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ABSTRACT

The control units of numerically controlled manufacturing machines allow the programmer
only a limited number of mathematical functions with which programmes can be written.
Despite these limitations it is now possible to write programmes with which three
dimensional (3D) circular interpolation can be performed directly on the machines. The
necessary mathematical techniques to perform 3D circular interpolation directly on the
machines are deduced, although somewhat roundabout to overcome the programming
limitations. The main programming limitations as well as cutter speed limitations are
indicated.

OPSOMMING

Die behéereenhede van numeriesbeheerde vervaardigingsmasjiene beskik oor ’n beperkte
aantal wiskundige funksies wat tot die beskikking van die programmeerder gestel word om
programme mee te skryf. Selfs met hierdie beperkings is dit nou moontlik om programme
te skryf waarmee driedimensionele (3D) sirkelinterpolasie direk op die masjiene uitgevoer
kan word. Die nodige wiskundige tegnieke waarmee 3D sirkelinterpolasie gedoen kan
word, al is dit ’n effens omslagtige manier om die beperkings te oorkom, word afgelei. Die
belangrikste programmeringsbeperkings asook snyspoedbeperkings word aangetoon.
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INTRODUCTION

No Computer Numerically Controlled (CNC) machine has the capability, as a
function, to perform three dimensional (3D) circular interpolation. With the help of
dedicated software such as CAD or CAM, a large number of points can be
calculated on the circumference of a required 3D circle. These points can be joined
together by short straight lines to create a 3D circular movement on a CNC
machine. To create a curved 3D surface such as the surface of a bent pipe, many
thousands or even millions of points could be necessary. These points can be drip
fed into the memory of the CNC machine. CAD-CAM software is expensive and
there are many applications where 3D surfaces can be programmed manually if 3D
circular interpolation models were available.The drip feed option is only available
on relatively modern machines.

Well-developed circular interpolation capabilities are available on CAD/CAM
systems but the same mathematical techniques cannot be applied with manual
programming because the controls of the CNC machines have only a very limited
number of mathematical functions available.

Cutter radius correction on CNC machines can only be applied two dimensionally.
For 3D surfaces on a milling machine the programmer must calculate the equidistant
path of the centre of the ballnose cutter or, on some machines, specify the normal
vector to the surface at each 3D point.

Three dimensional circular interpolation should not be confused with helical
interpolation. Most modern CNC machines can perform helical interpolation but
the movement of the cutter in this case is spiral and not circular.

The aim of this paper is to provide the programmer with mathematical tools with
which 3D circular interpolation models can be developed for direct execution on
CNC machines. Depending on the type of 3D circle definition that is used, some
3D interpolation models are much slower to execute than others, resulting in
ceilings on the maximum attainable cutting speed. Maximum cutting speeds were
measured for each developed model on a MAHO 432 milling machine with a 386
processor. These speeds provide guidelines as to whether the specific model can be
used in practical applications or not.
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2. 3D CIRCLE DEFINITION: THREE POINTS ON THE CIRCUMFERENCE
OF A CIRCLE

2.1 CLASSICAL METHOD
The mathematical equation of a 3D circle can be obtained from three points on the
circumference of the 3D circle by solving three equations with three unknown
quantities. A

FIGURE 1: A 3D cﬁcle in space with known coordinates of three points (P,,P,,P;).
P Let V|, V, and V, be the three vectors from the origin
- to P;,P,, P; and let V, be the vector from the origin to
P, the centre of the circle. The vectors V, and V can be
defined as

V,=V,-V,
Vs=V;-V,

and the radius vector V, can be defined as
V, = aV, + bV, where
a and b are constants, indicating a linear relationship.

If the radius of the 3D circle is R, then the following three equations can be

defined.
| %, =V, P#RB% .sisimcsinsssinnnasenassasanngns 1)
B ~B S8 cesrrsrivsprarasnminnninsonssas @
| W =V [P=R? ciissvnsvnioswnans sRoasasdmsans 3

Equation (1) can be rewritten as follows:

V.-V, =V, - a(v, -V,) - b(V, -V))

n

VA+a+b) -aV, bV ..cocenvencnnn “@
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Substituting the coordinates (x,, y;, z,) of P, into equation (4), the following set of
equations is obtained.

X, - a(x2 = xl) = b(x3 - xl)
v, -V, = y, ~aly, ~y)) - bly;, ~v)| .... 5
z, - a(z2 = z,) = blz; = z)

In terms of the radius R, the first equation of the equation set (5) can be expressed

x,~a(x,~x,) ~b(x,~x,) PHly, ~a(y,~y,) ~bly,~y,) ¥
as: +Hz ~alz,~2z,)-b(z,~z)P=R? ... ... ... .. ©)

Similarly, two more equations can be obtained by making use of equations (2) and
(3). It is possible to solve the three equations simultaneously to obtain the three
unknown entities (a, b and R).

The three equations of which equation (6) is the first one are nonlinear and a search
routine (such as Newton-Raphson [6] ) can be applied to obtain the unknown values.

Once the three unknown values are solved the centre of the circle is known from
V.

o

A vector V from the centre of the circle to a point on the circumference can be
expressed as:

VT, %8GV, BV sscsmvsmssssansenssessanss oo O

where o and 3 are two variables.

The relationship between ¢ and f is the following

From equation (8) it is possible to express B as a function of  and R, and thus
equation (7) can be expressed as a function of only one variable namely c.

It should be noted that o is highly non-linear and will result in points on the
circumference of the 3D circle which are not evenly spaced for a constant increase
in .. Equation (7) can be used to calculate coordinates of points very fast on the
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circumference of 3D circles but any attempt to use it as an interpolation equation
will result in flat areas on the circle circumference.

The mathematical tools to solve equations like (6) are not available on the controls
of CNC machines and therefore a different approach is needed. Because of these
mathematical limitations, the speed and efficiency of solving spatial curve
equations, as with CAD/CAM-models, cannot be compared with hand programming
techniques. :

ROTATION MATRIX APPROACH

In the case where three points on a 2D circle are defined, it is possible to calculate
any number of points on the circumference of the circle with which circular
interpolation can be performed for the 2D circle. It is always possible to create any
3D circle from this 2D circle by two rotations and one translation, Lubbe [7].

Given three points on the circumference of a 3D circle, it is possible to perform the
reverse process as described above, to create the interpolation points on a 2D circle.
Thus, if the two angles can be calculated through which the 3D circle was initially
rotated from one of the main planes of the Cartesian coordinate system, then the
three points can be rotated in a reverse order to lie on the main plain where 2D
circular interpolation can be performed. Once the coordinates of enough points on
the 2D circle are known to perform 2D circular interpolation, all these points can be
rotated and translated back to the 3D positions.

The following expression, Klafter [1], can be used for a combination of two
successive rotations.

R(0,,0)) = [Rot(y,8,) 1" [Rot(z,6,)] ......... (O]

where R(0,,6,) is a combination rotation matrix with which a point can be rotated
firstly through 6, degrees about the z-axis and then through 6, degrees about the y-
axis.

Taking the dot product in equation (9) results in

ceycez -ceyseZ sey 0

s6, cGz 0 O

R(6,,6,) = oo 046 oo of (10)
s0.co, 56,56, O 0
0 0 0 1

where ¢, = cos(0,) and
56, = sin(0,) etc.
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A = R(0,,8,),{Trans(a,b,c)} = [Trans(a,b,0)]'[R(0,,6)] ............. an

where A is a combination matrix for performing firstly the double rotation R(6,,0,)
and then the translation, Trans(a,b,c).

Taking the dot product in equation (11) results in

cB6 cO. -cO sO6 s6 a
y zZ b4 z ¥
50, co, 0 b
-s0.c6. s0.s0 co cf T
¥ z y z ¥
A 0 0 0 1 (12)

Sometimes one is forced to use absolute as well as incremental programming in a
single CNC program. For this purpose it should be pointed out that if matrix A is
premultiplied by another matrix B, it has the effect of performing B on the original
axes system whereas postmultiplying A by B, results in performing B on the new
axes system. Premultiplication thus implies absolute programming whereas
postmultiplication implies incremental programming.

FIGURE 2: Three points on a 3-D circle. X1,¥1,Z1
Referring to Figure 2 K2YzZ2
X3.¥3. 23 ‘
X,7%,
Y, Y,
vV, = S (13)
Z,72,
1 J
X37%,
Y37Y,
Z
A\ = L T (14)
1 J

where V, and V, are the vectors as shown in Figure 2 and x,, x, and x; are the x-
coordinates of the three points on the circle.



http://sajie.journals.ac.za

53
X, (v,-¥,) (25-2,) ~(2,-2,) (V57Y,)
v, _ Y, _ (2,-2,) (%37%,) = (%,-%,) (2;-2,) .15
(%,-%,) (¥3-Y,) ~(¥,7Y,) (%,-X,)

z
n
1 1

where V,, is the normal vector on the circle obtained by calculating the cross product
of V, and V, and x,, y,, and z, are the components of the normal vector in the x, y
and z directions.

If it is assumed that the 2D circle is initially in the y-z plane and then first rotated 6,
about the z-axis and then 6, about the y-axis the two angles can be calculated from

D
I

3 atan lyn/ﬁxj+zj)J .................. (16)

ad 6, = s [z/x| ...l an

The three points (given in Figure 2) can now be rotated to the y-z plane by
multiplying each point with the inverse of rotation matrix (10) .

Vector V, is a vector from point 2 and which is perpendicular to the 3D circle.

Points 1 and 3 can now be rotated back (ie -6, and -6,) about the y- and z-axis with
origin at point 2.

cezcey -s6, cezsey 0
0.0, ceyseZ ceZ sezsey 0 5
Rot (9,, = f{ = & 5 = & N  sigaensae (18)
-sey 0 cey 0

0 0 0 i

Applying equation (18) to points 1 and 3 results in three points on the circumference
of a circle that is parallel to the y-z-plane with point 2 at coordinates (0, 0, 0).
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FIGURE 3: Three points on a plane parallel to the y-z plane and obtained by back
rotating from the 3D circle.

Y
Referring to Figure 3, which depicts three points on the ¥ ci
rcumference of a 2D circle, the centre (y,,z.) can now b
e calculated. 2o
In this situation, the perpendicular bisector of each = c
chord of the circle passes through the centre. Since the 2 Y ci
rcle is to pass through each of the three points, the li

nes joining them are chords. Two of the three perpendicular bisectors will suffice
to locate the centre.

The following two equations describe the two chords (from second to first and
second to third points) each of which passes through the centre (y.,z,).

2 2 2 2
= A =
y12 yll ZlZ zll

(Y, ¥y *(2z,-2,) 2z + 3 =B asesemee 19)
and
2_,2 .2 _,2
Yo Vi t2h, 2
(VoY) ¥ 4 (2,,-2,,) 2, + ——13-32—13——1—3;0 ........ (20)
K = (¥1,7%;,)
K, = (z;,72;,)
2 o2 352 02
K = Yi," Y117 2,7 2y,
3 —'_—_—2_—_
K, = (¥y57Y;,)
Ky = (2,3,-2,,)

where y,; is the y-coordinate of point 1 and y,, is the y-coordinate of point 2, etc.
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Thus, equation (19) and (20) may be rewritten as

Klyc+k22c+k3 =0

K,y +k.z +k, =0
Solving for z and y

Bo= Rk ~ERIFER~EE)  .ci.ismrrssssiavan @1
and

V.= —(kytk,Z ) /Ky siesesissmnsansassantie s 22)
The radius (R) of the circle, which is measured from (y,,z,) to any of the three
points in Figure 2, can be calculated from

R = JIBZ )58, =2 0% caucionnocnnses (23)

It is important to note that y, and z, are incremental values measured from the three
points on the y-z plane.

The centre point (a,b,c) of the 3D circle can now be calculated as

0
= [rrans(x,, v, 2,) | [R(6,,0,) ] Yl %

z
c

= 0 o N

1

The values a,b and ¢ in vector V, are the values needed in matrix A of equation
(12).

Points on the circumference of the 2D circle can now be calculated in relation to its
centre point, rotated around the centre point and then translated to the 3D circle
position with Trans (a, b, c) as incorporated in matrix A.
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Y
FIGURE 4: Calculation of points on a 2D circle. A
. . . . 4-1‘\ X

X and y coordinates of points such as point A in
Figure 4 can be calculated by increasing ¢ in very
small steps

X — Rcosh ... 25)
and y = Rsind ... 26)

where R is the radius obtained from equation (23) and x; and y; are the x and y
coordinates of points such as A on the circamference of the circle in Figure 4.

All these x and y values can now be transformed with the matrix in equation (12) to
obtain points on the desired 3D circle. 3D circular interpolation is performed when
all these points are joined together with short straight lines.

CNC PROGRAMMING CONSTRAINTS
Before attempting to write a CNC programme there are several constraints that the
programmer must consider.

3.1 Only basic mathematical and trigonometric functions are available on
CNC controls and no matrix algebra is possible. A very low level language
is used for CNC programming, MAHO [3].

3.2 With CNC control units it is not possible to do double precision
arithmetic so that large inaccuracies can arise when rounding-off errors
accumulate with incremental programming.

3.3 The double-argument function ATAN2 that is usually available in most
mathematical packages and which considers quadrant information defined by
the signs of its arguments, is not available on CNC controls. Equations such
as (16) and (17) do not give an indication regarding the quadrant in which a
tilted circle lies.

3.4 Angles of 90" and 270" in equation (17) result in the divider becoming
zero which is arithmetically illegal.

3.5 In CNC programmes a maximum of 37 characters are allowed in any
equation and longer equations must be subdivided, MAHO [3].
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3.6 For normal 2D circles there is a convention regarding clockwise and
counterclockwise direction of machining but for 3D circles these directions
have no meaning, MAHO [3].

3.7 For 3D circles there is no reference frame from which angles can be
measured and thus there is no fixed position that suggests the position of zero
degrees.

3.8 When programming for CNC milling machines the cutters can be
mounted perpendicular to either the XY-plane, the XZ-plane or the YZ-
plane, Horath [2], and the programme must make provision for all these
cases.

3.9 One very seldom comes across single 3D circles in practical machining
because these circles are invariably part of 3D surfaces and for machining
such surfaces, provision must be made to cut the circles in a forward and
backward direction. To accomplish this necessitates the keeping of tallies of
odd and even repetitions in order to fit in the correct number of cuts onto a
given surface.

3.10 Optimal calculation time is normally achieved by removing all constant
calculations from repetitive cycles. In programmes for laser machines the
pile up of calculations outside a cycle, but between circles, can cause the
laser to burn a hole while the beam dwells for the time the control takes to
finish calculations. In such cases the calculations should be distributed
evenly on the inside and the outside of cycles.

3.11 Cutter radius compensation must be considered by the programmer and
this alone could be a major task considering that normal vectors to a surface
are needed for proper placement of the cutter relative to the surface.

COMMENTS ON THE CNC PROGRAMME

A CNC programme was developed for the MAHO-432 control, MAHO [3], by
making use of the mathematical equations developed in section 1.2. Various
verification techniques were followed to ensure correct results. The following
observations were made.

4.1 With the normal 2D circular interpolation function available on the control a
cutting speed of up to 5 m/min is possible. A maximum of about 400 mm/min
cutting speed can be obtained for the same circle when circular interpolation is



ntip:.//sajie.journais.ac.za

58

performed making use of SINE and COSINE functions. The main reason for this
low execution time is that the control of the CNC machine must wait for the cutter
to arrive at the endpoint of an interpolating line before the next calculation can be
performed. An extremely fast search procedure is used for normal 2D interpolation
but the mathematical tools to programme such a procedure are not at the disposal of
the CNC programmer.

4.2 To compare execution times of various 3D interpolating techniques a radius of
50 mm and interpolating angles of 0.5 of a degree were used as standard. The
maximum cutting speed with this interpolation technique was about 200 mm/min.
This cutting speed might seem very low in contrast with possible cutting speeds of
up to 5 m/min with these machines, but such high speeds can only be reached with
straight line cutting and very rigid tools. For 3D sculpturing and with a ball nose
cutter (typically 15 mm diameter) cutting speeds of 250 mm/min in tool steel is very
realistic.

4.3 Accuracy is limited to about 1/100 mm while CNC machines can normally cut
up to an accuracy of 10x. This accuracy can be increased if the interpolation angle
is made smaller than 0.5 degrees, but then the maximum cutting speed is reduced.

OTHER 3D CIRCLE DEFINITIONS

With the same mathematical tools as described above, two more interpolation
models were developed. The first additional one was for circular interpolation where
the coordinates of two points on the circumference of the 3D circle as well as the
radius are known. For these cases there are always two circles possible and the
programmer must decide on a rule as to ensure that the correct circle is selected. A
maximum cutting speed of about 185 mm/min was obtained with this particular
model.

The second additional model required the coordinates of two points on the
circumference of the 3D circle as well as the coordinates of the centre point. With
this model it is not necessary to transform the circle in an inverse direction back to
the YZ main plane, because the centre point of the 3D circle is already at a known
point. Secondly, transformation of the centre point from the main plane to the 3D
location is not necessary. A maximum cutting speed of about 230 mm/min was
obtained by using this model to interpolate the circle.

CONCLUSIONS

With fast 386-processors on CNC machines now available it is possible to do
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practical 3D circular interpolation directly on the machines. It is also expected that
manufacturers of CNC machines will in future add more mathematical functions and
make more memory available to the programmer and thus provide the programmer
with more computing power with which higher cutting speeds would be attained.

The technique of 3D circular interpolation can be applied widely in the field of
CNC manufacturing and can fill an important gap in the programming of 3D
surfaces for the plastic injection and foundry industries. This technique will
eliminate the purchase of very expensive CAD/CAM software for applications like
milling the inside surface of a bent pipe cut open along the centre line.
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