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Summary 

Honey bee queens mate with many males. The resulting genotypic diversity appears to enhance fitness of queenright colonies (those colonies 

with a reproductive queen present) which is difficult to measure, because measures of long-term fitness include successful matings of produced 

male sexuals (drones) and number of surviving swarms. The fitness of queenless colonies is, however, limited to worker-produced adult 

drones until natural colony death. Here we test the impact of genotypic diversity on fitness of queenless honey bee colonies, which were 

headed by queens inseminated with one, 10 and 20 drones or naturally mated. The data show that genetically diverse queenless colonies  

(20 subfamilies per colony) produced fewer adult drones, had a delayed onset of worker-derived drone flight activity, and a lower efficacy in 

drone production / per day colony life span compared to all other groups. Our data suggest that genotypic diversity may reduce fitness of 

queenless honey bee colonies, probably due to reproductive conflicts among subfamilies after queenloss. 

 

La diversidad genotípica en colonias de la abeja de la miel sin 

reinas reduce la aptitud biológica  

Resumen  

Las reinas de la abeja de la miel se aparean con muchos individuos masculinos. La diversidad genotípica resultante parece mejorar la aptitud 

biológica de las colonias con una reina presente (es decir, aquellas colonias con una reina reproductiva presente), lo cual es difícil de medir, 

ya que las medidas de la aptitud biológica a largo plazo incluyen los apareamientos exitosos de los machos producidos (zánganos) y el 

número de enjambres supervivientes. Sin embargo, la aptitud biológica de las colonias sin reina está limitada a los zánganos adultos 

producidos por obreras hasta la muerte natural de la colonia. Aquí ponemos a prueba el impacto de la diversidad genotípica en la aptitud 

biológica de colonias de abejas sin reina, que fueron gobernadas por reinas inseminadas con uno, 10 y 20 zánganos o apareadas de forma 

natural. Los datos muestran que las colonias sin reina genéticamente diversas (con 20 subfamilias por colonia) produjeron menos zánganos 

adultos, tuvieron un retraso en la aparición de la actividad de vuelo de los zánganos producidos por obreras, y una menor eficacia en la 

producción de zánganos por día de vida de la colonia en comparación con los demás grupos. Nuestros datos sugieren que la diversidad 

genotípica puede reducir la aptitud de las colonias de abejas sin reina, probablemente debido a los conflictos reproductivos entre subfamilias 

después de la pérdida de la reina. 

 

Keywords: Apis mellifera, evolution, drone, fitness, laying worker, polyandry  

Journal of Apicultural Research 51(4): 336-341 (2012)                                           © IBRA 2012 
DOI 10.3896/IBRA.1.51.4.07 

Introduction 
 

One of the most intriguing aspects of the biology of the honey bee 

genus Apis is the extreme level of multiple mating by queens 

(= polyandry) (Woyke, 1956). The topic has received intensive 

research in recent decades (e.g. Page, 1980; Crozier and Page, 1985; 

Boomsma and Ratnieks, 1996; Palmer and Oldroyd, 2000; Kraus et al., 

2004; Tarpy and Seeley, 2006; among many others). Although genetic 

diversity seems to result in healthier and more productive queenright 

colonies in various insects (honey bees: Mattila and Seeley, 2007; 
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Kraus et al., 2011; bumble bees: Baer and Schmid-Hempel, 1999; 

Baer and Schmid-Hempel, 2003; ants: Hughes and Boomsma, 2004), 

the evolutionary mechanisms underlying polyandry are not fully 

understood. If a queen is only single mated the haplo/diploid sex 

determination system in the Hymenoptera should favour kin selection 

and the evolution of sociality (Hamilton, 1964). Polyandry, however, 

decreases the average relatedness of colony members and should 

therefore weaken selection that maintains eusociality (Wilson, 1971; 

Crozier and Pamilo, 1996). Thus, polyandry is still one of the unsolved 

riddles in the evolution of insect societies, particularly in honey bees. 

Many hypotheses and several potential mechanisms have been 

proposed to explain the evolution of polyandry in social insects (Page, 

1980; Crozier and Page, 1985; Ratnieks, 1990; Boomsma and 

Ratnieks, 1996; Crozier and Pamilo, 1996; Sherman et al., 1998). 

Many theoretical and empirical studies focused on the genetic 

variance hypotheses (Keller and Hudson, 1994; Palmer and Oldroyd, 

2000), which predict fitness gains through decreased intracolonial 

relatedness resulting from multiple mating. Those gains, such as 

better winter survival (Mattila and Seeley, 2007) must outweigh the 

costs associated with polyandry, such as those due to multiple nuptial 

flights (Schlüns et al., 2005). Indeed, the high genetic variance for 

polyandry in honey bees may result from balanced selection between 

individual queen and colony level (Kraus et al., 2005); for example, 

risk during mating flight vs increased winter survival of the colony 

(Mattila and Seeley, 2007).  

Mattila and Seeley (2007) reported a higher number of drones 

produced and a better winter survival of more genetically diverse 

queenright colonies, suggesting that genetic diversity enhances 

fitness. An evaluation of honey bee colony long-term fitness is, 

however, particularly difficult. The long-term fitness of honey bee 

colonies is the lifetime number of surviving swarms and successful 

matings by the produced male sexuals (drones). Colony phenotype 

characteristics enhancing or reducing the likelihood of producing 

viable swarms and large numbers of adult drones are the cues to 

colony fitness, but should be carefully interpreted, perhaps just as 

"tokens" of fitness, that are associated in some way with natural 

colony survival and reproduction (Page et al., 1995). Moreover, the 

numbers of surviving swarms and of successfully mated drones as 

direct measures of colony fitness appear extremely difficult to 

evaluate over the life time of a honey bee colony.  

This picture is, however, very different for hopelessly queenless 

colonies of arrhenotokous honey bee subspecies, where laying 

workers produce only drone offspring. Such colonies are doomed, and 

only have a very limited future, determined by the life span of the 

remaining work force. Hopelessly queenless colonies cannot therefore 

produce viable swarms, leaving laying worker produced drone 

offspring as the only evident measure of fitness. Nevertheless, laying 

workers colonies can successfully produce a considerable number of 

adult drones (Page and Erickson, 1988), suggesting that the fitness of 

queenless colonies is relevant at the population level (Moritz et al., 1998). 

Supporting evidence is provided by Hepburn (1994) showing that at 

least 8% of the colonies observed over a five year period became 

hopelessly queenless and eventually dwindled. Despite these obvious 

advantages of hopelessly queenless colonies as a model system to 

understand the evolution of extreme polyandry in honey bees, to our 

knowledge, no single study has addressed the potential impact of 

genotypic diversity on their fitness. 

Here we evaluated for the first time the impact of genotypic 

diversity on the fitness of queenless honey bee colonies. We used 

instrumentally inseminated queens to generate groups of queenless 

colonies with distinct differences in genotypic diversity. We then used 

the number of adult drone offspring produced, the onset of worker 

produced drone flight activity, and the number of drones produced 

per day of colony life span as more direct measures of colony fitness 

until natural colony death. Given that increased genotypical diversity 

enhances fitness of queenless honey bee colonies, we expect positive 

effects on our fitness estimates. If, however, genotypic diversity is 

detrimental, we expect negative effects. 

 

 

Materials and methods 
 

Two colonies of A. m. carnica were established at an apiary in 

Kortowo (UWM University, Poland). Sister-queens were reared from 

those colonies in a single breeding colony following routine techniques 

(Wilde, 1994) to control for any potential impact of colony 

environment on queen quality. The queens were randomly assigned 

to groups and were either inseminated with semen of: a single drone 

(N = 8); of 10 drones (N = 5); or 20 drones (N = 3), using the mixed 

sperm technique (Skowronek et al., 1995). Before and after 

insemination, the queens were kept and treated as described by 

Woyke et al. (2008). We used an equal sperm volume (8 ml) for each 

queen to control for any potential impact of semen volume. Drones 

used for insemination originated from four equally strong unrelated 

colonies and were randomly distributed over the treatment groups. 

These inseminated queens, together with naturally mated ones 

(N = 4) as controls for the effects of insemination, were introduced 

into colonies. After overwintering, standardized queenless splits of 

equal strength from each colony were introduced into standardized 

nucleus hives (~1500 bees, one honey comb, one pollen comb and 

one empty comb in each) to further limit potential effects of different 

starting conditions. We used multi-super nucleus hives with six combs 

in the box, on frames measuring 215 x 163 mm – mini-plus nucleus 

(Siuda et al., 2011). There were 14 nucleus colonies in the group 

inseminated with a single drone, 17 with 10 drones, 9 with 20 drones 

and 13 with naturally mated queens, a total of 53 hives.  

 For statistical analysis the results for nucleus originating for the 

same initial colony were pooled. The number of adult drones 

file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_14#_ENREF_14
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_1#_ENREF_1
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_14#_ENREF_14
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_2#_ENREF_2
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_11#_ENREF_11
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_9#_ENREF_9
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_41#_ENREF_41
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_6#_ENREF_6
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_23#_ENREF_23
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_23#_ENREF_23
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_5#_ENREF_5
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_32#_ENREF_32
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_3#_ENREF_3
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_3#_ENREF_3
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_6#_ENREF_6
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_36#_ENREF_36
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_12#_ENREF_12
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_26#_ENREF_26
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_26#_ENREF_26
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_16#_ENREF_16
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_35#_ENREF_35
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_13#_ENREF_13
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_16#_ENREF_16
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_25#_ENREF_25
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_24#_ENREF_24
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_19#_ENREF_19
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_40#_ENREF_40
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_38#_ENREF_38
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_45#_ENREF_45
file://IBRA-NAS-DRIVE/ibra_data/JAR%2051%20(4)/From%20NC/1253FH%20revised%20-%20DIANE.docx#_ENREF_37#_ENREF_37


produced was counted on a daily basis using standard drone traps at 

the flight entrances (Drescher, 1975) for all splits until their natural 

death. To estimate colony fitness, we used the total number of laying 

worker produced drones and the onset of drone flight activity. While 

the former is obvious, the latter may also play a role because later 

produced drones are likely to miss the peak time window for local 

queen mating flights. Moreover, the onset of drone flight activity also 

constitutes an estimate of the time needed to produce worker-derived 

sexuals. Finally, we divided the total number of drones produced by 

the life span of each colony in days to provide an estimate of colony 

efficacy in drone production. 

Spearman rank correlations were performed between the number 

of produced adult drones and the number of inseminations. Kruskal/

Wallis ANOVAs and multiple comparisons of mean ranks for all groups 

were performed to test for differences in the total number of 

produced drones, the onset of drone flight activity and number of 

produced drones per day. For statistical analyses, we used the 

software package STATISTICA.  

 

 

Results 

After queen loss, six colonies died before they produced any drones 

(one colony each from the one drone and the naturally mated group; 

two colonies each in the 10 and 20 drones groups respectively). The 

remaining 53 colonies produced a total of 1462 adult drones until the 

natural death of the colonies after an average of 77 ± 10 days. The 

number of adult drones produced and the number of inseminations 

were significantly negatively correlated (r = -0.82, p < 0.001; Fig. 1). 

The number of inseminations had a significant effect on the number 

of drones produced, with colonies inseminated with 20 drones 

producing the fewest (Kruskal Wallis ANOVA: H (3,19) = 12.13472  

p = 0.0069, Fig. 2). The onset of drone flight activity was not 

significantly different between the groups (Kruskal Wallis ANOVA: H 

(3, N = 19) = 7.170500 p = 0.0667; Fig. 3). Finally, the number of 

drones produced per day life span of the queenless units was 

significantly different between the groups (Kruskal Wallis ANOVA: H 

(3, N = 19) = 10.40105 p = 0.0154 Fig. 4) 
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Fig. 1. Correlation of the number of laying worker produced adult 

drones with the number of inseminations. 

Fig. 3. Onset of laying worker produced drone flight activity in the 

nucleus colonies after queenloss under the different treatments:  

1 = inseminated with semen of a single drone; 10 = inseminated with 

10 drones; 20 = inseminated with 20 drones; and naturally mated. 

Means ± sd are shown. Different letters (a, b) indicate significant 

differences for P < 0.05. 
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Fig. 2. Total number (mean ± SD) of laying worker produced adult 

drones in the nucleus colonies under the different treatments:  

1 = inseminated with semen of a single drone; 10 = inseminated with 

10 drones; 20 = inseminated with 20 drones; and naturally mated. 

Fig. 4. Number of produced adult drones per day life span of queenless 

honey bee colonies: 1 = inseminated with semen of a single drone; 

10 = inseminated with 10 drones; 20 = inseminated with 20 drones; 

and naturally mated. Means ± sd are shown. Different letters (a, b) 

indicate significant differences for P < 0.05. 
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Discussion 
 

Given that the fitness of queenless colonies is relevant at the 

population level (Hepburn, 1994; Moritz et al., 1998), our data do not 

support the genetic variance hypotheses, because the colonies with 

the highest number of artificially generated subfamilies produced 

fewer drones than all other groups and had a lower efficacy in drone 

production per day life span. This suggests that genotypic diversity in 

queenless honey bee colonies reduces fitness. 

It is noticeable that six colonies failed to produce any adult drones 

and consequently had a fitness of zero, which has already been 

reported earlier (Page and Erickson, 1988). One possible explanation 

could be selective egg removal behaviour, so called worker policing, 

 in which workers prevent worker reproduction by other workers 

(Ratnieks, 1988; Ratnieks and Visscher, 1989). Although such 

behaviour should collapse when a colony becomes hopelessly 

queenless (Miller and Ratnieks, 2001), it can nevertheless persist 

(Chaline et al., 2004), which would result in worker-laid eggs being 

removed, and may explain the observed lack of adult drone 

production in some colonies.  

Artificial Instrumental insemination may not necessarily reflect 

natural mating in honey bees, but no significant effect of the 

insemination sequence was found (Woyke, 1963; Schlüns et al., 2004). 

Instead, patriline frequencies in colonies headed by artificially 

instrumentally inseminated queens strongly depend on the semen 

volume of the respective drones (Schlüns et al., 2004). Since we used 

the sperm mix technique (Skowronek et al., 1995) and equal sperm 

volumes per queen, differences in sperm numbers between drones 

should be equalized, and therefore the situation is likely to reflect 

natural matings. 

In contrast to previous studies using queenright colonies (e.g. 

Mattila and Seeley, 2007 among others), our data suggest a 

detrimental effect of genotypic diversity on colony fitness in 

hopelessly queenless colonies. Depending on the naturally occurring 

frequency of hopelessly queenless colonies (Hepburn 1994) and on 

the actual contribution of laying workers to population fitness (Moritz 

et al., 1998), this supports the view that other more proximate factors 

such as sperm limitation (Kraus et al., 2004) may be feasible 

alternative explanations for the evolution of extreme polyandry in 

honey bees. Alternatively, but not mutually exclusive, queenless 

honey bee colonies might be special with respect to reproduction. 

Indeed, first of all egg removal behaviour (policing), which normally 

prevents successful worker reproduction in queenright honey bee 

colonies (Ratnieks, 1988; Ratnieks and Visscher, 1989; Pirk et al., 2002; 

Neumann et al., 2003; Pirk et al., 2003; Pirk et al., 2004) has to 

collapse before worker reproduction can start (Miller and Ratnieks, 

2001). Even more crucial is that upon queen loss workers compete 

with each other for reproductive dominance using pheromones and/or 

physical aggression (cf. Neumann and Hepburn, 2002; Neumann and  

 

Moritz, 2002; Wossler, 2002; Dietemann et al., 2007; Pirk et al., 2011). 

Eventually, dominance hierarchies are established and workers from 

only one or a few subfamilies dominate reproduction (Moritz et al., 

1996). Thus, a higher genotypic diversity of the work force may result 

in a longer time window to resolve reproductive conflicts among 

subfamilies. The variation, although only just not significant, in the 

onset of flight activity by the laying worker produced drones could 

indicate that a prolonged reproductive conflict may have reduced the 

reproductive output and fitness of the colonies with a higher 

genotypic diversity. A longer persistence of egg removal behaviour 

(worker policing) could be the underlying mechanism behind the delay 

in genotypically more diverse colonies (Fig. 3). One could speculate 

that in a genetically more diverse colony, the breakdown of worker 

policing (Miller and Ratnieks, 2001) may be more delayed or removal 

of worker-laid eggs policing may even persist (Chaline et al., 2004). 

Moreover, the genotypically more diverse colonies also showed the 

lowest efficacy in terms of drones produced per day life span. In any 

case, the lack of respective behavioural observations in our data set 

obviously prevents more insights into the underlying mechanisms for 

explaining the observed variation.  

In conclusion, our results suggest that although evidence 

accumulates that an increased genotypic diversity may be beneficial 

for queenright honey bee colonies (e.g. Tarpy and Seeley, 2006; 

Mattila and Seeley, 2007), it appears to be detrimental for colony 

fitness in queenless ones, probably due to increased reproductive 

conflict among genetically diverse subfamilies. Since the balance 

between cooperation and conflict appears to be fragile in insect 

societies, theories on the evolution of polyandry in the social 

Hymenoptera should take into account that benefits derived from 

polyandry in queenright colonies must outweigh any resulting costs 

not only in individual queens (e.g. associated with multiple mating 

flights), but also in queenless units. We suggest testing this idea in a 

variety of other social insect species. 
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