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Abstract 
Data obtained from heat transfer relations discretized with the finite element method were used in 
developing dimensionless correlations, which led to determining prediction equations for the average 
edge temperature of a flat plate absorber. For a prescribed flux, if parameters like the incident 
radiation intensity, edge insulation thermal conductivity and ambient temperature are known, the 
value of the edge temperature variable is immediately determined.  A range of edge-to-absorptive area 
ratios are considered, as well as the effects of the edge insulation on enhancing thermal performance. 
Notably, the edge loss is high in absorbers with small edge-to-absorptive area ratios and ambient 
conditions with low ah  and aT .In extreme operating conditions however, the loss can be of a high 
proportion. As a result, edge insulation can be employed as a heat transfer enhancement feature to 
minimize useful energy losses, as well enhance steady-state heat transfer.  
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1.0 INTRODUCTION 

 

Edge heat transfer in absorbers with a planar configuration, uniformly irradiated from the 

top and with bottom insulation, is required in some energy conversion devices which find 

application in micro-batteries and miniature heat exchangers. Edge heat loss refers to useful 

heat loss emanating from the edges of an absorber plate. In relation to flat plate absorbers 

cooled from the edges, the heat dissipation characteristics and the resulting temperature 

profile are important in effectively monitoring the thermal performance of the plate in 

conditions which vary continuously. There are numerous applications for edge cooling of 

flat-plates in metallurgy, and electronic gadgets, etc. There are other application areas 

involving a plate with a heat absorbing surface, bottom and edge insulation - for instance, 

solar absorbers. In the case of solar absorbers, the edge loss is not desired since the thermal 

efficiency can be affected adversely, for this reason appropriate insulation measures are 

required. Although there are various insulation materials, the amount of insulation provision 

required to achieve a desired temperature range at the edges, and other points in the plate for 

a case of localized heating and cooling process, requires modeling of the relevant thermal 
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interaction. A key step in identifying and assessing the heat absorption and dissipation 

potential of typical energy conversion components is to develop models based on operational 

and ambient characteristics. 

A number of studies have been undertaken to model the edge loss effects in flat 

absorbers however these studies are few [1, 2]. Many approaches have been adopted in the 

analysis of uniformly heated plates, some notable works include [3, 4]. There are some 

numerical studies in relation to thermal performance analysis of solar absorbers [5-7]. 

Although these are a fundamental attempt, the models are relatively inadequate to account for 

the edge loss. Few numerical studies have also been conducted vis-à-vis the edge loss, owing 

ostensibly to the complexity involved in modelling the edge loss. The evaluation of the edge 

loss is complicated as noted in [3] and hence the trivial edge loss coefficient recommended in 

the work. The effect of edge heat loss on the absorbers has not been given proper attention in 

the literature and there is poor design information on the improvement of absorbers regarding 

the edge insulation effects thus resulting in some suboptimal designs. At micro-level, proper 

thermal insulation measures become a challenge [5], consequently there is need to develop 

appropriate correlations so as to predict the influence of various fundamental variables and 

thermal loads.  

The specification of the quality of insulation required to achieve a desired thermal 

efficiency and the evaluation of the heat extraction rate from the edge surface for the case of 

rapidly cooled edges, are crucial in designing absorbers which can efficiently perform in 

widely varying conditions. In this work, a numerical treatment based on the Galerkin finite 

element method is applied to the physical problem. This involves a stepwise formulation and 

development of the system equations. Also, this numerical method has the versatility to 

model complex geometries other than the regular rectangular flat plate when compared to 

other numerical methods [8, 9]. In addition, some unique dimensionless parameters 

governing the behaviour of the problem were identified, and prediction equations based on 

these dimensionless parameters were obtained. 
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2.0 PROBLEM STATEMENT 

 

The two-dimensional finite element discretization of the differential element of the 

absorber plate with mutually perpendicular lines of heat flow is considered. If the absorber is 

uniformly irradiation, the bottom housing of the air heater is perfectly insulated and 

convection is the dominant mode of heat transfer, the equation for conservation of heat flux 

in the differential element of the absorber shown in Figure 1 is written as 
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The finite element is employed in dicretization of the above equation since this 

represents a boundary value problem. The finite element envisions the solution region of the 

problem as built up of many small, inter-connected elements. The rectangular element is used 

to represent the rectangular domain. This will enable us determine the state variable(s) and 

the edge heat flux at specific boundaries using a system of nodes. Applying the conditions 

that must be satisfied by each interpolation function at each node, the interpolation functions 

which guarantee convergence for the element are given as [9] 
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where r and s are the normalized co-ordinates of the elements. Modelization of the edge loss 

requires a detailed knowledge of the thermal interaction within the absorber, as well as with 
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its physical boundary. In the Galerkin finite element method [9], a residual integral equation 

corresponding to the differential equation is defined, consequently equation (1) after 

simplification is expressed as 
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the above equation can be expressed  more succinctly 
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where [ ]TN  is the M x 1 column matrix of interpolation functions, [ ]N  is the row matrix of 

interpolation functions with their differentials expressed above and { }T is the column matrix 

(i.e. vector) of nodal temperatures. Equation (5) is of the form  
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            (7)  

The equation above represents a system of M equations for the two-dimensional finite 

element problem consisting of the absorber model with appropriate boundary conditions 

obtained via the Galerkin method. The left-hand side of equation (5) includes the temperature 

unknowns  T  , while the right-hand side is composed of forcing functions: solar flux, surface 

heat convection, top heat loss contribution, and the boundary heat flux for elements subject to 
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the edge loss on the boundary of the problem domain. The conductance ( )ek    in the above 

equation is defined as     
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The forcing functions in equation (7) are expressed as  
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The assembly of the element matrix equations has been implemented in a recent work [11] 

according to the topological configuration of the elements after the equations were 

transformed to global co-ordinates. The essential boundary conditions were introduced to 

obtain a condensed global matrix. The solution of the global equation was obtained after the 

assembly of the individual element equations using the matrix inversion technique so as to 

determine the nodal temperatures and associated fluxes. To determine the relative 

contributions of the relevant operational and ambient parameters, the following 

dimensionless groups are defined:  
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The equations above which contain heat transfer rate expressions are essentially ratios of heat 

output to input in the system. The output comprises the heat loss, 
losseq   .The input is the 

absorbed solar radiation. The ratio edgeφ  is indicative of the amount of absorbed energy that is 

dissipated as edge heat loss. 
^
T  gives an indication as to how the ambient temperature exceeds 

the fluid entrance temperature,  and iT
−

 is the non-dimensional nodal temperature values. 
−

κ  

gives the relative change in the value of the thermal conductivity of edge insulation. Once the 

primary variables (i.e. the temperature unknowns) have been determined, an appropriate flux 

equation can then be employed to obtain the edge loss.  

 

The edge heat flux equation for an element is given as 
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Assuming constant conditions, the edge heat flux equation can be expressed  
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eA  is the  edge area of absorber plate. The total convective heat flow rate from the physical 

absorber is the sum total of the convective heat flux components of all the elements employed 

in the finite element mesh of the absorber giving an indication of the heat transfer between 

the solid body and the fluid stream. Consequently, for an absorber with no edge insulation 

provision, the above equation is further simplified to get 

 

   ( )( )losse a e e av aq h A T T= −       

            (14) 

The average edge temperature of the absorber ( )e avT  is obtained from the temperature values 

of the edge nodes congruent with the thermally active boundary. Combining equations (11) 

and (12), the following normalized equation is obtained 
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where 
−

eA is the area ratio. Given the dimensionless relations above, the element ‘stiffness’ 

equation (8), is re-expressed as  
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Depending upon the physical nature of the problem, the intricacy of the solution 

scheme may involve the definition of the domain, both physically and geometrically, the 
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domain could be bounded or unbounded as in this case. The approximations used in defining 

the physical characteristics of the domain are largely real world-oriented. 

   

3.0 Dimensional Analysis 

In order to obtain prediction equations for the edge heat loss from the absorber, 

dimensional analysis is employed. This involves determining the functional relationship 

between the various variables in the system by nondimensionally combining them into 

dimensionless groups or products. There are importantly two approaches which can be 

employed [12]:  the Buckingham pi and the Raleigh methods. In the Buckingham pi method, 

a fundamental approach to it is to replace a list of system of variables with a finite number of 

dimensionless groups. The Buckingham pi method uses the symbol π  to represent a 

dimensionless group (or product). The theorem is based on the idea of dimensional 

homogeneity. The Raleigh method is straightforward in comparison, for the resultant system 

of simultaneous equations involved is solved only once. The Raleigh method does not 

incorporate the pi notation. It simply, first, obtains a functional relationship between all the 

system variables, solves the system of equations determines the relevant dimensionless 

group(s). Thus predictive equations can then be obtained from the dimensionless products.  

The procedure of the Raleigh method is given in [12], and it is applied in this work to obtain 

the dimensionless groups for the edge heat loss variable, )(aveT . Employing this, the functional 

relationship between the average absorber temperature )(aveT  and the relevant system variables 

is defined by 

 

),,,,,,,()()( IxTThhkkTT insfafainsaveave ∆=       

           (17) 

)(aveT  is the undetermined function. Following the systematic procedure of the Raleigh 

method, the above equation yields 
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where are 1 2 3 7, , ,...a a a a  are exponents assigned to the physical quantities. In terms of the 

fundamental dimensions M,L,T and t, the above equation can be expressed as 
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Solving analytically, the following equation is obtained 
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Since there are eight variables and four fundamental dimensions, then four dimensionally 

homogenous groups appear on the right-had side of the above equation. In order to obtain 

values of the ambient parameters on a temporal basis, typically a weather logger is used in 

recording the variation (Fig. 2), hence average values can then be calculated. Simulation 

results were obtained using results from the finite element formulation   and employing 

typical operational and ambient. Table 1 gives the data obtained from the simulation results 

considering various combinations of the operational variables and the use parameters of the 

absorber. It also shows the various groups of the obtained data with the corresponding 

exponent. The evaluation of the exponents appearing in the foregoing entails correlating the 

data in Table 1 with the dimensionless groups obtained in (20). In the table, consideration is 

given to a range of edge insulation conductivities, insk . The lowest insk  value ( insk = 0.01 

W/mK ) given in Group 1 of the table represents excellent edge insulation. insk = 0.1 W/mK 

(Group 2),   implies low-grade insulation. insk = 50 W/mK (Group 3), represents very poor 

insulation. The three groups of data shown in the table gives the average values of the 

dimensionless product  12
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. Since the values of the three groups differ on account 

of insk , it becomes tenable to have three different dimensionless equations to represent the 

various groups.  

To obtain the exponents of the dimensionless groups, the results are solved 

analytically for each group in the table. The dimensionless groups with exponents 2a , 5a and 

6a   in equation (20) are constant. Then equation (20) becomes 
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Considering two data points in any of the test groups in the table ( say 3 and 5), these data 

points can be used to determine the exponent , 3a in the  equation above and in each 

group. Substituting data points into equation (21)  
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Dividing (23) by (22) 
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and taking the natural logarithm of the above equation: 
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To evaluate 3a for the three  groups, the average values of the dimensionless expressions 

from Table 1 are substituted into equation (25) to obtain: 3a =-0.0001 for groups 1 and 2, and 

3a =-0.001,for group 3.Substituting these values into (21), for groups 1 and 2, yields 
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and for group 3: 



11 
 

0.0012
( ) '

12
e av ins a ins

ins f ins

T k h xC
x I h k

−
 ∆

=  ∆       
(27) 

 

Rearranging (26) and (27), then 
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Given the specificity of the data groups, the following constants are defined 1C , 2C  and 3C . 

The form of the dimensionless equations for the groups becomes  
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The average values of the expressions contained in the last three equations are taken from 

Table 1 in order to obtain the values of the constants. Specifying the constraints for the 

respective groups defined by the 
insxNu∆ variables in the table, the following dimensionless 

equations are obtained:  
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for Group 2: 
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Notably, equation (33) is useful in determining the average edge temperature of the absorber 

in situations where excellent insulation is used. Considering the specified constraints, the 

second (34) is useful in cases where relatively poor edge insulation is used, and the third (35) 

where a conducting interface is employed, i.e. a metal-to-metal edge. The important benefit 

of predicting )(aveT  from the condensed nondimensional equations is that once its value is 

known the edge heat loss from a flat plate absorber can be immediately determined, using 

equations (13) and (14).Also, by predicting )(aveT  , the amount of insulation needed to 

maintain a particular temperature at the edges of the absorber can be determined for specific 

design considerations, and also calculate the edge loss associated with a given insulation 

material for some prescribed operational variables, hence the thermal efficiency. The edge 

loss shows a strong dependence on the operational parameters, the effects of varying 

convective heat transfer coefficient fh  are examined as contour plots (Fig.3), which show 

visual and numerical differences. The equations which are given here are useful in calculating 

the effects of ambient parameters on the evolution of the absorber edge temperature, and 

determining the extent of the edge dissipation and the effectiveness of the insulation 

provision.  
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RESULTS AND DISCUSSION 

 
The evolution of the nodal temperature values of the absorber with insk and aT  

parameters are presented in Figures 3-5.The analysis is carried out to evaluate the effects of 

the parameters on the temperature profile of a typical flat-plate absorber. In the figures, it is 

seen that the nondimensional nodal temperature drops from a corresponding mid-node along 

a transverse nodal line to the exterior nodes, and also this drop is sideways owing to 

symmetrical loading conditions. It is seen that at aT = 278K (Figure 4), the nondimensional 

nodal temperature values are a maximum for the plate with excellent insulation 

( 467.1 −=
−

eκ ) with all nodes having equal values as a result of no edge loss. For increasing 

high 
−

κ values however, it is seen that the nodal temperature values rise from both edges of 

the absorber plate to the central node of any transverse nodal line due to the fact that poorly 

insulated edges have increased dissipation at the boundary edges than at the inner nodes. In 

Figure 5, a similar effect is observed but with reduced differences in the nodal values for 

various 
−

κ  values. In Figure 6 a contrary result is seen, since aT  is relatively high heat is  

transferred from the surroundings to the plate with poor or no edge insulation hence the 

boundary nodes have higher values than the inner nodes for high 
−

κ  values and the nodal 

values are highest for the plate without edge insulation. The significance of the changes in the 

temperature profile indicates that the ambient air temperature can affect the performance of 

poorly insulated solar air heaters or the heaters with no edge insulation at all. High ambient 

temperatures are good for poorly insulated absorbers however in situations where the ambient 

temperature is low, excellent insulation is needed. An empirical study on the effects of 

ambient temperature has been investigated [13], and is in agreement with the present 

analysis. Figures 7 and 8 give a clear indication in respect of the influence of the 

thermophysical property of the insulation and the geometric and ambient characteristics of 

the absorber on the thermal performance of the plate. As eA
−

increases the edge loss becomes 

very significant with high eU values showing that high edge loss coefficient values 

characterized by high insk   and  ah  values affects the magnitude of the edge loss, especially 

in small absorbers.  Results in Figure 8 show that as the dimensionless absorber plate 
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temperature 
_

pT increases with eU  , edgeϕ  increases also, emphasizing that absorbers with poor 

edge insulation and high ambient temperatures have increase edge heat dissipation. It is seen 

that if an absorber with high surface temperatures and no edge insulation is in an environment 

characterized by high ah  and relatively low aT , the edge loss will be very significant as given 

by the plots of the plate without edge insulation (figures 7 and 8).Hence, in heat transfer 

processes involving a flat-plate absorber with heat dissipation at the edges, the influence of 

high 
−

eA  and 
_

pT ratios must be carefully  considered for superior performance. In typical 

applications however where the edge loss is not desired, adequate insulation provision should 

be made. It can be deduced that as insk →∞  and 0insx∆ → , the edge loss 

coefficient edge aU h→ . 

Equation (14) therefore gives the theoretical limit for the case. Plots 9, 10 and 11 

show the different operating regimes of the absorber with respect to the
insxNu∆ parameters. In 

figure 8 showing results of group 1,the operating regime of the Nusselt number is between 30 

and 300.For group 2, the operating range of the Nusselt number is between 0.006 and 30. 

And for group 3, the range is between 0.006 and 0.06.The dependence of the average edge 

temperature of an absorber on the heat transfer coefficient for a case of constant heat flux and 

thermophysical properties, can be expressed as 

    ( )
n

e av aT hα      (36) 

      

where 1n = − for an equation of the form of Newton’s law of cooling. But for the average 

edge temperature of the absorber with insulation,

 

n is in the range of -0.001 to -0.0001.This is 

much weaker than the value of n  found in [14, 15], the main reason for this is that more data 

points were used and the effects of thermal interaction in the system were incorporated into 

the equations. The correlation is congruent with the Newton’s law of cooling [14] when 

plotted considering the variables above, and conforms to results obtained in [13, 16] where 

the effects of convective heat transfer coefficient on the thermal performance of a solar 

absorber were investigated. From the plots, the average edge temperature of the absorber can 

be immediately determined if the other parameters are known. The Nusselt number gives the 

ratio of the convective heat transfer coefficient to conduction in the insulation. The plot in 

figure 9 can be useful in determining the average absorber temperature in situations where 

excellent insulation is used. The plot in figure 10 is applicable where relatively poor 



15 
 

insulation is employed, and that of figure 11 is applicable to a conducting interface. The 

important benefit of predicting )(aveT  from the condensed plots is that once its value is known 

the edge heat loss can be immediately determined, using equations (13) and (14). 

 

Conclusion  
Some unique dimensionless parameters were identified for the edge loss in flat plate 

absorbers employing real-world conditions. Prediction equations based on these 

dimensionless parameters were also determined for various operating conditions of the 

absorber. The dimensionless edge heat loss equation obtained here can be of important 

benefit in making predictions of the influence of ambient and the use parameters on the 

thermal performance of flat-plate absorbers, as well as calculating the edge heat transfer rate, 

especially for absorbers with high e
p

A
A  ratios with considerable edge heat dissipation. Also, it 

is seen that proper edge insulation improves steady-state heat transfer and equalizes 

temperatures over the absorber-plate. This is particularly useful in the design of small energy 

conversion devices, and thermo-electric components with impinging radiation.  
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Nomenclature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

int

Subscripts
a Ambient air
av Average
e edge
f The working fluid
i Node number
ins Insulation outer frame erface
t top
x x direction
y y direction

−
−

−
−
−
− −

−
−
−

2

2

2

2

2

( )
( )

( )

( ) int

e

p

A Area of a differential m
A Absorber plate edge area m
A Absorber plate area m

Wh Convective heat transfer coefficient
m K

WI Incident hourly solar radiation ensity
m

Wk Thermal conductivity
mK

−

−

−

 −  
 

 −  
 

 − 


2

2

( )

( )

( )
( )

( )

tan

losse

i

L Lengthof absorber plate m
M Number of element
Q Heat transfer W

Wq Edgeconduction heat flux
m

T Temperature K
T Temperature at node i K
t Thickness of the absorber plate m

WU Heat loss conduc ce
m




− −
−
−

 −  
 

−
−
− −

−


( )

( )
( )

( )

co

ins

edge

W Width of absorber plate m

Greek symbols
T Temperature difference K
x Thickness of insulation material m

Element periphery m
Solar absorptivity of coating
Overall transmissitivity of transparent

α
τ


 


− −

∆ −
∆ −
Ω −

−
− ver plates
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   Figure 1: Nomenclature of the problem 
 

 

 

 

 

 

  

 

 

 

 

Figure 2: A view of DataSet weather logger  
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Figure 3: Contours of temperature for an absorber with no edge insulation: (a) fh = 5 

W/m2K; (b) fh = 50 W/m2K;(c) fh =100 W/m2K 
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Figure 7.2: Nondimensional temperature profile of the absorber with varying insulation values for ha = 5W/m2K (okay) 
 
 
Figure 4: Nondimensional temperature profile of the absorber with varying insulation values for Ta = 278K 
 
 
 
 

 
 
Figure 7.3: Nondimensional temperature profile of the absorber with varying insulation values for ha = 100W/m2K (okay) 

 
 
 
 
 
 
 
 

 
 
 

 
Figure 5: Nondimensional temperature profile of the absorber with varying insulation values for Ta = 298K  
 
  

 

 

 

 

 

 

 
Figure 6: Nondimensional temperature profile of the absorber with varying insulation values for Ta = 338K  
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Figure 7: Evolution of edgeφ  with eU  in relation to varying eA
−

values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8: Evolution of edgeφ  with eU  in relation to varying 
_

pT values 
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Figure 9: Plots of the nondimensional groups for the range 30030 << ∆ insxNu
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 10: Plots of the nondimensional groups for the range 0.06 30
insxNu∆< ≤  
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Figure 11: Plots of the nondimensional groups for the range 0.006 0.06
insxNu∆< ≤  
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Table 1: Model Results for )(aveT  and the non-dimensional equations 

Run )()( KT ave
 ( )KmWha

2/  
finsinsave hItkT 22

)( /  
insinsa kth /  

inskk /  ItTk insains /  ItTk insfins /  ( )( ) 122
)( // −

insinsafinsinsave kthhItkT  3a  

                    
Group 1 

         1 311.1494675 10 1.843848696 1.5 10000 4.04 4.04 1.843923459 

 2 311.0849153 20 1.843466164 3 " " " 1.843668701 

 3 311.0611595 30 1.843325389 4.5 " " " 1.843602661 

 4 311.0488121 40 1.84325222 6 " " " 1.843582516 
 5 311.0412463 50 1.843207385 7.5 " " " 1.843578811 

 6 311.036135 60 1.843177096 9 " " " 1.843582128 

 7 311.0324506 70 1.843155263 10.5 " " " 1.843588709 

 8 311.0296687 80 1.843138777 12 " " " 1.843596837 

 9 311.0274939 90 1.84312589 13.5 " " " 1.843605661 

 10 311.025747 100 1.843115538 15 " " " 1.84361473 

 
 

            Average 1.843634421  -0.0001 

                    
Group 2 

         1 311.1351545 10 184.3763879 0.15 1000 40.4 40.4 184.3414128 

 2 311.0685177 20 184.3368994 0.3 " " " 184.314707 

 3 311.0439359 30 184.3223324 0.45 " " " 184.3076147 

 4 311.0311455 40 184.3147529 0.6 " " " 184.3053379 

 5 311.0233034 50 184.3101057 0.75 " " " 184.3048035 

 6 311.0180033 60 184.3069649 0.9 " " " 184.3050231 

 7 311.0141817 70 184.3047003 1.05 " " " 184.3055995 

 8 311.0112957 80 184.30299 1.2 " " " 184.3063503 

 9 311.0090391 90 184.3016528 1.35 " " " 184.3071838 

 10 311.0072262 100 184.3005785 1.5 " " " 184.3080514 

 
 

            Average 184.3106084  -0.0001 

                    
Group 3 

         1 311.0866368 10 46086909.16 0.0003 2 20200 20200 45751674.32 

 2 310.9606593 20 46068245.83 0.0006 " " " 45761685.47 

 3 310.8772378 30 46055887.08 0.0009 " " " 45766106.82 

 4 310.8068554 40 46045460.05 0.0012 " " " 45767593.73 

 5 310.7428064 50 46035971.32 0.0015 " " " 45767352.76 

 6 310.6826977 60 46027066.33 0.0018 " " " 45766008.82 

 7 310.625441 70 46018583.86 0.0021 " " " 45763923.11 

 8 310.570456 80 46010437.92 0.0024 " " " 45761321.43 

 9 310.5173941 90 46002576.91 0.0027 " " " 45758353.33 

 10 310.4660264 100 45994966.88 0.003 " " " 45755122.2 

 
       

Average 45761914.2  -0.001 

Parameters: mKWk /100=  KTa 303=  mt 0015.0=  KT f 303=  2/500 mWI =   KmWhf
2/15=      

   :insk  
Group 1  

0.01 W/mK 
Group 2  0.10 

W/mK 
Group 3  

50.0 W/mK 
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