows that, for the case when infection with one strain confers complete
immunity against the other strain, the DFE of the model (1) is GAS (hence, the disease
(i.e., both strains) will be eliminated from the community if Ry < 1 in this case). It
should be mentioned that such global-asymptotic result was not established for the
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DFE of the model presented by Nuno et al. [29].

3 Existence and Stability of Boundary Equilibria

The approach in [23, 31] will be used to explore the possibility of the existence and
stability of the positive equilibria (i.e., equilibria where at least one of the infected
variables of the model (1) is non-zero). Let

*k *k *k k% *k k% %k k% *%k *kk *k *k k%
512: (S >E1 7[1 >R1 7E2 712 ?RQ 7E127[12’R12>E21’[217M )

represents any arbitrary equilibrium of the model (1). Further, let

Prlm BT + 1) + Bor(nan 57 + 157)

Bo(mE5™ + I5%) + Bra(maBY5 + Ig)(l())
N**

A= and \j* = e

be the forces of infection of strains 1 and 2, respectively, at endemic steady-state (where
N** is the total population size at the endemic steady-state). Solving the equations in
(1) at endemic steady-state gives

S** . I B — H)\ik* P HA){*O’l P H)\I*O-171
B Al’ b K].Al’ b KlKQA].’ t K1K2A1A3’
% H)‘S* o H/\;*O-Q o H/\;*O-Q’YQ o H)\T*)\Z*UI’VIHZ
By = = ———, Ry = ————, El5 = )
K3A; KK, A KK, A Ay K KyK5A{A;g

(11)
g I o103mbs - puy  TATAY 027900 1 AT AY 02047261
12 K1K2K5K6A1A3’ 2 K3K4K7A1A2 oA K3K4K7K8A1A2’

AT A" 0901 (73K + 7404)
KKy K7 KgKgAj Ay

M** —
with A; = A7 + A5+ pu, Ay = AT*01 + pand Az = 50 + p.

The equilibria of the model (1) can then be obtained by finding the fixed-points of
the equation

P1(AT", A5 AT
r=>o(x) = , where x = . (12)
P2(AT" A57) A"
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3.1 Strain 1-only Boundary Equilibrium (&)
Setting A5* = 0 in (11) gives the following general form of the strain 1-only boundary
equilibrium (denoted by &)

& = <Sf,Ef,If,RT,0,0,0,0,0,0,0,0)

where,

II Pl
Sf=—— Ef= 1—7 I*
AT T KN )

- AT Iloy . _ Ao
KiKs(Af 4+ )" KiKou(A +p)

We claim the following.

Theorem 4 The model (1) has a unique and LAS strain 1-only boundary equilibrium,
&1, whenever Roo < 1 < Ros.

Proof. Consider, first of all, the model (1) with strain 2-only (i.e., the case where all
components of Strain 1 are removed from the model). The following result can be
proven (see Appendix B for the proof):

Lemma 3 In the absence of Strain 1, the DFE of the model (1) with strain 2-only is
GAS in Q whenever Roa < 1.

It is clear from the fixed-point system, (12) with (11), that ¢2(Aj*,0) = 0. Thus,
a fixed-point of ¢1(A}*, A3*) is obtained by solving the equation ¢;(Aj*,0) = Aj*. It
follows, after some algebraic manipulations, that Aj* is the root of the equation

‘Tl)\i* + Y = O, (13)

where, 1 = o1(u + 1) + pKe and y; = pK1Ky(1 — Roy). Clearly, the coefficient x4
is always positive, and y; is positive (negative) if R is less than (greater than) unity,
respectively. Further, it should be stated that for &£ to exist, it is necessary that strain
2 does not (i.e., Rp2 < 1). Thus, a unique strain 1-only boundary equilibrium exists
whenever Ry < 1 < Ro1.

Let Rg2 < 1 (so that strain 2 dies out, in line with Lemma 3). The local stability
property of & is established by evaluating Jacobian of the system (11) at (Aj*, A\5*).
This gives.

1A A57)  091(AT", A3")
ONT* N5
T A = ,
Oda(AT", AST)  O0d2(AT", A3Y)
NP Ny
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so that,

L 01 (AT, A)

Ra 0N oro
J(AT%,0) =
ROQ
0 -
Ro

For stability, we require R%n <1 (i.e., Ro1 > 1) and 77%—33 <1 (i.e., Ro2 < Ro1). Com-
bining all these, and noting that Rgs < 1, shows that the boundary equilibrium, &, is
LAS provided Rp2 < 1 < Ros1. O

The boundary equilibrium &; can be shown to be GAS for a special case as below.
Consider the model (1) with the associated disease-induced mortality rates (01, da, 012, d21)
set to zero. Setting §; = dy = 012 = do1 = 0 in (1) gives N(t) — % as t — oo. Let

B, = %ﬁz and 5;] = "ﬁ”, so that
AL = 51(771E1 + 1) + 321(77215’21 + In) and Ay = 62(772E2 + D) + Bl2<7712E12 +119).(14)

Furthermore, let

QO = {(57 E17 [17 R17 E27 127 R27 E127 1127 E217 [217 M) € Q :

El:[1:EZZIQ:E12:]12:E21:]21:0}'

We claim the following result.

Theorem 5 Let Rgo < 1, so that \5* = 0 and strain 2 dies out. The unique strain
1-only boundary equilibrium, & of the model (1) with (14), is GAS in Q\ Qo, whenever
Roz <1< Rpr.

Proof. Consider the model (1) with (14). Further, let Rgs < 1 < Ry, so that the
boundary equilibrium &; exists (Theorem 4) and strain-2 dies out (Lemma 3). Consider
the following non-linear Lyapunov function, of Goh-Volterra type (functions of this type
have been used in the mathematical ecology/epidemiology literature, such as those in
[7, 22, 26, 28)):

F=5-5 ﬁ9m<§J+ErJﬂ—EﬂnG$)

Ky — Bim S* I
+ ( 1 51771 ) |:Il . If* o [ik*ln (_1):|7
g1 [ik*

with Lyapunov derivative,

- o Sy N i Bt VS M Y ) A O
f S S S -+ 1 El 1 + < o1 > ( 1 ]1 1]
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so that,

1
K. — 2 o I
+ <M> [alEl — Kyl — L (0B — K2]1)] .
o1 I

Hence,

S S
Ev K KoL BipS™ Kol
— /imSE; — B1ST o TR (S O i R Bim ST Kol (15)
01 o1
— K B L L B ST R 517715—21
[1 o1 I, o

It can be shown from the model (1) with (14) and A}* = 0, at endemic steady-state,
that

KB = Bl(nlEl + I )S , o1 By = Ko™, Iy = pRy ™.
Substituting the relations in (16) into (15) gives
A sk TIkk A Qrkk Tk sk S** sk S
q *x o3 E* Kk Tk Kk TRk *k [
— BimSET — 515]1 517715 ET + 515' I — 517715 ET* I**
which can be simplified to,
S** S ~ S** S
2 ( S S**) + Sim 1 ( S S**)
(17)

+/815**]ik* (3_ 147 141 )

S ErL,  I*ES*

Finally, since the arithmetic mean exceeds the geometric mean, the following inequal-
ities from (17) hold:

92 — — — —
S g T S B, IFES*™
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Thus, F < 0 for R, > 1. Hence, F is a Lyapunov function on Q. The proof is com-
pleted as in the proof of Theorem 3. O

Figures 2A-B depict simulations for the case where Rgs < 1 < Ry1, showing the
persistence of strain 1, while strain 2 dies out.

3.2 Strain 2-only Boundary Equilibrium (&)
Setting A7* = 0 in (11) gives the following general form of the strain 2-only boundary
equilibrium (denoted by &)

52 = (557070707E>2ka[;a R;O?O?ana())a

where,

11 A

* *

S _ _ x )\;*HOQ * _ )\;*HOQ’}/Q
N T KN4 KKy + )" 77 KaKypu(Ns* + p)

The following result can be shown using the approach in Section 3.1.

Theorem 6 The model (1) has a unique and LAS strain 2-only boundary equilibrium,
&>, whenever Ro1 < 1 < Roo.

Furthermore, the result below holds (see Appendix C for the proof):

Theorem 7 The unique strain 2-only boundary equilibrium &, of the model (1) with
(14), is GAS in Q\ Qo, whenever Ro; < 1 < Rog.

Numerical simulations for the case when Ry < 1 < Rgo, depicted in Figure 3, show
that strain 1 dies out while strain 2 establishes itself at steady-state. Thus, the model
undergoes competitive exclusion, with Strain ¢ driving out Strain j if Ry; > 1 >
Ro; (i, = 1,2; @ # j). It should be mentioned that the results for the boundary
equilibria of the model (1) are consistent with those reported in [19, 20, 23], associated
with the modeling of the spread of dengue fever. The numerical simulations carried out
in this study are based on using the parameter values tabulated in Table 2, which are
consistent with the transmission dynamics of influenza (in particular, 1.5 < Ro1, Ro2 <
5.4 [15, 16, 17, 18, 21, 26, 35, 36]).

Exploring the possible existence of co-existence equilibria of the model (1) theoret-
ically proved to be quite challenging (due to its large size and nonlinearity). However,
numerical simulations suggest that the model (1) has a co-existence (endemic) equi-
librium (where both strains co-exist) whenever Ry, > Ro; > 1; 4,5 = 1,2; i # j).

14



Furthermore, although the strain with the higher reproduction number dominates the
other, the two strains always co-exist (i.e., the strain with the higher reproduction
number does not drive out the other strain to extinction) as depicted in Figures 4A
and B. The two strains co-exist for the case when Ro; = Ro; > 1 (i # j) (Figure 4C).
This suggest the following conjecture.

Conjecture 1 The model (1) has a unique co-existence equilibrium whenever Ro; >
Roj > 1.

It is worth mentioning, unlike in Theorems 5 and 7, that the global-asymptotic sta-
bility of the associated boundary equilibria of the model considered in [29] was not
established.

3.3 [Existence and Stability of Co-existence (Endemic) Equi-
libria: Special Case 6; =6, =0

The existence of co-existence (endemic) equilibrium of the model (1) is explored for the
special case where infection with one strain confers complete immunity against infection
with the other strain (i.e. #; = 0y = 0). Consider the model (1) with ¢; = 6, = 0
(or, equivalently, the reduced model (7)). Let & = (S*, Ef*, IT*, R{*, E5*, [3*, R¥)
represent any arbitrary equilibrium of the reduced model (7). It should be recalled
that, in this setting,

Pr(m BT + 177 Pa(n 55" + 157)

AV = e and AJ* = e (18)
Substituting the expressions in (11) into (18) gives,
- _ pE 3 KAAT B (m Ks + 01) and \F — pIG Ko N5 Bo (12 Ky + 09)
U pK Ko KKy + MAPFQL + M5 Qs 2 uK Ky KKy 4 AFQy + A;*QQ(’ |
19
where, Q1 = K3Ky[o1(+ 1) + Kop] and Qo = K1 Ks[oa(p + v2) + Kap].
The expressions in (19) can be re-written as:
A PE KA B (m Ks + 01) _ AN K Ky K3 KyRo
VUK KO KK+ AT QL+ NP Qr  pK Ko KKy 4+ AFQr + A5 Qy
(20)
o _ PG KNS Bo (2 Ky + 02) _ A K Ko K3 Ky Roo
2 KO KoK Ky + A7 Qu + A5 Qe pnK G Ko K3 Ky + A\ Q1 + A3 Qs
It follows from (20) that
N1+ A7 Q2 = pK Ko K3 Ky (Ror — 1),
(21)

AQ1+ N Qo = pK i Ko K3 Ky (Rog — 1).

15



Since the left-hand sides of the equations in (21) are always positive, it is necessary
that Ro1 > 1 and Ry > 1. If Ro1 # Rog, then the system (21) is inconsistent (and
there is no positive co-existence equilibrium in this case). Hence, for the two equations
in (21) to be consistent, it is necessary that Rg; = Roe > 1. It follows then that
a continuum (family) of endemic equilibria will arise in this case. That is, setting
Ro1 = Ro2 = Ro; > 1 implies that

AQ1+ AN Qo = pIKG Ko K3 Ky (R — 1), (22)

so that 0 < A" < “KlKQKg?‘(Rorl) and 0 < A\J* < “KlKQKgi“(ROTl). This result is

summarized below.

Theorem 8 The model (1) with 0; = 0y = 0 (or, equivalently, (7)) has a continuum
of positive co-existence equilibria, denoted by EI (n € Z.), whenever the following
conditions hold

(i) Ro1 = Ro2 = Roi > 1,

(ii) 0 < Ajr < KRl Ro 1)

(iii) 0 < Ay* < KB Ror)

and no co-existence equilibria otherwise.

We claim the following result.

JIL2—
Theorem 9 Let R? = Loty (n €Zy), with

2
[ — (991 09 91 Dpy Oy Do
7 \oaar "oy N ONS ONST AN

and L1 = (

(AT5A5) (AT™A57)

Then, the family of co-existence equilibria, EY, of (7) is LAS whenever R < 1, for
eachn € Z. .
Proof. Evaluating the Jacobian of ® at each (A}*, A3*) in the regions (i) to (iii), gives

091 (AT A5")  9P1(AT7,A57)
N "

*% *k\
JATAT) =
9¢2(AT",A5%) O (AT*,A5%)
AT g

with eigenvalues given by the roots of the characteristic polynomials
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A* — ALy+ L, = 0.

It can be shown that the dominant eigenvalue of J(A7*, A5*) is A = |R”|. Thus, the
family of co-existence endemic equilibria, E, is LAS whenever |R7| < 1 for each n.

g

Figures 5A and B illustrate the existence of the continuum of co-existence equilibria
when the two reproduction numbers are equal and greater than unity (Ro; = Ro2 >
1). It is worth stating that the phenomenon of having infinitely many co-existence
equilibria has been observed in other epidemiological settings, such as in the study of
the dynamics of multiple strains of TB [11], dengue fever [23] and HIV [39).

3.3.1 Global stability of continuum of co-existence equilibria: special case
51 = 52 = 0

Here, the global stability of the continuum of co-existence equilibria of the model (7)
is given for the special case where the disease-induced mortality rates (9; and d5) are
set to zero. Setting d; = d2 = 0 in (7) shows that N — % as t — oo. Furthermore, let
B = &H“ and [y = B2t Tt follows from (7), with N = II/u, that

A = Bi(mEr+ 1) and Ay = Bo(noBs + ). (23)
Define

FO = {(S,El,]l,Rl,EQ,IQ,RQ) el': E = [1 =F, = IQ = 0},
the stable manifold of the DFE (&]). We claim the following.

Theorem 10 Consider the model (7) with (23). The continuum of co-existence equi-
libria of the model is GAS in I'\ 'y if Ro1 = Rz > 1.

Proof. Consider the model (7) with (23) and Rg; = Ro2 = Ro > 1, so that the
continuum of equilibria of the model exists. Further, consider the following Lyapunov
function:

Kk %k S *k Kk El *k ok E2
.F:S—S —S 1H<W)+E1—E1 _El 1H(E—ik*)+E2—E2 —E2 IH<E_5*>

Ky — 2 Hk I Ko — 2 Hk
4 ( 1 517715 ) |:Il . [ik* . [ik*h’l ( 1 >:| 4 < 3 BQTIQS > |:12 . [5* . [S*h’l (
01 Iik* 09

17

Iy
15>

))



with Lyapunov derivative,

Fos-vm-EE L
5 + £y — B, 1+ L9 —
Ka— o3 G ) I**
+( 3 — [anp ><12 ]2>7
02 Iy
so that,

. S**
F=T1- S+ S — S —

kok

+ M8 — K\Ey —

02

Hence,

E**

2E2+(

Es

El (AMS — K1 Ey) + XS — K3Ey —
1

Ky — By S
+ (%) {0131 — Koly —
1

Ka— 23 G
+ (%) |iO'2E2 — K4[2 —

*k

1

*k

2

K, — 317715**

01

& (1= XS 4208 — uS)

k%

I
]1 (01E1 - K211):|

I
]2 (09 By — K412)] .

. S S
Fo (1 — ) + S (1 - S—) + 55T + oS T,

*k

~ E - E**
— BimSET — 51511 +K1E** Bamp SEY* — /625'[2 +K3E**
K KyI SKI I3 KKI** I3
A 21+51771 21—K1E1 148244 +517715**E
(o] g1 [1 01 Il
KK I 3. Ky I3 KK]** ~ I
_ 13 42+52772S 42—K3E2 348419 +527725**E2i—
09 09 IQ 092 [2

)(o-

I .
I
I 1)

1522 (AeS — K3F5)

Blnls**KZIf*

01

02

It can be shown from the model (7) with (23), at endemic steady-state, that

= G(mE" +
KlEik* = B1<7]1Eik* +

I7)S™ + Bo(12E5"

Substituting the relations in (25) into (24) gives

I)S™, o1 By = KoIy™, I = uRy™
K3Ey" = Bo(no ™ + I57)S™, 0o By = Kyly*, 7ol = pRy™.

S ~ ~ B
WS ( S**) BimSET" — 81ST B
E** k% *k kk Jkk k% *k
52512 + BoS™ By + BoS™ I — i S™E
~ Es 5™
BIS**IT* _ /BQS**];* 2 + B S**I;*,
E**]2
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1 ]**

BlS ]1 E**I

(25)

AR

517715**Ef* + B8 — B SEy —

(26)

_|_

(24

)



which can be simplified to,

ko

S 23 sk TRk S
SFT——

S**

S ~
— uS™ (2 _ - S**) + By S™ B <2 -

S KB I LiEy*S ~ S* ELLy* LES
141 141 )+BQS**I;*<3__ 2149 249

~S**I** 3= _ - o .
TASTh ( S ErL  IFES* S Byl  IFE,S*

Finally, since the arithmetic mean exceeds the geometric mean, the following inequal-
ities from (27) hold:

S G S Bl I ES*
oS _ Bl LEYS _

S Eyl, I3E,S

Furthermore, since I7* and IJ* approaches their endemic state as t — oo, it follows
that, Ry(t) — % and Ry(t) — % Thus, F < 0 for Ro1 = Ro2 = Ry > 1. Hence,
F is a Lyapunov function on I'. The proof is completed as in the proof of Theorem 3. [J

It should be emphasized that the global asymptotic stability results in Section 3 were
not shown in some of the earlier related studies such as those in [23, 29].

Conclusions

A new deterministic model for the transmission dynamics of two strains of influenza is
designed and rigorously analyzed. Some of the theoretical and epidemiological findings
of the study are:

(i) The model (1) has a locally-asymptotically stable disease-free equilibrium when-
ever the associated reproduction number (Rg) is less than unity. This model
undergoes the phenomenon of backward bifurcation, where the stable disease-
free equilibrium co-exists with a stable endemic equilibrium. This phenomenon
is caused by the incomplete cross-immunity property of the model. For the case
when infection with one strain confers complete immunity against the other, the
DFE of the model is shown to be globally-asymptotically stable when Ry < 1.

(ii) For the case when infection with one strain confers incomplete immunity against
the other, the model (1) exhibits the phenomenon of competitive exclusion, where
strain ¢ drives out strain j whenever the associated reproduction number Ry; >
1 > Ryj, where (4,5 = 1,2; i # j). Global asymptotic stability properties of

19
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the two boundary equilibria are established for the case where disease-induced
mortality is zero.

(iii) Numerical simulations of the model (with partial cross-immunity) show that the
two strains coexist with strain ¢ dominating, but not driving out strain j, if
Roi > R()j > 1.

(iv) The model can have a continuum of co-existence equilibria when Ry > 1 for the
case when infection with one strain confers complete immunity against the other
strain. The continuum of equilibria is shown to be globally-asymptotically stable
for a special case.
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Appendix A: Proof of Theorem 2
Proof. Suppose

Eo = (S BT I RYY B 17, RyT, B, Iy, Boy, Iof, M) (28)

represents any arbitrary endemic equilibrium of the model (1) (that is, an equilibrium in
which at least one of the infected components is non-zero). The existence of backward
bifurcation will be explored using the Centre Manifold theory [10, 13, 41]. To apply
this theory, it is convenient to carry out the following change of variables. Let S =
Ty, By = x9, Iy = 13, Ry = 14, By = x5, Iy = 76, Ry = w7, E1o = 13, I1p =
Tg, Foy = x19, Iy = x11, and M = x5, so that N = x1 + x5 + 23 + x4 + 5 +
Te + 7 + Tg + X9 + T10 + T11 + x12. Further, by using the vector notation X =
(w1, T2, T3, T4, Ts, T6, T7, T, Tg, T10, 11, T12) " , the model (1) can be written in the form

% = F(X), with (f17f27f3,f4;f5»f67f7>f8,f9;f10,f11,f12)T, as follows:

dx

d_tl = fi =11+ &z — May — Xowy —
dx

d_t2 = f2 = Nz — Kjzo,

dx

d—; = f3 = o119 — Koxs,

dx

d_t4 = fi = w3 — oy — pxy,
dx

d—: = f5 = Mz — K3xs,

diIZ'G

— = f = 0915 — K4,

dx

d_t7 = fr = yoxg — 01 \1x7 — pay,
diL‘g

— = fg = gy — Kxxs,

7 fs 22Xy 518

d

% = fo = 01208 — Ky,
dx

10 = flO = Ql)\ll"? - K75€107

dt
d
% = f11 = 02111 — K8x117
dx
712 = fi2 = Y1279 + V21711 — KoT12,

with the forces of infection given by

_ Bilmae + x3) 4 Bor (o110 + 711) _
)\1 - ) >\2 -

12
2
i=1

Ba(nexs + x6) + Pr2(hers + x9)

12
2@
i=1
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Consider the case when Ry = 1. Suppose, further, that g, = p7 is chosen as a
bifurcation parameter. Solving for f; = f; from Ry = 1 in (5) gives

KiK.
Br=p=———.
mks, + o1
The Jacobian of the transformed system (1) at the DFE, & with g; = 57, is given by

- —=Bfim =B 0 —Bam2 —B2 0 —fBmz —fB3 Bam —Ba
0 Bim—Ky pf 0 0 0 0 0 0 Bama Do
0 ozl —Ky 0 0 0 0 0 0 0 0
0 0 W =0 0o 0 0 0 0 0
0 0 0 0 Bemp—Kz (B 0 [Bang  fBs 0 0
T _ 0 0 0 0 09 —Ky 0 0 0 0 0
0 0 0 0 0 o —p 00 0 0
0 0 0 0 0 0 0 — K5 0 0 0
0 0 0 0 0 0 0 03 —Kg O 0
0 0 0 0 0 0 0 0 0 K; 0
0 0 0 0 0 0 0 0 0 or —Kyg
| 0 0 0 0 0 0 0 0 0 4 m

where Kg = pu + & The Jacobian (J*) of the linearized system has a simple zero
eigenvalue (with all other eigenvalues having negative real part). Hence, the Centre
Manifold Theory [10, 13, 41] can be used to analyse the dynamics of the system (29).
In particular, Theorem 4.5 in [13] will be used.

In order to apply Theorem 4.5 in [13], the following computation are necessary. The
right eigenvector of J(&y)|s,—g; is given by w = (wy,ws, ..,wi2)",

where,
. Bows | 1
wi = — (MK + 01) = + (12K + 02) ==
1 O2 | M
Ky - M ~ Kyws B _ 7Y2Ws (30)
WQ—_,W3—1,W4—_,W5— , W = W, W7 = ;

W = wy = wip = w1 = w2 = 0.
Similarly, the components of the left eigenvector of J* (corresponding to the zero
eigenvalue), denoted by v = [v1, v, v3, vy, Vs, Ug, U7, Us, Vg, V10, V11, V12, Satisfying v-w =
1, are given by,

UlKl /BTUQ
U:O’U:—av: 7'U:0,U :O,’U :07
1 KK +of Y K i ’ (31)
v =00 =0. Vo = 0. V1q = <K864774 + 04)?}2 S 541;2 o= O
7 ; U8 , U9 ; V10 K7K8 s U1l Kg s U12
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Computation of bifurcation coefficient «

It can be shown, by computing the associated non-zero partial derivatives of F'(x)
(evaluated at the DFE &) that

0= 2_/~L {5;(771-’(2 + 01) " Ba(na Ky + 02)] y

11 o1 09
0 K+ 0 K¢+ K K +
{[ 2521(7721 8 021)4_ 1512(7712 6 012)} _2(2+_2+_4+71 72)}'
021 012 o1 09 ol

Computation of bifurcation coefficient b

Substituting the eigenvectors v and w and the respective partial derivatives (eval-
uated at the DFE &) into the expression

0 fi mKs + oy

Since the coefficient b is automatically positive, it follows that the model (1) (or
its transformed equivalent (29)) will undergo backward bifurcation if the coefficient a,
given by (32), is positive. O

Appendix B: Proof of Lemma 3
Proof. Consider the the model (1) with strain 1-only (i.e., let Rpy < 1, so that strain
2 dies out as in Theorem 4). Further, let Ry; > 1 Lyapunov function:

F - (771K2 + o0

Ei+1 3
e (33)

with Lyapunov derivative given by
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7

(mKQ + oy

Ey+1
Kl ) 1+ 1

(U1K2 + 01) [Bi(mEL+ 1)

Kl N S—K1E1:| +0'1E1—K2[1

% i
< (7712——'—01) BilmE, + 1)) — KlEl] +01E1 — KyIh, since S < N in Q,

= b1 (T) (mEy+ 1) — (mKy+ 01)Ey + o1 By — Kol

1
= KoRor(mEL + 1) — mEKEy — Koy = KoRo (mEL + 1) — (mEL + ) Ko,
= K2<771E1 + Il)(R01 — 1) S O lf ROl > 1

The proof is completed using the same approach as in the proof of Theorem 3. U

Appendix C: Proof of Theorem 7

Proof. Consider the model (1) with (14), Ai* = 0 and R¢; < 1 < Rz (so that the
associated unique strain 2-only boundary equilibrium of the model exists). Further,
consider the following Lyapunov function:

e o (S I
F=5-5"-8 IH<W>+E2_E2 _E21n<E_;*>

KS - /BNQTIQS** Kok Kk IQ
+ (0_—2 .[2 IQ I2 111 ];* 5

with Lyapunov derivative,

) .G ) o Ky — 327725** N
=S -GS+ FE,—|=2F J——
F 5 + Lo <E2 2 + - 2 2 2],

so that,

G e
S (H — )\QS — ,LLS) + )\25 — KgEQ — E2 ()\QS — K3E2>

2

F=T1— XS —puS —

K _ o3 S**
+< 3 — Bamo

02

ko

1
) |:O'2E2 — K4IQ — ; (O'QEQ — K4[2):| .

2
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Hence,

: S S

E3 K3 K, I, N Lo S** K41 I3

— BaSEy* — BoSI—2 + K3 E3" — ~ KB, (34)
FEs 02 02 I
4 348419 527725**E2 ﬁ27]2 419 _
09 Iy o

It can be shown from the model (1) with (14) and A3* = 0, at endemic steady-state,
that

K3 E, 252<772E2 + 1 )S , 0By = Kyly™, y2ly™ = pRy™.
Substituting the relations in (35) into (34) gives
5 s,k 1Kk 5 Qrkk TRk Kok S** *ok S
a3 Kok o3 Eg* a3 sk Tskok A Qrkk Tk a3 sk Tkok [2
— BompSEy" — 3,51 B, BonaS™ By + B2 S5 — Bamp ST E, T
2
EQI
which can be simplified to,
S** S - S** S
(36)

+525**[;* <3_ 249 249 )

S EFL, I E,S*

Finally, since the arithmetic mean exceeds the geometric mean, the following inequal-
ities from (17) hold:

S S S E3 Iy ¥ EyS*
The proof is completed using the same approach as in the proof of Theorem 3. 0
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Table 1: Description of variables and parameters of the model (1)

Variable Interpretation
S Population of susceptible individuals
I; Population of infectious (symptomatically-infected) individuals with strain 4

R

E;j (i=1,2; i# j) Population of individuals who recovered from strain ¢ but exposed to strain j

i Population of individuals who recovered from strain

; (i=1,2) Population of individuals exposed to (latently-infected with) strain 4

E
Iij (1=1,2; i # j) Population of infectious (with symptoms) individuals who recovered from
strain ¢ and infectious with strain j

M Population of individuals who recovered from infection with both strains
Parameter Interpretation

II Recruitment rate

%L Average lifespan

Bi, Bij Transmission rates

Mis Mij Modification parameters

Vis Vij Recovery rates

o; Progression rate from E; to I; classes

0; Modification parameter of reduced infectivity due to cross-immunity
i, 0ij Disease-induced death rates

19 Rate of loss of natural immunity

Table 2: Parameter Values

Parameter kazaurel Value Reference
II 100 days~! Assumed

3 0.4 day! Assumed

I 0.00004 day~'(1/p = 68 years) [26, 29, 30]
B, Ba, Pi2, Bor [0.3,1] day™! 29]

m, N2, 2, M21 0.5 [30]

Y1, V2, 12, Vo1 0.1428 day~* [30]

51, 6y, B1a, 631 0.04227 day ! 137]

o1, 09, 012, 021 0.5 day™* [30]

01, 0, 0.5 [29]
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Figure 1: Schematic diagram of the model (1).
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Figure 2: Simulations of the model (1). (A) Population of individuals infected with
strain 1 (Ey + I1 + Eo + I51); (B) Population of individuals infected with strain 2
(Ey + Iy + Eyo + I12). Parameter values used are: 8; = 0.6, S = 0.1, f12 = 0.3, B =
0.5 (so that, Roo = 0.6402 < 1 < Ro; = 3.8410). Other parameter values used are as
given in Table 2.
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Figure 3: Simulations of the model (1). (A) Population of individuals infected with
strain 1 (Ey + I1 + Eo1 + I51); (B) Population of individuals infected with strain 2
(Ey + Iy + Eqo + I12). Parameter values used are: §; = 0.1, S = 0.6, 12 = 0.5, B =
0.5 (so that, Rg; = 0.6402 < 1 < Rpe = 3.2008). Other parameter values used are as
given in Table 2.
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Figure 4: Simulations of model (1) showing co-existence equilibria for: (A) Rg; >
Ros > 1,501 = 0.6, B = 0.3 (so that, Re = 3.8410, Roz = 1.9205) (B) Ros > Ror >
1,B1 = 0.3, B = 0.6, B = 0.5, for = 0.5, (so that, Res = 3.8410, Re1 = 1.9205)
(C) Ror = Rz > 1,81 = 0.6, B = 0.6 (s0 that, Ro1 = 3.8410, Rgs = 3.8410). Other

parameter values used are as given in Table 2.
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Figure 5: Simulations of the reduced model (7), showing continuum of positive co-
existence equilibria for: (A) strain 1 (Ey 4+ I + E9; + I21); and (B) strain 2 (Ey + I +
E19 + I2). Parameter values used are: 5y = 0.6, 52 = 0.6, f12 = 0.5, B9y = 0.5, 6 =
0, 83 = 0 ( so that, Ro; = Ro2 = 3.8410). Other parameter values used are as given in
Table 2.
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