A discrete-event simulation and production scheduling

system for an FMCG plant manufacturing liquid products

BY
FRED PRETORIUS

28244924

Submitted in partial fulfilment of the requirements for the
degree of

BACHELORS OF INDUSTRIAL ENGINEERING
in the

FACULTY OF ENGINEERING, BUILT ENVIRONMENT AND INFORMATION
TECHNOLOGY

UNIVERSITY OF
PRETORIA

October 2012

Acknowledgements

The author would like to thank the following people for their support:

Everyone involved at Unilever, especially: James Conradie and Joan Njuguna for their patience
and input,

Estelle van Wyk, my supervisor, for her invaluable support and encouragement,
James Perry and Amanlal Kumkaran from Flexsim for their help with the simulation,
Mark Wiley from Lingo for his ideas on integrating Lingo into Excel,

and my family for their unending support and vigorous encouragement!

Executive Summary

Unilever South Africa plans to build a new factory in Boksburg. This factory will manufacture
products in the Home Care and Personal Care market categories. It is intended to be a state-of-
the art facility that incorporates best practices from facilities all over the world and produces at

very low cost.

The purpose of this project is to provide Unilever with a system for effectively planning and
managing the new factory. Ideally, it would be possible to adapt the system to other projects in

future.

Specifically, some mechanism for predicting the number and size of machines needed in the

new factory is required.

To this end, a discrete-event simulation is being developed to study the proposed investment.

This will be used to verify that the proposed factory will be able to meet projected demand.

Since production output in this facility will depend heavily on the equipment used as well as the

quality of the scheduling, a production scheduling system will also be developed.

This scheduling system will utilise various techniques to compile optimal or near-optimal
schedules. The generated schedules, along with one from the planning department, can then be
run through the simulation to further study and improve both the scheduling system and the

simulation.

The project will be successful if it can verify the required investment levels.

Table of Contents

Yo L0111V F=T o (o =T 4 =T o) PP 1
EXECULIVE SUMIMIAIY ...t iiiitie ettt s e et e e e e e et e e e e e et e e e e e taa e e e e e e tea e e e e e e st e et est e e e e es s eeeeesann e eeeetan s eeeesranss 2
F o] £0] 0771 41T TSP UPPRPR 6
(O T o] =] i PRSPt 7
I [11 oo [N [ox 1 o] o DO PP PR TP SPRPPP 7
1.1.1 Introduction and bacCKgroUNGcuuiiiiiiiii e e e 7
I 2 Yo o] o1 PP 8

2 o o] o] =T 4 g T =TT o T 9
O R Y)T £ PSP PP TPTTTPR 10
I = Tod {1 To T 11 =P 11
I R O o T =T 0 1= TSP 11
L2084 TANKS ..ttt ettt e et e e e e e e e e e e e e e e e e bbb 13
1.2.5 Scheduling production for a batch plant with uncertain process timesccccevvvvvvivnennnnn. 13

R O =T o] =T YU T2 g = 1Y/ 14

L1 7=) (= O 16
2.1 INEFOTUCTION ...ttt e et e e e e e e e e e e e e e e e e e s e e et bb bbb e e ee e 16
2.2 Literature ReVIEW - SIMUIALION.ovuiiiiiiiiiiiie ettt e e e e e e e e e e e 16
2.3 Literature ReVIEW - SCheAUIING...........uuiiiii e e e e e e s e e e aeeeeeaeene 17
2.4 Combining DES and SChedulingccouuiiiiiiii e a e e e aa s 19
AN O =T o (=T g TUT 110 = o S 19

L1 0=) (= S TS 20
G I =TS = T o] 1Y =1 T To (o] o T YRR 20
3.1.1 Minimum MacChiNES FEQUINEA.........ccuutiiiieiiiie et ee e e et e e e e e e e e a e et e e e e st e e e aaran s 22
3.1.2 Discrete-event SIMUIALIONooiiiii ettt e e e e e e e eeeab e e eeaeas 22
1Y 1 = OSSPSR 23

Logic Blocks 28

3.1.3 The production scheduling system 45
3.1.3.1 Linear Programming 46

3.1.3.2 Genetic Algorithms 49

3.2 Computer Program 49

3.3 Chapter Summary 69

Future work 69

Results achieved 69

Bibliography 70

List of Figures

Figure 1 - Logical FaCtOry LAYOUL.........uuuuiiiiiiii i e e ettt s s s s e e e e e e e e e e e e e e tat s s s e e e e aeaeaeeeeesenes 9
Figure 2 - Possible roles of simulation in PPS SYStEMScoiiiiiiiiiiiiiiceeeecin e 17
[T [0 IS I (o] [=Tor 2N o] o] o 7= Uod o USRS 21
Figure 4 - DediCated tanKSoieieriiiiiii e r e e e e e e e e et e e e et e e e e e e e eaeeeaeaarrne 25
Figure 5 - Non-dedicated tankSuuuuiiiiiiiii e e e e e e e e e e e eeaenrne 26
Figure 6 - Labeller ONENIIYooviiieiiiiiiie e r e e e e e e e e e e e e e ae s e s aaeeeaaeeeeeeeesennnes 31
Figure 7 - Labeller ONEXILcoviiiiiiiiiiiis i s e e e e e e e e e e e e e s s s e e e eaeeeeaeeeaenrees 32
FIQUIE 8 - DES OVEIVIEW ...t es e e e e e et ettt s s s e e e e e e e e e e e e estestaa s aeeeeaaeaeeeeeesennnes 33
Figure 9 - Liquid Arrival SChedUIEciiiiiii e s e e e e e e e e e aenanes 34
Figure 10 - Setting Item COIOUISuuiiiiiiiii e e e e e et e et e e e e e e e eeeeeeeeaennees 35
Figure 11 - Send to MatChing IEMEYPES.....cciii i e eiiie e e e e e e e e e e e eeaenene 36
Figure 12 - PUlling bY table VAIUEuueiiiiii e eeee et e e e e e e e e e e e eeaenenes 37
Figure 13 - SENdING the MESSAQEuuuuuiiii it i e e e e e e e e e e e e e e et e e e e e e e aeeeeeeeesernne 38
Figure 14 - RECEIVING the MESSAQGEuuuu i iii i i i e e e e e e e e e e e ee e et e e e e e e aaeeeeeeesesnnes 39
Figure 15 - ReSsetting the MOGEl.........ouuuiiiiii e e e e e e e e e eeaeaenns 40
Figure 16 - One approach to mixer batChingcoouuiiiiiiiii i e, 41
Figure 17 - Showing all global tablesS...........coooi i e e e 42
Figure 18 — TanK PUIlING........ccoiiiiieiei e e e e e e e e e e e e e e s s e e e e e aeeeeeeeesesnnes 43
Figure 19 - FIEXSIM MOUEL.......coo et e e e e e e e e e e eeeaenenes 44
Figure 20 - FIEXSIM MOUEL.... ... e et e e e e e e e e e e e eeaenrnes 44
FIgure 21 - Change-0Ver tIMES.......euuiiiiiii i i e e e e e e e e e ettt s e e e e e e e et e e eeeaeetataaa s aeeeeaeaaeeeeeesennnes 48
Figure 22 - ChangEOVEI IMALIIX........uuuuuirriieie e e e e e e e ee e ettt s s s e e e e aeeeeeeeeaettae s aeeaeaeeaeeeeeesennnes 51
[T [0 A T] o 10 e = - USRS 52
Figure 24 - Minimum Production COOE..........ccoiiiiiiiieiiieeses e e e e e e e e e e eeeaennees 53
[T [0 I T IS = o o = SRR 55
Figure 26 - TSP PeIfOIMANCEoouiiiiiiiiii it e e e e e e e e e e ettt s s e e e e aeeeeeeeeesennnes 56
Figure 27 - SChedule OULPULoeuiiii e e e e e e et e e e e e et s e e e e eaaeeeeeeeesenrnes 57
FIGUPE 28 - WEEK'S GOVciiiiiiie ettt et s e e et ettt s e e e e e e e e e et e e e e e aestaa s aaeeeaaaeaaeeeesensnes 59

Figure 29 — ColoUr-CoOOe0 WEEKSuuuuiiiiiei i cecee e e e e e e e e e e et e e e e e e e e e eeeeeeaesnnes 60

Figure 30 - SCheduling TIME ...t e e e e e e e e e e et e s e e e e e e e eaeeeeeesennnes 61
Figure 31 - FIEXSIM SCREAUIE.vuiii e e e e e e e e e e eeaennee 62
Figure 32 - Flexsim Scheduling AlQorithmooori e 63
Figure 33 - Packing TIMEIINE.........oouuiiiiiii ettt s e e e e e e e e e e eeeeaenree 64
Figure 34 - Determining nUMbBer Of tanKScoiiiiiiiiii e e 66
Figure 35 - SCheduling the MIXEIS......uuuu i e et e e e e e e e e e e eeeaenene 67
Figure 36 - MiXer SChedule Clashciiiiiiii e e e e e e e ee e 68

Acronyms

BCT

DES

ERM

ERP

FEED

IDE

LP

MILP

OEE

SKU

SMDP

SME

TSP

WIP

Batch cycle time

Discrete-event simulation

Enterprise Resource Management
Enterprise Resource Planning
Front-end Engineering Design
Integrated Development Environment
Linear Programming

Mixed-integer linear program

Overall equipment effectiveness
Stock-keeping unit

Simulation Model Development Process
Subject matter expert

Travelling Salesman Problem

Work-in-process

Chapter 1

1.1 Introduction

1.1.1 Introduction and background

Unilever is a major international company with a wide range of brands — covering several price
segments and product categories in the Food, Personal and Household care, and Cosmetics

industries.

The company has been doing business in South Africa since 1891. To cope with increasing
local demand, the company started manufacturing products in the country in 1911. Since then,
the company has expanded its local operations to include many production sites, including a
factory in Boksburg that opened in 1955. Another factory is planned close to the site in
Boksburg. This factory will produce household liquids, manufacturing brands such as Sunlight
Dishwashing Liquid, Sunlight Fabric Wash and Fabric Conditioner, Domestos, and Handy Andy,
in addition to several personal care products. Well-known brands in this category include Dove,

Tresemmé, and Vaseline. This project will focus on the Home Care category.

The factory design is currently nearing the end of the Front-End Engineering Design (FEED).
Therefore, changes to the design are still being made. To assist in planning a factory that will be
capable of meeting projected demand whilst minimizing capital expenditure and risk and
remaining flexible enough to adapt to the competitive Fast-Moving Consumer Goods (FMCG)
industry, a simulation of the planned factory has been made. The simulation is used as a design
tool, specifically, to confirm that the planned factory will be able to meet demand. In this regard,
it is used as a tool to support various design decisions. Several designs can be analysed and

the best alternative chosen.

Furthermore, a production scheduling system has been be designed. This system produces
predictive schedules, which are pre-planned and static, and does not take changing production
circumstances into account. Significant changes in circumstances may include breakdowns,
supplier problems, changing demand, strikes, and product re-runs. These are all events that can

change the production system to the extent that the model must be re-evaluated and the
production schedule run again. The system produces a schedule four weeks into the future, but

is designed to be run weekly.

Having both a production scheduling tool and a simulation means that one can be used to verify

the other.

1.1.2 Scope

This project will only be concerned with simulating the manufacturing, intermediate storage, and
packing functions of the manufacturing facility. The physical layout, worker movements, and the
rest of the factory floor (such as receiving, palletizing or finished product storage) are out of
scope. Demand projection is out of scope, but it should be noted that the validity of the

simulation is entirely dependent on it.

1.2 Problem Description

Packing

Manufacturing Sl

-——---—--— ——! Srorage Tank Packing Lin= 1
Mixer 1 | |

[Bl=ach Products | :’
] I_ B M
e el
Mixer 2 -
Qutbound Logistics
‘@}—'
| E | Facking Line 5
b __777
gy e
.
Mixer 5
e o
—
—i Storage Tank }— 4{ Packing Line 10 —
Mixer 6 ————
4' Storage Tank l —| Packing Line 11 r—~
—| . S— b Packing Lina 12—
Additional Mixers Storage Tank
| Additianal Srorage

Tanks Additional Lines

1
I

Figure 1 - Logical Factory Layout
The production process is relatively simple:

1. Various ingredients are added to a mixer and processed until the batch of liquid is ready
for packing.
The liquid is pumped into intermediate storage tanks that act as a buffer.

3. The product is sent to the packing lines, where it is packaged in bottles and pouches..

There are valve matrices between each of the three steps that enable production planners to

send liquid from any mixer to any storage tank and from there to any packing line.

Therefore, it is possible that the following scenarios can occur:

1. One mixer supplies multiple packing lines
2. Many mixers supply one packing line

3. Multiple mixers supply multiple packing lines.

Some products (such as Domestos and Omo Bleach) contain bleach. Bleach cannot be mixed
with other products, and cleanouts after running bleach products need to be extremely
thorough. Therefore it is deemed best by Subject Matter Experts (SMEs) and management that
bleach products are kept entirely separate from the rest of the plant — resulting in two separate

sections that can be scheduled and simulated individually.

1.2.1 Mixers

In some cases, mixers have to receive special modifications to be able to make certain
products. For example, it is possible to produce Fabric Wash and Fabric Conditioner in the
same mixer. However, the mixer needs to be fitted with certain special components that are
necessary in some cases to produce specific products. Therefore, if a mixer is earmarked for
producing Fabric Wash only, it won't be fitted with the necessary components to produce Fabric

Conditioner too, and it won't have the capability to make both.

With regards to the different mixer sizes available: various options exist, but since FEED for the
plant is already well underway, it has been decided to use 15 m® tanks only. The batch-cycle
times of these tanks for each liquid type can be estimated by SMEs but are uncertain.

There should always be a greater amount of each specific liquid made (in tonnes per hour) than
the packing lines require. This calculation should include all machines involved in making a
certain product at each instant. This does not imply, however, that a discrete-time LP is
required. The complexity of multiple machines working with the same liquid can be captured

with a continuous-time LP (Majozi and Zhu, 2001).

Another layer of complexity is that one liquid, such as one of the Sunlight Dishwashing Liquid
variants, can be packaged into several different formats, including different bottle and pouch
sizes. Therefore, if a mixer is supplying multiple packing lines, they may be producing different
products concurrently, all made with the same liquid. This introduces difficulties when defining

product types in the simulation, which will be dealt with later.

10

1.2.2 Packing lines

Products are available in several formats:

1. Bottles
2. Pouches
3. “Sausages” (a type of pouch)

Each format is packed by a packing line that can do only that format.

Various bottle line models can be ordered, including high-speed, medium-speed, and low-speed

versions. The pouch lines, sachet lines, and sausage lines are available in only one speed.

Each packing line is capable of producing multiple sizes of packaging, except the sachet and
sausage lines. However, producing two products with a large difference in size after one
another complicates the change-over process. Therefore, it is deemed best if similar sizes are
made together. Each packing line is capable of packing bottles or pouches at a certain speed

depending on the package size, with larger sizes taking longer to pack.

1.2.3 Changeovers

Once a product has been made, a clean-out must be performed on the affected equipment to
flush residue from the tanks, pipes, and nozzles. The offending chemicals are usually perfumes
or colourants but can also be specific ingredients of the previous product. Also, every time the
bottle type or pouch size at a packing line changes, a changeover must be done to adjust the
equipment to the new bottle size and shape. This changeover (known as a size change-over)
involves installing different spare parts on the packing line and making a few adjustments to the
electronic settings. If only the bottle shape changes, and not the size as well, fewer changes will

be required.

The changeover time required will differ according to the preceding and subsequent product.

This is known in literature as sequence-dependent changeover times.
Product change-overs are sequence-dependant because of several factors:

* in some cases, perfume or colourant A will mask B, but not the other way around

11

e some products, like Domestos, are inherently good at washing away residue of previous
products without suffering in quality

» some products are thicker and more viscous than others and takes longer to wash out

During equipment cleanouts, all pipes and nozzles are thoroughly washed out with hot water
and selected chemicals. Sometimes, a “pigging” approach will also be applied. In this approach,
a special piece of sponge (the “pig”) is forced through the pipe system by water pressure. It
scrubs the pipes from the inside as it moves along. While this is done, the tanks containing the
various raw materials such as perfume and colourants are cleaned out. In this regard, operator
skill (and motivation) comes into play — it's sometimes possible to let the raw material tanks run
lower than the recommended level in anticipation of an upcoming changeover. When the

changeover commences, the tanks are already nearly empty.

If an equipment cleanout must be done, a size or shape change-over will also be required —
bottle shapes and sizes differ to indicate to the customer that the product contains a different
liquid. Even within the same brand, different bottle colours or label designs are used to make
products easily distinguishable for the consumer. Sometimes, only the bottle size will be

changed while still packing the same liquid. In this case, no clean-out will be required.

In conclusion, tables need to be set up detailing the change-over time from each product to
every other product that is likely to be produced on the same equipment. One table will be
required for each packing line model, and one for the product changeovers to be done in the
mixers and tanks. The values in this table will be determined in consultation with SMEs. There

are two reasons for this:

1. In cases where Unilever has a plant elsewhere in the world using the exact same
equipment (which is by no means the case for most of the machines), local operating
conditions at those sites could skew results;

2. Production managers from that plant will have to be consulted in any case to understand
their operating rules. Their operators may, for example, be forbidden for some reason
from letting raw material levels run low as a pending changeover approaches.

12

The values will only function as a starting point anyway — once the plant is up and running, they
will regularly be updated using Unilever's thirteen-week average “Demonstrated Capability”

policy, to be discussed in more detail later.

1.2.4 Tanks

Unilever policy dictates a six-hour buffer between making and packing. This will be used to
determine the size of the storage tanks. Since the storage tanks are non-dedicated, determining
how many are needed is a non-trivial problem. However, the non-dedicated design may lead to
fewer tanks being needed. Simulation will be instrumental in this regard. Discrete-event
simulation have been used previously to determine capacity requirements while taking cost and
other factors into account (Zhu, Hen and Teow, 2012) and can readily be applied to determine

the number of tanks needed under a particular schedule.

Another design decision to be made is whether the number of tanks can be doubled while
halving their capacity. This will likely require a slightly higher investment level will also result in a

more flexible storage system. It may even lead to fewer total tanks being required.

1.2.5 Scheduling production for a batch plant with uncertain

process times

To arrive at the amount of time available for production each year, the number of non-productive
days as well as a set time for product innovations is set aside. In the highly competitive FMCG
industry, new products need to be brought to market constantly to keep customers intrigued.
Testing of these products will be done in the product innovations time slot.

Unilever is one of many large companies using the popular enterprse resource management
(ERM) program SAP. One of the many components of this system is one that does sales
forecasting. From the sales forecasts, it draws up required production quantities. However, it
does not specify the optimal sequence in which to produce those products, or the best lot sizes

for each run.

Each week, the planning department will get sales forecasts for the following four weeks from
SAP. They will then try to schedule this by hand to arrive at a workable schedule for the month
ahead.

13

In addition to the amount of products that must be made, a certain amount must be held at the
end of each week. For example, management has determined that, for product A, 2.5 week’s
“cover” is required. This means that the next two-and-a-half weeks’ worth of sales must be kept
in stores as a minimum stock level. The planners will add the next two week’s forecasted sales,
and include half of the third week’s sales. This is the amount of product A that must be in stock
at the end of the week. For simplicity’s sake, weekly sales will be assumed to occur at the end
of each week. Therefore, the amount of product that must be produced in week i can be

calculated as:
Required Production(i) = Required Inventory (i) + Sales (i) — Inventory (i — 1)

Having arrived at the required volumes for each product, it is a challenge to schedule production
on an hour-by-hour basis if process times are uncertain. Therefore, for the purposes of
planning, a fixed processing time will be used. Once a schedule has been created, this plan will
be tested in a DES that takes variable process times into account to see if the schedule works
within the allocated time. The fixed process times are determined using a 13-week rolling
horizon — the “demonstrated capacity” is calculated using a weighted average of the times in
this period. To verify the distributions used in the DES to determine variable times, time studies

will have to be conducted in the new plant once commissioned and up and running.

In the end, production orders are sent to the shop floor in terms of number of units to be
produced before conducting a change-over and switching to the next product. If an interruption
occurs, production will resume until the required number of units have been produced, as
opposed to a fixed time. This is why continuous-time scheduling is superior to discrete-time
scheduling in this application.

More ways of handling uncertain process times will be examined in the literature review.
1.3 Chapter Summary

When several alternatives are encountered during the design process, design decisions will be
supported by building a simulation for each alternative. In some cases, the production schedule
can also be used to pick one alternative over another — if, for example, a valid schedule for a

14

certain configuration cannot be found, and the scheduling system has been validated
previously, we know that we have to change something in the design. Once the plant is up and
running, the combination of the DES and the scheduling system will be invaluable to the plant
managers.

15

Chapter 2

2.1Introduction

The problem of production scheduling is very well-examined in literature. Not only are
sequencing and scheduling problems challenging, but solving them can have large commercial

value. Ample incentive thus exists to pursue this field of study.

Furthermore, advances in digital technology has made discrete-event simulation commonplace

for many engineering problems.

The two techniques complement each other — a Discrete-Event Simulation (DES) for the new
facility will require some sort of schedule to run on, and the schedules generated by the
scheduling system will need to be tested and rated on a simulation model before being used.
However, the DES and the scheduling system must first be validated individually.

2.2 Literature Review - Simulation

A framework for developing DES models was developed by (Manuj, Mentzer and Bowers,
2009). This framework provides certain standards to modellers with the aim of improving rigor in
simulation — according to the authors, rigorous simulations are reliable simulations. The main

points are given below:

Formulate the problem

Specify dependent and independent variables
Develop and validate conceptual model
Collect data

Develop and verify a computer-based model
Validate the model

S L < A

Perform simulations

16

8. Analyze and document the results
Each step will be examined in detail in the Research Methodology section.

Kadar, Pfeiffer and Monostori (2004) used the following diagram for constructing effective simulations:

Planning and scheduling Simulation-
L . based salver
- N
ﬁ-ﬂh‘nl and ;xn:utinn . .7, Jog ey
! N .
Physical system \ Emulation model

fame ' Production plan and its results

event command

Figure 2 - Possible roles of simulation in PPS syst ems

This simulation will not delve into the realm of control and execution.
2.3 Literature Review - Scheduling

Van Beek, van den Ham, and Rooda (2002) examined a fruit juice plant with a layout similar to
the chemical plant in question. Fruit juice is mixed, then pasteurized, and then sent to the
packing department. One kind of juice can also be packed into several different pack sizes —
meaning that these SKUs must be allowed to be mixed simultaneously but required to occupy
different packing lines. This is exactly like the plant examined in this project — one liquid can be
mixed and packaged into several different shapes and sizes. They used a tabu search protocol

to arrive at a good (but sub-optimal) schedule.

17

Batch production scheduling and discrete-event simulation is used either concurrently or
iteratively to some extent to arrive at a plan for maximising the return-on-investment of a factory
in several papers. Examples are (Azzaro-Pantel et al., 1998), (Baudet et al., 1995), (Hung and
Leachman, 1996), and (Moon and Phatak, 2005).

A fundamental problem in batch-process scheduling for a chemical plant is that process times

are uncertain, as was mentioned before.

Hung and Leachman (1996) concluded that the easiest way of production planning is assuming
steady production levels from machines (as used in the initial simulation in this project) but that
this strategy is outdated. The production schedules drawn up by Azzaro-Pantel et al. (1998),

Baudet et al. (1995), and Mockus and Reklaitis (1997) all use fixed process times.

This is in contrast to Sohoni, Lee and Klabjan (2011). This paper investigates ways to generate
flight schedules for airlines with linear programs. The authors use a random variable to
represent flight times but limit this value between a minimum and maximum acceptable time.
This problem is similar to scheduling production runs in that limited resources have to be
scheduled for unknown blocks of time while meeting demand. The paper also presents a
method for determining on-time performance for each flight. This may be useful to ensure than
an intermediate resource (such as a mixer) finishes its run in time for the next resource (like a
packing line) to continue production, but not so early as to have liquid sitting in tanks for
extended periods of time. A major difference between that problem and this one, however, is
that the run lengths can be varied in a chemical plant but we cannot arbitrarily cut the flight

distance between two cities in half.

Where Sohoni, Lee and Klabjan (2011) examined bounded uncertain times in the context of an
airline, Lin, Janak and Floudas (2004) studied this in isolation. They take into account the

variability in processing times, demand, and cost of raw materials.

Azzaro-Pantel et al. (1998) used Genetic Algorithms to determine the order in which batches of
silicon should arrive at a given workstation. The number of batches to be processed was known
beforehand. This strategy requires that the solver software can interface with the DES software
— each sequence the solver generates is tested in the DES and the results are fed back into the

Genetic Algorithm. The difficulty in applying this approach to the problem at hand is the same as

18

with the airline scheduling problem (Sohoni, Lee and Klabjan, 2011). It is also not ideal to

determine run lengths beforehand since this should be determined by the scheduling system.
2.4 Combining DES and Scheduling

Moon and Phatak (2005) used an iterative process between an ERP system (which uses fixed
process times) and a DES program (which allows for uncertain process times, breakdowns and
maintenance) to arrive at a new process time that was then inserted into the ERP system - and
treated as a fixed time for the purpose of scheduling. This is similar to using a Monte Carlo

simulation to arrive at a mean and using that as a fixed duration, but more sophisticated.

If the production scheduling strategy is seen as an interactive process, fixed times can be
justified by using mean processing times and adjusting these regularly. In an interactive
scheduling strategy, the schedule takes inputs from the plant’s actual performance. Therefore,
the planners will re-run the scheduling system after each production run with the observed times
of the previous run as the initial state. The scheduling system will then generate the schedule
for the rest of the time period. If actual times continue to differ from planned times, the planners
may adjust the expected time for the relevant processes for future reference. This will be
implemented in accordance to Unilever's 13-week rolling-horizon Demonstrated Capacity

calculation.

This strategy is currently the policy at the plant in question — production is scheduled for each

week based on the mean production times demonstrated over the preceding weeks.
2.5 Chapter Summary

The problem of scheduling production is very well-examined in literature. A wide variety of
approaches are used by researchers, from simulating ants and DNA to linear programming.
Discrete-event simulation is a younger discipline due to the high demands it places on computer
equipment, but neverthless, a methodology for developing these models exists and can be

applied to produce reliable simulations.

19

Chapter 3

3.1 Research Methodology

The scheduling system continues with the current management policy of using a rolling horizon
to determine average process times and using this as a fixed duration when planning. In later
versions of this system, variability in processing times and even demand can be taken into
account using the methods developed by Lin, Janak and Floudas (2004).

Data with regards to the following was gathered by consulting SMEs:

» Packing line performance
» Mixer performance

* Product/product compatibility
Other data came from Unilever management:

e List of SKUs

» Demand forecasts
From this, the pre-simulation calculation sheets mentioned previously was drawn up.

The main project phases are shown in the diagram on the next page:

20

Figure 3 - Project Approach

W21Es SUN|FEELIE paysiul

wzishs

SUNrpzLITa] o2

IL=1az
3|npayIs jewido-eay,

Bunsag

=

[EL35 UoIDnpoig

m oeqpaay m

53 (3URIER BUNpRLES

pue ‘320 ‘siavzefueLE
Inie SBLELDRE L WnLEuey]

(5,27 (523) paunba
SRUELEE W WAL LY

sals

AUNYICR pUR BIEQ PUBKIA]

21

3.1.1 Minimum machines required

Initially, demand projections and machine performance specifications were used to determine
the minimum number of machines of each type required. This took into account changeovers,
breakdowns, operational inefficiencies, and scheduling inefficiencies, but did so by applying a
series of simple fractional multipliers to the maximum production capacities of the equipment
involved. (The theoretical maximum production of a machine would be multiplied by 0.7 to get
the desired OEE, and then by another factor to take scheduling inefficiencies and changeovers
into account. The resulting figure would be used as the maximum production.) In this step, linear
programming and a spreadsheet was used concurrently to determine the minimum number of

machines required. This was used as a ballpark figure for the next step of the process.

In the spreadsheet, production was allocated to each packing line and mixer individually. The
spreadsheet checked that produced volumes matched demand. It also checked that
instantaneous demand from the packing lines does not exceed supply from the mixers, and that
each machine stayed within its capacity limit. However, it could not deal with complex situations
where multiple packing lines are being fed by multiple mixers and producing several different
SKUs.

The linear program used the projected demand for each product by year and simply calculated
the minimum number of machines needed to meet that demand. It minimized the number of

machines bought over the period in question.

3.1.2 Discrete-event simulation

To construct a more realistic simulation, discrete-event simulation is required. This has been
done using a sample production schedule which was drawn up manually by the planning
department. Both the model and production schedule was initially made with the number of
machines specified in the previous step in mind. The model and production schedule was then
adjusted as the FEED process progressed.

As mentioned before, the simulation should be able to give statistics about various aspects for
each production schedule used. These include performance indicators like waiting times and

utilisation.

22

Initially, a Monte Carlo simulation was planned, but this concept was abandoned because
insufficient data on machine performance is available, and because it was difficult to capture the
complexities of breakdowns and changeovers without resorting to the heavy-handed strategy of

using a multiplier.

SMDP

The Simulation Model Development Process by Manuj, Mentzer and Bowers (2009) was used

to construct a rigorous DES of the planned factory.
SMDP entails the following:

1. Formulate the problem
The purpose of this simulation is to determine whether the factory will be able to meet
projected demand as it is planned, to determine where equipment levels may be altered
(such as more or fewer tanks), and to test production schedules in terms of validity and

efficiency.

2. Specify dependent and independent variables
Independent variables:

e Batch cycle times

Number of mixers of each type

* Number of tanks

» Number of packing lines of each type

» Demand projections

e Time available for manufacture each year
e OEEFE’s for all equipment

* Production Schedule

Dependent variables:
» Capacity utilisation
* Idle time
WIP levels

23

3. Develop and validate conceptual model

Figures 4 and 5 below will serve as a high-level conceptual design of the simulation
itself. There are several ways to approach the problem of simulating this plant and each

diagram is intended to illustrate one such approach.

Each block describes a component that will be placed in the simulation. These
components either represent real-world machines directly (such as the mixers) or are
required by the simulation program itself (such as the source and sink items). Flow items
are created in the source objects and move along the arrows until they reach the sink,

where they will be removed from the simulation.

The plant’s inbound logistics will be to the left of these diagrams — this department will
feed raw materials into the mixers. The source objects are, however, not meant to
simulate the inbound logistics of the factory but simply generate the flow-items that are

necessary for this DES.
The outbound logistics section is to the right of the diagram.

Both the inbound and outbound sections are deemed to be out of scope and it is

assumed that both have infinite capacity to give and receive without delay.

An important output of the simulation modelling is the number of tanks required. There

are two main approaches to design the tanks:

1. Let each product have its own, dedicated tank object.

a. The tank can then be set to have infinite capacity. This will allow the
modellers to see the maximum product levels in the tank with a certain
production schedule.

b. The tank can also be set to a realistic level such as 30 m®. The modellers
can then see whether the tank is a bottleneck at that size or not and try

out various other sizes.

This approach is illustrated on the next page:

24

MIXERS TANKS PACKING LINES

SOURCE -
—f HS DISHWASH
SOURCE — — HSHANDY ANDY
FABCON/FABCLEAN
— HS BLEACH
SOURCE —
— M5 LAUNDRY
HA — MS BIG SIZE
SOURCE —
— POUCH 1
Ll VALVE MATRIX o i e
'
SOURCE — - —» habat2
—™ FOUCH 3
SOURCE —
— POUCH 4
- — POUCH 5
SOURCE -
— SACHET
SOURCE — | SFSFPREDILUTE

Figure 4 - Dedicated tanks

2

(&)

2. Let several tanks shared amongst the mixers. This is illustrated below:

SOURCE

SOURCE

SOURCE

SOURCE

SOURCE

SOURCE

SOURCE

SOURCE

MIXERS

>

VALVE MATRIX

TANKS

>

TANK 1

T

TANK 2

/|

Figure 5 - Non-dedicated tanks

M

3

TANK 3

M

TANK 4

\/

WALVE MATRIX

(

ET@

PACKING LINES

HS DISHWASH

HS HANDY ANDY

HS BLEACH

MS LAUNDRY

MS BIG SIZE

POUCH 1

POUCH 2

SINK

FOUCH 3

POUCH 4

FOUCH 5

SACHET

I O

SFS PREDILUTE

In this arrangement, liquid is simply sent to the first available tank. The simulation will be

used to determine the minimum number of tanks required to ensure at least one empty

tank will be available when required.

Optimisation of the production schedule will, in many cases, result in some tanks being

used almost exclusively for certain products. The scheduling system will do this to avoid

unnecessary changeovers.This will avoid the need for conducting a change-over for that

tank. Therefore, both approaches have value. Currently, management is leaning towards

the first approach. This is safer and guarantees that each mixer will always have enough

tank space available. If one can conclude from the simulation that some of those tanks

will remain unused for long periods, the non-dedicated approach will be considered.

26

Another important design decision to be made with the simulation is to investigate the
best size of the tanks. We may halve the size of the tanks and double their number, as
mentioned before. We can then investigate this scenario and conclude whether it's a

financially sound decision or not.

Collect Data

The reader is referred to the section called Data Collection.

Develop and verify computer-based model

The simulation will be built using Flexsim. Flexsim provides the ability to build discrete-
event simulations (DES’s) and present the results as a 3D model. This makes it easy to
visualise what will be transpiring on the factory floor in specific scenarios. Initially, there
was some difficulty in acquiring a full license for Flexsim. At the time, model-building
could only proceed as small “blocks” of logic on the trial version. These blocks of logic
formed a proof-of-concept that demonstrated that a full, working model could be built

using an enterprise license. Together, they can also be used for validation.

Validate Model
The “blocks” of logic mentioned in the previous step include the following concepts:
» Generating the required number of flow items
» Sending these flowitems from machine to machine according to either:
» A pre-defined schedule
» A set of pre-defined rules
e Using a specific processing speed (each machine can process flowitems at
certain rates)
» Conducting change-overs correctly
* Handling batching correctly (mixers produce batches of flow-items at a time while

packing lines process items at a continuous rate)

These proof-of-concept models will be discussed in the Logic Blocks section below.

27

7. Perform Simulations
Once the number of mixers and packing lines were fixed by the Front-End Engineering
Design (FEED), the simulation was run several times with various numbers of tanks to
determine how many would be needed.

8. Analyze results
The real value in having a simulation model will only become apparent when the plant is
up and running and it can be used to manage the plant. However, the mode seemed to
give the best results at a level of twelve tanks, down from the initial sixteen tanks.

Logic Blocks

Initially, a sample-sized Flexsim simulation was built that has the same functions as the full-
scale model. This was done due to difficulty in acquiring a license. It will be apparent that the
different modes can operate together without interfering in each other’s operation. The full-scale

model combines the logic of all these blocks.
Flexsim Background

This is a short overview of Flexsim’s functions. A basic understanding of these will be required

to understand the rest of this section.

The modeller can enter event-based code (in a specialised form of C++) for each of the many

blocks available.

The code in a block’'s OnEntry section will execute when a flow item enters the object, for
example. Other events include OnExit, OnReset, sending and receiving messages, and more.
One can therefore inform the simulation by means of C++ what to do in specific cases.

Each machine also has a handy function called Pull Requirements. In this section of the model,
one can specify exactly which flow items must be “pulled” into the machine. Each flow item can
be given various attributes such as an item type, a unique number, a certain colour and shape,

and many more variables. Flowitems can be pulled according to these attributes.

Flexsim also has a feature called Global Tables. These are data tables in which you can track

various numbers. This is used to contain the schedule, processing times, and changeover

28

times. Each machine can look in the global table containing its schedule to see which item to

process, how long to take when conducting a changeover, etc.

One can read and write values to one of the global tables from within the code. Therefore it is

possible to update the tables as production progresses.
Scheduling in Flexsim

As was noted in previous reports, there is some difficulty in the fact that we work with several

classes of liquids that can be further subdivided into variants and pack sizes.

Flexsim has a handy setting that triggers a changeover state in some components if the

itemtype they're processing differs from the previous type. There are two problems with this:

1. We want a machine to do a changeover as soon as its done with a product (assuming
it's scheduled to do a different product next). In this configuration, however, the machine
only starts when the next item arrives. This would not be acceptable on the shop floor.
As an example, a packing line may be scheduled to package 5 batches of a product.
The schedule then allows for, say, two hours’ worth of idle time before a different product
will be packed. We'd want the operators to do their one-hour changeover as soon as
they're done with the first product and then be idle for an hour. This will allow greater
flexibility — if the next product comes early, the line will be ready. It is certainly not
acceptable for the line to start the changeover after having been idle for two hours, and

this is unfortunately not possible with a pre-set on Flexsim.

2. How to differentiate between products containing the same liquid but with different
packaging, such as Regular Sunlight Dishwashing Liquid 750ml & 400ml? These
products should look identical to the mixers because they contain the same liquid. But
the packing lines should not be able to move from one to the other seamlessly. A

changeover is required for them.

The answer is to implement a custom-made batch tracking system. The “Labeller” object seen
in figure 8 applies a label to each passing batch object. Each flow item represents one cubic
metre of fluid. The value is read from a global table. A separate block of code increments the

value in the global table for each flow item created. It would seem more straightforward to apply

29

this label directly, but due to the fact that one cannot send variables directly from one event

handler to another, this workaround is necessary.

Note that we can give each flow item a unique ID and also an itemtype. The itemtype represents
the various liquid types in the factory. The scheduling system keeps track of what product is

represented by each unique item ID.

This solves the change-over problem — the scheduling system will tell us what to produce, and
how much of it. It can then easily output this data in an Excel table and specify between which
numbers changeovers will be required and how long it will take.

Since the schedule now controls the simulation, we can prevent things like incompatible liquids

mixing on that level and do not need to write rules about it into the DES.

30

“* /Item# - OnEntry

Item# - OrEntry | (+]

i I
2 treenode item = parncde({l);

3 treenode current = ownerobject{c);

4 int port = parval (2);

5

& int itemnumber = gettablenum{"Item#",1,1);
7 setteblenum (" Item$”, 1,1, itemnunber + 1) 7

< i | 2]
@ %5 & v @Fesoipt Oc++ ODL [loded [(apoly |[ok | [cancel

Figure 6 - Labeller OnEntry

Figure 6 shows how item numbers are read from a global table, incremented, and written back
to the table. This happens each time a flow item passes through the “Labeller” machine.

31

- /ltem# - OnExit M=

Item - OnExit. | (][]
i =
2 treenode item = parncde({l);
3 treenode current = ownerobject{c);
4 int port = parval (2);
5
& int colour = gettablenum("Iteng™,1,1);
7
8 setlaebelnun {item, "Itemlun"”, gettakblenum{"Iteng”, 1, 1))
L
10 //3etcolor {item, sin{colour) *colour*colour, 3in (colour*l. 2)*calour¥colour, coa (colour) *colour*colc
11
&5 | %
H %5 & v @Fexsaipt Oc++ ODL [locked [appy || ok || cancel

Figure 7 - Labeller OnExit

Figure 7 shows how the label (“ItemNum”) is applied to each flow item. This is read from a
global table entry (Table Item#) that is incremented as described in figure 6. This results in a
model populated by flow items that have unique numbers as their labels.

Even though all these values will be exactly controlled by the schedule, we can more readily
introduce random variables in the processing times and even the changeover time in the DES
than in the scheduling system. Also, the visual representation can be instrumental in

understanding the underlying dynamics of the system.

32

7= 3D Yiew - model

Liquid Creator
Output: 270
Blocked: 0.0%

Labeler

Output: 270
yidle: 100.0 CurContent: 250

Queuved

%Processing: 0.0 MaxContent: 2
AvgStaytime: 4.

Mixer 2
Output: §
Yeldle: 20.0
%Processing: 80.0

Output: 10
Yidle: 0.0 N
%Processing: 100.0

Mixer 1

Mixer2Quieye
CurContent:
MaxContent: 8 /

AvgStaytime: 0.0

Packing Line 2
Qutput: 0
Yeldle: 100.0
%Processing: 0.0

+

CurContent: 0
MaxContent: 0
AvgStaytime: 0.0

Mouse Position [-15.46, -4, 17, 0.00]

Figure 8 - DES Overview

33

The screenshot in figure 8 shows the entire proof-of-concept model.
Liquid Creator

This creates the liquids for the purposes of the simulation. Each batch of liquid is represented by
a coloured block. The settings on this component allows the modeler to specify a colour for

each itemtype.

" Liquid Creator Properties

| Liquid Creator | {i}

Arrival Style |Arriua| Schedule b |

FlowItem Class lon w |

Mumber of Arrivals | 9 | Refresh Arrivals | [|Repeat Schedule/Sequence

Number of labels |1 | [Refreshlabels | [AddTabletoMTEl |

ArrivalTime |ItemName | ItemType |Quantity |ItemNum |
Arrivall 0.00 Product 100 30.00 0.00
Arrival2 1.00 Product 200 45.00 0.00
Arrival3 2.00 Product 200 15.00 0.00
Arrivala 3.00 Product 100 60.00 0.00
Arrivals 4.00 Product 100 30.00 0.00
Arrivals 5.00 Product 300 15.00 0.00
Arrival7 6.00 Product 100 15.00 0.00
Arrivala 7.00 Product 3.00 30.00 0.00
Arrivalg 8.00 Product 400 30.00 0.00

q@ [Apply J[OK][Eanoel

Figure 9 - Liquid Arrival Schedule

34

“* /Liquid Creator
Liguid Creator - OnCreation | B

1 treenode item = parnode(l):

2 treenode current = ownercbiject{c);

3 int rownumber = -parval({2); //row number of the achedule/seguence table
4[IFESE et EE RS bt ;iC}{C‘;EiCﬁ Start *Fkdkdakdddddd)
5

&

7

8 int walue = /**/getitemtype(item) **/;

9 switch(value)

10 [

11

12

13 case 1: colorblack{item);break;

14 caze 2: colorwhite {item) ;break;

15 case 3: colorblue{item) ;break;

16 defanlt: colorarray({item, wvalue);break;

17

18}

15

DY fRdekay PIeOpEicon . End dksdkealy

21

< | 2]
@ %5 & v @Fesoipt Oc++ ODL [loded [(apoly |[ok | [cancel

Figure 10 - Setting Item Colours

We haven’t abandoned itemtypes altogether — here they represent different liquid classes (such
as Fabric Softener or Liquid Abrasive Cleaner). This makes it easier to see what liquid each

machine is processing.

35

The distribution queue

"~ Queue9 Properties E]EHE|

’ |Queue9 | @

| Queue | Flow | Triggers | Labels | General | Statistics |

Output
Send To Port | Matching Itemtypes w |)

|:| Use Transport

Reevaluate Sendto on Downstream Availability

Input
ClPull strateay

TIEmE H=au

@) (te) (] (eety) [_oc][concel]

Figure 11 - Send to Matching Itemtypes

This queue’s job is simply to hold onto flow items before one of the mixers “pulls” the item. It
does not represent a real-life inventory of liquid.

36

Executing the schedule: OnEXxit

Each machines has “pull requirements”. It looks this up in a global table (ItemTracker). This
means that we can specify that a certain machine may only pull an item if that item’s unique
label equals the value found for that mixer in the ltemTracker table. In this way we can specify
exactly which flow item goes to which machine. This approach is used for both mixers and
packing lines. We don't have to schedule the tanks, however. We can write a simple pulling
requirement that lets the tank act as required. Figure 12 shows the pulling code used for the

mixers and packing lines.

“* /Mixer 1 - Pull Requirement E|@E|
Mixer 1 - Pull Requirement | B_

1 treenode current = ownerobject(c);

2 treenode item = parncde(l);

3 int port = parval(Z);

4

5

& string labelname = "Itenlum"™

7] -
8 double walus = gettablenum("ItemTracker™,1,1);
L

10 return getlabelnum(item, labelname] == walue;

£ i >

5 5 e o @Fexsaipt (C++ ODL [[Locked [appy || ok || cancel

Figure 12 - Pulling by table value

37

=i er 1= OnExit LEX
(==

Mixcer 1 -OnExit |

1

2 treenode item = parnode(l):

3 treenode current = ownerobject{c);
4 int port = parval(2);

5

6 For (int tableindex = 1; tableindex <= gettablerows("ChangeoverTable™); tableindex++) Doing Changeovers at predetermined points

E

8 if {getlabelnum{icem, "ItemNum™) = gettablenum("ChangeoverTable”,tableindex,1))

0 {

10 setatate (current, STATE : E_OVER]) ;

13 senddelayedmessage (current, 10, current, 0, 1) ;

12 colorred (current);

13 closeinput {current) ;

14 1

15}

16

17 sendmessage (current, current, getlabelnum(item, "ItemNum™)); //Pulling next item on 3chedule
4 | ¥
85T & v @FResopt Oc++ ODw [loded [apoly J[ok][cancel

Figure 13 - Sending the message

As mentioned before, we can pull items according to their properties. For example, we may
specify that a machine must pull item number 755. As it exits the machine, we adjust this value
to 756, or whatever is next on the schedule for this machine. In figure 13, we send a message
from the machine to itself. We include various parameters in this message that tells the machine
what to do.

For example, the delayed message (line 11) is sent after a certain waiting time. The first
parameter (current) is the object to which the message is sent. The second, 10, specifies the
delay time. The third parameter allows the modeller to specify from which machine this
message will appear to have come. The rest of the parameters (...0,1) are simply defined by the
modeller to convey meaningful information. In the OnMessage event, these are read and
interpreted. If the parameters are 0 and 1, that means a change-over has been triggered. If
parameter one is not equal to zero but parameter two is, that means the pulling requirement
must simply be updated. This happens on line 13 of figure 14.

In this way, we can tell the machine to close its input ports to new flow items (line 13 of figure
13) when a changeover occurs. The input ports will now remain closed until we re-open them.

38

Recall that this is a delayed message, and we can specify the delay. We set the delay to be
equal to the changeovertime. When the message arrives, the OnMessage code is triggered.
This re-opens the input ports, meaning that the change-over is now complete. Note that the
change-over code in the OnExit event will only be triggered for certain unique ID’s. These are

specified by the scheduling system.

— e
“* /Mixer 1 - OnMessage [__|E]E|
Mixer 1-OnMessage | E]
1 iz
2 treenode current = ownerobject{c);
3
4 if (msgparam(l) != 0)
51
6 int previousitemtype = magparam(l);
7 int numteblerows = gettablerows("Scheduler™);
8
9 for (int rowindex = 1; rowindex <= numtablerows; rowindex++)
10 [
11 if ({gettablenum("Scheduler”,rowindex,1l) = previousitemtype)
12 {
13 settablenum {"ItenTracker”,1, 1, gettablenum{"Scheduler™, rowindex RN,
14 h
15}
16 }
17
18 if (msgparam({Z) == 1)
18 [
20 colorgreen {current);
21 setstate {current, STATE_IDLE);
22 openinput {current) ;
231
< | >
T & v @Fesapt Oc++ ODL [locked [apply J[ok][cancel

Figure 14 - Receiving the message

39

“= [Mixer 1 - OnReset E|@IZ|

Mixer 1 -OnReset | E]

1 je

2 treenode current = ownerobjectic):

3

4 colorgreen{current) ;

5 her.r.ablamun {"ItenTracker",1,1,gettablenun{"Scheduler™,1,1)};

4 | £
85T & v @FResopt Oc++ ODw [loded [Cappty | [ok][cancel

Figure 15 - Resetting the model

The reader has probably noted at this point that the simulation mixer produces flow items one
by one whereas a real mixer would process fifteen at a time. This can be accounted for by
changing the variance of that processing time and doing the batching in a separate queue. It is
also possible to write a simple block of code that will take fifteen flow items and release them

after a processing time has been applied. This processing time can be a distribution.

40

| e

~~ Mixer1Queue Properties

’ | Mixer 1Queues | @

Maximum Content | 1000.00 |
[Lifo

Batching
Perform Batching

Target Batch Size | 15.00 |

Max Wait Time |u.uu |
Flush contents between batches

Visual
Item Placement | Stack Vertically W |
Stack Base Z | 1.50 |

(@) (2] (<] (eoty) [_oc][concel]

Figure 16 - One approach to mixer batching

41

[]() 3] (o]

|Discrete Oojects E

-y
Liquid Creator

temi

o]

7 Global Table... -

Mame: | TankSender ¥ @ m

b
Queue? #@\:

Mixer20 _._W:/m.r ///

P

-

—+-

(O 27w

Tank tosend to |
Ttertype 1 4.00 :
. . _ Global Table - Scheduler | [D]X]
+ ~an Mamz; | Scheduler ||| m hows: 150,00 ni.__._.__._wuu
Mixer L Mxer2 Linz2 ~
o i . S— == ez | @
200 77.00 152.C0
300 78.00 153.C0
400 79.20 154.C0
500 80,20 155.C0, K

EIEX

_ Global Ta...|_ |M[X]

Global Table - .nrw_._mmogn_..:._M__m_.w_
m =] mozw__lm_oa Cour

nane: | Chanyeuver Tdle

Mixer. [Mixerz [Lnet |Linez
Row 30.00 SC.00 3000 150,00
Row 2 75.00 lsc.00 3800 195.00
Row 3 210.00 185,00 7200 20000
Row 4 2490.01 c.oo soon 21000
Row 5 0.00 C.oo 10500 225.00
Row & 0.00 C.o0 120000 0.00

e v ——

~ Global Table - ItemTracker

Name | ItemiTracker ~ @ <) nhs;.,_ 100 |Columne:[400

|inez [
151,00

[Mizer2 [liner
7.00 a0.c0 =00

__..=xml.

Lebel: Tlenhiun

Bﬂu E oez

Dbjecs: Taned Jositien [-12.00, 20,00, 0.00] Rotaticn [0.00, 0.00, 0.00] Scale [2.00, 2.00, 0.20] State: empty

Figure 17 - Showing all global tables
42

[~ /Queue3 - PulllRequirement. A EI%-

Queue3 - Pull Reguirement | E]

¥ iz

2 treenode current = ownercbhjectic);
3 treencde item = parncde(l);

4 int porc = parval(2);

5

& iF (ceontent{current) == 0)

L

2 return 1;

g}

10 else

11 {

12 return getitemtype{item) == getitemtype(first{current));
13}

S | (%]

3 T
E] B o v @Flexsoipt Oc++ ODL [locked Apply][oK][Cancel]

Figure 18 — Tank pulling

Figure 18 shows how the tanks are controlled. If the tank is empty, it will pull any liquid. But if it
already contains some liquid, it will only pull that liquid.

The sink

This component, like the liquid creator, exists for the sake of the simulation program. It simply
gets rid of flow items after they’ve been processed. One might call that the outbound section of
the plant, which is out of scope for this project.

Running Flexsim

Flexsim has relatively high system requirements, especially for large models. It can run easily

on a high-end personal computer. The entire model is show in the figures below:

43

| Discret= Objects

@ Source
@

=
Combiner

W seperator

*Mu\ﬁPmmssnr

| Conveyor

|7 MergsSort
/ Flawtiode

75 Crane
] AsRsvehide
Networkiode
(<> Trafficcontrol
VisualTool
s Recorder

N BasicTE —
g BasicFR |

|- BasicConveyor

[Ta
“CurCol
MaxContent: 0

‘AvgStaytime: 0.0

Sausage
Output: 0

N2t

Mouse Position [35.46, -17.43, 0.00]

Figure 19 - Flexsim model

it View Build Execute Statistics Tools

Debug Window Help

|EHI v Qe B v B - [Eocel TETee FED @ soit

K3 Reset run @ stop [Bfstn RunTime: | 0.00 | StopTme: | -none - [

Run Speed:

e | @

(7)) Dispatcher

gy ToskExecuter Bleach Mixer 1
i . Output: 0
et %ldie: 0.0

ocessing: 0.0

Dish Mixer 1
Output; 0
%ldle: 0.0
Y%Processing: 0.0

i
Tank 1

Tank 2
CurContent: 0
MaxContent: 0

AvgSt; :0.0

Bleach

m@:n.u

Patna
Output: 0
~Sibdle: 0.0

ssing: 0.0

Dish
Output: 0
%idle: 0.0

Wlng: 0.0

Dog
Output; 0

| Recorder
) BasicTE ¢ ’
BasicFR. — -
o= * Dish Mixer2
o BT Output: 0
“hldle: 0.0
_Sg: Labeller %Processing: 0.0 LAC
= Output: 0 Output: 0
N “idle: 0.0 %ldle: 0.0 L)
Materials inbound %Processing: 0.0 , %Processing: 0.0 | Sink32
Output: 0 Input: 0
Blocked: 0.0% LAC Mixer 1 e

Mouse Position [-14.45, -10.05, 0.00]

Done Binding Objects,

Figure 20 - Flexsim model

44

3.1.3 The production scheduling system

It should be apparent from the formula below (already mentioned in section 1.2.5) that

calculating the required production for each week is simple:
Required Production(i) = Required Inventory (i) + Sales (i) — Inventory (i — 1)

Initially, Linear Programming techniques seemed like the best way to schedule production in the
facility, and while LP techniques have been used with great success before, other alternatives

exist. To arrive at a good solution, these approaches should also be investigated.

The categories investigated include a linear program, genetic algorithms, and a computer

program.

Initially, there were five categories and 82 products (when including variants and the different
sizes) available to each machine to be scheduled. It has since been decided that certain
packing lines may be dedicated to a category, since volumes will be large enough to ensure
ample work to be done for each line within its own category. This has been the case for the
mixers — each mixer has to be modified slightly to produce the liquid in its category and is thus
dedicated from the start.

This greatly simplifies matters when it comes to designing a scheduling system. Before, there
were 82 products to be considered for allocation on each line. Now, all that is required is a
system that can schedule seventeen products on a line. This is the number of variants Unilever
plans to produce on its “Bleach” line. It will be the busiest line in the facility, and so it represents
a worst-case scenario. Should more products be added to the plant, this line will be the last to
be considered as it is already the busiest. The scheduling system will therefore probably still be

useful several years ahead.

Management has specified a maximum amount of “cover” (as discussed in section 1.2.5) for
each SKU to be held. The cost of exceeding these levels can easily be calculated with the cost
of each SKU and the interest rate. However, since stock will incur holding costs regardless of
whether it is over this limit, we can replace the rule by a penalty on all stock held. The program
will then try to minimise this amount. If the only feasible schedule demands holding a greater

amount of stock than the specified limit, then breaking this rule is inevitable.

45

However, determining the cost of stock-outs is much harder to calculate. One has to account for
not only the cash flow lost with the sale, but also the amount of damage the supplier-client
relationship has suffered. This is very hard to quantify. One must keep in mind that if Unilever's
supply is unreliable, retailers have to keep more stock as a buffer. This increases prices for the
consumer and decreases profits for both Unilever and the retailer. If retailers refuse to give
Unilever products premium shelf space because it's no longer profitable for them, Unilever's
sales and brand strength will suffer. This is unacceptable, so the minimum stock levels are

regarded as absolute rules.

Initially, it was thought that each changeover simply took six hours. We now know this to be
untrue. Change-over times are sequence-dependant, which poses a challenge when

formulating an LP.

In scheduling the new plant, a critical objective is to maximise the utilisation for the packing
lines. The approach required is to schedule the packing lines first, and then the storage tanks
(with the same algorithm), and finally the mixers. When scheduling the storage tanks, their
“production speed” will be the highest flow-rate they can manage. Once we know how fast the
tanks should be supplying liquid, it will be easy to determine the mixers required to create that
fluid.

3.1.3.1 Linear Programming

To limit the number of decision variables, the traditional approach of assigning a decision
variable to each time period should be abandoned since time periods will have to be made
excessively long in order to limit their number. Instead, a continuous-time model can be
implemented. This technique was used by some researchers previously (Majozi and Zhu, 2001),

(Castro, Barbosa-P6voa and Matos, 2001).

Another approach is the LP used by (Geoffrion and Graves, 1976). This LP resulted in a local

optimum but ran very quickly on a computer from the seventies.

The problem can now be re-stated as a variation of the Travelling Salesman Problem. The
“salesman” represents the settings on each machine. If the salesman is in city A, the machine is

set up to produce product A. To change over to product B, the salesman will have to travel from

46

A to B, and this will take a certain amount of time. When going from B to C, it will take a different

time.

One difference is that the salesman has to spend a certain amount of time at each city. Also,
since stock levels are checked weekly, this means we have to generate four tours, one for each
week. He then has to travel from one loop to another. To illustrate in terms of production lines, a
line may make products A, B, and C in week one. In week two, production of A, C, and D is

required. Note that A and C are made in both week one and week two.

An optimal schedule would probably end week one with either A or C and then start week 2 with
the same product. This will avoid a changeover over the weekend.

One tour would not be able to schedule properly since it would only visit cities (or products) A &
C once, in week one. If A & C are only made once in the four-week period, their run lengths
would have to be quite long. This will result in an unnecessary violation of our maximum stock

levels.

It should also be obvious that the salesman will not have to do a complete a tour of the cities.
The salesperson may start at city A in week one, but will certainly not end week one at A as well
(unless A is the only product for week 1) as this means one unnecessary changeover has been
made back to A. It might not end the month at city A either.

To reconcile these differences, it could prove useful to draw four separate optimal routes
representing one week each. To get the total tour, one could compare each city i in week A
with each city ig in week B, each of iz with every ic, and each one of that with every ip. Once the
shortest route between all the circles have been found, the paths between iy and is+1, iz and ig
+1, etc. must be eliminated. Therefore, each weekly tour will be broken up and all four joined
together. Since we are dealing with four separate optimal tours being combined, one has to be
wary of local optima. Therefore, all the possible ways of connecting a node in week 1 to the
nodes in weeks 2 — 4 must be evaluated together, or sub-optimality will result. For seventeen
products, this unfortunately results in 17* = 83'521 possibilities after the optimal tours have been
determined. The problem grows exponentially as problem size increases but can be

manageable at this size.

47

To get a near-optimal tour for each week, two methods were considered initially: 2-Opt and Lin-
Kernighan. The 2-opt heuristic tries to exchange two links in the chain. It then makes the
exchange that decreases total travelling time the most, and starts again. It continues in this
manner until no profitable exchanges are possible. A Lin-Kernighan algorithm is like a 2-opt, but
can adjust the number of exchanges dynamically according to problem size and other variables.

However, this system is intended to be used to design the plant as well as run it. In the design
phase, it will be very useful if near-instantaneous results can be had. This will enable designers
to investigate various design scenarios and get immediate feedback about the effect their

decisions will have on the operation of the plant.

- ERE Scheduler 5h.xlsm - Microsoft Excel - B X
Home | Insert Pagelayout Formulas Data Review View @ - = x
3 ‘* Calibri] (S et 2 ! \ﬂ
3 @ -)
paste g2 2 u@ | . G (2 i : Tnsert Delete. Format | ;‘n:d&
Clipbeard [Font Mumber Styles Cells Editing
| Button 1 - fe | ®
A B (o B E F G H 1 J K L M N (e} P Q R S x, If
1 Bleach Seventeen Products 750 750 750 750 750 1500 1500 750 750 750 750 750 750 1500 1500 500 500
2 ID_ |pecsription 1] 2 3] 4] 3] 5] 7] 8] of 10 1] ao] 13 1] 1] 1] W
3 1|Domestos Lig Lavender 20x750ml| o 0.5 05 0.5 0.5 4 4 0.5 0.5 05 0.5 0.5 0.5 4 4 3 3 1
4 2|Domestos Lig Summer 20x750ml| 0.5 o 0.5 0.5 0.5 4 4 0.5 0.5 0.5 0.5 0.5 0.5 4 4 3 3 1
. 3|Domestos Lig Lemon 20x750ml 0.5 0.5 [} 0.5 0.5 4 4 0.5 0.5 0.5 0.5 0.5 0.5 4 4 3 3 1
6 4|Domestos Lig Pine 20x750ml| 0.5 0.5 05 o] 0.5 4 4 0.5 0.5 0.5 0.5 0.5 0.5 4 4 3 3 3
7 5|Domestos Lig Regular 20x750m| 0.5 0.5 0.5 0.5 0 4 4 0.5 0.5 0.5 0.5 0.5 0.5 4 4 3 3 13
8 6|Domestos Lavender 12 x 1.5L 4 4 4 4 4 o 0.5 4 4 4 4 4 4 0.5 0.5 4 4 1
S 7|Domestos Sum Fresh 12 x 1.5L 4 4 4 4 4 0.5 o 4 4 4 4 4 4 0.5 0.5 4 4 1
10 8|Domestos Lig Eucalyptus 20x750ml 0.5 0.5 0.5 0.5 0.5 4 4 1} 0.5 0.5 0.5 0.5 0.5 4 4 3 3 1
11 9|Domestos Lig Red Power 20x750ml| 6.5 0.5 0.5 0.5 0.5 4 4 0.5 o 0.5 0.5 0.5 0.5 4 4 3 3 1
12 10{0mo Bleach Lemon 4x6x750ml 0.5 0.5 05 0.5 0.5 4 4 0.5 0.5 o 0.5 0.5 0.5 4 4 3 3 1|
13 11|Omo Bleach Fresh 4x6x750ml 0.5 0.5 0.5 0.5 0.5 4 4 0.5 0.5 0.5 (o} 0.5 0.5 4 4 3 3 1
14 12[0mo Bleach Active 4x6x750ml 0.5 0.5 0.5 0.5 0.5 4 4 0.5 0.5 0.5 0.5 1} 0.5 4 4 3 3 1
15 13[0mo Bleach Reg 4x6x750ml 0.5 0.5 0.5 0.5 0.5 4 4 0.5 0.5 0.5 0.5 0.5 o 4 4 3 3 1
16 14|0Omo Bleach Lemon 12x1.5L 4 4 4 4 4 0.5 0.5 4 4 4 4 4 4 0 0.5 4 4 1
17 15(0mo Bleach Reg 12x1.5L 4 4 4 4 4 0.5 0.5 4 4 4 4 4 4 0.5 0 4 4 1
13 16|Domestos Lig SummerFresh 4x6x500ml 3 3 3 3 3 4 4 3 3 3 3 3 3 4 4 [0.5 1
19 17|Domestos Lig Lavender 4x6x500ml 3 3 3 3 3 4 4 3 3 3 3 3 3 4 4 0.5
20 Update CO
21 LAC Ten Products 750 750 750 750 750 750 500 500 500 500 To Table
22 ID__ [Decsription] 19w w2 ws] ma] as] 2] 77
23 18|HandyAndy Crm Lavender 5x5x750ml 0 0.5 0.5 0.5 0.5 0.5 3 3 3 3 F Ex| am pl e
24 19|HandyAndy Crm Lemon 5x5x750ml 0.5 0 0.5 0.5 0.5 0.5 3 3 3 3 r 1
25 20{HandyAndy Cream Poppri 5x5x750ml 0.5 0.5 o 0.5 0.5 0.5 3 3 3 3 o 1)
26 21|HandyAndy Crm Spring 5x5x750m| 0.5 0.5 0.5 o 0.5 0.5 3 3 3 3 m 1
27 22|HandyAndy Crmn Ammonia 5x5x750ml 0.5 0.5 0.5 0.5 o 0.5 3 3 3 3 1
28 23[HandyAndy Crm Mint 5x5x750ml 0.5 0.5 0.5 0.5 0.5 0 3 3 3 3 1
29 24|HandyAndy Crm Ammania 7x5x500ml 3 3 3 3 3 3 1] 0.5 0.5 0.5 1
30 25|HandyAndy Crm Lavender 7x5x300ml 3 3 3 3 3 3 0.5 0 0.5 0.5 1
31 26[HandyAndy Crm Lemon 7x5x500ml 3 3 3 3 3 3 0.5 0.5 o 0.5 1)
32 27|HandyAndy Oven Cleaner 12x500ml 3 3 3 3 3 3 0.5 0.5 0.5 0 1
33
34 Dish Six Products 750 400 750 750 750 750
BT Decsription | 28] 29 =] s =] a3
36 28|sunlight DWLig Reg 5x5x750ml | 0 3 05 05 05 0.5‘
v nnl%ta’;{’wﬁ‘é‘D"a‘t‘aﬂ ~ “éghredil\emﬂnurt;ut Tlmelhner S"KU'LIK]UIH table [Chang;fover I:Iatrix NE\each Dish TE! m g
Ready IEEEFTTe (+) 5

Figure 21 - Change-over times

48

Since Lin-Kernighan is unnecessarily complex for a 17-city problem, a 2-opt algorithm was
written. The results of this algorithm were of poor quality and computational time far exceeded

the requirement for near-instantaneous feedback.

Furthermore, we note from figure 19 that the changeover times seems to be grouped into
“neighbourhoods”. Also, in most cases the number of cities in the TSP problem will be far fewer
than 17 — the schedule may call for only some of those products being made. Therefore, a
simple greedy approach was implemented. This resulted in a large decrease in total change-
over time as compared to the sequence set up by the human scheduler. On the sample
schedule, the total change-over time for the bleach line in one month was improved from 97

hours to 55 hours, a 43.2 % decrease.

The exact method of coming to this solution and the entire scheduling program will be discussed
in 3.2.

3.1.3.2 Genetic Algorithms

Another relevant approach is Genetic Algorithms. Enumerating all possible solutions to the
Travelling Salesman Problem for a single week (seventeen products) will result in 17! =
355'687'428'096'000 routes to be evaluated. This is only if all seventeen products are
scheduled. There will also be (17Y)/(17-16)! X (1/16!) = 17 instances with only 16 of the
seventeen products, each resulting in 16! = 20'922'789'888'000 routes. If only nine of the
seventeen is chosen, there are (17!)/(17-9)! X (1/9!) = 24’310 instances. Each of those will yield
9! = 362’880 routes. It is therefore quite clear that solving this problem exactly is not practical
with current technology. Genetic Algorithms offer a way of searching through large amounts of
data and arriving at good solutions. It also seems to be a natural fit for the problem at hand. It
will be easy to specify the order of the products, as well as the number of batches required.
However, Genetic Algorithms can have long solving times, and need to be tweaked to get good

results.

3.2 Computer Program

The computer program approach attempts to follow the process human planners use when
scheduling products. It still performs better and faster than human planners because it can

determine the optimum sequence of products instead of relying on a rule of thumb. (Planners

49

have lists giving the preferred order of producing different variants to get a low changeover
time). Also, the trial-and-error involved in scheduling products happen much quicker and are

done more thoroughly.

A definite advantage of this approach is that it can be done in either VBA (which comes with

Excel) or C++ (for which several free IDE’s can be downloaded).
Excel seems like the perfect choice for this task:

e The programmer can achieve a tight integration between the data tables and the VBA
code.
« Data input and output are in a format familiar to all engineers

e This data can easiliy be copied and pasted between applications

One drawback of VBA is that it isn’t the fastest and most efficient language available. However,
the benefits of using a spreadsheet are substantial and outweighs this factor.

A schedule was drawn up by this algorithm with sample data. The same data was used by a

human scheduler. This allows us to compare the two schedules.

Data entry

The user enters a large number of specifics into the spreadsheet. These include the changeover
times for each line (as seen in figure 19). In this example, the user will then press the button
labelled “Update CO Table”. This is a table is hidden to the user but a screenshot is shown in
figure 20. The button is linked to VBA code that runs through the values the user entered and
puts them in a matrix format. We can now look at this matrix from elsewhere in the application to
find the changeover time between any two products with the code
Worksheets(*COM").Cells(Productl, Product2).Value. Another, computationally faster way is to
read these values into a matrix during program execution. Note that if we try two products that
aren’t on the same line, the CO time will be returned as “X”. This lets us know that a changeover
between these products is impossible and irrelevant.

50

Scheduler 5h.xism - Microsoft Excel

= 3

X i, .
P G x| | x| x| x| x| | o] | e[x| x| x| x| =
, T T w| = | x| x| =] x| x| =| x| %] =| x| =] =
B B O x| =] =] x| x| =| =| =] =| x| x| x| =| =] =
@ =3
‘ s e o[e[| e[s e me ae| s | e[e[x| x| 3¢
ol
» 2
@t £ W[e | | x| x| x| x| = | x| %] =| x| %] %
Be a3 a
il O e e | e | e e[]] e e | x| x|
3 Q[e | e | || |] x| | x| | x| | %
y @[[| x| x| =] %] %] =] %] x| =] =] =] =
IR R | x| %] =] =] %] =] x| %] =] %] =] =
: 5| x| | x| = | | x| x| x|] x| x| x| =
% | | x| w| %] | = | x| %] = | %] =] =] %] =
i Mxxxxxxxxxxxxxxx
(R |
5] Mxxxxxxxxxxxxxxx
FEEEEEEEEEEEEEEE
, N R R R R R EEEEEEEE
o x| x| = | x| x| x| x| %] x| x| x|] = 3
3 » D | e |] x| ||| =] e] | x| x| x|
Iy 34 o] e[| e[5| x| x| x| x| 5¢| %] x| x| | x| x
L N E
Do e e e e e e []]
5 B2 R B EEEEEEEEEEEEE
. BiC O e s] x| se| | o] x| se| =] e] x| 5] x| 5] x| =
ez I
&
i Z e e e e[e e e[e e e[e e | e x| =
g o
£ FEEEEEEEEEEEEEEEE
.mm HE R e
g
Si R EE R EEE
— R x| x| x| x| x| x| x| x| =] x| x| x| x| x| %] x
v | [=m)] 1B
b T o] x| e |] x| x| x| 3] x| x| x| x| x| =
= T []]]]]]]]]]] -
B D] | =] o[] x| se] | x| |] x| x| x| =] = =1
~| B = =
o e e[| e[e e e[] [][|] =]
= e 2 Wox| x| =] x| x| =] =] x| =] | =] =] x| x| =] = x| =| =[x
g (i B EEEEEEEEEEEEE BHEIEEE
5
g & R R R R EEEE RN wf x| x| 5
| = 8
| o] | o [| | x| | x| | ae | ae| x| | x| < x| =] =
Yom <]
o} T x| x| =] x| x| x| x| =] =] %[=[] =] %] =] =| = x| x| x| {2
= =]
] I | se] x| e sef ae| e s | |] s 3| | x| x| = x| x| x| {5
El
x| x| =
& & 3
z = = x| x| = 1w
o
= =
s W [x| x| i@
B o 3
5 2 x| x| =[5
i i H
= £ = x| =] =[13
= S £l
= Lo | x| x| |52
a @
@ x| x| =
g
= o« | =| =15
& g
a || x| 15
|
7 a <[=] =[1E
.m Q sef m|
5 = z x| =] =
2
= x| x| =] 14
4 n
5 ol XXXwC
3 = |
= se| | | 1o
= . “ @
= 3 =
NN - x| x| x| x| x| x| x| x| x| x| x| x| x| x| x| x| =] =]
&
2 v 1| - - | | s | | | s s] | x| m| |] | e] x|] x| =
g =
== 5
| el A = | e s | | | x| | | x| x| | x| x| x| x| x| x| x| x| {5
5
+ =l) lle x| x| x| x| x| x| x| x| x| x| x| x| =] x| x| x| =] =]=[{S
5
2 v
E ~ e 3| s f sl | | se| m| se| | | e x| m| x| x| x| x| x| x[]{Z
= e
) i 3| se| se| se| se| se| me| se| | s e x| me| se| | x| 3| 3| | |2
o 5
Gl
2 Ly WSS a x| x| x| x| x| x| x| x| x| x| x| x| =] x| x| x| =] =] x|
=] |
H&,%fGBC | s se| x| ae| me| x| e se| ne| e x| ae| s f | | sef x|
RS sef s | s | m| se] se| se| ae| | w| | se] se| ae] we| x| | x| x| {%
- g 8 ’.
i x| x| x| x| x| x| x| x| x| x| x| x| x| x| x| x| =] =] =
(i) | . R
I e H
& olm ctlmlglinelne oo dolnsngen o aodomanein, |
=} Alnmelnio~oo 80O EEA85338ANASAARKEQRP SR R 0|

tory

Inimum inven

ired m

require
tory, product names, and

tes,

ing inven
21.

on ra

igure

is is shown in f
51

, sales per week for three months, the start

Other information that should be entered include product
, mixer sizes

the last product produced on each line. Th

Figure 22 - Changeover Matrix

levels

il ® A 3B Scheduler 5h.xism - Microsoft Excel - 0O X
IHume\ Inset Pageloyout Formuls Dot Review View @ -2 x
R T I R STl Y
Paste B I U Sy A = 1 Marge 8 Certer = + || %8 ;98| Conditional Format Cell Insm Dzbete Fnrrnal Sort & Find &
i J’| |— Hélls 2 Merge & Center ‘@ G HM\ | Formeatting * o Table = Styes - | “" " Filter Select ~
Clipboard & | Alignment i H Number Styles Il Celis Il Editing
I 126 - fie| 30.5655155250318 =
|4 B e D E £ G H T — K L M N o Pl
Packi I
Pack Rate"g \?t::mume Last b
Decsription D = Weeks' |sales 1[t] | Sales 2 [t] | Sales 3 [t] | Sales 4 [t] | Sales 5 [t] | Sales 6 [t] | Sales 7 [t] | Sales & [t] | Sales
Codes pti [tons per| Tons | Product 1t] [t] [t It It It] [t
i hour] | (2015) s
2]
3
4
5
6
izl
.S &
Bl
10
== 2
1
— 4
12
fa]
=
1
15
16
17
18
L1
20
a
22|
o
ET
NG
26
Ex
28|
29
30
a1l D
Bl
4 4 » M| Sta g Data

Figure 23 - Input data

The algorithm puts all this data into matrices since reading and writing large amounts of data

directly to the sheets is very inefficient in Excel.

Minimum Production Levels
The next step is to calculate the minimum production level in each week. The code for this is

shown below:

52

= Microsoft Visual Basic - \Scheduler. 5hixdsm - [Moduledl (Code)] ﬂg‘lﬂ'

Hext MNextProduct
Next Product
'MinProduction Calculation
For Week = 1 To 4

For Product = 1 To 82

minRow = 30

(¥ ple Edit view [Insert Format Debug Run Tools Adddns Window Help Type a guestion for help = - & X
|'EE-EJ 4 2@A 9 o p 1@kl & FY @ n2os colig &
| llGeneraI] :_j]Scheduler _:J
For Product = 1 To 82 —:‘j
ProductDescription (Product) = Worksheets ("Starting Data™) .Cells (Product + 2, 2)
PackingRate (Product) = Worksheets("S5tarting Data™) .Cells (Product + 2, 4)
Inventory (Product, 0) = Worksheets ("Starting Data™) .Cells(Product + 2, 34)
MinWeeksCover (Product) = Worksheets ("Starting Data™) .Cells (Product + 2, 7)
For Week = 1 To 12
S5ale= (Product, Week) = Worksheets ("S5tarting Data™) .Cells (Product + 2, Week + 21)
Hext Week
For HextProduct = 1 To 82
CoMatrix (Product, HextProduct) = Worksheets ("COM").Cells (Product, HextProduct)

MinWeek=CoverInteger = Int (MinWeeksCover (Product)
For i = 1 To MinWeeksCoverInteger
MinInventory (Product, Week) = MinInventory (Product, Week) + Worksheets ("Starting [
Hext 1
If MinWeeksCover (Product) - MinWeeksCoverInteger > 0 Then MinInventory(Product, Week)
MinProduction (Product, Week) = RoundUp (MinInventory (Product, Week) + Sale=s (Product, We
Inventory (Product, Week) = Inventory (Product, Week - 1) + MinProduction (Product, Week)
Hext Product
Hext Week
'Determining Seguence
For LineID = 1 To 9
For Week = 1 To 4
Select Case LinelD
Caszse 1
LineNams = "Bleach"
minRow = 3
maxRow = 19
FirstProduct = Worksheets ("Starting Data™) .Cells (minBow, &) .Value
Case 2
LineNa = "LAC"
minRow = 20
maxRow = 29
FirstProduct = Worksheets ("Starting Data™) .Cells (minBow, &) .Value
Case 3
LineNa = "Di=h"

e

Figure 24 - Minimum Production Code

If minimum week’s cover is not an integer, for example 2.2, this block of code will add the sales

of week 1 and week 2 and one-fifth of week 3 and use this figure as the minimum inventory that

must be available at the end of the week. The minimum production is this amount, plus the

sales in the current week, minus the starting inventory.

Having thus determined in an exact how much to produce in each week, we can proceed to

determine the optimal sequence.

53

Travelling Salesman Problem

The greedy method is ideal for this, as it is very fast and simple, and arrives at very good

solutions given that we have “neighbourhoods” of related products as discussed previously. It

does the following steps:

1.

Put the products into an initial sequence. The order is not important. The algorithm
simply adds every non-zero production value for each line into an array.
Get the length of this list.
Look through the list to find the last product from the previous week. This is the starting
product specified by the user. Obviously we'd like to start with this product as the
machines are already set up for it. However, it might not be scheduled for production.
a. If the product is found in the list, put it in the first slot, and put whatever was in
the first slot where the last product was.
b. If it isn't in the list, then iterate through the list, checking the changeover time
between the last product and each scheduled product. Pick the shortest one and

put it in the first slot, again exchanging values in a manner similar to step a.

At this point, we have an initial sequence, with the first slot guaranteed to be a product with the

shortest possible changeover time from the previous week.

4. Now iterate through the sequence, starting at slot two (we have to protect slot one as it's

already been filled). Compile a sample array with each product being in slot two. For
each array, check the total changeover time (for all four weeks). Store this time in a
variable.

Step three is repeated until it has compared each slot with all the subsequent slots in the
sequence. Therefore, in a five-slot sequence, slot two will be compared with slots 3, 4,
and 5. But slot 4 will only be compared to slot 5, and by the time the algorithm gets to
slot 5 its contents will be a foregone conclusion since it must be the last product left

over.

Note that we check the total CO time. This means that the algorithm will naturally try to make

the first product in any week equal to the last product in the preceding week.

54

6. Step three is repeated for each week to ensure we minimise the number of weekend

changeovers to be done.

7. The algorithm gives each week a similar treatment and we end up with a production

sequence.

An example from the code is shown if figure 23.

L B

| aiMicrosoftVisual Basic . Scheduler5h.xism - [Moduled (Code)],

&é File Edit View Insert Format Debug Run Tools Add-Ins Window Help

- La@manl ol o@ R S EF Y S @ a9 col1 s

_‘ (General) j | scheduler

1 To NumberInSequence (Week)

Week = 1 And Sequence(LineID, Week, i) = StartProductID Then
StartProductSlot = 1

NewSequence (1, i) = NewSequence (1, 1)

NewSequence (1, 1) = StartProductID

NewSequence (Week, i) = Sequence (LineID, Week, i)
End If

ence(l, 1) = PickList(l)
PickList(l) = 0

TestSequence (Week, 1) = StarcingProductID
PickList (StartingProductSlet) = 0
End If

For 3 = 1 To NumberInSequence(Week) — 1
ShorcestCOTime = 35338
ShorterTimeFound = 0

For i = 1 To NumberInSequence (Week)
ToID = PickList(i)

If ToID <> "" And ToID <> O Then
TestCOTime = COMatrix (FromID, ToID)

If TestCOTime < ShortestCOTime Then
ShorterTimeFound = 1
ShortestCOTime = TestCOTime
ShorterSlot = i
ShorterID = ToID

End If

End If
Next i

If ShorterTimeFound = 1 Then
'Insert the city

Just the first product in Sequence.
If Week <> 4 Then
LastProduct = TestSequence (Week, NumberInSequence (Week))

T

Figure 25 - TSP Code

FromID = TestSequence (Week, j) 'The Preduct ID from which we are changing over to product i

TestSequence (Week, 3 + 1) = ShorterID
PickList (ShorterSlot) = 0
End If
ginning Valus for next wesk: 1.) Last prod from previcus week, or 2.) Another prod in the same neighbourhood, or

As noted before, this resulted in significant savings in total changeover time. This is shown in

figure 24 (97 vs 55 hours).

55

100

80

60

40

20

Human scheduler

Algorithm

Figure 26 - TSP Performance

Schedule output

Having determined the mimimum production quantities and the sequence of production, we
write this data to a table containing the schedule. This is the main interface to be used by the
designers and planners. This is shown in figure 25.

Notice that we haven't yet considered the production capacity of each machine. This is done
right at the end of the algorithm. This is important for design purposes: if the schedule will take
too much time, it needs to notify the designer. Initially, it was inteded that the scheduler will
move products to weeks with low utilisation when it encounters an over-scheduled week.
However, management would like to decide what to do in case of overscheduling. Many options
are available, including overtime, outsourcing, and ignoring minimum inventory levels for a
week. The issue is therefore quite complex and all that is needed from the algorithm is a
notification that a week is overscheduled.

Another reason for doing the capacity checks last is that we need to include the changeover

times, which can only be calculated when we have the required production levels.

56

- ERE Scheduler 5h.xlsm - Microsoft Excel =0 Xx
Home | Insert Pagelayout Formulas Data Review View @ - = x
i . - v ||| = —] =] = E - e
8 [catbri R CET e = =|%-] |SwepTet Murmber } kg_%l] T) %?‘ Ea
Paste ; o [[A | || & Merge 8 Conter - | |E - % » || 3] Condiionsl Format Cell | Tnsert Delete Fommat 2 _ Sond Find&
- Formatting - as Table = Styles - - - - Filter = Select -
Clipboard [Font & Alignment & Number [Styles Cells Editing
Fag - e |
A B[C D £ [IE G TH J K[L [M[N 0 plofJrRls|[T]ulv]w X
Populate B
Batch Batch| Flexsim Patking | o e an Approximate 3
Week 2 ID | esto Week 4 1D |esto| opras Timeline 3 Time Required
Pack Pack Week's Cover
E -
2 [Domestos Omo Bleach Reg 121115 | 1 Domestos Lavender {6 2 | schedute | Capacity L ogysomi 20|17 16|17
2 Domestos Lavender {6 | 3 Domestos Sum Fres)7 2 Bl R v 19]20/18]17
Domestos Sum Fres{7 | 3 Domestos Lig Laven] 1 6 3[Domestos Lig Lemon 20:750m! 25|238| 24|26
Domestos LiqLavenl | 5 Domestos LiqSumm{2 | 4 4|Domestos Lig Pine 20x750mI 22|24|20]|21
Domestos Lig Summ{ 2 5 Domestos Lig Lemon{ 3 4 5|Domestos Lig Regular 20x750ml 25|26(25(23
Domestos Lig Lemon 3 3 Domestos Lig Pine 2{4 4 &|Domestos Lavender 12x1.5L 22|25(27 |24
Domestos Liq Pine 2{4 3 Domestos Lig Reguld5 3 | B| 7|DomestosSumFrashizx15L 18|21|28| 24
Domestos Lia Regulq5 3 Domestos LinEucal8 | 1 | | 2| oomesses Lia tucstvprus 20i750m1 z6|29|22]| 16
Omo Bleach Fre 1 Domestos Liq Eucalyl8 | 2 Domestos Liq Red P{9 1 : 5| Domestos Lig Red Power 20x750ml 212821 18], :::;:
11 | Oma Bleach Active 4 | |DomestosLigRedP{s | 2 Omo Bleach Lemon 410 | 1 | ¢ | 10/0me Blasch Lemon 44&x750m! 18|17 18|20
12 |Omo Bleach Reg 426413 1 Omo Bleach Lemon 410 1 Omo Bleach Fresh 4411 1 h 11|Ome Bleach Fresh 4x6x750ml| 18|18f21|22
13 [Domestos Lig Summ4 16 1 Omo Bleach Fresh 4211 1 Omo Bleach Active 412 1 12 |Omo Bleach Active 4x6x750ml 21|20[24|18
14 |Domestos Lig Lavend 17 1 Omo Bleach Active 412 1 Omo Bleach Reg 426413 1 13 |Omo Bleach Reg 4x6x750m| 23[21[25|30
15 |Domestos Lavender 16 2 Omo Bleach Reg 426413 1 o 0 0 14|0Omo Bleach Lemon 12x1.5L 50|41[50(43
16 |Domestos Sum Fresh7 | 2 |0 o | o 0 o | o 15|Ome Blasch Reg 1241.5L 53|61)|56]45
17 |Omo Bleach Lemon 114 | 2 |o 0 0 [] 0 0 16| Domestos Liq SummerFrash 4x6x500m! | 6.3 | 5.8 | 5.8 | 4.0 CaPaciy
18 |Omo Bleach Reg 1211 2 o | o 0 o | o 17| Domestos Lig Lavender 4x6:500ml 63]51)42 Check
LEH HandyAndy Crm Lave 18 HandyAndy Crm Lemd 26 1 Handy#ndy Crm Lemd 26 2 13 |HandyAndy Crm Lavender 5x5x750ml 11| 15|20
B HandyAndy Crm Leme 19 HandyAndy Crm Amm24 | 2 HandyAndy Crm Amm24 | 1 15| HandyAndy Crm Lemen 5x5:750ml 11]12)17
EAl HandyAndy Cream Pc 20 HandyAndy Crm Lave|25 | 1 HandyAndy Crm Lave|25 | 1 20|HandyAndy Cream Poppri 5x5750ml | 13| 16| 14
ERY HandyAndy Crm Sprin 21 HandyAndy Crm Lave|18 | 10 HandyAndy Crm Lave|18 | 10 21|HandyAndy Crm Spring Sx5x750m| 16]16] 21
FEY HandyAndy Crm Amm 22 HandyAndy Crm Lemd19 [8 Handy#indy Crm Lemd 19 a : 22 |HandyAndy Crm Ammaniz Sx5x750m| 182121
PZ8 HandyAndy Crm Mint 23 HandyAndy Cream Pd 20 7 Handy#indyg Cream Pd 20 6 | ¢ | 23|HzndyAndy Crm Mint 5x5x750ml 17| 15|21
PLY HandyAndy Crm Amm 24 HandyAndy Crm Sprir| 21 (3 Handy#ndy Crm Sprir| 21 6 24|HandyAndy Crm Ammaniz 7x5x500m| 23| 24|28
b HandyAndy Crm Lave 25 HandygAndy Crm Amn{22 | 4 Handy#ndy Crm Amn| 22 5 25 |HandyAndy Crm Lavender Tx5x500ml 15| 13|16
E2ll HandyAndy Crm Leme 26 HandyAndy Crm Mint|23 | 4 HandyAndy Crm Mint|23 | 3 26| HandyAndy Crm Lemen 7x5:500ml 30|28|23
28 [] 0 o | o 0 o | o 27| HandyAndy Oven Cleaner 12x500ml
FLY Sunlight DWLiq Reg 5 28 Sunlight DWLiq Reg §29 5 t DWLiq Reg 5 28 Sunlight DWLiq Reg §29 5 238 |Sunlizht DWLig Reg 5x5x750m| 13| 13|18
ELl Sunlight DVLiq Grape 30 Sunlight DWLiq Reg 528 t DWLiq Grape 30 Sunlight DWLiq Reg §28 | 25 | | 25/Sunlight DWLig Reg 6x6x400m! 1208|117
ERll SDVL Citrus 52(52751 31 Sunlight DVLiq Grapq JQll SDVL Citrus 52(5275131 Sunlight DWLiq Grapg30 | 2 | i | 30/Sunlight DWLig Grapefr 5x5x750ml 45|35)|30
22 i e aio [V P i e oo oo o R PRSP PO PN -3 Y P — 22laalas
4 4 » M| Starting Data hedule Qutput -~ TSP Calculation -~ Timeliner -~ SKU-Liquid table Change-over Matrix E! m
Resty T e —

Figure 27 - Schedule Output

Figure 25 shows the main interface of the spreadsheet. It contains several bits of information.
The background colour of each week tells us whether it's over- or underscheduled. Each week

uses a different font colour for easier identification (green for week 1, blue for week 2, etc).

Each packing line is represented by an area bound with thick borders. Products are specified
here in the order they should be produced in, along with their product ID numbers, and the

number of batches to be produced.

Throughout the sheet, sales volumes are used by the tonne, but here we specify production

orders in terms of batches. There are two reasons for this:

57

 We can't produce a fraction of a batch. Therefore if we want to move production from
one week to another, we have to move an entire batch or nothing at all.

» Production orders are given to the production managers in terms of batches.

Note towards the right of the sheet the heading named “Approximate Week’s Cover”. Under this
heading we calculate the approximate number of week’s sales worth of inventory we’ll have at
the end of each week. The planner will have a range of acceptable values for each of these
values and in future editions of this project, these too can be highlighted according to whether

they're within target or not.

Note in figure 26 that these values are given in order of their product ID. This close-up shows
the Handy Andy line. The sequence of production for week four is Product ID’s 26, 24, 25, 18,
19, 20, 21, 22, and 23; the week’s cover is given in numerical order from 18 to 27.

To the right of this area is a section (hamed “Time Required” in figure 25) that tells the planner
how much time the schedule will take. We assume 115 hours per week of time available for

production, which is 23 hours per day from Monday to Friday.

58

o) e T - Scheduler 5h.xlsm - Microsoft Excel - B
y Home | Inset Pagelayout Formulas Data Review View @ - o x
o : Calibri Ju LA a|[E = _!|§;. = Number . E—J_'] E’d' _L:d" Em j I_g_l ;: %? xﬂ
ey iz w0 A= B e o (B [)| S Fot it | o Do |, i

Clipboard Fonit = Alignment & Mumber = Styles Cells Editing

| — oy = _ 3 2

| J K L M| N (0]) 2 I 0 T il u Vv w X Y

12 Omo Bleach Fresh 4x6x750m| 11 1 h 11{0Omo Bleach Fresh 4x6x750ml 1818|2122

13 Omo Bleach Active 4x6x750m 12 3 12|Omo Bleach Active 4x6x750ml 21| 20| 24|18

14 Omo Bleach Reg 4x6x750m| |13 1 13|Omo Bleach Reg 4x6x750ml 23|21| 25|30

15 0 0 0 14|0mo Bleach Lemon 12x1.5L 50| 41| 50|43

16 0 0 0 15|0mo Bleach Reg 12x1.5L 53| 61| 56|45

17 o 0 0 16| Domestos Liq SummerFresh 4x6x500ml | 6.3 | 5.8 | 5.8 | 40| CaPacity

18 0 0 0 17|Domestos Lig Lavender 4x6x500ml 6.3]51]42](33 check

19 HandyAndy Crm Lemon 7x54 26 2 18|HandyAndy Crm Lavender 5x5x750ml| 1115|2016

20 HandyAndy Crm Ammonia 7{ 24 1 19|HandyAndy Crm Lemon 5x5x750ml 1112|1715

21 HandyAndy Crm Lavender 7{ 25 1 20|HandyAndy Cream Poppri 5x5x750ml 13| 16| 14| 14

22 HandyAndy Crm Lavender 5{ 18 10 21|HandyAndy Crm Spring 5x5x750ml 16| 16| 21|19

23 HandyAndy Crm Lemon 5x54 19 9 : 22|HandyAndy Crm Ammonia 5x5x750ml 18|21 21 2.4 [Pl 55h/ 55h/

24 HandyAndy cream poppri 5420 | 6 | ¢ | 23|HandyAndy Crm Mint Sx5x750mI 17| 15| 21| 18 115h 115h

25 HandyAndy Crm Spring 5x5x| 21 6 24|HandyAndy Crm Ammonia 7x5x500ml| 23|24 26|20

26 HandyAndy Crm Ammonia 5] 22 5 25|HandyAndy Crm Lavender 7x5x500ml 15| 13| 16| 16

27 HandyAndy Crm Mint 5x5x75 23 3 26|HandyAndy Crm Lemon 7x5x500ml 30|28 23|23]| Capacity

28 0 0 0 27|HandyAndy Oven Cleaner 12x500ml Gnges

29 Sunlight DWLiq Reg 6x6x400/ 29 5 28|Sunlight DWLig Reg 5x5x750ml 13| 13| 16| 1.8

30 Sunlight DWLiq Reg 5x5x750/ 28 25 D 29|Sunlight DWLig Reg 6x6x400ml 1.2 | 09| 17|11

31 sunlight DWLiq Grapefr5x5430 | 2 | i | 30|Sunlight DWLiq Grapefr 5x5x750ml 45|35 | 30|34 56h/ [LELYA 69h/

32 sowLcitrus sxisarsom) |31 | 1| S | 31|sDWL Citrus Sx(5x750ml) 3229|2024 115h &I 115h

33 Sunlight DWLig AntiBact5x5{ 32 1 32|Sunlight DWLig AntiBact5x5x750ml 41|40 29|32 I Capacity ‘

4 4 » M| Starting Data hedule Qutput - TSP Calculation -~ Timeliner -~ SKU-Liquid table Change-over Matrix _ m

Ready [EEEr e o

Figure 28 - Week's Cover

Note in figure 26 the “Capacity Check” button next to each line. This repeats the code from the
main scheduling algorithm that checks if the line can produce the required amount in the time
available. This bit of VBA highlights the weeks according to utilisation level, specifies the

number of hours required for production, and calculates the ending inventory.

59

Omo Concentrate Liquid 1.51. 35

o) 9 - -a 3 Scheduler 5h.xlsm - Microsoft Excel - B X
gt g
E Home | Inset Pagelayout Formulas Data Review View @ - o x
=1 & -lir - [lASE(= = -%T'] S Wrap T Number : = B g | =
—j 2y A |l 7||7/ = Wrap Text = ﬁ y s :
Paste B 7][O A Merge 8 Center - ||| &8 « % » |[%8 9| Conditional Format Cell Tnsert Delete Format . Sort8 Find&
s | L[] bl berge & Center-~ || 8 o | 50 Formatting = as Table = Styles - . . . " Filter = Select -
Clipboard & Fent £} Alignment i Number & Styles Cells Editing
F88 - fe \
A B| ¢ D E | G H I J K M N 0 =

Sunlight DWLiq Reg 8x1.5L. 36

Handy Andy Crm Potpourri 8x; 37

Omo Concentrate Liquid 1.50 |35 36|Sunlight DWLig Reg 8x1.5L
Sunlight DWLiq Reg 8x1.5L |36 37|Handy Andy Crm Potpourri 8x1.5L
Handy Andy Crm Potpourri 8x] 37 38|Handy Andy Crm Lemon 8x1.5L

Handy Andy Crm Lemon 8x1.5 38

Handy Andy Crm Lemon 8x1.5 38

D| 39|Sunlight FC Reg. SumDew 8x2L

Skip Concentrate Liqud 1.25. 44

Skip Concentrate Ligud 1.25L |44

© | a0|sunlight FC Reg.Classic 8x2L

‘Sunlight FC Reg. SumDew 8x2 39

Sunlight FC Reg.Gentle 8x21 41

Sunlight Concentrate Ligud 2.5 42

Omo Concentrate Liquid 251 43

o 0

o 0

Comfort Exotic Gold 12x800m 56

53

Suniight Concentrate Liquid 22 47
(Omo Concentrate Liguid 225m 48 Comfort Pure 12x800mi
(Omao Concentrate Liquia 128 57 Comfort Elegance 12x800mI 55
Comfort Fabcon Elegance 12x 58 Sunlight Concentrate Liqud 75 49
(Comtort Fabcon Pure 12x400n 59 Omo Concentrate Liquid 750m 50
(Comfort Fabeon Fresh 12x400 60 ‘0Omo Concentrate Liquid 8x75(51
(Comfort Fabcon Gold 12x400n 61 Skip Concentrate Liquid 8x750 52
Skip Concentrie Liquid 12x400 62 ‘Comfort Fabcon Gold 12x400n 61
Suniight Concentrate Liqud 75(49 0 (1]
(Omo Concentrate Liguid 750m 50 a
(Oma Concentrate Liguid 8x75(51 (]
Skip Concentrate Liquid 8x750 52

53

Comfort Fresh 12xB00mi 54
Starting Data | Schedule Output

0O 0 0O 0O 0 Rk KB KB KFBENRPRROORRPRRERNIER@DEN L

W B B R NRENRNNNRBR R R

54
0 0
0
0
0

Comtort Pure 12x800mi

61

PR

w
(=]

0

TSP Calculation - Timeliner < SKU-Liquid table -

o

Change-over Matrix

[

0

© 0 86 0 © 0 R B N R N = = = ERPSEEEEES P S T S R

r | 56|Comfort Exotic Gold 12x800ml|

Y| s7|omo concentrate Liquid 12x400m|

58|Comfort Fabcon Elegance 12x400ml

Oma Concentrate Liquid 1.25L 45 Bl a1 Sunlight FC Reg.Gentle Sx2L 1
Sunlight FC Reg. SumDew 8x2 39 42|Sunlight Concentrate Liqud 2.5L
Sunlight FC Reg.Classic 8x2L |40 43|0mo Concentrate Liquid 2.5L
Sunlight FC Reg.Gentle 8x2L |41 44|skip Concentrate Liqud 1.25L
Sunlight Concentrate Liqud 2.5 42 45|0mo Concentrate Liguid 1.25L
0 0 46|Sunlight FC Reg.LavnderSmile8x2L
Omo Concentrate Liquid 12xa1 57 1 comfort Frash 12x800mi 54 47|Sunlight Concentrate Liquid 225ml
Comfort Fabcon Pure 12%400n 59 1 comfort Elegance 12x800mi 55 48|0mo Concentrate Liquid 225mi
Comfart Fabcon Fresh 12x400 60 1 comfort Exotic Gold 12x800m 56 49|Sunlight Concentrate Liqud 750ml
‘Sunlight Concentrate Liqud 75 49 2 sumlight Concentrate Liqud 75 49 50|0mo Concentrate Liguid 750m|
Omo Concentrate Liquid 750m 50 3 Omo concentrate Liquid 750m 50 51|0mo Concentrate Liguid 8x750ml
Omo Concentrate Liquid 8x75(51 1 oOmo concentrate Liquid 8x75(51 L | 52|Skip Concentrate Liquid 8x750ml
Skip Concentrate Liquid 8x750 52 1 skip Concentrate Liquid 8x750 52 3| s3|comfort Pure 12x800ml
Comfart Pure 12x800m1 53 1 comfort Faboon Elegance 12% 58 : 54|Comfort Fresh 12x800ml
Comnfart Fresh 12xB00mi 1 o 0 d | 55|Comfort Elegance 12x800mI
0
0
0
0

59|Comfort Fabcon Pure 12x400ml

60| Comfort Fabcon Fresh 12x400ml

Ready

=a e

Figure 29 — Colour-coded weeks

The program highlights the area associated with each week according to it’s utilisation level.

Should it be above the user-specified threshold, the week is highlighted in red. If a week falls
between the specified thresholds (40% and 70% in this case), it isn’'t highlighted at all. If the

utilisation is below the 40% specified, the week is made blue. An example is shown in figure 27.

If a week ends up being red, the planner can simply delete some of the values in that week and

enter them in one of the other weeks. ldeally the planner should pick a week that already has

the product being moved in it's schedule. If that is possible, we can avoid doing another change-

over in that week after moving the batches over. Otherwise, we can simply add it to the bottom

and it will be added to the capacity calculations for that week.

60

This is why there are “Capacity Check” buttons next to each week. The planner can try out
moving various products and see what effect this will have on utilisation and, critically, week’s

cover available.

At the top of figure 25 there are several buttons, one of which clears everything the algorithm

generated. The user can press this and start over if necessary.

Pressing the “Scheduler” button runs the scheduling algorithm.

.ij 2 liaken ﬂ]

Time taken : 7.171875s5

Figure 30 - Scheduling Time

Figure 28 shows the popup that the scheduling algorithm generates when it is done with the
schedule. It defines a variable with the system time at the very beginning of the algorithm and
calculates the time taken from that at the end. In between these points it calculates production
guantites, optimal changeover sequences for each line and each week, and capacity utilisation.
Even so, the aspect of the program that takes the most time is reading and writing data to the
tables. Without this, the pure algorithm can run in less than a second on a relatively high-end
personal computer. If the time taken is an issue for the end users, the program can be re-

written in C++ and use databases instead of tables.

Another of the buttons at the top of figure 25 is labelled “Populate Flexsim Tables”. Pressing it
results in the following popup:

Hlexsim Scheduler Lﬂ]

Converting Schedule. This will take about a minute. Press OK and wait for the next popup.

oK Cancel

61

This is another algorithm that converts the production schedule into a format that Flexsim can

understand. An example is shown below:

o) 2B+ Scheduler 5h.xlsm - Microsoft Excel - B X
= Home | Inset Pagelsyout Formulss Dsta Review View @ - = x
o L P i ARl | |[EiWeapTes Eerieral . E T (| e j g_l 2 A? 3
s ‘IA I/l |_/|. [St wrap Ta| - 5 P.dj.d sl T NSRS 3
Pate 4 l|B 2 w-|E DA == = | 5 Merge & Center - |||E3 - %% 2 || %8 5% Fi?;daﬂﬁ‘;a" ESFDT;”;: SWL‘EE”; TS b . Efn’;f" ;"‘:d&
Clipboard Font & Alignment 5 Humber & Styles Celis Editing
AL ~ S| PulliD's
Aal 8 [e | b | E B g H 1 1 k | v | m | nNn | @ e a R
. Variant _CO N Total CO
Pull ID's Trigger COTime &

5 D iBs Time:

2 3661 23 3765 0.5 19.5h

3 3662 28 3825 0.5

4 3663 28 3855 0.5

5| 3664 28 3885 0.5

6 3665 23 3915 3

7 | 3666 28 4005 3

8 3667 28 4290 0.5

9 3668 23 4305 0.5
10| 3669 28 4335 0.5
11 3670 28 4350 0.5
12 3671 23 4365 0.5
13 3672 28 4725 0.5
14 3673 28 4740 0.5
15 3674 28 4755 3
16 3675 28 4965 3
17 3676 28 5340 0.5
18 3677 28 5370 0.5
19 3678 28 5385 0.5
20 3679 28 5400 0.5
21 3680 28
22 3681 28
23 3682 28
24 3683 28
25 3684 28
26 3685 28
27 3686 28
28 3687 28
29 3688 28
30 3689 28
31 3690 28
32 3691 28
33 3692 28
34 3693 28
W« v | TSP Caloulation . Timeliner SKU-Liquid table Change-over Matrix _~COM -~ Bleach | Dish - Timeline E! I
Ready [EEEFTTTS) 1] ()

Figure 31 - Flexsim Schedule

Each Flexsim component to be scheduled has its own sheet. Figure 29 shows the “Dish” line’s
sheet. The first column contains the unigue item IDs to be pulled by the Dish packing line in
Flexsim. Column C contains the associated product ID of the item. On this example we can see
that flow item 3661 will be of type 28. Recall that each flowiem represents a cubic meter of
liquid. Elsewhere in the system all the details of product ID 28 are specified, including the

product name and production rate.

This algorithm also checks for change-overs and outputs the specific flow items that will trigger
a change over and the associated change over time.

62

aMicrosoft Visual Basic.- Scheduler 5h.xlsm = [Moduled) (Code)] HER
&é File Edit View Insert Format Debug Run Tools Add-Ins Window Help Type a question for help r_ 8/ X

EE-d LaEmang b o@ e & W @ s, col3s s

‘:Ganera\] j |Flsxs|;} L]

For Row = minRow To maxRow
VariantID = Worksheets("Schedule Output").Cells(Row, (Week * 3) - 1).Value
N8 = Worksheets("Schedule Output”).Cells(Row, Week = 3).Value

NumBatches = NB * MixerSize
End If

For CubicMeterCounter =
UniqueID = UniqueID
WeekUniqueID = WeekD: ID + 1
SheetUniqueID = SheetUniqueID + 1

NumBatches

Worksheets (Sheet) .Cells (SheetUniquel
Worksheets (Sheet) .Cells (SheetUniquel
Next CubicMeterCounter
Hext Row
WeekUniqueID = 0
Next Week
SheetUniqueID = 0

1, 1).Value = UniqueID
1, 3).Value = VariantID

'Change-over detector
RowNum = 0
BlankRow = 0
Do While BlankRow <> 1

If Worksheets(Sheet).Cells(RowNum + 1, 3).Value = "" Then BlankRow = 1
RowNum = RowNum + 1

CurrentVariant = Worksheets(Sheet).Cells (RowNum + 1, 3).Value
If CurrentVariant <» Worksheets(Sheet).Cells (RowMNum + 2, 3).Value And Worksheets (Sheet).Cells(RowMum + 2, 3).Value <> "" &nd CurrentVariant <» "'
NextVariant = Worksheets (Sheet).Cells (Rowlum + 2, 3).Value
COTime = Workshesta ("COM").Cells (CurrentVariant, NextVariant).Value
CoCounter = COCounter + 1|
WeekNum = Worksheets (Sheet) .Cells (RowNum + 1, 2).Value
TriggerID = Worksheets(Sheet).Cells (RowNum + 1, 1).Value J

Worksheets (Sheet) .Cells (COCounter + 1, 5).Value = TriggerID
Worksheets (Sheet) .Cells (COCounter + 1, 6).Value = WeekNum
Worksheets [Sheet) .Cells (COCounter + 1, 7).Value = COTime
End If
Loop
COCounter = 0

Next Sheetnum
TimeTaken = Round(Timer - TimeTaken, 0)

Bpplication.ScreenlUpdating = True
abc = MsgBox ("Done! Time taken: " + CStr(TimeTaken) + "s", vbInformation, "Flexim Scheduler™)

==« ﬁj

Figure 32 - Flexsim Scheduling Algorithm

Figure 30 shows the code of the algorithm.

There is another button, called “Packing Timeline”. This is linked to VBA code that estimates the
volumes of liquid that will be required by each packing line. It was mentioned in chapter one that
some products house the same liquid in different packing. There are 82 distinct products but
only 39 different liquids. Therefore, to calculate how much of each liquid will be required we
have to associate each pack ID with a liquid ID. We also have to estimate when each packing
line will require the liquid. Then we can determine when the mixers will have to produce which

liquid and also how many tanks are required. This is then a new scheduling problem.

The algorithm looks at how much of each pack ID is scheduled. It then creates a minute-by-

minute view of the entire month on a sheet. This implies that we know exactly how fast the

63

packing lines will run (we only know more or less) but it is still very useful for estimating the

number of tanks we’'ll need.

o) DA B Scheduler 5h.xlsm - Microsoft Excel - B

o =

X IHcme | tnsen Pagelayout Formulas Dsta Review View @ - 7 x
i = E— -) ; CEE == o, pee | E ; ‘

T R T L L e e T TR T O

Paste B oz U S A = Mot B Gt a" - % 3 |[%@ .| Conditional Format Cell Insert Delete Format Sart & Find &

sl Al | RS il | o= o Center 9 e Formatting - as Table = Styles= || = - - " Filter~ Select =

Clipboard Font = Alignment] Bumber 7} Styles Cells Editing

[A161 He fe]

T = 2

SKU-Liquid table -~ Change-over Matrix _“COM ~Bleach Dish | Timeline /¥3 = ||

Count: 281356 |(E5([E]]| 70

Figure 33 - Packing Timeline

Figure 31 shows this by-the-minute schedule. Each column is a minute. Excel allows for about
16000 columns. In our assumption, we have 115 hours per week for production, which equals
6900 minutes. Therefore the algorithm splits these up into four weeks. The top green area is the
packing schedule for week one, the blue is week two, and so on. The green area at the bottom

shows the calculated liquid requirements for week one.

For the top area, each row represents a packing line. We therefore have nine. If the packing line
is packing a product in a particular minute, it's pack ID will be shown in this area for the minute

in question.

64

The algorithm then iterates through the 6900 values in each week, and checks which liquid will
be required for each product being packed at that minute. It also checks the packing rate in
tonnes per minute. It adds these together and outputs it in the bottom area. Therefore, if we're
packing Sunlight Dishwash Regular 750ml bottles on the Dish line but also 400ml pouches with
the same liquid on one of the pouch lines, the algorithm will add the liquid requirements (in
tonnes per minute) together and give us that as output.

It should be noted that the change-over time between any two liquids is 30 minutes. This
excludes bleach to non-bleach changeovers which are impossible by design because they take

six hours.

Having these two bits of information, we can determine the maximum number of intermediate
tanks that will be required. We assume that a tank must be available when a liquid is being
packed.

65

' B s Scheduler 5h.xism - Microsoft Excel = | x
) .H@e I;ET Page@mut Fnras DA RE@W ® - 8 x
]]

s - i — - = am jama 5l = e 3 - .

B "‘ Calibri S LA) [E = =] | S wepTes General . E] =l 3‘ m_u 7 %? #a
= = @ -

Paste Bz A= |@3 - o 5 |[%g 3| Condiional Format Cell | Inset Delete Formot = Sot8 FindB

s Al L S ! i RN (B Formatting * as Table ~ Styles * . . . 2" Fifter~ ‘Select ~

Clipboard [Fent £ Alignment & Mumber & Styles Cells Editing

4 4 v W[Timeliner ~ SKU-Liquid table Change-over Matrix _ COM Bleach Dish | Timefine 3 il
Ready Average: 011985 Count:8 Sum:08588 ||

Figure 34 - Determining number of tanks

Figure 32 shows the areas specifying the liquid requirements per liquid, per minute. The
selected area is in week four (hence the red highlighting). It shows eight liquids being packed at

that particular moment. The maximum number of liquids being packed simultaneously is nine.

Therefore, if we are packing a maximum of nine different liquids at any one time, we can say
that we need at least nine tanks to contain the nine liquids. Allowing for the fact that a liquid
changeover will make the involved tank unavailable for thirty minutes, we can allow for a safety
factor and add a few more tanks. Extra tanks will also be useful in scheduling the mixers. It's
allowable for the mixer operators to work overtime and mix the required volumes on the
weekend preceding the packing schedule. However, for this we will require a few tanks to store
the liquid throughout the week until it's required. Running the schedule on Flexsim seems to

indicate that twelve tanks will be enough for the given volumes.

66

However, the volumes used in the sample schedule are based on sales projected for 2015, and
the factory will hopefully remain in use for long after that. The principle benefit of this method is
then that we now have a tool to determine exactly how many tanks we’ll need for a given table

of sales projections instead of having to rely on rules-of-thumb.

fo) H 9 - A 2= Scheduler 5h.xlsm - Microsoft Excel - B X
)
Home | Insert Page Layout Formulas Data Review View @ - 7 X
] = = . B | Sl Gk, PEER R v A
Caliby i . === T = G f . E . o % 4
B & alibri A =[] | EiwmpTed eneral g&% B By | & = a 71 Ji-}
Paste = A= s=|| 5 ; . ||E . o 5 |[%0 .00| Conditionsl Format Cell Insert Delete Format Sort & Find &
B i il = Merge & Center 5. o LR} -
- J = — Formatting = a5 Table ~ Styles = v - Filter = Select ~
Alignment Number Styles Cells Editing

3648 3593 3221 205 136 67 -2 |
3789 3734 3058 666 515 446 n 299
1035 947 859 m 683 595

1421 1333 1245 1157

1807 1719 1631 1543

2104 2016 1928

Get Mixing
Deadlines

2312 224

3930 3875 2431

2550

2669 -

4071 4016, 2788

30 1218 54 -3

2423 4255 1479 1825 1811 1377 1338 181

4856 4668 12 1202 114 108 228

373 316

1102 1017 633 576 519 462

77 721

=

3778 3560 3342 3124 2906 2688 2470 2252 2034 1816 1588 1481 1383 1165 1030

604 628 562 496 B

857 781

1020 54

1183 111

4060 3929 2824 1700 1536 1372 1208 384 287 230 173 116 59 2

4357 4226 2304 2397 2233 2069 1305 722 665 508 551 284 432

2271 2209 16

3136 268 2410 2182

5196 4216 2581 2518

4683 3498 2847 2628 1693

4520 332 3103 1888 1810 Eit] 701

3194

5246 5123 5000 4316 2159 1914

5651 5528 5405 4078 2683 2444

6181 6058 5935 5812 3602 1628 1384

6585 6462 6338 3840 3218 2374

1099

225 227

1076
21
22 584 29
43 8532 -
W 4 » ¥ || Timeliner - SKU-Liquid table Change-over Matrix _~COM Bleach ,Dish ~Timeline “#J] 0
Ready | E=Em e 0 (i

Figure 35 - Scheduling the Mixers

Figure 33 shows the sheet where the deadlines for mixing is calculated. It iterates through the
liquid requirements sheet shown in figure 32. It starts at the end of each week. As it moves
along the columns from minute to minute, it sums the amounts of each liquid required. As soon
as it reaches a multiple of the mixer size for that liquid, it outputs the associated minute number
to this sheet. Therefore we can now know exactly when each mix should be finished. The

algorithm that does this also calculate the size of the gaps between deadlines. If the size

67

between two gaps are smaller than the mixing time, we know we have a clash in the mixer

schedule. The gap lengths are shown in the red area.

The algorithm puts all these deadlines in an array and then sorts it with a form of bubble-sorting,

putting the latest deadlines in front of the earliest ones.

If we then iterate through this array, we will encounter the latest deadlines on Friday afternoon
first and move backwards to Monday morning. Doing it this way, we will assign a mixer to each
deadline. If we find that a deadline occurs close to a previous one, and the required mixer will
be busy at the time, we can simply move that mix bacwards in time. This process is illustrated in
figure 34. In schedule one, we started at the end of the schedule and added mixes as required.
In schedule two, we detected the clash and moved the first mix into the weekend. This is
congruent with the policy that mixers should be able to work overtime to ensure the packing
lines are always fed with sufficient volumes of liquid.

Schedule 1
Weekend Monday

Schedule 2
Weekend Monday

Figure 36 - Mixer schedule clash

68

Currently, the algorithm outputs the deadlines for mixing. In future versions, it will be expanded

to automatically move mixes backwards as required.

3.3 Chapter Summary

Future work

In future, the scheduling system and simulation model can be made to function with tighter
integration. A scheduling system can be written in C++, and it could launch Flexsim with the
correct schedule pre-entered. It could also offer a higher degree of automation, for example

automatcally shifting the mixing schedules when clashes are detected.

Results achieved

We have arrived at an estimate for how many machines are required to meet a certain set of
projected sales figures. More importantly, we now have a system that can be used to verify the
final design for any set of sales figures. Since the project is nearing the end of the design phase,

this will be an invaluable tool.

This system can also be applied when managing the plant once it's up and running. Various
production strategies can be tested on the simulation. Different schedules can be evaluated for

expected performance.

Should expansions and upgrades be planned, they can easily be tested with the same system.
The system could estimate the increase in operating efficiency to be expected from any

changes. This will be essential when presenting the business case for these changes.
With some effort, this system can also be adapted to other, similar construction projects.

The production scheduling system will be invaluable in operating the new plant at maximum
profitability — the algorithm produced schedules with lower total inventory and lower changeover

times than an experienced human planner from Unilever.

69

Bibliography

Azzaro-Pantel, C., Bernal-Haro, L., Baudet, P., Domenech, S. and Pibouleau, L. (1998) 'A two-
stage methodology for short-term batch plant scheduling: discrete-event simulation and genetic

algorithm', Computers and Chemical Engineering, vol. 22, no. 10, pp. 1461-1481.

Baudet, P., Azzaro-Pantel, C., Domenech, S. and Pibouleau, L. (1995) 'A discrete-event
simulation approach for scheduling batch processes', Computers & Chemical Engineering, vol.
19 Supplement, pp. p633-638.

Castro, A., Barbosa-Pé6voa, A.P.F.D. and Matos, H. (2001) 'An Improved RTN Continuous-Time
Formulation for the Short-term Scheduling of Multipurpose Batch Plants', Industrial and
Engineering Chemistry Research, p. 2059-2068.

Figielska, E. (1999) 'Preemptive scheduling with changeovers: using column generation

technigue and genetic algorithm', Computers & Industrial Engineering 37 (1999) 81-84.

Geoffrion, AM. and Graves, G.W. (1976) 'Scheduling Parallel Production Lines with
Changeover Costs: Practical Application of a Quadratic Assignment/LP Approach’, Operations
Research, Vol. 24, No. 4 (Jul. - Aug., 1976), pp. 595-610.

Hung, Y.-F. and Leachman, R. (1996) 'A Production Planning Methodology for Semiconductor
Manufacturing Based on lterative Simulation and Linear Programming Calculation', IEEE
Transactions on Semiconductor Manufacturing, vol. 9, no. 2, May, pp. 257-269.

Kadar, B., Pfeiffer, A. and Monostori, L. (2004) 'Discrete event simulation for supporting
production planning and scheduling decisions in digital factories'.

Lin, X., Janak, S.L. and Floudas, C.A. (2004) 'A new robust optimization approach for
scheduling under uncertainty: Bounded uncertainty', Computers and Chemical Engineering ,
vol. 28, p. 1069-1085.

Majozi, T. and Zhu, X.X. (2001) ‘A Novel Continuous-Time MILP Formulation for Multipurpose
Batch Plants. 1. Short-Term Scheduling’, Industrial and Engineering Chemistry Research,
November, p. 5935-5949.

70

Manuj, I., Mentzer, J.T. and Bowers, M.R. (2009) 'Improving the rigor of discrete-event
simulation in logistics and supply chain research’, International Journal of Physical Distribution &

Logistics Management, vol. 39, no. 3, pp. 172-201.

Méndez, C., Cerda, J., Grossmann, l., Harjunkoski, I. and Fahl, M. (2006) 'State-of-the-art
review of optimization methods for short-termscheduling of batch processes', Computers and

Chemical Engineering, vol. 30, no. 6-7, May, pp. 913-946.

Mockus, L. and Reklaitis, G.V. (1997) 'Mathematical programming formulatio for scheduling of
batch operations base on nonuniform time discretization’, Computers and Chemical
Engineering, vol. 21, no. 10, pp. 1147-1156.

Moon, Y. and Phatak, D. (2005) 'Enhancing ERP system’s functionality with discrete event
simulation’, Industrial Management & Data Systems, vol. 105, no. 9, pp. 1206 - 1224.

Rubin, P.A. and Ragatz, G.L. (1995) 'Scheduling in a sequence dependant setup environment
with genetic search’, Computers Ops Res. VoL 22, No. |, pp. 85-99, 1995.

Sohoni, M., Lee, Y. and Klabjan, D. (2011) 'Robust Airline Scheduling under Block Time
Uncertainty', Transportation Science, vol. 45, no. 4, pp. 451-464.

van Beek, D.A., van den Ham, A. and Rooda, J.E. (2002) 'Modelling and control of process

industry batch production systems', 15th Triennial World Congress, Barcelona, Spain.

Vin, J. and lerapetritou, M. (2000) 'A New Approach for Efficient Rescheduling of Multiproduct
Batch Plants', Industrial and Engineering Chemistry Research, vol. 39, no. 11, September, pp.
4228-4238.

Wang, K., Liihl, T., Stobbe, M. and Engell, S. (2000) 'A genetic algorithm for online-scheduling
of a multiproduct polymer batch plant ', Computers and Chemical Engineering 24 (2000) 393-
400.

Young Hoon Lee, A. and Pinedo, M. (1997) 'Scheduling jobs on parallel machines with
sequence-dependent setup times', European Journal of Operational Research 100 (1997) 464-
474,

71

Zhu, Z., Hen, B.H. and Teow, K.L. (2012) 'Estimating ICU bed capacity using discrete event
simulation’, International Journal of Health Care Quality Assurance, vol. 25, no. 2, pp. 134-144.

72

